1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 28 * Copyright 2019 Joyent, Inc. 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/spa.h> 33 #include <sys/spa_impl.h> 34 #include <sys/dsl_pool.h> 35 #include <sys/dsl_scan.h> 36 #include <sys/vdev_impl.h> 37 #include <sys/zio.h> 38 #include <sys/abd.h> 39 #include <sys/fs/zfs.h> 40 41 /* 42 * Vdev mirror kstats 43 */ 44 static kstat_t *mirror_ksp = NULL; 45 46 typedef struct mirror_stats { 47 kstat_named_t vdev_mirror_stat_rotating_linear; 48 kstat_named_t vdev_mirror_stat_rotating_offset; 49 kstat_named_t vdev_mirror_stat_rotating_seek; 50 kstat_named_t vdev_mirror_stat_non_rotating_linear; 51 kstat_named_t vdev_mirror_stat_non_rotating_seek; 52 53 kstat_named_t vdev_mirror_stat_preferred_found; 54 kstat_named_t vdev_mirror_stat_preferred_not_found; 55 } mirror_stats_t; 56 57 static mirror_stats_t mirror_stats = { 58 /* New I/O follows directly the last I/O */ 59 { "rotating_linear", KSTAT_DATA_UINT64 }, 60 /* New I/O is within zfs_vdev_mirror_rotating_seek_offset of the last */ 61 { "rotating_offset", KSTAT_DATA_UINT64 }, 62 /* New I/O requires random seek */ 63 { "rotating_seek", KSTAT_DATA_UINT64 }, 64 /* New I/O follows directly the last I/O (nonrot) */ 65 { "non_rotating_linear", KSTAT_DATA_UINT64 }, 66 /* New I/O requires random seek (nonrot) */ 67 { "non_rotating_seek", KSTAT_DATA_UINT64 }, 68 /* Preferred child vdev found */ 69 { "preferred_found", KSTAT_DATA_UINT64 }, 70 /* Preferred child vdev not found or equal load */ 71 { "preferred_not_found", KSTAT_DATA_UINT64 }, 72 73 }; 74 75 #define MIRROR_STAT(stat) (mirror_stats.stat.value.ui64) 76 #define MIRROR_INCR(stat, val) atomic_add_64(&MIRROR_STAT(stat), val) 77 #define MIRROR_BUMP(stat) MIRROR_INCR(stat, 1) 78 79 void 80 vdev_mirror_stat_init(void) 81 { 82 mirror_ksp = kstat_create("zfs", 0, "vdev_mirror_stats", 83 "misc", KSTAT_TYPE_NAMED, 84 sizeof (mirror_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 85 if (mirror_ksp != NULL) { 86 mirror_ksp->ks_data = &mirror_stats; 87 kstat_install(mirror_ksp); 88 } 89 } 90 91 void 92 vdev_mirror_stat_fini(void) 93 { 94 if (mirror_ksp != NULL) { 95 kstat_delete(mirror_ksp); 96 mirror_ksp = NULL; 97 } 98 } 99 100 /* 101 * Virtual device vector for mirroring. 102 */ 103 104 typedef struct mirror_child { 105 vdev_t *mc_vd; 106 uint64_t mc_offset; 107 int mc_error; 108 int mc_load; 109 uint8_t mc_tried; 110 uint8_t mc_skipped; 111 uint8_t mc_speculative; 112 } mirror_child_t; 113 114 typedef struct mirror_map { 115 int *mm_preferred; 116 int mm_preferred_cnt; 117 int mm_children; 118 int mm_resilvering; 119 int mm_root; 120 mirror_child_t mm_child[]; 121 } mirror_map_t; 122 123 int vdev_mirror_shift = 21; 124 125 /* 126 * The load configuration settings below are tuned by default for 127 * the case where all devices are of the same rotational type. 128 * 129 * If there is a mixture of rotating and non-rotating media, setting 130 * zfs_vdev_mirror_non_rotating_seek_inc to 0 may well provide better results 131 * as it will direct more reads to the non-rotating vdevs which are more likely 132 * to have a higher performance. 133 */ 134 135 /* Rotating media load calculation configuration. */ 136 static int zfs_vdev_mirror_rotating_inc = 0; 137 static int zfs_vdev_mirror_rotating_seek_inc = 5; 138 static int zfs_vdev_mirror_rotating_seek_offset = 1 * 1024 * 1024; 139 140 /* Non-rotating media load calculation configuration. */ 141 static int zfs_vdev_mirror_non_rotating_inc = 0; 142 static int zfs_vdev_mirror_non_rotating_seek_inc = 1; 143 144 static inline size_t 145 vdev_mirror_map_size(int children) 146 { 147 return (offsetof(mirror_map_t, mm_child[children]) + 148 sizeof (int) * children); 149 } 150 151 static inline mirror_map_t * 152 vdev_mirror_map_alloc(int children, boolean_t resilvering, boolean_t root) 153 { 154 mirror_map_t *mm; 155 156 mm = kmem_zalloc(vdev_mirror_map_size(children), KM_SLEEP); 157 mm->mm_children = children; 158 mm->mm_resilvering = resilvering; 159 mm->mm_root = root; 160 mm->mm_preferred = (int *)((uintptr_t)mm + 161 offsetof(mirror_map_t, mm_child[children])); 162 163 return (mm); 164 } 165 166 static void 167 vdev_mirror_map_free(zio_t *zio) 168 { 169 mirror_map_t *mm = zio->io_vsd; 170 171 kmem_free(mm, vdev_mirror_map_size(mm->mm_children)); 172 } 173 174 static const zio_vsd_ops_t vdev_mirror_vsd_ops = { 175 .vsd_free = vdev_mirror_map_free, 176 .vsd_cksum_report = zio_vsd_default_cksum_report 177 }; 178 179 static int 180 vdev_mirror_load(mirror_map_t *mm, vdev_t *vd, uint64_t zio_offset) 181 { 182 uint64_t last_offset; 183 int64_t offset_diff; 184 int load; 185 186 /* All DVAs have equal weight at the root. */ 187 if (mm->mm_root) 188 return (INT_MAX); 189 190 /* 191 * We don't return INT_MAX if the device is resilvering i.e. 192 * vdev_resilver_txg != 0 as when tested performance was slightly 193 * worse overall when resilvering with compared to without. 194 */ 195 196 /* Fix zio_offset for leaf vdevs */ 197 if (vd->vdev_ops->vdev_op_leaf) 198 zio_offset += VDEV_LABEL_START_SIZE; 199 200 /* Standard load based on pending queue length. */ 201 load = vdev_queue_length(vd); 202 last_offset = vdev_queue_last_offset(vd); 203 204 if (vd->vdev_nonrot) { 205 /* Non-rotating media. */ 206 if (last_offset == zio_offset) { 207 MIRROR_BUMP(vdev_mirror_stat_non_rotating_linear); 208 return (load + zfs_vdev_mirror_non_rotating_inc); 209 } 210 211 /* 212 * Apply a seek penalty even for non-rotating devices as 213 * sequential I/O's can be aggregated into fewer operations on 214 * the device, thus avoiding unnecessary per-command overhead 215 * and boosting performance. 216 */ 217 MIRROR_BUMP(vdev_mirror_stat_non_rotating_seek); 218 return (load + zfs_vdev_mirror_non_rotating_seek_inc); 219 } 220 221 /* Rotating media I/O's which directly follow the last I/O. */ 222 if (last_offset == zio_offset) { 223 MIRROR_BUMP(vdev_mirror_stat_rotating_linear); 224 return (load + zfs_vdev_mirror_rotating_inc); 225 } 226 227 /* 228 * Apply half the seek increment to I/O's within seek offset 229 * of the last I/O issued to this vdev as they should incur less 230 * of a seek increment. 231 */ 232 offset_diff = (int64_t)(last_offset - zio_offset); 233 if (ABS(offset_diff) < zfs_vdev_mirror_rotating_seek_offset) { 234 MIRROR_BUMP(vdev_mirror_stat_rotating_offset); 235 return (load + (zfs_vdev_mirror_rotating_seek_inc / 2)); 236 } 237 238 /* Apply the full seek increment to all other I/O's. */ 239 MIRROR_BUMP(vdev_mirror_stat_rotating_seek); 240 return (load + zfs_vdev_mirror_rotating_seek_inc); 241 } 242 243 static mirror_map_t * 244 vdev_mirror_map_init(zio_t *zio) 245 { 246 mirror_map_t *mm = NULL; 247 mirror_child_t *mc; 248 vdev_t *vd = zio->io_vd; 249 int c; 250 251 if (vd == NULL) { 252 dva_t *dva = zio->io_bp->blk_dva; 253 spa_t *spa = zio->io_spa; 254 dsl_scan_t *scn = NULL; 255 dva_t dva_copy[SPA_DVAS_PER_BP]; 256 257 if (spa->spa_dsl_pool != NULL) { 258 scn = spa->spa_dsl_pool->dp_scan; 259 } 260 /* 261 * The sequential scrub code sorts and issues all DVAs 262 * of a bp separately. Each of these IOs includes all 263 * original DVA copies so that repairs can be performed 264 * in the event of an error, but we only actually want 265 * to check the first DVA since the others will be 266 * checked by their respective sorted IOs. Only if we 267 * hit an error will we try all DVAs upon retrying. 268 * 269 * Note: This check is safe even if the user switches 270 * from a legacy scrub to a sequential one in the middle 271 * of processing, since scn_is_sorted isn't updated until 272 * all outstanding IOs from the previous scrub pass 273 * complete. 274 */ 275 if ((zio->io_flags & ZIO_FLAG_SCRUB) && 276 !(zio->io_flags & ZIO_FLAG_IO_RETRY) && 277 scn != NULL && 278 scn->scn_is_sorted && 279 dsl_scan_scrubbing(spa->spa_dsl_pool)) { 280 c = 1; 281 } else { 282 c = BP_GET_NDVAS(zio->io_bp); 283 } 284 285 /* 286 * If we do not trust the pool config, some DVAs might be 287 * invalid or point to vdevs that do not exist. We skip them. 288 */ 289 if (!spa_trust_config(spa)) { 290 ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ); 291 int j = 0; 292 for (int i = 0; i < c; i++) { 293 if (zfs_dva_valid(spa, &dva[i], zio->io_bp)) 294 dva_copy[j++] = dva[i]; 295 } 296 if (j == 0) { 297 zio->io_vsd = NULL; 298 zio->io_error = ENXIO; 299 return (NULL); 300 } 301 if (j < c) { 302 dva = dva_copy; 303 c = j; 304 } 305 } 306 307 mm = vdev_mirror_map_alloc(c, B_FALSE, B_TRUE); 308 for (c = 0; c < mm->mm_children; c++) { 309 mc = &mm->mm_child[c]; 310 311 mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c])); 312 mc->mc_offset = DVA_GET_OFFSET(&dva[c]); 313 } 314 } else { 315 /* 316 * If we are resilvering, then we should handle scrub reads 317 * differently; we shouldn't issue them to the resilvering 318 * device because it might not have those blocks. 319 * 320 * We are resilvering iff: 321 * 1) We are a replacing vdev (ie our name is "replacing-1" or 322 * "spare-1" or something like that), and 323 * 2) The pool is currently being resilvered. 324 * 325 * We cannot simply check vd->vdev_resilver_txg, because it's 326 * not set in this path. 327 * 328 * Nor can we just check our vdev_ops; there are cases (such as 329 * when a user types "zpool replace pool odev spare_dev" and 330 * spare_dev is in the spare list, or when a spare device is 331 * automatically used to replace a DEGRADED device) when 332 * resilvering is complete but both the original vdev and the 333 * spare vdev remain in the pool. That behavior is intentional. 334 * It helps implement the policy that a spare should be 335 * automatically removed from the pool after the user replaces 336 * the device that originally failed. 337 */ 338 boolean_t replacing = (vd->vdev_ops == &vdev_replacing_ops || 339 vd->vdev_ops == &vdev_spare_ops) && 340 spa_load_state(vd->vdev_spa) == SPA_LOAD_NONE && 341 dsl_scan_resilvering(vd->vdev_spa->spa_dsl_pool); 342 mm = vdev_mirror_map_alloc(vd->vdev_children, replacing, 343 B_FALSE); 344 for (c = 0; c < mm->mm_children; c++) { 345 mc = &mm->mm_child[c]; 346 mc->mc_vd = vd->vdev_child[c]; 347 mc->mc_offset = zio->io_offset; 348 } 349 } 350 351 zio->io_vsd = mm; 352 zio->io_vsd_ops = &vdev_mirror_vsd_ops; 353 return (mm); 354 } 355 356 static int 357 vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize, 358 uint64_t *ashift) 359 { 360 int numerrors = 0; 361 int lasterror = 0; 362 363 if (vd->vdev_children == 0) { 364 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 365 return (SET_ERROR(EINVAL)); 366 } 367 368 vdev_open_children(vd); 369 370 for (int c = 0; c < vd->vdev_children; c++) { 371 vdev_t *cvd = vd->vdev_child[c]; 372 373 if (cvd->vdev_open_error) { 374 lasterror = cvd->vdev_open_error; 375 numerrors++; 376 continue; 377 } 378 379 *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1; 380 *max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1; 381 *ashift = MAX(*ashift, cvd->vdev_ashift); 382 } 383 384 if (numerrors == vd->vdev_children) { 385 if (vdev_children_are_offline(vd)) 386 vd->vdev_stat.vs_aux = VDEV_AUX_CHILDREN_OFFLINE; 387 else 388 vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS; 389 return (lasterror); 390 } 391 392 return (0); 393 } 394 395 static void 396 vdev_mirror_close(vdev_t *vd) 397 { 398 for (int c = 0; c < vd->vdev_children; c++) 399 vdev_close(vd->vdev_child[c]); 400 } 401 402 static void 403 vdev_mirror_child_done(zio_t *zio) 404 { 405 mirror_child_t *mc = zio->io_private; 406 407 mc->mc_error = zio->io_error; 408 mc->mc_tried = 1; 409 mc->mc_skipped = 0; 410 } 411 412 static void 413 vdev_mirror_scrub_done(zio_t *zio) 414 { 415 mirror_child_t *mc = zio->io_private; 416 417 if (zio->io_error == 0) { 418 zio_t *pio; 419 zio_link_t *zl = NULL; 420 421 mutex_enter(&zio->io_lock); 422 while ((pio = zio_walk_parents(zio, &zl)) != NULL) { 423 mutex_enter(&pio->io_lock); 424 ASSERT3U(zio->io_size, >=, pio->io_size); 425 abd_copy(pio->io_abd, zio->io_abd, pio->io_size); 426 mutex_exit(&pio->io_lock); 427 } 428 mutex_exit(&zio->io_lock); 429 } 430 431 abd_free(zio->io_abd); 432 433 mc->mc_error = zio->io_error; 434 mc->mc_tried = 1; 435 mc->mc_skipped = 0; 436 } 437 438 /* 439 * Check the other, lower-index DVAs to see if they're on the same 440 * vdev as the child we picked. If they are, use them since they 441 * are likely to have been allocated from the primary metaslab in 442 * use at the time, and hence are more likely to have locality with 443 * single-copy data. 444 */ 445 static int 446 vdev_mirror_dva_select(zio_t *zio, int p) 447 { 448 dva_t *dva = zio->io_bp->blk_dva; 449 mirror_map_t *mm = zio->io_vsd; 450 int preferred; 451 int c; 452 453 preferred = mm->mm_preferred[p]; 454 for (p--; p >= 0; p--) { 455 c = mm->mm_preferred[p]; 456 if (DVA_GET_VDEV(&dva[c]) == DVA_GET_VDEV(&dva[preferred])) 457 preferred = c; 458 } 459 return (preferred); 460 } 461 462 static int 463 vdev_mirror_preferred_child_randomize(zio_t *zio) 464 { 465 mirror_map_t *mm = zio->io_vsd; 466 int p; 467 468 if (mm->mm_root) { 469 p = spa_get_random(mm->mm_preferred_cnt); 470 return (vdev_mirror_dva_select(zio, p)); 471 } 472 473 /* 474 * To ensure we don't always favour the first matching vdev, 475 * which could lead to wear leveling issues on SSD's, we 476 * use the I/O offset as a pseudo random seed into the vdevs 477 * which have the lowest load. 478 */ 479 p = (zio->io_offset >> vdev_mirror_shift) % mm->mm_preferred_cnt; 480 return (mm->mm_preferred[p]); 481 } 482 483 /* 484 * Try to find a vdev whose DTL doesn't contain the block we want to read 485 * prefering vdevs based on determined load. 486 * 487 * Try to find a child whose DTL doesn't contain the block we want to read. 488 * If we can't, try the read on any vdev we haven't already tried. 489 */ 490 static int 491 vdev_mirror_child_select(zio_t *zio) 492 { 493 mirror_map_t *mm = zio->io_vsd; 494 uint64_t txg = zio->io_txg; 495 int c, lowest_load; 496 497 ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg); 498 499 lowest_load = INT_MAX; 500 mm->mm_preferred_cnt = 0; 501 for (c = 0; c < mm->mm_children; c++) { 502 mirror_child_t *mc; 503 504 mc = &mm->mm_child[c]; 505 if (mc->mc_tried || mc->mc_skipped) 506 continue; 507 508 if (mc->mc_vd == NULL || !vdev_readable(mc->mc_vd)) { 509 mc->mc_error = SET_ERROR(ENXIO); 510 mc->mc_tried = 1; /* don't even try */ 511 mc->mc_skipped = 1; 512 continue; 513 } 514 515 if (vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1)) { 516 mc->mc_error = SET_ERROR(ESTALE); 517 mc->mc_skipped = 1; 518 mc->mc_speculative = 1; 519 continue; 520 } 521 522 mc->mc_load = vdev_mirror_load(mm, mc->mc_vd, mc->mc_offset); 523 if (mc->mc_load > lowest_load) 524 continue; 525 526 if (mc->mc_load < lowest_load) { 527 lowest_load = mc->mc_load; 528 mm->mm_preferred_cnt = 0; 529 } 530 mm->mm_preferred[mm->mm_preferred_cnt] = c; 531 mm->mm_preferred_cnt++; 532 } 533 534 if (mm->mm_preferred_cnt == 1) { 535 MIRROR_BUMP(vdev_mirror_stat_preferred_found); 536 return (mm->mm_preferred[0]); 537 } 538 539 if (mm->mm_preferred_cnt > 1) { 540 MIRROR_BUMP(vdev_mirror_stat_preferred_not_found); 541 return (vdev_mirror_preferred_child_randomize(zio)); 542 } 543 544 /* 545 * Every device is either missing or has this txg in its DTL. 546 * Look for any child we haven't already tried before giving up. 547 */ 548 for (c = 0; c < mm->mm_children; c++) { 549 if (!mm->mm_child[c].mc_tried) 550 return (c); 551 } 552 553 /* 554 * Every child failed. There's no place left to look. 555 */ 556 return (-1); 557 } 558 559 static void 560 vdev_mirror_io_start(zio_t *zio) 561 { 562 mirror_map_t *mm; 563 mirror_child_t *mc; 564 int c, children; 565 566 mm = vdev_mirror_map_init(zio); 567 568 if (mm == NULL) { 569 ASSERT(!spa_trust_config(zio->io_spa)); 570 ASSERT(zio->io_type == ZIO_TYPE_READ); 571 zio_execute(zio); 572 return; 573 } 574 575 if (zio->io_type == ZIO_TYPE_READ) { 576 if (zio->io_bp != NULL && 577 (zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_resilvering) { 578 /* 579 * For scrubbing reads (if we can verify the 580 * checksum here, as indicated by io_bp being 581 * non-NULL) we need to allocate a read buffer for 582 * each child and issue reads to all children. If 583 * any child succeeds, it will copy its data into 584 * zio->io_data in vdev_mirror_scrub_done. 585 */ 586 for (c = 0; c < mm->mm_children; c++) { 587 mc = &mm->mm_child[c]; 588 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 589 mc->mc_vd, mc->mc_offset, 590 abd_alloc_sametype(zio->io_abd, 591 zio->io_size), zio->io_size, 592 zio->io_type, zio->io_priority, 0, 593 vdev_mirror_scrub_done, mc)); 594 } 595 zio_execute(zio); 596 return; 597 } 598 /* 599 * For normal reads just pick one child. 600 */ 601 c = vdev_mirror_child_select(zio); 602 children = (c >= 0); 603 } else { 604 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 605 606 /* 607 * Writes go to all children. 608 */ 609 c = 0; 610 children = mm->mm_children; 611 } 612 613 while (children--) { 614 mc = &mm->mm_child[c]; 615 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 616 mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size, 617 zio->io_type, zio->io_priority, 0, 618 vdev_mirror_child_done, mc)); 619 c++; 620 } 621 622 zio_execute(zio); 623 } 624 625 static int 626 vdev_mirror_worst_error(mirror_map_t *mm) 627 { 628 int error[2] = { 0, 0 }; 629 630 for (int c = 0; c < mm->mm_children; c++) { 631 mirror_child_t *mc = &mm->mm_child[c]; 632 int s = mc->mc_speculative; 633 error[s] = zio_worst_error(error[s], mc->mc_error); 634 } 635 636 return (error[0] ? error[0] : error[1]); 637 } 638 639 static void 640 vdev_mirror_io_done(zio_t *zio) 641 { 642 mirror_map_t *mm = zio->io_vsd; 643 mirror_child_t *mc; 644 int c; 645 int good_copies = 0; 646 int unexpected_errors = 0; 647 648 if (mm == NULL) 649 return; 650 651 for (c = 0; c < mm->mm_children; c++) { 652 mc = &mm->mm_child[c]; 653 654 if (mc->mc_error) { 655 if (!mc->mc_skipped) 656 unexpected_errors++; 657 } else if (mc->mc_tried) { 658 good_copies++; 659 } 660 } 661 662 if (zio->io_type == ZIO_TYPE_WRITE) { 663 /* 664 * XXX -- for now, treat partial writes as success. 665 * 666 * Now that we support write reallocation, it would be better 667 * to treat partial failure as real failure unless there are 668 * no non-degraded top-level vdevs left, and not update DTLs 669 * if we intend to reallocate. 670 */ 671 /* XXPOLICY */ 672 if (good_copies != mm->mm_children) { 673 /* 674 * Always require at least one good copy. 675 * 676 * For ditto blocks (io_vd == NULL), require 677 * all copies to be good. 678 * 679 * XXX -- for replacing vdevs, there's no great answer. 680 * If the old device is really dead, we may not even 681 * be able to access it -- so we only want to 682 * require good writes to the new device. But if 683 * the new device turns out to be flaky, we want 684 * to be able to detach it -- which requires all 685 * writes to the old device to have succeeded. 686 */ 687 if (good_copies == 0 || zio->io_vd == NULL) 688 zio->io_error = vdev_mirror_worst_error(mm); 689 } 690 return; 691 } 692 693 ASSERT(zio->io_type == ZIO_TYPE_READ); 694 695 /* 696 * If we don't have a good copy yet, keep trying other children. 697 */ 698 /* XXPOLICY */ 699 if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) { 700 ASSERT(c >= 0 && c < mm->mm_children); 701 mc = &mm->mm_child[c]; 702 zio_vdev_io_redone(zio); 703 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 704 mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size, 705 ZIO_TYPE_READ, zio->io_priority, 0, 706 vdev_mirror_child_done, mc)); 707 return; 708 } 709 710 /* XXPOLICY */ 711 if (good_copies == 0) { 712 zio->io_error = vdev_mirror_worst_error(mm); 713 ASSERT(zio->io_error != 0); 714 } 715 716 if (good_copies && spa_writeable(zio->io_spa) && 717 (unexpected_errors || 718 (zio->io_flags & ZIO_FLAG_RESILVER) || 719 ((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_resilvering))) { 720 /* 721 * Use the good data we have in hand to repair damaged children. 722 */ 723 for (c = 0; c < mm->mm_children; c++) { 724 /* 725 * Don't rewrite known good children. 726 * Not only is it unnecessary, it could 727 * actually be harmful: if the system lost 728 * power while rewriting the only good copy, 729 * there would be no good copies left! 730 */ 731 mc = &mm->mm_child[c]; 732 733 if (mc->mc_error == 0) { 734 if (mc->mc_tried) 735 continue; 736 /* 737 * We didn't try this child. We need to 738 * repair it if: 739 * 1. it's a scrub (in which case we have 740 * tried everything that was healthy) 741 * - or - 742 * 2. it's an indirect vdev (in which case 743 * it could point to any other vdev, which 744 * might have a bad DTL) 745 * - or - 746 * 3. the DTL indicates that this data is 747 * missing from this vdev 748 */ 749 if (!(zio->io_flags & ZIO_FLAG_SCRUB) && 750 mc->mc_vd->vdev_ops != &vdev_indirect_ops && 751 !vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL, 752 zio->io_txg, 1)) 753 continue; 754 mc->mc_error = SET_ERROR(ESTALE); 755 } 756 757 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 758 mc->mc_vd, mc->mc_offset, 759 zio->io_abd, zio->io_size, 760 ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE, 761 ZIO_FLAG_IO_REPAIR | (unexpected_errors ? 762 ZIO_FLAG_SELF_HEAL : 0), NULL, NULL)); 763 } 764 } 765 } 766 767 static void 768 vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded) 769 { 770 if (faulted == vd->vdev_children) { 771 if (vdev_children_are_offline(vd)) { 772 vdev_set_state(vd, B_FALSE, VDEV_STATE_OFFLINE, 773 VDEV_AUX_CHILDREN_OFFLINE); 774 } else { 775 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 776 VDEV_AUX_NO_REPLICAS); 777 } 778 } else if (degraded + faulted != 0) { 779 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE); 780 } else { 781 vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE); 782 } 783 } 784 785 static int 786 vdev_mirror_dumpio(vdev_t *vd, caddr_t data, size_t size, 787 uint64_t offset, uint64_t origoffset, boolean_t doread, boolean_t isdump) 788 { 789 uint64_t numerrors; 790 int err = EIO; 791 792 for (uint64_t c = 0; c < vd->vdev_children; c++) { 793 vdev_t *cvd = vd->vdev_child[c]; 794 795 if (cvd->vdev_ops->vdev_op_dumpio == NULL) { 796 err = EINVAL; 797 } else { 798 err = cvd->vdev_ops->vdev_op_dumpio(cvd, data, size, 799 offset, origoffset, doread, isdump); 800 } 801 if (err != 0) { 802 numerrors++; 803 } else if (doread) { 804 break; 805 } 806 } 807 if (err != 0) { 808 return (SET_ERROR(err)); 809 } 810 811 return (0); 812 } 813 814 vdev_ops_t vdev_mirror_ops = { 815 .vdev_op_open = vdev_mirror_open, 816 .vdev_op_close = vdev_mirror_close, 817 .vdev_op_asize = vdev_default_asize, 818 .vdev_op_io_start = vdev_mirror_io_start, 819 .vdev_op_io_done = vdev_mirror_io_done, 820 .vdev_op_state_change = vdev_mirror_state_change, 821 .vdev_op_need_resilver = NULL, 822 .vdev_op_hold = NULL, 823 .vdev_op_rele = NULL, 824 .vdev_op_remap = NULL, 825 .vdev_op_xlate = vdev_default_xlate, 826 .vdev_op_dumpio = vdev_mirror_dumpio, 827 .vdev_op_type = VDEV_TYPE_MIRROR, /* name of this vdev type */ 828 .vdev_op_leaf = B_FALSE /* not a leaf vdev */ 829 }; 830 831 vdev_ops_t vdev_replacing_ops = { 832 .vdev_op_open = vdev_mirror_open, 833 .vdev_op_close = vdev_mirror_close, 834 .vdev_op_asize = vdev_default_asize, 835 .vdev_op_io_start = vdev_mirror_io_start, 836 .vdev_op_io_done = vdev_mirror_io_done, 837 .vdev_op_state_change = vdev_mirror_state_change, 838 .vdev_op_need_resilver = NULL, 839 .vdev_op_hold = NULL, 840 .vdev_op_rele = NULL, 841 .vdev_op_remap = NULL, 842 .vdev_op_xlate = vdev_default_xlate, 843 .vdev_op_dumpio = vdev_mirror_dumpio, 844 .vdev_op_type = VDEV_TYPE_REPLACING, /* name of this vdev type */ 845 .vdev_op_leaf = B_FALSE /* not a leaf vdev */ 846 }; 847 848 vdev_ops_t vdev_spare_ops = { 849 .vdev_op_open = vdev_mirror_open, 850 .vdev_op_close = vdev_mirror_close, 851 .vdev_op_asize = vdev_default_asize, 852 .vdev_op_io_start = vdev_mirror_io_start, 853 .vdev_op_io_done = vdev_mirror_io_done, 854 .vdev_op_state_change = vdev_mirror_state_change, 855 .vdev_op_need_resilver = NULL, 856 .vdev_op_hold = NULL, 857 .vdev_op_rele = NULL, 858 .vdev_op_remap = NULL, 859 .vdev_op_xlate = vdev_default_xlate, 860 .vdev_op_dumpio = vdev_mirror_dumpio, 861 .vdev_op_type = VDEV_TYPE_SPARE, /* name of this vdev type */ 862 .vdev_op_leaf = B_FALSE /* not a leaf vdev */ 863 }; 864