1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2013, Joyent, Inc. All rights reserved. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/signal.h> 34 #include <sys/cred.h> 35 #include <sys/policy.h> 36 #include <sys/user.h> 37 #include <sys/systm.h> 38 #include <sys/cpuvar.h> 39 #include <sys/vfs.h> 40 #include <sys/vnode.h> 41 #include <sys/file.h> 42 #include <sys/errno.h> 43 #include <sys/time.h> 44 #include <sys/proc.h> 45 #include <sys/cmn_err.h> 46 #include <sys/acct.h> 47 #include <sys/tuneable.h> 48 #include <sys/class.h> 49 #include <sys/kmem.h> 50 #include <sys/session.h> 51 #include <sys/ucontext.h> 52 #include <sys/stack.h> 53 #include <sys/procfs.h> 54 #include <sys/prsystm.h> 55 #include <sys/vmsystm.h> 56 #include <sys/vtrace.h> 57 #include <sys/debug.h> 58 #include <sys/shm_impl.h> 59 #include <sys/door_data.h> 60 #include <vm/as.h> 61 #include <vm/rm.h> 62 #include <c2/audit.h> 63 #include <sys/var.h> 64 #include <sys/schedctl.h> 65 #include <sys/utrap.h> 66 #include <sys/task.h> 67 #include <sys/resource.h> 68 #include <sys/cyclic.h> 69 #include <sys/lgrp.h> 70 #include <sys/rctl.h> 71 #include <sys/contract_impl.h> 72 #include <sys/contract/process_impl.h> 73 #include <sys/list.h> 74 #include <sys/dtrace.h> 75 #include <sys/pool.h> 76 #include <sys/zone.h> 77 #include <sys/sdt.h> 78 #include <sys/class.h> 79 #include <sys/corectl.h> 80 #include <sys/brand.h> 81 #include <sys/fork.h> 82 83 static int64_t cfork(int, int, int); 84 static int getproc(proc_t **, pid_t, uint_t); 85 #define GETPROC_USER 0x0 86 #define GETPROC_KERNEL 0x1 87 88 static void fork_fail(proc_t *); 89 static void forklwp_fail(proc_t *); 90 91 int fork_fail_pending; 92 93 extern struct kmem_cache *process_cache; 94 95 /* 96 * The vfork() system call trap is no longer invoked by libc. 97 * It is retained only for the benefit of applications running 98 * within a solaris10 branded zone. It should be eliminated 99 * when we no longer support solaris10 branded zones. 100 */ 101 int64_t 102 vfork(void) 103 { 104 curthread->t_post_sys = 1; /* so vfwait() will be called */ 105 return (cfork(1, 1, 0)); 106 } 107 108 /* 109 * forksys system call - forkx, forkallx, vforkx. This is the 110 * interface invoked by libc for fork1(), forkall(), and vfork() 111 */ 112 int64_t 113 forksys(int subcode, int flags) 114 { 115 switch (subcode) { 116 case 0: 117 return (cfork(0, 1, flags)); /* forkx(flags) */ 118 case 1: 119 return (cfork(0, 0, flags)); /* forkallx(flags) */ 120 case 2: 121 curthread->t_post_sys = 1; /* so vfwait() will be called */ 122 return (cfork(1, 1, flags)); /* vforkx(flags) */ 123 default: 124 return ((int64_t)set_errno(EINVAL)); 125 } 126 } 127 128 /* 129 * Remove the associations of a child process from its parent and siblings. 130 */ 131 static void 132 disown_proc(proc_t *pp, proc_t *cp) 133 { 134 proc_t **orphpp; 135 136 ASSERT(MUTEX_HELD(&pidlock)); 137 138 orphpp = &pp->p_orphan; 139 while (*orphpp != cp) 140 orphpp = &(*orphpp)->p_nextorph; 141 *orphpp = cp->p_nextorph; 142 143 if (pp->p_child == cp) 144 pp->p_child = cp->p_sibling; 145 if (cp->p_sibling) 146 cp->p_sibling->p_psibling = cp->p_psibling; 147 if (cp->p_psibling) 148 cp->p_psibling->p_sibling = cp->p_sibling; 149 } 150 151 /* ARGSUSED */ 152 static int64_t 153 cfork(int isvfork, int isfork1, int flags) 154 { 155 proc_t *p = ttoproc(curthread); 156 struct as *as; 157 proc_t *cp; 158 klwp_t *clone; 159 kthread_t *t; 160 task_t *tk; 161 rval_t r; 162 int error; 163 int i; 164 rctl_set_t *dup_set; 165 rctl_alloc_gp_t *dup_gp; 166 rctl_entity_p_t e; 167 lwpdir_t *ldp; 168 lwpent_t *lep; 169 lwpent_t *clep; 170 171 clone = NULL; 172 /* 173 * Allow only these two flags. 174 */ 175 if ((flags & ~(FORK_NOSIGCHLD | FORK_WAITPID)) != 0) { 176 error = EINVAL; 177 atomic_inc_32(&curproc->p_zone->zone_ffmisc); 178 goto forkerr; 179 } 180 181 /* 182 * fork is not supported for the /proc agent lwp. 183 */ 184 if (curthread == p->p_agenttp) { 185 error = ENOTSUP; 186 atomic_inc_32(&curproc->p_zone->zone_ffmisc); 187 goto forkerr; 188 } 189 190 if ((error = secpolicy_basic_fork(CRED())) != 0) { 191 atomic_inc_32(&p->p_zone->zone_ffmisc); 192 goto forkerr; 193 } 194 195 /* 196 * If the calling lwp is doing a fork1() then the 197 * other lwps in this process are not duplicated and 198 * don't need to be held where their kernel stacks can be 199 * cloned. If doing forkall(), the process is held with 200 * SHOLDFORK, so that the lwps are at a point where their 201 * stacks can be copied which is on entry or exit from 202 * the kernel. 203 */ 204 if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) { 205 aston(curthread); 206 error = EINTR; 207 atomic_inc_32(&p->p_zone->zone_ffmisc); 208 goto forkerr; 209 } 210 211 #if defined(__sparc) 212 /* 213 * Ensure that the user stack is fully constructed 214 * before creating the child process structure. 215 */ 216 (void) flush_user_windows_to_stack(NULL); 217 #endif 218 219 mutex_enter(&p->p_lock); 220 /* 221 * If this is vfork(), cancel any suspend request we might 222 * have gotten from some other thread via lwp_suspend(). 223 * Otherwise we could end up with a deadlock on return 224 * from the vfork() in both the parent and the child. 225 */ 226 if (isvfork) 227 curthread->t_proc_flag &= ~TP_HOLDLWP; 228 /* 229 * Prevent our resource set associations from being changed during fork. 230 */ 231 pool_barrier_enter(); 232 mutex_exit(&p->p_lock); 233 234 /* 235 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes. 236 */ 237 if (getproc(&cp, 0, GETPROC_USER) < 0) { 238 mutex_enter(&p->p_lock); 239 pool_barrier_exit(); 240 continuelwps(p); 241 mutex_exit(&p->p_lock); 242 error = EAGAIN; 243 goto forkerr; 244 } 245 246 TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p); 247 248 /* 249 * Assign an address space to child 250 */ 251 if (isvfork) { 252 /* 253 * Clear any watched areas and remember the 254 * watched pages for restoring in vfwait(). 255 */ 256 as = p->p_as; 257 if (avl_numnodes(&as->a_wpage) != 0) { 258 AS_LOCK_ENTER(as, RW_WRITER); 259 as_clearwatch(as); 260 p->p_wpage = as->a_wpage; 261 avl_create(&as->a_wpage, wp_compare, 262 sizeof (struct watched_page), 263 offsetof(struct watched_page, wp_link)); 264 AS_LOCK_EXIT(as); 265 } 266 cp->p_as = as; 267 cp->p_flag |= SVFORK; 268 269 /* 270 * Use the parent's shm segment list information for 271 * the child as it uses its address space till it execs. 272 */ 273 cp->p_segacct = p->p_segacct; 274 } else { 275 /* 276 * We need to hold P_PR_LOCK until the address space has 277 * been duplicated and we've had a chance to remove from the 278 * child any DTrace probes that were in the parent. Holding 279 * P_PR_LOCK prevents any new probes from being added and any 280 * extant probes from being removed. 281 */ 282 mutex_enter(&p->p_lock); 283 sprlock_proc(p); 284 p->p_flag |= SFORKING; 285 mutex_exit(&p->p_lock); 286 287 error = as_dup(p->p_as, cp); 288 if (error != 0) { 289 mutex_enter(&p->p_lock); 290 sprunlock(p); 291 fork_fail(cp); 292 mutex_enter(&pidlock); 293 disown_proc(p, cp); 294 mutex_enter(&cp->p_lock); 295 tk = cp->p_task; 296 task_detach(cp); 297 ASSERT(cp->p_pool->pool_ref > 0); 298 atomic_dec_32(&cp->p_pool->pool_ref); 299 mutex_exit(&cp->p_lock); 300 pid_exit(cp, tk); 301 mutex_exit(&pidlock); 302 task_rele(tk); 303 304 mutex_enter(&p->p_lock); 305 p->p_flag &= ~SFORKING; 306 pool_barrier_exit(); 307 continuelwps(p); 308 mutex_exit(&p->p_lock); 309 /* 310 * Preserve ENOMEM error condition but 311 * map all others to EAGAIN. 312 */ 313 error = (error == ENOMEM) ? ENOMEM : EAGAIN; 314 atomic_inc_32(&p->p_zone->zone_ffnomem); 315 goto forkerr; 316 } 317 318 /* 319 * Remove all DTrace tracepoints from the child process. We 320 * need to do this _before_ duplicating USDT providers since 321 * any associated probes may be immediately enabled. 322 */ 323 if (p->p_dtrace_count > 0) 324 dtrace_fasttrap_fork(p, cp); 325 326 mutex_enter(&p->p_lock); 327 sprunlock(p); 328 329 /* Duplicate parent's shared memory */ 330 if (p->p_segacct) 331 shmfork(p, cp); 332 333 /* 334 * Duplicate any helper actions and providers. The SFORKING 335 * we set above informs the code to enable USDT probes that 336 * sprlock() may fail because the child is being forked. 337 */ 338 if (p->p_dtrace_helpers != NULL) { 339 ASSERT(dtrace_helpers_fork != NULL); 340 (*dtrace_helpers_fork)(p, cp); 341 } 342 343 mutex_enter(&p->p_lock); 344 p->p_flag &= ~SFORKING; 345 mutex_exit(&p->p_lock); 346 } 347 348 /* 349 * Duplicate parent's resource controls. 350 */ 351 dup_set = rctl_set_create(); 352 for (;;) { 353 dup_gp = rctl_set_dup_prealloc(p->p_rctls); 354 mutex_enter(&p->p_rctls->rcs_lock); 355 if (rctl_set_dup_ready(p->p_rctls, dup_gp)) 356 break; 357 mutex_exit(&p->p_rctls->rcs_lock); 358 rctl_prealloc_destroy(dup_gp); 359 } 360 e.rcep_p.proc = cp; 361 e.rcep_t = RCENTITY_PROCESS; 362 cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp, 363 RCD_DUP | RCD_CALLBACK); 364 mutex_exit(&p->p_rctls->rcs_lock); 365 366 rctl_prealloc_destroy(dup_gp); 367 368 /* 369 * Allocate the child's lwp directory and lwpid hash table. 370 */ 371 if (isfork1) 372 cp->p_lwpdir_sz = 2; 373 else 374 cp->p_lwpdir_sz = p->p_lwpdir_sz; 375 cp->p_lwpdir = cp->p_lwpfree = ldp = 376 kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP); 377 for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++) 378 ldp->ld_next = ldp + 1; 379 cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2; 380 cp->p_tidhash = 381 kmem_zalloc(cp->p_tidhash_sz * sizeof (tidhash_t), KM_SLEEP); 382 383 /* 384 * Duplicate parent's lwps. 385 * Mutual exclusion is not needed because the process is 386 * in the hold state and only the current lwp is running. 387 */ 388 klgrpset_clear(cp->p_lgrpset); 389 if (isfork1) { 390 clone = forklwp(ttolwp(curthread), cp, curthread->t_tid); 391 if (clone == NULL) 392 goto forklwperr; 393 /* 394 * Inherit only the lwp_wait()able flag, 395 * Daemon threads should not call fork1(), but oh well... 396 */ 397 lwptot(clone)->t_proc_flag |= 398 (curthread->t_proc_flag & TP_TWAIT); 399 } else { 400 /* this is forkall(), no one can be in lwp_wait() */ 401 ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0); 402 /* for each entry in the parent's lwp directory... */ 403 for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) { 404 klwp_t *clwp; 405 kthread_t *ct; 406 407 if ((lep = ldp->ld_entry) == NULL) 408 continue; 409 410 if ((t = lep->le_thread) != NULL) { 411 clwp = forklwp(ttolwp(t), cp, t->t_tid); 412 if (clwp == NULL) 413 goto forklwperr; 414 ct = lwptot(clwp); 415 /* 416 * Inherit lwp_wait()able and daemon flags. 417 */ 418 ct->t_proc_flag |= 419 (t->t_proc_flag & (TP_TWAIT|TP_DAEMON)); 420 /* 421 * Keep track of the clone of curthread to 422 * post return values through lwp_setrval(). 423 * Mark other threads for special treatment 424 * by lwp_rtt() / post_syscall(). 425 */ 426 if (t == curthread) 427 clone = clwp; 428 else 429 ct->t_flag |= T_FORKALL; 430 } else { 431 /* 432 * Replicate zombie lwps in the child. 433 */ 434 clep = kmem_zalloc(sizeof (*clep), KM_SLEEP); 435 clep->le_lwpid = lep->le_lwpid; 436 clep->le_start = lep->le_start; 437 lwp_hash_in(cp, clep, 438 cp->p_tidhash, cp->p_tidhash_sz, 0); 439 } 440 } 441 } 442 443 /* 444 * Put new process in the parent's process contract, or put it 445 * in a new one if there is an active process template. Send a 446 * fork event (if requested) to whatever contract the child is 447 * a member of. Fails if the parent has been SIGKILLed. 448 */ 449 if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL) { 450 atomic_inc_32(&p->p_zone->zone_ffmisc); 451 goto forklwperr; 452 } 453 454 /* 455 * No fork failures occur beyond this point. 456 */ 457 458 cp->p_lwpid = p->p_lwpid; 459 if (!isfork1) { 460 cp->p_lwpdaemon = p->p_lwpdaemon; 461 cp->p_zombcnt = p->p_zombcnt; 462 /* 463 * If the parent's lwp ids have wrapped around, so have the 464 * child's. 465 */ 466 cp->p_flag |= p->p_flag & SLWPWRAP; 467 } 468 469 mutex_enter(&p->p_lock); 470 corectl_path_hold(cp->p_corefile = p->p_corefile); 471 corectl_content_hold(cp->p_content = p->p_content); 472 mutex_exit(&p->p_lock); 473 474 /* 475 * Duplicate process context ops, if any. 476 */ 477 if (p->p_pctx) 478 forkpctx(p, cp); 479 480 #ifdef __sparc 481 utrap_dup(p, cp); 482 #endif 483 /* 484 * If the child process has been marked to stop on exit 485 * from this fork, arrange for all other lwps to stop in 486 * sympathy with the active lwp. 487 */ 488 if (PTOU(cp)->u_systrap && 489 prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) { 490 mutex_enter(&cp->p_lock); 491 t = cp->p_tlist; 492 do { 493 t->t_proc_flag |= TP_PRSTOP; 494 aston(t); /* so TP_PRSTOP will be seen */ 495 } while ((t = t->t_forw) != cp->p_tlist); 496 mutex_exit(&cp->p_lock); 497 } 498 /* 499 * If the parent process has been marked to stop on exit 500 * from this fork, and its asynchronous-stop flag has not 501 * been set, arrange for all other lwps to stop before 502 * they return back to user level. 503 */ 504 if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap && 505 prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) { 506 mutex_enter(&p->p_lock); 507 t = p->p_tlist; 508 do { 509 t->t_proc_flag |= TP_PRSTOP; 510 aston(t); /* so TP_PRSTOP will be seen */ 511 } while ((t = t->t_forw) != p->p_tlist); 512 mutex_exit(&p->p_lock); 513 } 514 515 if (PROC_IS_BRANDED(p)) 516 BROP(p)->b_lwp_setrval(clone, p->p_pid, 1); 517 else 518 lwp_setrval(clone, p->p_pid, 1); 519 520 /* set return values for parent */ 521 r.r_val1 = (int)cp->p_pid; 522 r.r_val2 = 0; 523 524 /* 525 * pool_barrier_exit() can now be called because the child process has: 526 * - all identifying features cloned or set (p_pid, p_task, p_pool) 527 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset) 528 * - any other fields set which are used in resource set binding. 529 */ 530 mutex_enter(&p->p_lock); 531 pool_barrier_exit(); 532 mutex_exit(&p->p_lock); 533 534 mutex_enter(&pidlock); 535 mutex_enter(&cp->p_lock); 536 537 /* 538 * Set flags telling the child what (not) to do on exit. 539 */ 540 if (flags & FORK_NOSIGCHLD) 541 cp->p_pidflag |= CLDNOSIGCHLD; 542 if (flags & FORK_WAITPID) 543 cp->p_pidflag |= CLDWAITPID; 544 545 /* 546 * Now that there are lwps and threads attached, add the new 547 * process to the process group. 548 */ 549 pgjoin(cp, p->p_pgidp); 550 cp->p_stat = SRUN; 551 /* 552 * We are now done with all the lwps in the child process. 553 */ 554 t = cp->p_tlist; 555 do { 556 /* 557 * Set the lwp_suspend()ed lwps running. 558 * They will suspend properly at syscall exit. 559 */ 560 if (t->t_proc_flag & TP_HOLDLWP) 561 lwp_create_done(t); 562 else { 563 /* set TS_CREATE to allow continuelwps() to work */ 564 thread_lock(t); 565 ASSERT(t->t_state == TS_STOPPED && 566 !(t->t_schedflag & (TS_CREATE|TS_CSTART))); 567 t->t_schedflag |= TS_CREATE; 568 thread_unlock(t); 569 } 570 } while ((t = t->t_forw) != cp->p_tlist); 571 mutex_exit(&cp->p_lock); 572 573 if (isvfork) { 574 CPU_STATS_ADDQ(CPU, sys, sysvfork, 1); 575 mutex_enter(&p->p_lock); 576 p->p_flag |= SVFWAIT; 577 curthread->t_flag |= T_VFPARENT; 578 DTRACE_PROC1(create, proc_t *, cp); 579 cv_broadcast(&pr_pid_cv[p->p_slot]); /* inform /proc */ 580 mutex_exit(&p->p_lock); 581 /* 582 * Grab child's p_lock before dropping pidlock to ensure 583 * the process will not disappear before we set it running. 584 */ 585 mutex_enter(&cp->p_lock); 586 mutex_exit(&pidlock); 587 sigdefault(cp); 588 continuelwps(cp); 589 mutex_exit(&cp->p_lock); 590 } else { 591 CPU_STATS_ADDQ(CPU, sys, sysfork, 1); 592 DTRACE_PROC1(create, proc_t *, cp); 593 /* 594 * It is CL_FORKRET's job to drop pidlock. 595 * If we do it here, the process could be set running 596 * and disappear before CL_FORKRET() is called. 597 */ 598 CL_FORKRET(curthread, cp->p_tlist); 599 schedctl_set_cidpri(curthread); 600 ASSERT(MUTEX_NOT_HELD(&pidlock)); 601 } 602 603 return (r.r_vals); 604 605 forklwperr: 606 if (isvfork) { 607 if (avl_numnodes(&p->p_wpage) != 0) { 608 /* restore watchpoints to parent */ 609 as = p->p_as; 610 AS_LOCK_ENTER(as, RW_WRITER); 611 as->a_wpage = p->p_wpage; 612 avl_create(&p->p_wpage, wp_compare, 613 sizeof (struct watched_page), 614 offsetof(struct watched_page, wp_link)); 615 as_setwatch(as); 616 AS_LOCK_EXIT(as); 617 } 618 } else { 619 if (cp->p_segacct) 620 shmexit(cp); 621 as = cp->p_as; 622 cp->p_as = &kas; 623 as_free(as); 624 } 625 626 if (cp->p_lwpdir) { 627 for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++) 628 if ((lep = ldp->ld_entry) != NULL) 629 kmem_free(lep, sizeof (*lep)); 630 kmem_free(cp->p_lwpdir, 631 cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir)); 632 } 633 cp->p_lwpdir = NULL; 634 cp->p_lwpfree = NULL; 635 cp->p_lwpdir_sz = 0; 636 637 if (cp->p_tidhash) 638 kmem_free(cp->p_tidhash, 639 cp->p_tidhash_sz * sizeof (*cp->p_tidhash)); 640 cp->p_tidhash = NULL; 641 cp->p_tidhash_sz = 0; 642 643 forklwp_fail(cp); 644 fork_fail(cp); 645 if (cp->p_dtrace_helpers != NULL) { 646 ASSERT(dtrace_helpers_cleanup != NULL); 647 (*dtrace_helpers_cleanup)(cp); 648 } 649 rctl_set_free(cp->p_rctls); 650 mutex_enter(&pidlock); 651 652 /* 653 * Detach failed child from task. 654 */ 655 mutex_enter(&cp->p_lock); 656 tk = cp->p_task; 657 task_detach(cp); 658 ASSERT(cp->p_pool->pool_ref > 0); 659 atomic_dec_32(&cp->p_pool->pool_ref); 660 mutex_exit(&cp->p_lock); 661 662 disown_proc(p, cp); 663 pid_exit(cp, tk); 664 mutex_exit(&pidlock); 665 666 task_rele(tk); 667 668 mutex_enter(&p->p_lock); 669 pool_barrier_exit(); 670 continuelwps(p); 671 mutex_exit(&p->p_lock); 672 error = EAGAIN; 673 forkerr: 674 return ((int64_t)set_errno(error)); 675 } 676 677 /* 678 * Free allocated resources from getproc() if a fork failed. 679 */ 680 static void 681 fork_fail(proc_t *cp) 682 { 683 uf_info_t *fip = P_FINFO(cp); 684 685 fcnt_add(fip, -1); 686 sigdelq(cp, NULL, 0); 687 688 mutex_enter(&pidlock); 689 upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred)); 690 mutex_exit(&pidlock); 691 692 /* 693 * single threaded, so no locking needed here 694 */ 695 crfree(cp->p_cred); 696 697 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 698 699 VN_RELE(PTOU(curproc)->u_cdir); 700 if (PTOU(curproc)->u_rdir) 701 VN_RELE(PTOU(curproc)->u_rdir); 702 if (cp->p_exec) 703 VN_RELE(cp->p_exec); 704 if (cp->p_execdir) 705 VN_RELE(cp->p_execdir); 706 if (PTOU(curproc)->u_cwd) 707 refstr_rele(PTOU(curproc)->u_cwd); 708 if (PROC_IS_BRANDED(cp)) { 709 brand_clearbrand(cp, B_TRUE); 710 } 711 } 712 713 /* 714 * Clean up the lwps already created for this child process. 715 * The fork failed while duplicating all the lwps of the parent 716 * and those lwps already created must be freed. 717 * This process is invisible to the rest of the system, 718 * so we don't need to hold p->p_lock to protect the list. 719 */ 720 static void 721 forklwp_fail(proc_t *p) 722 { 723 kthread_t *t; 724 task_t *tk; 725 int branded = 0; 726 727 if (PROC_IS_BRANDED(p)) 728 branded = 1; 729 730 while ((t = p->p_tlist) != NULL) { 731 /* 732 * First remove the lwp from the process's p_tlist. 733 */ 734 if (t != t->t_forw) 735 p->p_tlist = t->t_forw; 736 else 737 p->p_tlist = NULL; 738 p->p_lwpcnt--; 739 t->t_forw->t_back = t->t_back; 740 t->t_back->t_forw = t->t_forw; 741 742 tk = p->p_task; 743 mutex_enter(&p->p_zone->zone_nlwps_lock); 744 tk->tk_nlwps--; 745 tk->tk_proj->kpj_nlwps--; 746 p->p_zone->zone_nlwps--; 747 mutex_exit(&p->p_zone->zone_nlwps_lock); 748 749 ASSERT(t->t_schedctl == NULL); 750 751 if (branded) 752 BROP(p)->b_freelwp(ttolwp(t)); 753 754 if (t->t_door != NULL) { 755 kmem_free(t->t_door, sizeof (door_data_t)); 756 t->t_door = NULL; 757 } 758 lwp_ctmpl_clear(ttolwp(t)); 759 760 /* 761 * Remove the thread from the all threads list. 762 * We need to hold pidlock for this. 763 */ 764 mutex_enter(&pidlock); 765 t->t_next->t_prev = t->t_prev; 766 t->t_prev->t_next = t->t_next; 767 CL_EXIT(t); /* tell the scheduler that we're exiting */ 768 cv_broadcast(&t->t_joincv); /* tell anyone in thread_join */ 769 mutex_exit(&pidlock); 770 771 /* 772 * Let the lgroup load averages know that this thread isn't 773 * going to show up (i.e. un-do what was done on behalf of 774 * this thread by the earlier lgrp_move_thread()). 775 */ 776 kpreempt_disable(); 777 lgrp_move_thread(t, NULL, 1); 778 kpreempt_enable(); 779 780 /* 781 * The thread was created TS_STOPPED. 782 * We change it to TS_FREE to avoid an 783 * ASSERT() panic in thread_free(). 784 */ 785 t->t_state = TS_FREE; 786 thread_rele(t); 787 thread_free(t); 788 } 789 } 790 791 extern struct as kas; 792 793 /* 794 * fork a kernel process. 795 */ 796 int 797 newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct, 798 pid_t pid) 799 { 800 proc_t *p; 801 struct user *up; 802 kthread_t *t; 803 cont_process_t *ctp = NULL; 804 rctl_entity_p_t e; 805 806 ASSERT(cid != sysdccid); 807 ASSERT(cid != syscid || ct == NULL); 808 if (CLASS_KERNEL(cid)) { 809 rctl_alloc_gp_t *init_gp; 810 rctl_set_t *init_set; 811 812 ASSERT(pid != 1); 813 814 if (getproc(&p, pid, GETPROC_KERNEL) < 0) 815 return (EAGAIN); 816 817 /* 818 * Release the hold on the p_exec and p_execdir, these 819 * were acquired in getproc() 820 */ 821 if (p->p_execdir != NULL) 822 VN_RELE(p->p_execdir); 823 if (p->p_exec != NULL) 824 VN_RELE(p->p_exec); 825 p->p_flag |= SNOWAIT; 826 p->p_exec = NULL; 827 p->p_execdir = NULL; 828 829 init_set = rctl_set_create(); 830 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 831 832 /* 833 * kernel processes do not inherit /proc tracing flags. 834 */ 835 sigemptyset(&p->p_sigmask); 836 premptyset(&p->p_fltmask); 837 up = PTOU(p); 838 up->u_systrap = 0; 839 premptyset(&(up->u_entrymask)); 840 premptyset(&(up->u_exitmask)); 841 mutex_enter(&p->p_lock); 842 e.rcep_p.proc = p; 843 e.rcep_t = RCENTITY_PROCESS; 844 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 845 init_gp); 846 mutex_exit(&p->p_lock); 847 848 rctl_prealloc_destroy(init_gp); 849 850 t = lwp_kernel_create(p, pc, arg, TS_STOPPED, pri); 851 } else { 852 rctl_alloc_gp_t *init_gp, *default_gp; 853 rctl_set_t *init_set; 854 task_t *tk, *tk_old; 855 klwp_t *lwp; 856 857 if (getproc(&p, pid, GETPROC_USER) < 0) 858 return (EAGAIN); 859 /* 860 * init creates a new task, distinct from the task 861 * containing kernel "processes". 862 */ 863 tk = task_create(0, p->p_zone); 864 mutex_enter(&tk->tk_zone->zone_nlwps_lock); 865 tk->tk_proj->kpj_ntasks++; 866 tk->tk_nprocs++; 867 mutex_exit(&tk->tk_zone->zone_nlwps_lock); 868 869 default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS); 870 init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS); 871 init_set = rctl_set_create(); 872 873 mutex_enter(&pidlock); 874 mutex_enter(&p->p_lock); 875 tk_old = p->p_task; /* switch to new task */ 876 877 task_detach(p); 878 task_begin(tk, p); 879 mutex_exit(&pidlock); 880 881 mutex_enter(&tk_old->tk_zone->zone_nlwps_lock); 882 tk_old->tk_nprocs--; 883 mutex_exit(&tk_old->tk_zone->zone_nlwps_lock); 884 885 e.rcep_p.proc = p; 886 e.rcep_t = RCENTITY_PROCESS; 887 p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set, 888 init_gp); 889 rctlproc_default_init(p, default_gp); 890 mutex_exit(&p->p_lock); 891 892 task_rele(tk_old); 893 rctl_prealloc_destroy(default_gp); 894 rctl_prealloc_destroy(init_gp); 895 896 if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri, 897 &curthread->t_hold, cid, 1)) == NULL) { 898 task_t *tk; 899 900 fork_fail(p); 901 mutex_enter(&pidlock); 902 disown_proc(p->p_parent, p); 903 904 mutex_enter(&p->p_lock); 905 tk = p->p_task; 906 task_detach(p); 907 ASSERT(p->p_pool->pool_ref > 0); 908 atomic_add_32(&p->p_pool->pool_ref, -1); 909 mutex_exit(&p->p_lock); 910 911 pid_exit(p, tk); 912 mutex_exit(&pidlock); 913 task_rele(tk); 914 return (EAGAIN); 915 } 916 t = lwptot(lwp); 917 918 ctp = contract_process_fork(sys_process_tmpl, p, curproc, 919 B_FALSE); 920 ASSERT(ctp != NULL); 921 if (ct != NULL) 922 *ct = &ctp->conp_contract; 923 } 924 925 ASSERT3U(t->t_tid, ==, 1); 926 p->p_lwpid = 1; 927 mutex_enter(&pidlock); 928 pgjoin(p, p->p_parent->p_pgidp); 929 p->p_stat = SRUN; 930 mutex_enter(&p->p_lock); 931 t->t_proc_flag &= ~TP_HOLDLWP; 932 lwp_create_done(t); 933 mutex_exit(&p->p_lock); 934 mutex_exit(&pidlock); 935 return (0); 936 } 937 938 /* 939 * create a child proc struct. 940 */ 941 static int 942 getproc(proc_t **cpp, pid_t pid, uint_t flags) 943 { 944 proc_t *pp, *cp; 945 pid_t newpid; 946 struct user *uarea; 947 extern uint_t nproc; 948 struct cred *cr; 949 uid_t ruid; 950 zoneid_t zoneid; 951 task_t *task; 952 kproject_t *proj; 953 zone_t *zone; 954 int rctlfail = 0; 955 956 if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN) 957 return (-1); /* no point in starting new processes */ 958 959 pp = (flags & GETPROC_KERNEL) ? &p0 : curproc; 960 task = pp->p_task; 961 proj = task->tk_proj; 962 zone = pp->p_zone; 963 964 mutex_enter(&pp->p_lock); 965 mutex_enter(&zone->zone_nlwps_lock); 966 if (proj != proj0p) { 967 if (task->tk_nprocs >= task->tk_nprocs_ctl) 968 if (rctl_test(rc_task_nprocs, task->tk_rctls, 969 pp, 1, 0) & RCT_DENY) 970 rctlfail = 1; 971 972 if (proj->kpj_nprocs >= proj->kpj_nprocs_ctl) 973 if (rctl_test(rc_project_nprocs, proj->kpj_rctls, 974 pp, 1, 0) & RCT_DENY) 975 rctlfail = 1; 976 977 if (zone->zone_nprocs >= zone->zone_nprocs_ctl) 978 if (rctl_test(rc_zone_nprocs, zone->zone_rctls, 979 pp, 1, 0) & RCT_DENY) 980 rctlfail = 1; 981 982 if (rctlfail) { 983 mutex_exit(&zone->zone_nlwps_lock); 984 mutex_exit(&pp->p_lock); 985 atomic_inc_32(&zone->zone_ffcap); 986 goto punish; 987 } 988 } 989 task->tk_nprocs++; 990 proj->kpj_nprocs++; 991 zone->zone_nprocs++; 992 mutex_exit(&zone->zone_nlwps_lock); 993 mutex_exit(&pp->p_lock); 994 995 cp = kmem_cache_alloc(process_cache, KM_SLEEP); 996 bzero(cp, sizeof (proc_t)); 997 998 /* 999 * Make proc entry for child process 1000 */ 1001 mutex_init(&cp->p_splock, NULL, MUTEX_DEFAULT, NULL); 1002 mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL); 1003 mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL); 1004 #if defined(__x86) 1005 mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL); 1006 #endif 1007 mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL); 1008 cp->p_stat = SIDL; 1009 cp->p_mstart = gethrtime(); 1010 cp->p_as = &kas; 1011 /* 1012 * p_zone must be set before we call pid_allocate since the process 1013 * will be visible after that and code such as prfind_zone will 1014 * look at the p_zone field. 1015 */ 1016 cp->p_zone = pp->p_zone; 1017 cp->p_t1_lgrpid = LGRP_NONE; 1018 cp->p_tr_lgrpid = LGRP_NONE; 1019 1020 if ((newpid = pid_allocate(cp, pid, PID_ALLOC_PROC)) == -1) { 1021 if (nproc == v.v_proc) { 1022 CPU_STATS_ADDQ(CPU, sys, procovf, 1); 1023 cmn_err(CE_WARN, "out of processes"); 1024 } 1025 goto bad; 1026 } 1027 1028 mutex_enter(&pp->p_lock); 1029 cp->p_exec = pp->p_exec; 1030 cp->p_execdir = pp->p_execdir; 1031 mutex_exit(&pp->p_lock); 1032 1033 if (cp->p_exec) { 1034 VN_HOLD(cp->p_exec); 1035 /* 1036 * Each VOP_OPEN() must be paired with a corresponding 1037 * VOP_CLOSE(). In this case, the executable will be 1038 * closed for the child in either proc_exit() or gexec(). 1039 */ 1040 if (VOP_OPEN(&cp->p_exec, FREAD, CRED(), NULL) != 0) { 1041 VN_RELE(cp->p_exec); 1042 cp->p_exec = NULLVP; 1043 cp->p_execdir = NULLVP; 1044 goto bad; 1045 } 1046 } 1047 if (cp->p_execdir) 1048 VN_HOLD(cp->p_execdir); 1049 1050 /* 1051 * If not privileged make sure that this user hasn't exceeded 1052 * v.v_maxup processes, and that users collectively haven't 1053 * exceeded v.v_maxupttl processes. 1054 */ 1055 mutex_enter(&pidlock); 1056 ASSERT(nproc < v.v_proc); /* otherwise how'd we get our pid? */ 1057 cr = CRED(); 1058 ruid = crgetruid(cr); 1059 zoneid = crgetzoneid(cr); 1060 if (nproc >= v.v_maxup && /* short-circuit; usually false */ 1061 (nproc >= v.v_maxupttl || 1062 upcount_get(ruid, zoneid) >= v.v_maxup) && 1063 secpolicy_newproc(cr) != 0) { 1064 mutex_exit(&pidlock); 1065 zcmn_err(zoneid, CE_NOTE, 1066 "out of per-user processes for uid %d", ruid); 1067 goto bad; 1068 } 1069 1070 /* 1071 * Everything is cool, put the new proc on the active process list. 1072 * It is already on the pid list and in /proc. 1073 * Increment the per uid process count (upcount). 1074 */ 1075 nproc++; 1076 upcount_inc(ruid, zoneid); 1077 1078 cp->p_next = practive; 1079 practive->p_prev = cp; 1080 practive = cp; 1081 1082 cp->p_ignore = pp->p_ignore; 1083 cp->p_siginfo = pp->p_siginfo; 1084 cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD); 1085 cp->p_sessp = pp->p_sessp; 1086 sess_hold(pp); 1087 cp->p_brand = pp->p_brand; 1088 if (PROC_IS_BRANDED(pp)) 1089 BROP(pp)->b_copy_procdata(cp, pp); 1090 cp->p_bssbase = pp->p_bssbase; 1091 cp->p_brkbase = pp->p_brkbase; 1092 cp->p_brksize = pp->p_brksize; 1093 cp->p_brkpageszc = pp->p_brkpageszc; 1094 cp->p_stksize = pp->p_stksize; 1095 cp->p_stkpageszc = pp->p_stkpageszc; 1096 cp->p_stkprot = pp->p_stkprot; 1097 cp->p_datprot = pp->p_datprot; 1098 cp->p_usrstack = pp->p_usrstack; 1099 cp->p_model = pp->p_model; 1100 cp->p_ppid = pp->p_pid; 1101 cp->p_ancpid = pp->p_pid; 1102 cp->p_portcnt = pp->p_portcnt; 1103 /* 1104 * Security flags are preserved on fork, the inherited copy come into 1105 * effect on exec 1106 */ 1107 cp->p_secflags = pp->p_secflags; 1108 1109 /* 1110 * Initialize watchpoint structures 1111 */ 1112 avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area), 1113 offsetof(struct watched_area, wa_link)); 1114 1115 /* 1116 * Initialize immediate resource control values. 1117 */ 1118 cp->p_stk_ctl = pp->p_stk_ctl; 1119 cp->p_fsz_ctl = pp->p_fsz_ctl; 1120 cp->p_vmem_ctl = pp->p_vmem_ctl; 1121 cp->p_fno_ctl = pp->p_fno_ctl; 1122 1123 /* 1124 * Link up to parent-child-sibling chain. No need to lock 1125 * in general since only a call to freeproc() (done by the 1126 * same parent as newproc()) diddles with the child chain. 1127 */ 1128 cp->p_sibling = pp->p_child; 1129 if (pp->p_child) 1130 pp->p_child->p_psibling = cp; 1131 1132 cp->p_parent = pp; 1133 pp->p_child = cp; 1134 1135 cp->p_child_ns = NULL; 1136 cp->p_sibling_ns = NULL; 1137 1138 cp->p_nextorph = pp->p_orphan; 1139 cp->p_nextofkin = pp; 1140 pp->p_orphan = cp; 1141 1142 /* 1143 * Inherit profiling state; do not inherit REALPROF profiling state. 1144 */ 1145 cp->p_prof = pp->p_prof; 1146 cp->p_rprof_cyclic = CYCLIC_NONE; 1147 1148 /* 1149 * Inherit pool pointer from the parent. Kernel processes are 1150 * always bound to the default pool. 1151 */ 1152 mutex_enter(&pp->p_lock); 1153 if (flags & GETPROC_KERNEL) { 1154 cp->p_pool = pool_default; 1155 cp->p_flag |= SSYS; 1156 } else { 1157 cp->p_pool = pp->p_pool; 1158 } 1159 atomic_inc_32(&cp->p_pool->pool_ref); 1160 mutex_exit(&pp->p_lock); 1161 1162 /* 1163 * Add the child process to the current task. Kernel processes 1164 * are always attached to task0. 1165 */ 1166 mutex_enter(&cp->p_lock); 1167 if (flags & GETPROC_KERNEL) 1168 task_attach(task0p, cp); 1169 else 1170 task_attach(pp->p_task, cp); 1171 mutex_exit(&cp->p_lock); 1172 mutex_exit(&pidlock); 1173 1174 avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t), 1175 offsetof(contract_t, ct_ctlist)); 1176 1177 /* 1178 * Duplicate any audit information kept in the process table 1179 */ 1180 if (audit_active) /* copy audit data to cp */ 1181 audit_newproc(cp); 1182 1183 crhold(cp->p_cred = cr); 1184 1185 /* 1186 * Bump up the counts on the file structures pointed at by the 1187 * parent's file table since the child will point at them too. 1188 */ 1189 fcnt_add(P_FINFO(pp), 1); 1190 1191 if (PTOU(pp)->u_cdir) { 1192 VN_HOLD(PTOU(pp)->u_cdir); 1193 } else { 1194 ASSERT(pp == &p0); 1195 /* 1196 * We must be at or before vfs_mountroot(); it will take care of 1197 * assigning our current directory. 1198 */ 1199 } 1200 if (PTOU(pp)->u_rdir) 1201 VN_HOLD(PTOU(pp)->u_rdir); 1202 if (PTOU(pp)->u_cwd) 1203 refstr_hold(PTOU(pp)->u_cwd); 1204 1205 /* 1206 * copy the parent's uarea. 1207 */ 1208 uarea = PTOU(cp); 1209 bcopy(PTOU(pp), uarea, sizeof (*uarea)); 1210 flist_fork(P_FINFO(pp), P_FINFO(cp)); 1211 1212 gethrestime(&uarea->u_start); 1213 uarea->u_ticks = ddi_get_lbolt(); 1214 uarea->u_mem = rm_asrss(pp->p_as); 1215 uarea->u_acflag = AFORK; 1216 1217 /* 1218 * If inherit-on-fork, copy /proc tracing flags to child. 1219 */ 1220 if ((pp->p_proc_flag & P_PR_FORK) != 0) { 1221 cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK); 1222 cp->p_sigmask = pp->p_sigmask; 1223 cp->p_fltmask = pp->p_fltmask; 1224 } else { 1225 sigemptyset(&cp->p_sigmask); 1226 premptyset(&cp->p_fltmask); 1227 uarea->u_systrap = 0; 1228 premptyset(&uarea->u_entrymask); 1229 premptyset(&uarea->u_exitmask); 1230 } 1231 /* 1232 * If microstate accounting is being inherited, mark child 1233 */ 1234 if ((pp->p_flag & SMSFORK) != 0) 1235 cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT); 1236 1237 /* 1238 * Inherit fixalignment flag from the parent 1239 */ 1240 cp->p_fixalignment = pp->p_fixalignment; 1241 1242 *cpp = cp; 1243 return (0); 1244 1245 bad: 1246 ASSERT(MUTEX_NOT_HELD(&pidlock)); 1247 1248 mutex_destroy(&cp->p_crlock); 1249 mutex_destroy(&cp->p_pflock); 1250 #if defined(__x86) 1251 mutex_destroy(&cp->p_ldtlock); 1252 #endif 1253 if (newpid != -1) { 1254 proc_entry_free(cp->p_pidp); 1255 (void) pid_rele(cp->p_pidp); 1256 } 1257 kmem_cache_free(process_cache, cp); 1258 1259 mutex_enter(&zone->zone_nlwps_lock); 1260 task->tk_nprocs--; 1261 proj->kpj_nprocs--; 1262 zone->zone_nprocs--; 1263 mutex_exit(&zone->zone_nlwps_lock); 1264 atomic_inc_32(&zone->zone_ffnoproc); 1265 1266 punish: 1267 /* 1268 * We most likely got into this situation because some process is 1269 * forking out of control. As punishment, put it to sleep for a 1270 * bit so it can't eat the machine alive. Sleep interval is chosen 1271 * to allow no more than one fork failure per cpu per clock tick 1272 * on average (yes, I just made this up). This has two desirable 1273 * properties: (1) it sets a constant limit on the fork failure 1274 * rate, and (2) the busier the system is, the harsher the penalty 1275 * for abusing it becomes. 1276 */ 1277 INCR_COUNT(&fork_fail_pending, &pidlock); 1278 delay(fork_fail_pending / ncpus + 1); 1279 DECR_COUNT(&fork_fail_pending, &pidlock); 1280 1281 return (-1); /* out of memory or proc slots */ 1282 } 1283 1284 /* 1285 * Release virtual memory. 1286 * In the case of vfork(), the child was given exclusive access to its 1287 * parent's address space. The parent is waiting in vfwait() for the 1288 * child to release its exclusive claim via relvm(). 1289 */ 1290 void 1291 relvm() 1292 { 1293 proc_t *p = curproc; 1294 1295 ASSERT((unsigned)p->p_lwpcnt <= 1); 1296 1297 prrelvm(); /* inform /proc */ 1298 1299 if (p->p_flag & SVFORK) { 1300 proc_t *pp = p->p_parent; 1301 /* 1302 * The child process is either exec'ing or exit'ing. 1303 * The child is now separated from the parent's address 1304 * space. The parent process is made dispatchable. 1305 * 1306 * This is a delicate locking maneuver, involving 1307 * both the parent's p_lock and the child's p_lock. 1308 * As soon as the SVFORK flag is turned off, the 1309 * parent is free to run, but it must not run until 1310 * we wake it up using its p_cv because it might 1311 * exit and we would be referencing invalid memory. 1312 * Therefore, we hold the parent with its p_lock 1313 * while protecting our p_flags with our own p_lock. 1314 */ 1315 try_again: 1316 mutex_enter(&p->p_lock); /* grab child's lock first */ 1317 prbarrier(p); /* make sure /proc is blocked out */ 1318 mutex_enter(&pp->p_lock); 1319 1320 /* 1321 * Check if parent is locked by /proc. 1322 */ 1323 if (pp->p_proc_flag & P_PR_LOCK) { 1324 /* 1325 * Delay until /proc is done with the parent. 1326 * We must drop our (the child's) p->p_lock, wait 1327 * via prbarrier() on the parent, then start over. 1328 */ 1329 mutex_exit(&p->p_lock); 1330 prbarrier(pp); 1331 mutex_exit(&pp->p_lock); 1332 goto try_again; 1333 } 1334 p->p_flag &= ~SVFORK; 1335 kpreempt_disable(); 1336 p->p_as = &kas; 1337 1338 /* 1339 * notify hat of change in thread's address space 1340 */ 1341 hat_thread_exit(curthread); 1342 kpreempt_enable(); 1343 1344 /* 1345 * child sizes are copied back to parent because 1346 * child may have grown. 1347 */ 1348 pp->p_brkbase = p->p_brkbase; 1349 pp->p_brksize = p->p_brksize; 1350 pp->p_stksize = p->p_stksize; 1351 1352 /* 1353 * Copy back the shm accounting information 1354 * to the parent process. 1355 */ 1356 pp->p_segacct = p->p_segacct; 1357 p->p_segacct = NULL; 1358 1359 /* 1360 * The parent is no longer waiting for the vfork()d child. 1361 * Restore the parent's watched pages, if any. This is 1362 * safe because we know the parent is not locked by /proc 1363 */ 1364 pp->p_flag &= ~SVFWAIT; 1365 if (avl_numnodes(&pp->p_wpage) != 0) { 1366 pp->p_as->a_wpage = pp->p_wpage; 1367 avl_create(&pp->p_wpage, wp_compare, 1368 sizeof (struct watched_page), 1369 offsetof(struct watched_page, wp_link)); 1370 } 1371 cv_signal(&pp->p_cv); 1372 mutex_exit(&pp->p_lock); 1373 mutex_exit(&p->p_lock); 1374 } else { 1375 if (p->p_as != &kas) { 1376 struct as *as; 1377 1378 if (p->p_segacct) 1379 shmexit(p); 1380 1381 /* 1382 * We grab p_lock for the benefit of /proc 1383 */ 1384 kpreempt_disable(); 1385 mutex_enter(&p->p_lock); 1386 prbarrier(p); /* make sure /proc is blocked out */ 1387 as = p->p_as; 1388 p->p_as = &kas; 1389 mutex_exit(&p->p_lock); 1390 1391 /* 1392 * notify hat of change in thread's address space 1393 */ 1394 hat_thread_exit(curthread); 1395 kpreempt_enable(); 1396 1397 as_free(as); 1398 p->p_tr_lgrpid = LGRP_NONE; 1399 } 1400 } 1401 } 1402 1403 /* 1404 * Wait for child to exec or exit. 1405 * Called by parent of vfork'ed process. 1406 * See important comments in relvm(), above. 1407 */ 1408 void 1409 vfwait(pid_t pid) 1410 { 1411 int signalled = 0; 1412 proc_t *pp = ttoproc(curthread); 1413 proc_t *cp; 1414 1415 /* 1416 * Wait for child to exec or exit. 1417 */ 1418 for (;;) { 1419 mutex_enter(&pidlock); 1420 cp = prfind(pid); 1421 if (cp == NULL || cp->p_parent != pp) { 1422 /* 1423 * Child has exit()ed. 1424 */ 1425 mutex_exit(&pidlock); 1426 break; 1427 } 1428 /* 1429 * Grab the child's p_lock before releasing pidlock. 1430 * Otherwise, the child could exit and we would be 1431 * referencing invalid memory. 1432 */ 1433 mutex_enter(&cp->p_lock); 1434 mutex_exit(&pidlock); 1435 if (!(cp->p_flag & SVFORK)) { 1436 /* 1437 * Child has exec()ed or is exit()ing. 1438 */ 1439 mutex_exit(&cp->p_lock); 1440 break; 1441 } 1442 mutex_enter(&pp->p_lock); 1443 mutex_exit(&cp->p_lock); 1444 /* 1445 * We might be waked up spuriously from the cv_wait(). 1446 * We have to do the whole operation over again to be 1447 * sure the child's SVFORK flag really is turned off. 1448 * We cannot make reference to the child because it can 1449 * exit before we return and we would be referencing 1450 * invalid memory. 1451 * 1452 * Because this is potentially a very long-term wait, 1453 * we call cv_wait_sig() (for its jobcontrol and /proc 1454 * side-effects) unless there is a current signal, in 1455 * which case we use cv_wait() because we cannot return 1456 * from this function until the child has released the 1457 * address space. Calling cv_wait_sig() with a current 1458 * signal would lead to an indefinite loop here because 1459 * cv_wait_sig() returns immediately in this case. 1460 */ 1461 if (signalled) 1462 cv_wait(&pp->p_cv, &pp->p_lock); 1463 else 1464 signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock); 1465 mutex_exit(&pp->p_lock); 1466 } 1467 1468 /* restore watchpoints to parent */ 1469 if (pr_watch_active(pp)) { 1470 struct as *as = pp->p_as; 1471 AS_LOCK_ENTER(as, RW_WRITER); 1472 as_setwatch(as); 1473 AS_LOCK_EXIT(as); 1474 } 1475 1476 mutex_enter(&pp->p_lock); 1477 prbarrier(pp); /* barrier against /proc locking */ 1478 continuelwps(pp); 1479 mutex_exit(&pp->p_lock); 1480 } 1481