xref: /illumos-gate/usr/src/uts/common/fs/lofs/lofs_subr.c (revision 8eea8e29)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * The idea behind composition-based stacked filesystems is to add a
31  * vnode to the stack of vnodes for each mount. These vnodes have their
32  * own set of mount options and filesystem-specific functions, so they
33  * can modify data or operations before they are passed along. Such a
34  * filesystem must maintain a mapping from the underlying vnodes to its
35  * interposing vnodes.
36  *
37  * In lofs, this mapping is implemented by a hashtable. Each bucket
38  * contains a count of the number of nodes currently contained, the
39  * chain of vnodes, and a lock to protect the list of vnodes. The
40  * hashtable dynamically grows if the number of vnodes in the table as a
41  * whole exceeds the size of the table left-shifted by
42  * lo_resize_threshold. In order to minimize lock contention, there is
43  * no global lock protecting the hashtable, hence obtaining the
44  * per-bucket locks consists of a dance to make sure we've actually
45  * locked the correct bucket. Acquiring a bucket lock doesn't involve
46  * locking the hashtable itself, so we refrain from freeing old
47  * hashtables, and store them in a linked list of retired hashtables;
48  * the list is freed when the filesystem is unmounted.
49  */
50 
51 #include <sys/param.h>
52 #include <sys/kmem.h>
53 #include <sys/vfs.h>
54 #include <sys/vnode.h>
55 #include <sys/cmn_err.h>
56 #include <sys/systm.h>
57 #include <sys/t_lock.h>
58 #include <sys/debug.h>
59 #include <sys/atomic.h>
60 
61 #include <sys/fs/lofs_node.h>
62 #include <sys/fs/lofs_info.h>
63 /*
64  * Due to the hashing algorithm, the size of the hash table needs to be a
65  * power of 2.
66  */
67 #define	LOFS_DEFAULT_HTSIZE	(1 << 6)
68 
69 #define	ltablehash(vp, tblsz)	((((intptr_t)(vp))>>10) & ((tblsz)-1))
70 
71 /*
72  * The following macros can only be safely used when the desired bucket
73  * is already locked.
74  */
75 /*
76  * The lock in the hashtable associated with the given vnode.
77  */
78 #define	TABLE_LOCK(vp, li)      \
79 	(&(li)->li_hashtable[ltablehash((vp), (li)->li_htsize)].lh_lock)
80 
81 /*
82  * The bucket in the hashtable that the given vnode hashes to.
83  */
84 #define	TABLE_BUCKET(vp, li)    \
85 	((li)->li_hashtable[ltablehash((vp), (li)->li_htsize)].lh_chain)
86 
87 /*
88  * Number of elements currently in the bucket that the vnode hashes to.
89  */
90 #define	TABLE_COUNT(vp, li)	\
91 	((li)->li_hashtable[ltablehash((vp), (li)->li_htsize)].lh_count)
92 
93 /*
94  * Grab/Drop the lock for the bucket this vnode hashes to.
95  */
96 #define	TABLE_LOCK_ENTER(vp, li)	table_lock_enter(vp, li)
97 #define	TABLE_LOCK_EXIT(vp, li)		\
98 	mutex_exit(&(li)->li_hashtable[ltablehash((vp),	\
99 	    (li)->li_htsize)].lh_lock)
100 
101 static lnode_t *lfind(struct vnode *, struct loinfo *);
102 static void lsave(lnode_t *, struct loinfo *);
103 static struct vfs *makelfsnode(struct vfs *, struct loinfo *);
104 static struct lfsnode *lfsfind(struct vfs *, struct loinfo *);
105 
106 uint_t lo_resize_threshold = 1;
107 uint_t lo_resize_factor = 2;
108 
109 static kmem_cache_t *lnode_cache;
110 
111 /*
112  * Since the hashtable itself isn't protected by a lock, obtaining a
113  * per-bucket lock proceeds as follows:
114  *
115  * (a) li->li_htlock protects li->li_hashtable, li->li_htsize, and
116  * li->li_retired.
117  *
118  * (b) Per-bucket locks (lh_lock) protect the contents of the bucket.
119  *
120  * (c) Locking order for resizing the hashtable is li_htlock then
121  * lh_lock.
122  *
123  * To grab the bucket lock we:
124  *
125  * (1) Stash away the htsize and the pointer to the hashtable to make
126  * sure neither change while we're using them.
127  *
128  * (2) lgrow() updates the pointer to the hashtable before it updates
129  * the size: the worst case scenario is that we have the wrong size (but
130  * the correct table), so we hash to the wrong bucket, grab the wrong
131  * lock, and then realize that things have changed, rewind and start
132  * again. If both the size and the table changed since we loaded them,
133  * we'll realize that too and restart.
134  *
135  * (3) The protocol for growing the hashtable involves holding *all* the
136  * locks in the table, hence the unlocking code (TABLE_LOCK_EXIT())
137  * doesn't need to do any dances, since neither the table nor the size
138  * can change while any bucket lock is held.
139  *
140  * (4) If the hashtable is growing (by thread t1) while another thread
141  * (t2) is trying to grab a bucket lock, t2 might have a stale reference
142  * to li->li_htsize:
143  *
144  * - t1 grabs all locks in lgrow()
145  * 	- t2 loads li->li_htsize and li->li_hashtable
146  * - t1 changes li->hashtable
147  * 	- t2 loads from an offset in the "stale" hashtable and tries to grab
148  * 	the relevant mutex.
149  *
150  * If t1 had free'd the stale hashtable, t2 would be in trouble. Hence,
151  * stale hashtables are not freed but stored in a list of "retired"
152  * hashtables, which is emptied when the filesystem is unmounted.
153  */
154 static void
155 table_lock_enter(vnode_t *vp, struct loinfo *li)
156 {
157 	struct lobucket *chain;
158 	uint_t htsize;
159 	uint_t hash;
160 
161 	for (;;) {
162 		htsize = li->li_htsize;
163 		membar_consumer();
164 		chain = (struct lobucket *)li->li_hashtable;
165 		hash = ltablehash(vp, htsize);
166 		mutex_enter(&chain[hash].lh_lock);
167 		if (li->li_hashtable == chain && li->li_htsize == htsize)
168 			break;
169 		mutex_exit(&chain[hash].lh_lock);
170 	}
171 }
172 
173 void
174 lofs_subrinit(void)
175 {
176 	/*
177 	 * Initialize the cache.
178 	 */
179 	lnode_cache = kmem_cache_create("lnode_cache", sizeof (lnode_t),
180 	    0, NULL, NULL, NULL, NULL, NULL, 0);
181 }
182 
183 void
184 lofs_subrfini(void)
185 {
186 	kmem_cache_destroy(lnode_cache);
187 }
188 
189 /*
190  * Initialize a (struct loinfo), and initialize the hashtable to have
191  * htsize buckets.
192  */
193 void
194 lsetup(struct loinfo *li, uint_t htsize)
195 {
196 	li->li_refct = 0;
197 	li->li_lfs = NULL;
198 	if (htsize == 0)
199 		htsize = LOFS_DEFAULT_HTSIZE;
200 	li->li_htsize = htsize;
201 	li->li_hashtable = kmem_zalloc(htsize * sizeof (*li->li_hashtable),
202 	    KM_SLEEP);
203 	mutex_init(&li->li_lfslock, NULL, MUTEX_DEFAULT, NULL);
204 	mutex_init(&li->li_htlock, NULL, MUTEX_DEFAULT, NULL);
205 	li->li_retired = NULL;
206 }
207 
208 /*
209  * Destroy a (struct loinfo)
210  */
211 void
212 ldestroy(struct loinfo *li)
213 {
214 	uint_t i, htsize;
215 	struct lobucket *table;
216 	struct lo_retired_ht *lrhp, *trhp;
217 
218 	mutex_destroy(&li->li_htlock);
219 	mutex_destroy(&li->li_lfslock);
220 	htsize = li->li_htsize;
221 	table = li->li_hashtable;
222 	for (i = 0; i < htsize; i++)
223 		mutex_destroy(&table[i].lh_lock);
224 	kmem_free(table, htsize * sizeof (*li->li_hashtable));
225 
226 	/*
227 	 * Free the retired hashtables.
228 	 */
229 	lrhp = li->li_retired;
230 	while (lrhp != NULL) {
231 		trhp = lrhp;
232 		lrhp = lrhp->lrh_next;
233 		kmem_free(trhp->lrh_table,
234 		    trhp->lrh_size * sizeof (*li->li_hashtable));
235 		kmem_free(trhp, sizeof (*trhp));
236 	}
237 	li->li_retired = NULL;
238 }
239 
240 /*
241  * Return a looped back vnode for the given vnode.
242  * If no lnode exists for this vnode create one and put it
243  * in a table hashed by vnode.  If the lnode for
244  * this vnode is already in the table return it (ref count is
245  * incremented by lfind).  The lnode will be flushed from the
246  * table when lo_inactive calls freelonode.
247  * NOTE: vp is assumed to be a held vnode.
248  */
249 struct vnode *
250 makelonode(struct vnode *vp, struct loinfo *li)
251 {
252 	lnode_t *lp, *tlp;
253 	struct vfs *vfsp;
254 	vnode_t *nvp;
255 
256 	TABLE_LOCK_ENTER(vp, li);
257 	if ((lp = lfind(vp, li)) == NULL) {
258 		/*
259 		 * Optimistically assume that we won't need to sleep.
260 		 */
261 		lp = kmem_cache_alloc(lnode_cache, KM_NOSLEEP);
262 		nvp = vn_alloc(KM_NOSLEEP);
263 		if (lp == NULL || nvp == NULL) {
264 			TABLE_LOCK_EXIT(vp, li);
265 			/* The lnode allocation may have succeeded, save it */
266 			tlp = lp;
267 			if (tlp == NULL) {
268 				tlp = kmem_cache_alloc(lnode_cache, KM_SLEEP);
269 			}
270 			if (nvp == NULL) {
271 				nvp = vn_alloc(KM_SLEEP);
272 			}
273 			TABLE_LOCK_ENTER(vp, li);
274 			if ((lp = lfind(vp, li)) != NULL) {
275 				kmem_cache_free(lnode_cache, tlp);
276 				vn_free(nvp);
277 				VN_RELE(vp);
278 				goto found_lnode;
279 			}
280 			lp = tlp;
281 		}
282 		atomic_add_32(&li->li_refct, 1);
283 		vfsp = makelfsnode(vp->v_vfsp, li);
284 		lp->lo_vnode = nvp;
285 		VN_SET_VFS_TYPE_DEV(nvp, vfsp, vp->v_type, vp->v_rdev);
286 		nvp->v_flag |= (vp->v_flag & (VNOMOUNT|VNOMAP|VDIROPEN));
287 		vn_setops(nvp, lo_vnodeops);
288 		nvp->v_data = (caddr_t)lp;
289 		lp->lo_vp = vp;
290 		lp->lo_looping = 0;
291 		lsave(lp, li);
292 		vn_exists(vp);
293 	} else {
294 		VN_RELE(vp);
295 	}
296 
297 found_lnode:
298 	TABLE_LOCK_EXIT(vp, li);
299 	return (ltov(lp));
300 }
301 
302 /*
303  * Get/Make vfs structure for given real vfs
304  */
305 static struct vfs *
306 makelfsnode(struct vfs *vfsp, struct loinfo *li)
307 {
308 	struct lfsnode *lfs;
309 	struct lfsnode *tlfs;
310 
311 	/*
312 	 * Don't grab any locks for the fast (common) case.
313 	 */
314 	if (vfsp == li->li_realvfs)
315 		return (li->li_mountvfs);
316 	ASSERT(li->li_refct > 0);
317 	mutex_enter(&li->li_lfslock);
318 	if ((lfs = lfsfind(vfsp, li)) == NULL) {
319 		mutex_exit(&li->li_lfslock);
320 		lfs = kmem_zalloc(sizeof (*lfs), KM_SLEEP);
321 		mutex_enter(&li->li_lfslock);
322 		if ((tlfs = lfsfind(vfsp, li)) != NULL) {
323 			kmem_free(lfs, sizeof (*lfs));
324 			lfs = tlfs;
325 			goto found_lfs;
326 		}
327 		lfs->lfs_realvfs = vfsp;
328 
329 		/*
330 		 * Even though the lfsnode is strictly speaking a private
331 		 * implementation detail of lofs, it should behave as a regular
332 		 * vfs_t for the benefit of the rest of the kernel.
333 		 */
334 		VFS_INIT(&lfs->lfs_vfs, lo_vfsops, (caddr_t)li);
335 		lfs->lfs_vfs.vfs_fstype = li->li_mountvfs->vfs_fstype;
336 		lfs->lfs_vfs.vfs_flag =
337 			((vfsp->vfs_flag | li->li_mflag) & ~li->li_dflag) &
338 			INHERIT_VFS_FLAG;
339 		lfs->lfs_vfs.vfs_bsize = vfsp->vfs_bsize;
340 		lfs->lfs_vfs.vfs_dev = vfsp->vfs_dev;
341 		lfs->lfs_vfs.vfs_fsid = vfsp->vfs_fsid;
342 
343 		if (vfsp->vfs_mntpt != NULL) {
344 			lfs->lfs_vfs.vfs_mntpt = vfs_getmntpoint(vfsp);
345 			/* Leave a reference to the mountpoint */
346 		}
347 
348 		(void) VFS_ROOT(vfsp, &lfs->lfs_realrootvp);
349 
350 		/*
351 		 * We use 1 instead of 0 as the value to associate with
352 		 * an idle lfs_vfs.  This is to prevent VFS_RELE()
353 		 * trying to kmem_free() our lfs_t (which is the wrong
354 		 * size).
355 		 */
356 		VFS_HOLD(&lfs->lfs_vfs);
357 		lfs->lfs_next = li->li_lfs;
358 		li->li_lfs = lfs;
359 	}
360 
361 found_lfs:
362 	VFS_HOLD(&lfs->lfs_vfs);
363 	mutex_exit(&li->li_lfslock);
364 	return (&lfs->lfs_vfs);
365 }
366 
367 /*
368  * Free lfs node since no longer in use
369  */
370 static void
371 freelfsnode(struct lfsnode *lfs, struct loinfo *li)
372 {
373 	struct lfsnode *prev = NULL;
374 	struct lfsnode *this;
375 
376 	ASSERT(MUTEX_HELD(&li->li_lfslock));
377 	ASSERT(li->li_refct > 0);
378 	for (this = li->li_lfs; this != NULL; this = this->lfs_next) {
379 		if (this == lfs) {
380 			ASSERT(lfs->lfs_vfs.vfs_count == 1);
381 			if (prev == NULL)
382 				li->li_lfs = lfs->lfs_next;
383 			else
384 				prev->lfs_next = lfs->lfs_next;
385 			if (lfs->lfs_realrootvp != NULL) {
386 				VN_RELE(lfs->lfs_realrootvp);
387 			}
388 			if (lfs->lfs_vfs.vfs_mntpt != NULL)
389 				refstr_rele(lfs->lfs_vfs.vfs_mntpt);
390 			sema_destroy(&lfs->lfs_vfs.vfs_reflock);
391 			kmem_free(lfs, sizeof (struct lfsnode));
392 			return;
393 		}
394 		prev = this;
395 	}
396 	panic("freelfsnode");
397 	/*NOTREACHED*/
398 }
399 
400 /*
401  * Find lfs given real vfs and mount instance(li)
402  */
403 static struct lfsnode *
404 lfsfind(struct vfs *vfsp, struct loinfo *li)
405 {
406 	struct lfsnode *lfs;
407 
408 	ASSERT(MUTEX_HELD(&li->li_lfslock));
409 
410 	/*
411 	 * We need to handle the case where a UFS filesystem was forced
412 	 * unmounted and then a subsequent mount got the same vfs
413 	 * structure.  If the new mount lies in the lofs hierarchy, then
414 	 * this will confuse lofs, because the original vfsp (of the
415 	 * forced unmounted filesystem) is still around. We check for
416 	 * this condition here.
417 	 *
418 	 * If we find a cache vfsp hit, then we check to see if the
419 	 * cached filesystem was forced unmounted. Skip all such
420 	 * entries. This should be safe to do since no
421 	 * makelonode()->makelfsnode()->lfsfind() calls should be
422 	 * generated for such force-unmounted filesystems (because (ufs)
423 	 * lookup would've returned an error).
424 	 */
425 	for (lfs = li->li_lfs; lfs != NULL; lfs = lfs->lfs_next) {
426 		if (lfs->lfs_realvfs == vfsp) {
427 			struct vnode *realvp;
428 
429 			realvp = lfs->lfs_realrootvp;
430 			if (realvp == NULL)
431 				continue;
432 			if (realvp->v_vfsp == NULL || realvp->v_type == VBAD)
433 				continue;
434 			return (lfs);
435 		}
436 	}
437 	return (NULL);
438 }
439 
440 /*
441  * Find real vfs given loopback vfs
442  */
443 struct vfs *
444 lo_realvfs(struct vfs *vfsp, struct vnode **realrootvpp)
445 {
446 	struct loinfo *li = vtoli(vfsp);
447 	struct lfsnode *lfs;
448 
449 	ASSERT(li->li_refct > 0);
450 	if (vfsp == li->li_mountvfs) {
451 		if (realrootvpp != NULL)
452 			*realrootvpp = vtol(li->li_rootvp)->lo_vp;
453 		return (li->li_realvfs);
454 	}
455 	mutex_enter(&li->li_lfslock);
456 	for (lfs = li->li_lfs; lfs != NULL; lfs = lfs->lfs_next) {
457 		if (vfsp == &lfs->lfs_vfs) {
458 			if (realrootvpp != NULL)
459 				*realrootvpp = lfs->lfs_realrootvp;
460 			mutex_exit(&li->li_lfslock);
461 			return (lfs->lfs_realvfs);
462 		}
463 	}
464 	panic("lo_realvfs");
465 	/*NOTREACHED*/
466 }
467 
468 /*
469  * Lnode lookup stuff.
470  * These routines maintain a table of lnodes hashed by vp so
471  * that the lnode for a vp can be found if it already exists.
472  *
473  * NB: A lofs shadow vnode causes exactly one VN_HOLD() on the
474  * underlying vnode.
475  */
476 
477 /*
478  * Retire old hashtables.
479  */
480 static void
481 lretire(struct loinfo *li, struct lobucket *table, uint_t size)
482 {
483 	struct lo_retired_ht *lrhp;
484 
485 	lrhp = kmem_alloc(sizeof (*lrhp), KM_SLEEP);
486 	lrhp->lrh_table = table;
487 	lrhp->lrh_size = size;
488 
489 	mutex_enter(&li->li_htlock);
490 	lrhp->lrh_next = li->li_retired;
491 	li->li_retired = lrhp;
492 	mutex_exit(&li->li_htlock);
493 }
494 
495 /*
496  * Grow the hashtable.
497  */
498 static void
499 lgrow(struct loinfo *li, uint_t newsize)
500 {
501 	uint_t oldsize;
502 	uint_t i;
503 	struct lobucket *oldtable, *newtable;
504 
505 	/*
506 	 * It's OK to not have enough memory to resize the hashtable.
507 	 * We'll go down this path the next time we add something to the
508 	 * table, and retry the allocation then.
509 	 */
510 	if ((newtable = kmem_zalloc(newsize * sizeof (*li->li_hashtable),
511 	    KM_NOSLEEP)) == NULL)
512 		return;
513 
514 	mutex_enter(&li->li_htlock);
515 	if (newsize <= li->li_htsize) {
516 		mutex_exit(&li->li_htlock);
517 		kmem_free(newtable, newsize * sizeof (*li->li_hashtable));
518 		return;
519 	}
520 	oldsize = li->li_htsize;
521 	oldtable = li->li_hashtable;
522 
523 	/*
524 	 * Grab all locks so TABLE_LOCK_ENTER() calls block until the
525 	 * resize is complete.
526 	 */
527 	for (i = 0; i < oldsize; i++)
528 		mutex_enter(&oldtable[i].lh_lock);
529 	/*
530 	 * li->li_hashtable gets set before li->li_htsize, so in the
531 	 * time between the two assignments, callers of
532 	 * TABLE_LOCK_ENTER() cannot hash to a bucket beyond oldsize,
533 	 * hence we only need to grab the locks up to oldsize.
534 	 */
535 	for (i = 0; i < oldsize; i++)
536 		mutex_enter(&newtable[i].lh_lock);
537 	/*
538 	 * Rehash.
539 	 */
540 	for (i = 0; i < oldsize; i++) {
541 		lnode_t *tlp, *nlp;
542 
543 		for (tlp = oldtable[i].lh_chain; tlp != NULL; tlp = nlp) {
544 			uint_t hash = ltablehash(tlp->lo_vp, newsize);
545 
546 			nlp = tlp->lo_next;
547 			tlp->lo_next = newtable[hash].lh_chain;
548 			newtable[hash].lh_chain = tlp;
549 			newtable[hash].lh_count++;
550 		}
551 	}
552 
553 	/*
554 	 * As soon as we store the new hashtable, future locking operations
555 	 * will use it.  Therefore, we must ensure that all the state we've
556 	 * just established reaches global visibility before the new hashtable
557 	 * does.
558 	 */
559 	membar_producer();
560 	li->li_hashtable = newtable;
561 
562 	/*
563 	 * table_lock_enter() relies on the fact that li->li_hashtable
564 	 * is set to its new value before li->li_htsize.
565 	 */
566 	membar_producer();
567 	li->li_htsize = newsize;
568 
569 	/*
570 	 * The new state is consistent now, so we can drop all the locks.
571 	 */
572 	for (i = 0; i < oldsize; i++) {
573 		mutex_exit(&newtable[i].lh_lock);
574 		mutex_exit(&oldtable[i].lh_lock);
575 	}
576 	mutex_exit(&li->li_htlock);
577 
578 	lretire(li, oldtable, oldsize);
579 }
580 
581 /*
582  * Put a lnode in the table
583  */
584 static void
585 lsave(lnode_t *lp, struct loinfo *li)
586 {
587 	ASSERT(lp->lo_vp);
588 	ASSERT(MUTEX_HELD(TABLE_LOCK(lp->lo_vp, li)));
589 
590 #ifdef LODEBUG
591 	lo_dprint(4, "lsave lp %p hash %d\n",
592 			lp, ltablehash(lp->lo_vp, li));
593 #endif
594 
595 	TABLE_COUNT(lp->lo_vp, li)++;
596 	lp->lo_next = TABLE_BUCKET(lp->lo_vp, li);
597 	TABLE_BUCKET(lp->lo_vp, li) = lp;
598 
599 	if (li->li_refct > (li->li_htsize << lo_resize_threshold)) {
600 		TABLE_LOCK_EXIT(lp->lo_vp, li);
601 		lgrow(li, li->li_htsize << lo_resize_factor);
602 		TABLE_LOCK_ENTER(lp->lo_vp, li);
603 	}
604 }
605 
606 /*
607  * Our version of vfs_rele() that stops at 1 instead of 0, and calls
608  * freelfsnode() instead of kmem_free().
609  */
610 static void
611 lfs_rele(struct lfsnode *lfs, struct loinfo *li)
612 {
613 	vfs_t *vfsp = &lfs->lfs_vfs;
614 
615 	ASSERT(MUTEX_HELD(&li->li_lfslock));
616 	ASSERT(vfsp->vfs_count > 1);
617 	if (atomic_add_32_nv(&vfsp->vfs_count, -1) == 1)
618 		freelfsnode(lfs, li);
619 }
620 
621 /*
622  * Remove a lnode from the table
623  */
624 void
625 freelonode(lnode_t *lp)
626 {
627 	lnode_t *lt;
628 	lnode_t *ltprev = NULL;
629 	struct lfsnode *lfs, *nextlfs;
630 	struct vfs *vfsp;
631 	struct vnode *vp = ltov(lp);
632 	struct vnode *realvp = realvp(vp);
633 	struct loinfo *li = vtoli(vp->v_vfsp);
634 
635 #ifdef LODEBUG
636 	lo_dprint(4, "freelonode lp %p hash %d\n",
637 			lp, ltablehash(lp->lo_vp, li));
638 #endif
639 	TABLE_LOCK_ENTER(lp->lo_vp, li);
640 
641 	mutex_enter(&vp->v_lock);
642 	if (vp->v_count > 1) {
643 		vp->v_count--;	/* release our hold from vn_rele */
644 		mutex_exit(&vp->v_lock);
645 		TABLE_LOCK_EXIT(lp->lo_vp, li);
646 		return;
647 	}
648 	mutex_exit(&vp->v_lock);
649 
650 	for (lt = TABLE_BUCKET(lp->lo_vp, li); lt != NULL;
651 	    ltprev = lt, lt = lt->lo_next) {
652 		if (lt == lp) {
653 #ifdef LODEBUG
654 			lo_dprint(4, "freeing %p, vfsp %p\n",
655 					vp, vp->v_vfsp);
656 #endif
657 			atomic_add_32(&li->li_refct, -1);
658 			vfsp = vp->v_vfsp;
659 			vn_invalid(vp);
660 			if (vfsp != li->li_mountvfs) {
661 				mutex_enter(&li->li_lfslock);
662 				/*
663 				 * Check for unused lfs
664 				 */
665 				lfs = li->li_lfs;
666 				while (lfs != NULL) {
667 					nextlfs = lfs->lfs_next;
668 					if (vfsp == &lfs->lfs_vfs) {
669 						lfs_rele(lfs, li);
670 						break;
671 					}
672 					if (lfs->lfs_vfs.vfs_count == 1) {
673 						/*
674 						 * Lfs is idle
675 						 */
676 						freelfsnode(lfs, li);
677 					}
678 					lfs = nextlfs;
679 				}
680 				mutex_exit(&li->li_lfslock);
681 			}
682 			if (ltprev == NULL) {
683 				TABLE_BUCKET(lt->lo_vp, li) = lt->lo_next;
684 			} else {
685 				ltprev->lo_next = lt->lo_next;
686 			}
687 			TABLE_COUNT(lt->lo_vp, li)--;
688 			TABLE_LOCK_EXIT(lt->lo_vp, li);
689 			kmem_cache_free(lnode_cache, lt);
690 			vn_free(vp);
691 			VN_RELE(realvp);
692 			return;
693 		}
694 	}
695 	panic("freelonode");
696 	/*NOTREACHED*/
697 }
698 
699 /*
700  * Lookup a lnode by vp
701  */
702 static lnode_t *
703 lfind(struct vnode *vp, struct loinfo *li)
704 {
705 	lnode_t *lt;
706 
707 	ASSERT(MUTEX_HELD(TABLE_LOCK(vp, li)));
708 
709 	lt = TABLE_BUCKET(vp, li);
710 	while (lt != NULL) {
711 		if (lt->lo_vp == vp) {
712 			VN_HOLD(ltov(lt));
713 			return (lt);
714 		}
715 		lt = lt->lo_next;
716 	}
717 	return (NULL);
718 }
719 
720 #ifdef	LODEBUG
721 static int lofsdebug;
722 #endif	/* LODEBUG */
723 
724 /*
725  * Utilities used by both client and server
726  * Standard levels:
727  * 0) no debugging
728  * 1) hard failures
729  * 2) soft failures
730  * 3) current test software
731  * 4) main procedure entry points
732  * 5) main procedure exit points
733  * 6) utility procedure entry points
734  * 7) utility procedure exit points
735  * 8) obscure procedure entry points
736  * 9) obscure procedure exit points
737  * 10) random stuff
738  * 11) all <= 1
739  * 12) all <= 2
740  * 13) all <= 3
741  * ...
742  */
743 
744 #ifdef LODEBUG
745 /*VARARGS2*/
746 lo_dprint(level, str, a1, a2, a3, a4, a5, a6, a7, a8, a9)
747 	int level;
748 	char *str;
749 	int a1, a2, a3, a4, a5, a6, a7, a8, a9;
750 {
751 
752 	if (lofsdebug == level || (lofsdebug > 10 && (lofsdebug - 10) >= level))
753 		printf(str, a1, a2, a3, a4, a5, a6, a7, a8, a9);
754 }
755 #endif
756