xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_label.c (revision 6b2ab905)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  * Copyright 2019 Joyent, Inc.
27  */
28 
29 /*
30  * Virtual Device Labels
31  * ---------------------
32  *
33  * The vdev label serves several distinct purposes:
34  *
35  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
36  *	   identity within the pool.
37  *
38  *	2. Verify that all the devices given in a configuration are present
39  *         within the pool.
40  *
41  *	3. Determine the uberblock for the pool.
42  *
43  *	4. In case of an import operation, determine the configuration of the
44  *         toplevel vdev of which it is a part.
45  *
46  *	5. If an import operation cannot find all the devices in the pool,
47  *         provide enough information to the administrator to determine which
48  *         devices are missing.
49  *
50  * It is important to note that while the kernel is responsible for writing the
51  * label, it only consumes the information in the first three cases.  The
52  * latter information is only consumed in userland when determining the
53  * configuration to import a pool.
54  *
55  *
56  * Label Organization
57  * ------------------
58  *
59  * Before describing the contents of the label, it's important to understand how
60  * the labels are written and updated with respect to the uberblock.
61  *
62  * When the pool configuration is altered, either because it was newly created
63  * or a device was added, we want to update all the labels such that we can deal
64  * with fatal failure at any point.  To this end, each disk has two labels which
65  * are updated before and after the uberblock is synced.  Assuming we have
66  * labels and an uberblock with the following transaction groups:
67  *
68  *              L1          UB          L2
69  *           +------+    +------+    +------+
70  *           |      |    |      |    |      |
71  *           | t10  |    | t10  |    | t10  |
72  *           |      |    |      |    |      |
73  *           +------+    +------+    +------+
74  *
75  * In this stable state, the labels and the uberblock were all updated within
76  * the same transaction group (10).  Each label is mirrored and checksummed, so
77  * that we can detect when we fail partway through writing the label.
78  *
79  * In order to identify which labels are valid, the labels are written in the
80  * following manner:
81  *
82  *	1. For each vdev, update 'L1' to the new label
83  *	2. Update the uberblock
84  *	3. For each vdev, update 'L2' to the new label
85  *
86  * Given arbitrary failure, we can determine the correct label to use based on
87  * the transaction group.  If we fail after updating L1 but before updating the
88  * UB, we will notice that L1's transaction group is greater than the uberblock,
89  * so L2 must be valid.  If we fail after writing the uberblock but before
90  * writing L2, we will notice that L2's transaction group is less than L1, and
91  * therefore L1 is valid.
92  *
93  * Another added complexity is that not every label is updated when the config
94  * is synced.  If we add a single device, we do not want to have to re-write
95  * every label for every device in the pool.  This means that both L1 and L2 may
96  * be older than the pool uberblock, because the necessary information is stored
97  * on another vdev.
98  *
99  *
100  * On-disk Format
101  * --------------
102  *
103  * The vdev label consists of two distinct parts, and is wrapped within the
104  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
105  * VTOC disk labels, but is otherwise ignored.
106  *
107  * The first half of the label is a packed nvlist which contains pool wide
108  * properties, per-vdev properties, and configuration information.  It is
109  * described in more detail below.
110  *
111  * The latter half of the label consists of a redundant array of uberblocks.
112  * These uberblocks are updated whenever a transaction group is committed,
113  * or when the configuration is updated.  When a pool is loaded, we scan each
114  * vdev for the 'best' uberblock.
115  *
116  *
117  * Configuration Information
118  * -------------------------
119  *
120  * The nvlist describing the pool and vdev contains the following elements:
121  *
122  *	version		ZFS on-disk version
123  *	name		Pool name
124  *	state		Pool state
125  *	txg		Transaction group in which this label was written
126  *	pool_guid	Unique identifier for this pool
127  *	vdev_tree	An nvlist describing vdev tree.
128  *	features_for_read
129  *			An nvlist of the features necessary for reading the MOS.
130  *
131  * Each leaf device label also contains the following:
132  *
133  *	top_guid	Unique ID for top-level vdev in which this is contained
134  *	guid		Unique ID for the leaf vdev
135  *
136  * The 'vs' configuration follows the format described in 'spa_config.c'.
137  */
138 
139 #include <sys/zfs_context.h>
140 #include <sys/spa.h>
141 #include <sys/spa_impl.h>
142 #include <sys/dmu.h>
143 #include <sys/zap.h>
144 #include <sys/vdev.h>
145 #include <sys/vdev_impl.h>
146 #include <sys/uberblock_impl.h>
147 #include <sys/metaslab.h>
148 #include <sys/metaslab_impl.h>
149 #include <sys/zio.h>
150 #include <sys/dsl_scan.h>
151 #include <sys/abd.h>
152 #include <sys/fs/zfs.h>
153 
154 /*
155  * Basic routines to read and write from a vdev label.
156  * Used throughout the rest of this file.
157  */
158 uint64_t
159 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
160 {
161 	ASSERT(offset < sizeof (vdev_label_t));
162 	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
163 
164 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
165 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
166 }
167 
168 /*
169  * Returns back the vdev label associated with the passed in offset.
170  */
171 int
172 vdev_label_number(uint64_t psize, uint64_t offset)
173 {
174 	int l;
175 
176 	if (offset >= psize - VDEV_LABEL_END_SIZE) {
177 		offset -= psize - VDEV_LABEL_END_SIZE;
178 		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
179 	}
180 	l = offset / sizeof (vdev_label_t);
181 	return (l < VDEV_LABELS ? l : -1);
182 }
183 
184 static void
185 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
186     uint64_t size, zio_done_func_t *done, void *private, int flags)
187 {
188 	ASSERT(
189 	    spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
190 	    spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
191 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
192 
193 	zio_nowait(zio_read_phys(zio, vd,
194 	    vdev_label_offset(vd->vdev_psize, l, offset),
195 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
196 	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
197 }
198 
199 void
200 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
201     uint64_t size, zio_done_func_t *done, void *private, int flags)
202 {
203 	ASSERT(
204 	    spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
205 	    spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
206 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
207 
208 	zio_nowait(zio_write_phys(zio, vd,
209 	    vdev_label_offset(vd->vdev_psize, l, offset),
210 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
211 	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
212 }
213 
214 static void
215 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
216 {
217 	spa_t *spa = vd->vdev_spa;
218 
219 	if (vd != spa->spa_root_vdev)
220 		return;
221 
222 	/* provide either current or previous scan information */
223 	pool_scan_stat_t ps;
224 	if (spa_scan_get_stats(spa, &ps) == 0) {
225 		fnvlist_add_uint64_array(nvl,
226 		    ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
227 		    sizeof (pool_scan_stat_t) / sizeof (uint64_t));
228 	}
229 
230 	pool_removal_stat_t prs;
231 	if (spa_removal_get_stats(spa, &prs) == 0) {
232 		fnvlist_add_uint64_array(nvl,
233 		    ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
234 		    sizeof (prs) / sizeof (uint64_t));
235 	}
236 
237 	pool_checkpoint_stat_t pcs;
238 	if (spa_checkpoint_get_stats(spa, &pcs) == 0) {
239 		fnvlist_add_uint64_array(nvl,
240 		    ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs,
241 		    sizeof (pcs) / sizeof (uint64_t));
242 	}
243 }
244 
245 /*
246  * Generate the nvlist representing this vdev's config.
247  */
248 nvlist_t *
249 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
250     vdev_config_flag_t flags)
251 {
252 	nvlist_t *nv = NULL;
253 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
254 
255 	nv = fnvlist_alloc();
256 
257 	fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
258 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
259 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
260 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
261 
262 	if (vd->vdev_path != NULL)
263 		fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
264 
265 	if (vd->vdev_devid != NULL)
266 		fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
267 
268 	if (vd->vdev_physpath != NULL)
269 		fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
270 		    vd->vdev_physpath);
271 
272 	if (vd->vdev_fru != NULL)
273 		fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
274 
275 	if (vd->vdev_nparity != 0) {
276 		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
277 		    VDEV_TYPE_RAIDZ) == 0);
278 
279 		/*
280 		 * Make sure someone hasn't managed to sneak a fancy new vdev
281 		 * into a crufty old storage pool.
282 		 */
283 		ASSERT(vd->vdev_nparity == 1 ||
284 		    (vd->vdev_nparity <= 2 &&
285 		    spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
286 		    (vd->vdev_nparity <= 3 &&
287 		    spa_version(spa) >= SPA_VERSION_RAIDZ3));
288 
289 		/*
290 		 * Note that we'll add the nparity tag even on storage pools
291 		 * that only support a single parity device -- older software
292 		 * will just ignore it.
293 		 */
294 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
295 	}
296 
297 	if (vd->vdev_wholedisk != -1ULL)
298 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
299 		    vd->vdev_wholedisk);
300 
301 	if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
302 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
303 
304 	if (vd->vdev_isspare)
305 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
306 
307 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
308 	    vd == vd->vdev_top) {
309 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
310 		    vd->vdev_ms_array);
311 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
312 		    vd->vdev_ms_shift);
313 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
314 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
315 		    vd->vdev_asize);
316 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
317 		if (vd->vdev_removing) {
318 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
319 			    vd->vdev_removing);
320 		}
321 
322 		/* zpool command expects alloc class data */
323 		if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) {
324 			const char *bias = NULL;
325 
326 			switch (vd->vdev_alloc_bias) {
327 			case VDEV_BIAS_LOG:
328 				bias = VDEV_ALLOC_BIAS_LOG;
329 				break;
330 			case VDEV_BIAS_SPECIAL:
331 				bias = VDEV_ALLOC_BIAS_SPECIAL;
332 				break;
333 			case VDEV_BIAS_DEDUP:
334 				bias = VDEV_ALLOC_BIAS_DEDUP;
335 				break;
336 			default:
337 				ASSERT3U(vd->vdev_alloc_bias, ==,
338 				    VDEV_BIAS_NONE);
339 			}
340 			fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
341 			    bias);
342 		}
343 	}
344 
345 	if (vd->vdev_dtl_sm != NULL) {
346 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
347 		    space_map_object(vd->vdev_dtl_sm));
348 	}
349 
350 	if (vic->vic_mapping_object != 0) {
351 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
352 		    vic->vic_mapping_object);
353 	}
354 
355 	if (vic->vic_births_object != 0) {
356 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
357 		    vic->vic_births_object);
358 	}
359 
360 	if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
361 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
362 		    vic->vic_prev_indirect_vdev);
363 	}
364 
365 	if (vd->vdev_crtxg)
366 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
367 
368 	if (flags & VDEV_CONFIG_MOS) {
369 		if (vd->vdev_leaf_zap != 0) {
370 			ASSERT(vd->vdev_ops->vdev_op_leaf);
371 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
372 			    vd->vdev_leaf_zap);
373 		}
374 
375 		if (vd->vdev_top_zap != 0) {
376 			ASSERT(vd == vd->vdev_top);
377 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
378 			    vd->vdev_top_zap);
379 		}
380 
381 		if (vd->vdev_resilver_deferred) {
382 			ASSERT(vd->vdev_ops->vdev_op_leaf);
383 			ASSERT(spa->spa_resilver_deferred);
384 			fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER);
385 		}
386 	}
387 
388 	if (getstats) {
389 		vdev_stat_t vs;
390 
391 		vdev_get_stats(vd, &vs);
392 		fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
393 		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t));
394 
395 		root_vdev_actions_getprogress(vd, nv);
396 
397 		/*
398 		 * Note: this can be called from open context
399 		 * (spa_get_stats()), so we need the rwlock to prevent
400 		 * the mapping from being changed by condensing.
401 		 */
402 		rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
403 		if (vd->vdev_indirect_mapping != NULL) {
404 			ASSERT(vd->vdev_indirect_births != NULL);
405 			vdev_indirect_mapping_t *vim =
406 			    vd->vdev_indirect_mapping;
407 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
408 			    vdev_indirect_mapping_size(vim));
409 		}
410 		rw_exit(&vd->vdev_indirect_rwlock);
411 		if (vd->vdev_mg != NULL &&
412 		    vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
413 			/*
414 			 * Compute approximately how much memory would be used
415 			 * for the indirect mapping if this device were to
416 			 * be removed.
417 			 *
418 			 * Note: If the frag metric is invalid, then not
419 			 * enough metaslabs have been converted to have
420 			 * histograms.
421 			 */
422 			uint64_t seg_count = 0;
423 			uint64_t to_alloc = vd->vdev_stat.vs_alloc;
424 
425 			/*
426 			 * There are the same number of allocated segments
427 			 * as free segments, so we will have at least one
428 			 * entry per free segment.  However, small free
429 			 * segments (smaller than vdev_removal_max_span)
430 			 * will be combined with adjacent allocated segments
431 			 * as a single mapping.
432 			 */
433 			for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
434 				if (1ULL << (i + 1) < vdev_removal_max_span) {
435 					to_alloc +=
436 					    vd->vdev_mg->mg_histogram[i] <<
437 					    i + 1;
438 				} else {
439 					seg_count +=
440 					    vd->vdev_mg->mg_histogram[i];
441 				}
442 			}
443 
444 			/*
445 			 * The maximum length of a mapping is
446 			 * zfs_remove_max_segment, so we need at least one entry
447 			 * per zfs_remove_max_segment of allocated data.
448 			 */
449 			seg_count += to_alloc / zfs_remove_max_segment;
450 
451 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
452 			    seg_count *
453 			    sizeof (vdev_indirect_mapping_entry_phys_t));
454 		}
455 	}
456 
457 	if (!vd->vdev_ops->vdev_op_leaf) {
458 		nvlist_t **child;
459 		int c, idx;
460 
461 		ASSERT(!vd->vdev_ishole);
462 
463 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
464 		    KM_SLEEP);
465 
466 		for (c = 0, idx = 0; c < vd->vdev_children; c++) {
467 			vdev_t *cvd = vd->vdev_child[c];
468 
469 			/*
470 			 * If we're generating an nvlist of removing
471 			 * vdevs then skip over any device which is
472 			 * not being removed.
473 			 */
474 			if ((flags & VDEV_CONFIG_REMOVING) &&
475 			    !cvd->vdev_removing)
476 				continue;
477 
478 			child[idx++] = vdev_config_generate(spa, cvd,
479 			    getstats, flags);
480 		}
481 
482 		if (idx) {
483 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
484 			    child, idx);
485 		}
486 
487 		for (c = 0; c < idx; c++)
488 			nvlist_free(child[c]);
489 
490 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
491 
492 	} else {
493 		const char *aux = NULL;
494 
495 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
496 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
497 		if (vd->vdev_resilver_txg != 0)
498 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
499 			    vd->vdev_resilver_txg);
500 		if (vd->vdev_faulted)
501 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
502 		if (vd->vdev_degraded)
503 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
504 		if (vd->vdev_removed)
505 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
506 		if (vd->vdev_unspare)
507 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
508 		if (vd->vdev_ishole)
509 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
510 
511 		switch (vd->vdev_stat.vs_aux) {
512 		case VDEV_AUX_ERR_EXCEEDED:
513 			aux = "err_exceeded";
514 			break;
515 
516 		case VDEV_AUX_EXTERNAL:
517 			aux = "external";
518 			break;
519 		}
520 
521 		if (aux != NULL)
522 			fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
523 
524 		if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
525 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
526 			    vd->vdev_orig_guid);
527 		}
528 	}
529 
530 	return (nv);
531 }
532 
533 /*
534  * Generate a view of the top-level vdevs.  If we currently have holes
535  * in the namespace, then generate an array which contains a list of holey
536  * vdevs.  Additionally, add the number of top-level children that currently
537  * exist.
538  */
539 void
540 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
541 {
542 	vdev_t *rvd = spa->spa_root_vdev;
543 	uint64_t *array;
544 	uint_t c, idx;
545 
546 	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
547 
548 	for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
549 		vdev_t *tvd = rvd->vdev_child[c];
550 
551 		if (tvd->vdev_ishole) {
552 			array[idx++] = c;
553 		}
554 	}
555 
556 	if (idx) {
557 		VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
558 		    array, idx) == 0);
559 	}
560 
561 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
562 	    rvd->vdev_children) == 0);
563 
564 	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
565 }
566 
567 /*
568  * Returns the configuration from the label of the given vdev. For vdevs
569  * which don't have a txg value stored on their label (i.e. spares/cache)
570  * or have not been completely initialized (txg = 0) just return
571  * the configuration from the first valid label we find. Otherwise,
572  * find the most up-to-date label that does not exceed the specified
573  * 'txg' value.
574  */
575 nvlist_t *
576 vdev_label_read_config(vdev_t *vd, uint64_t txg)
577 {
578 	spa_t *spa = vd->vdev_spa;
579 	nvlist_t *config = NULL;
580 	vdev_phys_t *vp;
581 	abd_t *vp_abd;
582 	zio_t *zio;
583 	uint64_t best_txg = 0;
584 	uint64_t label_txg = 0;
585 	int error = 0;
586 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
587 	    ZIO_FLAG_SPECULATIVE;
588 
589 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
590 
591 	if (!vdev_readable(vd))
592 		return (NULL);
593 
594 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
595 	vp = abd_to_buf(vp_abd);
596 
597 retry:
598 	for (int l = 0; l < VDEV_LABELS; l++) {
599 		nvlist_t *label = NULL;
600 
601 		zio = zio_root(spa, NULL, NULL, flags);
602 
603 		vdev_label_read(zio, vd, l, vp_abd,
604 		    offsetof(vdev_label_t, vl_vdev_phys),
605 		    sizeof (vdev_phys_t), NULL, NULL, flags);
606 
607 		if (zio_wait(zio) == 0 &&
608 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
609 		    &label, 0) == 0) {
610 			/*
611 			 * Auxiliary vdevs won't have txg values in their
612 			 * labels and newly added vdevs may not have been
613 			 * completely initialized so just return the
614 			 * configuration from the first valid label we
615 			 * encounter.
616 			 */
617 			error = nvlist_lookup_uint64(label,
618 			    ZPOOL_CONFIG_POOL_TXG, &label_txg);
619 			if ((error || label_txg == 0) && !config) {
620 				config = label;
621 				break;
622 			} else if (label_txg <= txg && label_txg > best_txg) {
623 				best_txg = label_txg;
624 				nvlist_free(config);
625 				config = fnvlist_dup(label);
626 			}
627 		}
628 
629 		if (label != NULL) {
630 			nvlist_free(label);
631 			label = NULL;
632 		}
633 	}
634 
635 	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
636 		flags |= ZIO_FLAG_TRYHARD;
637 		goto retry;
638 	}
639 
640 	/*
641 	 * We found a valid label but it didn't pass txg restrictions.
642 	 */
643 	if (config == NULL && label_txg != 0) {
644 		vdev_dbgmsg(vd, "label discarded as txg is too large "
645 		    "(%llu > %llu)", (u_longlong_t)label_txg,
646 		    (u_longlong_t)txg);
647 	}
648 
649 	abd_free(vp_abd);
650 
651 	return (config);
652 }
653 
654 /*
655  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
656  * in with the device guid if this spare is active elsewhere on the system.
657  */
658 static boolean_t
659 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
660     uint64_t *spare_guid, uint64_t *l2cache_guid)
661 {
662 	spa_t *spa = vd->vdev_spa;
663 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
664 	uint64_t vdtxg = 0;
665 	nvlist_t *label;
666 
667 	if (spare_guid)
668 		*spare_guid = 0ULL;
669 	if (l2cache_guid)
670 		*l2cache_guid = 0ULL;
671 
672 	/*
673 	 * Read the label, if any, and perform some basic sanity checks.
674 	 */
675 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
676 		return (B_FALSE);
677 
678 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
679 	    &vdtxg);
680 
681 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
682 	    &state) != 0 ||
683 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
684 	    &device_guid) != 0) {
685 		nvlist_free(label);
686 		return (B_FALSE);
687 	}
688 
689 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
690 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
691 	    &pool_guid) != 0 ||
692 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
693 	    &txg) != 0)) {
694 		nvlist_free(label);
695 		return (B_FALSE);
696 	}
697 
698 	nvlist_free(label);
699 
700 	/*
701 	 * Check to see if this device indeed belongs to the pool it claims to
702 	 * be a part of.  The only way this is allowed is if the device is a hot
703 	 * spare (which we check for later on).
704 	 */
705 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
706 	    !spa_guid_exists(pool_guid, device_guid) &&
707 	    !spa_spare_exists(device_guid, NULL, NULL) &&
708 	    !spa_l2cache_exists(device_guid, NULL))
709 		return (B_FALSE);
710 
711 	/*
712 	 * If the transaction group is zero, then this an initialized (but
713 	 * unused) label.  This is only an error if the create transaction
714 	 * on-disk is the same as the one we're using now, in which case the
715 	 * user has attempted to add the same vdev multiple times in the same
716 	 * transaction.
717 	 */
718 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
719 	    txg == 0 && vdtxg == crtxg)
720 		return (B_TRUE);
721 
722 	/*
723 	 * Check to see if this is a spare device.  We do an explicit check for
724 	 * spa_has_spare() here because it may be on our pending list of spares
725 	 * to add.  We also check if it is an l2cache device.
726 	 */
727 	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
728 	    spa_has_spare(spa, device_guid)) {
729 		if (spare_guid)
730 			*spare_guid = device_guid;
731 
732 		switch (reason) {
733 		case VDEV_LABEL_CREATE:
734 		case VDEV_LABEL_L2CACHE:
735 			return (B_TRUE);
736 
737 		case VDEV_LABEL_REPLACE:
738 			return (!spa_has_spare(spa, device_guid) ||
739 			    spare_pool != 0ULL);
740 
741 		case VDEV_LABEL_SPARE:
742 			return (spa_has_spare(spa, device_guid));
743 		}
744 	}
745 
746 	/*
747 	 * Check to see if this is an l2cache device.
748 	 */
749 	if (spa_l2cache_exists(device_guid, NULL))
750 		return (B_TRUE);
751 
752 	/*
753 	 * We can't rely on a pool's state if it's been imported
754 	 * read-only.  Instead we look to see if the pools is marked
755 	 * read-only in the namespace and set the state to active.
756 	 */
757 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
758 	    (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
759 	    spa_mode(spa) == FREAD)
760 		state = POOL_STATE_ACTIVE;
761 
762 	/*
763 	 * If the device is marked ACTIVE, then this device is in use by another
764 	 * pool on the system.
765 	 */
766 	return (state == POOL_STATE_ACTIVE);
767 }
768 
769 /*
770  * Initialize a vdev label.  We check to make sure each leaf device is not in
771  * use, and writable.  We put down an initial label which we will later
772  * overwrite with a complete label.  Note that it's important to do this
773  * sequentially, not in parallel, so that we catch cases of multiple use of the
774  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
775  * itself.
776  */
777 int
778 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
779 {
780 	spa_t *spa = vd->vdev_spa;
781 	nvlist_t *label;
782 	vdev_phys_t *vp;
783 	abd_t *vp_abd;
784 	abd_t *pad2;
785 	uberblock_t *ub;
786 	abd_t *ub_abd;
787 	zio_t *zio;
788 	char *buf;
789 	size_t buflen;
790 	int error;
791 	uint64_t spare_guid, l2cache_guid;
792 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
793 
794 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
795 
796 	for (int c = 0; c < vd->vdev_children; c++)
797 		if ((error = vdev_label_init(vd->vdev_child[c],
798 		    crtxg, reason)) != 0)
799 			return (error);
800 
801 	/* Track the creation time for this vdev */
802 	vd->vdev_crtxg = crtxg;
803 
804 	if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
805 		return (0);
806 
807 	/*
808 	 * Dead vdevs cannot be initialized.
809 	 */
810 	if (vdev_is_dead(vd))
811 		return (SET_ERROR(EIO));
812 
813 	/*
814 	 * Determine if the vdev is in use.
815 	 */
816 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
817 	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
818 		return (SET_ERROR(EBUSY));
819 
820 	/*
821 	 * If this is a request to add or replace a spare or l2cache device
822 	 * that is in use elsewhere on the system, then we must update the
823 	 * guid (which was initialized to a random value) to reflect the
824 	 * actual GUID (which is shared between multiple pools).
825 	 */
826 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
827 	    spare_guid != 0ULL) {
828 		uint64_t guid_delta = spare_guid - vd->vdev_guid;
829 
830 		vd->vdev_guid += guid_delta;
831 
832 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
833 			pvd->vdev_guid_sum += guid_delta;
834 
835 		/*
836 		 * If this is a replacement, then we want to fallthrough to the
837 		 * rest of the code.  If we're adding a spare, then it's already
838 		 * labeled appropriately and we can just return.
839 		 */
840 		if (reason == VDEV_LABEL_SPARE)
841 			return (0);
842 		ASSERT(reason == VDEV_LABEL_REPLACE ||
843 		    reason == VDEV_LABEL_SPLIT);
844 	}
845 
846 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
847 	    l2cache_guid != 0ULL) {
848 		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
849 
850 		vd->vdev_guid += guid_delta;
851 
852 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
853 			pvd->vdev_guid_sum += guid_delta;
854 
855 		/*
856 		 * If this is a replacement, then we want to fallthrough to the
857 		 * rest of the code.  If we're adding an l2cache, then it's
858 		 * already labeled appropriately and we can just return.
859 		 */
860 		if (reason == VDEV_LABEL_L2CACHE)
861 			return (0);
862 		ASSERT(reason == VDEV_LABEL_REPLACE);
863 	}
864 
865 	/*
866 	 * Initialize its label.
867 	 */
868 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
869 	abd_zero(vp_abd, sizeof (vdev_phys_t));
870 	vp = abd_to_buf(vp_abd);
871 
872 	/*
873 	 * Generate a label describing the pool and our top-level vdev.
874 	 * We mark it as being from txg 0 to indicate that it's not
875 	 * really part of an active pool just yet.  The labels will
876 	 * be written again with a meaningful txg by spa_sync().
877 	 */
878 	if (reason == VDEV_LABEL_SPARE ||
879 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
880 		/*
881 		 * For inactive hot spares, we generate a special label that
882 		 * identifies as a mutually shared hot spare.  We write the
883 		 * label if we are adding a hot spare, or if we are removing an
884 		 * active hot spare (in which case we want to revert the
885 		 * labels).
886 		 */
887 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
888 
889 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
890 		    spa_version(spa)) == 0);
891 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
892 		    POOL_STATE_SPARE) == 0);
893 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
894 		    vd->vdev_guid) == 0);
895 	} else if (reason == VDEV_LABEL_L2CACHE ||
896 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
897 		/*
898 		 * For level 2 ARC devices, add a special label.
899 		 */
900 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
901 
902 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
903 		    spa_version(spa)) == 0);
904 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
905 		    POOL_STATE_L2CACHE) == 0);
906 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
907 		    vd->vdev_guid) == 0);
908 	} else {
909 		uint64_t txg = 0ULL;
910 
911 		if (reason == VDEV_LABEL_SPLIT)
912 			txg = spa->spa_uberblock.ub_txg;
913 		label = spa_config_generate(spa, vd, txg, B_FALSE);
914 
915 		/*
916 		 * Add our creation time.  This allows us to detect multiple
917 		 * vdev uses as described above, and automatically expires if we
918 		 * fail.
919 		 */
920 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
921 		    crtxg) == 0);
922 	}
923 
924 	buf = vp->vp_nvlist;
925 	buflen = sizeof (vp->vp_nvlist);
926 
927 	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
928 	if (error != 0) {
929 		nvlist_free(label);
930 		abd_free(vp_abd);
931 		/* EFAULT means nvlist_pack ran out of room */
932 		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
933 	}
934 
935 	/*
936 	 * Initialize uberblock template.
937 	 */
938 	ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
939 	abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
940 	abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
941 	ub = abd_to_buf(ub_abd);
942 	ub->ub_txg = 0;
943 
944 	/* Initialize the 2nd padding area. */
945 	pad2 = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
946 	abd_zero(pad2, VDEV_PAD_SIZE);
947 
948 	/*
949 	 * Write everything in parallel.
950 	 */
951 retry:
952 	zio = zio_root(spa, NULL, NULL, flags);
953 
954 	for (int l = 0; l < VDEV_LABELS; l++) {
955 
956 		vdev_label_write(zio, vd, l, vp_abd,
957 		    offsetof(vdev_label_t, vl_vdev_phys),
958 		    sizeof (vdev_phys_t), NULL, NULL, flags);
959 
960 		/*
961 		 * Skip the 1st padding area.
962 		 * Zero out the 2nd padding area where it might have
963 		 * left over data from previous filesystem format.
964 		 */
965 		vdev_label_write(zio, vd, l, pad2,
966 		    offsetof(vdev_label_t, vl_pad2),
967 		    VDEV_PAD_SIZE, NULL, NULL, flags);
968 
969 		vdev_label_write(zio, vd, l, ub_abd,
970 		    offsetof(vdev_label_t, vl_uberblock),
971 		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
972 	}
973 
974 	error = zio_wait(zio);
975 
976 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
977 		flags |= ZIO_FLAG_TRYHARD;
978 		goto retry;
979 	}
980 
981 	nvlist_free(label);
982 	abd_free(pad2);
983 	abd_free(ub_abd);
984 	abd_free(vp_abd);
985 
986 	/*
987 	 * If this vdev hasn't been previously identified as a spare, then we
988 	 * mark it as such only if a) we are labeling it as a spare, or b) it
989 	 * exists as a spare elsewhere in the system.  Do the same for
990 	 * level 2 ARC devices.
991 	 */
992 	if (error == 0 && !vd->vdev_isspare &&
993 	    (reason == VDEV_LABEL_SPARE ||
994 	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
995 		spa_spare_add(vd);
996 
997 	if (error == 0 && !vd->vdev_isl2cache &&
998 	    (reason == VDEV_LABEL_L2CACHE ||
999 	    spa_l2cache_exists(vd->vdev_guid, NULL)))
1000 		spa_l2cache_add(vd);
1001 
1002 	return (error);
1003 }
1004 
1005 /*
1006  * ==========================================================================
1007  * uberblock load/sync
1008  * ==========================================================================
1009  */
1010 
1011 /*
1012  * Consider the following situation: txg is safely synced to disk.  We've
1013  * written the first uberblock for txg + 1, and then we lose power.  When we
1014  * come back up, we fail to see the uberblock for txg + 1 because, say,
1015  * it was on a mirrored device and the replica to which we wrote txg + 1
1016  * is now offline.  If we then make some changes and sync txg + 1, and then
1017  * the missing replica comes back, then for a few seconds we'll have two
1018  * conflicting uberblocks on disk with the same txg.  The solution is simple:
1019  * among uberblocks with equal txg, choose the one with the latest timestamp.
1020  */
1021 static int
1022 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1023 {
1024 	int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
1025 
1026 	if (likely(cmp))
1027 		return (cmp);
1028 
1029 	cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1030 	if (likely(cmp))
1031 		return (cmp);
1032 
1033 	/*
1034 	 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware
1035 	 * ZFS, e.g. zfsonlinux >= 0.7.
1036 	 *
1037 	 * If one ub has MMP and the other does not, they were written by
1038 	 * different hosts, which matters for MMP.  So we treat no MMP/no SEQ as
1039 	 * a 0 value.
1040 	 *
1041 	 * Since timestamp and txg are the same if we get this far, either is
1042 	 * acceptable for importing the pool.
1043 	 */
1044 	unsigned int seq1 = 0;
1045 	unsigned int seq2 = 0;
1046 
1047 	if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1048 		seq1 = MMP_SEQ(ub1);
1049 
1050 	if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1051 		seq2 = MMP_SEQ(ub2);
1052 
1053 	return (AVL_CMP(seq1, seq2));
1054 }
1055 
1056 struct ubl_cbdata {
1057 	uberblock_t	*ubl_ubbest;	/* Best uberblock */
1058 	vdev_t		*ubl_vd;	/* vdev associated with the above */
1059 };
1060 
1061 static void
1062 vdev_uberblock_load_done(zio_t *zio)
1063 {
1064 	vdev_t *vd = zio->io_vd;
1065 	spa_t *spa = zio->io_spa;
1066 	zio_t *rio = zio->io_private;
1067 	uberblock_t *ub = abd_to_buf(zio->io_abd);
1068 	struct ubl_cbdata *cbp = rio->io_private;
1069 
1070 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
1071 
1072 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
1073 		mutex_enter(&rio->io_lock);
1074 		if (ub->ub_txg <= spa->spa_load_max_txg &&
1075 		    vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
1076 			/*
1077 			 * Keep track of the vdev in which this uberblock
1078 			 * was found. We will use this information later
1079 			 * to obtain the config nvlist associated with
1080 			 * this uberblock.
1081 			 */
1082 			*cbp->ubl_ubbest = *ub;
1083 			cbp->ubl_vd = vd;
1084 		}
1085 		mutex_exit(&rio->io_lock);
1086 	}
1087 
1088 	abd_free(zio->io_abd);
1089 }
1090 
1091 static void
1092 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
1093     struct ubl_cbdata *cbp)
1094 {
1095 	for (int c = 0; c < vd->vdev_children; c++)
1096 		vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
1097 
1098 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1099 		for (int l = 0; l < VDEV_LABELS; l++) {
1100 			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1101 				vdev_label_read(zio, vd, l,
1102 				    abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
1103 				    B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
1104 				    VDEV_UBERBLOCK_SIZE(vd),
1105 				    vdev_uberblock_load_done, zio, flags);
1106 			}
1107 		}
1108 	}
1109 }
1110 
1111 /*
1112  * Reads the 'best' uberblock from disk along with its associated
1113  * configuration. First, we read the uberblock array of each label of each
1114  * vdev, keeping track of the uberblock with the highest txg in each array.
1115  * Then, we read the configuration from the same vdev as the best uberblock.
1116  */
1117 void
1118 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
1119 {
1120 	zio_t *zio;
1121 	spa_t *spa = rvd->vdev_spa;
1122 	struct ubl_cbdata cb;
1123 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1124 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1125 
1126 	ASSERT(ub);
1127 	ASSERT(config);
1128 
1129 	bzero(ub, sizeof (uberblock_t));
1130 	*config = NULL;
1131 
1132 	cb.ubl_ubbest = ub;
1133 	cb.ubl_vd = NULL;
1134 
1135 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1136 	zio = zio_root(spa, NULL, &cb, flags);
1137 	vdev_uberblock_load_impl(zio, rvd, flags, &cb);
1138 	(void) zio_wait(zio);
1139 
1140 	/*
1141 	 * It's possible that the best uberblock was discovered on a label
1142 	 * that has a configuration which was written in a future txg.
1143 	 * Search all labels on this vdev to find the configuration that
1144 	 * matches the txg for our uberblock.
1145 	 */
1146 	if (cb.ubl_vd != NULL) {
1147 		vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. "
1148 		    "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg);
1149 
1150 		*config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
1151 		if (*config == NULL && spa->spa_extreme_rewind) {
1152 			vdev_dbgmsg(cb.ubl_vd, "failed to read label config. "
1153 			    "Trying again without txg restrictions.");
1154 			*config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX);
1155 		}
1156 		if (*config == NULL) {
1157 			vdev_dbgmsg(cb.ubl_vd, "failed to read label config");
1158 		}
1159 	}
1160 	spa_config_exit(spa, SCL_ALL, FTAG);
1161 }
1162 
1163 /*
1164  * On success, increment root zio's count of good writes.
1165  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1166  */
1167 static void
1168 vdev_uberblock_sync_done(zio_t *zio)
1169 {
1170 	uint64_t *good_writes = zio->io_private;
1171 
1172 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
1173 		atomic_inc_64(good_writes);
1174 }
1175 
1176 /*
1177  * Write the uberblock to all labels of all leaves of the specified vdev.
1178  */
1179 static void
1180 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes,
1181     uberblock_t *ub, vdev_t *vd, int flags)
1182 {
1183 	for (uint64_t c = 0; c < vd->vdev_children; c++) {
1184 		vdev_uberblock_sync(zio, good_writes,
1185 		    ub, vd->vdev_child[c], flags);
1186 	}
1187 
1188 	if (!vd->vdev_ops->vdev_op_leaf)
1189 		return;
1190 
1191 	if (!vdev_writeable(vd))
1192 		return;
1193 
1194 	int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0;
1195 	int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m);
1196 
1197 	/* Copy the uberblock_t into the ABD */
1198 	abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1199 	abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1200 	abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
1201 
1202 	for (int l = 0; l < VDEV_LABELS; l++)
1203 		vdev_label_write(zio, vd, l, ub_abd,
1204 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1205 		    vdev_uberblock_sync_done, good_writes,
1206 		    flags | ZIO_FLAG_DONT_PROPAGATE);
1207 
1208 	abd_free(ub_abd);
1209 }
1210 
1211 /* Sync the uberblocks to all vdevs in svd[] */
1212 int
1213 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1214 {
1215 	spa_t *spa = svd[0]->vdev_spa;
1216 	zio_t *zio;
1217 	uint64_t good_writes = 0;
1218 
1219 	zio = zio_root(spa, NULL, NULL, flags);
1220 
1221 	for (int v = 0; v < svdcount; v++)
1222 		vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags);
1223 
1224 	(void) zio_wait(zio);
1225 
1226 	/*
1227 	 * Flush the uberblocks to disk.  This ensures that the odd labels
1228 	 * are no longer needed (because the new uberblocks and the even
1229 	 * labels are safely on disk), so it is safe to overwrite them.
1230 	 */
1231 	zio = zio_root(spa, NULL, NULL, flags);
1232 
1233 	for (int v = 0; v < svdcount; v++) {
1234 		if (vdev_writeable(svd[v])) {
1235 			zio_flush(zio, svd[v]);
1236 		}
1237 	}
1238 
1239 	(void) zio_wait(zio);
1240 
1241 	return (good_writes >= 1 ? 0 : EIO);
1242 }
1243 
1244 /*
1245  * On success, increment the count of good writes for our top-level vdev.
1246  */
1247 static void
1248 vdev_label_sync_done(zio_t *zio)
1249 {
1250 	uint64_t *good_writes = zio->io_private;
1251 
1252 	if (zio->io_error == 0)
1253 		atomic_inc_64(good_writes);
1254 }
1255 
1256 /*
1257  * If there weren't enough good writes, indicate failure to the parent.
1258  */
1259 static void
1260 vdev_label_sync_top_done(zio_t *zio)
1261 {
1262 	uint64_t *good_writes = zio->io_private;
1263 
1264 	if (*good_writes == 0)
1265 		zio->io_error = SET_ERROR(EIO);
1266 
1267 	kmem_free(good_writes, sizeof (uint64_t));
1268 }
1269 
1270 /*
1271  * We ignore errors for log and cache devices, simply free the private data.
1272  */
1273 static void
1274 vdev_label_sync_ignore_done(zio_t *zio)
1275 {
1276 	kmem_free(zio->io_private, sizeof (uint64_t));
1277 }
1278 
1279 /*
1280  * Write all even or odd labels to all leaves of the specified vdev.
1281  */
1282 static void
1283 vdev_label_sync(zio_t *zio, uint64_t *good_writes,
1284     vdev_t *vd, int l, uint64_t txg, int flags)
1285 {
1286 	nvlist_t *label;
1287 	vdev_phys_t *vp;
1288 	abd_t *vp_abd;
1289 	char *buf;
1290 	size_t buflen;
1291 
1292 	for (int c = 0; c < vd->vdev_children; c++) {
1293 		vdev_label_sync(zio, good_writes,
1294 		    vd->vdev_child[c], l, txg, flags);
1295 	}
1296 
1297 	if (!vd->vdev_ops->vdev_op_leaf)
1298 		return;
1299 
1300 	if (!vdev_writeable(vd))
1301 		return;
1302 
1303 	/*
1304 	 * Generate a label describing the top-level config to which we belong.
1305 	 */
1306 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1307 
1308 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1309 	abd_zero(vp_abd, sizeof (vdev_phys_t));
1310 	vp = abd_to_buf(vp_abd);
1311 
1312 	buf = vp->vp_nvlist;
1313 	buflen = sizeof (vp->vp_nvlist);
1314 
1315 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
1316 		for (; l < VDEV_LABELS; l += 2) {
1317 			vdev_label_write(zio, vd, l, vp_abd,
1318 			    offsetof(vdev_label_t, vl_vdev_phys),
1319 			    sizeof (vdev_phys_t),
1320 			    vdev_label_sync_done, good_writes,
1321 			    flags | ZIO_FLAG_DONT_PROPAGATE);
1322 		}
1323 	}
1324 
1325 	abd_free(vp_abd);
1326 	nvlist_free(label);
1327 }
1328 
1329 int
1330 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1331 {
1332 	list_t *dl = &spa->spa_config_dirty_list;
1333 	vdev_t *vd;
1334 	zio_t *zio;
1335 	int error;
1336 
1337 	/*
1338 	 * Write the new labels to disk.
1339 	 */
1340 	zio = zio_root(spa, NULL, NULL, flags);
1341 
1342 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1343 		uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
1344 		    KM_SLEEP);
1345 
1346 		ASSERT(!vd->vdev_ishole);
1347 
1348 		zio_t *vio = zio_null(zio, spa, NULL,
1349 		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
1350 		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1351 		    good_writes, flags);
1352 		vdev_label_sync(vio, good_writes, vd, l, txg, flags);
1353 		zio_nowait(vio);
1354 	}
1355 
1356 	error = zio_wait(zio);
1357 
1358 	/*
1359 	 * Flush the new labels to disk.
1360 	 */
1361 	zio = zio_root(spa, NULL, NULL, flags);
1362 
1363 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1364 		zio_flush(zio, vd);
1365 
1366 	(void) zio_wait(zio);
1367 
1368 	return (error);
1369 }
1370 
1371 /*
1372  * Sync the uberblock and any changes to the vdev configuration.
1373  *
1374  * The order of operations is carefully crafted to ensure that
1375  * if the system panics or loses power at any time, the state on disk
1376  * is still transactionally consistent.  The in-line comments below
1377  * describe the failure semantics at each stage.
1378  *
1379  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1380  * at any time, you can just call it again, and it will resume its work.
1381  */
1382 int
1383 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
1384 {
1385 	spa_t *spa = svd[0]->vdev_spa;
1386 	uberblock_t *ub = &spa->spa_uberblock;
1387 	int error = 0;
1388 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1389 
1390 	ASSERT(svdcount != 0);
1391 retry:
1392 	/*
1393 	 * Normally, we don't want to try too hard to write every label and
1394 	 * uberblock.  If there is a flaky disk, we don't want the rest of the
1395 	 * sync process to block while we retry.  But if we can't write a
1396 	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1397 	 * bailing out and declaring the pool faulted.
1398 	 */
1399 	if (error != 0) {
1400 		if ((flags & ZIO_FLAG_TRYHARD) != 0)
1401 			return (error);
1402 		flags |= ZIO_FLAG_TRYHARD;
1403 	}
1404 
1405 	ASSERT(ub->ub_txg <= txg);
1406 
1407 	/*
1408 	 * If this isn't a resync due to I/O errors,
1409 	 * and nothing changed in this transaction group,
1410 	 * and the vdev configuration hasn't changed,
1411 	 * then there's nothing to do.
1412 	 */
1413 	if (ub->ub_txg < txg) {
1414 		boolean_t changed = uberblock_update(ub, spa->spa_root_vdev,
1415 		    txg, spa->spa_mmp.mmp_delay);
1416 
1417 		if (!changed && list_is_empty(&spa->spa_config_dirty_list))
1418 			return (0);
1419 	}
1420 
1421 	if (txg > spa_freeze_txg(spa))
1422 		return (0);
1423 
1424 	ASSERT(txg <= spa->spa_final_txg);
1425 
1426 	/*
1427 	 * Flush the write cache of every disk that's been written to
1428 	 * in this transaction group.  This ensures that all blocks
1429 	 * written in this txg will be committed to stable storage
1430 	 * before any uberblock that references them.
1431 	 */
1432 	zio_t *zio = zio_root(spa, NULL, NULL, flags);
1433 
1434 	for (vdev_t *vd =
1435 	    txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL;
1436 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1437 		zio_flush(zio, vd);
1438 
1439 	(void) zio_wait(zio);
1440 
1441 	/*
1442 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1443 	 * system dies in the middle of this process, that's OK: all of the
1444 	 * even labels that made it to disk will be newer than any uberblock,
1445 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1446 	 * which have not yet been touched, will still be valid.  We flush
1447 	 * the new labels to disk to ensure that all even-label updates
1448 	 * are committed to stable storage before the uberblock update.
1449 	 */
1450 	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) {
1451 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1452 			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1453 			    "for pool '%s' when syncing out the even labels "
1454 			    "of dirty vdevs", error, spa_name(spa));
1455 		}
1456 		goto retry;
1457 	}
1458 
1459 	/*
1460 	 * Sync the uberblocks to all vdevs in svd[].
1461 	 * If the system dies in the middle of this step, there are two cases
1462 	 * to consider, and the on-disk state is consistent either way:
1463 	 *
1464 	 * (1)	If none of the new uberblocks made it to disk, then the
1465 	 *	previous uberblock will be the newest, and the odd labels
1466 	 *	(which had not yet been touched) will be valid with respect
1467 	 *	to that uberblock.
1468 	 *
1469 	 * (2)	If one or more new uberblocks made it to disk, then they
1470 	 *	will be the newest, and the even labels (which had all
1471 	 *	been successfully committed) will be valid with respect
1472 	 *	to the new uberblocks.
1473 	 */
1474 	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) {
1475 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1476 			zfs_dbgmsg("vdev_uberblock_sync_list() returned error "
1477 			    "%d for pool '%s'", error, spa_name(spa));
1478 		}
1479 		goto retry;
1480 	}
1481 
1482 	if (spa_multihost(spa))
1483 		mmp_update_uberblock(spa, ub);
1484 
1485 	/*
1486 	 * Sync out odd labels for every dirty vdev.  If the system dies
1487 	 * in the middle of this process, the even labels and the new
1488 	 * uberblocks will suffice to open the pool.  The next time
1489 	 * the pool is opened, the first thing we'll do -- before any
1490 	 * user data is modified -- is mark every vdev dirty so that
1491 	 * all labels will be brought up to date.  We flush the new labels
1492 	 * to disk to ensure that all odd-label updates are committed to
1493 	 * stable storage before the next transaction group begins.
1494 	 */
1495 	if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) {
1496 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1497 			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1498 			    "for pool '%s' when syncing out the odd labels of "
1499 			    "dirty vdevs", error, spa_name(spa));
1500 		}
1501 		goto retry;
1502 	}
1503 
1504 	return (0);
1505 }
1506