xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 05204290)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright 2018 Joyent, Inc.
31  * Copyright (c) 2017, Intel Corporation.
32  * Copyright (c) 2017 Datto Inc.
33  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
34  */
35 
36 /*
37  * SPA: Storage Pool Allocator
38  *
39  * This file contains all the routines used when modifying on-disk SPA state.
40  * This includes opening, importing, destroying, exporting a pool, and syncing a
41  * pool.
42  */
43 
44 #include <sys/zfs_context.h>
45 #include <sys/fm/fs/zfs.h>
46 #include <sys/spa_impl.h>
47 #include <sys/zio.h>
48 #include <sys/zio_checksum.h>
49 #include <sys/dmu.h>
50 #include <sys/dmu_tx.h>
51 #include <sys/zap.h>
52 #include <sys/zil.h>
53 #include <sys/ddt.h>
54 #include <sys/vdev_impl.h>
55 #include <sys/vdev_removal.h>
56 #include <sys/vdev_indirect_mapping.h>
57 #include <sys/vdev_indirect_births.h>
58 #include <sys/vdev_initialize.h>
59 #include <sys/vdev_trim.h>
60 #include <sys/metaslab.h>
61 #include <sys/metaslab_impl.h>
62 #include <sys/mmp.h>
63 #include <sys/uberblock_impl.h>
64 #include <sys/txg.h>
65 #include <sys/avl.h>
66 #include <sys/bpobj.h>
67 #include <sys/dmu_traverse.h>
68 #include <sys/dmu_objset.h>
69 #include <sys/unique.h>
70 #include <sys/dsl_pool.h>
71 #include <sys/dsl_dataset.h>
72 #include <sys/dsl_dir.h>
73 #include <sys/dsl_prop.h>
74 #include <sys/dsl_synctask.h>
75 #include <sys/fs/zfs.h>
76 #include <sys/arc.h>
77 #include <sys/callb.h>
78 #include <sys/systeminfo.h>
79 #include <sys/spa_boot.h>
80 #include <sys/zfs_ioctl.h>
81 #include <sys/dsl_scan.h>
82 #include <sys/zfeature.h>
83 #include <sys/dsl_destroy.h>
84 #include <sys/abd.h>
85 
86 #ifdef	_KERNEL
87 #include <sys/bootprops.h>
88 #include <sys/callb.h>
89 #include <sys/cpupart.h>
90 #include <sys/pool.h>
91 #include <sys/sysdc.h>
92 #include <sys/zone.h>
93 #endif	/* _KERNEL */
94 
95 #include "zfs_prop.h"
96 #include "zfs_comutil.h"
97 
98 /*
99  * The interval, in seconds, at which failed configuration cache file writes
100  * should be retried.
101  */
102 int zfs_ccw_retry_interval = 300;
103 
104 typedef enum zti_modes {
105 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
106 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
107 	ZTI_MODE_NULL,			/* don't create a taskq */
108 	ZTI_NMODES
109 } zti_modes_t;
110 
111 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
112 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
113 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
114 
115 #define	ZTI_N(n)	ZTI_P(n, 1)
116 #define	ZTI_ONE		ZTI_N(1)
117 
118 typedef struct zio_taskq_info {
119 	zti_modes_t zti_mode;
120 	uint_t zti_value;
121 	uint_t zti_count;
122 } zio_taskq_info_t;
123 
124 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
125 	"issue", "issue_high", "intr", "intr_high"
126 };
127 
128 /*
129  * This table defines the taskq settings for each ZFS I/O type. When
130  * initializing a pool, we use this table to create an appropriately sized
131  * taskq. Some operations are low volume and therefore have a small, static
132  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
133  * macros. Other operations process a large amount of data; the ZTI_BATCH
134  * macro causes us to create a taskq oriented for throughput. Some operations
135  * are so high frequency and short-lived that the taskq itself can become a
136  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
137  * additional degree of parallelism specified by the number of threads per-
138  * taskq and the number of taskqs; when dispatching an event in this case, the
139  * particular taskq is chosen at random.
140  *
141  * The different taskq priorities are to handle the different contexts (issue
142  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
143  * need to be handled with minimum delay.
144  */
145 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
146 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
147 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
148 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
149 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
150 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
151 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
152 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
153 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
154 };
155 
156 static void spa_sync_version(void *arg, dmu_tx_t *tx);
157 static void spa_sync_props(void *arg, dmu_tx_t *tx);
158 static boolean_t spa_has_active_shared_spare(spa_t *spa);
159 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
160 static void spa_vdev_resilver_done(spa_t *spa);
161 
162 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
163 id_t		zio_taskq_psrset_bind = PS_NONE;
164 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
165 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
166 
167 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
168 extern int	zfs_sync_pass_deferred_free;
169 
170 /*
171  * Report any spa_load_verify errors found, but do not fail spa_load.
172  * This is used by zdb to analyze non-idle pools.
173  */
174 boolean_t	spa_load_verify_dryrun = B_FALSE;
175 
176 /*
177  * This (illegal) pool name is used when temporarily importing a spa_t in order
178  * to get the vdev stats associated with the imported devices.
179  */
180 #define	TRYIMPORT_NAME	"$import"
181 
182 /*
183  * For debugging purposes: print out vdev tree during pool import.
184  */
185 boolean_t	spa_load_print_vdev_tree = B_FALSE;
186 
187 /*
188  * A non-zero value for zfs_max_missing_tvds means that we allow importing
189  * pools with missing top-level vdevs. This is strictly intended for advanced
190  * pool recovery cases since missing data is almost inevitable. Pools with
191  * missing devices can only be imported read-only for safety reasons, and their
192  * fail-mode will be automatically set to "continue".
193  *
194  * With 1 missing vdev we should be able to import the pool and mount all
195  * datasets. User data that was not modified after the missing device has been
196  * added should be recoverable. This means that snapshots created prior to the
197  * addition of that device should be completely intact.
198  *
199  * With 2 missing vdevs, some datasets may fail to mount since there are
200  * dataset statistics that are stored as regular metadata. Some data might be
201  * recoverable if those vdevs were added recently.
202  *
203  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
204  * may be missing entirely. Chances of data recovery are very low. Note that
205  * there are also risks of performing an inadvertent rewind as we might be
206  * missing all the vdevs with the latest uberblocks.
207  */
208 uint64_t	zfs_max_missing_tvds = 0;
209 
210 /*
211  * The parameters below are similar to zfs_max_missing_tvds but are only
212  * intended for a preliminary open of the pool with an untrusted config which
213  * might be incomplete or out-dated.
214  *
215  * We are more tolerant for pools opened from a cachefile since we could have
216  * an out-dated cachefile where a device removal was not registered.
217  * We could have set the limit arbitrarily high but in the case where devices
218  * are really missing we would want to return the proper error codes; we chose
219  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
220  * and we get a chance to retrieve the trusted config.
221  */
222 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
223 
224 /*
225  * In the case where config was assembled by scanning device paths (/dev/dsks
226  * by default) we are less tolerant since all the existing devices should have
227  * been detected and we want spa_load to return the right error codes.
228  */
229 uint64_t	zfs_max_missing_tvds_scan = 0;
230 
231 /*
232  * Debugging aid that pauses spa_sync() towards the end.
233  */
234 boolean_t	zfs_pause_spa_sync = B_FALSE;
235 
236 /*
237  * ==========================================================================
238  * SPA properties routines
239  * ==========================================================================
240  */
241 
242 /*
243  * Add a (source=src, propname=propval) list to an nvlist.
244  */
245 static void
246 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
247     uint64_t intval, zprop_source_t src)
248 {
249 	const char *propname = zpool_prop_to_name(prop);
250 	nvlist_t *propval;
251 
252 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
253 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
254 
255 	if (strval != NULL)
256 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
257 	else
258 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
259 
260 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
261 	nvlist_free(propval);
262 }
263 
264 /*
265  * Get property values from the spa configuration.
266  */
267 static void
268 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
269 {
270 	vdev_t *rvd = spa->spa_root_vdev;
271 	dsl_pool_t *pool = spa->spa_dsl_pool;
272 	uint64_t size, alloc, cap, version;
273 	zprop_source_t src = ZPROP_SRC_NONE;
274 	spa_config_dirent_t *dp;
275 	metaslab_class_t *mc = spa_normal_class(spa);
276 
277 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
278 
279 	if (rvd != NULL) {
280 		alloc = metaslab_class_get_alloc(mc);
281 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
282 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
283 
284 		size = metaslab_class_get_space(mc);
285 		size += metaslab_class_get_space(spa_special_class(spa));
286 		size += metaslab_class_get_space(spa_dedup_class(spa));
287 
288 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
289 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
290 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
291 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
292 		    size - alloc, src);
293 		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
294 		    spa->spa_checkpoint_info.sci_dspace, src);
295 
296 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
297 		    metaslab_class_fragmentation(mc), src);
298 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
299 		    metaslab_class_expandable_space(mc), src);
300 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
301 		    (spa_mode(spa) == FREAD), src);
302 
303 		cap = (size == 0) ? 0 : (alloc * 100 / size);
304 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
305 
306 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
307 		    ddt_get_pool_dedup_ratio(spa), src);
308 
309 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
310 		    rvd->vdev_state, src);
311 
312 		version = spa_version(spa);
313 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
314 			src = ZPROP_SRC_DEFAULT;
315 		else
316 			src = ZPROP_SRC_LOCAL;
317 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
318 	}
319 
320 	if (pool != NULL) {
321 		/*
322 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
323 		 * when opening pools before this version freedir will be NULL.
324 		 */
325 		if (pool->dp_free_dir != NULL) {
326 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
327 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
328 			    src);
329 		} else {
330 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
331 			    NULL, 0, src);
332 		}
333 
334 		if (pool->dp_leak_dir != NULL) {
335 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
336 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
337 			    src);
338 		} else {
339 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
340 			    NULL, 0, src);
341 		}
342 	}
343 
344 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
345 
346 	if (spa->spa_comment != NULL) {
347 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
348 		    0, ZPROP_SRC_LOCAL);
349 	}
350 
351 	if (spa->spa_root != NULL)
352 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
353 		    0, ZPROP_SRC_LOCAL);
354 
355 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
356 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
357 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
358 	} else {
359 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
360 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
361 	}
362 
363 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
364 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
365 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
366 	} else {
367 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
368 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
369 	}
370 
371 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
372 		if (dp->scd_path == NULL) {
373 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
374 			    "none", 0, ZPROP_SRC_LOCAL);
375 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
376 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
377 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
378 		}
379 	}
380 }
381 
382 /*
383  * Get zpool property values.
384  */
385 int
386 spa_prop_get(spa_t *spa, nvlist_t **nvp)
387 {
388 	objset_t *mos = spa->spa_meta_objset;
389 	zap_cursor_t zc;
390 	zap_attribute_t za;
391 	int err;
392 
393 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
394 
395 	mutex_enter(&spa->spa_props_lock);
396 
397 	/*
398 	 * Get properties from the spa config.
399 	 */
400 	spa_prop_get_config(spa, nvp);
401 
402 	/* If no pool property object, no more prop to get. */
403 	if (mos == NULL || spa->spa_pool_props_object == 0) {
404 		mutex_exit(&spa->spa_props_lock);
405 		return (0);
406 	}
407 
408 	/*
409 	 * Get properties from the MOS pool property object.
410 	 */
411 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
412 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
413 	    zap_cursor_advance(&zc)) {
414 		uint64_t intval = 0;
415 		char *strval = NULL;
416 		zprop_source_t src = ZPROP_SRC_DEFAULT;
417 		zpool_prop_t prop;
418 
419 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
420 			continue;
421 
422 		switch (za.za_integer_length) {
423 		case 8:
424 			/* integer property */
425 			if (za.za_first_integer !=
426 			    zpool_prop_default_numeric(prop))
427 				src = ZPROP_SRC_LOCAL;
428 
429 			if (prop == ZPOOL_PROP_BOOTFS) {
430 				dsl_pool_t *dp;
431 				dsl_dataset_t *ds = NULL;
432 
433 				dp = spa_get_dsl(spa);
434 				dsl_pool_config_enter(dp, FTAG);
435 				err = dsl_dataset_hold_obj(dp,
436 				    za.za_first_integer, FTAG, &ds);
437 				if (err != 0) {
438 					dsl_pool_config_exit(dp, FTAG);
439 					break;
440 				}
441 
442 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
443 				    KM_SLEEP);
444 				dsl_dataset_name(ds, strval);
445 				dsl_dataset_rele(ds, FTAG);
446 				dsl_pool_config_exit(dp, FTAG);
447 			} else {
448 				strval = NULL;
449 				intval = za.za_first_integer;
450 			}
451 
452 			spa_prop_add_list(*nvp, prop, strval, intval, src);
453 
454 			if (strval != NULL)
455 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
456 
457 			break;
458 
459 		case 1:
460 			/* string property */
461 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
462 			err = zap_lookup(mos, spa->spa_pool_props_object,
463 			    za.za_name, 1, za.za_num_integers, strval);
464 			if (err) {
465 				kmem_free(strval, za.za_num_integers);
466 				break;
467 			}
468 			spa_prop_add_list(*nvp, prop, strval, 0, src);
469 			kmem_free(strval, za.za_num_integers);
470 			break;
471 
472 		default:
473 			break;
474 		}
475 	}
476 	zap_cursor_fini(&zc);
477 	mutex_exit(&spa->spa_props_lock);
478 out:
479 	if (err && err != ENOENT) {
480 		nvlist_free(*nvp);
481 		*nvp = NULL;
482 		return (err);
483 	}
484 
485 	return (0);
486 }
487 
488 /*
489  * Validate the given pool properties nvlist and modify the list
490  * for the property values to be set.
491  */
492 static int
493 spa_prop_validate(spa_t *spa, nvlist_t *props)
494 {
495 	nvpair_t *elem;
496 	int error = 0, reset_bootfs = 0;
497 	uint64_t objnum = 0;
498 	boolean_t has_feature = B_FALSE;
499 
500 	elem = NULL;
501 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
502 		uint64_t intval;
503 		char *strval, *slash, *check, *fname;
504 		const char *propname = nvpair_name(elem);
505 		zpool_prop_t prop = zpool_name_to_prop(propname);
506 
507 		switch (prop) {
508 		case ZPOOL_PROP_INVAL:
509 			if (!zpool_prop_feature(propname)) {
510 				error = SET_ERROR(EINVAL);
511 				break;
512 			}
513 
514 			/*
515 			 * Sanitize the input.
516 			 */
517 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
518 				error = SET_ERROR(EINVAL);
519 				break;
520 			}
521 
522 			if (nvpair_value_uint64(elem, &intval) != 0) {
523 				error = SET_ERROR(EINVAL);
524 				break;
525 			}
526 
527 			if (intval != 0) {
528 				error = SET_ERROR(EINVAL);
529 				break;
530 			}
531 
532 			fname = strchr(propname, '@') + 1;
533 			if (zfeature_lookup_name(fname, NULL) != 0) {
534 				error = SET_ERROR(EINVAL);
535 				break;
536 			}
537 
538 			has_feature = B_TRUE;
539 			break;
540 
541 		case ZPOOL_PROP_VERSION:
542 			error = nvpair_value_uint64(elem, &intval);
543 			if (!error &&
544 			    (intval < spa_version(spa) ||
545 			    intval > SPA_VERSION_BEFORE_FEATURES ||
546 			    has_feature))
547 				error = SET_ERROR(EINVAL);
548 			break;
549 
550 		case ZPOOL_PROP_DELEGATION:
551 		case ZPOOL_PROP_AUTOREPLACE:
552 		case ZPOOL_PROP_LISTSNAPS:
553 		case ZPOOL_PROP_AUTOEXPAND:
554 		case ZPOOL_PROP_AUTOTRIM:
555 			error = nvpair_value_uint64(elem, &intval);
556 			if (!error && intval > 1)
557 				error = SET_ERROR(EINVAL);
558 			break;
559 
560 		case ZPOOL_PROP_MULTIHOST:
561 			error = nvpair_value_uint64(elem, &intval);
562 			if (!error && intval > 1)
563 				error = SET_ERROR(EINVAL);
564 
565 			if (!error && !spa_get_hostid())
566 				error = SET_ERROR(ENOTSUP);
567 
568 			break;
569 
570 		case ZPOOL_PROP_BOOTFS:
571 			/*
572 			 * If the pool version is less than SPA_VERSION_BOOTFS,
573 			 * or the pool is still being created (version == 0),
574 			 * the bootfs property cannot be set.
575 			 */
576 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
577 				error = SET_ERROR(ENOTSUP);
578 				break;
579 			}
580 
581 			/*
582 			 * Make sure the vdev config is bootable
583 			 */
584 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
585 				error = SET_ERROR(ENOTSUP);
586 				break;
587 			}
588 
589 			reset_bootfs = 1;
590 
591 			error = nvpair_value_string(elem, &strval);
592 
593 			if (!error) {
594 				objset_t *os;
595 				uint64_t propval;
596 
597 				if (strval == NULL || strval[0] == '\0') {
598 					objnum = zpool_prop_default_numeric(
599 					    ZPOOL_PROP_BOOTFS);
600 					break;
601 				}
602 
603 				error = dmu_objset_hold(strval, FTAG, &os);
604 				if (error != 0)
605 					break;
606 
607 				/*
608 				 * Must be ZPL, and its property settings
609 				 * must be supported.
610 				 */
611 
612 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
613 					error = SET_ERROR(ENOTSUP);
614 				} else if ((error =
615 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
616 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
617 				    &propval)) == 0 &&
618 				    !BOOTFS_COMPRESS_VALID(propval)) {
619 					error = SET_ERROR(ENOTSUP);
620 				} else {
621 					objnum = dmu_objset_id(os);
622 				}
623 				dmu_objset_rele(os, FTAG);
624 			}
625 			break;
626 
627 		case ZPOOL_PROP_FAILUREMODE:
628 			error = nvpair_value_uint64(elem, &intval);
629 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
630 			    intval > ZIO_FAILURE_MODE_PANIC))
631 				error = SET_ERROR(EINVAL);
632 
633 			/*
634 			 * This is a special case which only occurs when
635 			 * the pool has completely failed. This allows
636 			 * the user to change the in-core failmode property
637 			 * without syncing it out to disk (I/Os might
638 			 * currently be blocked). We do this by returning
639 			 * EIO to the caller (spa_prop_set) to trick it
640 			 * into thinking we encountered a property validation
641 			 * error.
642 			 */
643 			if (!error && spa_suspended(spa)) {
644 				spa->spa_failmode = intval;
645 				error = SET_ERROR(EIO);
646 			}
647 			break;
648 
649 		case ZPOOL_PROP_CACHEFILE:
650 			if ((error = nvpair_value_string(elem, &strval)) != 0)
651 				break;
652 
653 			if (strval[0] == '\0')
654 				break;
655 
656 			if (strcmp(strval, "none") == 0)
657 				break;
658 
659 			if (strval[0] != '/') {
660 				error = SET_ERROR(EINVAL);
661 				break;
662 			}
663 
664 			slash = strrchr(strval, '/');
665 			ASSERT(slash != NULL);
666 
667 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
668 			    strcmp(slash, "/..") == 0)
669 				error = SET_ERROR(EINVAL);
670 			break;
671 
672 		case ZPOOL_PROP_COMMENT:
673 			if ((error = nvpair_value_string(elem, &strval)) != 0)
674 				break;
675 			for (check = strval; *check != '\0'; check++) {
676 				/*
677 				 * The kernel doesn't have an easy isprint()
678 				 * check.  For this kernel check, we merely
679 				 * check ASCII apart from DEL.  Fix this if
680 				 * there is an easy-to-use kernel isprint().
681 				 */
682 				if (*check >= 0x7f) {
683 					error = SET_ERROR(EINVAL);
684 					break;
685 				}
686 			}
687 			if (strlen(strval) > ZPROP_MAX_COMMENT)
688 				error = E2BIG;
689 			break;
690 
691 		case ZPOOL_PROP_DEDUPDITTO:
692 			if (spa_version(spa) < SPA_VERSION_DEDUP)
693 				error = SET_ERROR(ENOTSUP);
694 			else
695 				error = nvpair_value_uint64(elem, &intval);
696 			if (error == 0 &&
697 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
698 				error = SET_ERROR(EINVAL);
699 			break;
700 		}
701 
702 		if (error)
703 			break;
704 	}
705 
706 	if (!error && reset_bootfs) {
707 		error = nvlist_remove(props,
708 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
709 
710 		if (!error) {
711 			error = nvlist_add_uint64(props,
712 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
713 		}
714 	}
715 
716 	return (error);
717 }
718 
719 void
720 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
721 {
722 	char *cachefile;
723 	spa_config_dirent_t *dp;
724 
725 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
726 	    &cachefile) != 0)
727 		return;
728 
729 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
730 	    KM_SLEEP);
731 
732 	if (cachefile[0] == '\0')
733 		dp->scd_path = spa_strdup(spa_config_path);
734 	else if (strcmp(cachefile, "none") == 0)
735 		dp->scd_path = NULL;
736 	else
737 		dp->scd_path = spa_strdup(cachefile);
738 
739 	list_insert_head(&spa->spa_config_list, dp);
740 	if (need_sync)
741 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
742 }
743 
744 int
745 spa_prop_set(spa_t *spa, nvlist_t *nvp)
746 {
747 	int error;
748 	nvpair_t *elem = NULL;
749 	boolean_t need_sync = B_FALSE;
750 
751 	if ((error = spa_prop_validate(spa, nvp)) != 0)
752 		return (error);
753 
754 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
755 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
756 
757 		if (prop == ZPOOL_PROP_CACHEFILE ||
758 		    prop == ZPOOL_PROP_ALTROOT ||
759 		    prop == ZPOOL_PROP_READONLY)
760 			continue;
761 
762 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
763 			uint64_t ver;
764 
765 			if (prop == ZPOOL_PROP_VERSION) {
766 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
767 			} else {
768 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
769 				ver = SPA_VERSION_FEATURES;
770 				need_sync = B_TRUE;
771 			}
772 
773 			/* Save time if the version is already set. */
774 			if (ver == spa_version(spa))
775 				continue;
776 
777 			/*
778 			 * In addition to the pool directory object, we might
779 			 * create the pool properties object, the features for
780 			 * read object, the features for write object, or the
781 			 * feature descriptions object.
782 			 */
783 			error = dsl_sync_task(spa->spa_name, NULL,
784 			    spa_sync_version, &ver,
785 			    6, ZFS_SPACE_CHECK_RESERVED);
786 			if (error)
787 				return (error);
788 			continue;
789 		}
790 
791 		need_sync = B_TRUE;
792 		break;
793 	}
794 
795 	if (need_sync) {
796 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
797 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
798 	}
799 
800 	return (0);
801 }
802 
803 /*
804  * If the bootfs property value is dsobj, clear it.
805  */
806 void
807 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
808 {
809 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
810 		VERIFY(zap_remove(spa->spa_meta_objset,
811 		    spa->spa_pool_props_object,
812 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
813 		spa->spa_bootfs = 0;
814 	}
815 }
816 
817 /*ARGSUSED*/
818 static int
819 spa_change_guid_check(void *arg, dmu_tx_t *tx)
820 {
821 	uint64_t *newguid = arg;
822 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
823 	vdev_t *rvd = spa->spa_root_vdev;
824 	uint64_t vdev_state;
825 
826 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
827 		int error = (spa_has_checkpoint(spa)) ?
828 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
829 		return (SET_ERROR(error));
830 	}
831 
832 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
833 	vdev_state = rvd->vdev_state;
834 	spa_config_exit(spa, SCL_STATE, FTAG);
835 
836 	if (vdev_state != VDEV_STATE_HEALTHY)
837 		return (SET_ERROR(ENXIO));
838 
839 	ASSERT3U(spa_guid(spa), !=, *newguid);
840 
841 	return (0);
842 }
843 
844 static void
845 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
846 {
847 	uint64_t *newguid = arg;
848 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
849 	uint64_t oldguid;
850 	vdev_t *rvd = spa->spa_root_vdev;
851 
852 	oldguid = spa_guid(spa);
853 
854 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
855 	rvd->vdev_guid = *newguid;
856 	rvd->vdev_guid_sum += (*newguid - oldguid);
857 	vdev_config_dirty(rvd);
858 	spa_config_exit(spa, SCL_STATE, FTAG);
859 
860 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
861 	    oldguid, *newguid);
862 }
863 
864 /*
865  * Change the GUID for the pool.  This is done so that we can later
866  * re-import a pool built from a clone of our own vdevs.  We will modify
867  * the root vdev's guid, our own pool guid, and then mark all of our
868  * vdevs dirty.  Note that we must make sure that all our vdevs are
869  * online when we do this, or else any vdevs that weren't present
870  * would be orphaned from our pool.  We are also going to issue a
871  * sysevent to update any watchers.
872  */
873 int
874 spa_change_guid(spa_t *spa)
875 {
876 	int error;
877 	uint64_t guid;
878 
879 	mutex_enter(&spa->spa_vdev_top_lock);
880 	mutex_enter(&spa_namespace_lock);
881 	guid = spa_generate_guid(NULL);
882 
883 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
884 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
885 
886 	if (error == 0) {
887 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
888 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
889 	}
890 
891 	mutex_exit(&spa_namespace_lock);
892 	mutex_exit(&spa->spa_vdev_top_lock);
893 
894 	return (error);
895 }
896 
897 /*
898  * ==========================================================================
899  * SPA state manipulation (open/create/destroy/import/export)
900  * ==========================================================================
901  */
902 
903 static int
904 spa_error_entry_compare(const void *a, const void *b)
905 {
906 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
907 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
908 	int ret;
909 
910 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
911 	    sizeof (zbookmark_phys_t));
912 
913 	return (AVL_ISIGN(ret));
914 }
915 
916 /*
917  * Utility function which retrieves copies of the current logs and
918  * re-initializes them in the process.
919  */
920 void
921 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
922 {
923 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
924 
925 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
926 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
927 
928 	avl_create(&spa->spa_errlist_scrub,
929 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
930 	    offsetof(spa_error_entry_t, se_avl));
931 	avl_create(&spa->spa_errlist_last,
932 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
933 	    offsetof(spa_error_entry_t, se_avl));
934 }
935 
936 static void
937 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
938 {
939 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
940 	enum zti_modes mode = ztip->zti_mode;
941 	uint_t value = ztip->zti_value;
942 	uint_t count = ztip->zti_count;
943 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
944 	char name[32];
945 	uint_t flags = 0;
946 	boolean_t batch = B_FALSE;
947 
948 	if (mode == ZTI_MODE_NULL) {
949 		tqs->stqs_count = 0;
950 		tqs->stqs_taskq = NULL;
951 		return;
952 	}
953 
954 	ASSERT3U(count, >, 0);
955 
956 	tqs->stqs_count = count;
957 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
958 
959 	switch (mode) {
960 	case ZTI_MODE_FIXED:
961 		ASSERT3U(value, >=, 1);
962 		value = MAX(value, 1);
963 		break;
964 
965 	case ZTI_MODE_BATCH:
966 		batch = B_TRUE;
967 		flags |= TASKQ_THREADS_CPU_PCT;
968 		value = zio_taskq_batch_pct;
969 		break;
970 
971 	default:
972 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
973 		    "spa_activate()",
974 		    zio_type_name[t], zio_taskq_types[q], mode, value);
975 		break;
976 	}
977 
978 	for (uint_t i = 0; i < count; i++) {
979 		taskq_t *tq;
980 
981 		if (count > 1) {
982 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
983 			    zio_type_name[t], zio_taskq_types[q], i);
984 		} else {
985 			(void) snprintf(name, sizeof (name), "%s_%s",
986 			    zio_type_name[t], zio_taskq_types[q]);
987 		}
988 
989 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
990 			if (batch)
991 				flags |= TASKQ_DC_BATCH;
992 
993 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
994 			    spa->spa_proc, zio_taskq_basedc, flags);
995 		} else {
996 			pri_t pri = maxclsyspri;
997 			/*
998 			 * The write issue taskq can be extremely CPU
999 			 * intensive.  Run it at slightly lower priority
1000 			 * than the other taskqs.
1001 			 */
1002 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
1003 				pri--;
1004 
1005 			tq = taskq_create_proc(name, value, pri, 50,
1006 			    INT_MAX, spa->spa_proc, flags);
1007 		}
1008 
1009 		tqs->stqs_taskq[i] = tq;
1010 	}
1011 }
1012 
1013 static void
1014 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1015 {
1016 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1017 
1018 	if (tqs->stqs_taskq == NULL) {
1019 		ASSERT0(tqs->stqs_count);
1020 		return;
1021 	}
1022 
1023 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1024 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1025 		taskq_destroy(tqs->stqs_taskq[i]);
1026 	}
1027 
1028 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1029 	tqs->stqs_taskq = NULL;
1030 }
1031 
1032 /*
1033  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1034  * Note that a type may have multiple discrete taskqs to avoid lock contention
1035  * on the taskq itself. In that case we choose which taskq at random by using
1036  * the low bits of gethrtime().
1037  */
1038 void
1039 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1040     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1041 {
1042 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1043 	taskq_t *tq;
1044 
1045 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1046 	ASSERT3U(tqs->stqs_count, !=, 0);
1047 
1048 	if (tqs->stqs_count == 1) {
1049 		tq = tqs->stqs_taskq[0];
1050 	} else {
1051 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
1052 	}
1053 
1054 	taskq_dispatch_ent(tq, func, arg, flags, ent);
1055 }
1056 
1057 static void
1058 spa_create_zio_taskqs(spa_t *spa)
1059 {
1060 	for (int t = 0; t < ZIO_TYPES; t++) {
1061 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1062 			spa_taskqs_init(spa, t, q);
1063 		}
1064 	}
1065 }
1066 
1067 #ifdef _KERNEL
1068 static void
1069 spa_thread(void *arg)
1070 {
1071 	callb_cpr_t cprinfo;
1072 
1073 	spa_t *spa = arg;
1074 	user_t *pu = PTOU(curproc);
1075 
1076 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1077 	    spa->spa_name);
1078 
1079 	ASSERT(curproc != &p0);
1080 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1081 	    "zpool-%s", spa->spa_name);
1082 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1083 
1084 	/* bind this thread to the requested psrset */
1085 	if (zio_taskq_psrset_bind != PS_NONE) {
1086 		pool_lock();
1087 		mutex_enter(&cpu_lock);
1088 		mutex_enter(&pidlock);
1089 		mutex_enter(&curproc->p_lock);
1090 
1091 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1092 		    0, NULL, NULL) == 0)  {
1093 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1094 		} else {
1095 			cmn_err(CE_WARN,
1096 			    "Couldn't bind process for zfs pool \"%s\" to "
1097 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1098 		}
1099 
1100 		mutex_exit(&curproc->p_lock);
1101 		mutex_exit(&pidlock);
1102 		mutex_exit(&cpu_lock);
1103 		pool_unlock();
1104 	}
1105 
1106 	if (zio_taskq_sysdc) {
1107 		sysdc_thread_enter(curthread, 100, 0);
1108 	}
1109 
1110 	spa->spa_proc = curproc;
1111 	spa->spa_did = curthread->t_did;
1112 
1113 	spa_create_zio_taskqs(spa);
1114 
1115 	mutex_enter(&spa->spa_proc_lock);
1116 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1117 
1118 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1119 	cv_broadcast(&spa->spa_proc_cv);
1120 
1121 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1122 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1123 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1124 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1125 
1126 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1127 	spa->spa_proc_state = SPA_PROC_GONE;
1128 	spa->spa_proc = &p0;
1129 	cv_broadcast(&spa->spa_proc_cv);
1130 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1131 
1132 	mutex_enter(&curproc->p_lock);
1133 	lwp_exit();
1134 }
1135 #endif
1136 
1137 /*
1138  * Activate an uninitialized pool.
1139  */
1140 static void
1141 spa_activate(spa_t *spa, int mode)
1142 {
1143 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1144 
1145 	spa->spa_state = POOL_STATE_ACTIVE;
1146 	spa->spa_mode = mode;
1147 
1148 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1149 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1150 	spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops);
1151 	spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops);
1152 
1153 	/* Try to create a covering process */
1154 	mutex_enter(&spa->spa_proc_lock);
1155 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1156 	ASSERT(spa->spa_proc == &p0);
1157 	spa->spa_did = 0;
1158 
1159 	/* Only create a process if we're going to be around a while. */
1160 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1161 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1162 		    NULL, 0) == 0) {
1163 			spa->spa_proc_state = SPA_PROC_CREATED;
1164 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1165 				cv_wait(&spa->spa_proc_cv,
1166 				    &spa->spa_proc_lock);
1167 			}
1168 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1169 			ASSERT(spa->spa_proc != &p0);
1170 			ASSERT(spa->spa_did != 0);
1171 		} else {
1172 #ifdef _KERNEL
1173 			cmn_err(CE_WARN,
1174 			    "Couldn't create process for zfs pool \"%s\"\n",
1175 			    spa->spa_name);
1176 #endif
1177 		}
1178 	}
1179 	mutex_exit(&spa->spa_proc_lock);
1180 
1181 	/* If we didn't create a process, we need to create our taskqs. */
1182 	if (spa->spa_proc == &p0) {
1183 		spa_create_zio_taskqs(spa);
1184 	}
1185 
1186 	for (size_t i = 0; i < TXG_SIZE; i++) {
1187 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1188 		    ZIO_FLAG_CANFAIL);
1189 	}
1190 
1191 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1192 	    offsetof(vdev_t, vdev_config_dirty_node));
1193 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1194 	    offsetof(objset_t, os_evicting_node));
1195 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1196 	    offsetof(vdev_t, vdev_state_dirty_node));
1197 
1198 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1199 	    offsetof(struct vdev, vdev_txg_node));
1200 
1201 	avl_create(&spa->spa_errlist_scrub,
1202 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1203 	    offsetof(spa_error_entry_t, se_avl));
1204 	avl_create(&spa->spa_errlist_last,
1205 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1206 	    offsetof(spa_error_entry_t, se_avl));
1207 
1208 	spa_keystore_init(&spa->spa_keystore);
1209 
1210 	/*
1211 	 * The taskq to upgrade datasets in this pool. Currently used by
1212 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1213 	 */
1214 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", boot_ncpus,
1215 	    minclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
1216 }
1217 
1218 /*
1219  * Opposite of spa_activate().
1220  */
1221 static void
1222 spa_deactivate(spa_t *spa)
1223 {
1224 	ASSERT(spa->spa_sync_on == B_FALSE);
1225 	ASSERT(spa->spa_dsl_pool == NULL);
1226 	ASSERT(spa->spa_root_vdev == NULL);
1227 	ASSERT(spa->spa_async_zio_root == NULL);
1228 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1229 
1230 	spa_evicting_os_wait(spa);
1231 
1232 	if (spa->spa_upgrade_taskq) {
1233 		taskq_destroy(spa->spa_upgrade_taskq);
1234 		spa->spa_upgrade_taskq = NULL;
1235 	}
1236 
1237 	txg_list_destroy(&spa->spa_vdev_txg_list);
1238 
1239 	list_destroy(&spa->spa_config_dirty_list);
1240 	list_destroy(&spa->spa_evicting_os_list);
1241 	list_destroy(&spa->spa_state_dirty_list);
1242 
1243 	for (int t = 0; t < ZIO_TYPES; t++) {
1244 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1245 			spa_taskqs_fini(spa, t, q);
1246 		}
1247 	}
1248 
1249 	for (size_t i = 0; i < TXG_SIZE; i++) {
1250 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1251 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1252 		spa->spa_txg_zio[i] = NULL;
1253 	}
1254 
1255 	metaslab_class_destroy(spa->spa_normal_class);
1256 	spa->spa_normal_class = NULL;
1257 
1258 	metaslab_class_destroy(spa->spa_log_class);
1259 	spa->spa_log_class = NULL;
1260 
1261 	metaslab_class_destroy(spa->spa_special_class);
1262 	spa->spa_special_class = NULL;
1263 
1264 	metaslab_class_destroy(spa->spa_dedup_class);
1265 	spa->spa_dedup_class = NULL;
1266 
1267 	/*
1268 	 * If this was part of an import or the open otherwise failed, we may
1269 	 * still have errors left in the queues.  Empty them just in case.
1270 	 */
1271 	spa_errlog_drain(spa);
1272 	avl_destroy(&spa->spa_errlist_scrub);
1273 	avl_destroy(&spa->spa_errlist_last);
1274 
1275 	spa_keystore_fini(&spa->spa_keystore);
1276 
1277 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1278 
1279 	mutex_enter(&spa->spa_proc_lock);
1280 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1281 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1282 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1283 		cv_broadcast(&spa->spa_proc_cv);
1284 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1285 			ASSERT(spa->spa_proc != &p0);
1286 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1287 		}
1288 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1289 		spa->spa_proc_state = SPA_PROC_NONE;
1290 	}
1291 	ASSERT(spa->spa_proc == &p0);
1292 	mutex_exit(&spa->spa_proc_lock);
1293 
1294 	/*
1295 	 * We want to make sure spa_thread() has actually exited the ZFS
1296 	 * module, so that the module can't be unloaded out from underneath
1297 	 * it.
1298 	 */
1299 	if (spa->spa_did != 0) {
1300 		thread_join(spa->spa_did);
1301 		spa->spa_did = 0;
1302 	}
1303 }
1304 
1305 /*
1306  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1307  * will create all the necessary vdevs in the appropriate layout, with each vdev
1308  * in the CLOSED state.  This will prep the pool before open/creation/import.
1309  * All vdev validation is done by the vdev_alloc() routine.
1310  */
1311 static int
1312 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1313     uint_t id, int atype)
1314 {
1315 	nvlist_t **child;
1316 	uint_t children;
1317 	int error;
1318 
1319 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1320 		return (error);
1321 
1322 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1323 		return (0);
1324 
1325 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1326 	    &child, &children);
1327 
1328 	if (error == ENOENT)
1329 		return (0);
1330 
1331 	if (error) {
1332 		vdev_free(*vdp);
1333 		*vdp = NULL;
1334 		return (SET_ERROR(EINVAL));
1335 	}
1336 
1337 	for (int c = 0; c < children; c++) {
1338 		vdev_t *vd;
1339 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1340 		    atype)) != 0) {
1341 			vdev_free(*vdp);
1342 			*vdp = NULL;
1343 			return (error);
1344 		}
1345 	}
1346 
1347 	ASSERT(*vdp != NULL);
1348 
1349 	return (0);
1350 }
1351 
1352 static boolean_t
1353 spa_should_flush_logs_on_unload(spa_t *spa)
1354 {
1355 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1356 		return (B_FALSE);
1357 
1358 	if (!spa_writeable(spa))
1359 		return (B_FALSE);
1360 
1361 	if (!spa->spa_sync_on)
1362 		return (B_FALSE);
1363 
1364 	if (spa_state(spa) != POOL_STATE_EXPORTED)
1365 		return (B_FALSE);
1366 
1367 	if (zfs_keep_log_spacemaps_at_export)
1368 		return (B_FALSE);
1369 
1370 	return (B_TRUE);
1371 }
1372 
1373 /*
1374  * Opens a transaction that will set the flag that will instruct
1375  * spa_sync to attempt to flush all the metaslabs for that txg.
1376  */
1377 static void
1378 spa_unload_log_sm_flush_all(spa_t *spa)
1379 {
1380 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1381 
1382 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1383 
1384 	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1385 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1386 
1387 	dmu_tx_commit(tx);
1388 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1389 }
1390 
1391 static void
1392 spa_unload_log_sm_metadata(spa_t *spa)
1393 {
1394 	void *cookie = NULL;
1395 	spa_log_sm_t *sls;
1396 
1397 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1398 	    &cookie)) != NULL) {
1399 		VERIFY0(sls->sls_mscount);
1400 		kmem_free(sls, sizeof (spa_log_sm_t));
1401 	}
1402 
1403 	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1404 	    e != NULL; e = list_head(&spa->spa_log_summary)) {
1405 		VERIFY0(e->lse_mscount);
1406 		list_remove(&spa->spa_log_summary, e);
1407 		kmem_free(e, sizeof (log_summary_entry_t));
1408 	}
1409 
1410 	spa->spa_unflushed_stats.sus_nblocks = 0;
1411 	spa->spa_unflushed_stats.sus_memused = 0;
1412 	spa->spa_unflushed_stats.sus_blocklimit = 0;
1413 }
1414 
1415 /*
1416  * Opposite of spa_load().
1417  */
1418 static void
1419 spa_unload(spa_t *spa)
1420 {
1421 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1422 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1423 
1424 	spa_load_note(spa, "UNLOADING");
1425 
1426 	/*
1427 	 * If the log space map feature is enabled and the pool is getting
1428 	 * exported (but not destroyed), we want to spend some time flushing
1429 	 * as many metaslabs as we can in an attempt to destroy log space
1430 	 * maps and save import time.
1431 	 */
1432 	if (spa_should_flush_logs_on_unload(spa))
1433 		spa_unload_log_sm_flush_all(spa);
1434 
1435 	/*
1436 	 * Stop async tasks.
1437 	 */
1438 	spa_async_suspend(spa);
1439 
1440 	if (spa->spa_root_vdev) {
1441 		vdev_t *root_vdev = spa->spa_root_vdev;
1442 		vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE);
1443 		vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1444 		vdev_autotrim_stop_all(spa);
1445 	}
1446 
1447 	/*
1448 	 * Stop syncing.
1449 	 */
1450 	if (spa->spa_sync_on) {
1451 		txg_sync_stop(spa->spa_dsl_pool);
1452 		spa->spa_sync_on = B_FALSE;
1453 	}
1454 
1455 	/*
1456 	 * This ensures that there is no async metaslab prefetching
1457 	 * while we attempt to unload the spa.
1458 	 */
1459 	if (spa->spa_root_vdev != NULL) {
1460 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1461 			vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1462 			if (vc->vdev_mg != NULL)
1463 				taskq_wait(vc->vdev_mg->mg_taskq);
1464 		}
1465 	}
1466 
1467 	if (spa->spa_mmp.mmp_thread)
1468 		mmp_thread_stop(spa);
1469 
1470 	/*
1471 	 * Wait for any outstanding async I/O to complete.
1472 	 */
1473 	if (spa->spa_async_zio_root != NULL) {
1474 		for (int i = 0; i < max_ncpus; i++)
1475 			(void) zio_wait(spa->spa_async_zio_root[i]);
1476 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1477 		spa->spa_async_zio_root = NULL;
1478 	}
1479 
1480 	if (spa->spa_vdev_removal != NULL) {
1481 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1482 		spa->spa_vdev_removal = NULL;
1483 	}
1484 
1485 	if (spa->spa_condense_zthr != NULL) {
1486 		zthr_destroy(spa->spa_condense_zthr);
1487 		spa->spa_condense_zthr = NULL;
1488 	}
1489 
1490 	if (spa->spa_checkpoint_discard_zthr != NULL) {
1491 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
1492 		spa->spa_checkpoint_discard_zthr = NULL;
1493 	}
1494 
1495 	spa_condense_fini(spa);
1496 
1497 	bpobj_close(&spa->spa_deferred_bpobj);
1498 
1499 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1500 
1501 	/*
1502 	 * Close all vdevs.
1503 	 */
1504 	if (spa->spa_root_vdev)
1505 		vdev_free(spa->spa_root_vdev);
1506 	ASSERT(spa->spa_root_vdev == NULL);
1507 
1508 	/*
1509 	 * Close the dsl pool.
1510 	 */
1511 	if (spa->spa_dsl_pool) {
1512 		dsl_pool_close(spa->spa_dsl_pool);
1513 		spa->spa_dsl_pool = NULL;
1514 		spa->spa_meta_objset = NULL;
1515 	}
1516 
1517 	ddt_unload(spa);
1518 	spa_unload_log_sm_metadata(spa);
1519 
1520 	/*
1521 	 * Drop and purge level 2 cache
1522 	 */
1523 	spa_l2cache_drop(spa);
1524 
1525 	for (int i = 0; i < spa->spa_spares.sav_count; i++)
1526 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1527 	if (spa->spa_spares.sav_vdevs) {
1528 		kmem_free(spa->spa_spares.sav_vdevs,
1529 		    spa->spa_spares.sav_count * sizeof (void *));
1530 		spa->spa_spares.sav_vdevs = NULL;
1531 	}
1532 	if (spa->spa_spares.sav_config) {
1533 		nvlist_free(spa->spa_spares.sav_config);
1534 		spa->spa_spares.sav_config = NULL;
1535 	}
1536 	spa->spa_spares.sav_count = 0;
1537 
1538 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1539 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1540 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1541 	}
1542 	if (spa->spa_l2cache.sav_vdevs) {
1543 		kmem_free(spa->spa_l2cache.sav_vdevs,
1544 		    spa->spa_l2cache.sav_count * sizeof (void *));
1545 		spa->spa_l2cache.sav_vdevs = NULL;
1546 	}
1547 	if (spa->spa_l2cache.sav_config) {
1548 		nvlist_free(spa->spa_l2cache.sav_config);
1549 		spa->spa_l2cache.sav_config = NULL;
1550 	}
1551 	spa->spa_l2cache.sav_count = 0;
1552 
1553 	spa->spa_async_suspended = 0;
1554 
1555 	spa->spa_indirect_vdevs_loaded = B_FALSE;
1556 
1557 	if (spa->spa_comment != NULL) {
1558 		spa_strfree(spa->spa_comment);
1559 		spa->spa_comment = NULL;
1560 	}
1561 
1562 	spa_config_exit(spa, SCL_ALL, spa);
1563 }
1564 
1565 /*
1566  * Load (or re-load) the current list of vdevs describing the active spares for
1567  * this pool.  When this is called, we have some form of basic information in
1568  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1569  * then re-generate a more complete list including status information.
1570  */
1571 void
1572 spa_load_spares(spa_t *spa)
1573 {
1574 	nvlist_t **spares;
1575 	uint_t nspares;
1576 	int i;
1577 	vdev_t *vd, *tvd;
1578 
1579 #ifndef _KERNEL
1580 	/*
1581 	 * zdb opens both the current state of the pool and the
1582 	 * checkpointed state (if present), with a different spa_t.
1583 	 *
1584 	 * As spare vdevs are shared among open pools, we skip loading
1585 	 * them when we load the checkpointed state of the pool.
1586 	 */
1587 	if (!spa_writeable(spa))
1588 		return;
1589 #endif
1590 
1591 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1592 
1593 	/*
1594 	 * First, close and free any existing spare vdevs.
1595 	 */
1596 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1597 		vd = spa->spa_spares.sav_vdevs[i];
1598 
1599 		/* Undo the call to spa_activate() below */
1600 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1601 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1602 			spa_spare_remove(tvd);
1603 		vdev_close(vd);
1604 		vdev_free(vd);
1605 	}
1606 
1607 	if (spa->spa_spares.sav_vdevs)
1608 		kmem_free(spa->spa_spares.sav_vdevs,
1609 		    spa->spa_spares.sav_count * sizeof (void *));
1610 
1611 	if (spa->spa_spares.sav_config == NULL)
1612 		nspares = 0;
1613 	else
1614 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1615 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1616 
1617 	spa->spa_spares.sav_count = (int)nspares;
1618 	spa->spa_spares.sav_vdevs = NULL;
1619 
1620 	if (nspares == 0)
1621 		return;
1622 
1623 	/*
1624 	 * Construct the array of vdevs, opening them to get status in the
1625 	 * process.   For each spare, there is potentially two different vdev_t
1626 	 * structures associated with it: one in the list of spares (used only
1627 	 * for basic validation purposes) and one in the active vdev
1628 	 * configuration (if it's spared in).  During this phase we open and
1629 	 * validate each vdev on the spare list.  If the vdev also exists in the
1630 	 * active configuration, then we also mark this vdev as an active spare.
1631 	 */
1632 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1633 	    KM_SLEEP);
1634 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1635 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1636 		    VDEV_ALLOC_SPARE) == 0);
1637 		ASSERT(vd != NULL);
1638 
1639 		spa->spa_spares.sav_vdevs[i] = vd;
1640 
1641 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1642 		    B_FALSE)) != NULL) {
1643 			if (!tvd->vdev_isspare)
1644 				spa_spare_add(tvd);
1645 
1646 			/*
1647 			 * We only mark the spare active if we were successfully
1648 			 * able to load the vdev.  Otherwise, importing a pool
1649 			 * with a bad active spare would result in strange
1650 			 * behavior, because multiple pool would think the spare
1651 			 * is actively in use.
1652 			 *
1653 			 * There is a vulnerability here to an equally bizarre
1654 			 * circumstance, where a dead active spare is later
1655 			 * brought back to life (onlined or otherwise).  Given
1656 			 * the rarity of this scenario, and the extra complexity
1657 			 * it adds, we ignore the possibility.
1658 			 */
1659 			if (!vdev_is_dead(tvd))
1660 				spa_spare_activate(tvd);
1661 		}
1662 
1663 		vd->vdev_top = vd;
1664 		vd->vdev_aux = &spa->spa_spares;
1665 
1666 		if (vdev_open(vd) != 0)
1667 			continue;
1668 
1669 		if (vdev_validate_aux(vd) == 0)
1670 			spa_spare_add(vd);
1671 	}
1672 
1673 	/*
1674 	 * Recompute the stashed list of spares, with status information
1675 	 * this time.
1676 	 */
1677 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1678 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1679 
1680 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1681 	    KM_SLEEP);
1682 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1683 		spares[i] = vdev_config_generate(spa,
1684 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1685 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1686 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1687 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1688 		nvlist_free(spares[i]);
1689 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1690 }
1691 
1692 /*
1693  * Load (or re-load) the current list of vdevs describing the active l2cache for
1694  * this pool.  When this is called, we have some form of basic information in
1695  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1696  * then re-generate a more complete list including status information.
1697  * Devices which are already active have their details maintained, and are
1698  * not re-opened.
1699  */
1700 void
1701 spa_load_l2cache(spa_t *spa)
1702 {
1703 	nvlist_t **l2cache;
1704 	uint_t nl2cache;
1705 	int i, j, oldnvdevs;
1706 	uint64_t guid;
1707 	vdev_t *vd, **oldvdevs, **newvdevs;
1708 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1709 
1710 #ifndef _KERNEL
1711 	/*
1712 	 * zdb opens both the current state of the pool and the
1713 	 * checkpointed state (if present), with a different spa_t.
1714 	 *
1715 	 * As L2 caches are part of the ARC which is shared among open
1716 	 * pools, we skip loading them when we load the checkpointed
1717 	 * state of the pool.
1718 	 */
1719 	if (!spa_writeable(spa))
1720 		return;
1721 #endif
1722 
1723 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1724 
1725 	if (sav->sav_config != NULL) {
1726 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1727 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1728 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1729 	} else {
1730 		nl2cache = 0;
1731 		newvdevs = NULL;
1732 	}
1733 
1734 	oldvdevs = sav->sav_vdevs;
1735 	oldnvdevs = sav->sav_count;
1736 	sav->sav_vdevs = NULL;
1737 	sav->sav_count = 0;
1738 
1739 	/*
1740 	 * Process new nvlist of vdevs.
1741 	 */
1742 	for (i = 0; i < nl2cache; i++) {
1743 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1744 		    &guid) == 0);
1745 
1746 		newvdevs[i] = NULL;
1747 		for (j = 0; j < oldnvdevs; j++) {
1748 			vd = oldvdevs[j];
1749 			if (vd != NULL && guid == vd->vdev_guid) {
1750 				/*
1751 				 * Retain previous vdev for add/remove ops.
1752 				 */
1753 				newvdevs[i] = vd;
1754 				oldvdevs[j] = NULL;
1755 				break;
1756 			}
1757 		}
1758 
1759 		if (newvdevs[i] == NULL) {
1760 			/*
1761 			 * Create new vdev
1762 			 */
1763 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1764 			    VDEV_ALLOC_L2CACHE) == 0);
1765 			ASSERT(vd != NULL);
1766 			newvdevs[i] = vd;
1767 
1768 			/*
1769 			 * Commit this vdev as an l2cache device,
1770 			 * even if it fails to open.
1771 			 */
1772 			spa_l2cache_add(vd);
1773 
1774 			vd->vdev_top = vd;
1775 			vd->vdev_aux = sav;
1776 
1777 			spa_l2cache_activate(vd);
1778 
1779 			if (vdev_open(vd) != 0)
1780 				continue;
1781 
1782 			(void) vdev_validate_aux(vd);
1783 
1784 			if (!vdev_is_dead(vd))
1785 				l2arc_add_vdev(spa, vd);
1786 		}
1787 	}
1788 
1789 	/*
1790 	 * Purge vdevs that were dropped
1791 	 */
1792 	for (i = 0; i < oldnvdevs; i++) {
1793 		uint64_t pool;
1794 
1795 		vd = oldvdevs[i];
1796 		if (vd != NULL) {
1797 			ASSERT(vd->vdev_isl2cache);
1798 
1799 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1800 			    pool != 0ULL && l2arc_vdev_present(vd))
1801 				l2arc_remove_vdev(vd);
1802 			vdev_clear_stats(vd);
1803 			vdev_free(vd);
1804 		}
1805 	}
1806 
1807 	if (oldvdevs)
1808 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1809 
1810 	if (sav->sav_config == NULL)
1811 		goto out;
1812 
1813 	sav->sav_vdevs = newvdevs;
1814 	sav->sav_count = (int)nl2cache;
1815 
1816 	/*
1817 	 * Recompute the stashed list of l2cache devices, with status
1818 	 * information this time.
1819 	 */
1820 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1821 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1822 
1823 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1824 	for (i = 0; i < sav->sav_count; i++)
1825 		l2cache[i] = vdev_config_generate(spa,
1826 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1827 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1828 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1829 out:
1830 	for (i = 0; i < sav->sav_count; i++)
1831 		nvlist_free(l2cache[i]);
1832 	if (sav->sav_count)
1833 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1834 }
1835 
1836 static int
1837 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1838 {
1839 	dmu_buf_t *db;
1840 	char *packed = NULL;
1841 	size_t nvsize = 0;
1842 	int error;
1843 	*value = NULL;
1844 
1845 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1846 	if (error != 0)
1847 		return (error);
1848 
1849 	nvsize = *(uint64_t *)db->db_data;
1850 	dmu_buf_rele(db, FTAG);
1851 
1852 	packed = kmem_alloc(nvsize, KM_SLEEP);
1853 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1854 	    DMU_READ_PREFETCH);
1855 	if (error == 0)
1856 		error = nvlist_unpack(packed, nvsize, value, 0);
1857 	kmem_free(packed, nvsize);
1858 
1859 	return (error);
1860 }
1861 
1862 /*
1863  * Concrete top-level vdevs that are not missing and are not logs. At every
1864  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1865  */
1866 static uint64_t
1867 spa_healthy_core_tvds(spa_t *spa)
1868 {
1869 	vdev_t *rvd = spa->spa_root_vdev;
1870 	uint64_t tvds = 0;
1871 
1872 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1873 		vdev_t *vd = rvd->vdev_child[i];
1874 		if (vd->vdev_islog)
1875 			continue;
1876 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1877 			tvds++;
1878 	}
1879 
1880 	return (tvds);
1881 }
1882 
1883 /*
1884  * Checks to see if the given vdev could not be opened, in which case we post a
1885  * sysevent to notify the autoreplace code that the device has been removed.
1886  */
1887 static void
1888 spa_check_removed(vdev_t *vd)
1889 {
1890 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1891 		spa_check_removed(vd->vdev_child[c]);
1892 
1893 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1894 	    vdev_is_concrete(vd)) {
1895 		zfs_post_autoreplace(vd->vdev_spa, vd);
1896 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1897 	}
1898 }
1899 
1900 static int
1901 spa_check_for_missing_logs(spa_t *spa)
1902 {
1903 	vdev_t *rvd = spa->spa_root_vdev;
1904 
1905 	/*
1906 	 * If we're doing a normal import, then build up any additional
1907 	 * diagnostic information about missing log devices.
1908 	 * We'll pass this up to the user for further processing.
1909 	 */
1910 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1911 		nvlist_t **child, *nv;
1912 		uint64_t idx = 0;
1913 
1914 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1915 		    KM_SLEEP);
1916 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1917 
1918 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1919 			vdev_t *tvd = rvd->vdev_child[c];
1920 
1921 			/*
1922 			 * We consider a device as missing only if it failed
1923 			 * to open (i.e. offline or faulted is not considered
1924 			 * as missing).
1925 			 */
1926 			if (tvd->vdev_islog &&
1927 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1928 				child[idx++] = vdev_config_generate(spa, tvd,
1929 				    B_FALSE, VDEV_CONFIG_MISSING);
1930 			}
1931 		}
1932 
1933 		if (idx > 0) {
1934 			fnvlist_add_nvlist_array(nv,
1935 			    ZPOOL_CONFIG_CHILDREN, child, idx);
1936 			fnvlist_add_nvlist(spa->spa_load_info,
1937 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
1938 
1939 			for (uint64_t i = 0; i < idx; i++)
1940 				nvlist_free(child[i]);
1941 		}
1942 		nvlist_free(nv);
1943 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1944 
1945 		if (idx > 0) {
1946 			spa_load_failed(spa, "some log devices are missing");
1947 			vdev_dbgmsg_print_tree(rvd, 2);
1948 			return (SET_ERROR(ENXIO));
1949 		}
1950 	} else {
1951 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1952 			vdev_t *tvd = rvd->vdev_child[c];
1953 
1954 			if (tvd->vdev_islog &&
1955 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1956 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1957 				spa_load_note(spa, "some log devices are "
1958 				    "missing, ZIL is dropped.");
1959 				vdev_dbgmsg_print_tree(rvd, 2);
1960 				break;
1961 			}
1962 		}
1963 	}
1964 
1965 	return (0);
1966 }
1967 
1968 /*
1969  * Check for missing log devices
1970  */
1971 static boolean_t
1972 spa_check_logs(spa_t *spa)
1973 {
1974 	boolean_t rv = B_FALSE;
1975 	dsl_pool_t *dp = spa_get_dsl(spa);
1976 
1977 	switch (spa->spa_log_state) {
1978 	case SPA_LOG_MISSING:
1979 		/* need to recheck in case slog has been restored */
1980 	case SPA_LOG_UNKNOWN:
1981 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1982 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1983 		if (rv)
1984 			spa_set_log_state(spa, SPA_LOG_MISSING);
1985 		break;
1986 	}
1987 	return (rv);
1988 }
1989 
1990 static boolean_t
1991 spa_passivate_log(spa_t *spa)
1992 {
1993 	vdev_t *rvd = spa->spa_root_vdev;
1994 	boolean_t slog_found = B_FALSE;
1995 
1996 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1997 
1998 	if (!spa_has_slogs(spa))
1999 		return (B_FALSE);
2000 
2001 	for (int c = 0; c < rvd->vdev_children; c++) {
2002 		vdev_t *tvd = rvd->vdev_child[c];
2003 		metaslab_group_t *mg = tvd->vdev_mg;
2004 
2005 		if (tvd->vdev_islog) {
2006 			metaslab_group_passivate(mg);
2007 			slog_found = B_TRUE;
2008 		}
2009 	}
2010 
2011 	return (slog_found);
2012 }
2013 
2014 static void
2015 spa_activate_log(spa_t *spa)
2016 {
2017 	vdev_t *rvd = spa->spa_root_vdev;
2018 
2019 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2020 
2021 	for (int c = 0; c < rvd->vdev_children; c++) {
2022 		vdev_t *tvd = rvd->vdev_child[c];
2023 		metaslab_group_t *mg = tvd->vdev_mg;
2024 
2025 		if (tvd->vdev_islog)
2026 			metaslab_group_activate(mg);
2027 	}
2028 }
2029 
2030 int
2031 spa_reset_logs(spa_t *spa)
2032 {
2033 	int error;
2034 
2035 	error = dmu_objset_find(spa_name(spa), zil_reset,
2036 	    NULL, DS_FIND_CHILDREN);
2037 	if (error == 0) {
2038 		/*
2039 		 * We successfully offlined the log device, sync out the
2040 		 * current txg so that the "stubby" block can be removed
2041 		 * by zil_sync().
2042 		 */
2043 		txg_wait_synced(spa->spa_dsl_pool, 0);
2044 	}
2045 	return (error);
2046 }
2047 
2048 static void
2049 spa_aux_check_removed(spa_aux_vdev_t *sav)
2050 {
2051 	for (int i = 0; i < sav->sav_count; i++)
2052 		spa_check_removed(sav->sav_vdevs[i]);
2053 }
2054 
2055 void
2056 spa_claim_notify(zio_t *zio)
2057 {
2058 	spa_t *spa = zio->io_spa;
2059 
2060 	if (zio->io_error)
2061 		return;
2062 
2063 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2064 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2065 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2066 	mutex_exit(&spa->spa_props_lock);
2067 }
2068 
2069 typedef struct spa_load_error {
2070 	uint64_t	sle_meta_count;
2071 	uint64_t	sle_data_count;
2072 } spa_load_error_t;
2073 
2074 static void
2075 spa_load_verify_done(zio_t *zio)
2076 {
2077 	blkptr_t *bp = zio->io_bp;
2078 	spa_load_error_t *sle = zio->io_private;
2079 	dmu_object_type_t type = BP_GET_TYPE(bp);
2080 	int error = zio->io_error;
2081 	spa_t *spa = zio->io_spa;
2082 
2083 	abd_free(zio->io_abd);
2084 	if (error) {
2085 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2086 		    type != DMU_OT_INTENT_LOG)
2087 			atomic_inc_64(&sle->sle_meta_count);
2088 		else
2089 			atomic_inc_64(&sle->sle_data_count);
2090 	}
2091 
2092 	mutex_enter(&spa->spa_scrub_lock);
2093 	spa->spa_load_verify_ios--;
2094 	cv_broadcast(&spa->spa_scrub_io_cv);
2095 	mutex_exit(&spa->spa_scrub_lock);
2096 }
2097 
2098 /*
2099  * Maximum number of concurrent scrub i/os to create while verifying
2100  * a pool while importing it.
2101  */
2102 int spa_load_verify_maxinflight = 10000;
2103 boolean_t spa_load_verify_metadata = B_TRUE;
2104 boolean_t spa_load_verify_data = B_TRUE;
2105 
2106 /*ARGSUSED*/
2107 static int
2108 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2109     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2110 {
2111 	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2112 		return (0);
2113 	/*
2114 	 * Note: normally this routine will not be called if
2115 	 * spa_load_verify_metadata is not set.  However, it may be useful
2116 	 * to manually set the flag after the traversal has begun.
2117 	 */
2118 	if (!spa_load_verify_metadata)
2119 		return (0);
2120 	if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2121 		return (0);
2122 
2123 	zio_t *rio = arg;
2124 	size_t size = BP_GET_PSIZE(bp);
2125 
2126 	mutex_enter(&spa->spa_scrub_lock);
2127 	while (spa->spa_load_verify_ios >= spa_load_verify_maxinflight)
2128 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2129 	spa->spa_load_verify_ios++;
2130 	mutex_exit(&spa->spa_scrub_lock);
2131 
2132 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2133 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2134 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2135 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2136 	return (0);
2137 }
2138 
2139 /* ARGSUSED */
2140 int
2141 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2142 {
2143 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2144 		return (SET_ERROR(ENAMETOOLONG));
2145 
2146 	return (0);
2147 }
2148 
2149 static int
2150 spa_load_verify(spa_t *spa)
2151 {
2152 	zio_t *rio;
2153 	spa_load_error_t sle = { 0 };
2154 	zpool_load_policy_t policy;
2155 	boolean_t verify_ok = B_FALSE;
2156 	int error = 0;
2157 
2158 	zpool_get_load_policy(spa->spa_config, &policy);
2159 
2160 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2161 		return (0);
2162 
2163 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2164 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2165 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2166 	    DS_FIND_CHILDREN);
2167 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2168 	if (error != 0)
2169 		return (error);
2170 
2171 	rio = zio_root(spa, NULL, &sle,
2172 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2173 
2174 	if (spa_load_verify_metadata) {
2175 		if (spa->spa_extreme_rewind) {
2176 			spa_load_note(spa, "performing a complete scan of the "
2177 			    "pool since extreme rewind is on. This may take "
2178 			    "a very long time.\n  (spa_load_verify_data=%u, "
2179 			    "spa_load_verify_metadata=%u)",
2180 			    spa_load_verify_data, spa_load_verify_metadata);
2181 		}
2182 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2183 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2184 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2185 	}
2186 
2187 	(void) zio_wait(rio);
2188 
2189 	spa->spa_load_meta_errors = sle.sle_meta_count;
2190 	spa->spa_load_data_errors = sle.sle_data_count;
2191 
2192 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2193 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2194 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2195 		    (u_longlong_t)sle.sle_data_count);
2196 	}
2197 
2198 	if (spa_load_verify_dryrun ||
2199 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2200 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2201 		int64_t loss = 0;
2202 
2203 		verify_ok = B_TRUE;
2204 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2205 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2206 
2207 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2208 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2209 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2210 		VERIFY(nvlist_add_int64(spa->spa_load_info,
2211 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2212 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2213 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2214 	} else {
2215 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2216 	}
2217 
2218 	if (spa_load_verify_dryrun)
2219 		return (0);
2220 
2221 	if (error) {
2222 		if (error != ENXIO && error != EIO)
2223 			error = SET_ERROR(EIO);
2224 		return (error);
2225 	}
2226 
2227 	return (verify_ok ? 0 : EIO);
2228 }
2229 
2230 /*
2231  * Find a value in the pool props object.
2232  */
2233 static void
2234 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2235 {
2236 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2237 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2238 }
2239 
2240 /*
2241  * Find a value in the pool directory object.
2242  */
2243 static int
2244 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2245 {
2246 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2247 	    name, sizeof (uint64_t), 1, val);
2248 
2249 	if (error != 0 && (error != ENOENT || log_enoent)) {
2250 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2251 		    "[error=%d]", name, error);
2252 	}
2253 
2254 	return (error);
2255 }
2256 
2257 static int
2258 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2259 {
2260 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2261 	return (SET_ERROR(err));
2262 }
2263 
2264 static void
2265 spa_spawn_aux_threads(spa_t *spa)
2266 {
2267 	ASSERT(spa_writeable(spa));
2268 
2269 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2270 
2271 	spa_start_indirect_condensing_thread(spa);
2272 
2273 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2274 	spa->spa_checkpoint_discard_zthr =
2275 	    zthr_create(spa_checkpoint_discard_thread_check,
2276 	    spa_checkpoint_discard_thread, spa);
2277 }
2278 
2279 /*
2280  * Fix up config after a partly-completed split.  This is done with the
2281  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2282  * pool have that entry in their config, but only the splitting one contains
2283  * a list of all the guids of the vdevs that are being split off.
2284  *
2285  * This function determines what to do with that list: either rejoin
2286  * all the disks to the pool, or complete the splitting process.  To attempt
2287  * the rejoin, each disk that is offlined is marked online again, and
2288  * we do a reopen() call.  If the vdev label for every disk that was
2289  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2290  * then we call vdev_split() on each disk, and complete the split.
2291  *
2292  * Otherwise we leave the config alone, with all the vdevs in place in
2293  * the original pool.
2294  */
2295 static void
2296 spa_try_repair(spa_t *spa, nvlist_t *config)
2297 {
2298 	uint_t extracted;
2299 	uint64_t *glist;
2300 	uint_t i, gcount;
2301 	nvlist_t *nvl;
2302 	vdev_t **vd;
2303 	boolean_t attempt_reopen;
2304 
2305 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2306 		return;
2307 
2308 	/* check that the config is complete */
2309 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2310 	    &glist, &gcount) != 0)
2311 		return;
2312 
2313 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2314 
2315 	/* attempt to online all the vdevs & validate */
2316 	attempt_reopen = B_TRUE;
2317 	for (i = 0; i < gcount; i++) {
2318 		if (glist[i] == 0)	/* vdev is hole */
2319 			continue;
2320 
2321 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2322 		if (vd[i] == NULL) {
2323 			/*
2324 			 * Don't bother attempting to reopen the disks;
2325 			 * just do the split.
2326 			 */
2327 			attempt_reopen = B_FALSE;
2328 		} else {
2329 			/* attempt to re-online it */
2330 			vd[i]->vdev_offline = B_FALSE;
2331 		}
2332 	}
2333 
2334 	if (attempt_reopen) {
2335 		vdev_reopen(spa->spa_root_vdev);
2336 
2337 		/* check each device to see what state it's in */
2338 		for (extracted = 0, i = 0; i < gcount; i++) {
2339 			if (vd[i] != NULL &&
2340 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2341 				break;
2342 			++extracted;
2343 		}
2344 	}
2345 
2346 	/*
2347 	 * If every disk has been moved to the new pool, or if we never
2348 	 * even attempted to look at them, then we split them off for
2349 	 * good.
2350 	 */
2351 	if (!attempt_reopen || gcount == extracted) {
2352 		for (i = 0; i < gcount; i++)
2353 			if (vd[i] != NULL)
2354 				vdev_split(vd[i]);
2355 		vdev_reopen(spa->spa_root_vdev);
2356 	}
2357 
2358 	kmem_free(vd, gcount * sizeof (vdev_t *));
2359 }
2360 
2361 static int
2362 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2363 {
2364 	char *ereport = FM_EREPORT_ZFS_POOL;
2365 	int error;
2366 
2367 	spa->spa_load_state = state;
2368 
2369 	gethrestime(&spa->spa_loaded_ts);
2370 	error = spa_load_impl(spa, type, &ereport);
2371 
2372 	/*
2373 	 * Don't count references from objsets that are already closed
2374 	 * and are making their way through the eviction process.
2375 	 */
2376 	spa_evicting_os_wait(spa);
2377 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
2378 	if (error) {
2379 		if (error != EEXIST) {
2380 			spa->spa_loaded_ts.tv_sec = 0;
2381 			spa->spa_loaded_ts.tv_nsec = 0;
2382 		}
2383 		if (error != EBADF) {
2384 			zfs_ereport_post(ereport, spa, NULL, NULL, NULL, 0, 0);
2385 		}
2386 	}
2387 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2388 	spa->spa_ena = 0;
2389 
2390 	return (error);
2391 }
2392 
2393 /*
2394  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2395  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2396  * spa's per-vdev ZAP list.
2397  */
2398 static uint64_t
2399 vdev_count_verify_zaps(vdev_t *vd)
2400 {
2401 	spa_t *spa = vd->vdev_spa;
2402 	uint64_t total = 0;
2403 	if (vd->vdev_top_zap != 0) {
2404 		total++;
2405 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2406 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2407 	}
2408 	if (vd->vdev_leaf_zap != 0) {
2409 		total++;
2410 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2411 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2412 	}
2413 
2414 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2415 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2416 	}
2417 
2418 	return (total);
2419 }
2420 
2421 /*
2422  * Determine whether the activity check is required.
2423  */
2424 static boolean_t
2425 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
2426     nvlist_t *config)
2427 {
2428 	uint64_t state = 0;
2429 	uint64_t hostid = 0;
2430 	uint64_t tryconfig_txg = 0;
2431 	uint64_t tryconfig_timestamp = 0;
2432 	nvlist_t *nvinfo;
2433 
2434 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2435 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
2436 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
2437 		    &tryconfig_txg);
2438 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2439 		    &tryconfig_timestamp);
2440 	}
2441 
2442 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
2443 
2444 	/*
2445 	 * Disable the MMP activity check - This is used by zdb which
2446 	 * is intended to be used on potentially active pools.
2447 	 */
2448 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
2449 		return (B_FALSE);
2450 
2451 	/*
2452 	 * Skip the activity check when the MMP feature is disabled.
2453 	 */
2454 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
2455 		return (B_FALSE);
2456 	/*
2457 	 * If the tryconfig_* values are nonzero, they are the results of an
2458 	 * earlier tryimport.  If they match the uberblock we just found, then
2459 	 * the pool has not changed and we return false so we do not test a
2460 	 * second time.
2461 	 */
2462 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
2463 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp)
2464 		return (B_FALSE);
2465 
2466 	/*
2467 	 * Allow the activity check to be skipped when importing the pool
2468 	 * on the same host which last imported it.  Since the hostid from
2469 	 * configuration may be stale use the one read from the label.
2470 	 */
2471 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
2472 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
2473 
2474 	if (hostid == spa_get_hostid())
2475 		return (B_FALSE);
2476 
2477 	/*
2478 	 * Skip the activity test when the pool was cleanly exported.
2479 	 */
2480 	if (state != POOL_STATE_ACTIVE)
2481 		return (B_FALSE);
2482 
2483 	return (B_TRUE);
2484 }
2485 
2486 /*
2487  * Perform the import activity check.  If the user canceled the import or
2488  * we detected activity then fail.
2489  */
2490 static int
2491 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
2492 {
2493 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
2494 	uint64_t txg = ub->ub_txg;
2495 	uint64_t timestamp = ub->ub_timestamp;
2496 	uint64_t import_delay = NANOSEC;
2497 	hrtime_t import_expire;
2498 	nvlist_t *mmp_label = NULL;
2499 	vdev_t *rvd = spa->spa_root_vdev;
2500 	kcondvar_t cv;
2501 	kmutex_t mtx;
2502 	int error = 0;
2503 
2504 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
2505 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
2506 	mutex_enter(&mtx);
2507 
2508 	/*
2509 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
2510 	 * during the earlier tryimport.  If the txg recorded there is 0 then
2511 	 * the pool is known to be active on another host.
2512 	 *
2513 	 * Otherwise, the pool might be in use on another node.  Check for
2514 	 * changes in the uberblocks on disk if necessary.
2515 	 */
2516 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2517 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
2518 		    ZPOOL_CONFIG_LOAD_INFO);
2519 
2520 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
2521 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
2522 			vdev_uberblock_load(rvd, ub, &mmp_label);
2523 			error = SET_ERROR(EREMOTEIO);
2524 			goto out;
2525 		}
2526 	}
2527 
2528 	/*
2529 	 * Preferentially use the zfs_multihost_interval from the node which
2530 	 * last imported the pool.  This value is stored in an MMP uberblock as.
2531 	 *
2532 	 * ub_mmp_delay * vdev_count_leaves() == zfs_multihost_interval
2533 	 */
2534 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay)
2535 		import_delay = MAX(import_delay, import_intervals *
2536 		    ub->ub_mmp_delay * MAX(vdev_count_leaves(spa), 1));
2537 
2538 	/* Apply a floor using the local default values. */
2539 	import_delay = MAX(import_delay, import_intervals *
2540 	    MSEC2NSEC(MAX(zfs_multihost_interval, MMP_MIN_INTERVAL)));
2541 
2542 	zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu import_intervals=%u "
2543 	    "leaves=%u", import_delay, ub->ub_mmp_delay, import_intervals,
2544 	    vdev_count_leaves(spa));
2545 
2546 	/* Add a small random factor in case of simultaneous imports (0-25%) */
2547 	import_expire = gethrtime() + import_delay +
2548 	    (import_delay * spa_get_random(250) / 1000);
2549 
2550 	while (gethrtime() < import_expire) {
2551 		vdev_uberblock_load(rvd, ub, &mmp_label);
2552 
2553 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp) {
2554 			error = SET_ERROR(EREMOTEIO);
2555 			break;
2556 		}
2557 
2558 		if (mmp_label) {
2559 			nvlist_free(mmp_label);
2560 			mmp_label = NULL;
2561 		}
2562 
2563 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
2564 		if (error != -1) {
2565 			error = SET_ERROR(EINTR);
2566 			break;
2567 		}
2568 		error = 0;
2569 	}
2570 
2571 out:
2572 	mutex_exit(&mtx);
2573 	mutex_destroy(&mtx);
2574 	cv_destroy(&cv);
2575 
2576 	/*
2577 	 * If the pool is determined to be active store the status in the
2578 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
2579 	 * available from configuration read from disk store them as well.
2580 	 * This allows 'zpool import' to generate a more useful message.
2581 	 *
2582 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
2583 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
2584 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
2585 	 */
2586 	if (error == EREMOTEIO) {
2587 		char *hostname = "<unknown>";
2588 		uint64_t hostid = 0;
2589 
2590 		if (mmp_label) {
2591 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
2592 				hostname = fnvlist_lookup_string(mmp_label,
2593 				    ZPOOL_CONFIG_HOSTNAME);
2594 				fnvlist_add_string(spa->spa_load_info,
2595 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
2596 			}
2597 
2598 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
2599 				hostid = fnvlist_lookup_uint64(mmp_label,
2600 				    ZPOOL_CONFIG_HOSTID);
2601 				fnvlist_add_uint64(spa->spa_load_info,
2602 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
2603 			}
2604 		}
2605 
2606 		fnvlist_add_uint64(spa->spa_load_info,
2607 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
2608 		fnvlist_add_uint64(spa->spa_load_info,
2609 		    ZPOOL_CONFIG_MMP_TXG, 0);
2610 
2611 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
2612 	}
2613 
2614 	if (mmp_label)
2615 		nvlist_free(mmp_label);
2616 
2617 	return (error);
2618 }
2619 
2620 static int
2621 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
2622 {
2623 	uint64_t hostid;
2624 	char *hostname;
2625 	uint64_t myhostid = 0;
2626 
2627 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2628 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2629 		hostname = fnvlist_lookup_string(mos_config,
2630 		    ZPOOL_CONFIG_HOSTNAME);
2631 
2632 		myhostid = zone_get_hostid(NULL);
2633 
2634 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
2635 			cmn_err(CE_WARN, "pool '%s' could not be "
2636 			    "loaded as it was last accessed by "
2637 			    "another system (host: %s hostid: 0x%llx). "
2638 			    "See: http://illumos.org/msg/ZFS-8000-EY",
2639 			    spa_name(spa), hostname, (u_longlong_t)hostid);
2640 			spa_load_failed(spa, "hostid verification failed: pool "
2641 			    "last accessed by host: %s (hostid: 0x%llx)",
2642 			    hostname, (u_longlong_t)hostid);
2643 			return (SET_ERROR(EBADF));
2644 		}
2645 	}
2646 
2647 	return (0);
2648 }
2649 
2650 static int
2651 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
2652 {
2653 	int error = 0;
2654 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
2655 	int parse;
2656 	vdev_t *rvd;
2657 	uint64_t pool_guid;
2658 	char *comment;
2659 
2660 	/*
2661 	 * Versioning wasn't explicitly added to the label until later, so if
2662 	 * it's not present treat it as the initial version.
2663 	 */
2664 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2665 	    &spa->spa_ubsync.ub_version) != 0)
2666 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2667 
2668 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
2669 		spa_load_failed(spa, "invalid config provided: '%s' missing",
2670 		    ZPOOL_CONFIG_POOL_GUID);
2671 		return (SET_ERROR(EINVAL));
2672 	}
2673 
2674 	/*
2675 	 * If we are doing an import, ensure that the pool is not already
2676 	 * imported by checking if its pool guid already exists in the
2677 	 * spa namespace.
2678 	 *
2679 	 * The only case that we allow an already imported pool to be
2680 	 * imported again, is when the pool is checkpointed and we want to
2681 	 * look at its checkpointed state from userland tools like zdb.
2682 	 */
2683 #ifdef _KERNEL
2684 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2685 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2686 	    spa_guid_exists(pool_guid, 0)) {
2687 #else
2688 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2689 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2690 	    spa_guid_exists(pool_guid, 0) &&
2691 	    !spa_importing_readonly_checkpoint(spa)) {
2692 #endif
2693 		spa_load_failed(spa, "a pool with guid %llu is already open",
2694 		    (u_longlong_t)pool_guid);
2695 		return (SET_ERROR(EEXIST));
2696 	}
2697 
2698 	spa->spa_config_guid = pool_guid;
2699 
2700 	nvlist_free(spa->spa_load_info);
2701 	spa->spa_load_info = fnvlist_alloc();
2702 
2703 	ASSERT(spa->spa_comment == NULL);
2704 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2705 		spa->spa_comment = spa_strdup(comment);
2706 
2707 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2708 	    &spa->spa_config_txg);
2709 
2710 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
2711 		spa->spa_config_splitting = fnvlist_dup(nvl);
2712 
2713 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
2714 		spa_load_failed(spa, "invalid config provided: '%s' missing",
2715 		    ZPOOL_CONFIG_VDEV_TREE);
2716 		return (SET_ERROR(EINVAL));
2717 	}
2718 
2719 	/*
2720 	 * Create "The Godfather" zio to hold all async IOs
2721 	 */
2722 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2723 	    KM_SLEEP);
2724 	for (int i = 0; i < max_ncpus; i++) {
2725 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2726 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2727 		    ZIO_FLAG_GODFATHER);
2728 	}
2729 
2730 	/*
2731 	 * Parse the configuration into a vdev tree.  We explicitly set the
2732 	 * value that will be returned by spa_version() since parsing the
2733 	 * configuration requires knowing the version number.
2734 	 */
2735 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2736 	parse = (type == SPA_IMPORT_EXISTING ?
2737 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2738 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
2739 	spa_config_exit(spa, SCL_ALL, FTAG);
2740 
2741 	if (error != 0) {
2742 		spa_load_failed(spa, "unable to parse config [error=%d]",
2743 		    error);
2744 		return (error);
2745 	}
2746 
2747 	ASSERT(spa->spa_root_vdev == rvd);
2748 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2749 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2750 
2751 	if (type != SPA_IMPORT_ASSEMBLE) {
2752 		ASSERT(spa_guid(spa) == pool_guid);
2753 	}
2754 
2755 	return (0);
2756 }
2757 
2758 /*
2759  * Recursively open all vdevs in the vdev tree. This function is called twice:
2760  * first with the untrusted config, then with the trusted config.
2761  */
2762 static int
2763 spa_ld_open_vdevs(spa_t *spa)
2764 {
2765 	int error = 0;
2766 
2767 	/*
2768 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
2769 	 * missing/unopenable for the root vdev to be still considered openable.
2770 	 */
2771 	if (spa->spa_trust_config) {
2772 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
2773 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
2774 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
2775 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
2776 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
2777 	} else {
2778 		spa->spa_missing_tvds_allowed = 0;
2779 	}
2780 
2781 	spa->spa_missing_tvds_allowed =
2782 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
2783 
2784 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2785 	error = vdev_open(spa->spa_root_vdev);
2786 	spa_config_exit(spa, SCL_ALL, FTAG);
2787 
2788 	if (spa->spa_missing_tvds != 0) {
2789 		spa_load_note(spa, "vdev tree has %lld missing top-level "
2790 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
2791 		if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) {
2792 			/*
2793 			 * Although theoretically we could allow users to open
2794 			 * incomplete pools in RW mode, we'd need to add a lot
2795 			 * of extra logic (e.g. adjust pool space to account
2796 			 * for missing vdevs).
2797 			 * This limitation also prevents users from accidentally
2798 			 * opening the pool in RW mode during data recovery and
2799 			 * damaging it further.
2800 			 */
2801 			spa_load_note(spa, "pools with missing top-level "
2802 			    "vdevs can only be opened in read-only mode.");
2803 			error = SET_ERROR(ENXIO);
2804 		} else {
2805 			spa_load_note(spa, "current settings allow for maximum "
2806 			    "%lld missing top-level vdevs at this stage.",
2807 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
2808 		}
2809 	}
2810 	if (error != 0) {
2811 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
2812 		    error);
2813 	}
2814 	if (spa->spa_missing_tvds != 0 || error != 0)
2815 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
2816 
2817 	return (error);
2818 }
2819 
2820 /*
2821  * We need to validate the vdev labels against the configuration that
2822  * we have in hand. This function is called twice: first with an untrusted
2823  * config, then with a trusted config. The validation is more strict when the
2824  * config is trusted.
2825  */
2826 static int
2827 spa_ld_validate_vdevs(spa_t *spa)
2828 {
2829 	int error = 0;
2830 	vdev_t *rvd = spa->spa_root_vdev;
2831 
2832 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2833 	error = vdev_validate(rvd);
2834 	spa_config_exit(spa, SCL_ALL, FTAG);
2835 
2836 	if (error != 0) {
2837 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
2838 		return (error);
2839 	}
2840 
2841 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2842 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
2843 		    "some vdevs");
2844 		vdev_dbgmsg_print_tree(rvd, 2);
2845 		return (SET_ERROR(ENXIO));
2846 	}
2847 
2848 	return (0);
2849 }
2850 
2851 static void
2852 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
2853 {
2854 	spa->spa_state = POOL_STATE_ACTIVE;
2855 	spa->spa_ubsync = spa->spa_uberblock;
2856 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2857 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2858 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2859 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2860 	spa->spa_claim_max_txg = spa->spa_first_txg;
2861 	spa->spa_prev_software_version = ub->ub_software_version;
2862 }
2863 
2864 static int
2865 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
2866 {
2867 	vdev_t *rvd = spa->spa_root_vdev;
2868 	nvlist_t *label;
2869 	uberblock_t *ub = &spa->spa_uberblock;
2870 	boolean_t activity_check = B_FALSE;
2871 
2872 	/*
2873 	 * If we are opening the checkpointed state of the pool by
2874 	 * rewinding to it, at this point we will have written the
2875 	 * checkpointed uberblock to the vdev labels, so searching
2876 	 * the labels will find the right uberblock.  However, if
2877 	 * we are opening the checkpointed state read-only, we have
2878 	 * not modified the labels. Therefore, we must ignore the
2879 	 * labels and continue using the spa_uberblock that was set
2880 	 * by spa_ld_checkpoint_rewind.
2881 	 *
2882 	 * Note that it would be fine to ignore the labels when
2883 	 * rewinding (opening writeable) as well. However, if we
2884 	 * crash just after writing the labels, we will end up
2885 	 * searching the labels. Doing so in the common case means
2886 	 * that this code path gets exercised normally, rather than
2887 	 * just in the edge case.
2888 	 */
2889 	if (ub->ub_checkpoint_txg != 0 &&
2890 	    spa_importing_readonly_checkpoint(spa)) {
2891 		spa_ld_select_uberblock_done(spa, ub);
2892 		return (0);
2893 	}
2894 
2895 	/*
2896 	 * Find the best uberblock.
2897 	 */
2898 	vdev_uberblock_load(rvd, ub, &label);
2899 
2900 	/*
2901 	 * If we weren't able to find a single valid uberblock, return failure.
2902 	 */
2903 	if (ub->ub_txg == 0) {
2904 		nvlist_free(label);
2905 		spa_load_failed(spa, "no valid uberblock found");
2906 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2907 	}
2908 
2909 	spa_load_note(spa, "using uberblock with txg=%llu",
2910 	    (u_longlong_t)ub->ub_txg);
2911 
2912 	/*
2913 	 * For pools which have the multihost property on determine if the
2914 	 * pool is truly inactive and can be safely imported.  Prevent
2915 	 * hosts which don't have a hostid set from importing the pool.
2916 	 */
2917 	activity_check = spa_activity_check_required(spa, ub, label,
2918 	    spa->spa_config);
2919 	if (activity_check) {
2920 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
2921 		    spa_get_hostid() == 0) {
2922 			nvlist_free(label);
2923 			fnvlist_add_uint64(spa->spa_load_info,
2924 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
2925 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
2926 		}
2927 
2928 		int error = spa_activity_check(spa, ub, spa->spa_config);
2929 		if (error) {
2930 			nvlist_free(label);
2931 			return (error);
2932 		}
2933 
2934 		fnvlist_add_uint64(spa->spa_load_info,
2935 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
2936 		fnvlist_add_uint64(spa->spa_load_info,
2937 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
2938 	}
2939 
2940 	/*
2941 	 * If the pool has an unsupported version we can't open it.
2942 	 */
2943 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2944 		nvlist_free(label);
2945 		spa_load_failed(spa, "version %llu is not supported",
2946 		    (u_longlong_t)ub->ub_version);
2947 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2948 	}
2949 
2950 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2951 		nvlist_t *features;
2952 
2953 		/*
2954 		 * If we weren't able to find what's necessary for reading the
2955 		 * MOS in the label, return failure.
2956 		 */
2957 		if (label == NULL) {
2958 			spa_load_failed(spa, "label config unavailable");
2959 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2960 			    ENXIO));
2961 		}
2962 
2963 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
2964 		    &features) != 0) {
2965 			nvlist_free(label);
2966 			spa_load_failed(spa, "invalid label: '%s' missing",
2967 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
2968 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2969 			    ENXIO));
2970 		}
2971 
2972 		/*
2973 		 * Update our in-core representation with the definitive values
2974 		 * from the label.
2975 		 */
2976 		nvlist_free(spa->spa_label_features);
2977 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2978 	}
2979 
2980 	nvlist_free(label);
2981 
2982 	/*
2983 	 * Look through entries in the label nvlist's features_for_read. If
2984 	 * there is a feature listed there which we don't understand then we
2985 	 * cannot open a pool.
2986 	 */
2987 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2988 		nvlist_t *unsup_feat;
2989 
2990 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2991 		    0);
2992 
2993 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2994 		    NULL); nvp != NULL;
2995 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2996 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2997 				VERIFY(nvlist_add_string(unsup_feat,
2998 				    nvpair_name(nvp), "") == 0);
2999 			}
3000 		}
3001 
3002 		if (!nvlist_empty(unsup_feat)) {
3003 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
3004 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
3005 			nvlist_free(unsup_feat);
3006 			spa_load_failed(spa, "some features are unsupported");
3007 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3008 			    ENOTSUP));
3009 		}
3010 
3011 		nvlist_free(unsup_feat);
3012 	}
3013 
3014 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3015 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3016 		spa_try_repair(spa, spa->spa_config);
3017 		spa_config_exit(spa, SCL_ALL, FTAG);
3018 		nvlist_free(spa->spa_config_splitting);
3019 		spa->spa_config_splitting = NULL;
3020 	}
3021 
3022 	/*
3023 	 * Initialize internal SPA structures.
3024 	 */
3025 	spa_ld_select_uberblock_done(spa, ub);
3026 
3027 	return (0);
3028 }
3029 
3030 static int
3031 spa_ld_open_rootbp(spa_t *spa)
3032 {
3033 	int error = 0;
3034 	vdev_t *rvd = spa->spa_root_vdev;
3035 
3036 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3037 	if (error != 0) {
3038 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3039 		    "[error=%d]", error);
3040 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3041 	}
3042 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3043 
3044 	return (0);
3045 }
3046 
3047 static int
3048 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3049     boolean_t reloading)
3050 {
3051 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3052 	nvlist_t *nv, *mos_config, *policy;
3053 	int error = 0, copy_error;
3054 	uint64_t healthy_tvds, healthy_tvds_mos;
3055 	uint64_t mos_config_txg;
3056 
3057 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3058 	    != 0)
3059 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3060 
3061 	/*
3062 	 * If we're assembling a pool from a split, the config provided is
3063 	 * already trusted so there is nothing to do.
3064 	 */
3065 	if (type == SPA_IMPORT_ASSEMBLE)
3066 		return (0);
3067 
3068 	healthy_tvds = spa_healthy_core_tvds(spa);
3069 
3070 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3071 	    != 0) {
3072 		spa_load_failed(spa, "unable to retrieve MOS config");
3073 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3074 	}
3075 
3076 	/*
3077 	 * If we are doing an open, pool owner wasn't verified yet, thus do
3078 	 * the verification here.
3079 	 */
3080 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
3081 		error = spa_verify_host(spa, mos_config);
3082 		if (error != 0) {
3083 			nvlist_free(mos_config);
3084 			return (error);
3085 		}
3086 	}
3087 
3088 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3089 
3090 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3091 
3092 	/*
3093 	 * Build a new vdev tree from the trusted config
3094 	 */
3095 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
3096 
3097 	/*
3098 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3099 	 * obtained by scanning /dev/dsk, then it will have the right vdev
3100 	 * paths. We update the trusted MOS config with this information.
3101 	 * We first try to copy the paths with vdev_copy_path_strict, which
3102 	 * succeeds only when both configs have exactly the same vdev tree.
3103 	 * If that fails, we fall back to a more flexible method that has a
3104 	 * best effort policy.
3105 	 */
3106 	copy_error = vdev_copy_path_strict(rvd, mrvd);
3107 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3108 		spa_load_note(spa, "provided vdev tree:");
3109 		vdev_dbgmsg_print_tree(rvd, 2);
3110 		spa_load_note(spa, "MOS vdev tree:");
3111 		vdev_dbgmsg_print_tree(mrvd, 2);
3112 	}
3113 	if (copy_error != 0) {
3114 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3115 		    "back to vdev_copy_path_relaxed");
3116 		vdev_copy_path_relaxed(rvd, mrvd);
3117 	}
3118 
3119 	vdev_close(rvd);
3120 	vdev_free(rvd);
3121 	spa->spa_root_vdev = mrvd;
3122 	rvd = mrvd;
3123 	spa_config_exit(spa, SCL_ALL, FTAG);
3124 
3125 	/*
3126 	 * We will use spa_config if we decide to reload the spa or if spa_load
3127 	 * fails and we rewind. We must thus regenerate the config using the
3128 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3129 	 * pass settings on how to load the pool and is not stored in the MOS.
3130 	 * We copy it over to our new, trusted config.
3131 	 */
3132 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
3133 	    ZPOOL_CONFIG_POOL_TXG);
3134 	nvlist_free(mos_config);
3135 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3136 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3137 	    &policy) == 0)
3138 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3139 	spa_config_set(spa, mos_config);
3140 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3141 
3142 	/*
3143 	 * Now that we got the config from the MOS, we should be more strict
3144 	 * in checking blkptrs and can make assumptions about the consistency
3145 	 * of the vdev tree. spa_trust_config must be set to true before opening
3146 	 * vdevs in order for them to be writeable.
3147 	 */
3148 	spa->spa_trust_config = B_TRUE;
3149 
3150 	/*
3151 	 * Open and validate the new vdev tree
3152 	 */
3153 	error = spa_ld_open_vdevs(spa);
3154 	if (error != 0)
3155 		return (error);
3156 
3157 	error = spa_ld_validate_vdevs(spa);
3158 	if (error != 0)
3159 		return (error);
3160 
3161 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3162 		spa_load_note(spa, "final vdev tree:");
3163 		vdev_dbgmsg_print_tree(rvd, 2);
3164 	}
3165 
3166 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3167 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3168 		/*
3169 		 * Sanity check to make sure that we are indeed loading the
3170 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3171 		 * in the config provided and they happened to be the only ones
3172 		 * to have the latest uberblock, we could involuntarily perform
3173 		 * an extreme rewind.
3174 		 */
3175 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
3176 		if (healthy_tvds_mos - healthy_tvds >=
3177 		    SPA_SYNC_MIN_VDEVS) {
3178 			spa_load_note(spa, "config provided misses too many "
3179 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
3180 			    (u_longlong_t)healthy_tvds,
3181 			    (u_longlong_t)healthy_tvds_mos);
3182 			spa_load_note(spa, "vdev tree:");
3183 			vdev_dbgmsg_print_tree(rvd, 2);
3184 			if (reloading) {
3185 				spa_load_failed(spa, "config was already "
3186 				    "provided from MOS. Aborting.");
3187 				return (spa_vdev_err(rvd,
3188 				    VDEV_AUX_CORRUPT_DATA, EIO));
3189 			}
3190 			spa_load_note(spa, "spa must be reloaded using MOS "
3191 			    "config");
3192 			return (SET_ERROR(EAGAIN));
3193 		}
3194 	}
3195 
3196 	error = spa_check_for_missing_logs(spa);
3197 	if (error != 0)
3198 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3199 
3200 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3201 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3202 		    "guid sum (%llu != %llu)",
3203 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3204 		    (u_longlong_t)rvd->vdev_guid_sum);
3205 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3206 		    ENXIO));
3207 	}
3208 
3209 	return (0);
3210 }
3211 
3212 static int
3213 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3214 {
3215 	int error = 0;
3216 	vdev_t *rvd = spa->spa_root_vdev;
3217 
3218 	/*
3219 	 * Everything that we read before spa_remove_init() must be stored
3220 	 * on concreted vdevs.  Therefore we do this as early as possible.
3221 	 */
3222 	error = spa_remove_init(spa);
3223 	if (error != 0) {
3224 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3225 		    error);
3226 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3227 	}
3228 
3229 	/*
3230 	 * Retrieve information needed to condense indirect vdev mappings.
3231 	 */
3232 	error = spa_condense_init(spa);
3233 	if (error != 0) {
3234 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3235 		    error);
3236 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3237 	}
3238 
3239 	return (0);
3240 }
3241 
3242 static int
3243 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3244 {
3245 	int error = 0;
3246 	vdev_t *rvd = spa->spa_root_vdev;
3247 
3248 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3249 		boolean_t missing_feat_read = B_FALSE;
3250 		nvlist_t *unsup_feat, *enabled_feat;
3251 
3252 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3253 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3254 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3255 		}
3256 
3257 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3258 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
3259 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3260 		}
3261 
3262 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
3263 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
3264 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3265 		}
3266 
3267 		enabled_feat = fnvlist_alloc();
3268 		unsup_feat = fnvlist_alloc();
3269 
3270 		if (!spa_features_check(spa, B_FALSE,
3271 		    unsup_feat, enabled_feat))
3272 			missing_feat_read = B_TRUE;
3273 
3274 		if (spa_writeable(spa) ||
3275 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3276 			if (!spa_features_check(spa, B_TRUE,
3277 			    unsup_feat, enabled_feat)) {
3278 				*missing_feat_writep = B_TRUE;
3279 			}
3280 		}
3281 
3282 		fnvlist_add_nvlist(spa->spa_load_info,
3283 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3284 
3285 		if (!nvlist_empty(unsup_feat)) {
3286 			fnvlist_add_nvlist(spa->spa_load_info,
3287 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3288 		}
3289 
3290 		fnvlist_free(enabled_feat);
3291 		fnvlist_free(unsup_feat);
3292 
3293 		if (!missing_feat_read) {
3294 			fnvlist_add_boolean(spa->spa_load_info,
3295 			    ZPOOL_CONFIG_CAN_RDONLY);
3296 		}
3297 
3298 		/*
3299 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
3300 		 * twofold: to determine whether the pool is available for
3301 		 * import in read-write mode and (if it is not) whether the
3302 		 * pool is available for import in read-only mode. If the pool
3303 		 * is available for import in read-write mode, it is displayed
3304 		 * as available in userland; if it is not available for import
3305 		 * in read-only mode, it is displayed as unavailable in
3306 		 * userland. If the pool is available for import in read-only
3307 		 * mode but not read-write mode, it is displayed as unavailable
3308 		 * in userland with a special note that the pool is actually
3309 		 * available for open in read-only mode.
3310 		 *
3311 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
3312 		 * missing a feature for write, we must first determine whether
3313 		 * the pool can be opened read-only before returning to
3314 		 * userland in order to know whether to display the
3315 		 * abovementioned note.
3316 		 */
3317 		if (missing_feat_read || (*missing_feat_writep &&
3318 		    spa_writeable(spa))) {
3319 			spa_load_failed(spa, "pool uses unsupported features");
3320 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3321 			    ENOTSUP));
3322 		}
3323 
3324 		/*
3325 		 * Load refcounts for ZFS features from disk into an in-memory
3326 		 * cache during SPA initialization.
3327 		 */
3328 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
3329 			uint64_t refcount;
3330 
3331 			error = feature_get_refcount_from_disk(spa,
3332 			    &spa_feature_table[i], &refcount);
3333 			if (error == 0) {
3334 				spa->spa_feat_refcount_cache[i] = refcount;
3335 			} else if (error == ENOTSUP) {
3336 				spa->spa_feat_refcount_cache[i] =
3337 				    SPA_FEATURE_DISABLED;
3338 			} else {
3339 				spa_load_failed(spa, "error getting refcount "
3340 				    "for feature %s [error=%d]",
3341 				    spa_feature_table[i].fi_guid, error);
3342 				return (spa_vdev_err(rvd,
3343 				    VDEV_AUX_CORRUPT_DATA, EIO));
3344 			}
3345 		}
3346 	}
3347 
3348 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
3349 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
3350 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
3351 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3352 	}
3353 
3354 	/*
3355 	 * Encryption was added before bookmark_v2, even though bookmark_v2
3356 	 * is now a dependency. If this pool has encryption enabled without
3357 	 * bookmark_v2, trigger an errata message.
3358 	 */
3359 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
3360 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
3361 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
3362 	}
3363 
3364 	return (0);
3365 }
3366 
3367 static int
3368 spa_ld_load_special_directories(spa_t *spa)
3369 {
3370 	int error = 0;
3371 	vdev_t *rvd = spa->spa_root_vdev;
3372 
3373 	spa->spa_is_initializing = B_TRUE;
3374 	error = dsl_pool_open(spa->spa_dsl_pool);
3375 	spa->spa_is_initializing = B_FALSE;
3376 	if (error != 0) {
3377 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
3378 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3379 	}
3380 
3381 	return (0);
3382 }
3383 
3384 static int
3385 spa_ld_get_props(spa_t *spa)
3386 {
3387 	int error = 0;
3388 	uint64_t obj;
3389 	vdev_t *rvd = spa->spa_root_vdev;
3390 
3391 	/* Grab the secret checksum salt from the MOS. */
3392 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3393 	    DMU_POOL_CHECKSUM_SALT, 1,
3394 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
3395 	    spa->spa_cksum_salt.zcs_bytes);
3396 	if (error == ENOENT) {
3397 		/* Generate a new salt for subsequent use */
3398 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3399 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
3400 	} else if (error != 0) {
3401 		spa_load_failed(spa, "unable to retrieve checksum salt from "
3402 		    "MOS [error=%d]", error);
3403 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3404 	}
3405 
3406 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
3407 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3408 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
3409 	if (error != 0) {
3410 		spa_load_failed(spa, "error opening deferred-frees bpobj "
3411 		    "[error=%d]", error);
3412 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3413 	}
3414 
3415 	/*
3416 	 * Load the bit that tells us to use the new accounting function
3417 	 * (raid-z deflation).  If we have an older pool, this will not
3418 	 * be present.
3419 	 */
3420 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
3421 	if (error != 0 && error != ENOENT)
3422 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3423 
3424 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
3425 	    &spa->spa_creation_version, B_FALSE);
3426 	if (error != 0 && error != ENOENT)
3427 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3428 
3429 	/*
3430 	 * Load the persistent error log.  If we have an older pool, this will
3431 	 * not be present.
3432 	 */
3433 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
3434 	    B_FALSE);
3435 	if (error != 0 && error != ENOENT)
3436 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3437 
3438 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
3439 	    &spa->spa_errlog_scrub, B_FALSE);
3440 	if (error != 0 && error != ENOENT)
3441 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3442 
3443 	/*
3444 	 * Load the history object.  If we have an older pool, this
3445 	 * will not be present.
3446 	 */
3447 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
3448 	if (error != 0 && error != ENOENT)
3449 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3450 
3451 	/*
3452 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
3453 	 * be present; in this case, defer its creation to a later time to
3454 	 * avoid dirtying the MOS this early / out of sync context. See
3455 	 * spa_sync_config_object.
3456 	 */
3457 
3458 	/* The sentinel is only available in the MOS config. */
3459 	nvlist_t *mos_config;
3460 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
3461 		spa_load_failed(spa, "unable to retrieve MOS config");
3462 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3463 	}
3464 
3465 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
3466 	    &spa->spa_all_vdev_zaps, B_FALSE);
3467 
3468 	if (error == ENOENT) {
3469 		VERIFY(!nvlist_exists(mos_config,
3470 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
3471 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
3472 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3473 	} else if (error != 0) {
3474 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3475 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
3476 		/*
3477 		 * An older version of ZFS overwrote the sentinel value, so
3478 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
3479 		 * destruction to later; see spa_sync_config_object.
3480 		 */
3481 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
3482 		/*
3483 		 * We're assuming that no vdevs have had their ZAPs created
3484 		 * before this. Better be sure of it.
3485 		 */
3486 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3487 	}
3488 	nvlist_free(mos_config);
3489 
3490 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3491 
3492 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
3493 	    B_FALSE);
3494 	if (error && error != ENOENT)
3495 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3496 
3497 	if (error == 0) {
3498 		uint64_t autoreplace;
3499 
3500 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
3501 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
3502 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
3503 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
3504 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
3505 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
3506 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
3507 		    &spa->spa_dedup_ditto);
3508 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
3509 		spa->spa_autoreplace = (autoreplace != 0);
3510 	}
3511 
3512 	/*
3513 	 * If we are importing a pool with missing top-level vdevs,
3514 	 * we enforce that the pool doesn't panic or get suspended on
3515 	 * error since the likelihood of missing data is extremely high.
3516 	 */
3517 	if (spa->spa_missing_tvds > 0 &&
3518 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
3519 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3520 		spa_load_note(spa, "forcing failmode to 'continue' "
3521 		    "as some top level vdevs are missing");
3522 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
3523 	}
3524 
3525 	return (0);
3526 }
3527 
3528 static int
3529 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
3530 {
3531 	int error = 0;
3532 	vdev_t *rvd = spa->spa_root_vdev;
3533 
3534 	/*
3535 	 * If we're assembling the pool from the split-off vdevs of
3536 	 * an existing pool, we don't want to attach the spares & cache
3537 	 * devices.
3538 	 */
3539 
3540 	/*
3541 	 * Load any hot spares for this pool.
3542 	 */
3543 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
3544 	    B_FALSE);
3545 	if (error != 0 && error != ENOENT)
3546 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3547 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3548 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
3549 		if (load_nvlist(spa, spa->spa_spares.sav_object,
3550 		    &spa->spa_spares.sav_config) != 0) {
3551 			spa_load_failed(spa, "error loading spares nvlist");
3552 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3553 		}
3554 
3555 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3556 		spa_load_spares(spa);
3557 		spa_config_exit(spa, SCL_ALL, FTAG);
3558 	} else if (error == 0) {
3559 		spa->spa_spares.sav_sync = B_TRUE;
3560 	}
3561 
3562 	/*
3563 	 * Load any level 2 ARC devices for this pool.
3564 	 */
3565 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
3566 	    &spa->spa_l2cache.sav_object, B_FALSE);
3567 	if (error != 0 && error != ENOENT)
3568 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3569 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3570 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
3571 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
3572 		    &spa->spa_l2cache.sav_config) != 0) {
3573 			spa_load_failed(spa, "error loading l2cache nvlist");
3574 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3575 		}
3576 
3577 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3578 		spa_load_l2cache(spa);
3579 		spa_config_exit(spa, SCL_ALL, FTAG);
3580 	} else if (error == 0) {
3581 		spa->spa_l2cache.sav_sync = B_TRUE;
3582 	}
3583 
3584 	return (0);
3585 }
3586 
3587 static int
3588 spa_ld_load_vdev_metadata(spa_t *spa)
3589 {
3590 	int error = 0;
3591 	vdev_t *rvd = spa->spa_root_vdev;
3592 
3593 	/*
3594 	 * If the 'multihost' property is set, then never allow a pool to
3595 	 * be imported when the system hostid is zero.  The exception to
3596 	 * this rule is zdb which is always allowed to access pools.
3597 	 */
3598 	if (spa_multihost(spa) && spa_get_hostid() == 0 &&
3599 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
3600 		fnvlist_add_uint64(spa->spa_load_info,
3601 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3602 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3603 	}
3604 
3605 	/*
3606 	 * If the 'autoreplace' property is set, then post a resource notifying
3607 	 * the ZFS DE that it should not issue any faults for unopenable
3608 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
3609 	 * unopenable vdevs so that the normal autoreplace handler can take
3610 	 * over.
3611 	 */
3612 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3613 		spa_check_removed(spa->spa_root_vdev);
3614 		/*
3615 		 * For the import case, this is done in spa_import(), because
3616 		 * at this point we're using the spare definitions from
3617 		 * the MOS config, not necessarily from the userland config.
3618 		 */
3619 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
3620 			spa_aux_check_removed(&spa->spa_spares);
3621 			spa_aux_check_removed(&spa->spa_l2cache);
3622 		}
3623 	}
3624 
3625 	/*
3626 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
3627 	 */
3628 	error = vdev_load(rvd);
3629 	if (error != 0) {
3630 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
3631 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3632 	}
3633 
3634 	error = spa_ld_log_spacemaps(spa);
3635 	if (error != 0) {
3636 		spa_load_failed(spa, "spa_ld_log_sm_data failed [error=%d]",
3637 		    error);
3638 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3639 	}
3640 
3641 	/*
3642 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
3643 	 */
3644 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3645 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3646 	spa_config_exit(spa, SCL_ALL, FTAG);
3647 
3648 	return (0);
3649 }
3650 
3651 static int
3652 spa_ld_load_dedup_tables(spa_t *spa)
3653 {
3654 	int error = 0;
3655 	vdev_t *rvd = spa->spa_root_vdev;
3656 
3657 	error = ddt_load(spa);
3658 	if (error != 0) {
3659 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
3660 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3661 	}
3662 
3663 	return (0);
3664 }
3665 
3666 static int
3667 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
3668 {
3669 	vdev_t *rvd = spa->spa_root_vdev;
3670 
3671 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
3672 		boolean_t missing = spa_check_logs(spa);
3673 		if (missing) {
3674 			if (spa->spa_missing_tvds != 0) {
3675 				spa_load_note(spa, "spa_check_logs failed "
3676 				    "so dropping the logs");
3677 			} else {
3678 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3679 				spa_load_failed(spa, "spa_check_logs failed");
3680 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
3681 				    ENXIO));
3682 			}
3683 		}
3684 	}
3685 
3686 	return (0);
3687 }
3688 
3689 static int
3690 spa_ld_verify_pool_data(spa_t *spa)
3691 {
3692 	int error = 0;
3693 	vdev_t *rvd = spa->spa_root_vdev;
3694 
3695 	/*
3696 	 * We've successfully opened the pool, verify that we're ready
3697 	 * to start pushing transactions.
3698 	 */
3699 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3700 		error = spa_load_verify(spa);
3701 		if (error != 0) {
3702 			spa_load_failed(spa, "spa_load_verify failed "
3703 			    "[error=%d]", error);
3704 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3705 			    error));
3706 		}
3707 	}
3708 
3709 	return (0);
3710 }
3711 
3712 static void
3713 spa_ld_claim_log_blocks(spa_t *spa)
3714 {
3715 	dmu_tx_t *tx;
3716 	dsl_pool_t *dp = spa_get_dsl(spa);
3717 
3718 	/*
3719 	 * Claim log blocks that haven't been committed yet.
3720 	 * This must all happen in a single txg.
3721 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3722 	 * invoked from zil_claim_log_block()'s i/o done callback.
3723 	 * Price of rollback is that we abandon the log.
3724 	 */
3725 	spa->spa_claiming = B_TRUE;
3726 
3727 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3728 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3729 	    zil_claim, tx, DS_FIND_CHILDREN);
3730 	dmu_tx_commit(tx);
3731 
3732 	spa->spa_claiming = B_FALSE;
3733 
3734 	spa_set_log_state(spa, SPA_LOG_GOOD);
3735 }
3736 
3737 static void
3738 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
3739     boolean_t update_config_cache)
3740 {
3741 	vdev_t *rvd = spa->spa_root_vdev;
3742 	int need_update = B_FALSE;
3743 
3744 	/*
3745 	 * If the config cache is stale, or we have uninitialized
3746 	 * metaslabs (see spa_vdev_add()), then update the config.
3747 	 *
3748 	 * If this is a verbatim import, trust the current
3749 	 * in-core spa_config and update the disk labels.
3750 	 */
3751 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
3752 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
3753 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
3754 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3755 		need_update = B_TRUE;
3756 
3757 	for (int c = 0; c < rvd->vdev_children; c++)
3758 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
3759 			need_update = B_TRUE;
3760 
3761 	/*
3762 	 * Update the config cache asychronously in case we're the
3763 	 * root pool, in which case the config cache isn't writable yet.
3764 	 */
3765 	if (need_update)
3766 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3767 }
3768 
3769 static void
3770 spa_ld_prepare_for_reload(spa_t *spa)
3771 {
3772 	int mode = spa->spa_mode;
3773 	int async_suspended = spa->spa_async_suspended;
3774 
3775 	spa_unload(spa);
3776 	spa_deactivate(spa);
3777 	spa_activate(spa, mode);
3778 
3779 	/*
3780 	 * We save the value of spa_async_suspended as it gets reset to 0 by
3781 	 * spa_unload(). We want to restore it back to the original value before
3782 	 * returning as we might be calling spa_async_resume() later.
3783 	 */
3784 	spa->spa_async_suspended = async_suspended;
3785 }
3786 
3787 static int
3788 spa_ld_read_checkpoint_txg(spa_t *spa)
3789 {
3790 	uberblock_t checkpoint;
3791 	int error = 0;
3792 
3793 	ASSERT0(spa->spa_checkpoint_txg);
3794 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3795 
3796 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3797 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3798 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3799 
3800 	if (error == ENOENT)
3801 		return (0);
3802 
3803 	if (error != 0)
3804 		return (error);
3805 
3806 	ASSERT3U(checkpoint.ub_txg, !=, 0);
3807 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
3808 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
3809 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
3810 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
3811 
3812 	return (0);
3813 }
3814 
3815 static int
3816 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
3817 {
3818 	int error = 0;
3819 
3820 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3821 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3822 
3823 	/*
3824 	 * Never trust the config that is provided unless we are assembling
3825 	 * a pool following a split.
3826 	 * This means don't trust blkptrs and the vdev tree in general. This
3827 	 * also effectively puts the spa in read-only mode since
3828 	 * spa_writeable() checks for spa_trust_config to be true.
3829 	 * We will later load a trusted config from the MOS.
3830 	 */
3831 	if (type != SPA_IMPORT_ASSEMBLE)
3832 		spa->spa_trust_config = B_FALSE;
3833 
3834 	/*
3835 	 * Parse the config provided to create a vdev tree.
3836 	 */
3837 	error = spa_ld_parse_config(spa, type);
3838 	if (error != 0)
3839 		return (error);
3840 
3841 	/*
3842 	 * Now that we have the vdev tree, try to open each vdev. This involves
3843 	 * opening the underlying physical device, retrieving its geometry and
3844 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
3845 	 * based on the success of those operations. After this we'll be ready
3846 	 * to read from the vdevs.
3847 	 */
3848 	error = spa_ld_open_vdevs(spa);
3849 	if (error != 0)
3850 		return (error);
3851 
3852 	/*
3853 	 * Read the label of each vdev and make sure that the GUIDs stored
3854 	 * there match the GUIDs in the config provided.
3855 	 * If we're assembling a new pool that's been split off from an
3856 	 * existing pool, the labels haven't yet been updated so we skip
3857 	 * validation for now.
3858 	 */
3859 	if (type != SPA_IMPORT_ASSEMBLE) {
3860 		error = spa_ld_validate_vdevs(spa);
3861 		if (error != 0)
3862 			return (error);
3863 	}
3864 
3865 	/*
3866 	 * Read all vdev labels to find the best uberblock (i.e. latest,
3867 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
3868 	 * get the list of features required to read blkptrs in the MOS from
3869 	 * the vdev label with the best uberblock and verify that our version
3870 	 * of zfs supports them all.
3871 	 */
3872 	error = spa_ld_select_uberblock(spa, type);
3873 	if (error != 0)
3874 		return (error);
3875 
3876 	/*
3877 	 * Pass that uberblock to the dsl_pool layer which will open the root
3878 	 * blkptr. This blkptr points to the latest version of the MOS and will
3879 	 * allow us to read its contents.
3880 	 */
3881 	error = spa_ld_open_rootbp(spa);
3882 	if (error != 0)
3883 		return (error);
3884 
3885 	return (0);
3886 }
3887 
3888 static int
3889 spa_ld_checkpoint_rewind(spa_t *spa)
3890 {
3891 	uberblock_t checkpoint;
3892 	int error = 0;
3893 
3894 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3895 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3896 
3897 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3898 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3899 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3900 
3901 	if (error != 0) {
3902 		spa_load_failed(spa, "unable to retrieve checkpointed "
3903 		    "uberblock from the MOS config [error=%d]", error);
3904 
3905 		if (error == ENOENT)
3906 			error = ZFS_ERR_NO_CHECKPOINT;
3907 
3908 		return (error);
3909 	}
3910 
3911 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
3912 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
3913 
3914 	/*
3915 	 * We need to update the txg and timestamp of the checkpointed
3916 	 * uberblock to be higher than the latest one. This ensures that
3917 	 * the checkpointed uberblock is selected if we were to close and
3918 	 * reopen the pool right after we've written it in the vdev labels.
3919 	 * (also see block comment in vdev_uberblock_compare)
3920 	 */
3921 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
3922 	checkpoint.ub_timestamp = gethrestime_sec();
3923 
3924 	/*
3925 	 * Set current uberblock to be the checkpointed uberblock.
3926 	 */
3927 	spa->spa_uberblock = checkpoint;
3928 
3929 	/*
3930 	 * If we are doing a normal rewind, then the pool is open for
3931 	 * writing and we sync the "updated" checkpointed uberblock to
3932 	 * disk. Once this is done, we've basically rewound the whole
3933 	 * pool and there is no way back.
3934 	 *
3935 	 * There are cases when we don't want to attempt and sync the
3936 	 * checkpointed uberblock to disk because we are opening a
3937 	 * pool as read-only. Specifically, verifying the checkpointed
3938 	 * state with zdb, and importing the checkpointed state to get
3939 	 * a "preview" of its content.
3940 	 */
3941 	if (spa_writeable(spa)) {
3942 		vdev_t *rvd = spa->spa_root_vdev;
3943 
3944 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3945 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
3946 		int svdcount = 0;
3947 		int children = rvd->vdev_children;
3948 		int c0 = spa_get_random(children);
3949 
3950 		for (int c = 0; c < children; c++) {
3951 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
3952 
3953 			/* Stop when revisiting the first vdev */
3954 			if (c > 0 && svd[0] == vd)
3955 				break;
3956 
3957 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
3958 			    !vdev_is_concrete(vd))
3959 				continue;
3960 
3961 			svd[svdcount++] = vd;
3962 			if (svdcount == SPA_SYNC_MIN_VDEVS)
3963 				break;
3964 		}
3965 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
3966 		if (error == 0)
3967 			spa->spa_last_synced_guid = rvd->vdev_guid;
3968 		spa_config_exit(spa, SCL_ALL, FTAG);
3969 
3970 		if (error != 0) {
3971 			spa_load_failed(spa, "failed to write checkpointed "
3972 			    "uberblock to the vdev labels [error=%d]", error);
3973 			return (error);
3974 		}
3975 	}
3976 
3977 	return (0);
3978 }
3979 
3980 static int
3981 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
3982     boolean_t *update_config_cache)
3983 {
3984 	int error;
3985 
3986 	/*
3987 	 * Parse the config for pool, open and validate vdevs,
3988 	 * select an uberblock, and use that uberblock to open
3989 	 * the MOS.
3990 	 */
3991 	error = spa_ld_mos_init(spa, type);
3992 	if (error != 0)
3993 		return (error);
3994 
3995 	/*
3996 	 * Retrieve the trusted config stored in the MOS and use it to create
3997 	 * a new, exact version of the vdev tree, then reopen all vdevs.
3998 	 */
3999 	error = spa_ld_trusted_config(spa, type, B_FALSE);
4000 	if (error == EAGAIN) {
4001 		if (update_config_cache != NULL)
4002 			*update_config_cache = B_TRUE;
4003 
4004 		/*
4005 		 * Redo the loading process with the trusted config if it is
4006 		 * too different from the untrusted config.
4007 		 */
4008 		spa_ld_prepare_for_reload(spa);
4009 		spa_load_note(spa, "RELOADING");
4010 		error = spa_ld_mos_init(spa, type);
4011 		if (error != 0)
4012 			return (error);
4013 
4014 		error = spa_ld_trusted_config(spa, type, B_TRUE);
4015 		if (error != 0)
4016 			return (error);
4017 
4018 	} else if (error != 0) {
4019 		return (error);
4020 	}
4021 
4022 	return (0);
4023 }
4024 
4025 /*
4026  * Load an existing storage pool, using the config provided. This config
4027  * describes which vdevs are part of the pool and is later validated against
4028  * partial configs present in each vdev's label and an entire copy of the
4029  * config stored in the MOS.
4030  */
4031 static int
4032 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
4033 {
4034 	int error = 0;
4035 	boolean_t missing_feat_write = B_FALSE;
4036 	boolean_t checkpoint_rewind =
4037 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4038 	boolean_t update_config_cache = B_FALSE;
4039 
4040 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4041 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4042 
4043 	spa_load_note(spa, "LOADING");
4044 
4045 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4046 	if (error != 0)
4047 		return (error);
4048 
4049 	/*
4050 	 * If we are rewinding to the checkpoint then we need to repeat
4051 	 * everything we've done so far in this function but this time
4052 	 * selecting the checkpointed uberblock and using that to open
4053 	 * the MOS.
4054 	 */
4055 	if (checkpoint_rewind) {
4056 		/*
4057 		 * If we are rewinding to the checkpoint update config cache
4058 		 * anyway.
4059 		 */
4060 		update_config_cache = B_TRUE;
4061 
4062 		/*
4063 		 * Extract the checkpointed uberblock from the current MOS
4064 		 * and use this as the pool's uberblock from now on. If the
4065 		 * pool is imported as writeable we also write the checkpoint
4066 		 * uberblock to the labels, making the rewind permanent.
4067 		 */
4068 		error = spa_ld_checkpoint_rewind(spa);
4069 		if (error != 0)
4070 			return (error);
4071 
4072 		/*
4073 		 * Redo the loading process process again with the
4074 		 * checkpointed uberblock.
4075 		 */
4076 		spa_ld_prepare_for_reload(spa);
4077 		spa_load_note(spa, "LOADING checkpointed uberblock");
4078 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4079 		if (error != 0)
4080 			return (error);
4081 	}
4082 
4083 	/*
4084 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
4085 	 */
4086 	error = spa_ld_read_checkpoint_txg(spa);
4087 	if (error != 0)
4088 		return (error);
4089 
4090 	/*
4091 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4092 	 * from the pool and their contents were re-mapped to other vdevs. Note
4093 	 * that everything that we read before this step must have been
4094 	 * rewritten on concrete vdevs after the last device removal was
4095 	 * initiated. Otherwise we could be reading from indirect vdevs before
4096 	 * we have loaded their mappings.
4097 	 */
4098 	error = spa_ld_open_indirect_vdev_metadata(spa);
4099 	if (error != 0)
4100 		return (error);
4101 
4102 	/*
4103 	 * Retrieve the full list of active features from the MOS and check if
4104 	 * they are all supported.
4105 	 */
4106 	error = spa_ld_check_features(spa, &missing_feat_write);
4107 	if (error != 0)
4108 		return (error);
4109 
4110 	/*
4111 	 * Load several special directories from the MOS needed by the dsl_pool
4112 	 * layer.
4113 	 */
4114 	error = spa_ld_load_special_directories(spa);
4115 	if (error != 0)
4116 		return (error);
4117 
4118 	/*
4119 	 * Retrieve pool properties from the MOS.
4120 	 */
4121 	error = spa_ld_get_props(spa);
4122 	if (error != 0)
4123 		return (error);
4124 
4125 	/*
4126 	 * Retrieve the list of auxiliary devices - cache devices and spares -
4127 	 * and open them.
4128 	 */
4129 	error = spa_ld_open_aux_vdevs(spa, type);
4130 	if (error != 0)
4131 		return (error);
4132 
4133 	/*
4134 	 * Load the metadata for all vdevs. Also check if unopenable devices
4135 	 * should be autoreplaced.
4136 	 */
4137 	error = spa_ld_load_vdev_metadata(spa);
4138 	if (error != 0)
4139 		return (error);
4140 
4141 	error = spa_ld_load_dedup_tables(spa);
4142 	if (error != 0)
4143 		return (error);
4144 
4145 	/*
4146 	 * Verify the logs now to make sure we don't have any unexpected errors
4147 	 * when we claim log blocks later.
4148 	 */
4149 	error = spa_ld_verify_logs(spa, type, ereport);
4150 	if (error != 0)
4151 		return (error);
4152 
4153 	if (missing_feat_write) {
4154 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4155 
4156 		/*
4157 		 * At this point, we know that we can open the pool in
4158 		 * read-only mode but not read-write mode. We now have enough
4159 		 * information and can return to userland.
4160 		 */
4161 		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4162 		    ENOTSUP));
4163 	}
4164 
4165 	/*
4166 	 * Traverse the last txgs to make sure the pool was left off in a safe
4167 	 * state. When performing an extreme rewind, we verify the whole pool,
4168 	 * which can take a very long time.
4169 	 */
4170 	error = spa_ld_verify_pool_data(spa);
4171 	if (error != 0)
4172 		return (error);
4173 
4174 	/*
4175 	 * Calculate the deflated space for the pool. This must be done before
4176 	 * we write anything to the pool because we'd need to update the space
4177 	 * accounting using the deflated sizes.
4178 	 */
4179 	spa_update_dspace(spa);
4180 
4181 	/*
4182 	 * We have now retrieved all the information we needed to open the
4183 	 * pool. If we are importing the pool in read-write mode, a few
4184 	 * additional steps must be performed to finish the import.
4185 	 */
4186 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4187 	    spa->spa_load_max_txg == UINT64_MAX)) {
4188 		uint64_t config_cache_txg = spa->spa_config_txg;
4189 
4190 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4191 
4192 		/*
4193 		 * In case of a checkpoint rewind, log the original txg
4194 		 * of the checkpointed uberblock.
4195 		 */
4196 		if (checkpoint_rewind) {
4197 			spa_history_log_internal(spa, "checkpoint rewind",
4198 			    NULL, "rewound state to txg=%llu",
4199 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4200 		}
4201 
4202 		/*
4203 		 * Traverse the ZIL and claim all blocks.
4204 		 */
4205 		spa_ld_claim_log_blocks(spa);
4206 
4207 		/*
4208 		 * Kick-off the syncing thread.
4209 		 */
4210 		spa->spa_sync_on = B_TRUE;
4211 		txg_sync_start(spa->spa_dsl_pool);
4212 		mmp_thread_start(spa);
4213 
4214 		/*
4215 		 * Wait for all claims to sync.  We sync up to the highest
4216 		 * claimed log block birth time so that claimed log blocks
4217 		 * don't appear to be from the future.  spa_claim_max_txg
4218 		 * will have been set for us by ZIL traversal operations
4219 		 * performed above.
4220 		 */
4221 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4222 
4223 		/*
4224 		 * Check if we need to request an update of the config. On the
4225 		 * next sync, we would update the config stored in vdev labels
4226 		 * and the cachefile (by default /etc/zfs/zpool.cache).
4227 		 */
4228 		spa_ld_check_for_config_update(spa, config_cache_txg,
4229 		    update_config_cache);
4230 
4231 		/*
4232 		 * Check all DTLs to see if anything needs resilvering.
4233 		 */
4234 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4235 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4236 			spa_async_request(spa, SPA_ASYNC_RESILVER);
4237 
4238 		/*
4239 		 * Log the fact that we booted up (so that we can detect if
4240 		 * we rebooted in the middle of an operation).
4241 		 */
4242 		spa_history_log_version(spa, "open");
4243 
4244 		spa_restart_removal(spa);
4245 		spa_spawn_aux_threads(spa);
4246 
4247 		/*
4248 		 * Delete any inconsistent datasets.
4249 		 *
4250 		 * Note:
4251 		 * Since we may be issuing deletes for clones here,
4252 		 * we make sure to do so after we've spawned all the
4253 		 * auxiliary threads above (from which the livelist
4254 		 * deletion zthr is part of).
4255 		 */
4256 		(void) dmu_objset_find(spa_name(spa),
4257 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
4258 
4259 		/*
4260 		 * Clean up any stale temporary dataset userrefs.
4261 		 */
4262 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
4263 
4264 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4265 		vdev_initialize_restart(spa->spa_root_vdev);
4266 		vdev_trim_restart(spa->spa_root_vdev);
4267 		vdev_autotrim_restart(spa);
4268 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4269 	}
4270 
4271 	spa_load_note(spa, "LOADED");
4272 
4273 	return (0);
4274 }
4275 
4276 static int
4277 spa_load_retry(spa_t *spa, spa_load_state_t state)
4278 {
4279 	int mode = spa->spa_mode;
4280 
4281 	spa_unload(spa);
4282 	spa_deactivate(spa);
4283 
4284 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
4285 
4286 	spa_activate(spa, mode);
4287 	spa_async_suspend(spa);
4288 
4289 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
4290 	    (u_longlong_t)spa->spa_load_max_txg);
4291 
4292 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
4293 }
4294 
4295 /*
4296  * If spa_load() fails this function will try loading prior txg's. If
4297  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
4298  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
4299  * function will not rewind the pool and will return the same error as
4300  * spa_load().
4301  */
4302 static int
4303 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
4304     int rewind_flags)
4305 {
4306 	nvlist_t *loadinfo = NULL;
4307 	nvlist_t *config = NULL;
4308 	int load_error, rewind_error;
4309 	uint64_t safe_rewind_txg;
4310 	uint64_t min_txg;
4311 
4312 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
4313 		spa->spa_load_max_txg = spa->spa_load_txg;
4314 		spa_set_log_state(spa, SPA_LOG_CLEAR);
4315 	} else {
4316 		spa->spa_load_max_txg = max_request;
4317 		if (max_request != UINT64_MAX)
4318 			spa->spa_extreme_rewind = B_TRUE;
4319 	}
4320 
4321 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
4322 	if (load_error == 0)
4323 		return (0);
4324 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
4325 		/*
4326 		 * When attempting checkpoint-rewind on a pool with no
4327 		 * checkpoint, we should not attempt to load uberblocks
4328 		 * from previous txgs when spa_load fails.
4329 		 */
4330 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4331 		return (load_error);
4332 	}
4333 
4334 	if (spa->spa_root_vdev != NULL)
4335 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4336 
4337 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
4338 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
4339 
4340 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
4341 		nvlist_free(config);
4342 		return (load_error);
4343 	}
4344 
4345 	if (state == SPA_LOAD_RECOVER) {
4346 		/* Price of rolling back is discarding txgs, including log */
4347 		spa_set_log_state(spa, SPA_LOG_CLEAR);
4348 	} else {
4349 		/*
4350 		 * If we aren't rolling back save the load info from our first
4351 		 * import attempt so that we can restore it after attempting
4352 		 * to rewind.
4353 		 */
4354 		loadinfo = spa->spa_load_info;
4355 		spa->spa_load_info = fnvlist_alloc();
4356 	}
4357 
4358 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
4359 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
4360 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
4361 	    TXG_INITIAL : safe_rewind_txg;
4362 
4363 	/*
4364 	 * Continue as long as we're finding errors, we're still within
4365 	 * the acceptable rewind range, and we're still finding uberblocks
4366 	 */
4367 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
4368 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
4369 		if (spa->spa_load_max_txg < safe_rewind_txg)
4370 			spa->spa_extreme_rewind = B_TRUE;
4371 		rewind_error = spa_load_retry(spa, state);
4372 	}
4373 
4374 	spa->spa_extreme_rewind = B_FALSE;
4375 	spa->spa_load_max_txg = UINT64_MAX;
4376 
4377 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
4378 		spa_config_set(spa, config);
4379 	else
4380 		nvlist_free(config);
4381 
4382 	if (state == SPA_LOAD_RECOVER) {
4383 		ASSERT3P(loadinfo, ==, NULL);
4384 		return (rewind_error);
4385 	} else {
4386 		/* Store the rewind info as part of the initial load info */
4387 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
4388 		    spa->spa_load_info);
4389 
4390 		/* Restore the initial load info */
4391 		fnvlist_free(spa->spa_load_info);
4392 		spa->spa_load_info = loadinfo;
4393 
4394 		return (load_error);
4395 	}
4396 }
4397 
4398 /*
4399  * Pool Open/Import
4400  *
4401  * The import case is identical to an open except that the configuration is sent
4402  * down from userland, instead of grabbed from the configuration cache.  For the
4403  * case of an open, the pool configuration will exist in the
4404  * POOL_STATE_UNINITIALIZED state.
4405  *
4406  * The stats information (gen/count/ustats) is used to gather vdev statistics at
4407  * the same time open the pool, without having to keep around the spa_t in some
4408  * ambiguous state.
4409  */
4410 static int
4411 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
4412     nvlist_t **config)
4413 {
4414 	spa_t *spa;
4415 	spa_load_state_t state = SPA_LOAD_OPEN;
4416 	int error;
4417 	int locked = B_FALSE;
4418 
4419 	*spapp = NULL;
4420 
4421 	/*
4422 	 * As disgusting as this is, we need to support recursive calls to this
4423 	 * function because dsl_dir_open() is called during spa_load(), and ends
4424 	 * up calling spa_open() again.  The real fix is to figure out how to
4425 	 * avoid dsl_dir_open() calling this in the first place.
4426 	 */
4427 	if (mutex_owner(&spa_namespace_lock) != curthread) {
4428 		mutex_enter(&spa_namespace_lock);
4429 		locked = B_TRUE;
4430 	}
4431 
4432 	if ((spa = spa_lookup(pool)) == NULL) {
4433 		if (locked)
4434 			mutex_exit(&spa_namespace_lock);
4435 		return (SET_ERROR(ENOENT));
4436 	}
4437 
4438 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
4439 		zpool_load_policy_t policy;
4440 
4441 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
4442 		    &policy);
4443 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
4444 			state = SPA_LOAD_RECOVER;
4445 
4446 		spa_activate(spa, spa_mode_global);
4447 
4448 		if (state != SPA_LOAD_RECOVER)
4449 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4450 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
4451 
4452 		zfs_dbgmsg("spa_open_common: opening %s", pool);
4453 		error = spa_load_best(spa, state, policy.zlp_txg,
4454 		    policy.zlp_rewind);
4455 
4456 		if (error == EBADF) {
4457 			/*
4458 			 * If vdev_validate() returns failure (indicated by
4459 			 * EBADF), it indicates that one of the vdevs indicates
4460 			 * that the pool has been exported or destroyed.  If
4461 			 * this is the case, the config cache is out of sync and
4462 			 * we should remove the pool from the namespace.
4463 			 */
4464 			spa_unload(spa);
4465 			spa_deactivate(spa);
4466 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
4467 			spa_remove(spa);
4468 			if (locked)
4469 				mutex_exit(&spa_namespace_lock);
4470 			return (SET_ERROR(ENOENT));
4471 		}
4472 
4473 		if (error) {
4474 			/*
4475 			 * We can't open the pool, but we still have useful
4476 			 * information: the state of each vdev after the
4477 			 * attempted vdev_open().  Return this to the user.
4478 			 */
4479 			if (config != NULL && spa->spa_config) {
4480 				VERIFY(nvlist_dup(spa->spa_config, config,
4481 				    KM_SLEEP) == 0);
4482 				VERIFY(nvlist_add_nvlist(*config,
4483 				    ZPOOL_CONFIG_LOAD_INFO,
4484 				    spa->spa_load_info) == 0);
4485 			}
4486 			spa_unload(spa);
4487 			spa_deactivate(spa);
4488 			spa->spa_last_open_failed = error;
4489 			if (locked)
4490 				mutex_exit(&spa_namespace_lock);
4491 			*spapp = NULL;
4492 			return (error);
4493 		}
4494 	}
4495 
4496 	spa_open_ref(spa, tag);
4497 
4498 	if (config != NULL)
4499 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4500 
4501 	/*
4502 	 * If we've recovered the pool, pass back any information we
4503 	 * gathered while doing the load.
4504 	 */
4505 	if (state == SPA_LOAD_RECOVER) {
4506 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
4507 		    spa->spa_load_info) == 0);
4508 	}
4509 
4510 	if (locked) {
4511 		spa->spa_last_open_failed = 0;
4512 		spa->spa_last_ubsync_txg = 0;
4513 		spa->spa_load_txg = 0;
4514 		mutex_exit(&spa_namespace_lock);
4515 	}
4516 
4517 	*spapp = spa;
4518 
4519 	return (0);
4520 }
4521 
4522 int
4523 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
4524     nvlist_t **config)
4525 {
4526 	return (spa_open_common(name, spapp, tag, policy, config));
4527 }
4528 
4529 int
4530 spa_open(const char *name, spa_t **spapp, void *tag)
4531 {
4532 	return (spa_open_common(name, spapp, tag, NULL, NULL));
4533 }
4534 
4535 /*
4536  * Lookup the given spa_t, incrementing the inject count in the process,
4537  * preventing it from being exported or destroyed.
4538  */
4539 spa_t *
4540 spa_inject_addref(char *name)
4541 {
4542 	spa_t *spa;
4543 
4544 	mutex_enter(&spa_namespace_lock);
4545 	if ((spa = spa_lookup(name)) == NULL) {
4546 		mutex_exit(&spa_namespace_lock);
4547 		return (NULL);
4548 	}
4549 	spa->spa_inject_ref++;
4550 	mutex_exit(&spa_namespace_lock);
4551 
4552 	return (spa);
4553 }
4554 
4555 void
4556 spa_inject_delref(spa_t *spa)
4557 {
4558 	mutex_enter(&spa_namespace_lock);
4559 	spa->spa_inject_ref--;
4560 	mutex_exit(&spa_namespace_lock);
4561 }
4562 
4563 /*
4564  * Add spares device information to the nvlist.
4565  */
4566 static void
4567 spa_add_spares(spa_t *spa, nvlist_t *config)
4568 {
4569 	nvlist_t **spares;
4570 	uint_t i, nspares;
4571 	nvlist_t *nvroot;
4572 	uint64_t guid;
4573 	vdev_stat_t *vs;
4574 	uint_t vsc;
4575 	uint64_t pool;
4576 
4577 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4578 
4579 	if (spa->spa_spares.sav_count == 0)
4580 		return;
4581 
4582 	VERIFY(nvlist_lookup_nvlist(config,
4583 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4584 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4585 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4586 	if (nspares != 0) {
4587 		VERIFY(nvlist_add_nvlist_array(nvroot,
4588 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4589 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
4590 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4591 
4592 		/*
4593 		 * Go through and find any spares which have since been
4594 		 * repurposed as an active spare.  If this is the case, update
4595 		 * their status appropriately.
4596 		 */
4597 		for (i = 0; i < nspares; i++) {
4598 			VERIFY(nvlist_lookup_uint64(spares[i],
4599 			    ZPOOL_CONFIG_GUID, &guid) == 0);
4600 			if (spa_spare_exists(guid, &pool, NULL) &&
4601 			    pool != 0ULL) {
4602 				VERIFY(nvlist_lookup_uint64_array(
4603 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
4604 				    (uint64_t **)&vs, &vsc) == 0);
4605 				vs->vs_state = VDEV_STATE_CANT_OPEN;
4606 				vs->vs_aux = VDEV_AUX_SPARED;
4607 			}
4608 		}
4609 	}
4610 }
4611 
4612 /*
4613  * Add l2cache device information to the nvlist, including vdev stats.
4614  */
4615 static void
4616 spa_add_l2cache(spa_t *spa, nvlist_t *config)
4617 {
4618 	nvlist_t **l2cache;
4619 	uint_t i, j, nl2cache;
4620 	nvlist_t *nvroot;
4621 	uint64_t guid;
4622 	vdev_t *vd;
4623 	vdev_stat_t *vs;
4624 	uint_t vsc;
4625 
4626 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4627 
4628 	if (spa->spa_l2cache.sav_count == 0)
4629 		return;
4630 
4631 	VERIFY(nvlist_lookup_nvlist(config,
4632 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4633 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4634 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4635 	if (nl2cache != 0) {
4636 		VERIFY(nvlist_add_nvlist_array(nvroot,
4637 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4638 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
4639 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4640 
4641 		/*
4642 		 * Update level 2 cache device stats.
4643 		 */
4644 
4645 		for (i = 0; i < nl2cache; i++) {
4646 			VERIFY(nvlist_lookup_uint64(l2cache[i],
4647 			    ZPOOL_CONFIG_GUID, &guid) == 0);
4648 
4649 			vd = NULL;
4650 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
4651 				if (guid ==
4652 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
4653 					vd = spa->spa_l2cache.sav_vdevs[j];
4654 					break;
4655 				}
4656 			}
4657 			ASSERT(vd != NULL);
4658 
4659 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
4660 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
4661 			    == 0);
4662 			vdev_get_stats(vd, vs);
4663 		}
4664 	}
4665 }
4666 
4667 static void
4668 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
4669 {
4670 	nvlist_t *features;
4671 	zap_cursor_t zc;
4672 	zap_attribute_t za;
4673 
4674 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4675 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4676 
4677 	if (spa->spa_feat_for_read_obj != 0) {
4678 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
4679 		    spa->spa_feat_for_read_obj);
4680 		    zap_cursor_retrieve(&zc, &za) == 0;
4681 		    zap_cursor_advance(&zc)) {
4682 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4683 			    za.za_num_integers == 1);
4684 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4685 			    za.za_first_integer));
4686 		}
4687 		zap_cursor_fini(&zc);
4688 	}
4689 
4690 	if (spa->spa_feat_for_write_obj != 0) {
4691 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
4692 		    spa->spa_feat_for_write_obj);
4693 		    zap_cursor_retrieve(&zc, &za) == 0;
4694 		    zap_cursor_advance(&zc)) {
4695 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4696 			    za.za_num_integers == 1);
4697 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4698 			    za.za_first_integer));
4699 		}
4700 		zap_cursor_fini(&zc);
4701 	}
4702 
4703 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
4704 	    features) == 0);
4705 	nvlist_free(features);
4706 }
4707 
4708 int
4709 spa_get_stats(const char *name, nvlist_t **config,
4710     char *altroot, size_t buflen)
4711 {
4712 	int error;
4713 	spa_t *spa;
4714 
4715 	*config = NULL;
4716 	error = spa_open_common(name, &spa, FTAG, NULL, config);
4717 
4718 	if (spa != NULL) {
4719 		/*
4720 		 * This still leaves a window of inconsistency where the spares
4721 		 * or l2cache devices could change and the config would be
4722 		 * self-inconsistent.
4723 		 */
4724 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4725 
4726 		if (*config != NULL) {
4727 			uint64_t loadtimes[2];
4728 
4729 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
4730 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
4731 			VERIFY(nvlist_add_uint64_array(*config,
4732 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
4733 
4734 			VERIFY(nvlist_add_uint64(*config,
4735 			    ZPOOL_CONFIG_ERRCOUNT,
4736 			    spa_get_errlog_size(spa)) == 0);
4737 
4738 			if (spa_suspended(spa)) {
4739 				VERIFY(nvlist_add_uint64(*config,
4740 				    ZPOOL_CONFIG_SUSPENDED,
4741 				    spa->spa_failmode) == 0);
4742 				VERIFY(nvlist_add_uint64(*config,
4743 				    ZPOOL_CONFIG_SUSPENDED_REASON,
4744 				    spa->spa_suspended) == 0);
4745 			}
4746 
4747 			spa_add_spares(spa, *config);
4748 			spa_add_l2cache(spa, *config);
4749 			spa_add_feature_stats(spa, *config);
4750 		}
4751 	}
4752 
4753 	/*
4754 	 * We want to get the alternate root even for faulted pools, so we cheat
4755 	 * and call spa_lookup() directly.
4756 	 */
4757 	if (altroot) {
4758 		if (spa == NULL) {
4759 			mutex_enter(&spa_namespace_lock);
4760 			spa = spa_lookup(name);
4761 			if (spa)
4762 				spa_altroot(spa, altroot, buflen);
4763 			else
4764 				altroot[0] = '\0';
4765 			spa = NULL;
4766 			mutex_exit(&spa_namespace_lock);
4767 		} else {
4768 			spa_altroot(spa, altroot, buflen);
4769 		}
4770 	}
4771 
4772 	if (spa != NULL) {
4773 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4774 		spa_close(spa, FTAG);
4775 	}
4776 
4777 	return (error);
4778 }
4779 
4780 /*
4781  * Validate that the auxiliary device array is well formed.  We must have an
4782  * array of nvlists, each which describes a valid leaf vdev.  If this is an
4783  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
4784  * specified, as long as they are well-formed.
4785  */
4786 static int
4787 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
4788     spa_aux_vdev_t *sav, const char *config, uint64_t version,
4789     vdev_labeltype_t label)
4790 {
4791 	nvlist_t **dev;
4792 	uint_t i, ndev;
4793 	vdev_t *vd;
4794 	int error;
4795 
4796 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4797 
4798 	/*
4799 	 * It's acceptable to have no devs specified.
4800 	 */
4801 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
4802 		return (0);
4803 
4804 	if (ndev == 0)
4805 		return (SET_ERROR(EINVAL));
4806 
4807 	/*
4808 	 * Make sure the pool is formatted with a version that supports this
4809 	 * device type.
4810 	 */
4811 	if (spa_version(spa) < version)
4812 		return (SET_ERROR(ENOTSUP));
4813 
4814 	/*
4815 	 * Set the pending device list so we correctly handle device in-use
4816 	 * checking.
4817 	 */
4818 	sav->sav_pending = dev;
4819 	sav->sav_npending = ndev;
4820 
4821 	for (i = 0; i < ndev; i++) {
4822 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
4823 		    mode)) != 0)
4824 			goto out;
4825 
4826 		if (!vd->vdev_ops->vdev_op_leaf) {
4827 			vdev_free(vd);
4828 			error = SET_ERROR(EINVAL);
4829 			goto out;
4830 		}
4831 
4832 		vd->vdev_top = vd;
4833 
4834 		if ((error = vdev_open(vd)) == 0 &&
4835 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
4836 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
4837 			    vd->vdev_guid) == 0);
4838 		}
4839 
4840 		vdev_free(vd);
4841 
4842 		if (error &&
4843 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
4844 			goto out;
4845 		else
4846 			error = 0;
4847 	}
4848 
4849 out:
4850 	sav->sav_pending = NULL;
4851 	sav->sav_npending = 0;
4852 	return (error);
4853 }
4854 
4855 static int
4856 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
4857 {
4858 	int error;
4859 
4860 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4861 
4862 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4863 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
4864 	    VDEV_LABEL_SPARE)) != 0) {
4865 		return (error);
4866 	}
4867 
4868 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4869 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
4870 	    VDEV_LABEL_L2CACHE));
4871 }
4872 
4873 static void
4874 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
4875     const char *config)
4876 {
4877 	int i;
4878 
4879 	if (sav->sav_config != NULL) {
4880 		nvlist_t **olddevs;
4881 		uint_t oldndevs;
4882 		nvlist_t **newdevs;
4883 
4884 		/*
4885 		 * Generate new dev list by concatentating with the
4886 		 * current dev list.
4887 		 */
4888 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
4889 		    &olddevs, &oldndevs) == 0);
4890 
4891 		newdevs = kmem_alloc(sizeof (void *) *
4892 		    (ndevs + oldndevs), KM_SLEEP);
4893 		for (i = 0; i < oldndevs; i++)
4894 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
4895 			    KM_SLEEP) == 0);
4896 		for (i = 0; i < ndevs; i++)
4897 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
4898 			    KM_SLEEP) == 0);
4899 
4900 		VERIFY(nvlist_remove(sav->sav_config, config,
4901 		    DATA_TYPE_NVLIST_ARRAY) == 0);
4902 
4903 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
4904 		    config, newdevs, ndevs + oldndevs) == 0);
4905 		for (i = 0; i < oldndevs + ndevs; i++)
4906 			nvlist_free(newdevs[i]);
4907 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
4908 	} else {
4909 		/*
4910 		 * Generate a new dev list.
4911 		 */
4912 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
4913 		    KM_SLEEP) == 0);
4914 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
4915 		    devs, ndevs) == 0);
4916 	}
4917 }
4918 
4919 /*
4920  * Stop and drop level 2 ARC devices
4921  */
4922 void
4923 spa_l2cache_drop(spa_t *spa)
4924 {
4925 	vdev_t *vd;
4926 	int i;
4927 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
4928 
4929 	for (i = 0; i < sav->sav_count; i++) {
4930 		uint64_t pool;
4931 
4932 		vd = sav->sav_vdevs[i];
4933 		ASSERT(vd != NULL);
4934 
4935 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
4936 		    pool != 0ULL && l2arc_vdev_present(vd))
4937 			l2arc_remove_vdev(vd);
4938 	}
4939 }
4940 
4941 /*
4942  * Verify encryption parameters for spa creation. If we are encrypting, we must
4943  * have the encryption feature flag enabled.
4944  */
4945 static int
4946 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
4947     boolean_t has_encryption)
4948 {
4949 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
4950 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
4951 	    !has_encryption)
4952 		return (SET_ERROR(ENOTSUP));
4953 
4954 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
4955 }
4956 
4957 /*
4958  * Pool Creation
4959  */
4960 int
4961 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
4962     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
4963 {
4964 	spa_t *spa;
4965 	char *altroot = NULL;
4966 	vdev_t *rvd;
4967 	dsl_pool_t *dp;
4968 	dmu_tx_t *tx;
4969 	int error = 0;
4970 	uint64_t txg = TXG_INITIAL;
4971 	nvlist_t **spares, **l2cache;
4972 	uint_t nspares, nl2cache;
4973 	uint64_t version, obj;
4974 	boolean_t has_features;
4975 	char *poolname;
4976 	nvlist_t *nvl;
4977 	boolean_t has_encryption;
4978 	spa_feature_t feat;
4979 	char *feat_name;
4980 
4981 	if (props == NULL ||
4982 	    nvlist_lookup_string(props,
4983 	    zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
4984 		poolname = (char *)pool;
4985 
4986 	/*
4987 	 * If this pool already exists, return failure.
4988 	 */
4989 	mutex_enter(&spa_namespace_lock);
4990 	if (spa_lookup(poolname) != NULL) {
4991 		mutex_exit(&spa_namespace_lock);
4992 		return (SET_ERROR(EEXIST));
4993 	}
4994 
4995 	/*
4996 	 * Allocate a new spa_t structure.
4997 	 */
4998 	nvl = fnvlist_alloc();
4999 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5000 	(void) nvlist_lookup_string(props,
5001 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5002 	spa = spa_add(poolname, nvl, altroot);
5003 	fnvlist_free(nvl);
5004 	spa_activate(spa, spa_mode_global);
5005 
5006 	if (props && (error = spa_prop_validate(spa, props))) {
5007 		spa_deactivate(spa);
5008 		spa_remove(spa);
5009 		mutex_exit(&spa_namespace_lock);
5010 		return (error);
5011 	}
5012 
5013 	/*
5014 	 * Temporary pool names should never be written to disk.
5015 	 */
5016 	if (poolname != pool)
5017 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5018 
5019 	has_features = B_FALSE;
5020 	has_encryption = B_FALSE;
5021 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5022 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5023 		if (zpool_prop_feature(nvpair_name(elem))) {
5024 			has_features = B_TRUE;
5025 			feat_name = strchr(nvpair_name(elem), '@') + 1;
5026 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
5027 			if (feat == SPA_FEATURE_ENCRYPTION)
5028 				has_encryption = B_TRUE;
5029 		}
5030 	}
5031 
5032 	/* verify encryption params, if they were provided */
5033 	if (dcp != NULL) {
5034 		error = spa_create_check_encryption_params(dcp, has_encryption);
5035 		if (error != 0) {
5036 			spa_deactivate(spa);
5037 			spa_remove(spa);
5038 			mutex_exit(&spa_namespace_lock);
5039 			return (error);
5040 		}
5041 	}
5042 
5043 	if (has_features || nvlist_lookup_uint64(props,
5044 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5045 		version = SPA_VERSION;
5046 	}
5047 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5048 
5049 	spa->spa_first_txg = txg;
5050 	spa->spa_uberblock.ub_txg = txg - 1;
5051 	spa->spa_uberblock.ub_version = version;
5052 	spa->spa_ubsync = spa->spa_uberblock;
5053 	spa->spa_load_state = SPA_LOAD_CREATE;
5054 	spa->spa_removing_phys.sr_state = DSS_NONE;
5055 	spa->spa_removing_phys.sr_removing_vdev = -1;
5056 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5057 	spa->spa_indirect_vdevs_loaded = B_TRUE;
5058 
5059 	/*
5060 	 * Create "The Godfather" zio to hold all async IOs
5061 	 */
5062 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5063 	    KM_SLEEP);
5064 	for (int i = 0; i < max_ncpus; i++) {
5065 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5066 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5067 		    ZIO_FLAG_GODFATHER);
5068 	}
5069 
5070 	/*
5071 	 * Create the root vdev.
5072 	 */
5073 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5074 
5075 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5076 
5077 	ASSERT(error != 0 || rvd != NULL);
5078 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5079 
5080 	if (error == 0 && !zfs_allocatable_devs(nvroot))
5081 		error = SET_ERROR(EINVAL);
5082 
5083 	if (error == 0 &&
5084 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5085 	    (error = spa_validate_aux(spa, nvroot, txg,
5086 	    VDEV_ALLOC_ADD)) == 0) {
5087 		/*
5088 		 * instantiate the metaslab groups (this will dirty the vdevs)
5089 		 * we can no longer error exit past this point
5090 		 */
5091 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5092 			vdev_t *vd = rvd->vdev_child[c];
5093 
5094 			vdev_metaslab_set_size(vd);
5095 			vdev_expand(vd, txg);
5096 		}
5097 	}
5098 
5099 	spa_config_exit(spa, SCL_ALL, FTAG);
5100 
5101 	if (error != 0) {
5102 		spa_unload(spa);
5103 		spa_deactivate(spa);
5104 		spa_remove(spa);
5105 		mutex_exit(&spa_namespace_lock);
5106 		return (error);
5107 	}
5108 
5109 	/*
5110 	 * Get the list of spares, if specified.
5111 	 */
5112 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5113 	    &spares, &nspares) == 0) {
5114 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
5115 		    KM_SLEEP) == 0);
5116 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5117 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5118 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5119 		spa_load_spares(spa);
5120 		spa_config_exit(spa, SCL_ALL, FTAG);
5121 		spa->spa_spares.sav_sync = B_TRUE;
5122 	}
5123 
5124 	/*
5125 	 * Get the list of level 2 cache devices, if specified.
5126 	 */
5127 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5128 	    &l2cache, &nl2cache) == 0) {
5129 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5130 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5131 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5132 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5133 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5134 		spa_load_l2cache(spa);
5135 		spa_config_exit(spa, SCL_ALL, FTAG);
5136 		spa->spa_l2cache.sav_sync = B_TRUE;
5137 	}
5138 
5139 	spa->spa_is_initializing = B_TRUE;
5140 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5141 	spa->spa_is_initializing = B_FALSE;
5142 
5143 	/*
5144 	 * Create DDTs (dedup tables).
5145 	 */
5146 	ddt_create(spa);
5147 
5148 	spa_update_dspace(spa);
5149 
5150 	tx = dmu_tx_create_assigned(dp, txg);
5151 
5152 	/*
5153 	 * Create the pool config object.
5154 	 */
5155 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
5156 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
5157 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
5158 
5159 	if (zap_add(spa->spa_meta_objset,
5160 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5161 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5162 		cmn_err(CE_PANIC, "failed to add pool config");
5163 	}
5164 
5165 	if (zap_add(spa->spa_meta_objset,
5166 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5167 	    sizeof (uint64_t), 1, &version, tx) != 0) {
5168 		cmn_err(CE_PANIC, "failed to add pool version");
5169 	}
5170 
5171 	/* Newly created pools with the right version are always deflated. */
5172 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
5173 		spa->spa_deflate = TRUE;
5174 		if (zap_add(spa->spa_meta_objset,
5175 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5176 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
5177 			cmn_err(CE_PANIC, "failed to add deflate");
5178 		}
5179 	}
5180 
5181 	/*
5182 	 * Create the deferred-free bpobj.  Turn off compression
5183 	 * because sync-to-convergence takes longer if the blocksize
5184 	 * keeps changing.
5185 	 */
5186 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
5187 	dmu_object_set_compress(spa->spa_meta_objset, obj,
5188 	    ZIO_COMPRESS_OFF, tx);
5189 	if (zap_add(spa->spa_meta_objset,
5190 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
5191 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
5192 		cmn_err(CE_PANIC, "failed to add bpobj");
5193 	}
5194 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
5195 	    spa->spa_meta_objset, obj));
5196 
5197 	/*
5198 	 * Create the pool's history object.
5199 	 */
5200 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
5201 		spa_history_create_obj(spa, tx);
5202 
5203 	/*
5204 	 * Generate some random noise for salted checksums to operate on.
5205 	 */
5206 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
5207 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
5208 
5209 	/*
5210 	 * Set pool properties.
5211 	 */
5212 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
5213 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
5214 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
5215 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
5216 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
5217 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
5218 
5219 	if (props != NULL) {
5220 		spa_configfile_set(spa, props, B_FALSE);
5221 		spa_sync_props(props, tx);
5222 	}
5223 
5224 	dmu_tx_commit(tx);
5225 
5226 	spa->spa_sync_on = B_TRUE;
5227 	txg_sync_start(spa->spa_dsl_pool);
5228 	mmp_thread_start(spa);
5229 
5230 	/*
5231 	 * We explicitly wait for the first transaction to complete so that our
5232 	 * bean counters are appropriately updated.
5233 	 */
5234 	txg_wait_synced(spa->spa_dsl_pool, txg);
5235 
5236 	spa_spawn_aux_threads(spa);
5237 
5238 	spa_write_cachefile(spa, B_FALSE, B_TRUE);
5239 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5240 
5241 	spa_history_log_version(spa, "create");
5242 
5243 	/*
5244 	 * Don't count references from objsets that are already closed
5245 	 * and are making their way through the eviction process.
5246 	 */
5247 	spa_evicting_os_wait(spa);
5248 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
5249 	spa->spa_load_state = SPA_LOAD_NONE;
5250 
5251 	mutex_exit(&spa_namespace_lock);
5252 
5253 	return (0);
5254 }
5255 
5256 #ifdef _KERNEL
5257 /*
5258  * Get the root pool information from the root disk, then import the root pool
5259  * during the system boot up time.
5260  */
5261 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
5262 
5263 static nvlist_t *
5264 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
5265 {
5266 	nvlist_t *config;
5267 	nvlist_t *nvtop, *nvroot;
5268 	uint64_t pgid;
5269 
5270 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
5271 		return (NULL);
5272 
5273 	/*
5274 	 * Add this top-level vdev to the child array.
5275 	 */
5276 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5277 	    &nvtop) == 0);
5278 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5279 	    &pgid) == 0);
5280 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
5281 
5282 	/*
5283 	 * Put this pool's top-level vdevs into a root vdev.
5284 	 */
5285 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5286 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
5287 	    VDEV_TYPE_ROOT) == 0);
5288 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
5289 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
5290 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
5291 	    &nvtop, 1) == 0);
5292 
5293 	/*
5294 	 * Replace the existing vdev_tree with the new root vdev in
5295 	 * this pool's configuration (remove the old, add the new).
5296 	 */
5297 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
5298 	nvlist_free(nvroot);
5299 	return (config);
5300 }
5301 
5302 /*
5303  * Walk the vdev tree and see if we can find a device with "better"
5304  * configuration. A configuration is "better" if the label on that
5305  * device has a more recent txg.
5306  */
5307 static void
5308 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
5309 {
5310 	for (int c = 0; c < vd->vdev_children; c++)
5311 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
5312 
5313 	if (vd->vdev_ops->vdev_op_leaf) {
5314 		nvlist_t *label;
5315 		uint64_t label_txg;
5316 
5317 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
5318 		    &label) != 0)
5319 			return;
5320 
5321 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
5322 		    &label_txg) == 0);
5323 
5324 		/*
5325 		 * Do we have a better boot device?
5326 		 */
5327 		if (label_txg > *txg) {
5328 			*txg = label_txg;
5329 			*avd = vd;
5330 		}
5331 		nvlist_free(label);
5332 	}
5333 }
5334 
5335 /*
5336  * Import a root pool.
5337  *
5338  * For x86. devpath_list will consist of devid and/or physpath name of
5339  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
5340  * The GRUB "findroot" command will return the vdev we should boot.
5341  *
5342  * For Sparc, devpath_list consists the physpath name of the booting device
5343  * no matter the rootpool is a single device pool or a mirrored pool.
5344  * e.g.
5345  *	"/pci@1f,0/ide@d/disk@0,0:a"
5346  */
5347 int
5348 spa_import_rootpool(char *devpath, char *devid)
5349 {
5350 	spa_t *spa;
5351 	vdev_t *rvd, *bvd, *avd = NULL;
5352 	nvlist_t *config, *nvtop;
5353 	uint64_t guid, txg;
5354 	char *pname;
5355 	int error;
5356 
5357 	/*
5358 	 * Read the label from the boot device and generate a configuration.
5359 	 */
5360 	config = spa_generate_rootconf(devpath, devid, &guid);
5361 #if defined(_OBP) && defined(_KERNEL)
5362 	if (config == NULL) {
5363 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
5364 			/* iscsi boot */
5365 			get_iscsi_bootpath_phy(devpath);
5366 			config = spa_generate_rootconf(devpath, devid, &guid);
5367 		}
5368 	}
5369 #endif
5370 	if (config == NULL) {
5371 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
5372 		    devpath);
5373 		return (SET_ERROR(EIO));
5374 	}
5375 
5376 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
5377 	    &pname) == 0);
5378 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
5379 
5380 	mutex_enter(&spa_namespace_lock);
5381 	if ((spa = spa_lookup(pname)) != NULL) {
5382 		/*
5383 		 * Remove the existing root pool from the namespace so that we
5384 		 * can replace it with the correct config we just read in.
5385 		 */
5386 		spa_remove(spa);
5387 	}
5388 
5389 	spa = spa_add(pname, config, NULL);
5390 	spa->spa_is_root = B_TRUE;
5391 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
5392 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
5393 	    &spa->spa_ubsync.ub_version) != 0)
5394 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
5395 
5396 	/*
5397 	 * Build up a vdev tree based on the boot device's label config.
5398 	 */
5399 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5400 	    &nvtop) == 0);
5401 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5402 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
5403 	    VDEV_ALLOC_ROOTPOOL);
5404 	spa_config_exit(spa, SCL_ALL, FTAG);
5405 	if (error) {
5406 		mutex_exit(&spa_namespace_lock);
5407 		nvlist_free(config);
5408 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
5409 		    pname);
5410 		return (error);
5411 	}
5412 
5413 	/*
5414 	 * Get the boot vdev.
5415 	 */
5416 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
5417 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
5418 		    (u_longlong_t)guid);
5419 		error = SET_ERROR(ENOENT);
5420 		goto out;
5421 	}
5422 
5423 	/*
5424 	 * Determine if there is a better boot device.
5425 	 */
5426 	avd = bvd;
5427 	spa_alt_rootvdev(rvd, &avd, &txg);
5428 	if (avd != bvd) {
5429 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
5430 		    "try booting from '%s'", avd->vdev_path);
5431 		error = SET_ERROR(EINVAL);
5432 		goto out;
5433 	}
5434 
5435 	/*
5436 	 * If the boot device is part of a spare vdev then ensure that
5437 	 * we're booting off the active spare.
5438 	 */
5439 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
5440 	    !bvd->vdev_isspare) {
5441 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
5442 		    "try booting from '%s'",
5443 		    bvd->vdev_parent->
5444 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
5445 		error = SET_ERROR(EINVAL);
5446 		goto out;
5447 	}
5448 
5449 	error = 0;
5450 out:
5451 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5452 	vdev_free(rvd);
5453 	spa_config_exit(spa, SCL_ALL, FTAG);
5454 	mutex_exit(&spa_namespace_lock);
5455 
5456 	nvlist_free(config);
5457 	return (error);
5458 }
5459 
5460 #endif
5461 
5462 /*
5463  * Import a non-root pool into the system.
5464  */
5465 int
5466 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
5467 {
5468 	spa_t *spa;
5469 	char *altroot = NULL;
5470 	spa_load_state_t state = SPA_LOAD_IMPORT;
5471 	zpool_load_policy_t policy;
5472 	uint64_t mode = spa_mode_global;
5473 	uint64_t readonly = B_FALSE;
5474 	int error;
5475 	nvlist_t *nvroot;
5476 	nvlist_t **spares, **l2cache;
5477 	uint_t nspares, nl2cache;
5478 
5479 	/*
5480 	 * If a pool with this name exists, return failure.
5481 	 */
5482 	mutex_enter(&spa_namespace_lock);
5483 	if (spa_lookup(pool) != NULL) {
5484 		mutex_exit(&spa_namespace_lock);
5485 		return (SET_ERROR(EEXIST));
5486 	}
5487 
5488 	/*
5489 	 * Create and initialize the spa structure.
5490 	 */
5491 	(void) nvlist_lookup_string(props,
5492 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5493 	(void) nvlist_lookup_uint64(props,
5494 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
5495 	if (readonly)
5496 		mode = FREAD;
5497 	spa = spa_add(pool, config, altroot);
5498 	spa->spa_import_flags = flags;
5499 
5500 	/*
5501 	 * Verbatim import - Take a pool and insert it into the namespace
5502 	 * as if it had been loaded at boot.
5503 	 */
5504 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
5505 		if (props != NULL)
5506 			spa_configfile_set(spa, props, B_FALSE);
5507 
5508 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
5509 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5510 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
5511 		mutex_exit(&spa_namespace_lock);
5512 		return (0);
5513 	}
5514 
5515 	spa_activate(spa, mode);
5516 
5517 	/*
5518 	 * Don't start async tasks until we know everything is healthy.
5519 	 */
5520 	spa_async_suspend(spa);
5521 
5522 	zpool_get_load_policy(config, &policy);
5523 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5524 		state = SPA_LOAD_RECOVER;
5525 
5526 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
5527 
5528 	if (state != SPA_LOAD_RECOVER) {
5529 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5530 		zfs_dbgmsg("spa_import: importing %s", pool);
5531 	} else {
5532 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
5533 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
5534 	}
5535 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
5536 
5537 	/*
5538 	 * Propagate anything learned while loading the pool and pass it
5539 	 * back to caller (i.e. rewind info, missing devices, etc).
5540 	 */
5541 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5542 	    spa->spa_load_info) == 0);
5543 
5544 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5545 	/*
5546 	 * Toss any existing sparelist, as it doesn't have any validity
5547 	 * anymore, and conflicts with spa_has_spare().
5548 	 */
5549 	if (spa->spa_spares.sav_config) {
5550 		nvlist_free(spa->spa_spares.sav_config);
5551 		spa->spa_spares.sav_config = NULL;
5552 		spa_load_spares(spa);
5553 	}
5554 	if (spa->spa_l2cache.sav_config) {
5555 		nvlist_free(spa->spa_l2cache.sav_config);
5556 		spa->spa_l2cache.sav_config = NULL;
5557 		spa_load_l2cache(spa);
5558 	}
5559 
5560 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5561 	    &nvroot) == 0);
5562 	if (error == 0)
5563 		error = spa_validate_aux(spa, nvroot, -1ULL,
5564 		    VDEV_ALLOC_SPARE);
5565 	if (error == 0)
5566 		error = spa_validate_aux(spa, nvroot, -1ULL,
5567 		    VDEV_ALLOC_L2CACHE);
5568 	spa_config_exit(spa, SCL_ALL, FTAG);
5569 
5570 	if (props != NULL)
5571 		spa_configfile_set(spa, props, B_FALSE);
5572 
5573 	if (error != 0 || (props && spa_writeable(spa) &&
5574 	    (error = spa_prop_set(spa, props)))) {
5575 		spa_unload(spa);
5576 		spa_deactivate(spa);
5577 		spa_remove(spa);
5578 		mutex_exit(&spa_namespace_lock);
5579 		return (error);
5580 	}
5581 
5582 	spa_async_resume(spa);
5583 
5584 	/*
5585 	 * Override any spares and level 2 cache devices as specified by
5586 	 * the user, as these may have correct device names/devids, etc.
5587 	 */
5588 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5589 	    &spares, &nspares) == 0) {
5590 		if (spa->spa_spares.sav_config)
5591 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
5592 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
5593 		else
5594 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
5595 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5596 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5597 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5598 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5599 		spa_load_spares(spa);
5600 		spa_config_exit(spa, SCL_ALL, FTAG);
5601 		spa->spa_spares.sav_sync = B_TRUE;
5602 	}
5603 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5604 	    &l2cache, &nl2cache) == 0) {
5605 		if (spa->spa_l2cache.sav_config)
5606 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
5607 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
5608 		else
5609 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5610 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5611 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5612 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5613 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5614 		spa_load_l2cache(spa);
5615 		spa_config_exit(spa, SCL_ALL, FTAG);
5616 		spa->spa_l2cache.sav_sync = B_TRUE;
5617 	}
5618 
5619 	/*
5620 	 * Check for any removed devices.
5621 	 */
5622 	if (spa->spa_autoreplace) {
5623 		spa_aux_check_removed(&spa->spa_spares);
5624 		spa_aux_check_removed(&spa->spa_l2cache);
5625 	}
5626 
5627 	if (spa_writeable(spa)) {
5628 		/*
5629 		 * Update the config cache to include the newly-imported pool.
5630 		 */
5631 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5632 	}
5633 
5634 	/*
5635 	 * It's possible that the pool was expanded while it was exported.
5636 	 * We kick off an async task to handle this for us.
5637 	 */
5638 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5639 
5640 	spa_history_log_version(spa, "import");
5641 
5642 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5643 
5644 	mutex_exit(&spa_namespace_lock);
5645 
5646 	return (0);
5647 }
5648 
5649 nvlist_t *
5650 spa_tryimport(nvlist_t *tryconfig)
5651 {
5652 	nvlist_t *config = NULL;
5653 	char *poolname, *cachefile;
5654 	spa_t *spa;
5655 	uint64_t state;
5656 	int error;
5657 	zpool_load_policy_t policy;
5658 
5659 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
5660 		return (NULL);
5661 
5662 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
5663 		return (NULL);
5664 
5665 	/*
5666 	 * Create and initialize the spa structure.
5667 	 */
5668 	mutex_enter(&spa_namespace_lock);
5669 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
5670 	spa_activate(spa, FREAD);
5671 
5672 	/*
5673 	 * Rewind pool if a max txg was provided.
5674 	 */
5675 	zpool_get_load_policy(spa->spa_config, &policy);
5676 	if (policy.zlp_txg != UINT64_MAX) {
5677 		spa->spa_load_max_txg = policy.zlp_txg;
5678 		spa->spa_extreme_rewind = B_TRUE;
5679 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
5680 		    poolname, (longlong_t)policy.zlp_txg);
5681 	} else {
5682 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
5683 	}
5684 
5685 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
5686 	    == 0) {
5687 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
5688 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5689 	} else {
5690 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
5691 	}
5692 
5693 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
5694 
5695 	/*
5696 	 * If 'tryconfig' was at least parsable, return the current config.
5697 	 */
5698 	if (spa->spa_root_vdev != NULL) {
5699 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5700 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
5701 		    poolname) == 0);
5702 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5703 		    state) == 0);
5704 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
5705 		    spa->spa_uberblock.ub_timestamp) == 0);
5706 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5707 		    spa->spa_load_info) == 0);
5708 
5709 		/*
5710 		 * If the bootfs property exists on this pool then we
5711 		 * copy it out so that external consumers can tell which
5712 		 * pools are bootable.
5713 		 */
5714 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
5715 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5716 
5717 			/*
5718 			 * We have to play games with the name since the
5719 			 * pool was opened as TRYIMPORT_NAME.
5720 			 */
5721 			if (dsl_dsobj_to_dsname(spa_name(spa),
5722 			    spa->spa_bootfs, tmpname) == 0) {
5723 				char *cp;
5724 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5725 
5726 				cp = strchr(tmpname, '/');
5727 				if (cp == NULL) {
5728 					(void) strlcpy(dsname, tmpname,
5729 					    MAXPATHLEN);
5730 				} else {
5731 					(void) snprintf(dsname, MAXPATHLEN,
5732 					    "%s/%s", poolname, ++cp);
5733 				}
5734 				VERIFY(nvlist_add_string(config,
5735 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
5736 				kmem_free(dsname, MAXPATHLEN);
5737 			}
5738 			kmem_free(tmpname, MAXPATHLEN);
5739 		}
5740 
5741 		/*
5742 		 * Add the list of hot spares and level 2 cache devices.
5743 		 */
5744 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5745 		spa_add_spares(spa, config);
5746 		spa_add_l2cache(spa, config);
5747 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5748 	}
5749 
5750 	spa_unload(spa);
5751 	spa_deactivate(spa);
5752 	spa_remove(spa);
5753 	mutex_exit(&spa_namespace_lock);
5754 
5755 	return (config);
5756 }
5757 
5758 /*
5759  * Pool export/destroy
5760  *
5761  * The act of destroying or exporting a pool is very simple.  We make sure there
5762  * is no more pending I/O and any references to the pool are gone.  Then, we
5763  * update the pool state and sync all the labels to disk, removing the
5764  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
5765  * we don't sync the labels or remove the configuration cache.
5766  */
5767 static int
5768 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
5769     boolean_t force, boolean_t hardforce)
5770 {
5771 	spa_t *spa;
5772 
5773 	if (oldconfig)
5774 		*oldconfig = NULL;
5775 
5776 	if (!(spa_mode_global & FWRITE))
5777 		return (SET_ERROR(EROFS));
5778 
5779 	mutex_enter(&spa_namespace_lock);
5780 	if ((spa = spa_lookup(pool)) == NULL) {
5781 		mutex_exit(&spa_namespace_lock);
5782 		return (SET_ERROR(ENOENT));
5783 	}
5784 
5785 	/*
5786 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
5787 	 * reacquire the namespace lock, and see if we can export.
5788 	 */
5789 	spa_open_ref(spa, FTAG);
5790 	mutex_exit(&spa_namespace_lock);
5791 	spa_async_suspend(spa);
5792 	mutex_enter(&spa_namespace_lock);
5793 	spa_close(spa, FTAG);
5794 
5795 	/*
5796 	 * The pool will be in core if it's openable,
5797 	 * in which case we can modify its state.
5798 	 */
5799 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
5800 
5801 		/*
5802 		 * Objsets may be open only because they're dirty, so we
5803 		 * have to force it to sync before checking spa_refcnt.
5804 		 */
5805 		txg_wait_synced(spa->spa_dsl_pool, 0);
5806 		spa_evicting_os_wait(spa);
5807 
5808 		/*
5809 		 * A pool cannot be exported or destroyed if there are active
5810 		 * references.  If we are resetting a pool, allow references by
5811 		 * fault injection handlers.
5812 		 */
5813 		if (!spa_refcount_zero(spa) ||
5814 		    (spa->spa_inject_ref != 0 &&
5815 		    new_state != POOL_STATE_UNINITIALIZED)) {
5816 			spa_async_resume(spa);
5817 			mutex_exit(&spa_namespace_lock);
5818 			return (SET_ERROR(EBUSY));
5819 		}
5820 
5821 		/*
5822 		 * A pool cannot be exported if it has an active shared spare.
5823 		 * This is to prevent other pools stealing the active spare
5824 		 * from an exported pool. At user's own will, such pool can
5825 		 * be forcedly exported.
5826 		 */
5827 		if (!force && new_state == POOL_STATE_EXPORTED &&
5828 		    spa_has_active_shared_spare(spa)) {
5829 			spa_async_resume(spa);
5830 			mutex_exit(&spa_namespace_lock);
5831 			return (SET_ERROR(EXDEV));
5832 		}
5833 
5834 		/*
5835 		 * We're about to export or destroy this pool. Make sure
5836 		 * we stop all initialization and trim activity here before
5837 		 * we set the spa_final_txg. This will ensure that all
5838 		 * dirty data resulting from the initialization is
5839 		 * committed to disk before we unload the pool.
5840 		 */
5841 		if (spa->spa_root_vdev != NULL) {
5842 			vdev_t *rvd = spa->spa_root_vdev;
5843 			vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
5844 			vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
5845 			vdev_autotrim_stop_all(spa);
5846 		}
5847 
5848 		/*
5849 		 * We want this to be reflected on every label,
5850 		 * so mark them all dirty.  spa_unload() will do the
5851 		 * final sync that pushes these changes out.
5852 		 */
5853 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
5854 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5855 			spa->spa_state = new_state;
5856 			spa->spa_final_txg = spa_last_synced_txg(spa) +
5857 			    TXG_DEFER_SIZE + 1;
5858 			vdev_config_dirty(spa->spa_root_vdev);
5859 			spa_config_exit(spa, SCL_ALL, FTAG);
5860 		}
5861 	}
5862 
5863 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
5864 
5865 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5866 		spa_unload(spa);
5867 		spa_deactivate(spa);
5868 	}
5869 
5870 	if (oldconfig && spa->spa_config)
5871 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
5872 
5873 	if (new_state != POOL_STATE_UNINITIALIZED) {
5874 		if (!hardforce)
5875 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
5876 		spa_remove(spa);
5877 	}
5878 	mutex_exit(&spa_namespace_lock);
5879 
5880 	return (0);
5881 }
5882 
5883 /*
5884  * Destroy a storage pool.
5885  */
5886 int
5887 spa_destroy(char *pool)
5888 {
5889 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
5890 	    B_FALSE, B_FALSE));
5891 }
5892 
5893 /*
5894  * Export a storage pool.
5895  */
5896 int
5897 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
5898     boolean_t hardforce)
5899 {
5900 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
5901 	    force, hardforce));
5902 }
5903 
5904 /*
5905  * Similar to spa_export(), this unloads the spa_t without actually removing it
5906  * from the namespace in any way.
5907  */
5908 int
5909 spa_reset(char *pool)
5910 {
5911 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
5912 	    B_FALSE, B_FALSE));
5913 }
5914 
5915 /*
5916  * ==========================================================================
5917  * Device manipulation
5918  * ==========================================================================
5919  */
5920 
5921 /*
5922  * Add a device to a storage pool.
5923  */
5924 int
5925 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
5926 {
5927 	uint64_t txg;
5928 	int error;
5929 	vdev_t *rvd = spa->spa_root_vdev;
5930 	vdev_t *vd, *tvd;
5931 	nvlist_t **spares, **l2cache;
5932 	uint_t nspares, nl2cache;
5933 
5934 	ASSERT(spa_writeable(spa));
5935 
5936 	txg = spa_vdev_enter(spa);
5937 
5938 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
5939 	    VDEV_ALLOC_ADD)) != 0)
5940 		return (spa_vdev_exit(spa, NULL, txg, error));
5941 
5942 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
5943 
5944 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
5945 	    &nspares) != 0)
5946 		nspares = 0;
5947 
5948 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
5949 	    &nl2cache) != 0)
5950 		nl2cache = 0;
5951 
5952 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
5953 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
5954 
5955 	if (vd->vdev_children != 0 &&
5956 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
5957 		return (spa_vdev_exit(spa, vd, txg, error));
5958 
5959 	/*
5960 	 * We must validate the spares and l2cache devices after checking the
5961 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
5962 	 */
5963 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
5964 		return (spa_vdev_exit(spa, vd, txg, error));
5965 
5966 	/*
5967 	 * If we are in the middle of a device removal, we can only add
5968 	 * devices which match the existing devices in the pool.
5969 	 * If we are in the middle of a removal, or have some indirect
5970 	 * vdevs, we can not add raidz toplevels.
5971 	 */
5972 	if (spa->spa_vdev_removal != NULL ||
5973 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
5974 		for (int c = 0; c < vd->vdev_children; c++) {
5975 			tvd = vd->vdev_child[c];
5976 			if (spa->spa_vdev_removal != NULL &&
5977 			    tvd->vdev_ashift != spa->spa_max_ashift) {
5978 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
5979 			}
5980 			/* Fail if top level vdev is raidz */
5981 			if (tvd->vdev_ops == &vdev_raidz_ops) {
5982 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
5983 			}
5984 			/*
5985 			 * Need the top level mirror to be
5986 			 * a mirror of leaf vdevs only
5987 			 */
5988 			if (tvd->vdev_ops == &vdev_mirror_ops) {
5989 				for (uint64_t cid = 0;
5990 				    cid < tvd->vdev_children; cid++) {
5991 					vdev_t *cvd = tvd->vdev_child[cid];
5992 					if (!cvd->vdev_ops->vdev_op_leaf) {
5993 						return (spa_vdev_exit(spa, vd,
5994 						    txg, EINVAL));
5995 					}
5996 				}
5997 			}
5998 		}
5999 	}
6000 
6001 	for (int c = 0; c < vd->vdev_children; c++) {
6002 		tvd = vd->vdev_child[c];
6003 		vdev_remove_child(vd, tvd);
6004 		tvd->vdev_id = rvd->vdev_children;
6005 		vdev_add_child(rvd, tvd);
6006 		vdev_config_dirty(tvd);
6007 	}
6008 
6009 	if (nspares != 0) {
6010 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6011 		    ZPOOL_CONFIG_SPARES);
6012 		spa_load_spares(spa);
6013 		spa->spa_spares.sav_sync = B_TRUE;
6014 	}
6015 
6016 	if (nl2cache != 0) {
6017 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6018 		    ZPOOL_CONFIG_L2CACHE);
6019 		spa_load_l2cache(spa);
6020 		spa->spa_l2cache.sav_sync = B_TRUE;
6021 	}
6022 
6023 	/*
6024 	 * We have to be careful when adding new vdevs to an existing pool.
6025 	 * If other threads start allocating from these vdevs before we
6026 	 * sync the config cache, and we lose power, then upon reboot we may
6027 	 * fail to open the pool because there are DVAs that the config cache
6028 	 * can't translate.  Therefore, we first add the vdevs without
6029 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6030 	 * and then let spa_config_update() initialize the new metaslabs.
6031 	 *
6032 	 * spa_load() checks for added-but-not-initialized vdevs, so that
6033 	 * if we lose power at any point in this sequence, the remaining
6034 	 * steps will be completed the next time we load the pool.
6035 	 */
6036 	(void) spa_vdev_exit(spa, vd, txg, 0);
6037 
6038 	mutex_enter(&spa_namespace_lock);
6039 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6040 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6041 	mutex_exit(&spa_namespace_lock);
6042 
6043 	return (0);
6044 }
6045 
6046 /*
6047  * Attach a device to a mirror.  The arguments are the path to any device
6048  * in the mirror, and the nvroot for the new device.  If the path specifies
6049  * a device that is not mirrored, we automatically insert the mirror vdev.
6050  *
6051  * If 'replacing' is specified, the new device is intended to replace the
6052  * existing device; in this case the two devices are made into their own
6053  * mirror using the 'replacing' vdev, which is functionally identical to
6054  * the mirror vdev (it actually reuses all the same ops) but has a few
6055  * extra rules: you can't attach to it after it's been created, and upon
6056  * completion of resilvering, the first disk (the one being replaced)
6057  * is automatically detached.
6058  */
6059 int
6060 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
6061 {
6062 	uint64_t txg, dtl_max_txg;
6063 	vdev_t *rvd = spa->spa_root_vdev;
6064 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6065 	vdev_ops_t *pvops;
6066 	char *oldvdpath, *newvdpath;
6067 	int newvd_isspare;
6068 	int error;
6069 
6070 	ASSERT(spa_writeable(spa));
6071 
6072 	txg = spa_vdev_enter(spa);
6073 
6074 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6075 
6076 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6077 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6078 		error = (spa_has_checkpoint(spa)) ?
6079 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6080 		return (spa_vdev_exit(spa, NULL, txg, error));
6081 	}
6082 
6083 	if (spa->spa_vdev_removal != NULL)
6084 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6085 
6086 	if (oldvd == NULL)
6087 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6088 
6089 	if (!oldvd->vdev_ops->vdev_op_leaf)
6090 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6091 
6092 	pvd = oldvd->vdev_parent;
6093 
6094 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6095 	    VDEV_ALLOC_ATTACH)) != 0)
6096 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6097 
6098 	if (newrootvd->vdev_children != 1)
6099 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6100 
6101 	newvd = newrootvd->vdev_child[0];
6102 
6103 	if (!newvd->vdev_ops->vdev_op_leaf)
6104 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6105 
6106 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6107 		return (spa_vdev_exit(spa, newrootvd, txg, error));
6108 
6109 	/*
6110 	 * Spares can't replace logs
6111 	 */
6112 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
6113 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6114 
6115 	if (!replacing) {
6116 		/*
6117 		 * For attach, the only allowable parent is a mirror or the root
6118 		 * vdev.
6119 		 */
6120 		if (pvd->vdev_ops != &vdev_mirror_ops &&
6121 		    pvd->vdev_ops != &vdev_root_ops)
6122 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6123 
6124 		pvops = &vdev_mirror_ops;
6125 	} else {
6126 		/*
6127 		 * Active hot spares can only be replaced by inactive hot
6128 		 * spares.
6129 		 */
6130 		if (pvd->vdev_ops == &vdev_spare_ops &&
6131 		    oldvd->vdev_isspare &&
6132 		    !spa_has_spare(spa, newvd->vdev_guid))
6133 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6134 
6135 		/*
6136 		 * If the source is a hot spare, and the parent isn't already a
6137 		 * spare, then we want to create a new hot spare.  Otherwise, we
6138 		 * want to create a replacing vdev.  The user is not allowed to
6139 		 * attach to a spared vdev child unless the 'isspare' state is
6140 		 * the same (spare replaces spare, non-spare replaces
6141 		 * non-spare).
6142 		 */
6143 		if (pvd->vdev_ops == &vdev_replacing_ops &&
6144 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6145 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6146 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
6147 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
6148 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6149 		}
6150 
6151 		if (newvd->vdev_isspare)
6152 			pvops = &vdev_spare_ops;
6153 		else
6154 			pvops = &vdev_replacing_ops;
6155 	}
6156 
6157 	/*
6158 	 * Make sure the new device is big enough.
6159 	 */
6160 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6161 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6162 
6163 	/*
6164 	 * The new device cannot have a higher alignment requirement
6165 	 * than the top-level vdev.
6166 	 */
6167 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6168 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
6169 
6170 	/*
6171 	 * If this is an in-place replacement, update oldvd's path and devid
6172 	 * to make it distinguishable from newvd, and unopenable from now on.
6173 	 */
6174 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6175 		spa_strfree(oldvd->vdev_path);
6176 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6177 		    KM_SLEEP);
6178 		(void) sprintf(oldvd->vdev_path, "%s/%s",
6179 		    newvd->vdev_path, "old");
6180 		if (oldvd->vdev_devid != NULL) {
6181 			spa_strfree(oldvd->vdev_devid);
6182 			oldvd->vdev_devid = NULL;
6183 		}
6184 	}
6185 
6186 	/* mark the device being resilvered */
6187 	newvd->vdev_resilver_txg = txg;
6188 
6189 	/*
6190 	 * If the parent is not a mirror, or if we're replacing, insert the new
6191 	 * mirror/replacing/spare vdev above oldvd.
6192 	 */
6193 	if (pvd->vdev_ops != pvops)
6194 		pvd = vdev_add_parent(oldvd, pvops);
6195 
6196 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
6197 	ASSERT(pvd->vdev_ops == pvops);
6198 	ASSERT(oldvd->vdev_parent == pvd);
6199 
6200 	/*
6201 	 * Extract the new device from its root and add it to pvd.
6202 	 */
6203 	vdev_remove_child(newrootvd, newvd);
6204 	newvd->vdev_id = pvd->vdev_children;
6205 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
6206 	vdev_add_child(pvd, newvd);
6207 
6208 	tvd = newvd->vdev_top;
6209 	ASSERT(pvd->vdev_top == tvd);
6210 	ASSERT(tvd->vdev_parent == rvd);
6211 
6212 	vdev_config_dirty(tvd);
6213 
6214 	/*
6215 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6216 	 * for any dmu_sync-ed blocks.  It will propagate upward when
6217 	 * spa_vdev_exit() calls vdev_dtl_reassess().
6218 	 */
6219 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6220 
6221 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
6222 	    dtl_max_txg - TXG_INITIAL);
6223 
6224 	if (newvd->vdev_isspare) {
6225 		spa_spare_activate(newvd);
6226 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6227 	}
6228 
6229 	oldvdpath = spa_strdup(oldvd->vdev_path);
6230 	newvdpath = spa_strdup(newvd->vdev_path);
6231 	newvd_isspare = newvd->vdev_isspare;
6232 
6233 	/*
6234 	 * Mark newvd's DTL dirty in this txg.
6235 	 */
6236 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
6237 
6238 	/*
6239 	 * Schedule the resilver to restart in the future. We do this to
6240 	 * ensure that dmu_sync-ed blocks have been stitched into the
6241 	 * respective datasets. We do not do this if resilvers have been
6242 	 * deferred.
6243 	 */
6244 	if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
6245 	    spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
6246 		vdev_set_deferred_resilver(spa, newvd);
6247 	else
6248 		dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
6249 
6250 	if (spa->spa_bootfs)
6251 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
6252 
6253 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
6254 
6255 	/*
6256 	 * Commit the config
6257 	 */
6258 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
6259 
6260 	spa_history_log_internal(spa, "vdev attach", NULL,
6261 	    "%s vdev=%s %s vdev=%s",
6262 	    replacing && newvd_isspare ? "spare in" :
6263 	    replacing ? "replace" : "attach", newvdpath,
6264 	    replacing ? "for" : "to", oldvdpath);
6265 
6266 	spa_strfree(oldvdpath);
6267 	spa_strfree(newvdpath);
6268 
6269 	return (0);
6270 }
6271 
6272 /*
6273  * Detach a device from a mirror or replacing vdev.
6274  *
6275  * If 'replace_done' is specified, only detach if the parent
6276  * is a replacing vdev.
6277  */
6278 int
6279 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
6280 {
6281 	uint64_t txg;
6282 	int error;
6283 	vdev_t *rvd = spa->spa_root_vdev;
6284 	vdev_t *vd, *pvd, *cvd, *tvd;
6285 	boolean_t unspare = B_FALSE;
6286 	uint64_t unspare_guid = 0;
6287 	char *vdpath;
6288 
6289 	ASSERT(spa_writeable(spa));
6290 
6291 	txg = spa_vdev_enter(spa);
6292 
6293 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6294 
6295 	/*
6296 	 * Besides being called directly from the userland through the
6297 	 * ioctl interface, spa_vdev_detach() can be potentially called
6298 	 * at the end of spa_vdev_resilver_done().
6299 	 *
6300 	 * In the regular case, when we have a checkpoint this shouldn't
6301 	 * happen as we never empty the DTLs of a vdev during the scrub
6302 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
6303 	 * should never get here when we have a checkpoint.
6304 	 *
6305 	 * That said, even in a case when we checkpoint the pool exactly
6306 	 * as spa_vdev_resilver_done() calls this function everything
6307 	 * should be fine as the resilver will return right away.
6308 	 */
6309 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6310 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6311 		error = (spa_has_checkpoint(spa)) ?
6312 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6313 		return (spa_vdev_exit(spa, NULL, txg, error));
6314 	}
6315 
6316 	if (vd == NULL)
6317 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6318 
6319 	if (!vd->vdev_ops->vdev_op_leaf)
6320 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6321 
6322 	pvd = vd->vdev_parent;
6323 
6324 	/*
6325 	 * If the parent/child relationship is not as expected, don't do it.
6326 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
6327 	 * vdev that's replacing B with C.  The user's intent in replacing
6328 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
6329 	 * the replace by detaching C, the expected behavior is to end up
6330 	 * M(A,B).  But suppose that right after deciding to detach C,
6331 	 * the replacement of B completes.  We would have M(A,C), and then
6332 	 * ask to detach C, which would leave us with just A -- not what
6333 	 * the user wanted.  To prevent this, we make sure that the
6334 	 * parent/child relationship hasn't changed -- in this example,
6335 	 * that C's parent is still the replacing vdev R.
6336 	 */
6337 	if (pvd->vdev_guid != pguid && pguid != 0)
6338 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6339 
6340 	/*
6341 	 * Only 'replacing' or 'spare' vdevs can be replaced.
6342 	 */
6343 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
6344 	    pvd->vdev_ops != &vdev_spare_ops)
6345 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6346 
6347 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
6348 	    spa_version(spa) >= SPA_VERSION_SPARES);
6349 
6350 	/*
6351 	 * Only mirror, replacing, and spare vdevs support detach.
6352 	 */
6353 	if (pvd->vdev_ops != &vdev_replacing_ops &&
6354 	    pvd->vdev_ops != &vdev_mirror_ops &&
6355 	    pvd->vdev_ops != &vdev_spare_ops)
6356 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6357 
6358 	/*
6359 	 * If this device has the only valid copy of some data,
6360 	 * we cannot safely detach it.
6361 	 */
6362 	if (vdev_dtl_required(vd))
6363 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6364 
6365 	ASSERT(pvd->vdev_children >= 2);
6366 
6367 	/*
6368 	 * If we are detaching the second disk from a replacing vdev, then
6369 	 * check to see if we changed the original vdev's path to have "/old"
6370 	 * at the end in spa_vdev_attach().  If so, undo that change now.
6371 	 */
6372 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
6373 	    vd->vdev_path != NULL) {
6374 		size_t len = strlen(vd->vdev_path);
6375 
6376 		for (int c = 0; c < pvd->vdev_children; c++) {
6377 			cvd = pvd->vdev_child[c];
6378 
6379 			if (cvd == vd || cvd->vdev_path == NULL)
6380 				continue;
6381 
6382 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
6383 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
6384 				spa_strfree(cvd->vdev_path);
6385 				cvd->vdev_path = spa_strdup(vd->vdev_path);
6386 				break;
6387 			}
6388 		}
6389 	}
6390 
6391 	/*
6392 	 * If we are detaching the original disk from a spare, then it implies
6393 	 * that the spare should become a real disk, and be removed from the
6394 	 * active spare list for the pool.
6395 	 */
6396 	if (pvd->vdev_ops == &vdev_spare_ops &&
6397 	    vd->vdev_id == 0 &&
6398 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
6399 		unspare = B_TRUE;
6400 
6401 	/*
6402 	 * Erase the disk labels so the disk can be used for other things.
6403 	 * This must be done after all other error cases are handled,
6404 	 * but before we disembowel vd (so we can still do I/O to it).
6405 	 * But if we can't do it, don't treat the error as fatal --
6406 	 * it may be that the unwritability of the disk is the reason
6407 	 * it's being detached!
6408 	 */
6409 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
6410 
6411 	/*
6412 	 * Remove vd from its parent and compact the parent's children.
6413 	 */
6414 	vdev_remove_child(pvd, vd);
6415 	vdev_compact_children(pvd);
6416 
6417 	/*
6418 	 * Remember one of the remaining children so we can get tvd below.
6419 	 */
6420 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
6421 
6422 	/*
6423 	 * If we need to remove the remaining child from the list of hot spares,
6424 	 * do it now, marking the vdev as no longer a spare in the process.
6425 	 * We must do this before vdev_remove_parent(), because that can
6426 	 * change the GUID if it creates a new toplevel GUID.  For a similar
6427 	 * reason, we must remove the spare now, in the same txg as the detach;
6428 	 * otherwise someone could attach a new sibling, change the GUID, and
6429 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
6430 	 */
6431 	if (unspare) {
6432 		ASSERT(cvd->vdev_isspare);
6433 		spa_spare_remove(cvd);
6434 		unspare_guid = cvd->vdev_guid;
6435 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
6436 		cvd->vdev_unspare = B_TRUE;
6437 	}
6438 
6439 	/*
6440 	 * If the parent mirror/replacing vdev only has one child,
6441 	 * the parent is no longer needed.  Remove it from the tree.
6442 	 */
6443 	if (pvd->vdev_children == 1) {
6444 		if (pvd->vdev_ops == &vdev_spare_ops)
6445 			cvd->vdev_unspare = B_FALSE;
6446 		vdev_remove_parent(cvd);
6447 	}
6448 
6449 	/*
6450 	 * We don't set tvd until now because the parent we just removed
6451 	 * may have been the previous top-level vdev.
6452 	 */
6453 	tvd = cvd->vdev_top;
6454 	ASSERT(tvd->vdev_parent == rvd);
6455 
6456 	/*
6457 	 * Reevaluate the parent vdev state.
6458 	 */
6459 	vdev_propagate_state(cvd);
6460 
6461 	/*
6462 	 * If the 'autoexpand' property is set on the pool then automatically
6463 	 * try to expand the size of the pool. For example if the device we
6464 	 * just detached was smaller than the others, it may be possible to
6465 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
6466 	 * first so that we can obtain the updated sizes of the leaf vdevs.
6467 	 */
6468 	if (spa->spa_autoexpand) {
6469 		vdev_reopen(tvd);
6470 		vdev_expand(tvd, txg);
6471 	}
6472 
6473 	vdev_config_dirty(tvd);
6474 
6475 	/*
6476 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
6477 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
6478 	 * But first make sure we're not on any *other* txg's DTL list, to
6479 	 * prevent vd from being accessed after it's freed.
6480 	 */
6481 	vdpath = spa_strdup(vd->vdev_path);
6482 	for (int t = 0; t < TXG_SIZE; t++)
6483 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
6484 	vd->vdev_detached = B_TRUE;
6485 	vdev_dirty(tvd, VDD_DTL, vd, txg);
6486 
6487 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
6488 
6489 	/* hang on to the spa before we release the lock */
6490 	spa_open_ref(spa, FTAG);
6491 
6492 	error = spa_vdev_exit(spa, vd, txg, 0);
6493 
6494 	spa_history_log_internal(spa, "detach", NULL,
6495 	    "vdev=%s", vdpath);
6496 	spa_strfree(vdpath);
6497 
6498 	/*
6499 	 * If this was the removal of the original device in a hot spare vdev,
6500 	 * then we want to go through and remove the device from the hot spare
6501 	 * list of every other pool.
6502 	 */
6503 	if (unspare) {
6504 		spa_t *altspa = NULL;
6505 
6506 		mutex_enter(&spa_namespace_lock);
6507 		while ((altspa = spa_next(altspa)) != NULL) {
6508 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
6509 			    altspa == spa)
6510 				continue;
6511 
6512 			spa_open_ref(altspa, FTAG);
6513 			mutex_exit(&spa_namespace_lock);
6514 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
6515 			mutex_enter(&spa_namespace_lock);
6516 			spa_close(altspa, FTAG);
6517 		}
6518 		mutex_exit(&spa_namespace_lock);
6519 
6520 		/* search the rest of the vdevs for spares to remove */
6521 		spa_vdev_resilver_done(spa);
6522 	}
6523 
6524 	/* all done with the spa; OK to release */
6525 	mutex_enter(&spa_namespace_lock);
6526 	spa_close(spa, FTAG);
6527 	mutex_exit(&spa_namespace_lock);
6528 
6529 	return (error);
6530 }
6531 
6532 static int
6533 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
6534     list_t *vd_list)
6535 {
6536 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6537 
6538 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6539 
6540 	/* Look up vdev and ensure it's a leaf. */
6541 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6542 	if (vd == NULL || vd->vdev_detached) {
6543 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6544 		return (SET_ERROR(ENODEV));
6545 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
6546 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6547 		return (SET_ERROR(EINVAL));
6548 	} else if (!vdev_writeable(vd)) {
6549 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6550 		return (SET_ERROR(EROFS));
6551 	}
6552 	mutex_enter(&vd->vdev_initialize_lock);
6553 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6554 
6555 	/*
6556 	 * When we activate an initialize action we check to see
6557 	 * if the vdev_initialize_thread is NULL. We do this instead
6558 	 * of using the vdev_initialize_state since there might be
6559 	 * a previous initialization process which has completed but
6560 	 * the thread is not exited.
6561 	 */
6562 	if (cmd_type == POOL_INITIALIZE_START &&
6563 	    (vd->vdev_initialize_thread != NULL ||
6564 	    vd->vdev_top->vdev_removing)) {
6565 		mutex_exit(&vd->vdev_initialize_lock);
6566 		return (SET_ERROR(EBUSY));
6567 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
6568 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
6569 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
6570 		mutex_exit(&vd->vdev_initialize_lock);
6571 		return (SET_ERROR(ESRCH));
6572 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
6573 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
6574 		mutex_exit(&vd->vdev_initialize_lock);
6575 		return (SET_ERROR(ESRCH));
6576 	}
6577 
6578 	switch (cmd_type) {
6579 	case POOL_INITIALIZE_START:
6580 		vdev_initialize(vd);
6581 		break;
6582 	case POOL_INITIALIZE_CANCEL:
6583 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
6584 		break;
6585 	case POOL_INITIALIZE_SUSPEND:
6586 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
6587 		break;
6588 	default:
6589 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
6590 	}
6591 	mutex_exit(&vd->vdev_initialize_lock);
6592 
6593 	return (0);
6594 }
6595 
6596 int
6597 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
6598     nvlist_t *vdev_errlist)
6599 {
6600 	int total_errors = 0;
6601 	list_t vd_list;
6602 
6603 	list_create(&vd_list, sizeof (vdev_t),
6604 	    offsetof(vdev_t, vdev_initialize_node));
6605 
6606 	/*
6607 	 * We hold the namespace lock through the whole function
6608 	 * to prevent any changes to the pool while we're starting or
6609 	 * stopping initialization. The config and state locks are held so that
6610 	 * we can properly assess the vdev state before we commit to
6611 	 * the initializing operation.
6612 	 */
6613 	mutex_enter(&spa_namespace_lock);
6614 
6615 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
6616 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
6617 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
6618 
6619 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
6620 		    &vd_list);
6621 		if (error != 0) {
6622 			char guid_as_str[MAXNAMELEN];
6623 
6624 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
6625 			    "%llu", (unsigned long long)vdev_guid);
6626 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
6627 			total_errors++;
6628 		}
6629 	}
6630 
6631 	/* Wait for all initialize threads to stop. */
6632 	vdev_initialize_stop_wait(spa, &vd_list);
6633 
6634 	/* Sync out the initializing state */
6635 	txg_wait_synced(spa->spa_dsl_pool, 0);
6636 	mutex_exit(&spa_namespace_lock);
6637 
6638 	list_destroy(&vd_list);
6639 
6640 	return (total_errors);
6641 }
6642 
6643 static int
6644 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
6645     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
6646 {
6647 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6648 
6649 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6650 
6651 	/* Look up vdev and ensure it's a leaf. */
6652 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6653 	if (vd == NULL || vd->vdev_detached) {
6654 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6655 		return (SET_ERROR(ENODEV));
6656 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
6657 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6658 		return (SET_ERROR(EINVAL));
6659 	} else if (!vdev_writeable(vd)) {
6660 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6661 		return (SET_ERROR(EROFS));
6662 	} else if (!vd->vdev_has_trim) {
6663 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6664 		return (SET_ERROR(EOPNOTSUPP));
6665 	} else if (secure && !vd->vdev_has_securetrim) {
6666 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6667 		return (SET_ERROR(EOPNOTSUPP));
6668 	}
6669 	mutex_enter(&vd->vdev_trim_lock);
6670 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6671 
6672 	/*
6673 	 * When we activate a TRIM action we check to see if the
6674 	 * vdev_trim_thread is NULL. We do this instead of using the
6675 	 * vdev_trim_state since there might be a previous TRIM process
6676 	 * which has completed but the thread is not exited.
6677 	 */
6678 	if (cmd_type == POOL_TRIM_START &&
6679 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
6680 		mutex_exit(&vd->vdev_trim_lock);
6681 		return (SET_ERROR(EBUSY));
6682 	} else if (cmd_type == POOL_TRIM_CANCEL &&
6683 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
6684 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
6685 		mutex_exit(&vd->vdev_trim_lock);
6686 		return (SET_ERROR(ESRCH));
6687 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
6688 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
6689 		mutex_exit(&vd->vdev_trim_lock);
6690 		return (SET_ERROR(ESRCH));
6691 	}
6692 
6693 	switch (cmd_type) {
6694 	case POOL_TRIM_START:
6695 		vdev_trim(vd, rate, partial, secure);
6696 		break;
6697 	case POOL_TRIM_CANCEL:
6698 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
6699 		break;
6700 	case POOL_TRIM_SUSPEND:
6701 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
6702 		break;
6703 	default:
6704 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
6705 	}
6706 	mutex_exit(&vd->vdev_trim_lock);
6707 
6708 	return (0);
6709 }
6710 
6711 /*
6712  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
6713  * TRIM threads for each child vdev.  These threads pass over all of the free
6714  * space in the vdev's metaslabs and issues TRIM commands for that space.
6715  */
6716 int
6717 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
6718     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
6719 {
6720 	int total_errors = 0;
6721 	list_t vd_list;
6722 
6723 	list_create(&vd_list, sizeof (vdev_t),
6724 	    offsetof(vdev_t, vdev_trim_node));
6725 
6726 	/*
6727 	 * We hold the namespace lock through the whole function
6728 	 * to prevent any changes to the pool while we're starting or
6729 	 * stopping TRIM. The config and state locks are held so that
6730 	 * we can properly assess the vdev state before we commit to
6731 	 * the TRIM operation.
6732 	 */
6733 	mutex_enter(&spa_namespace_lock);
6734 
6735 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
6736 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
6737 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
6738 
6739 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
6740 		    rate, partial, secure, &vd_list);
6741 		if (error != 0) {
6742 			char guid_as_str[MAXNAMELEN];
6743 
6744 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
6745 			    "%llu", (unsigned long long)vdev_guid);
6746 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
6747 			total_errors++;
6748 		}
6749 	}
6750 
6751 	/* Wait for all TRIM threads to stop. */
6752 	vdev_trim_stop_wait(spa, &vd_list);
6753 
6754 	/* Sync out the TRIM state */
6755 	txg_wait_synced(spa->spa_dsl_pool, 0);
6756 	mutex_exit(&spa_namespace_lock);
6757 
6758 	list_destroy(&vd_list);
6759 
6760 	return (total_errors);
6761 }
6762 
6763 /*
6764  * Split a set of devices from their mirrors, and create a new pool from them.
6765  */
6766 int
6767 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
6768     nvlist_t *props, boolean_t exp)
6769 {
6770 	int error = 0;
6771 	uint64_t txg, *glist;
6772 	spa_t *newspa;
6773 	uint_t c, children, lastlog;
6774 	nvlist_t **child, *nvl, *tmp;
6775 	dmu_tx_t *tx;
6776 	char *altroot = NULL;
6777 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
6778 	boolean_t activate_slog;
6779 
6780 	ASSERT(spa_writeable(spa));
6781 
6782 	txg = spa_vdev_enter(spa);
6783 
6784 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6785 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6786 		error = (spa_has_checkpoint(spa)) ?
6787 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6788 		return (spa_vdev_exit(spa, NULL, txg, error));
6789 	}
6790 
6791 	/* clear the log and flush everything up to now */
6792 	activate_slog = spa_passivate_log(spa);
6793 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6794 	error = spa_reset_logs(spa);
6795 	txg = spa_vdev_config_enter(spa);
6796 
6797 	if (activate_slog)
6798 		spa_activate_log(spa);
6799 
6800 	if (error != 0)
6801 		return (spa_vdev_exit(spa, NULL, txg, error));
6802 
6803 	/* check new spa name before going any further */
6804 	if (spa_lookup(newname) != NULL)
6805 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
6806 
6807 	/*
6808 	 * scan through all the children to ensure they're all mirrors
6809 	 */
6810 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
6811 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
6812 	    &children) != 0)
6813 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6814 
6815 	/* first, check to ensure we've got the right child count */
6816 	rvd = spa->spa_root_vdev;
6817 	lastlog = 0;
6818 	for (c = 0; c < rvd->vdev_children; c++) {
6819 		vdev_t *vd = rvd->vdev_child[c];
6820 
6821 		/* don't count the holes & logs as children */
6822 		if (vd->vdev_islog || !vdev_is_concrete(vd)) {
6823 			if (lastlog == 0)
6824 				lastlog = c;
6825 			continue;
6826 		}
6827 
6828 		lastlog = 0;
6829 	}
6830 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
6831 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6832 
6833 	/* next, ensure no spare or cache devices are part of the split */
6834 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
6835 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
6836 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6837 
6838 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
6839 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
6840 
6841 	/* then, loop over each vdev and validate it */
6842 	for (c = 0; c < children; c++) {
6843 		uint64_t is_hole = 0;
6844 
6845 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
6846 		    &is_hole);
6847 
6848 		if (is_hole != 0) {
6849 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
6850 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
6851 				continue;
6852 			} else {
6853 				error = SET_ERROR(EINVAL);
6854 				break;
6855 			}
6856 		}
6857 
6858 		/* which disk is going to be split? */
6859 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
6860 		    &glist[c]) != 0) {
6861 			error = SET_ERROR(EINVAL);
6862 			break;
6863 		}
6864 
6865 		/* look it up in the spa */
6866 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
6867 		if (vml[c] == NULL) {
6868 			error = SET_ERROR(ENODEV);
6869 			break;
6870 		}
6871 
6872 		/* make sure there's nothing stopping the split */
6873 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
6874 		    vml[c]->vdev_islog ||
6875 		    !vdev_is_concrete(vml[c]) ||
6876 		    vml[c]->vdev_isspare ||
6877 		    vml[c]->vdev_isl2cache ||
6878 		    !vdev_writeable(vml[c]) ||
6879 		    vml[c]->vdev_children != 0 ||
6880 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
6881 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
6882 			error = SET_ERROR(EINVAL);
6883 			break;
6884 		}
6885 
6886 		if (vdev_dtl_required(vml[c])) {
6887 			error = SET_ERROR(EBUSY);
6888 			break;
6889 		}
6890 
6891 		/* we need certain info from the top level */
6892 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
6893 		    vml[c]->vdev_top->vdev_ms_array) == 0);
6894 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
6895 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
6896 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
6897 		    vml[c]->vdev_top->vdev_asize) == 0);
6898 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
6899 		    vml[c]->vdev_top->vdev_ashift) == 0);
6900 
6901 		/* transfer per-vdev ZAPs */
6902 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
6903 		VERIFY0(nvlist_add_uint64(child[c],
6904 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
6905 
6906 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
6907 		VERIFY0(nvlist_add_uint64(child[c],
6908 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
6909 		    vml[c]->vdev_parent->vdev_top_zap));
6910 	}
6911 
6912 	if (error != 0) {
6913 		kmem_free(vml, children * sizeof (vdev_t *));
6914 		kmem_free(glist, children * sizeof (uint64_t));
6915 		return (spa_vdev_exit(spa, NULL, txg, error));
6916 	}
6917 
6918 	/* stop writers from using the disks */
6919 	for (c = 0; c < children; c++) {
6920 		if (vml[c] != NULL)
6921 			vml[c]->vdev_offline = B_TRUE;
6922 	}
6923 	vdev_reopen(spa->spa_root_vdev);
6924 
6925 	/*
6926 	 * Temporarily record the splitting vdevs in the spa config.  This
6927 	 * will disappear once the config is regenerated.
6928 	 */
6929 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6930 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
6931 	    glist, children) == 0);
6932 	kmem_free(glist, children * sizeof (uint64_t));
6933 
6934 	mutex_enter(&spa->spa_props_lock);
6935 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
6936 	    nvl) == 0);
6937 	mutex_exit(&spa->spa_props_lock);
6938 	spa->spa_config_splitting = nvl;
6939 	vdev_config_dirty(spa->spa_root_vdev);
6940 
6941 	/* configure and create the new pool */
6942 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
6943 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
6944 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
6945 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6946 	    spa_version(spa)) == 0);
6947 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
6948 	    spa->spa_config_txg) == 0);
6949 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
6950 	    spa_generate_guid(NULL)) == 0);
6951 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
6952 	(void) nvlist_lookup_string(props,
6953 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6954 
6955 	/* add the new pool to the namespace */
6956 	newspa = spa_add(newname, config, altroot);
6957 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
6958 	newspa->spa_config_txg = spa->spa_config_txg;
6959 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
6960 
6961 	/* release the spa config lock, retaining the namespace lock */
6962 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6963 
6964 	if (zio_injection_enabled)
6965 		zio_handle_panic_injection(spa, FTAG, 1);
6966 
6967 	spa_activate(newspa, spa_mode_global);
6968 	spa_async_suspend(newspa);
6969 
6970 	/*
6971 	 * Temporarily stop the initializing and TRIM activity.  We set the
6972 	 * state to ACTIVE so that we know to resume initializing or TRIM
6973 	 * once the split has completed.
6974 	 */
6975 	list_t vd_initialize_list;
6976 	list_create(&vd_initialize_list, sizeof (vdev_t),
6977 	    offsetof(vdev_t, vdev_initialize_node));
6978 
6979 	list_t vd_trim_list;
6980 	list_create(&vd_trim_list, sizeof (vdev_t),
6981 	    offsetof(vdev_t, vdev_trim_node));
6982 
6983 	for (c = 0; c < children; c++) {
6984 		if (vml[c] != NULL) {
6985 			mutex_enter(&vml[c]->vdev_initialize_lock);
6986 			vdev_initialize_stop(vml[c],
6987 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
6988 			mutex_exit(&vml[c]->vdev_initialize_lock);
6989 
6990 			mutex_enter(&vml[c]->vdev_trim_lock);
6991 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
6992 			mutex_exit(&vml[c]->vdev_trim_lock);
6993 		}
6994 	}
6995 
6996 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
6997 	vdev_trim_stop_wait(spa, &vd_trim_list);
6998 
6999 	list_destroy(&vd_initialize_list);
7000 	list_destroy(&vd_trim_list);
7001 
7002 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7003 
7004 	/* create the new pool from the disks of the original pool */
7005 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7006 	if (error)
7007 		goto out;
7008 
7009 	/* if that worked, generate a real config for the new pool */
7010 	if (newspa->spa_root_vdev != NULL) {
7011 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
7012 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
7013 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
7014 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
7015 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7016 		    B_TRUE));
7017 	}
7018 
7019 	/* set the props */
7020 	if (props != NULL) {
7021 		spa_configfile_set(newspa, props, B_FALSE);
7022 		error = spa_prop_set(newspa, props);
7023 		if (error)
7024 			goto out;
7025 	}
7026 
7027 	/* flush everything */
7028 	txg = spa_vdev_config_enter(newspa);
7029 	vdev_config_dirty(newspa->spa_root_vdev);
7030 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7031 
7032 	if (zio_injection_enabled)
7033 		zio_handle_panic_injection(spa, FTAG, 2);
7034 
7035 	spa_async_resume(newspa);
7036 
7037 	/* finally, update the original pool's config */
7038 	txg = spa_vdev_config_enter(spa);
7039 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7040 	error = dmu_tx_assign(tx, TXG_WAIT);
7041 	if (error != 0)
7042 		dmu_tx_abort(tx);
7043 	for (c = 0; c < children; c++) {
7044 		if (vml[c] != NULL) {
7045 			vdev_split(vml[c]);
7046 			if (error == 0)
7047 				spa_history_log_internal(spa, "detach", tx,
7048 				    "vdev=%s", vml[c]->vdev_path);
7049 
7050 			vdev_free(vml[c]);
7051 		}
7052 	}
7053 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
7054 	vdev_config_dirty(spa->spa_root_vdev);
7055 	spa->spa_config_splitting = NULL;
7056 	nvlist_free(nvl);
7057 	if (error == 0)
7058 		dmu_tx_commit(tx);
7059 	(void) spa_vdev_exit(spa, NULL, txg, 0);
7060 
7061 	if (zio_injection_enabled)
7062 		zio_handle_panic_injection(spa, FTAG, 3);
7063 
7064 	/* split is complete; log a history record */
7065 	spa_history_log_internal(newspa, "split", NULL,
7066 	    "from pool %s", spa_name(spa));
7067 
7068 	kmem_free(vml, children * sizeof (vdev_t *));
7069 
7070 	/* if we're not going to mount the filesystems in userland, export */
7071 	if (exp)
7072 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7073 		    B_FALSE, B_FALSE);
7074 
7075 	return (error);
7076 
7077 out:
7078 	spa_unload(newspa);
7079 	spa_deactivate(newspa);
7080 	spa_remove(newspa);
7081 
7082 	txg = spa_vdev_config_enter(spa);
7083 
7084 	/* re-online all offlined disks */
7085 	for (c = 0; c < children; c++) {
7086 		if (vml[c] != NULL)
7087 			vml[c]->vdev_offline = B_FALSE;
7088 	}
7089 
7090 	/* restart initializing or trimming disks as necessary */
7091 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7092 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7093 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7094 
7095 	vdev_reopen(spa->spa_root_vdev);
7096 
7097 	nvlist_free(spa->spa_config_splitting);
7098 	spa->spa_config_splitting = NULL;
7099 	(void) spa_vdev_exit(spa, NULL, txg, error);
7100 
7101 	kmem_free(vml, children * sizeof (vdev_t *));
7102 	return (error);
7103 }
7104 
7105 /*
7106  * Find any device that's done replacing, or a vdev marked 'unspare' that's
7107  * currently spared, so we can detach it.
7108  */
7109 static vdev_t *
7110 spa_vdev_resilver_done_hunt(vdev_t *vd)
7111 {
7112 	vdev_t *newvd, *oldvd;
7113 
7114 	for (int c = 0; c < vd->vdev_children; c++) {
7115 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7116 		if (oldvd != NULL)
7117 			return (oldvd);
7118 	}
7119 
7120 	/*
7121 	 * Check for a completed replacement.  We always consider the first
7122 	 * vdev in the list to be the oldest vdev, and the last one to be
7123 	 * the newest (see spa_vdev_attach() for how that works).  In
7124 	 * the case where the newest vdev is faulted, we will not automatically
7125 	 * remove it after a resilver completes.  This is OK as it will require
7126 	 * user intervention to determine which disk the admin wishes to keep.
7127 	 */
7128 	if (vd->vdev_ops == &vdev_replacing_ops) {
7129 		ASSERT(vd->vdev_children > 1);
7130 
7131 		newvd = vd->vdev_child[vd->vdev_children - 1];
7132 		oldvd = vd->vdev_child[0];
7133 
7134 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
7135 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7136 		    !vdev_dtl_required(oldvd))
7137 			return (oldvd);
7138 	}
7139 
7140 	/*
7141 	 * Check for a completed resilver with the 'unspare' flag set.
7142 	 * Also potentially update faulted state.
7143 	 */
7144 	if (vd->vdev_ops == &vdev_spare_ops) {
7145 		vdev_t *first = vd->vdev_child[0];
7146 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
7147 
7148 		if (last->vdev_unspare) {
7149 			oldvd = first;
7150 			newvd = last;
7151 		} else if (first->vdev_unspare) {
7152 			oldvd = last;
7153 			newvd = first;
7154 		} else {
7155 			oldvd = NULL;
7156 		}
7157 
7158 		if (oldvd != NULL &&
7159 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
7160 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7161 		    !vdev_dtl_required(oldvd))
7162 			return (oldvd);
7163 
7164 		vdev_propagate_state(vd);
7165 
7166 		/*
7167 		 * If there are more than two spares attached to a disk,
7168 		 * and those spares are not required, then we want to
7169 		 * attempt to free them up now so that they can be used
7170 		 * by other pools.  Once we're back down to a single
7171 		 * disk+spare, we stop removing them.
7172 		 */
7173 		if (vd->vdev_children > 2) {
7174 			newvd = vd->vdev_child[1];
7175 
7176 			if (newvd->vdev_isspare && last->vdev_isspare &&
7177 			    vdev_dtl_empty(last, DTL_MISSING) &&
7178 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
7179 			    !vdev_dtl_required(newvd))
7180 				return (newvd);
7181 		}
7182 	}
7183 
7184 	return (NULL);
7185 }
7186 
7187 static void
7188 spa_vdev_resilver_done(spa_t *spa)
7189 {
7190 	vdev_t *vd, *pvd, *ppvd;
7191 	uint64_t guid, sguid, pguid, ppguid;
7192 
7193 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7194 
7195 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
7196 		pvd = vd->vdev_parent;
7197 		ppvd = pvd->vdev_parent;
7198 		guid = vd->vdev_guid;
7199 		pguid = pvd->vdev_guid;
7200 		ppguid = ppvd->vdev_guid;
7201 		sguid = 0;
7202 		/*
7203 		 * If we have just finished replacing a hot spared device, then
7204 		 * we need to detach the parent's first child (the original hot
7205 		 * spare) as well.
7206 		 */
7207 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
7208 		    ppvd->vdev_children == 2) {
7209 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
7210 			sguid = ppvd->vdev_child[1]->vdev_guid;
7211 		}
7212 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
7213 
7214 		spa_config_exit(spa, SCL_ALL, FTAG);
7215 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
7216 			return;
7217 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
7218 			return;
7219 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7220 	}
7221 
7222 	spa_config_exit(spa, SCL_ALL, FTAG);
7223 }
7224 
7225 /*
7226  * Update the stored path or FRU for this vdev.
7227  */
7228 int
7229 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
7230     boolean_t ispath)
7231 {
7232 	vdev_t *vd;
7233 	boolean_t sync = B_FALSE;
7234 
7235 	ASSERT(spa_writeable(spa));
7236 
7237 	spa_vdev_state_enter(spa, SCL_ALL);
7238 
7239 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
7240 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
7241 
7242 	if (!vd->vdev_ops->vdev_op_leaf)
7243 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
7244 
7245 	if (ispath) {
7246 		if (strcmp(value, vd->vdev_path) != 0) {
7247 			spa_strfree(vd->vdev_path);
7248 			vd->vdev_path = spa_strdup(value);
7249 			sync = B_TRUE;
7250 		}
7251 	} else {
7252 		if (vd->vdev_fru == NULL) {
7253 			vd->vdev_fru = spa_strdup(value);
7254 			sync = B_TRUE;
7255 		} else if (strcmp(value, vd->vdev_fru) != 0) {
7256 			spa_strfree(vd->vdev_fru);
7257 			vd->vdev_fru = spa_strdup(value);
7258 			sync = B_TRUE;
7259 		}
7260 	}
7261 
7262 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
7263 }
7264 
7265 int
7266 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
7267 {
7268 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
7269 }
7270 
7271 int
7272 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
7273 {
7274 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
7275 }
7276 
7277 /*
7278  * ==========================================================================
7279  * SPA Scanning
7280  * ==========================================================================
7281  */
7282 int
7283 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
7284 {
7285 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7286 
7287 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
7288 		return (SET_ERROR(EBUSY));
7289 
7290 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
7291 }
7292 
7293 int
7294 spa_scan_stop(spa_t *spa)
7295 {
7296 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7297 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
7298 		return (SET_ERROR(EBUSY));
7299 	return (dsl_scan_cancel(spa->spa_dsl_pool));
7300 }
7301 
7302 int
7303 spa_scan(spa_t *spa, pool_scan_func_t func)
7304 {
7305 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7306 
7307 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
7308 		return (SET_ERROR(ENOTSUP));
7309 
7310 	if (func == POOL_SCAN_RESILVER &&
7311 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
7312 		return (SET_ERROR(ENOTSUP));
7313 
7314 	/*
7315 	 * If a resilver was requested, but there is no DTL on a
7316 	 * writeable leaf device, we have nothing to do.
7317 	 */
7318 	if (func == POOL_SCAN_RESILVER &&
7319 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
7320 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
7321 		return (0);
7322 	}
7323 
7324 	return (dsl_scan(spa->spa_dsl_pool, func));
7325 }
7326 
7327 /*
7328  * ==========================================================================
7329  * SPA async task processing
7330  * ==========================================================================
7331  */
7332 
7333 static void
7334 spa_async_remove(spa_t *spa, vdev_t *vd)
7335 {
7336 	if (vd->vdev_remove_wanted) {
7337 		vd->vdev_remove_wanted = B_FALSE;
7338 		vd->vdev_delayed_close = B_FALSE;
7339 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
7340 
7341 		/*
7342 		 * We want to clear the stats, but we don't want to do a full
7343 		 * vdev_clear() as that will cause us to throw away
7344 		 * degraded/faulted state as well as attempt to reopen the
7345 		 * device, all of which is a waste.
7346 		 */
7347 		vd->vdev_stat.vs_read_errors = 0;
7348 		vd->vdev_stat.vs_write_errors = 0;
7349 		vd->vdev_stat.vs_checksum_errors = 0;
7350 
7351 		vdev_state_dirty(vd->vdev_top);
7352 	}
7353 
7354 	for (int c = 0; c < vd->vdev_children; c++)
7355 		spa_async_remove(spa, vd->vdev_child[c]);
7356 }
7357 
7358 static void
7359 spa_async_probe(spa_t *spa, vdev_t *vd)
7360 {
7361 	if (vd->vdev_probe_wanted) {
7362 		vd->vdev_probe_wanted = B_FALSE;
7363 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
7364 	}
7365 
7366 	for (int c = 0; c < vd->vdev_children; c++)
7367 		spa_async_probe(spa, vd->vdev_child[c]);
7368 }
7369 
7370 static void
7371 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
7372 {
7373 	sysevent_id_t eid;
7374 	nvlist_t *attr;
7375 	char *physpath;
7376 
7377 	if (!spa->spa_autoexpand)
7378 		return;
7379 
7380 	for (int c = 0; c < vd->vdev_children; c++) {
7381 		vdev_t *cvd = vd->vdev_child[c];
7382 		spa_async_autoexpand(spa, cvd);
7383 	}
7384 
7385 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
7386 		return;
7387 
7388 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
7389 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
7390 
7391 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7392 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
7393 
7394 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
7395 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
7396 
7397 	nvlist_free(attr);
7398 	kmem_free(physpath, MAXPATHLEN);
7399 }
7400 
7401 static void
7402 spa_async_thread(void *arg)
7403 {
7404 	spa_t *spa = (spa_t *)arg;
7405 	dsl_pool_t *dp = spa->spa_dsl_pool;
7406 	int tasks;
7407 
7408 	ASSERT(spa->spa_sync_on);
7409 
7410 	mutex_enter(&spa->spa_async_lock);
7411 	tasks = spa->spa_async_tasks;
7412 	spa->spa_async_tasks = 0;
7413 	mutex_exit(&spa->spa_async_lock);
7414 
7415 	/*
7416 	 * See if the config needs to be updated.
7417 	 */
7418 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
7419 		uint64_t old_space, new_space;
7420 
7421 		mutex_enter(&spa_namespace_lock);
7422 		old_space = metaslab_class_get_space(spa_normal_class(spa));
7423 		old_space += metaslab_class_get_space(spa_special_class(spa));
7424 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
7425 
7426 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7427 
7428 		new_space = metaslab_class_get_space(spa_normal_class(spa));
7429 		new_space += metaslab_class_get_space(spa_special_class(spa));
7430 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
7431 		mutex_exit(&spa_namespace_lock);
7432 
7433 		/*
7434 		 * If the pool grew as a result of the config update,
7435 		 * then log an internal history event.
7436 		 */
7437 		if (new_space != old_space) {
7438 			spa_history_log_internal(spa, "vdev online", NULL,
7439 			    "pool '%s' size: %llu(+%llu)",
7440 			    spa_name(spa), new_space, new_space - old_space);
7441 		}
7442 	}
7443 
7444 	/*
7445 	 * See if any devices need to be marked REMOVED.
7446 	 */
7447 	if (tasks & SPA_ASYNC_REMOVE) {
7448 		spa_vdev_state_enter(spa, SCL_NONE);
7449 		spa_async_remove(spa, spa->spa_root_vdev);
7450 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
7451 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
7452 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
7453 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
7454 		(void) spa_vdev_state_exit(spa, NULL, 0);
7455 	}
7456 
7457 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
7458 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7459 		spa_async_autoexpand(spa, spa->spa_root_vdev);
7460 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7461 	}
7462 
7463 	/*
7464 	 * See if any devices need to be probed.
7465 	 */
7466 	if (tasks & SPA_ASYNC_PROBE) {
7467 		spa_vdev_state_enter(spa, SCL_NONE);
7468 		spa_async_probe(spa, spa->spa_root_vdev);
7469 		(void) spa_vdev_state_exit(spa, NULL, 0);
7470 	}
7471 
7472 	/*
7473 	 * If any devices are done replacing, detach them.
7474 	 */
7475 	if (tasks & SPA_ASYNC_RESILVER_DONE)
7476 		spa_vdev_resilver_done(spa);
7477 
7478 	/*
7479 	 * Kick off a resilver.
7480 	 */
7481 	if (tasks & SPA_ASYNC_RESILVER &&
7482 	    (!dsl_scan_resilvering(dp) ||
7483 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
7484 		dsl_resilver_restart(dp, 0);
7485 
7486 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
7487 		mutex_enter(&spa_namespace_lock);
7488 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7489 		vdev_initialize_restart(spa->spa_root_vdev);
7490 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7491 		mutex_exit(&spa_namespace_lock);
7492 	}
7493 
7494 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
7495 		mutex_enter(&spa_namespace_lock);
7496 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7497 		vdev_trim_restart(spa->spa_root_vdev);
7498 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7499 		mutex_exit(&spa_namespace_lock);
7500 	}
7501 
7502 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
7503 		mutex_enter(&spa_namespace_lock);
7504 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7505 		vdev_autotrim_restart(spa);
7506 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7507 		mutex_exit(&spa_namespace_lock);
7508 	}
7509 
7510 	/*
7511 	 * Let the world know that we're done.
7512 	 */
7513 	mutex_enter(&spa->spa_async_lock);
7514 	spa->spa_async_thread = NULL;
7515 	cv_broadcast(&spa->spa_async_cv);
7516 	mutex_exit(&spa->spa_async_lock);
7517 	thread_exit();
7518 }
7519 
7520 void
7521 spa_async_suspend(spa_t *spa)
7522 {
7523 	mutex_enter(&spa->spa_async_lock);
7524 	spa->spa_async_suspended++;
7525 	while (spa->spa_async_thread != NULL)
7526 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
7527 	mutex_exit(&spa->spa_async_lock);
7528 
7529 	spa_vdev_remove_suspend(spa);
7530 
7531 	zthr_t *condense_thread = spa->spa_condense_zthr;
7532 	if (condense_thread != NULL)
7533 		zthr_cancel(condense_thread);
7534 
7535 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7536 	if (discard_thread != NULL)
7537 		zthr_cancel(discard_thread);
7538 }
7539 
7540 void
7541 spa_async_resume(spa_t *spa)
7542 {
7543 	mutex_enter(&spa->spa_async_lock);
7544 	ASSERT(spa->spa_async_suspended != 0);
7545 	spa->spa_async_suspended--;
7546 	mutex_exit(&spa->spa_async_lock);
7547 	spa_restart_removal(spa);
7548 
7549 	zthr_t *condense_thread = spa->spa_condense_zthr;
7550 	if (condense_thread != NULL)
7551 		zthr_resume(condense_thread);
7552 
7553 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7554 	if (discard_thread != NULL)
7555 		zthr_resume(discard_thread);
7556 }
7557 
7558 static boolean_t
7559 spa_async_tasks_pending(spa_t *spa)
7560 {
7561 	uint_t non_config_tasks;
7562 	uint_t config_task;
7563 	boolean_t config_task_suspended;
7564 
7565 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
7566 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
7567 	if (spa->spa_ccw_fail_time == 0) {
7568 		config_task_suspended = B_FALSE;
7569 	} else {
7570 		config_task_suspended =
7571 		    (gethrtime() - spa->spa_ccw_fail_time) <
7572 		    (zfs_ccw_retry_interval * NANOSEC);
7573 	}
7574 
7575 	return (non_config_tasks || (config_task && !config_task_suspended));
7576 }
7577 
7578 static void
7579 spa_async_dispatch(spa_t *spa)
7580 {
7581 	mutex_enter(&spa->spa_async_lock);
7582 	if (spa_async_tasks_pending(spa) &&
7583 	    !spa->spa_async_suspended &&
7584 	    spa->spa_async_thread == NULL &&
7585 	    rootdir != NULL)
7586 		spa->spa_async_thread = thread_create(NULL, 0,
7587 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
7588 	mutex_exit(&spa->spa_async_lock);
7589 }
7590 
7591 void
7592 spa_async_request(spa_t *spa, int task)
7593 {
7594 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
7595 	mutex_enter(&spa->spa_async_lock);
7596 	spa->spa_async_tasks |= task;
7597 	mutex_exit(&spa->spa_async_lock);
7598 }
7599 
7600 /*
7601  * ==========================================================================
7602  * SPA syncing routines
7603  * ==========================================================================
7604  */
7605 
7606 static int
7607 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7608 {
7609 	bpobj_t *bpo = arg;
7610 	bpobj_enqueue(bpo, bp, tx);
7611 	return (0);
7612 }
7613 
7614 static int
7615 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7616 {
7617 	zio_t *zio = arg;
7618 
7619 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
7620 	    zio->io_flags));
7621 	return (0);
7622 }
7623 
7624 /*
7625  * Note: this simple function is not inlined to make it easier to dtrace the
7626  * amount of time spent syncing frees.
7627  */
7628 static void
7629 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
7630 {
7631 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
7632 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
7633 	VERIFY(zio_wait(zio) == 0);
7634 }
7635 
7636 /*
7637  * Note: this simple function is not inlined to make it easier to dtrace the
7638  * amount of time spent syncing deferred frees.
7639  */
7640 static void
7641 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
7642 {
7643 	if (spa_sync_pass(spa) != 1)
7644 		return;
7645 
7646 	/*
7647 	 * Note:
7648 	 * If the log space map feature is active, we stop deferring
7649 	 * frees to the next TXG and therefore running this function
7650 	 * would be considered a no-op as spa_deferred_bpobj should
7651 	 * not have any entries.
7652 	 *
7653 	 * That said we run this function anyway (instead of returning
7654 	 * immediately) for the edge-case scenario where we just
7655 	 * activated the log space map feature in this TXG but we have
7656 	 * deferred frees from the previous TXG.
7657 	 */
7658 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
7659 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
7660 	    spa_free_sync_cb, zio, tx), ==, 0);
7661 	VERIFY0(zio_wait(zio));
7662 }
7663 
7664 
7665 static void
7666 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
7667 {
7668 	char *packed = NULL;
7669 	size_t bufsize;
7670 	size_t nvsize = 0;
7671 	dmu_buf_t *db;
7672 
7673 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
7674 
7675 	/*
7676 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
7677 	 * information.  This avoids the dmu_buf_will_dirty() path and
7678 	 * saves us a pre-read to get data we don't actually care about.
7679 	 */
7680 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
7681 	packed = kmem_alloc(bufsize, KM_SLEEP);
7682 
7683 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
7684 	    KM_SLEEP) == 0);
7685 	bzero(packed + nvsize, bufsize - nvsize);
7686 
7687 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
7688 
7689 	kmem_free(packed, bufsize);
7690 
7691 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
7692 	dmu_buf_will_dirty(db, tx);
7693 	*(uint64_t *)db->db_data = nvsize;
7694 	dmu_buf_rele(db, FTAG);
7695 }
7696 
7697 static void
7698 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
7699     const char *config, const char *entry)
7700 {
7701 	nvlist_t *nvroot;
7702 	nvlist_t **list;
7703 	int i;
7704 
7705 	if (!sav->sav_sync)
7706 		return;
7707 
7708 	/*
7709 	 * Update the MOS nvlist describing the list of available devices.
7710 	 * spa_validate_aux() will have already made sure this nvlist is
7711 	 * valid and the vdevs are labeled appropriately.
7712 	 */
7713 	if (sav->sav_object == 0) {
7714 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
7715 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
7716 		    sizeof (uint64_t), tx);
7717 		VERIFY(zap_update(spa->spa_meta_objset,
7718 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
7719 		    &sav->sav_object, tx) == 0);
7720 	}
7721 
7722 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7723 	if (sav->sav_count == 0) {
7724 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
7725 	} else {
7726 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
7727 		for (i = 0; i < sav->sav_count; i++)
7728 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
7729 			    B_FALSE, VDEV_CONFIG_L2CACHE);
7730 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
7731 		    sav->sav_count) == 0);
7732 		for (i = 0; i < sav->sav_count; i++)
7733 			nvlist_free(list[i]);
7734 		kmem_free(list, sav->sav_count * sizeof (void *));
7735 	}
7736 
7737 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
7738 	nvlist_free(nvroot);
7739 
7740 	sav->sav_sync = B_FALSE;
7741 }
7742 
7743 /*
7744  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
7745  * The all-vdev ZAP must be empty.
7746  */
7747 static void
7748 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
7749 {
7750 	spa_t *spa = vd->vdev_spa;
7751 	if (vd->vdev_top_zap != 0) {
7752 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7753 		    vd->vdev_top_zap, tx));
7754 	}
7755 	if (vd->vdev_leaf_zap != 0) {
7756 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7757 		    vd->vdev_leaf_zap, tx));
7758 	}
7759 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
7760 		spa_avz_build(vd->vdev_child[i], avz, tx);
7761 	}
7762 }
7763 
7764 static void
7765 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
7766 {
7767 	nvlist_t *config;
7768 
7769 	/*
7770 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
7771 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
7772 	 * Similarly, if the pool is being assembled (e.g. after a split), we
7773 	 * need to rebuild the AVZ although the config may not be dirty.
7774 	 */
7775 	if (list_is_empty(&spa->spa_config_dirty_list) &&
7776 	    spa->spa_avz_action == AVZ_ACTION_NONE)
7777 		return;
7778 
7779 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7780 
7781 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
7782 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
7783 	    spa->spa_all_vdev_zaps != 0);
7784 
7785 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
7786 		/* Make and build the new AVZ */
7787 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
7788 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
7789 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
7790 
7791 		/* Diff old AVZ with new one */
7792 		zap_cursor_t zc;
7793 		zap_attribute_t za;
7794 
7795 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
7796 		    spa->spa_all_vdev_zaps);
7797 		    zap_cursor_retrieve(&zc, &za) == 0;
7798 		    zap_cursor_advance(&zc)) {
7799 			uint64_t vdzap = za.za_first_integer;
7800 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
7801 			    vdzap) == ENOENT) {
7802 				/*
7803 				 * ZAP is listed in old AVZ but not in new one;
7804 				 * destroy it
7805 				 */
7806 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
7807 				    tx));
7808 			}
7809 		}
7810 
7811 		zap_cursor_fini(&zc);
7812 
7813 		/* Destroy the old AVZ */
7814 		VERIFY0(zap_destroy(spa->spa_meta_objset,
7815 		    spa->spa_all_vdev_zaps, tx));
7816 
7817 		/* Replace the old AVZ in the dir obj with the new one */
7818 		VERIFY0(zap_update(spa->spa_meta_objset,
7819 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
7820 		    sizeof (new_avz), 1, &new_avz, tx));
7821 
7822 		spa->spa_all_vdev_zaps = new_avz;
7823 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
7824 		zap_cursor_t zc;
7825 		zap_attribute_t za;
7826 
7827 		/* Walk through the AVZ and destroy all listed ZAPs */
7828 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
7829 		    spa->spa_all_vdev_zaps);
7830 		    zap_cursor_retrieve(&zc, &za) == 0;
7831 		    zap_cursor_advance(&zc)) {
7832 			uint64_t zap = za.za_first_integer;
7833 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
7834 		}
7835 
7836 		zap_cursor_fini(&zc);
7837 
7838 		/* Destroy and unlink the AVZ itself */
7839 		VERIFY0(zap_destroy(spa->spa_meta_objset,
7840 		    spa->spa_all_vdev_zaps, tx));
7841 		VERIFY0(zap_remove(spa->spa_meta_objset,
7842 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
7843 		spa->spa_all_vdev_zaps = 0;
7844 	}
7845 
7846 	if (spa->spa_all_vdev_zaps == 0) {
7847 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
7848 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
7849 		    DMU_POOL_VDEV_ZAP_MAP, tx);
7850 	}
7851 	spa->spa_avz_action = AVZ_ACTION_NONE;
7852 
7853 	/* Create ZAPs for vdevs that don't have them. */
7854 	vdev_construct_zaps(spa->spa_root_vdev, tx);
7855 
7856 	config = spa_config_generate(spa, spa->spa_root_vdev,
7857 	    dmu_tx_get_txg(tx), B_FALSE);
7858 
7859 	/*
7860 	 * If we're upgrading the spa version then make sure that
7861 	 * the config object gets updated with the correct version.
7862 	 */
7863 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
7864 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7865 		    spa->spa_uberblock.ub_version);
7866 
7867 	spa_config_exit(spa, SCL_STATE, FTAG);
7868 
7869 	nvlist_free(spa->spa_config_syncing);
7870 	spa->spa_config_syncing = config;
7871 
7872 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
7873 }
7874 
7875 static void
7876 spa_sync_version(void *arg, dmu_tx_t *tx)
7877 {
7878 	uint64_t *versionp = arg;
7879 	uint64_t version = *versionp;
7880 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7881 
7882 	/*
7883 	 * Setting the version is special cased when first creating the pool.
7884 	 */
7885 	ASSERT(tx->tx_txg != TXG_INITIAL);
7886 
7887 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
7888 	ASSERT(version >= spa_version(spa));
7889 
7890 	spa->spa_uberblock.ub_version = version;
7891 	vdev_config_dirty(spa->spa_root_vdev);
7892 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
7893 }
7894 
7895 /*
7896  * Set zpool properties.
7897  */
7898 static void
7899 spa_sync_props(void *arg, dmu_tx_t *tx)
7900 {
7901 	nvlist_t *nvp = arg;
7902 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7903 	objset_t *mos = spa->spa_meta_objset;
7904 	nvpair_t *elem = NULL;
7905 
7906 	mutex_enter(&spa->spa_props_lock);
7907 
7908 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
7909 		uint64_t intval;
7910 		char *strval, *fname;
7911 		zpool_prop_t prop;
7912 		const char *propname;
7913 		zprop_type_t proptype;
7914 		spa_feature_t fid;
7915 
7916 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
7917 		case ZPOOL_PROP_INVAL:
7918 			/*
7919 			 * We checked this earlier in spa_prop_validate().
7920 			 */
7921 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
7922 
7923 			fname = strchr(nvpair_name(elem), '@') + 1;
7924 			VERIFY0(zfeature_lookup_name(fname, &fid));
7925 
7926 			spa_feature_enable(spa, fid, tx);
7927 			spa_history_log_internal(spa, "set", tx,
7928 			    "%s=enabled", nvpair_name(elem));
7929 			break;
7930 
7931 		case ZPOOL_PROP_VERSION:
7932 			intval = fnvpair_value_uint64(elem);
7933 			/*
7934 			 * The version is synced seperatly before other
7935 			 * properties and should be correct by now.
7936 			 */
7937 			ASSERT3U(spa_version(spa), >=, intval);
7938 			break;
7939 
7940 		case ZPOOL_PROP_ALTROOT:
7941 			/*
7942 			 * 'altroot' is a non-persistent property. It should
7943 			 * have been set temporarily at creation or import time.
7944 			 */
7945 			ASSERT(spa->spa_root != NULL);
7946 			break;
7947 
7948 		case ZPOOL_PROP_READONLY:
7949 		case ZPOOL_PROP_CACHEFILE:
7950 			/*
7951 			 * 'readonly' and 'cachefile' are also non-persisitent
7952 			 * properties.
7953 			 */
7954 			break;
7955 		case ZPOOL_PROP_COMMENT:
7956 			strval = fnvpair_value_string(elem);
7957 			if (spa->spa_comment != NULL)
7958 				spa_strfree(spa->spa_comment);
7959 			spa->spa_comment = spa_strdup(strval);
7960 			/*
7961 			 * We need to dirty the configuration on all the vdevs
7962 			 * so that their labels get updated.  It's unnecessary
7963 			 * to do this for pool creation since the vdev's
7964 			 * configuratoin has already been dirtied.
7965 			 */
7966 			if (tx->tx_txg != TXG_INITIAL)
7967 				vdev_config_dirty(spa->spa_root_vdev);
7968 			spa_history_log_internal(spa, "set", tx,
7969 			    "%s=%s", nvpair_name(elem), strval);
7970 			break;
7971 		default:
7972 			/*
7973 			 * Set pool property values in the poolprops mos object.
7974 			 */
7975 			if (spa->spa_pool_props_object == 0) {
7976 				spa->spa_pool_props_object =
7977 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
7978 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
7979 				    tx);
7980 			}
7981 
7982 			/* normalize the property name */
7983 			propname = zpool_prop_to_name(prop);
7984 			proptype = zpool_prop_get_type(prop);
7985 
7986 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
7987 				ASSERT(proptype == PROP_TYPE_STRING);
7988 				strval = fnvpair_value_string(elem);
7989 				VERIFY0(zap_update(mos,
7990 				    spa->spa_pool_props_object, propname,
7991 				    1, strlen(strval) + 1, strval, tx));
7992 				spa_history_log_internal(spa, "set", tx,
7993 				    "%s=%s", nvpair_name(elem), strval);
7994 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
7995 				intval = fnvpair_value_uint64(elem);
7996 
7997 				if (proptype == PROP_TYPE_INDEX) {
7998 					const char *unused;
7999 					VERIFY0(zpool_prop_index_to_string(
8000 					    prop, intval, &unused));
8001 				}
8002 				VERIFY0(zap_update(mos,
8003 				    spa->spa_pool_props_object, propname,
8004 				    8, 1, &intval, tx));
8005 				spa_history_log_internal(spa, "set", tx,
8006 				    "%s=%lld", nvpair_name(elem), intval);
8007 			} else {
8008 				ASSERT(0); /* not allowed */
8009 			}
8010 
8011 			switch (prop) {
8012 			case ZPOOL_PROP_DELEGATION:
8013 				spa->spa_delegation = intval;
8014 				break;
8015 			case ZPOOL_PROP_BOOTFS:
8016 				spa->spa_bootfs = intval;
8017 				break;
8018 			case ZPOOL_PROP_FAILUREMODE:
8019 				spa->spa_failmode = intval;
8020 				break;
8021 			case ZPOOL_PROP_AUTOTRIM:
8022 				spa->spa_autotrim = intval;
8023 				spa_async_request(spa,
8024 				    SPA_ASYNC_AUTOTRIM_RESTART);
8025 				break;
8026 			case ZPOOL_PROP_AUTOEXPAND:
8027 				spa->spa_autoexpand = intval;
8028 				if (tx->tx_txg != TXG_INITIAL)
8029 					spa_async_request(spa,
8030 					    SPA_ASYNC_AUTOEXPAND);
8031 				break;
8032 			case ZPOOL_PROP_MULTIHOST:
8033 				spa->spa_multihost = intval;
8034 				break;
8035 			case ZPOOL_PROP_DEDUPDITTO:
8036 				spa->spa_dedup_ditto = intval;
8037 				break;
8038 			default:
8039 				break;
8040 			}
8041 		}
8042 
8043 	}
8044 
8045 	mutex_exit(&spa->spa_props_lock);
8046 }
8047 
8048 /*
8049  * Perform one-time upgrade on-disk changes.  spa_version() does not
8050  * reflect the new version this txg, so there must be no changes this
8051  * txg to anything that the upgrade code depends on after it executes.
8052  * Therefore this must be called after dsl_pool_sync() does the sync
8053  * tasks.
8054  */
8055 static void
8056 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
8057 {
8058 	if (spa_sync_pass(spa) != 1)
8059 		return;
8060 
8061 	dsl_pool_t *dp = spa->spa_dsl_pool;
8062 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
8063 
8064 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
8065 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
8066 		dsl_pool_create_origin(dp, tx);
8067 
8068 		/* Keeping the origin open increases spa_minref */
8069 		spa->spa_minref += 3;
8070 	}
8071 
8072 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
8073 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
8074 		dsl_pool_upgrade_clones(dp, tx);
8075 	}
8076 
8077 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
8078 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
8079 		dsl_pool_upgrade_dir_clones(dp, tx);
8080 
8081 		/* Keeping the freedir open increases spa_minref */
8082 		spa->spa_minref += 3;
8083 	}
8084 
8085 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
8086 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8087 		spa_feature_create_zap_objects(spa, tx);
8088 	}
8089 
8090 	/*
8091 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
8092 	 * when possibility to use lz4 compression for metadata was added
8093 	 * Old pools that have this feature enabled must be upgraded to have
8094 	 * this feature active
8095 	 */
8096 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8097 		boolean_t lz4_en = spa_feature_is_enabled(spa,
8098 		    SPA_FEATURE_LZ4_COMPRESS);
8099 		boolean_t lz4_ac = spa_feature_is_active(spa,
8100 		    SPA_FEATURE_LZ4_COMPRESS);
8101 
8102 		if (lz4_en && !lz4_ac)
8103 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
8104 	}
8105 
8106 	/*
8107 	 * If we haven't written the salt, do so now.  Note that the
8108 	 * feature may not be activated yet, but that's fine since
8109 	 * the presence of this ZAP entry is backwards compatible.
8110 	 */
8111 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8112 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
8113 		VERIFY0(zap_add(spa->spa_meta_objset,
8114 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
8115 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
8116 		    spa->spa_cksum_salt.zcs_bytes, tx));
8117 	}
8118 
8119 	rrw_exit(&dp->dp_config_rwlock, FTAG);
8120 }
8121 
8122 static void
8123 vdev_indirect_state_sync_verify(vdev_t *vd)
8124 {
8125 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
8126 	vdev_indirect_births_t *vib = vd->vdev_indirect_births;
8127 
8128 	if (vd->vdev_ops == &vdev_indirect_ops) {
8129 		ASSERT(vim != NULL);
8130 		ASSERT(vib != NULL);
8131 	}
8132 
8133 	if (vdev_obsolete_sm_object(vd) != 0) {
8134 		ASSERT(vd->vdev_obsolete_sm != NULL);
8135 		ASSERT(vd->vdev_removing ||
8136 		    vd->vdev_ops == &vdev_indirect_ops);
8137 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
8138 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
8139 
8140 		ASSERT3U(vdev_obsolete_sm_object(vd), ==,
8141 		    space_map_object(vd->vdev_obsolete_sm));
8142 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
8143 		    space_map_allocated(vd->vdev_obsolete_sm));
8144 	}
8145 	ASSERT(vd->vdev_obsolete_segments != NULL);
8146 
8147 	/*
8148 	 * Since frees / remaps to an indirect vdev can only
8149 	 * happen in syncing context, the obsolete segments
8150 	 * tree must be empty when we start syncing.
8151 	 */
8152 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
8153 }
8154 
8155 /*
8156  * Set the top-level vdev's max queue depth. Evaluate each top-level's
8157  * async write queue depth in case it changed. The max queue depth will
8158  * not change in the middle of syncing out this txg.
8159  */
8160 static void
8161 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
8162 {
8163 	ASSERT(spa_writeable(spa));
8164 
8165 	vdev_t *rvd = spa->spa_root_vdev;
8166 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
8167 	    zfs_vdev_queue_depth_pct / 100;
8168 	metaslab_class_t *normal = spa_normal_class(spa);
8169 	metaslab_class_t *special = spa_special_class(spa);
8170 	metaslab_class_t *dedup = spa_dedup_class(spa);
8171 
8172 	uint64_t slots_per_allocator = 0;
8173 	for (int c = 0; c < rvd->vdev_children; c++) {
8174 		vdev_t *tvd = rvd->vdev_child[c];
8175 
8176 		metaslab_group_t *mg = tvd->vdev_mg;
8177 		if (mg == NULL || !metaslab_group_initialized(mg))
8178 			continue;
8179 
8180 		metaslab_class_t *mc = mg->mg_class;
8181 		if (mc != normal && mc != special && mc != dedup)
8182 			continue;
8183 
8184 		/*
8185 		 * It is safe to do a lock-free check here because only async
8186 		 * allocations look at mg_max_alloc_queue_depth, and async
8187 		 * allocations all happen from spa_sync().
8188 		 */
8189 		for (int i = 0; i < spa->spa_alloc_count; i++)
8190 			ASSERT0(zfs_refcount_count(
8191 			    &(mg->mg_alloc_queue_depth[i])));
8192 		mg->mg_max_alloc_queue_depth = max_queue_depth;
8193 
8194 		for (int i = 0; i < spa->spa_alloc_count; i++) {
8195 			mg->mg_cur_max_alloc_queue_depth[i] =
8196 			    zfs_vdev_def_queue_depth;
8197 		}
8198 		slots_per_allocator += zfs_vdev_def_queue_depth;
8199 	}
8200 
8201 	for (int i = 0; i < spa->spa_alloc_count; i++) {
8202 		ASSERT0(zfs_refcount_count(&normal->mc_alloc_slots[i]));
8203 		ASSERT0(zfs_refcount_count(&special->mc_alloc_slots[i]));
8204 		ASSERT0(zfs_refcount_count(&dedup->mc_alloc_slots[i]));
8205 		normal->mc_alloc_max_slots[i] = slots_per_allocator;
8206 		special->mc_alloc_max_slots[i] = slots_per_allocator;
8207 		dedup->mc_alloc_max_slots[i] = slots_per_allocator;
8208 	}
8209 	normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8210 	special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8211 	dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8212 }
8213 
8214 static void
8215 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
8216 {
8217 	ASSERT(spa_writeable(spa));
8218 
8219 	vdev_t *rvd = spa->spa_root_vdev;
8220 	for (int c = 0; c < rvd->vdev_children; c++) {
8221 		vdev_t *vd = rvd->vdev_child[c];
8222 		vdev_indirect_state_sync_verify(vd);
8223 
8224 		if (vdev_indirect_should_condense(vd)) {
8225 			spa_condense_indirect_start_sync(vd, tx);
8226 			break;
8227 		}
8228 	}
8229 }
8230 
8231 static void
8232 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
8233 {
8234 	objset_t *mos = spa->spa_meta_objset;
8235 	dsl_pool_t *dp = spa->spa_dsl_pool;
8236 	uint64_t txg = tx->tx_txg;
8237 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
8238 
8239 	do {
8240 		int pass = ++spa->spa_sync_pass;
8241 
8242 		spa_sync_config_object(spa, tx);
8243 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
8244 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
8245 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
8246 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
8247 		spa_errlog_sync(spa, txg);
8248 		dsl_pool_sync(dp, txg);
8249 
8250 		if (pass < zfs_sync_pass_deferred_free ||
8251 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
8252 			/*
8253 			 * If the log space map feature is active we don't
8254 			 * care about deferred frees and the deferred bpobj
8255 			 * as the log space map should effectively have the
8256 			 * same results (i.e. appending only to one object).
8257 			 */
8258 			spa_sync_frees(spa, free_bpl, tx);
8259 		} else {
8260 			/*
8261 			 * We can not defer frees in pass 1, because
8262 			 * we sync the deferred frees later in pass 1.
8263 			 */
8264 			ASSERT3U(pass, >, 1);
8265 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
8266 			    &spa->spa_deferred_bpobj, tx);
8267 		}
8268 
8269 		ddt_sync(spa, txg);
8270 		dsl_scan_sync(dp, tx);
8271 		svr_sync(spa, tx);
8272 		spa_sync_upgrades(spa, tx);
8273 
8274 		spa_flush_metaslabs(spa, tx);
8275 
8276 		vdev_t *vd = NULL;
8277 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
8278 		    != NULL)
8279 			vdev_sync(vd, txg);
8280 
8281 		/*
8282 		 * Note: We need to check if the MOS is dirty because we could
8283 		 * have marked the MOS dirty without updating the uberblock
8284 		 * (e.g. if we have sync tasks but no dirty user data). We need
8285 		 * to check the uberblock's rootbp because it is updated if we
8286 		 * have synced out dirty data (though in this case the MOS will
8287 		 * most likely also be dirty due to second order effects, we
8288 		 * don't want to rely on that here).
8289 		 */
8290 		if (pass == 1 &&
8291 		    spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
8292 		    !dmu_objset_is_dirty(mos, txg)) {
8293 			/*
8294 			 * Nothing changed on the first pass, therefore this
8295 			 * TXG is a no-op. Avoid syncing deferred frees, so
8296 			 * that we can keep this TXG as a no-op.
8297 			 */
8298 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
8299 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8300 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
8301 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
8302 			break;
8303 		}
8304 
8305 		spa_sync_deferred_frees(spa, tx);
8306 	} while (dmu_objset_is_dirty(mos, txg));
8307 }
8308 
8309 /*
8310  * Rewrite the vdev configuration (which includes the uberblock) to
8311  * commit the transaction group.
8312  *
8313  * If there are no dirty vdevs, we sync the uberblock to a few random
8314  * top-level vdevs that are known to be visible in the config cache
8315  * (see spa_vdev_add() for a complete description). If there *are* dirty
8316  * vdevs, sync the uberblock to all vdevs.
8317  */
8318 static void
8319 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
8320 {
8321 	vdev_t *rvd = spa->spa_root_vdev;
8322 	uint64_t txg = tx->tx_txg;
8323 
8324 	for (;;) {
8325 		int error = 0;
8326 
8327 		/*
8328 		 * We hold SCL_STATE to prevent vdev open/close/etc.
8329 		 * while we're attempting to write the vdev labels.
8330 		 */
8331 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8332 
8333 		if (list_is_empty(&spa->spa_config_dirty_list)) {
8334 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
8335 			int svdcount = 0;
8336 			int children = rvd->vdev_children;
8337 			int c0 = spa_get_random(children);
8338 
8339 			for (int c = 0; c < children; c++) {
8340 				vdev_t *vd =
8341 				    rvd->vdev_child[(c0 + c) % children];
8342 
8343 				/* Stop when revisiting the first vdev */
8344 				if (c > 0 && svd[0] == vd)
8345 					break;
8346 
8347 				if (vd->vdev_ms_array == 0 ||
8348 				    vd->vdev_islog ||
8349 				    !vdev_is_concrete(vd))
8350 					continue;
8351 
8352 				svd[svdcount++] = vd;
8353 				if (svdcount == SPA_SYNC_MIN_VDEVS)
8354 					break;
8355 			}
8356 			error = vdev_config_sync(svd, svdcount, txg);
8357 		} else {
8358 			error = vdev_config_sync(rvd->vdev_child,
8359 			    rvd->vdev_children, txg);
8360 		}
8361 
8362 		if (error == 0)
8363 			spa->spa_last_synced_guid = rvd->vdev_guid;
8364 
8365 		spa_config_exit(spa, SCL_STATE, FTAG);
8366 
8367 		if (error == 0)
8368 			break;
8369 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
8370 		zio_resume_wait(spa);
8371 	}
8372 }
8373 
8374 /*
8375  * Sync the specified transaction group.  New blocks may be dirtied as
8376  * part of the process, so we iterate until it converges.
8377  */
8378 void
8379 spa_sync(spa_t *spa, uint64_t txg)
8380 {
8381 	vdev_t *vd = NULL;
8382 
8383 	VERIFY(spa_writeable(spa));
8384 
8385 	/*
8386 	 * Wait for i/os issued in open context that need to complete
8387 	 * before this txg syncs.
8388 	 */
8389 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
8390 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
8391 	    ZIO_FLAG_CANFAIL);
8392 
8393 	/*
8394 	 * Lock out configuration changes.
8395 	 */
8396 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8397 
8398 	spa->spa_syncing_txg = txg;
8399 	spa->spa_sync_pass = 0;
8400 
8401 	for (int i = 0; i < spa->spa_alloc_count; i++) {
8402 		mutex_enter(&spa->spa_alloc_locks[i]);
8403 		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
8404 		mutex_exit(&spa->spa_alloc_locks[i]);
8405 	}
8406 
8407 	/*
8408 	 * If there are any pending vdev state changes, convert them
8409 	 * into config changes that go out with this transaction group.
8410 	 */
8411 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8412 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
8413 		/*
8414 		 * We need the write lock here because, for aux vdevs,
8415 		 * calling vdev_config_dirty() modifies sav_config.
8416 		 * This is ugly and will become unnecessary when we
8417 		 * eliminate the aux vdev wart by integrating all vdevs
8418 		 * into the root vdev tree.
8419 		 */
8420 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8421 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
8422 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
8423 			vdev_state_clean(vd);
8424 			vdev_config_dirty(vd);
8425 		}
8426 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8427 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8428 	}
8429 	spa_config_exit(spa, SCL_STATE, FTAG);
8430 
8431 	dsl_pool_t *dp = spa->spa_dsl_pool;
8432 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
8433 
8434 	spa->spa_sync_starttime = gethrtime();
8435 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
8436 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
8437 
8438 	/*
8439 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
8440 	 * set spa_deflate if we have no raid-z vdevs.
8441 	 */
8442 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
8443 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
8444 		vdev_t *rvd = spa->spa_root_vdev;
8445 
8446 		int i;
8447 		for (i = 0; i < rvd->vdev_children; i++) {
8448 			vd = rvd->vdev_child[i];
8449 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
8450 				break;
8451 		}
8452 		if (i == rvd->vdev_children) {
8453 			spa->spa_deflate = TRUE;
8454 			VERIFY0(zap_add(spa->spa_meta_objset,
8455 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
8456 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
8457 		}
8458 	}
8459 
8460 	spa_sync_adjust_vdev_max_queue_depth(spa);
8461 
8462 	spa_sync_condense_indirect(spa, tx);
8463 
8464 	spa_sync_iterate_to_convergence(spa, tx);
8465 
8466 #ifdef ZFS_DEBUG
8467 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
8468 		/*
8469 		 * Make sure that the number of ZAPs for all the vdevs matches
8470 		 * the number of ZAPs in the per-vdev ZAP list. This only gets
8471 		 * called if the config is dirty; otherwise there may be
8472 		 * outstanding AVZ operations that weren't completed in
8473 		 * spa_sync_config_object.
8474 		 */
8475 		uint64_t all_vdev_zap_entry_count;
8476 		ASSERT0(zap_count(spa->spa_meta_objset,
8477 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
8478 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
8479 		    all_vdev_zap_entry_count);
8480 	}
8481 #endif
8482 
8483 	if (spa->spa_vdev_removal != NULL) {
8484 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
8485 	}
8486 
8487 	spa_sync_rewrite_vdev_config(spa, tx);
8488 	dmu_tx_commit(tx);
8489 
8490 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
8491 
8492 	/*
8493 	 * Clear the dirty config list.
8494 	 */
8495 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
8496 		vdev_config_clean(vd);
8497 
8498 	/*
8499 	 * Now that the new config has synced transactionally,
8500 	 * let it become visible to the config cache.
8501 	 */
8502 	if (spa->spa_config_syncing != NULL) {
8503 		spa_config_set(spa, spa->spa_config_syncing);
8504 		spa->spa_config_txg = txg;
8505 		spa->spa_config_syncing = NULL;
8506 	}
8507 
8508 	dsl_pool_sync_done(dp, txg);
8509 
8510 	for (int i = 0; i < spa->spa_alloc_count; i++) {
8511 		mutex_enter(&spa->spa_alloc_locks[i]);
8512 		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
8513 		mutex_exit(&spa->spa_alloc_locks[i]);
8514 	}
8515 
8516 	/*
8517 	 * Update usable space statistics.
8518 	 */
8519 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
8520 	    != NULL)
8521 		vdev_sync_done(vd, txg);
8522 	spa_sync_close_syncing_log_sm(spa);
8523 
8524 	spa_update_dspace(spa);
8525 
8526 	/*
8527 	 * It had better be the case that we didn't dirty anything
8528 	 * since vdev_config_sync().
8529 	 */
8530 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
8531 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8532 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
8533 
8534 	while (zfs_pause_spa_sync)
8535 		delay(1);
8536 
8537 	spa->spa_sync_pass = 0;
8538 
8539 	/*
8540 	 * Update the last synced uberblock here. We want to do this at
8541 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
8542 	 * will be guaranteed that all the processing associated with
8543 	 * that txg has been completed.
8544 	 */
8545 	spa->spa_ubsync = spa->spa_uberblock;
8546 	spa_config_exit(spa, SCL_CONFIG, FTAG);
8547 
8548 	spa_handle_ignored_writes(spa);
8549 
8550 	/*
8551 	 * If any async tasks have been requested, kick them off.
8552 	 */
8553 	spa_async_dispatch(spa);
8554 }
8555 
8556 /*
8557  * Sync all pools.  We don't want to hold the namespace lock across these
8558  * operations, so we take a reference on the spa_t and drop the lock during the
8559  * sync.
8560  */
8561 void
8562 spa_sync_allpools(void)
8563 {
8564 	spa_t *spa = NULL;
8565 	mutex_enter(&spa_namespace_lock);
8566 	while ((spa = spa_next(spa)) != NULL) {
8567 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
8568 		    !spa_writeable(spa) || spa_suspended(spa))
8569 			continue;
8570 		spa_open_ref(spa, FTAG);
8571 		mutex_exit(&spa_namespace_lock);
8572 		txg_wait_synced(spa_get_dsl(spa), 0);
8573 		mutex_enter(&spa_namespace_lock);
8574 		spa_close(spa, FTAG);
8575 	}
8576 	mutex_exit(&spa_namespace_lock);
8577 }
8578 
8579 /*
8580  * ==========================================================================
8581  * Miscellaneous routines
8582  * ==========================================================================
8583  */
8584 
8585 /*
8586  * Remove all pools in the system.
8587  */
8588 void
8589 spa_evict_all(void)
8590 {
8591 	spa_t *spa;
8592 
8593 	/*
8594 	 * Remove all cached state.  All pools should be closed now,
8595 	 * so every spa in the AVL tree should be unreferenced.
8596 	 */
8597 	mutex_enter(&spa_namespace_lock);
8598 	while ((spa = spa_next(NULL)) != NULL) {
8599 		/*
8600 		 * Stop async tasks.  The async thread may need to detach
8601 		 * a device that's been replaced, which requires grabbing
8602 		 * spa_namespace_lock, so we must drop it here.
8603 		 */
8604 		spa_open_ref(spa, FTAG);
8605 		mutex_exit(&spa_namespace_lock);
8606 		spa_async_suspend(spa);
8607 		mutex_enter(&spa_namespace_lock);
8608 		spa_close(spa, FTAG);
8609 
8610 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
8611 			spa_unload(spa);
8612 			spa_deactivate(spa);
8613 		}
8614 		spa_remove(spa);
8615 	}
8616 	mutex_exit(&spa_namespace_lock);
8617 }
8618 
8619 vdev_t *
8620 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
8621 {
8622 	vdev_t *vd;
8623 	int i;
8624 
8625 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
8626 		return (vd);
8627 
8628 	if (aux) {
8629 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
8630 			vd = spa->spa_l2cache.sav_vdevs[i];
8631 			if (vd->vdev_guid == guid)
8632 				return (vd);
8633 		}
8634 
8635 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
8636 			vd = spa->spa_spares.sav_vdevs[i];
8637 			if (vd->vdev_guid == guid)
8638 				return (vd);
8639 		}
8640 	}
8641 
8642 	return (NULL);
8643 }
8644 
8645 void
8646 spa_upgrade(spa_t *spa, uint64_t version)
8647 {
8648 	ASSERT(spa_writeable(spa));
8649 
8650 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8651 
8652 	/*
8653 	 * This should only be called for a non-faulted pool, and since a
8654 	 * future version would result in an unopenable pool, this shouldn't be
8655 	 * possible.
8656 	 */
8657 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
8658 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
8659 
8660 	spa->spa_uberblock.ub_version = version;
8661 	vdev_config_dirty(spa->spa_root_vdev);
8662 
8663 	spa_config_exit(spa, SCL_ALL, FTAG);
8664 
8665 	txg_wait_synced(spa_get_dsl(spa), 0);
8666 }
8667 
8668 boolean_t
8669 spa_has_spare(spa_t *spa, uint64_t guid)
8670 {
8671 	int i;
8672 	uint64_t spareguid;
8673 	spa_aux_vdev_t *sav = &spa->spa_spares;
8674 
8675 	for (i = 0; i < sav->sav_count; i++)
8676 		if (sav->sav_vdevs[i]->vdev_guid == guid)
8677 			return (B_TRUE);
8678 
8679 	for (i = 0; i < sav->sav_npending; i++) {
8680 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
8681 		    &spareguid) == 0 && spareguid == guid)
8682 			return (B_TRUE);
8683 	}
8684 
8685 	return (B_FALSE);
8686 }
8687 
8688 /*
8689  * Check if a pool has an active shared spare device.
8690  * Note: reference count of an active spare is 2, as a spare and as a replace
8691  */
8692 static boolean_t
8693 spa_has_active_shared_spare(spa_t *spa)
8694 {
8695 	int i, refcnt;
8696 	uint64_t pool;
8697 	spa_aux_vdev_t *sav = &spa->spa_spares;
8698 
8699 	for (i = 0; i < sav->sav_count; i++) {
8700 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
8701 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
8702 		    refcnt > 2)
8703 			return (B_TRUE);
8704 	}
8705 
8706 	return (B_FALSE);
8707 }
8708 
8709 uint64_t
8710 spa_total_metaslabs(spa_t *spa)
8711 {
8712 	vdev_t *rvd = spa->spa_root_vdev;
8713 	uint64_t m = 0;
8714 
8715 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
8716 		vdev_t *vd = rvd->vdev_child[c];
8717 		if (!vdev_is_concrete(vd))
8718 			continue;
8719 		m += vd->vdev_ms_count;
8720 	}
8721 	return (m);
8722 }
8723 
8724 sysevent_t *
8725 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8726 {
8727 	sysevent_t		*ev = NULL;
8728 #ifdef _KERNEL
8729 	sysevent_attr_list_t	*attr = NULL;
8730 	sysevent_value_t	value;
8731 
8732 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
8733 	    SE_SLEEP);
8734 	ASSERT(ev != NULL);
8735 
8736 	value.value_type = SE_DATA_TYPE_STRING;
8737 	value.value.sv_string = spa_name(spa);
8738 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
8739 		goto done;
8740 
8741 	value.value_type = SE_DATA_TYPE_UINT64;
8742 	value.value.sv_uint64 = spa_guid(spa);
8743 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
8744 		goto done;
8745 
8746 	if (vd) {
8747 		value.value_type = SE_DATA_TYPE_UINT64;
8748 		value.value.sv_uint64 = vd->vdev_guid;
8749 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
8750 		    SE_SLEEP) != 0)
8751 			goto done;
8752 
8753 		if (vd->vdev_path) {
8754 			value.value_type = SE_DATA_TYPE_STRING;
8755 			value.value.sv_string = vd->vdev_path;
8756 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
8757 			    &value, SE_SLEEP) != 0)
8758 				goto done;
8759 		}
8760 	}
8761 
8762 	if (hist_nvl != NULL) {
8763 		fnvlist_merge((nvlist_t *)attr, hist_nvl);
8764 	}
8765 
8766 	if (sysevent_attach_attributes(ev, attr) != 0)
8767 		goto done;
8768 	attr = NULL;
8769 
8770 done:
8771 	if (attr)
8772 		sysevent_free_attr(attr);
8773 
8774 #endif
8775 	return (ev);
8776 }
8777 
8778 void
8779 spa_event_post(sysevent_t *ev)
8780 {
8781 #ifdef _KERNEL
8782 	sysevent_id_t		eid;
8783 
8784 	(void) log_sysevent(ev, SE_SLEEP, &eid);
8785 	sysevent_free(ev);
8786 #endif
8787 }
8788 
8789 void
8790 spa_event_discard(sysevent_t *ev)
8791 {
8792 #ifdef _KERNEL
8793 	sysevent_free(ev);
8794 #endif
8795 }
8796 
8797 /*
8798  * Post a sysevent corresponding to the given event.  The 'name' must be one of
8799  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
8800  * filled in from the spa and (optionally) the vdev and history nvl.  This
8801  * doesn't do anything in the userland libzpool, as we don't want consumers to
8802  * misinterpret ztest or zdb as real changes.
8803  */
8804 void
8805 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8806 {
8807 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
8808 }
8809