1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 25 * Use is subject to license terms. 26 */ 27 /* 28 * Copyright (c) 2015, Joyent, Inc. All rights reserved. 29 */ 30 31 #include <ctf_impl.h> 32 #include <sys/mman.h> 33 #include <sys/zmod.h> 34 35 static const ctf_dmodel_t _libctf_models[] = { 36 { "ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4 }, 37 { "LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8 }, 38 { NULL, 0, 0, 0, 0, 0, 0 } 39 }; 40 41 const char _CTF_SECTION[] = ".SUNW_ctf"; 42 const char _CTF_NULLSTR[] = ""; 43 44 int _libctf_version = CTF_VERSION; /* library client version */ 45 int _libctf_debug = 0; /* debugging messages enabled */ 46 47 static ushort_t 48 get_kind_v1(ushort_t info) 49 { 50 return (CTF_INFO_KIND_V1(info)); 51 } 52 53 static ushort_t 54 get_kind_v2(ushort_t info) 55 { 56 return (CTF_INFO_KIND(info)); 57 } 58 59 static ushort_t 60 get_root_v1(ushort_t info) 61 { 62 return (CTF_INFO_ISROOT_V1(info)); 63 } 64 65 static ushort_t 66 get_root_v2(ushort_t info) 67 { 68 return (CTF_INFO_ISROOT(info)); 69 } 70 71 static ushort_t 72 get_vlen_v1(ushort_t info) 73 { 74 return (CTF_INFO_VLEN_V1(info)); 75 } 76 77 static ushort_t 78 get_vlen_v2(ushort_t info) 79 { 80 return (CTF_INFO_VLEN(info)); 81 } 82 83 static const ctf_fileops_t ctf_fileops[] = { 84 { NULL, NULL }, 85 { get_kind_v1, get_root_v1, get_vlen_v1 }, 86 { get_kind_v2, get_root_v2, get_vlen_v2 }, 87 }; 88 89 /* 90 * Convert a 32-bit ELF symbol into GElf (Elf64) and return a pointer to it. 91 */ 92 static Elf64_Sym * 93 sym_to_gelf(const Elf32_Sym *src, Elf64_Sym *dst) 94 { 95 dst->st_name = src->st_name; 96 dst->st_value = src->st_value; 97 dst->st_size = src->st_size; 98 dst->st_info = src->st_info; 99 dst->st_other = src->st_other; 100 dst->st_shndx = src->st_shndx; 101 102 return (dst); 103 } 104 105 /* 106 * Initialize the symtab translation table by filling each entry with the 107 * offset of the CTF type or function data corresponding to each STT_FUNC or 108 * STT_OBJECT entry in the symbol table. 109 */ 110 static int 111 init_symtab(ctf_file_t *fp, const ctf_header_t *hp, 112 const ctf_sect_t *sp, const ctf_sect_t *strp) 113 { 114 const uchar_t *symp = sp->cts_data; 115 uint_t *xp = fp->ctf_sxlate; 116 uint_t *xend = xp + fp->ctf_nsyms; 117 118 uint_t objtoff = hp->cth_objtoff; 119 uint_t funcoff = hp->cth_funcoff; 120 121 ushort_t info, vlen; 122 Elf64_Sym sym, *gsp; 123 const char *name; 124 125 /* 126 * The CTF data object and function type sections are ordered to match 127 * the relative order of the respective symbol types in the symtab. 128 * If no type information is available for a symbol table entry, a 129 * pad is inserted in the CTF section. As a further optimization, 130 * anonymous or undefined symbols are omitted from the CTF data. 131 */ 132 for (; xp < xend; xp++, symp += sp->cts_entsize) { 133 if (sp->cts_entsize == sizeof (Elf32_Sym)) 134 gsp = sym_to_gelf((Elf32_Sym *)(uintptr_t)symp, &sym); 135 else 136 gsp = (Elf64_Sym *)(uintptr_t)symp; 137 138 if (gsp->st_name < strp->cts_size) 139 name = (const char *)strp->cts_data + gsp->st_name; 140 else 141 name = _CTF_NULLSTR; 142 143 if (gsp->st_name == 0 || gsp->st_shndx == SHN_UNDEF || 144 strcmp(name, "_START_") == 0 || 145 strcmp(name, "_END_") == 0) { 146 *xp = -1u; 147 continue; 148 } 149 150 switch (ELF64_ST_TYPE(gsp->st_info)) { 151 case STT_OBJECT: 152 if (objtoff >= hp->cth_funcoff || 153 (gsp->st_shndx == SHN_ABS && gsp->st_value == 0)) { 154 *xp = -1u; 155 break; 156 } 157 158 *xp = objtoff; 159 objtoff += sizeof (ushort_t); 160 break; 161 162 case STT_FUNC: 163 if (funcoff >= hp->cth_typeoff) { 164 *xp = -1u; 165 break; 166 } 167 168 *xp = funcoff; 169 170 info = *(ushort_t *)((uintptr_t)fp->ctf_buf + funcoff); 171 vlen = LCTF_INFO_VLEN(fp, info); 172 173 /* 174 * If we encounter a zero pad at the end, just skip it. 175 * Otherwise skip over the function and its return type 176 * (+2) and the argument list (vlen). 177 */ 178 if (LCTF_INFO_KIND(fp, info) == CTF_K_UNKNOWN && 179 vlen == 0) 180 funcoff += sizeof (ushort_t); /* skip pad */ 181 else 182 funcoff += sizeof (ushort_t) * (vlen + 2); 183 break; 184 185 default: 186 *xp = -1u; 187 break; 188 } 189 } 190 191 ctf_dprintf("loaded %lu symtab entries\n", fp->ctf_nsyms); 192 return (0); 193 } 194 195 /* 196 * Initialize the type ID translation table with the byte offset of each type, 197 * and initialize the hash tables of each named type. 198 */ 199 static int 200 init_types(ctf_file_t *fp, const ctf_header_t *cth) 201 { 202 /* LINTED - pointer alignment */ 203 const ctf_type_t *tbuf = (ctf_type_t *)(fp->ctf_buf + cth->cth_typeoff); 204 /* LINTED - pointer alignment */ 205 const ctf_type_t *tend = (ctf_type_t *)(fp->ctf_buf + cth->cth_stroff); 206 207 ulong_t pop[CTF_K_MAX + 1] = { 0 }; 208 const ctf_type_t *tp; 209 ctf_hash_t *hp; 210 ushort_t id, dst; 211 uint_t *xp; 212 213 /* 214 * We initially determine whether the container is a child or a parent 215 * based on the value of cth_parname. To support containers that pre- 216 * date cth_parname, we also scan the types themselves for references 217 * to values in the range reserved for child types in our first pass. 218 */ 219 int child = cth->cth_parname != 0; 220 int nlstructs = 0, nlunions = 0; 221 int err; 222 223 /* 224 * We make two passes through the entire type section. In this first 225 * pass, we count the number of each type and the total number of types. 226 */ 227 for (tp = tbuf; tp < tend; fp->ctf_typemax++) { 228 ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info); 229 ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info); 230 ssize_t size, increment; 231 232 size_t vbytes; 233 uint_t n; 234 235 (void) ctf_get_ctt_size(fp, tp, &size, &increment); 236 237 switch (kind) { 238 case CTF_K_INTEGER: 239 case CTF_K_FLOAT: 240 vbytes = sizeof (uint_t); 241 break; 242 case CTF_K_ARRAY: 243 vbytes = sizeof (ctf_array_t); 244 break; 245 case CTF_K_FUNCTION: 246 vbytes = sizeof (ushort_t) * (vlen + (vlen & 1)); 247 break; 248 case CTF_K_STRUCT: 249 case CTF_K_UNION: 250 if (fp->ctf_version == CTF_VERSION_1 || 251 size < CTF_LSTRUCT_THRESH) { 252 ctf_member_t *mp = (ctf_member_t *) 253 ((uintptr_t)tp + increment); 254 255 vbytes = sizeof (ctf_member_t) * vlen; 256 for (n = vlen; n != 0; n--, mp++) 257 child |= CTF_TYPE_ISCHILD(mp->ctm_type); 258 } else { 259 ctf_lmember_t *lmp = (ctf_lmember_t *) 260 ((uintptr_t)tp + increment); 261 262 vbytes = sizeof (ctf_lmember_t) * vlen; 263 for (n = vlen; n != 0; n--, lmp++) 264 child |= 265 CTF_TYPE_ISCHILD(lmp->ctlm_type); 266 } 267 break; 268 case CTF_K_ENUM: 269 vbytes = sizeof (ctf_enum_t) * vlen; 270 break; 271 case CTF_K_FORWARD: 272 /* 273 * For forward declarations, ctt_type is the CTF_K_* 274 * kind for the tag, so bump that population count too. 275 * If ctt_type is unknown, treat the tag as a struct. 276 */ 277 if (tp->ctt_type == CTF_K_UNKNOWN || 278 tp->ctt_type >= CTF_K_MAX) 279 pop[CTF_K_STRUCT]++; 280 else 281 pop[tp->ctt_type]++; 282 /*FALLTHRU*/ 283 case CTF_K_UNKNOWN: 284 vbytes = 0; 285 break; 286 case CTF_K_POINTER: 287 case CTF_K_TYPEDEF: 288 case CTF_K_VOLATILE: 289 case CTF_K_CONST: 290 case CTF_K_RESTRICT: 291 child |= CTF_TYPE_ISCHILD(tp->ctt_type); 292 vbytes = 0; 293 break; 294 default: 295 ctf_dprintf("detected invalid CTF kind -- %u\n", kind); 296 return (ECTF_CORRUPT); 297 } 298 tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes); 299 pop[kind]++; 300 } 301 302 /* 303 * If we detected a reference to a child type ID, then we know this 304 * container is a child and may have a parent's types imported later. 305 */ 306 if (child) { 307 ctf_dprintf("CTF container %p is a child\n", (void *)fp); 308 fp->ctf_flags |= LCTF_CHILD; 309 } else 310 ctf_dprintf("CTF container %p is a parent\n", (void *)fp); 311 312 /* 313 * Now that we've counted up the number of each type, we can allocate 314 * the hash tables, type translation table, and pointer table. 315 */ 316 if ((err = ctf_hash_create(&fp->ctf_structs, pop[CTF_K_STRUCT])) != 0) 317 return (err); 318 319 if ((err = ctf_hash_create(&fp->ctf_unions, pop[CTF_K_UNION])) != 0) 320 return (err); 321 322 if ((err = ctf_hash_create(&fp->ctf_enums, pop[CTF_K_ENUM])) != 0) 323 return (err); 324 325 if ((err = ctf_hash_create(&fp->ctf_names, 326 pop[CTF_K_INTEGER] + pop[CTF_K_FLOAT] + pop[CTF_K_FUNCTION] + 327 pop[CTF_K_TYPEDEF] + pop[CTF_K_POINTER] + pop[CTF_K_VOLATILE] + 328 pop[CTF_K_CONST] + pop[CTF_K_RESTRICT])) != 0) 329 return (err); 330 331 fp->ctf_txlate = ctf_alloc(sizeof (uint_t) * (fp->ctf_typemax + 1)); 332 fp->ctf_ptrtab = ctf_alloc(sizeof (ushort_t) * (fp->ctf_typemax + 1)); 333 334 if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL) 335 return (EAGAIN); /* memory allocation failed */ 336 337 xp = fp->ctf_txlate; 338 *xp++ = 0; /* type id 0 is used as a sentinel value */ 339 340 bzero(fp->ctf_txlate, sizeof (uint_t) * (fp->ctf_typemax + 1)); 341 bzero(fp->ctf_ptrtab, sizeof (ushort_t) * (fp->ctf_typemax + 1)); 342 343 /* 344 * In the second pass through the types, we fill in each entry of the 345 * type and pointer tables and add names to the appropriate hashes. 346 */ 347 for (id = 1, tp = tbuf; tp < tend; xp++, id++) { 348 ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info); 349 ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info); 350 ssize_t size, increment; 351 352 const char *name; 353 size_t vbytes; 354 ctf_helem_t *hep; 355 ctf_encoding_t cte; 356 357 (void) ctf_get_ctt_size(fp, tp, &size, &increment); 358 name = ctf_strptr(fp, tp->ctt_name); 359 360 switch (kind) { 361 case CTF_K_INTEGER: 362 case CTF_K_FLOAT: 363 /* 364 * Only insert a new integer base type definition if 365 * this type name has not been defined yet. We re-use 366 * the names with different encodings for bit-fields. 367 */ 368 if ((hep = ctf_hash_lookup(&fp->ctf_names, fp, 369 name, strlen(name))) == NULL) { 370 err = ctf_hash_insert(&fp->ctf_names, fp, 371 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); 372 if (err != 0 && err != ECTF_STRTAB) 373 return (err); 374 } else if (ctf_type_encoding(fp, hep->h_type, 375 &cte) == 0 && cte.cte_bits == 0) { 376 /* 377 * Work-around SOS8 stabs bug: replace existing 378 * intrinsic w/ same name if it was zero bits. 379 */ 380 hep->h_type = CTF_INDEX_TO_TYPE(id, child); 381 } 382 vbytes = sizeof (uint_t); 383 break; 384 385 case CTF_K_ARRAY: 386 vbytes = sizeof (ctf_array_t); 387 break; 388 389 case CTF_K_FUNCTION: 390 err = ctf_hash_insert(&fp->ctf_names, fp, 391 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); 392 if (err != 0 && err != ECTF_STRTAB) 393 return (err); 394 vbytes = sizeof (ushort_t) * (vlen + (vlen & 1)); 395 break; 396 397 case CTF_K_STRUCT: 398 err = ctf_hash_define(&fp->ctf_structs, fp, 399 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); 400 401 if (err != 0 && err != ECTF_STRTAB) 402 return (err); 403 404 if (fp->ctf_version == CTF_VERSION_1 || 405 size < CTF_LSTRUCT_THRESH) 406 vbytes = sizeof (ctf_member_t) * vlen; 407 else { 408 vbytes = sizeof (ctf_lmember_t) * vlen; 409 nlstructs++; 410 } 411 break; 412 413 case CTF_K_UNION: 414 err = ctf_hash_define(&fp->ctf_unions, fp, 415 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); 416 417 if (err != 0 && err != ECTF_STRTAB) 418 return (err); 419 420 if (fp->ctf_version == CTF_VERSION_1 || 421 size < CTF_LSTRUCT_THRESH) 422 vbytes = sizeof (ctf_member_t) * vlen; 423 else { 424 vbytes = sizeof (ctf_lmember_t) * vlen; 425 nlunions++; 426 } 427 break; 428 429 case CTF_K_ENUM: 430 err = ctf_hash_define(&fp->ctf_enums, fp, 431 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); 432 433 if (err != 0 && err != ECTF_STRTAB) 434 return (err); 435 436 vbytes = sizeof (ctf_enum_t) * vlen; 437 break; 438 439 case CTF_K_TYPEDEF: 440 err = ctf_hash_insert(&fp->ctf_names, fp, 441 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); 442 if (err != 0 && err != ECTF_STRTAB) 443 return (err); 444 vbytes = 0; 445 break; 446 447 case CTF_K_FORWARD: 448 /* 449 * Only insert forward tags into the given hash if the 450 * type or tag name is not already present. 451 */ 452 switch (tp->ctt_type) { 453 case CTF_K_STRUCT: 454 hp = &fp->ctf_structs; 455 break; 456 case CTF_K_UNION: 457 hp = &fp->ctf_unions; 458 break; 459 case CTF_K_ENUM: 460 hp = &fp->ctf_enums; 461 break; 462 default: 463 hp = &fp->ctf_structs; 464 } 465 466 if (ctf_hash_lookup(hp, fp, 467 name, strlen(name)) == NULL) { 468 err = ctf_hash_insert(hp, fp, 469 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); 470 if (err != 0 && err != ECTF_STRTAB) 471 return (err); 472 } 473 vbytes = 0; 474 break; 475 476 case CTF_K_POINTER: 477 /* 478 * If the type referenced by the pointer is in this CTF 479 * container, then store the index of the pointer type 480 * in fp->ctf_ptrtab[ index of referenced type ]. 481 */ 482 if (CTF_TYPE_ISCHILD(tp->ctt_type) == child && 483 CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax) 484 fp->ctf_ptrtab[ 485 CTF_TYPE_TO_INDEX(tp->ctt_type)] = id; 486 /*FALLTHRU*/ 487 488 case CTF_K_VOLATILE: 489 case CTF_K_CONST: 490 case CTF_K_RESTRICT: 491 err = ctf_hash_insert(&fp->ctf_names, fp, 492 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); 493 if (err != 0 && err != ECTF_STRTAB) 494 return (err); 495 /*FALLTHRU*/ 496 497 default: 498 vbytes = 0; 499 break; 500 } 501 502 *xp = (uint_t)((uintptr_t)tp - (uintptr_t)fp->ctf_buf); 503 tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes); 504 } 505 506 ctf_dprintf("%lu total types processed\n", fp->ctf_typemax); 507 ctf_dprintf("%u enum names hashed\n", ctf_hash_size(&fp->ctf_enums)); 508 ctf_dprintf("%u struct names hashed (%d long)\n", 509 ctf_hash_size(&fp->ctf_structs), nlstructs); 510 ctf_dprintf("%u union names hashed (%d long)\n", 511 ctf_hash_size(&fp->ctf_unions), nlunions); 512 ctf_dprintf("%u base type names hashed\n", 513 ctf_hash_size(&fp->ctf_names)); 514 515 /* 516 * Make an additional pass through the pointer table to find pointers 517 * that point to anonymous typedef nodes. If we find one, modify the 518 * pointer table so that the pointer is also known to point to the 519 * node that is referenced by the anonymous typedef node. 520 */ 521 for (id = 1; id <= fp->ctf_typemax; id++) { 522 if ((dst = fp->ctf_ptrtab[id]) != 0) { 523 tp = LCTF_INDEX_TO_TYPEPTR(fp, id); 524 525 if (LCTF_INFO_KIND(fp, tp->ctt_info) == CTF_K_TYPEDEF && 526 strcmp(ctf_strptr(fp, tp->ctt_name), "") == 0 && 527 CTF_TYPE_ISCHILD(tp->ctt_type) == child && 528 CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax) 529 fp->ctf_ptrtab[ 530 CTF_TYPE_TO_INDEX(tp->ctt_type)] = dst; 531 } 532 } 533 534 return (0); 535 } 536 537 /* 538 * Decode the specified CTF buffer and optional symbol table and create a new 539 * CTF container representing the symbolic debugging information. This code 540 * can be used directly by the debugger, or it can be used as the engine for 541 * ctf_fdopen() or ctf_open(), below. 542 */ 543 ctf_file_t * 544 ctf_bufopen(const ctf_sect_t *ctfsect, const ctf_sect_t *symsect, 545 const ctf_sect_t *strsect, int *errp) 546 { 547 const ctf_preamble_t *pp; 548 ctf_header_t hp; 549 ctf_file_t *fp; 550 void *buf, *base; 551 size_t size, hdrsz; 552 int err; 553 uint_t hflags; 554 555 if (ctfsect == NULL || ((symsect == NULL) != (strsect == NULL))) 556 return (ctf_set_open_errno(errp, EINVAL)); 557 558 if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) && 559 symsect->cts_entsize != sizeof (Elf64_Sym)) 560 return (ctf_set_open_errno(errp, ECTF_SYMTAB)); 561 562 if (symsect != NULL && symsect->cts_data == NULL) 563 return (ctf_set_open_errno(errp, ECTF_SYMBAD)); 564 565 if (strsect != NULL && strsect->cts_data == NULL) 566 return (ctf_set_open_errno(errp, ECTF_STRBAD)); 567 568 if (ctfsect->cts_size < sizeof (ctf_preamble_t)) 569 return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); 570 571 pp = (const ctf_preamble_t *)ctfsect->cts_data; 572 573 ctf_dprintf("ctf_bufopen: magic=0x%x version=%u\n", 574 pp->ctp_magic, pp->ctp_version); 575 576 /* 577 * Validate each part of the CTF header (either V1 or V2). 578 * First, we validate the preamble (common to all versions). At that 579 * point, we know specific header version, and can validate the 580 * version-specific parts including section offsets and alignments. 581 */ 582 if (pp->ctp_magic != CTF_MAGIC) 583 return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); 584 585 if (pp->ctp_version == CTF_VERSION_2) { 586 if (ctfsect->cts_size < sizeof (ctf_header_t)) 587 return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); 588 589 bcopy(ctfsect->cts_data, &hp, sizeof (hp)); 590 hdrsz = sizeof (ctf_header_t); 591 592 } else if (pp->ctp_version == CTF_VERSION_1) { 593 const ctf_header_v1_t *h1p = 594 (const ctf_header_v1_t *)ctfsect->cts_data; 595 596 if (ctfsect->cts_size < sizeof (ctf_header_v1_t)) 597 return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); 598 599 bzero(&hp, sizeof (hp)); 600 hp.cth_preamble = h1p->cth_preamble; 601 hp.cth_objtoff = h1p->cth_objtoff; 602 hp.cth_funcoff = h1p->cth_funcoff; 603 hp.cth_typeoff = h1p->cth_typeoff; 604 hp.cth_stroff = h1p->cth_stroff; 605 hp.cth_strlen = h1p->cth_strlen; 606 607 hdrsz = sizeof (ctf_header_v1_t); 608 } else 609 return (ctf_set_open_errno(errp, ECTF_CTFVERS)); 610 611 size = hp.cth_stroff + hp.cth_strlen; 612 613 ctf_dprintf("ctf_bufopen: uncompressed size=%lu\n", (ulong_t)size); 614 615 if (hp.cth_lbloff > size || hp.cth_objtoff > size || 616 hp.cth_funcoff > size || hp.cth_typeoff > size || 617 hp.cth_stroff > size) 618 return (ctf_set_open_errno(errp, ECTF_CORRUPT)); 619 620 if (hp.cth_lbloff > hp.cth_objtoff || 621 hp.cth_objtoff > hp.cth_funcoff || 622 hp.cth_funcoff > hp.cth_typeoff || 623 hp.cth_typeoff > hp.cth_stroff) 624 return (ctf_set_open_errno(errp, ECTF_CORRUPT)); 625 626 if ((hp.cth_lbloff & 3) || (hp.cth_objtoff & 1) || 627 (hp.cth_funcoff & 1) || (hp.cth_typeoff & 3)) 628 return (ctf_set_open_errno(errp, ECTF_CORRUPT)); 629 630 /* 631 * Once everything is determined to be valid, attempt to decompress 632 * the CTF data buffer if it is compressed. Otherwise we just put 633 * the data section's buffer pointer into ctf_buf, below. 634 */ 635 hflags = hp.cth_flags; 636 if (hp.cth_flags & CTF_F_COMPRESS) { 637 size_t srclen, dstlen; 638 const void *src; 639 int rc = Z_OK; 640 641 if (ctf_zopen(errp) == NULL) 642 return (NULL); /* errp is set for us */ 643 644 if ((base = ctf_data_alloc(size + hdrsz)) == MAP_FAILED) 645 return (ctf_set_open_errno(errp, ECTF_ZALLOC)); 646 647 bcopy(ctfsect->cts_data, base, hdrsz); 648 ((ctf_preamble_t *)base)->ctp_flags &= ~CTF_F_COMPRESS; 649 buf = (uchar_t *)base + hdrsz; 650 651 src = (uchar_t *)ctfsect->cts_data + hdrsz; 652 srclen = ctfsect->cts_size - hdrsz; 653 dstlen = size; 654 655 if ((rc = z_uncompress(buf, &dstlen, src, srclen)) != Z_OK) { 656 ctf_dprintf("zlib inflate err: %s\n", z_strerror(rc)); 657 ctf_data_free(base, size + hdrsz); 658 return (ctf_set_open_errno(errp, ECTF_DECOMPRESS)); 659 } 660 661 if (dstlen != size) { 662 ctf_dprintf("zlib inflate short -- got %lu of %lu " 663 "bytes\n", (ulong_t)dstlen, (ulong_t)size); 664 ctf_data_free(base, size + hdrsz); 665 return (ctf_set_open_errno(errp, ECTF_CORRUPT)); 666 } 667 668 ctf_data_protect(base, size + hdrsz); 669 670 } else { 671 base = (void *)ctfsect->cts_data; 672 buf = (uchar_t *)base + hdrsz; 673 } 674 675 /* 676 * Once we have uncompressed and validated the CTF data buffer, we can 677 * proceed with allocating a ctf_file_t and initializing it. 678 */ 679 if ((fp = ctf_alloc(sizeof (ctf_file_t))) == NULL) 680 return (ctf_set_open_errno(errp, EAGAIN)); 681 682 bzero(fp, sizeof (ctf_file_t)); 683 fp->ctf_version = hp.cth_version; 684 fp->ctf_fileops = &ctf_fileops[hp.cth_version]; 685 fp->ctf_hflags = hflags; 686 bcopy(ctfsect, &fp->ctf_data, sizeof (ctf_sect_t)); 687 688 if (symsect != NULL) { 689 bcopy(symsect, &fp->ctf_symtab, sizeof (ctf_sect_t)); 690 bcopy(strsect, &fp->ctf_strtab, sizeof (ctf_sect_t)); 691 } 692 693 if (fp->ctf_data.cts_name != NULL) 694 fp->ctf_data.cts_name = ctf_strdup(fp->ctf_data.cts_name); 695 if (fp->ctf_symtab.cts_name != NULL) 696 fp->ctf_symtab.cts_name = ctf_strdup(fp->ctf_symtab.cts_name); 697 if (fp->ctf_strtab.cts_name != NULL) 698 fp->ctf_strtab.cts_name = ctf_strdup(fp->ctf_strtab.cts_name); 699 700 if (fp->ctf_data.cts_name == NULL) 701 fp->ctf_data.cts_name = _CTF_NULLSTR; 702 if (fp->ctf_symtab.cts_name == NULL) 703 fp->ctf_symtab.cts_name = _CTF_NULLSTR; 704 if (fp->ctf_strtab.cts_name == NULL) 705 fp->ctf_strtab.cts_name = _CTF_NULLSTR; 706 707 fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *)buf + hp.cth_stroff; 708 fp->ctf_str[CTF_STRTAB_0].cts_len = hp.cth_strlen; 709 710 if (strsect != NULL) { 711 fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data; 712 fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size; 713 } 714 715 fp->ctf_base = base; 716 fp->ctf_buf = buf; 717 fp->ctf_size = size + hdrsz; 718 719 /* 720 * If we have a parent container name and label, store the relocated 721 * string pointers in the CTF container for easy access later. 722 */ 723 if (hp.cth_parlabel != 0) 724 fp->ctf_parlabel = ctf_strptr(fp, hp.cth_parlabel); 725 if (hp.cth_parname != 0) 726 fp->ctf_parname = ctf_strptr(fp, hp.cth_parname); 727 728 ctf_dprintf("ctf_bufopen: parent name %s (label %s)\n", 729 fp->ctf_parname ? fp->ctf_parname : "<NULL>", 730 fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>"); 731 732 /* 733 * If we have a symbol table section, allocate and initialize 734 * the symtab translation table, pointed to by ctf_sxlate. 735 */ 736 if (symsect != NULL) { 737 fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize; 738 fp->ctf_sxlate = ctf_alloc(fp->ctf_nsyms * sizeof (uint_t)); 739 740 if (fp->ctf_sxlate == NULL) { 741 (void) ctf_set_open_errno(errp, EAGAIN); 742 goto bad; 743 } 744 745 if ((err = init_symtab(fp, &hp, symsect, strsect)) != 0) { 746 (void) ctf_set_open_errno(errp, err); 747 goto bad; 748 } 749 } 750 751 if ((err = init_types(fp, &hp)) != 0) { 752 (void) ctf_set_open_errno(errp, err); 753 goto bad; 754 } 755 756 /* 757 * Initialize the ctf_lookup_by_name top-level dictionary. We keep an 758 * array of type name prefixes and the corresponding ctf_hash to use. 759 * NOTE: This code must be kept in sync with the code in ctf_update(). 760 */ 761 fp->ctf_lookups[0].ctl_prefix = "struct"; 762 fp->ctf_lookups[0].ctl_len = strlen(fp->ctf_lookups[0].ctl_prefix); 763 fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs; 764 fp->ctf_lookups[1].ctl_prefix = "union"; 765 fp->ctf_lookups[1].ctl_len = strlen(fp->ctf_lookups[1].ctl_prefix); 766 fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions; 767 fp->ctf_lookups[2].ctl_prefix = "enum"; 768 fp->ctf_lookups[2].ctl_len = strlen(fp->ctf_lookups[2].ctl_prefix); 769 fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums; 770 fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR; 771 fp->ctf_lookups[3].ctl_len = strlen(fp->ctf_lookups[3].ctl_prefix); 772 fp->ctf_lookups[3].ctl_hash = &fp->ctf_names; 773 fp->ctf_lookups[4].ctl_prefix = NULL; 774 fp->ctf_lookups[4].ctl_len = 0; 775 fp->ctf_lookups[4].ctl_hash = NULL; 776 777 if (symsect != NULL) { 778 if (symsect->cts_entsize == sizeof (Elf64_Sym)) 779 (void) ctf_setmodel(fp, CTF_MODEL_LP64); 780 else 781 (void) ctf_setmodel(fp, CTF_MODEL_ILP32); 782 } else 783 (void) ctf_setmodel(fp, CTF_MODEL_NATIVE); 784 785 fp->ctf_refcnt = 1; 786 return (fp); 787 788 bad: 789 ctf_close(fp); 790 return (NULL); 791 } 792 793 /* 794 * Dupliate a ctf_file_t and its underlying section information into a new 795 * container. This works by copying the three ctf_sect_t's of the original 796 * container if they exist and passing those into ctf_bufopen. To copy those, we 797 * mmap anonymous memory with ctf_data_alloc and bcopy the data across. It's not 798 * the cheapest thing, but it's what we've got. 799 */ 800 ctf_file_t * 801 ctf_dup(ctf_file_t *ofp) 802 { 803 ctf_file_t *fp; 804 ctf_sect_t ctfsect, symsect, strsect; 805 ctf_sect_t *ctp, *symp, *strp; 806 void *cbuf, *symbuf, *strbuf; 807 int err; 808 809 cbuf = symbuf = strbuf = NULL; 810 /* 811 * The ctfsect isn't allowed to not exist, but the symbol and string 812 * section might not. We only need to copy the data of the section, not 813 * the name, as ctf_bufopen will take care of that. 814 */ 815 bcopy(&ofp->ctf_data, &ctfsect, sizeof (ctf_sect_t)); 816 cbuf = ctf_data_alloc(ctfsect.cts_size); 817 if (cbuf == NULL) { 818 (void) ctf_set_errno(ofp, ECTF_MMAP); 819 return (NULL); 820 } 821 822 bcopy(ctfsect.cts_data, cbuf, ctfsect.cts_size); 823 ctf_data_protect(cbuf, ctfsect.cts_size); 824 ctfsect.cts_data = cbuf; 825 ctfsect.cts_offset = 0; 826 ctp = &ctfsect; 827 828 if (ofp->ctf_symtab.cts_data != NULL) { 829 bcopy(&ofp->ctf_symtab, &symsect, sizeof (ctf_sect_t)); 830 symbuf = ctf_data_alloc(symsect.cts_size); 831 if (symbuf == NULL) { 832 (void) ctf_set_errno(ofp, ECTF_MMAP); 833 goto err; 834 } 835 bcopy(symsect.cts_data, symbuf, symsect.cts_size); 836 ctf_data_protect(symbuf, symsect.cts_size); 837 symsect.cts_data = symbuf; 838 symsect.cts_offset = 0; 839 symp = &symsect; 840 } else { 841 symp = NULL; 842 } 843 844 if (ofp->ctf_strtab.cts_data != NULL) { 845 bcopy(&ofp->ctf_strtab, &strsect, sizeof (ctf_sect_t)); 846 strbuf = ctf_data_alloc(strsect.cts_size); 847 if (strbuf == NULL) { 848 (void) ctf_set_errno(ofp, ECTF_MMAP); 849 goto err; 850 } 851 bcopy(strsect.cts_data, strbuf, strsect.cts_size); 852 ctf_data_protect(strbuf, strsect.cts_size); 853 strsect.cts_data = strbuf; 854 strsect.cts_offset = 0; 855 strp = &strsect; 856 } else { 857 strp = NULL; 858 } 859 860 fp = ctf_bufopen(ctp, symp, strp, &err); 861 if (fp == NULL) { 862 (void) ctf_set_errno(ofp, err); 863 goto err; 864 } 865 866 fp->ctf_flags |= LCTF_MMAP; 867 868 return (fp); 869 870 err: 871 ctf_data_free(cbuf, ctfsect.cts_size); 872 if (symbuf != NULL) 873 ctf_data_free(symbuf, symsect.cts_size); 874 if (strbuf != NULL) 875 ctf_data_free(strbuf, strsect.cts_size); 876 return (NULL); 877 } 878 879 /* 880 * Close the specified CTF container and free associated data structures. Note 881 * that ctf_close() is a reference counted operation: if the specified file is 882 * the parent of other active containers, its reference count will be greater 883 * than one and it will be freed later when no active children exist. 884 */ 885 void 886 ctf_close(ctf_file_t *fp) 887 { 888 ctf_dtdef_t *dtd, *ntd; 889 ctf_dsdef_t *dsd, *nsd; 890 ctf_dldef_t *dld, *nld; 891 892 if (fp == NULL) 893 return; /* allow ctf_close(NULL) to simplify caller code */ 894 895 ctf_dprintf("ctf_close(%p) refcnt=%u\n", (void *)fp, fp->ctf_refcnt); 896 897 if (fp->ctf_refcnt > 1) { 898 fp->ctf_refcnt--; 899 return; 900 } 901 902 if (fp->ctf_parent != NULL) 903 ctf_close(fp->ctf_parent); 904 905 /* 906 * Note, to work properly with reference counting on the dynamic 907 * section, we must delete the list in reverse. 908 */ 909 for (dtd = ctf_list_prev(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) { 910 ntd = ctf_list_prev(dtd); 911 ctf_dtd_delete(fp, dtd); 912 } 913 914 for (dsd = ctf_list_prev(&fp->ctf_dsdefs); dsd != NULL; dsd = nsd) { 915 nsd = ctf_list_prev(dsd); 916 ctf_dsd_delete(fp, dsd); 917 } 918 919 for (dld = ctf_list_prev(&fp->ctf_dldefs); dld != NULL; dld = nld) { 920 nld = ctf_list_prev(dld); 921 ctf_dld_delete(fp, dld); 922 } 923 924 ctf_free(fp->ctf_dthash, fp->ctf_dthashlen * sizeof (ctf_dtdef_t *)); 925 926 if (fp->ctf_flags & LCTF_MMAP) { 927 /* 928 * Writeable containers shouldn't necessairily have the CTF 929 * section freed. 930 */ 931 if (fp->ctf_data.cts_data != NULL && 932 !(fp->ctf_flags & LCTF_RDWR)) 933 ctf_sect_munmap(&fp->ctf_data); 934 if (fp->ctf_symtab.cts_data != NULL) 935 ctf_sect_munmap(&fp->ctf_symtab); 936 if (fp->ctf_strtab.cts_data != NULL) 937 ctf_sect_munmap(&fp->ctf_strtab); 938 } 939 940 if (fp->ctf_data.cts_name != _CTF_NULLSTR && 941 fp->ctf_data.cts_name != NULL) { 942 ctf_free((char *)fp->ctf_data.cts_name, 943 strlen(fp->ctf_data.cts_name) + 1); 944 } 945 946 if (fp->ctf_symtab.cts_name != _CTF_NULLSTR && 947 fp->ctf_symtab.cts_name != NULL) { 948 ctf_free((char *)fp->ctf_symtab.cts_name, 949 strlen(fp->ctf_symtab.cts_name) + 1); 950 } 951 952 if (fp->ctf_strtab.cts_name != _CTF_NULLSTR && 953 fp->ctf_strtab.cts_name != NULL) { 954 ctf_free((char *)fp->ctf_strtab.cts_name, 955 strlen(fp->ctf_strtab.cts_name) + 1); 956 } 957 958 if (fp->ctf_base != fp->ctf_data.cts_data && fp->ctf_base != NULL) 959 ctf_data_free((void *)fp->ctf_base, fp->ctf_size); 960 961 if (fp->ctf_sxlate != NULL) 962 ctf_free(fp->ctf_sxlate, sizeof (uint_t) * fp->ctf_nsyms); 963 964 if (fp->ctf_txlate != NULL) { 965 ctf_free(fp->ctf_txlate, 966 sizeof (uint_t) * (fp->ctf_typemax + 1)); 967 } 968 969 if (fp->ctf_ptrtab != NULL) { 970 ctf_free(fp->ctf_ptrtab, 971 sizeof (ushort_t) * (fp->ctf_typemax + 1)); 972 } 973 974 ctf_hash_destroy(&fp->ctf_structs); 975 ctf_hash_destroy(&fp->ctf_unions); 976 ctf_hash_destroy(&fp->ctf_enums); 977 ctf_hash_destroy(&fp->ctf_names); 978 979 ctf_free(fp, sizeof (ctf_file_t)); 980 } 981 982 /* 983 * Return the CTF handle for the parent CTF container, if one exists. 984 * Otherwise return NULL to indicate this container has no imported parent. 985 */ 986 ctf_file_t * 987 ctf_parent_file(ctf_file_t *fp) 988 { 989 return (fp->ctf_parent); 990 } 991 992 /* 993 * Return the name of the parent CTF container, if one exists. Otherwise 994 * return NULL to indicate this container is a root container. 995 */ 996 const char * 997 ctf_parent_name(ctf_file_t *fp) 998 { 999 return (fp->ctf_parname); 1000 } 1001 1002 /* 1003 * Return the label of the parent CTF container, if one exists. Otherwise return 1004 * NULL. 1005 */ 1006 const char * 1007 ctf_parent_label(ctf_file_t *fp) 1008 { 1009 return (fp->ctf_parlabel); 1010 } 1011 1012 /* 1013 * Import the types from the specified parent container by storing a pointer 1014 * to it in ctf_parent and incrementing its reference count. Only one parent 1015 * is allowed: if a parent already exists, it is replaced by the new parent. 1016 */ 1017 int 1018 ctf_import(ctf_file_t *fp, ctf_file_t *pfp) 1019 { 1020 if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0)) 1021 return (ctf_set_errno(fp, EINVAL)); 1022 1023 if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel) 1024 return (ctf_set_errno(fp, ECTF_DMODEL)); 1025 1026 if (fp->ctf_parent != NULL) 1027 ctf_close(fp->ctf_parent); 1028 1029 if (pfp != NULL) { 1030 fp->ctf_flags |= LCTF_CHILD; 1031 pfp->ctf_refcnt++; 1032 } 1033 1034 fp->ctf_parent = pfp; 1035 return (0); 1036 } 1037 1038 /* 1039 * Set the data model constant for the CTF container. 1040 */ 1041 int 1042 ctf_setmodel(ctf_file_t *fp, int model) 1043 { 1044 const ctf_dmodel_t *dp; 1045 1046 for (dp = _libctf_models; dp->ctd_name != NULL; dp++) { 1047 if (dp->ctd_code == model) { 1048 fp->ctf_dmodel = dp; 1049 return (0); 1050 } 1051 } 1052 1053 return (ctf_set_errno(fp, EINVAL)); 1054 } 1055 1056 /* 1057 * Return the data model constant for the CTF container. 1058 */ 1059 int 1060 ctf_getmodel(ctf_file_t *fp) 1061 { 1062 return (fp->ctf_dmodel->ctd_code); 1063 } 1064 1065 void 1066 ctf_setspecific(ctf_file_t *fp, void *data) 1067 { 1068 fp->ctf_specific = data; 1069 } 1070 1071 void * 1072 ctf_getspecific(ctf_file_t *fp) 1073 { 1074 return (fp->ctf_specific); 1075 } 1076 1077 uint_t 1078 ctf_flags(ctf_file_t *fp) 1079 { 1080 return (fp->ctf_hflags); 1081 } 1082