xref: /illumos-gate/usr/src/uts/sun4/os/startup.c (revision 8eea8e29)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/machsystm.h>
30 #include <sys/archsystm.h>
31 #include <sys/vm.h>
32 #include <sys/cpu.h>
33 #include <sys/atomic.h>
34 #include <sys/reboot.h>
35 #include <sys/kdi.h>
36 #include <sys/bootconf.h>
37 #include <sys/memlist_plat.h>
38 #include <sys/memlist_impl.h>
39 #include <sys/prom_plat.h>
40 #include <sys/prom_isa.h>
41 #include <sys/autoconf.h>
42 #include <sys/intreg.h>
43 #include <sys/ivintr.h>
44 #include <sys/fpu/fpusystm.h>
45 #include <sys/iommutsb.h>
46 #include <vm/vm_dep.h>
47 #include <vm/seg_dev.h>
48 #include <vm/seg_kmem.h>
49 #include <vm/seg_kpm.h>
50 #include <vm/seg_map.h>
51 #include <vm/seg_kp.h>
52 #include <sys/sysconf.h>
53 #include <vm/hat_sfmmu.h>
54 #include <sys/kobj.h>
55 #include <sys/sun4asi.h>
56 #include <sys/clconf.h>
57 #include <sys/platform_module.h>
58 #include <sys/panic.h>
59 #include <sys/cpu_sgnblk_defs.h>
60 #include <sys/clock.h>
61 #include <sys/cmn_err.h>
62 #include <sys/promif.h>
63 #include <sys/prom_debug.h>
64 
65 #ifdef TRAPTRACE
66 #include <sys/traptrace.h>
67 #endif /* TRAPTRACE */
68 
69 #include <sys/memnode.h>
70 #include <sys/mem_cage.h>
71 
72 
73 extern void setup_trap_table(void);
74 extern void cpu_intrq_setup(struct cpu *);
75 extern void cpu_intrq_register(struct cpu *);
76 extern void contig_mem_init(void);
77 extern void mach_dump_buffer_init(void);
78 extern void mach_descrip_init(void);
79 extern void mach_memscrub(void);
80 extern void mach_fpras(void);
81 extern void mach_cpu_halt_idle(void);
82 extern void mach_hw_copy_limit(void);
83 extern void load_tod_module(void);
84 #pragma weak load_tod_module
85 
86 extern int ndata_alloc_mmfsa(struct memlist *ndata);
87 #pragma weak ndata_alloc_mmfsa
88 
89 extern void parse_idprom(void);
90 extern void add_vx_handler(char *, int, void (*)(cell_t *));
91 extern void mem_config_init(void);
92 extern void memseg_remap_init(void);
93 
94 /*
95  * External Data:
96  */
97 extern int vac_size;	/* cache size in bytes */
98 extern uint_t vac_mask;	/* VAC alignment consistency mask */
99 extern uint_t vac_colors;
100 
101 /*
102  * Global Data Definitions:
103  */
104 
105 /*
106  * XXX - Don't port this to new architectures
107  * A 3rd party volume manager driver (vxdm) depends on the symbol romp.
108  * 'romp' has no use with a prom with an IEEE 1275 client interface.
109  * The driver doesn't use the value, but it depends on the symbol.
110  */
111 void *romp;		/* veritas driver won't load without romp 4154976 */
112 /*
113  * Declare these as initialized data so we can patch them.
114  */
115 pgcnt_t physmem = 0;	/* memory size in pages, patch if you want less */
116 pgcnt_t segkpsize =
117     btop(SEGKPDEFSIZE);	/* size of segkp segment in pages */
118 uint_t segmap_percent = 12; /* Size of segmap segment */
119 
120 int use_cache = 1;		/* cache not reliable (605 bugs) with MP */
121 int vac_copyback = 1;
122 char *cache_mode = NULL;
123 int use_mix = 1;
124 int prom_debug = 0;
125 int usb_node_debug = 0;
126 
127 struct bootops *bootops = 0;	/* passed in from boot in %o2 */
128 caddr_t boot_tba;		/* %tba at boot - used by kmdb */
129 uint_t	tba_taken_over = 0;
130 
131 caddr_t s_text;			/* start of kernel text segment */
132 caddr_t e_text;			/* end of kernel text segment */
133 caddr_t s_data;			/* start of kernel data segment */
134 caddr_t e_data;			/* end of kernel data segment */
135 
136 caddr_t modtext;		/* beginning of module text */
137 size_t	modtext_sz;		/* size of module text */
138 caddr_t moddata;		/* beginning of module data reserve */
139 caddr_t e_moddata;		/* end of module data reserve */
140 
141 /*
142  * End of first block of contiguous kernel in 32-bit virtual address space
143  */
144 caddr_t		econtig32;	/* end of first blk of contiguous kernel */
145 
146 caddr_t		ncbase;		/* beginning of non-cached segment */
147 caddr_t		ncend;		/* end of non-cached segment */
148 caddr_t		sdata;		/* beginning of data segment */
149 
150 caddr_t		extra_etva;	/* beginning of unused nucleus text */
151 pgcnt_t		extra_etpg;	/* number of pages of unused nucleus text */
152 
153 size_t	ndata_remain_sz;	/* bytes from end of data to 4MB boundary */
154 caddr_t	nalloc_base;		/* beginning of nucleus allocation */
155 caddr_t nalloc_end;		/* end of nucleus allocatable memory */
156 caddr_t valloc_base;		/* beginning of kvalloc segment	*/
157 
158 caddr_t kmem64_base;		/* base of kernel mem segment in 64-bit space */
159 caddr_t kmem64_end;		/* end of kernel mem segment in 64-bit space */
160 
161 uintptr_t shm_alignment = 0;	/* VAC address consistency modulus */
162 struct memlist *phys_install;	/* Total installed physical memory */
163 struct memlist *phys_avail;	/* Available (unreserved) physical memory */
164 struct memlist *virt_avail;	/* Available (unmapped?) virtual memory */
165 struct memlist ndata;		/* memlist of nucleus allocatable memory */
166 int memexp_flag;		/* memory expansion card flag */
167 uint64_t ecache_flushaddr;	/* physical address used for flushing E$ */
168 pgcnt_t obp_pages;		/* Physical pages used by OBP */
169 
170 /*
171  * VM data structures
172  */
173 long page_hashsz;		/* Size of page hash table (power of two) */
174 struct page *pp_base;		/* Base of system page struct array */
175 size_t pp_sz;			/* Size in bytes of page struct array */
176 struct page **page_hash;	/* Page hash table */
177 struct seg ktextseg;		/* Segment used for kernel executable image */
178 struct seg kvalloc;		/* Segment used for "valloc" mapping */
179 struct seg kpseg;		/* Segment used for pageable kernel virt mem */
180 struct seg ktexthole;		/* Segment used for nucleus text hole */
181 struct seg kmapseg;		/* Segment used for generic kernel mappings */
182 struct seg kpmseg;		/* Segment used for physical mapping */
183 struct seg kdebugseg;		/* Segment used for the kernel debugger */
184 
185 uintptr_t kpm_pp_base;		/* Base of system kpm_page array */
186 size_t	kpm_pp_sz;		/* Size of system kpm_page array */
187 pgcnt_t	kpm_npages;		/* How many kpm pages are managed */
188 
189 struct seg *segkp = &kpseg;	/* Pageable kernel virtual memory segment */
190 struct seg *segkmap = &kmapseg;	/* Kernel generic mapping segment */
191 struct seg *segkpm = &kpmseg;	/* 64bit kernel physical mapping segment */
192 
193 /*
194  * debugger pages (if allocated)
195  */
196 struct vnode kdebugvp;
197 
198 /*
199  * Segment for relocated kernel structures in 64-bit large RAM kernels
200  */
201 struct seg kmem64;
202 
203 struct memseg *memseg_base;
204 size_t memseg_sz;		/* Used to translate a va to page */
205 struct vnode unused_pages_vp;
206 
207 /*
208  * VM data structures allocated early during boot.
209  */
210 size_t pagehash_sz;
211 uint64_t memlist_sz;
212 
213 char tbr_wr_addr_inited = 0;
214 
215 
216 /*
217  * Static Routines:
218  */
219 static void memlist_add(uint64_t, uint64_t, struct memlist **,
220 	struct memlist **);
221 static void kphysm_init(page_t *, struct memseg *, pgcnt_t, uintptr_t,
222 	pgcnt_t);
223 static void kvm_init(void);
224 
225 static void startup_init(void);
226 static void startup_memlist(void);
227 static void startup_modules(void);
228 static void startup_bop_gone(void);
229 static void startup_vm(void);
230 static void startup_end(void);
231 static void setup_cage_params(void);
232 static void startup_create_input_node(void);
233 
234 static pgcnt_t npages;
235 static struct memlist *memlist;
236 void *memlist_end;
237 
238 static pgcnt_t bop_alloc_pages;
239 static caddr_t hblk_base;
240 uint_t hblk_alloc_dynamic = 0;
241 uint_t hblk1_min = H1MIN;
242 uint_t hblk8_min;
243 
244 
245 /*
246  * Hooks for unsupported platforms and down-rev firmware
247  */
248 int iam_positron(void);
249 #pragma weak iam_positron
250 static void do_prom_version_check(void);
251 static void kpm_init(void);
252 static void kpm_npages_setup(int);
253 static void kpm_memseg_init(void);
254 
255 /*
256  * After receiving a thermal interrupt, this is the number of seconds
257  * to delay before shutting off the system, assuming
258  * shutdown fails.  Use /etc/system to change the delay if this isn't
259  * large enough.
260  */
261 int thermal_powerdown_delay = 1200;
262 
263 /*
264  * Used to hold off page relocations into the cage until OBP has completed
265  * its boot-time handoff of its resources to the kernel.
266  */
267 int page_relocate_ready = 0;
268 
269 /*
270  * Enable some debugging messages concerning memory usage...
271  */
272 #ifdef  DEBUGGING_MEM
273 static int debugging_mem;
274 static void
275 printmemlist(char *title, struct memlist *list)
276 {
277 	if (!debugging_mem)
278 		return;
279 
280 	printf("%s\n", title);
281 
282 	while (list) {
283 		prom_printf("\taddr = 0x%x %8x, size = 0x%x %8x\n",
284 		    (uint32_t)(list->address >> 32), (uint32_t)list->address,
285 		    (uint32_t)(list->size >> 32), (uint32_t)(list->size));
286 		list = list->next;
287 	}
288 }
289 
290 void
291 printmemseg(struct memseg *memseg)
292 {
293 	if (!debugging_mem)
294 		return;
295 
296 	printf("memseg\n");
297 
298 	while (memseg) {
299 		prom_printf("\tpage = 0x%p, epage = 0x%p, "
300 		    "pfn = 0x%x, epfn = 0x%x\n",
301 		    memseg->pages, memseg->epages,
302 		    memseg->pages_base, memseg->pages_end);
303 		memseg = memseg->next;
304 	}
305 }
306 
307 #define	debug_pause(str)	halt((str))
308 #define	MPRINTF(str)		if (debugging_mem) prom_printf((str))
309 #define	MPRINTF1(str, a)	if (debugging_mem) prom_printf((str), (a))
310 #define	MPRINTF2(str, a, b)	if (debugging_mem) prom_printf((str), (a), (b))
311 #define	MPRINTF3(str, a, b, c) \
312 	if (debugging_mem) prom_printf((str), (a), (b), (c))
313 #else	/* DEBUGGING_MEM */
314 #define	MPRINTF(str)
315 #define	MPRINTF1(str, a)
316 #define	MPRINTF2(str, a, b)
317 #define	MPRINTF3(str, a, b, c)
318 #endif	/* DEBUGGING_MEM */
319 
320 /* Simple message to indicate that the bootops pointer has been zeroed */
321 #ifdef DEBUG
322 static int bootops_gone_on = 0;
323 #define	BOOTOPS_GONE() \
324 	if (bootops_gone_on) \
325 		prom_printf("The bootops vec is zeroed now!\n");
326 #else
327 #define	BOOTOPS_GONE()
328 #endif /* DEBUG */
329 
330 /*
331  * Monitor pages may not be where this says they are.
332  * and the debugger may not be there either.
333  *
334  * Note that 'pages' here are *physical* pages, which are 8k on sun4u.
335  *
336  *                        Physical memory layout
337  *                     (not necessarily contiguous)
338  *                       (THIS IS SOMEWHAT WRONG)
339  *                       /-----------------------\
340  *                       |       monitor pages   |
341  *             availmem -|-----------------------|
342  *                       |                       |
343  *                       |       page pool       |
344  *                       |                       |
345  *                       |-----------------------|
346  *                       |   configured tables   |
347  *                       |       buffers         |
348  *            firstaddr -|-----------------------|
349  *                       |   hat data structures |
350  *                       |-----------------------|
351  *                       |    kernel data, bss   |
352  *                       |-----------------------|
353  *                       |    interrupt stack    |
354  *                       |-----------------------|
355  *                       |    kernel text (RO)   |
356  *                       |-----------------------|
357  *                       |    trap table (4k)    |
358  *                       |-----------------------|
359  *               page 1  |      panicbuf         |
360  *                       |-----------------------|
361  *               page 0  |       reclaimed       |
362  *                       |_______________________|
363  *
364  *
365  *
366  *                    Kernel's Virtual Memory Layout.
367  *                       /-----------------------\
368  * 0xFFFFFFFF.FFFFFFFF  -|                       |-
369  *                       |   OBP's virtual page  |
370  *                       |        tables         |
371  * 0xFFFFFFFC.00000000  -|-----------------------|-
372  *                       :                       :
373  *                       :                       :
374  * 0xFFFFFE00.00000000  -|-----------------------|-
375  *                       |                       |  Ultrasparc I/II support
376  *                       |    segkpm segment     |  up to 2TB of physical
377  *                       | (64-bit kernel ONLY)  |  memory, VAC has 2 colors
378  *                       |                       |
379  * 0xFFFFFA00.00000000  -|-----------------------|- 2TB segkpm alignment
380  *                       :                       :
381  *                       :                       :
382  * 0xFFFFF810.00000000  -|-----------------------|- hole_end
383  *                       |                       |      ^
384  *                       |  UltraSPARC I/II call |      |
385  *                       | bug requires an extra |      |
386  *                       | 4 GB of space between |      |
387  *                       |   hole and used RAM   |	|
388  *                       |                       |      |
389  * 0xFFFFF800.00000000  -|-----------------------|-     |
390  *                       |                       |      |
391  *                       | Virtual Address Hole  |   UltraSPARC
392  *                       |  on UltraSPARC I/II   |  I/II * ONLY *
393  *                       |                       |      |
394  * 0x00000800.00000000  -|-----------------------|-     |
395  *                       |                       |      |
396  *                       |  UltraSPARC I/II call |      |
397  *                       | bug requires an extra |      |
398  *                       | 4 GB of space between |      |
399  *                       |   hole and used RAM   |      |
400  *                       |                       |      v
401  * 0x000007FF.00000000  -|-----------------------|- hole_start -----
402  *                       :                       :		   ^
403  *                       :                       :		   |
404  * 0x00000XXX.XXXXXXXX  -|-----------------------|- kmem64_end	   |
405  *                       |                       |		   |
406  *                       |   64-bit kernel ONLY  |		   |
407  *                       |                       |		   |
408  *                       |    kmem64 segment     |		   |
409  *                       |                       |		   |
410  *                       | (Relocated extra HME  |	     Approximately
411  *                       |   block allocations,  |	    1 TB of virtual
412  *                       |   memnode freelists,  |	     address space
413  *                       |    HME hash buckets,  |		   |
414  *                       | mml_table, kpmp_table,|		   |
415  *                       |  page_t array and     |		   |
416  *                       |  hashblock pool to    |		   |
417  *                       |   avoid hard-coded    |		   |
418  *                       |     32-bit vaddr      |		   |
419  *                       |     limitations)      |		   |
420  *                       |                       |		   v
421  * 0x00000700.00000000  -|-----------------------|- SYSLIMIT (kmem64_base)
422  *                       |                       |
423  *                       |  segkmem segment      | (SYSLIMIT - SYSBASE = 4TB)
424  *                       |                       |
425  * 0x00000300.00000000  -|-----------------------|- SYSBASE
426  *                       :                       :
427  *                       :                       :
428  *                      -|-----------------------|-
429  *                       |                       |
430  *                       |  segmap segment       |   SEGMAPSIZE (1/8th physmem,
431  *                       |                       |               256G MAX)
432  * 0x000002a7.50000000  -|-----------------------|- SEGMAPBASE
433  *                       :                       :
434  *                       :                       :
435  *                      -|-----------------------|-
436  *                       |                       |
437  *                       |       segkp           |    SEGKPSIZE (2GB)
438  *                       |                       |
439  *                       |                       |
440  * 0x000002a1.00000000  -|-----------------------|- SEGKPBASE
441  *                       |                       |
442  * 0x000002a0.00000000  -|-----------------------|- MEMSCRUBBASE
443  *                       |                       |       (SEGKPBASE - 0x400000)
444  * 0x0000029F.FFE00000  -|-----------------------|- ARGSBASE
445  *                       |                       |       (MEMSCRUBBASE - NCARGS)
446  * 0x0000029F.FFD80000  -|-----------------------|- PPMAPBASE
447  *                       |                       |       (ARGSBASE - PPMAPSIZE)
448  * 0x0000029F.FFD00000  -|-----------------------|- PPMAP_FAST_BASE
449  *                       |                       |
450  * 0x0000029F.FF980000  -|-----------------------|- PIOMAPBASE
451  *                       |                       |
452  * 0x0000029F.FF580000  -|-----------------------|- NARG_BASE
453  *                       :                       :
454  *                       :                       :
455  * 0x00000000.FFFFFFFF  -|-----------------------|- OFW_END_ADDR
456  *                       |                       |
457  *                       |         OBP           |
458  *                       |                       |
459  * 0x00000000.F0000000  -|-----------------------|- OFW_START_ADDR
460  *                       |         kmdb          |
461  * 0x00000000.EDD00000  -|-----------------------|- SEGDEBUGBASE
462  *                       :                       :
463  *                       :                       :
464  * 0x00000000.7c000000  -|-----------------------|- SYSLIMIT32
465  *                       |                       |
466  *                       |  segkmem32 segment    | (SYSLIMIT32 - SYSBASE32 =
467  *                       |                       |    ~64MB)
468  * 0x00000000.78002000  -|-----------------------|
469  *                       |     panicbuf          |
470  * 0x00000000.78000000  -|-----------------------|- SYSBASE32
471  *                       :                       :
472  *                       :                       :
473  *                       |                       |
474  *                       |-----------------------|- econtig32
475  *                       |    vm structures      |
476  * 0x00000000.01C00000   |-----------------------|- nalloc_end
477  *                       |         TSBs          |
478  *                       |-----------------------|- end/nalloc_base
479  *                       |   kernel data & bss   |
480  * 0x00000000.01800000  -|-----------------------|
481  *                       :   nucleus text hole   :
482  * 0x00000000.01400000  -|-----------------------|
483  *                       :                       :
484  *                       |-----------------------|
485  *                       |      module text      |
486  *                       |-----------------------|- e_text/modtext
487  *                       |      kernel text      |
488  *                       |-----------------------|
489  *                       |    trap table (48k)   |
490  * 0x00000000.01000000  -|-----------------------|- KERNELBASE
491  *                       | reserved for trapstat |} TSTAT_TOTAL_SIZE
492  *                       |-----------------------|
493  *                       |                       |
494  *                       |        invalid        |
495  *                       |                       |
496  * 0x00000000.00000000  _|_______________________|
497  *
498  *
499  *
500  *                   32-bit User Virtual Memory Layout.
501  *                       /-----------------------\
502  *                       |                       |
503  *                       |        invalid        |
504  *                       |                       |
505  *          0xFFC00000  -|-----------------------|- USERLIMIT
506  *                       |       user stack      |
507  *                       :                       :
508  *                       :                       :
509  *                       :                       :
510  *                       |       user data       |
511  *                      -|-----------------------|-
512  *                       |       user text       |
513  *          0x00002000  -|-----------------------|-
514  *                       |       invalid         |
515  *          0x00000000  _|_______________________|
516  *
517  *
518  *
519  *                   64-bit User Virtual Memory Layout.
520  *                       /-----------------------\
521  *                       |                       |
522  *                       |        invalid        |
523  *                       |                       |
524  *  0xFFFFFFFF.80000000 -|-----------------------|- USERLIMIT
525  *                       |       user stack      |
526  *                       :                       :
527  *                       :                       :
528  *                       :                       :
529  *                       |       user data       |
530  *                      -|-----------------------|-
531  *                       |       user text       |
532  *  0x00000000.00100000 -|-----------------------|-
533  *                       |       invalid         |
534  *  0x00000000.00000000 _|_______________________|
535  */
536 
537 extern caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base);
538 extern uint64_t ecache_flush_address(void);
539 
540 #pragma weak load_platform_modules
541 #pragma weak starcat_startup_memlist
542 #pragma weak ecache_init_scrub_flush_area
543 #pragma weak ecache_flush_address
544 
545 
546 /*
547  * By default the DR Cage is enabled for maximum OS
548  * MPSS performance.  Users needing to disable the cage mechanism
549  * can set this variable to zero via /etc/system.
550  * Disabling the cage on systems supporting Dynamic Reconfiguration (DR)
551  * will result in loss of DR functionality.
552  * Platforms wishing to disable kernel Cage by default
553  * should do so in their set_platform_defaults() routine.
554  */
555 int	kernel_cage_enable = 1;
556 
557 static void
558 setup_cage_params(void)
559 {
560 	void (*func)(void);
561 
562 	func = (void (*)(void))kobj_getsymvalue("set_platform_cage_params", 0);
563 	if (func != NULL) {
564 		(*func)();
565 		return;
566 	}
567 
568 	if (kernel_cage_enable == 0) {
569 		return;
570 	}
571 	kcage_range_lock();
572 	if (kcage_range_init(phys_avail, 1) == 0) {
573 		kcage_init(total_pages / 256);
574 	}
575 	kcage_range_unlock();
576 
577 	if (kcage_on) {
578 		cmn_err(CE_NOTE, "!Kernel Cage is ENABLED");
579 	} else {
580 		cmn_err(CE_NOTE, "!Kernel Cage is DISABLED");
581 	}
582 
583 }
584 
585 /*
586  * Machine-dependent startup code
587  */
588 void
589 startup(void)
590 {
591 	startup_init();
592 	if (&startup_platform)
593 		startup_platform();
594 	startup_memlist();
595 	startup_modules();
596 	setup_cage_params();
597 	startup_bop_gone();
598 	startup_vm();
599 	startup_end();
600 }
601 
602 struct regs sync_reg_buf;
603 uint64_t sync_tt;
604 
605 void
606 sync_handler(void)
607 {
608 	struct  trap_info 	ti;
609 	int i;
610 
611 	/*
612 	 * Prevent trying to talk to the other CPUs since they are
613 	 * sitting in the prom and won't reply.
614 	 */
615 	for (i = 0; i < NCPU; i++) {
616 		if ((i != CPU->cpu_id) && CPU_XCALL_READY(i)) {
617 			cpu[i]->cpu_flags &= ~CPU_READY;
618 			cpu[i]->cpu_flags |= CPU_QUIESCED;
619 			CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id);
620 		}
621 	}
622 
623 	/*
624 	 * We've managed to get here without going through the
625 	 * normal panic code path. Try and save some useful
626 	 * information.
627 	 */
628 	if (!panicstr && (curthread->t_panic_trap == NULL)) {
629 		ti.trap_type = sync_tt;
630 		ti.trap_regs = &sync_reg_buf;
631 		ti.trap_addr = NULL;
632 		ti.trap_mmu_fsr = 0x0;
633 
634 		curthread->t_panic_trap = &ti;
635 	}
636 
637 	/*
638 	 * If we're re-entering the panic path, update the signature
639 	 * block so that the SC knows we're in the second part of panic.
640 	 */
641 	if (panicstr)
642 		CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1);
643 
644 	nopanicdebug = 1; /* do not perform debug_enter() prior to dump */
645 	panic("sync initiated");
646 }
647 
648 
649 static void
650 startup_init(void)
651 {
652 	/*
653 	 * We want to save the registers while we're still in OBP
654 	 * so that we know they haven't been fiddled with since.
655 	 * (In principle, OBP can't change them just because it
656 	 * makes a callback, but we'd rather not depend on that
657 	 * behavior.)
658 	 */
659 	char		sync_str[] =
660 		"warning @ warning off : sync "
661 		"%%tl-c %%tstate h# %p x! "
662 		"%%g1 h# %p x! %%g2 h# %p x! %%g3 h# %p x! "
663 		"%%g4 h# %p x! %%g5 h# %p x! %%g6 h# %p x! "
664 		"%%g7 h# %p x! %%o0 h# %p x! %%o1 h# %p x! "
665 		"%%o2 h# %p x! %%o3 h# %p x! %%o4 h# %p x! "
666 		"%%o5 h# %p x! %%o6 h# %p x! %%o7 h# %p x! "
667 		"%%tl-c %%tpc h# %p x! %%tl-c %%tnpc h# %p x! "
668 		"%%y h# %p l! %%tl-c %%tt h# %p x! "
669 		"sync ; warning !";
670 
671 	/*
672 	 * 20 == num of %p substrings
673 	 * 16 == max num of chars %p will expand to.
674 	 */
675 	char 		bp[sizeof (sync_str) + 16 * 20];
676 
677 	(void) check_boot_version(BOP_GETVERSION(bootops));
678 
679 	/*
680 	 * Initialize ptl1 stack for the 1st CPU.
681 	 */
682 	ptl1_init_cpu(&cpu0);
683 
684 	/*
685 	 * Initialize the address map for cache consistent mappings
686 	 * to random pages; must be done after vac_size is set.
687 	 */
688 	ppmapinit();
689 
690 	/*
691 	 * Initialize the PROM callback handler.
692 	 */
693 	init_vx_handler();
694 
695 	/*
696 	 * have prom call sync_callback() to handle the sync and
697 	 * save some useful information which will be stored in the
698 	 * core file later.
699 	 */
700 	(void) sprintf((char *)bp, sync_str,
701 		(void *)&sync_reg_buf.r_tstate, (void *)&sync_reg_buf.r_g1,
702 		(void *)&sync_reg_buf.r_g2, (void *)&sync_reg_buf.r_g3,
703 		(void *)&sync_reg_buf.r_g4, (void *)&sync_reg_buf.r_g5,
704 		(void *)&sync_reg_buf.r_g6, (void *)&sync_reg_buf.r_g7,
705 		(void *)&sync_reg_buf.r_o0, (void *)&sync_reg_buf.r_o1,
706 		(void *)&sync_reg_buf.r_o2, (void *)&sync_reg_buf.r_o3,
707 		(void *)&sync_reg_buf.r_o4, (void *)&sync_reg_buf.r_o5,
708 		(void *)&sync_reg_buf.r_o6, (void *)&sync_reg_buf.r_o7,
709 		(void *)&sync_reg_buf.r_pc, (void *)&sync_reg_buf.r_npc,
710 		(void *)&sync_reg_buf.r_y, (void *)&sync_tt);
711 	prom_interpret(bp, 0, 0, 0, 0, 0);
712 	add_vx_handler("sync", 1, (void (*)(cell_t *))sync_handler);
713 }
714 
715 static u_longlong_t *boot_physinstalled, *boot_physavail, *boot_virtavail;
716 static size_t boot_physinstalled_len, boot_physavail_len, boot_virtavail_len;
717 
718 #define	IVSIZE	((MAXIVNUM + 1) * sizeof (struct intr_vector))
719 
720 /*
721  * As OBP takes up some RAM when the system boots, pages will already be "lost"
722  * to the system and reflected in npages by the time we see it.
723  *
724  * We only want to allocate kernel structures in the 64-bit virtual address
725  * space on systems with enough RAM to make the overhead of keeping track of
726  * an extra kernel memory segment worthwhile.
727  *
728  * Since OBP has already performed its memory allocations by this point, if we
729  * have more than MINMOVE_RAM_MB MB of RAM left free, go ahead and map
730  * memory in the 64-bit virtual address space; otherwise keep allocations
731  * contiguous with we've mapped so far in the 32-bit virtual address space.
732  */
733 #define	MINMOVE_RAM_MB	((size_t)1900)
734 #define	MB_TO_BYTES(mb)	((mb) * 1048576ul)
735 
736 pgcnt_t	tune_npages = (pgcnt_t)
737 	(MB_TO_BYTES(MINMOVE_RAM_MB)/ (size_t)MMU_PAGESIZE);
738 
739 static void
740 startup_memlist(void)
741 {
742 	size_t alloc_sz;
743 	size_t ctrs_sz;
744 	caddr_t alloc_base;
745 	caddr_t ctrs_base, ctrs_end;
746 	caddr_t memspace;
747 	caddr_t va;
748 	int memblocks = 0;
749 	struct memlist *cur;
750 	size_t syslimit = (size_t)SYSLIMIT;
751 	size_t sysbase = (size_t)SYSBASE;
752 	int alloc_alignsize = MMU_PAGESIZE;
753 	extern void page_coloring_init(void);
754 
755 	/*
756 	 * Initialize enough of the system to allow kmem_alloc to work by
757 	 * calling boot to allocate its memory until the time that
758 	 * kvm_init is completed.  The page structs are allocated after
759 	 * rounding up end to the nearest page boundary; the memsegs are
760 	 * initialized and the space they use comes from the kernel heap.
761 	 * With appropriate initialization, they can be reallocated later
762 	 * to a size appropriate for the machine's configuration.
763 	 *
764 	 * At this point, memory is allocated for things that will never
765 	 * need to be freed, this used to be "valloced".  This allows a
766 	 * savings as the pages don't need page structures to describe
767 	 * them because them will not be managed by the vm system.
768 	 */
769 
770 	/*
771 	 * We're loaded by boot with the following configuration (as
772 	 * specified in the sun4u/conf/Mapfile):
773 	 *
774 	 * 	text:		4 MB chunk aligned on a 4MB boundary
775 	 * 	data & bss:	4 MB chunk aligned on a 4MB boundary
776 	 *
777 	 * These two chunks will eventually be mapped by 2 locked 4MB
778 	 * ttes and will represent the nucleus of the kernel.  This gives
779 	 * us some free space that is already allocated, some or all of
780 	 * which is made available to kernel module text.
781 	 *
782 	 * The free space in the data-bss chunk is used for nucleus
783 	 * allocatable data structures and we reserve it using the
784 	 * nalloc_base and nalloc_end variables.  This space is currently
785 	 * being used for hat data structures required for tlb miss
786 	 * handling operations.  We align nalloc_base to a l2 cache
787 	 * linesize because this is the line size the hardware uses to
788 	 * maintain cache coherency.
789 	 * 256K is carved out for module data.
790 	 */
791 
792 	nalloc_base = (caddr_t)roundup((uintptr_t)e_data, MMU_PAGESIZE);
793 	moddata = nalloc_base;
794 	e_moddata = nalloc_base + MODDATA;
795 	nalloc_base = e_moddata;
796 
797 	nalloc_end = (caddr_t)roundup((uintptr_t)nalloc_base, MMU_PAGESIZE4M);
798 	valloc_base = nalloc_base;
799 
800 	/*
801 	 * Calculate the start of the data segment.
802 	 */
803 	sdata = (caddr_t)((uintptr_t)e_data & MMU_PAGEMASK4M);
804 
805 	PRM_DEBUG(moddata);
806 	PRM_DEBUG(nalloc_base);
807 	PRM_DEBUG(nalloc_end);
808 	PRM_DEBUG(sdata);
809 
810 	/*
811 	 * Remember any slop after e_text so we can give it to the modules.
812 	 */
813 	PRM_DEBUG(e_text);
814 	modtext = (caddr_t)roundup((uintptr_t)e_text, MMU_PAGESIZE);
815 	if (((uintptr_t)modtext & MMU_PAGEMASK4M) != (uintptr_t)s_text)
816 		panic("nucleus text overflow");
817 	modtext_sz = (caddr_t)roundup((uintptr_t)modtext, MMU_PAGESIZE4M) -
818 	    modtext;
819 	PRM_DEBUG(modtext);
820 	PRM_DEBUG(modtext_sz);
821 
822 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
823 	    &boot_physavail, &boot_physavail_len,
824 	    &boot_virtavail, &boot_virtavail_len);
825 	/*
826 	 * Remember what the physically available highest page is
827 	 * so that dumpsys works properly, and find out how much
828 	 * memory is installed.
829 	 */
830 	installed_top_size_memlist_array(boot_physinstalled,
831 	    boot_physinstalled_len, &physmax, &physinstalled);
832 	PRM_DEBUG(physinstalled);
833 	PRM_DEBUG(physmax);
834 
835 	/* Fill out memory nodes config structure */
836 	startup_build_mem_nodes(boot_physinstalled, boot_physinstalled_len);
837 
838 	/*
839 	 * Get the list of physically available memory to size
840 	 * the number of page structures needed.
841 	 */
842 	size_physavail(boot_physavail, boot_physavail_len, &npages, &memblocks);
843 	/*
844 	 * This first snap shot of npages can represent the pages used
845 	 * by OBP's text and data approximately. This is used in the
846 	 * the calculation of the kernel size
847 	 */
848 	obp_pages = physinstalled - npages;
849 
850 
851 	/*
852 	 * On small-memory systems (<MODTEXT_SM_SIZE MB, currently 256MB), the
853 	 * in-nucleus module text is capped to MODTEXT_SM_CAP bytes (currently
854 	 * 2MB) and any excess pages are put on physavail.  The assumption is
855 	 * that small-memory systems will need more pages more than they'll
856 	 * need efficiently-mapped module texts.
857 	 */
858 	if ((physinstalled < mmu_btop(MODTEXT_SM_SIZE << 20)) &&
859 	    modtext_sz > MODTEXT_SM_CAP) {
860 		extra_etpg = mmu_btop(modtext_sz - MODTEXT_SM_CAP);
861 		modtext_sz = MODTEXT_SM_CAP;
862 	} else
863 		extra_etpg = 0;
864 	PRM_DEBUG(extra_etpg);
865 	PRM_DEBUG(modtext_sz);
866 	extra_etva = modtext + modtext_sz;
867 	PRM_DEBUG(extra_etva);
868 
869 	/*
870 	 * Account for any pages after e_text and e_data.
871 	 */
872 	npages += extra_etpg;
873 	npages += mmu_btopr(nalloc_end - nalloc_base);
874 	PRM_DEBUG(npages);
875 
876 	/*
877 	 * npages is the maximum of available physical memory possible.
878 	 * (ie. it will never be more than this)
879 	 */
880 
881 	/*
882 	 * initialize the nucleus memory allocator.
883 	 */
884 	ndata_alloc_init(&ndata, (uintptr_t)nalloc_base, (uintptr_t)nalloc_end);
885 
886 	/*
887 	 * Allocate mmu fault status area from the nucleus data area.
888 	 */
889 	if ((&ndata_alloc_mmfsa != NULL) && (ndata_alloc_mmfsa(&ndata) != 0))
890 		cmn_err(CE_PANIC, "no more nucleus memory after mfsa alloc");
891 
892 	/*
893 	 * Allocate kernel TSBs from the nucleus data area.
894 	 */
895 	if (ndata_alloc_tsbs(&ndata, npages) != 0)
896 		cmn_err(CE_PANIC, "no more nucleus memory after tsbs alloc");
897 
898 	/*
899 	 * Allocate cpus structs from the nucleus data area.
900 	 */
901 	if (ndata_alloc_cpus(&ndata) != 0)
902 		cmn_err(CE_PANIC, "no more nucleus memory after cpu alloc");
903 
904 	/*
905 	 * Allocate dmv dispatch table from the nucleus data area.
906 	 */
907 	if (ndata_alloc_dmv(&ndata) != 0)
908 		cmn_err(CE_PANIC, "no more nucleus memory after dmv alloc");
909 
910 
911 	page_coloring_init();
912 
913 	/*
914 	 * Allocate page_freelists bin headers for memnode 0 from the
915 	 * nucleus data area.
916 	 */
917 	if (ndata_alloc_page_freelists(&ndata, 0) != 0)
918 		cmn_err(CE_PANIC,
919 		    "no more nucleus memory after page free lists alloc");
920 
921 	if (kpm_enable) {
922 		kpm_init();
923 		/*
924 		 * kpm page space -- Update kpm_npages and make the
925 		 * same assumption about fragmenting as it is done
926 		 * for memseg_sz.
927 		 */
928 		kpm_npages_setup(memblocks + 4);
929 	}
930 
931 	/*
932 	 * Allocate hat related structs from the nucleus data area.
933 	 */
934 	if (ndata_alloc_hat(&ndata, npages, kpm_npages) != 0)
935 		cmn_err(CE_PANIC, "no more nucleus memory after hat alloc");
936 
937 	/*
938 	 * We want to do the BOP_ALLOCs before the real allocation of page
939 	 * structs in order to not have to allocate page structs for this
940 	 * memory.  We need to calculate a virtual address because we want
941 	 * the page structs to come before other allocations in virtual address
942 	 * space.  This is so some (if not all) of page structs can actually
943 	 * live in the nucleus.
944 	 */
945 
946 	/*
947 	 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
948 	 *
949 	 * There are comments all over the SFMMU code warning of dire
950 	 * consequences if the TSBs are moved out of 32-bit space.  This
951 	 * is largely because the asm code uses "sethi %hi(addr)"-type
952 	 * instructions which will not provide the expected result if the
953 	 * address is a 64-bit one.
954 	 *
955 	 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
956 	 */
957 	alloc_base = (caddr_t)roundup((uintptr_t)nalloc_end, MMU_PAGESIZE);
958 	alloc_base = sfmmu_ktsb_alloc(alloc_base);
959 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
960 	PRM_DEBUG(alloc_base);
961 
962 	/*
963 	 * Allocate IOMMU TSB array.  We do this here so that the physical
964 	 * memory gets deducted from the PROM's physical memory list.
965 	 */
966 	alloc_base = iommu_tsb_init(alloc_base);
967 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
968 	    ecache_alignsize);
969 	PRM_DEBUG(alloc_base);
970 
971 	/*
972 	 * Starcat needs its special structures assigned in 32-bit virtual
973 	 * address space because its probing routines execute FCode, and FCode
974 	 * can't handle 64-bit virtual addresses...
975 	 */
976 	if (&starcat_startup_memlist) {
977 		alloc_base = starcat_startup_memlist(alloc_base);
978 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
979 		    ecache_alignsize);
980 		PRM_DEBUG(alloc_base);
981 	}
982 
983 	/*
984 	 * If we have enough memory, use 4M pages for alignment because it
985 	 * greatly reduces the number of TLB misses we take albeit at the cost
986 	 * of possible RAM wastage (degenerate case of 4 MB - MMU_PAGESIZE per
987 	 * allocation.) Still, the speedup on large memory systems (e.g. > 64
988 	 * GB) is quite noticeable, so it is worth the effort to do if we can.
989 	 *
990 	 * Note, however, that this speedup will only occur if the boot PROM
991 	 * uses the largest possible MMU page size possible to map memory
992 	 * requests that are properly aligned and sized (for example, a request
993 	 * for a multiple of 4MB of memory aligned to a 4MB boundary will
994 	 * result in a mapping using a 4MB MMU page.)
995 	 *
996 	 * Even then, the large page mappings will only speed things up until
997 	 * the startup process proceeds a bit further, as when
998 	 * sfmmu_map_prom_mappings() copies page mappings from the PROM to the
999 	 * kernel it remaps everything but the TSBs using 8K pages anyway...
1000 	 *
1001 	 * At some point in the future, sfmmu_map_prom_mappings() will be
1002 	 * rewritten to copy memory mappings to the kernel using the same MMU
1003 	 * page sizes the PROM used.  When that occurs, if the PROM did use
1004 	 * large MMU pages to map memory, the alignment/sizing work we're
1005 	 * doing now should give us a nice extra performance boost, albeit at
1006 	 * the cost of greater RAM usage...
1007 	 */
1008 	alloc_alignsize = ((npages >= tune_npages) ? MMU_PAGESIZE4M :
1009 	    MMU_PAGESIZE);
1010 
1011 	PRM_DEBUG(tune_npages);
1012 	PRM_DEBUG(alloc_alignsize);
1013 
1014 	/*
1015 	 * Save off where the contiguous allocations to date have ended
1016 	 * in econtig32.
1017 	 */
1018 	econtig32 = alloc_base;
1019 	PRM_DEBUG(econtig32);
1020 
1021 	if (econtig32 > (caddr_t)KERNEL_LIMIT32)
1022 		cmn_err(CE_PANIC, "econtig32 too big");
1023 
1024 	/*
1025 	 * To avoid memory allocation collisions in the 32-bit virtual address
1026 	 * space, make allocations from this point forward in 64-bit virtual
1027 	 * address space starting at syslimit and working up.  Also use the
1028 	 * alignment specified by alloc_alignsize, as we may be able to save
1029 	 * ourselves TLB misses by using larger page sizes if they're
1030 	 * available.
1031 	 *
1032 	 * All this is needed because on large memory systems, the default
1033 	 * Solaris allocations will collide with SYSBASE32, which is hard
1034 	 * coded to be at the virtual address 0x78000000.  Therefore, on 64-bit
1035 	 * kernels, move the allocations to a location in the 64-bit virtual
1036 	 * address space space, allowing those structures to grow without
1037 	 * worry.
1038 	 *
1039 	 * On current CPUs we'll run out of physical memory address bits before
1040 	 * we need to worry about the allocations running into anything else in
1041 	 * VM or the virtual address holes on US-I and II, as there's currently
1042 	 * about 1 TB of addressable space before the US-I/II VA hole.
1043 	 */
1044 	kmem64_base = (caddr_t)syslimit;
1045 	PRM_DEBUG(kmem64_base);
1046 
1047 	alloc_base = (caddr_t)roundup((uintptr_t)kmem64_base, alloc_alignsize);
1048 
1049 	/*
1050 	 * If KHME and/or UHME hash buckets won't fit in the nucleus, allocate
1051 	 * them here.
1052 	 */
1053 	if (khme_hash == NULL || uhme_hash == NULL) {
1054 		/*
1055 		 * alloc_hme_buckets() will align alloc_base properly before
1056 		 * assigning the hash buckets, so we don't need to do it
1057 		 * before the call...
1058 		 */
1059 		alloc_base = alloc_hme_buckets(alloc_base, alloc_alignsize);
1060 
1061 		PRM_DEBUG(alloc_base);
1062 		PRM_DEBUG(khme_hash);
1063 		PRM_DEBUG(uhme_hash);
1064 	}
1065 
1066 	/*
1067 	 * Allocate the remaining page freelists.  NUMA systems can
1068 	 * have lots of page freelists, one per node, which quickly
1069 	 * outgrow the amount of nucleus memory available.
1070 	 */
1071 	if (max_mem_nodes > 1) {
1072 		int mnode;
1073 		caddr_t alloc_start = alloc_base;
1074 
1075 		for (mnode = 1; mnode < max_mem_nodes; mnode++) {
1076 			alloc_base = alloc_page_freelists(mnode, alloc_base,
1077 				ecache_alignsize);
1078 		}
1079 
1080 		if (alloc_base > alloc_start) {
1081 			alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1082 				alloc_alignsize);
1083 			if ((caddr_t)BOP_ALLOC(bootops, alloc_start,
1084 				alloc_base - alloc_start,
1085 				alloc_alignsize) != alloc_start)
1086 				cmn_err(CE_PANIC,
1087 					"Unable to alloc page freelists\n");
1088 		}
1089 
1090 		PRM_DEBUG(alloc_base);
1091 	}
1092 
1093 	if (!mml_table) {
1094 		size_t mmltable_sz;
1095 
1096 		/*
1097 		 * We need to allocate the mml_table here because there
1098 		 * was not enough space within the nucleus.
1099 		 */
1100 		mmltable_sz = sizeof (kmutex_t) * mml_table_sz;
1101 		alloc_sz = roundup(mmltable_sz, alloc_alignsize);
1102 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1103 		    alloc_alignsize);
1104 
1105 		if ((mml_table = (kmutex_t *)BOP_ALLOC(bootops, alloc_base,
1106 		    alloc_sz, alloc_alignsize)) != (kmutex_t *)alloc_base)
1107 			panic("mml_table alloc failure");
1108 
1109 		alloc_base += alloc_sz;
1110 		PRM_DEBUG(mml_table);
1111 		PRM_DEBUG(alloc_base);
1112 	}
1113 
1114 	if (kpm_enable && !(kpmp_table || kpmp_stable)) {
1115 		size_t kpmptable_sz;
1116 		caddr_t table;
1117 
1118 		/*
1119 		 * We need to allocate either kpmp_table or kpmp_stable here
1120 		 * because there was not enough space within the nucleus.
1121 		 */
1122 		kpmptable_sz = (kpm_smallpages == 0) ?
1123 				sizeof (kpm_hlk_t) * kpmp_table_sz :
1124 				sizeof (kpm_shlk_t) * kpmp_stable_sz;
1125 
1126 		alloc_sz = roundup(kpmptable_sz, alloc_alignsize);
1127 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1128 		    alloc_alignsize);
1129 
1130 		table = BOP_ALLOC(bootops, alloc_base, alloc_sz,
1131 				alloc_alignsize);
1132 
1133 		if (table != alloc_base)
1134 			panic("kpmp_table or kpmp_stable alloc failure");
1135 
1136 		if (kpm_smallpages == 0) {
1137 			kpmp_table = (kpm_hlk_t *)table;
1138 			PRM_DEBUG(kpmp_table);
1139 		} else {
1140 			kpmp_stable = (kpm_shlk_t *)table;
1141 			PRM_DEBUG(kpmp_stable);
1142 		}
1143 
1144 		alloc_base += alloc_sz;
1145 		PRM_DEBUG(alloc_base);
1146 	}
1147 
1148 	if (&ecache_init_scrub_flush_area) {
1149 		/*
1150 		 * Pass alloc_base directly, as the routine itself is
1151 		 * responsible for any special alignment requirements...
1152 		 */
1153 		alloc_base = ecache_init_scrub_flush_area(alloc_base);
1154 		PRM_DEBUG(alloc_base);
1155 	}
1156 
1157 	/*
1158 	 * Take the most current snapshot we can by calling mem-update.
1159 	 */
1160 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1161 	    &boot_physavail, &boot_physavail_len,
1162 	    &boot_virtavail, &boot_virtavail_len);
1163 
1164 	/*
1165 	 * Reset npages and memblocks based on boot_physavail list.
1166 	 */
1167 	size_physavail(boot_physavail, boot_physavail_len, &npages, &memblocks);
1168 	PRM_DEBUG(npages);
1169 
1170 	/*
1171 	 * Account for extra memory after e_text.
1172 	 */
1173 	npages += extra_etpg;
1174 
1175 	/*
1176 	 * Calculate the largest free memory chunk in the nucleus data area.
1177 	 * We need to figure out if page structs can fit in there or not.
1178 	 * We also make sure enough page structs get created for any physical
1179 	 * memory we might be returning to the system.
1180 	 */
1181 	ndata_remain_sz = ndata_maxsize(&ndata);
1182 	PRM_DEBUG(ndata_remain_sz);
1183 
1184 	pp_sz = sizeof (struct page) * npages;
1185 
1186 	/*
1187 	 * Here's a nice bit of code based on somewhat recursive logic:
1188 	 *
1189 	 * If the page array would fit within the nucleus, we want to
1190 	 * add npages to cover any extra memory we may be returning back
1191 	 * to the system.
1192 	 *
1193 	 * HOWEVER, the page array is sized by calculating the size of
1194 	 * (struct page * npages), as are the pagehash table, ctrs and
1195 	 * memseg_list, so the very act of performing the calculation below may
1196 	 * in fact make the array large enough that it no longer fits in the
1197 	 * nucleus, meaning there would now be a much larger area of the
1198 	 * nucleus free that should really be added to npages, which would
1199 	 * make the page array that much larger, and so on.
1200 	 *
1201 	 * This also ignores the memory possibly used in the nucleus for the
1202 	 * the page hash, ctrs and memseg list and the fact that whether they
1203 	 * fit there or not varies with the npages calculation below, but we
1204 	 * don't even factor them into the equation at this point; perhaps we
1205 	 * should or perhaps we should just take the approach that the few
1206 	 * extra pages we could add via this calculation REALLY aren't worth
1207 	 * the hassle...
1208 	 */
1209 	if (ndata_remain_sz > pp_sz) {
1210 		size_t spare = ndata_spare(&ndata, pp_sz, ecache_alignsize);
1211 
1212 		npages += mmu_btop(spare);
1213 
1214 		pp_sz = npages * sizeof (struct page);
1215 
1216 		pp_base = ndata_alloc(&ndata, pp_sz, ecache_alignsize);
1217 	}
1218 
1219 	/*
1220 	 * If physmem is patched to be non-zero, use it instead of
1221 	 * the monitor value unless physmem is larger than the total
1222 	 * amount of memory on hand.
1223 	 */
1224 	if (physmem == 0 || physmem > npages)
1225 		physmem = npages;
1226 
1227 	/*
1228 	 * If pp_base is NULL that means the routines above have determined
1229 	 * the page array will not fit in the nucleus; we'll have to
1230 	 * BOP_ALLOC() ourselves some space for them.
1231 	 */
1232 	if (pp_base == NULL) {
1233 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1234 		    alloc_alignsize);
1235 
1236 		alloc_sz = roundup(pp_sz, alloc_alignsize);
1237 
1238 		if ((pp_base = (struct page *)BOP_ALLOC(bootops,
1239 		    alloc_base, alloc_sz, alloc_alignsize)) !=
1240 		    (struct page *)alloc_base)
1241 			panic("page alloc failure");
1242 
1243 		alloc_base += alloc_sz;
1244 	}
1245 
1246 	/*
1247 	 * The page structure hash table size is a power of 2
1248 	 * such that the average hash chain length is PAGE_HASHAVELEN.
1249 	 */
1250 	page_hashsz = npages / PAGE_HASHAVELEN;
1251 	page_hashsz = 1 << highbit((ulong_t)page_hashsz);
1252 	pagehash_sz = sizeof (struct page *) * page_hashsz;
1253 
1254 	/*
1255 	 * We want to TRY to fit the page structure hash table,
1256 	 * the page size free list counters, the memseg list and
1257 	 * and the kpm page space in the nucleus if possible.
1258 	 *
1259 	 * alloc_sz counts how much memory needs to be allocated by
1260 	 * BOP_ALLOC().
1261 	 */
1262 	page_hash = ndata_alloc(&ndata, pagehash_sz, ecache_alignsize);
1263 
1264 	alloc_sz = (page_hash == NULL ? pagehash_sz : 0);
1265 
1266 	/*
1267 	 * Size up per page size free list counters.
1268 	 */
1269 	ctrs_sz = page_ctrs_sz();
1270 	ctrs_base = ndata_alloc(&ndata, ctrs_sz, ecache_alignsize);
1271 
1272 	if (ctrs_base == NULL)
1273 		alloc_sz = roundup(alloc_sz, ecache_alignsize) + ctrs_sz;
1274 
1275 	/*
1276 	 * The memseg list is for the chunks of physical memory that
1277 	 * will be managed by the vm system.  The number calculated is
1278 	 * a guess as boot may fragment it more when memory allocations
1279 	 * are made before kphysm_init().  Currently, there are two
1280 	 * allocations before then, so we assume each causes fragmen-
1281 	 * tation, and add a couple more for good measure.
1282 	 */
1283 	memseg_sz = sizeof (struct memseg) * (memblocks + 4);
1284 	memseg_base = ndata_alloc(&ndata, memseg_sz, ecache_alignsize);
1285 
1286 	if (memseg_base == NULL)
1287 		alloc_sz = roundup(alloc_sz, ecache_alignsize) + memseg_sz;
1288 
1289 
1290 	if (kpm_enable) {
1291 		/*
1292 		 * kpm page space -- Update kpm_npages and make the
1293 		 * same assumption about fragmenting as it is done
1294 		 * for memseg_sz above.
1295 		 */
1296 		kpm_npages_setup(memblocks + 4);
1297 		kpm_pp_sz = (kpm_smallpages == 0) ?
1298 				kpm_npages * sizeof (kpm_page_t):
1299 				kpm_npages * sizeof (kpm_spage_t);
1300 
1301 		kpm_pp_base = (uintptr_t)ndata_alloc(&ndata, kpm_pp_sz,
1302 		    ecache_alignsize);
1303 
1304 		if (kpm_pp_base == NULL)
1305 			alloc_sz = roundup(alloc_sz, ecache_alignsize) +
1306 			    kpm_pp_sz;
1307 	}
1308 
1309 	if (alloc_sz > 0) {
1310 		uintptr_t bop_base;
1311 
1312 		/*
1313 		 * We need extra memory allocated through BOP_ALLOC.
1314 		 */
1315 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1316 		    alloc_alignsize);
1317 
1318 		alloc_sz = roundup(alloc_sz, alloc_alignsize);
1319 
1320 		if ((bop_base = (uintptr_t)BOP_ALLOC(bootops, alloc_base,
1321 		    alloc_sz, alloc_alignsize)) != (uintptr_t)alloc_base)
1322 			panic("system page struct alloc failure");
1323 
1324 		alloc_base += alloc_sz;
1325 
1326 		if (page_hash == NULL) {
1327 			page_hash = (struct page **)bop_base;
1328 			bop_base = roundup(bop_base + pagehash_sz,
1329 			    ecache_alignsize);
1330 		}
1331 
1332 		if (ctrs_base == NULL) {
1333 			ctrs_base = (caddr_t)bop_base;
1334 			bop_base = roundup(bop_base + ctrs_sz,
1335 			    ecache_alignsize);
1336 		}
1337 
1338 		if (memseg_base == NULL) {
1339 			memseg_base = (struct memseg *)bop_base;
1340 			bop_base = roundup(bop_base + memseg_sz,
1341 			    ecache_alignsize);
1342 		}
1343 
1344 		if (kpm_enable && kpm_pp_base == NULL) {
1345 			kpm_pp_base = (uintptr_t)bop_base;
1346 			bop_base = roundup(bop_base + kpm_pp_sz,
1347 			    ecache_alignsize);
1348 		}
1349 
1350 		ASSERT(bop_base <= (uintptr_t)alloc_base);
1351 	}
1352 
1353 	/*
1354 	 * Initialize per page size free list counters.
1355 	 */
1356 	ctrs_end = page_ctrs_alloc(ctrs_base);
1357 	ASSERT(ctrs_base + ctrs_sz >= ctrs_end);
1358 
1359 	PRM_DEBUG(page_hash);
1360 	PRM_DEBUG(memseg_base);
1361 	PRM_DEBUG(kpm_pp_base);
1362 	PRM_DEBUG(kpm_pp_sz);
1363 	PRM_DEBUG(pp_base);
1364 	PRM_DEBUG(pp_sz);
1365 	PRM_DEBUG(alloc_base);
1366 
1367 #ifdef	TRAPTRACE
1368 	/*
1369 	 * Allocate trap trace buffer last so as not to affect
1370 	 * the 4M alignments of the allocations above on V9 SPARCs...
1371 	 */
1372 	alloc_base = trap_trace_alloc(alloc_base);
1373 	PRM_DEBUG(alloc_base);
1374 #endif	/* TRAPTRACE */
1375 
1376 	if (kmem64_base) {
1377 		/*
1378 		 * Set the end of the kmem64 segment for V9 SPARCs, if
1379 		 * appropriate...
1380 		 */
1381 		kmem64_end = (caddr_t)roundup((uintptr_t)alloc_base,
1382 		    alloc_alignsize);
1383 
1384 		PRM_DEBUG(kmem64_base);
1385 		PRM_DEBUG(kmem64_end);
1386 	}
1387 
1388 	/*
1389 	 * Allocate space for the interrupt vector table.
1390 	 */
1391 	memspace = (caddr_t)BOP_ALLOC(bootops, (caddr_t)intr_vector,
1392 	    IVSIZE, MMU_PAGESIZE);
1393 	if (memspace != (caddr_t)intr_vector)
1394 		panic("interrupt table allocation failure");
1395 
1396 	/*
1397 	 * The memory lists from boot are allocated from the heap arena
1398 	 * so that later they can be freed and/or reallocated.
1399 	 */
1400 	if (BOP_GETPROP(bootops, "extent", &memlist_sz) == -1)
1401 		panic("could not retrieve property \"extent\"");
1402 
1403 	/*
1404 	 * Between now and when we finish copying in the memory lists,
1405 	 * allocations happen so the space gets fragmented and the
1406 	 * lists longer.  Leave enough space for lists twice as long
1407 	 * as what boot says it has now; roundup to a pagesize.
1408 	 * Also add space for the final phys-avail copy in the fixup
1409 	 * routine.
1410 	 */
1411 	va = (caddr_t)(sysbase + PAGESIZE + PANICBUFSIZE +
1412 	    roundup(IVSIZE, MMU_PAGESIZE));
1413 	memlist_sz *= 4;
1414 	memlist_sz = roundup(memlist_sz, MMU_PAGESIZE);
1415 	memspace = (caddr_t)BOP_ALLOC(bootops, va, memlist_sz, BO_NO_ALIGN);
1416 	if (memspace == NULL)
1417 		halt("Boot allocation failed.");
1418 
1419 	memlist = (struct memlist *)memspace;
1420 	memlist_end = (char *)memspace + memlist_sz;
1421 
1422 	PRM_DEBUG(memlist);
1423 	PRM_DEBUG(memlist_end);
1424 	PRM_DEBUG(sysbase);
1425 	PRM_DEBUG(syslimit);
1426 
1427 	kernelheap_init((void *)sysbase, (void *)syslimit,
1428 	    (caddr_t)sysbase + PAGESIZE, NULL, NULL);
1429 
1430 	/*
1431 	 * Take the most current snapshot we can by calling mem-update.
1432 	 */
1433 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1434 	    &boot_physavail, &boot_physavail_len,
1435 	    &boot_virtavail, &boot_virtavail_len);
1436 
1437 	/*
1438 	 * Remove the space used by BOP_ALLOC from the kernel heap
1439 	 * plus the area actually used by the OBP (if any)
1440 	 * ignoring virtual addresses in virt_avail, above syslimit.
1441 	 */
1442 	virt_avail = memlist;
1443 	copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1444 
1445 	for (cur = virt_avail; cur->next; cur = cur->next) {
1446 		uint64_t range_base, range_size;
1447 
1448 		if ((range_base = cur->address + cur->size) < (uint64_t)sysbase)
1449 			continue;
1450 		if (range_base >= (uint64_t)syslimit)
1451 			break;
1452 		/*
1453 		 * Limit the range to end at syslimit.
1454 		 */
1455 		range_size = MIN(cur->next->address,
1456 		    (uint64_t)syslimit) - range_base;
1457 		(void) vmem_xalloc(heap_arena, (size_t)range_size, PAGESIZE,
1458 		    0, 0, (void *)range_base, (void *)(range_base + range_size),
1459 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1460 	}
1461 
1462 	phys_avail = memlist;
1463 	(void) copy_physavail(boot_physavail, boot_physavail_len,
1464 	    &memlist, 0, 0);
1465 
1466 	/*
1467 	 * Add any extra memory after e_text to the phys_avail list, as long
1468 	 * as there's at least a page to add.
1469 	 */
1470 	if (extra_etpg)
1471 		memlist_add(va_to_pa(extra_etva), mmu_ptob(extra_etpg),
1472 		    &memlist, &phys_avail);
1473 
1474 	/*
1475 	 * Add any extra memory after e_data to the phys_avail list as long
1476 	 * as there's at least a page to add.  Usually, there isn't any,
1477 	 * since extra HME blocks typically get allocated there first before
1478 	 * using RAM elsewhere.
1479 	 */
1480 	if ((nalloc_base = ndata_extra_base(&ndata, MMU_PAGESIZE)) == NULL)
1481 		nalloc_base = nalloc_end;
1482 	ndata_remain_sz = nalloc_end - nalloc_base;
1483 
1484 	if (ndata_remain_sz >= MMU_PAGESIZE)
1485 		memlist_add(va_to_pa(nalloc_base),
1486 		    (uint64_t)ndata_remain_sz, &memlist, &phys_avail);
1487 
1488 	PRM_DEBUG(memlist);
1489 	PRM_DEBUG(memlist_sz);
1490 	PRM_DEBUG(memspace);
1491 
1492 	if ((caddr_t)memlist > (memspace + memlist_sz))
1493 		panic("memlist overflow");
1494 
1495 	PRM_DEBUG(pp_base);
1496 	PRM_DEBUG(memseg_base);
1497 	PRM_DEBUG(npages);
1498 
1499 	/*
1500 	 * Initialize the page structures from the memory lists.
1501 	 */
1502 	kphysm_init(pp_base, memseg_base, npages, kpm_pp_base, kpm_npages);
1503 
1504 	availrmem_initial = availrmem = freemem;
1505 	PRM_DEBUG(availrmem);
1506 
1507 	/*
1508 	 * Some of the locks depend on page_hashsz being set!
1509 	 * kmem_init() depends on this; so, keep it here.
1510 	 */
1511 	page_lock_init();
1512 
1513 	/*
1514 	 * Initialize kernel memory allocator.
1515 	 */
1516 	kmem_init();
1517 
1518 	/*
1519 	 * Initialize bp_mapin().
1520 	 */
1521 	bp_init(shm_alignment, HAT_STRICTORDER);
1522 
1523 	/*
1524 	 * Reserve space for panicbuf and intr_vector from the 32-bit heap
1525 	 */
1526 	(void) vmem_xalloc(heap32_arena, PANICBUFSIZE, PAGESIZE, 0, 0,
1527 	    panicbuf, panicbuf + PANICBUFSIZE,
1528 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1529 
1530 	(void) vmem_xalloc(heap32_arena, IVSIZE, PAGESIZE, 0, 0,
1531 	    intr_vector, (caddr_t)intr_vector + IVSIZE,
1532 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1533 
1534 	mem_config_init();
1535 }
1536 
1537 static void
1538 startup_modules(void)
1539 {
1540 	int proplen, nhblk1, nhblk8;
1541 	size_t  nhblksz;
1542 	pgcnt_t hblk_pages, pages_per_hblk;
1543 	size_t hme8blk_sz, hme1blk_sz;
1544 
1545 	/*
1546 	 * Log any optional messages from the boot program
1547 	 */
1548 	proplen = (size_t)BOP_GETPROPLEN(bootops, "boot-message");
1549 	if (proplen > 0) {
1550 		char *msg;
1551 		size_t len = (size_t)proplen;
1552 
1553 		msg = kmem_zalloc(len, KM_SLEEP);
1554 		(void) BOP_GETPROP(bootops, "boot-message", msg);
1555 		cmn_err(CE_CONT, "?%s\n", msg);
1556 		kmem_free(msg, len);
1557 	}
1558 
1559 	/*
1560 	 * Let the platforms have a chance to change default
1561 	 * values before reading system file.
1562 	 */
1563 	if (&set_platform_defaults)
1564 		set_platform_defaults();
1565 
1566 	/*
1567 	 * Calculate default settings of system parameters based upon
1568 	 * maxusers, yet allow to be overridden via the /etc/system file.
1569 	 */
1570 	param_calc(0);
1571 
1572 	mod_setup();
1573 
1574 	/*
1575 	 * If this is a positron, complain and halt.
1576 	 */
1577 	if (&iam_positron && iam_positron()) {
1578 		cmn_err(CE_WARN, "This hardware platform is not supported"
1579 		    " by this release of Solaris.\n");
1580 #ifdef DEBUG
1581 		prom_enter_mon();	/* Type 'go' to resume */
1582 		cmn_err(CE_WARN, "Booting an unsupported platform.\n");
1583 		cmn_err(CE_WARN, "Booting with down-rev firmware.\n");
1584 
1585 #else /* DEBUG */
1586 		halt(0);
1587 #endif /* DEBUG */
1588 	}
1589 
1590 	/*
1591 	 * If we are running firmware that isn't 64-bit ready
1592 	 * then complain and halt.
1593 	 */
1594 	do_prom_version_check();
1595 
1596 	/*
1597 	 * Initialize system parameters
1598 	 */
1599 	param_init();
1600 
1601 	/*
1602 	 * maxmem is the amount of physical memory we're playing with.
1603 	 */
1604 	maxmem = physmem;
1605 
1606 	/* Set segkp limits. */
1607 	ncbase = (caddr_t)SEGDEBUGBASE;
1608 	ncend = (caddr_t)SEGDEBUGBASE;
1609 
1610 	/*
1611 	 * Initialize the hat layer.
1612 	 */
1613 	hat_init();
1614 
1615 	/*
1616 	 * Initialize segment management stuff.
1617 	 */
1618 	seg_init();
1619 
1620 	/*
1621 	 * Create the va>tte handler, so the prom can understand
1622 	 * kernel translations.  The handler is installed later, just
1623 	 * as we are about to take over the trap table from the prom.
1624 	 */
1625 	create_va_to_tte();
1626 
1627 	/*
1628 	 * Load the forthdebugger (optional)
1629 	 */
1630 	forthdebug_init();
1631 
1632 	/*
1633 	 * Create OBP node for console input callbacks
1634 	 * if it is needed.
1635 	 */
1636 	startup_create_input_node();
1637 
1638 	if (modloadonly("fs", "specfs") == -1)
1639 		halt("Can't load specfs");
1640 
1641 	if (modloadonly("fs", "devfs") == -1)
1642 		halt("Can't load devfs");
1643 
1644 	if (modloadonly("misc", "swapgeneric") == -1)
1645 		halt("Can't load swapgeneric");
1646 
1647 	dispinit();
1648 
1649 	/*
1650 	 * Infer meanings to the members of the idprom buffer.
1651 	 */
1652 	parse_idprom();
1653 
1654 	/* Read cluster configuration data. */
1655 	clconf_init();
1656 
1657 	setup_ddi();
1658 
1659 	/*
1660 	 * Lets take this opportunity to load the root device.
1661 	 */
1662 	if (loadrootmodules() != 0)
1663 		debug_enter("Can't load the root filesystem");
1664 
1665 	/*
1666 	 * Load tod driver module for the tod part found on this system.
1667 	 * Recompute the cpu frequency/delays based on tod as tod part
1668 	 * tends to keep time more accurately.
1669 	 */
1670 	if (&load_tod_module)
1671 		load_tod_module();
1672 
1673 	/*
1674 	 * Allow platforms to load modules which might
1675 	 * be needed after bootops are gone.
1676 	 */
1677 	if (&load_platform_modules)
1678 		load_platform_modules();
1679 
1680 	setcpudelay();
1681 
1682 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1683 	    &boot_physavail, &boot_physavail_len,
1684 	    &boot_virtavail, &boot_virtavail_len);
1685 
1686 	bop_alloc_pages = size_virtalloc(boot_virtavail, boot_virtavail_len);
1687 
1688 	/*
1689 	 * Calculation and allocation of hmeblks needed to remap
1690 	 * the memory allocated by PROM till now:
1691 	 *
1692 	 * (1)  calculate how much virtual memory has been bop_alloc'ed.
1693 	 * (2)  roundup this memory to span of hme8blk, i.e. 64KB
1694 	 * (3)  calculate number of hme8blk's needed to remap this memory
1695 	 * (4)  calculate amount of memory that's consumed by these hme8blk's
1696 	 * (5)  add memory calculated in steps (2) and (4) above.
1697 	 * (6)  roundup this memory to span of hme8blk, i.e. 64KB
1698 	 * (7)  calculate number of hme8blk's needed to remap this memory
1699 	 * (8)  calculate amount of memory that's consumed by these hme8blk's
1700 	 * (9)  allocate additional hme1blk's to hold large mappings.
1701 	 *	H8TOH1 determines this.  The current SWAG gives enough hblk1's
1702 	 *	to remap everything with 4M mappings.
1703 	 * (10) account for partially used hblk8's due to non-64K aligned
1704 	 *	PROM mapping entries.
1705 	 * (11) add memory calculated in steps (8), (9), and (10) above.
1706 	 * (12) kmem_zalloc the memory calculated in (11); since segkmem
1707 	 *	is not ready yet, this gets bop_alloc'ed.
1708 	 * (13) there will be very few bop_alloc's after this point before
1709 	 *	trap table takes over
1710 	 */
1711 
1712 	/* sfmmu_init_nucleus_hblks expects properly aligned data structures. */
1713 	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
1714 	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
1715 
1716 	pages_per_hblk = btop(HMEBLK_SPAN(TTE8K));
1717 	bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1718 	nhblk8 = bop_alloc_pages / pages_per_hblk;
1719 	nhblk1 = roundup(nhblk8, H8TOH1) / H8TOH1;
1720 	hblk_pages = btopr(nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz);
1721 	bop_alloc_pages += hblk_pages;
1722 	bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1723 	nhblk8 = bop_alloc_pages / pages_per_hblk;
1724 	nhblk1 = roundup(nhblk8, H8TOH1) / H8TOH1;
1725 	if (nhblk1 < hblk1_min)
1726 		nhblk1 = hblk1_min;
1727 	if (nhblk8 < hblk8_min)
1728 		nhblk8 = hblk8_min;
1729 
1730 	/*
1731 	 * Since hblk8's can hold up to 64k of mappings aligned on a 64k
1732 	 * boundary, the number of hblk8's needed to map the entries in the
1733 	 * boot_virtavail list needs to be adjusted to take this into
1734 	 * consideration.  Thus, we need to add additional hblk8's since it
1735 	 * is possible that an hblk8 will not have all 8 slots used due to
1736 	 * alignment constraints.  Since there were boot_virtavail_len entries
1737 	 * in that list, we need to add that many hblk8's to the number
1738 	 * already calculated to make sure we don't underestimate.
1739 	 */
1740 	nhblk8 += boot_virtavail_len;
1741 	nhblksz = nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz;
1742 
1743 	/* Allocate in pagesize chunks */
1744 	nhblksz = roundup(nhblksz, MMU_PAGESIZE);
1745 	hblk_base = kmem_zalloc(nhblksz, KM_SLEEP);
1746 	sfmmu_init_nucleus_hblks(hblk_base, nhblksz, nhblk8, nhblk1);
1747 }
1748 
1749 static void
1750 startup_bop_gone(void)
1751 {
1752 	extern int bop_io_quiesced;
1753 
1754 	/*
1755 	 * Call back into boot and release boots resources.
1756 	 */
1757 	BOP_QUIESCE_IO(bootops);
1758 	bop_io_quiesced = 1;
1759 
1760 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1761 	    &boot_physavail, &boot_physavail_len,
1762 	    &boot_virtavail, &boot_virtavail_len);
1763 	/*
1764 	 * Copy physinstalled list into kernel space.
1765 	 */
1766 	phys_install = memlist;
1767 	copy_memlist(boot_physinstalled, boot_physinstalled_len, &memlist);
1768 
1769 	/*
1770 	 * setup physically contiguous area twice as large as the ecache.
1771 	 * this is used while doing displacement flush of ecaches
1772 	 */
1773 	if (&ecache_flush_address) {
1774 		ecache_flushaddr = ecache_flush_address();
1775 		if (ecache_flushaddr == (uint64_t)-1) {
1776 			cmn_err(CE_PANIC,
1777 			    "startup: no memory to set ecache_flushaddr");
1778 		}
1779 	}
1780 
1781 	/*
1782 	 * Virtual available next.
1783 	 */
1784 	ASSERT(virt_avail != NULL);
1785 	memlist_free_list(virt_avail);
1786 	virt_avail = memlist;
1787 	copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1788 
1789 	/*
1790 	 * Last chance to ask our booter questions ..
1791 	 */
1792 }
1793 
1794 
1795 /*
1796  * startup_fixup_physavail - called from mach_sfmmu.c after the final
1797  * allocations have been performed.  We can't call it in startup_bop_gone
1798  * since later operations can cause obp to allocate more memory.
1799  */
1800 void
1801 startup_fixup_physavail(void)
1802 {
1803 	struct memlist *cur;
1804 
1805 	/*
1806 	 * take the most current snapshot we can by calling mem-update
1807 	 */
1808 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1809 	    &boot_physavail, &boot_physavail_len,
1810 	    &boot_virtavail, &boot_virtavail_len);
1811 
1812 	/*
1813 	 * Copy phys_avail list, again.
1814 	 * Both the kernel/boot and the prom have been allocating
1815 	 * from the original list we copied earlier.
1816 	 */
1817 	cur = memlist;
1818 	(void) copy_physavail(boot_physavail, boot_physavail_len,
1819 	    &memlist, 0, 0);
1820 
1821 	/*
1822 	 * Add any extra memory after e_text we added to the phys_avail list
1823 	 * back to the old list.
1824 	 */
1825 	if (extra_etpg)
1826 		memlist_add(va_to_pa(extra_etva), mmu_ptob(extra_etpg),
1827 		    &memlist, &cur);
1828 	if (ndata_remain_sz >= MMU_PAGESIZE)
1829 		memlist_add(va_to_pa(nalloc_base),
1830 		    (uint64_t)ndata_remain_sz, &memlist, &cur);
1831 
1832 	/*
1833 	 * There isn't any bounds checking on the memlist area
1834 	 * so ensure it hasn't overgrown.
1835 	 */
1836 	if ((caddr_t)memlist > (caddr_t)memlist_end)
1837 		cmn_err(CE_PANIC, "startup: memlist size exceeded");
1838 
1839 	/*
1840 	 * The kernel removes the pages that were allocated for it from
1841 	 * the freelist, but we now have to find any -extra- pages that
1842 	 * the prom has allocated for it's own book-keeping, and remove
1843 	 * them from the freelist too. sigh.
1844 	 */
1845 	fix_prom_pages(phys_avail, cur);
1846 
1847 	ASSERT(phys_avail != NULL);
1848 	memlist_free_list(phys_avail);
1849 	phys_avail = cur;
1850 
1851 	/*
1852 	 * We're done with boot.  Just after this point in time, boot
1853 	 * gets unmapped, so we can no longer rely on its services.
1854 	 * Zero the bootops to indicate this fact.
1855 	 */
1856 	bootops = (struct bootops *)NULL;
1857 	BOOTOPS_GONE();
1858 }
1859 
1860 static void
1861 startup_vm(void)
1862 {
1863 	size_t	i;
1864 	struct segmap_crargs a;
1865 	struct segkpm_crargs b;
1866 
1867 	uint64_t avmem;
1868 	caddr_t va;
1869 	pgcnt_t	max_phys_segkp;
1870 	int	mnode;
1871 
1872 	/*
1873 	 * get prom's mappings, create hments for them and switch
1874 	 * to the kernel context.
1875 	 */
1876 	hat_kern_setup();
1877 
1878 	/*
1879 	 * Take over trap table
1880 	 */
1881 	setup_trap_table();
1882 
1883 	/*
1884 	 * Install the va>tte handler, so that the prom can handle
1885 	 * misses and understand the kernel table layout in case
1886 	 * we need call into the prom.
1887 	 */
1888 	install_va_to_tte();
1889 
1890 	/*
1891 	 * Set a flag to indicate that the tba has been taken over.
1892 	 */
1893 	tba_taken_over = 1;
1894 
1895 	/* initialize MMU primary context register */
1896 	mmu_init_kcontext();
1897 
1898 	/*
1899 	 * The boot cpu can now take interrupts, x-calls, x-traps
1900 	 */
1901 	CPUSET_ADD(cpu_ready_set, CPU->cpu_id);
1902 	CPU->cpu_flags |= (CPU_READY | CPU_ENABLE | CPU_EXISTS);
1903 
1904 	/*
1905 	 * Set a flag to tell write_scb_int() that it can access V_TBR_WR_ADDR.
1906 	 */
1907 	tbr_wr_addr_inited = 1;
1908 
1909 	/*
1910 	 * Initialize VM system, and map kernel address space.
1911 	 */
1912 	kvm_init();
1913 
1914 	/*
1915 	 * XXX4U: previously, we initialized and turned on
1916 	 * the caches at this point. But of course we have
1917 	 * nothing to do, as the prom has already done this
1918 	 * for us -- main memory must be E$able at all times.
1919 	 */
1920 
1921 	/*
1922 	 * If the following is true, someone has patched
1923 	 * phsymem to be less than the number of pages that
1924 	 * the system actually has.  Remove pages until system
1925 	 * memory is limited to the requested amount.  Since we
1926 	 * have allocated page structures for all pages, we
1927 	 * correct the amount of memory we want to remove
1928 	 * by the size of the memory used to hold page structures
1929 	 * for the non-used pages.
1930 	 */
1931 	if (physmem < npages) {
1932 		pgcnt_t diff, off;
1933 		struct page *pp;
1934 		struct seg kseg;
1935 
1936 		cmn_err(CE_WARN, "limiting physmem to %ld pages", physmem);
1937 
1938 		off = 0;
1939 		diff = npages - physmem;
1940 		diff -= mmu_btopr(diff * sizeof (struct page));
1941 		kseg.s_as = &kas;
1942 		while (diff--) {
1943 			pp = page_create_va(&unused_pages_vp, (offset_t)off,
1944 			    MMU_PAGESIZE, PG_WAIT | PG_EXCL,
1945 			    &kseg, (caddr_t)off);
1946 			if (pp == NULL)
1947 				cmn_err(CE_PANIC, "limited physmem too much!");
1948 			page_io_unlock(pp);
1949 			page_downgrade(pp);
1950 			availrmem--;
1951 			off += MMU_PAGESIZE;
1952 		}
1953 	}
1954 
1955 	/*
1956 	 * When printing memory, show the total as physmem less
1957 	 * that stolen by a debugger.
1958 	 */
1959 	cmn_err(CE_CONT, "?mem = %ldK (0x%lx000)\n",
1960 	    (ulong_t)(physinstalled) << (PAGESHIFT - 10),
1961 	    (ulong_t)(physinstalled) << (PAGESHIFT - 12));
1962 
1963 	avmem = (uint64_t)freemem << PAGESHIFT;
1964 	cmn_err(CE_CONT, "?avail mem = %lld\n", (unsigned long long)avmem);
1965 
1966 	/*
1967 	 * Perform platform specific freelist processing
1968 	 */
1969 	if (&plat_freelist_process) {
1970 		for (mnode = 0; mnode < max_mem_nodes; mnode++)
1971 			if (mem_node_config[mnode].exists)
1972 				plat_freelist_process(mnode);
1973 	}
1974 
1975 	/*
1976 	 * Initialize the segkp segment type.  We position it
1977 	 * after the configured tables and buffers (whose end
1978 	 * is given by econtig) and before V_WKBASE_ADDR.
1979 	 * Also in this area is segkmap (size SEGMAPSIZE).
1980 	 */
1981 
1982 	/* XXX - cache alignment? */
1983 	va = (caddr_t)SEGKPBASE;
1984 	ASSERT(((uintptr_t)va & PAGEOFFSET) == 0);
1985 
1986 	max_phys_segkp = (physmem * 2);
1987 
1988 	if (segkpsize < btop(SEGKPMINSIZE) || segkpsize > btop(SEGKPMAXSIZE)) {
1989 		segkpsize = btop(SEGKPDEFSIZE);
1990 		cmn_err(CE_WARN, "Illegal value for segkpsize. "
1991 		    "segkpsize has been reset to %ld pages", segkpsize);
1992 	}
1993 
1994 	i = ptob(MIN(segkpsize, max_phys_segkp));
1995 
1996 	rw_enter(&kas.a_lock, RW_WRITER);
1997 	if (seg_attach(&kas, va, i, segkp) < 0)
1998 		cmn_err(CE_PANIC, "startup: cannot attach segkp");
1999 	if (segkp_create(segkp) != 0)
2000 		cmn_err(CE_PANIC, "startup: segkp_create failed");
2001 	rw_exit(&kas.a_lock);
2002 
2003 	/*
2004 	 * kpm segment
2005 	 */
2006 	segmap_kpm = kpm_enable &&
2007 		segmap_kpm && PAGESIZE == MAXBSIZE;
2008 
2009 	if (kpm_enable) {
2010 		rw_enter(&kas.a_lock, RW_WRITER);
2011 
2012 		/*
2013 		 * The segkpm virtual range range is larger than the
2014 		 * actual physical memory size and also covers gaps in
2015 		 * the physical address range for the following reasons:
2016 		 * . keep conversion between segkpm and physical addresses
2017 		 *   simple, cheap and unambiguous.
2018 		 * . avoid extension/shrink of the the segkpm in case of DR.
2019 		 * . avoid complexity for handling of virtual addressed
2020 		 *   caches, segkpm and the regular mapping scheme must be
2021 		 *   kept in sync wrt. the virtual color of mapped pages.
2022 		 * Any accesses to virtual segkpm ranges not backed by
2023 		 * physical memory will fall through the memseg pfn hash
2024 		 * and will be handled in segkpm_fault.
2025 		 * Additional kpm_size spaces needed for vac alias prevention.
2026 		 */
2027 		if (seg_attach(&kas, kpm_vbase, kpm_size * vac_colors,
2028 		    segkpm) < 0)
2029 			cmn_err(CE_PANIC, "cannot attach segkpm");
2030 
2031 		b.prot = PROT_READ | PROT_WRITE;
2032 		b.nvcolors = shm_alignment >> MMU_PAGESHIFT;
2033 
2034 		if (segkpm_create(segkpm, (caddr_t)&b) != 0)
2035 			panic("segkpm_create segkpm");
2036 
2037 		rw_exit(&kas.a_lock);
2038 	}
2039 
2040 	/*
2041 	 * Now create generic mapping segment.  This mapping
2042 	 * goes SEGMAPSIZE beyond SEGMAPBASE.  But if the total
2043 	 * virtual address is greater than the amount of free
2044 	 * memory that is available, then we trim back the
2045 	 * segment size to that amount
2046 	 */
2047 	va = (caddr_t)SEGMAPBASE;
2048 
2049 	/*
2050 	 * 1201049: segkmap base address must be MAXBSIZE aligned
2051 	 */
2052 	ASSERT(((uintptr_t)va & MAXBOFFSET) == 0);
2053 
2054 	/*
2055 	 * Set size of segmap to percentage of freemem at boot,
2056 	 * but stay within the allowable range
2057 	 * Note we take percentage  before converting from pages
2058 	 * to bytes to avoid an overflow on 32-bit kernels.
2059 	 */
2060 	i = mmu_ptob((freemem * segmap_percent) / 100);
2061 
2062 	if (i < MINMAPSIZE)
2063 		i = MINMAPSIZE;
2064 
2065 	if (i > MIN(SEGMAPSIZE, mmu_ptob(freemem)))
2066 		i = MIN(SEGMAPSIZE, mmu_ptob(freemem));
2067 
2068 	i &= MAXBMASK;	/* 1201049: segkmap size must be MAXBSIZE aligned */
2069 
2070 	rw_enter(&kas.a_lock, RW_WRITER);
2071 	if (seg_attach(&kas, va, i, segkmap) < 0)
2072 		cmn_err(CE_PANIC, "cannot attach segkmap");
2073 
2074 	a.prot = PROT_READ | PROT_WRITE;
2075 	a.shmsize = shm_alignment;
2076 	a.nfreelist = 0;	/* use segmap driver defaults */
2077 
2078 	if (segmap_create(segkmap, (caddr_t)&a) != 0)
2079 		panic("segmap_create segkmap");
2080 	rw_exit(&kas.a_lock);
2081 
2082 	segdev_init();
2083 }
2084 
2085 static void
2086 startup_end(void)
2087 {
2088 	if ((caddr_t)memlist > (caddr_t)memlist_end)
2089 		panic("memlist overflow 2");
2090 	memlist_free_block((caddr_t)memlist,
2091 	    ((caddr_t)memlist_end - (caddr_t)memlist));
2092 	memlist = NULL;
2093 
2094 	/* enable page_relocation since OBP is now done */
2095 	page_relocate_ready = 1;
2096 
2097 	/*
2098 	 * Perform tasks that get done after most of the VM
2099 	 * initialization has been done but before the clock
2100 	 * and other devices get started.
2101 	 */
2102 	kern_setup1();
2103 
2104 	/*
2105 	 * Intialize the VM arenas for allocating physically
2106 	 * contiguus memory chunk for interrupt queues snd
2107 	 * allocate/register boot cpu's queues, if any and
2108 	 * allocate dump buffer for sun4v systems to store
2109 	 * extra crash information during crash dump
2110 	 */
2111 	contig_mem_init();
2112 	mach_descrip_init();
2113 	cpu_intrq_setup(CPU);
2114 	cpu_intrq_register(CPU);
2115 	mach_dump_buffer_init();
2116 
2117 	/*
2118 	 * Initialize interrupt related stuff
2119 	 */
2120 	init_intr_threads(CPU);
2121 
2122 	(void) splzs();			/* allow hi clock ints but not zs */
2123 
2124 	/*
2125 	 * Initialize errors.
2126 	 */
2127 	error_init();
2128 
2129 	/*
2130 	 * Note that we may have already used kernel bcopy before this
2131 	 * point - but if you really care about this, adb the use_hw_*
2132 	 * variables to 0 before rebooting.
2133 	 */
2134 	mach_hw_copy_limit();
2135 
2136 	/*
2137 	 * Install the "real" preemption guards before DDI services
2138 	 * are available.
2139 	 */
2140 	(void) prom_set_preprom(kern_preprom);
2141 	(void) prom_set_postprom(kern_postprom);
2142 	CPU->cpu_m.mutex_ready = 1;
2143 
2144 	/*
2145 	 * Initialize segnf (kernel support for non-faulting loads).
2146 	 */
2147 	segnf_init();
2148 
2149 	/*
2150 	 * Configure the root devinfo node.
2151 	 */
2152 	configure();		/* set up devices */
2153 	mach_cpu_halt_idle();
2154 }
2155 
2156 
2157 void
2158 post_startup(void)
2159 {
2160 #ifdef	PTL1_PANIC_DEBUG
2161 	extern void init_ptl1_thread(void);
2162 #endif	/* PTL1_PANIC_DEBUG */
2163 	extern void abort_sequence_init(void);
2164 
2165 	/*
2166 	 * Set the system wide, processor-specific flags to be passed
2167 	 * to userland via the aux vector for performance hints and
2168 	 * instruction set extensions.
2169 	 */
2170 	bind_hwcap();
2171 
2172 	/*
2173 	 * Startup memory scrubber (if any)
2174 	 */
2175 	mach_memscrub();
2176 
2177 	/*
2178 	 * Allocate soft interrupt to handle abort sequence.
2179 	 */
2180 	abort_sequence_init();
2181 
2182 	/*
2183 	 * Configure the rest of the system.
2184 	 * Perform forceloading tasks for /etc/system.
2185 	 */
2186 	(void) mod_sysctl(SYS_FORCELOAD, NULL);
2187 	/*
2188 	 * ON4.0: Force /proc module in until clock interrupt handle fixed
2189 	 * ON4.0: This must be fixed or restated in /etc/systems.
2190 	 */
2191 	(void) modload("fs", "procfs");
2192 
2193 	if (&load_platform_drivers)
2194 		load_platform_drivers();
2195 
2196 	/* load vis simulation module, if we are running w/fpu off */
2197 	if (!fpu_exists) {
2198 		if (modload("misc", "vis") == -1)
2199 			halt("Can't load vis");
2200 	}
2201 
2202 	mach_fpras();
2203 
2204 	maxmem = freemem;
2205 
2206 #ifdef	PTL1_PANIC_DEBUG
2207 	init_ptl1_thread();
2208 #endif	/* PTL1_PANIC_DEBUG */
2209 }
2210 
2211 #ifdef	PTL1_PANIC_DEBUG
2212 int		ptl1_panic_test = 0;
2213 int		ptl1_panic_xc_one_test = 0;
2214 int		ptl1_panic_xc_all_test = 0;
2215 int		ptl1_panic_xt_one_test = 0;
2216 int		ptl1_panic_xt_all_test = 0;
2217 kthread_id_t	ptl1_thread_p = NULL;
2218 kcondvar_t	ptl1_cv;
2219 kmutex_t	ptl1_mutex;
2220 int		ptl1_recurse_count_threshold = 0x40;
2221 int		ptl1_recurse_trap_threshold = 0x3d;
2222 extern void	ptl1_recurse(int, int);
2223 extern void	ptl1_panic_xt(int, int);
2224 
2225 /*
2226  * Called once per second by timeout() to wake up
2227  * the ptl1_panic thread to see if it should cause
2228  * a trap to the ptl1_panic() code.
2229  */
2230 /* ARGSUSED */
2231 static void
2232 ptl1_wakeup(void *arg)
2233 {
2234 	mutex_enter(&ptl1_mutex);
2235 	cv_signal(&ptl1_cv);
2236 	mutex_exit(&ptl1_mutex);
2237 }
2238 
2239 /*
2240  * ptl1_panic cross call function:
2241  *     Needed because xc_one() and xc_some() can pass
2242  *	64 bit args but ptl1_recurse() expects ints.
2243  */
2244 static void
2245 ptl1_panic_xc(void)
2246 {
2247 	ptl1_recurse(ptl1_recurse_count_threshold,
2248 	    ptl1_recurse_trap_threshold);
2249 }
2250 
2251 /*
2252  * The ptl1 thread waits for a global flag to be set
2253  * and uses the recurse thresholds to set the stack depth
2254  * to cause a ptl1_panic() directly via a call to ptl1_recurse
2255  * or indirectly via the cross call and cross trap functions.
2256  *
2257  * This is useful testing stack overflows and normal
2258  * ptl1_panic() states with a know stack frame.
2259  *
2260  * ptl1_recurse() is an asm function in ptl1_panic.s that
2261  * sets the {In, Local, Out, and Global} registers to a
2262  * know state on the stack and just prior to causing a
2263  * test ptl1_panic trap.
2264  */
2265 static void
2266 ptl1_thread(void)
2267 {
2268 	mutex_enter(&ptl1_mutex);
2269 	while (ptl1_thread_p) {
2270 		cpuset_t	other_cpus;
2271 		int		cpu_id;
2272 		int		my_cpu_id;
2273 		int		target_cpu_id;
2274 		int		target_found;
2275 
2276 		if (ptl1_panic_test) {
2277 			ptl1_recurse(ptl1_recurse_count_threshold,
2278 			    ptl1_recurse_trap_threshold);
2279 		}
2280 
2281 		/*
2282 		 * Find potential targets for x-call and x-trap,
2283 		 * if any exist while preempt is disabled we
2284 		 * start a ptl1_panic if requested via a
2285 		 * globals.
2286 		 */
2287 		kpreempt_disable();
2288 		my_cpu_id = CPU->cpu_id;
2289 		other_cpus = cpu_ready_set;
2290 		CPUSET_DEL(other_cpus, CPU->cpu_id);
2291 		target_found = 0;
2292 		if (!CPUSET_ISNULL(other_cpus)) {
2293 			/*
2294 			 * Pick the first one
2295 			 */
2296 			for (cpu_id = 0; cpu_id < NCPU; cpu_id++) {
2297 				if (cpu_id == my_cpu_id)
2298 					continue;
2299 
2300 				if (CPU_XCALL_READY(cpu_id)) {
2301 					target_cpu_id = cpu_id;
2302 					target_found = 1;
2303 					break;
2304 				}
2305 			}
2306 			ASSERT(target_found);
2307 
2308 			if (ptl1_panic_xc_one_test) {
2309 				xc_one(target_cpu_id,
2310 				    (xcfunc_t *)ptl1_panic_xc, 0, 0);
2311 			}
2312 			if (ptl1_panic_xc_all_test) {
2313 				xc_some(other_cpus,
2314 				    (xcfunc_t *)ptl1_panic_xc, 0, 0);
2315 			}
2316 			if (ptl1_panic_xt_one_test) {
2317 				xt_one(target_cpu_id,
2318 				    (xcfunc_t *)ptl1_panic_xt, 0, 0);
2319 			}
2320 			if (ptl1_panic_xt_all_test) {
2321 				xt_some(other_cpus,
2322 				    (xcfunc_t *)ptl1_panic_xt, 0, 0);
2323 			}
2324 		}
2325 		kpreempt_enable();
2326 		(void) timeout(ptl1_wakeup, NULL, hz);
2327 		(void) cv_wait(&ptl1_cv, &ptl1_mutex);
2328 	}
2329 	mutex_exit(&ptl1_mutex);
2330 }
2331 
2332 /*
2333  * Called during early startup to create the ptl1_thread
2334  */
2335 void
2336 init_ptl1_thread(void)
2337 {
2338 	ptl1_thread_p = thread_create(NULL, 0, ptl1_thread, NULL, 0,
2339 	    &p0, TS_RUN, 0);
2340 }
2341 #endif	/* PTL1_PANIC_DEBUG */
2342 
2343 
2344 /*
2345  * Add to a memory list.
2346  * start = start of new memory segment
2347  * len = length of new memory segment in bytes
2348  * memlistp = pointer to array of available memory segment structures
2349  * curmemlistp = memory list to which to add segment.
2350  */
2351 static void
2352 memlist_add(uint64_t start, uint64_t len, struct memlist **memlistp,
2353 	struct memlist **curmemlistp)
2354 {
2355 	struct memlist *new;
2356 
2357 	new = *memlistp;
2358 	new->address = start;
2359 	new->size = len;
2360 	*memlistp = new + 1;
2361 
2362 	memlist_insert(new, curmemlistp);
2363 }
2364 
2365 /*
2366  * In the case of architectures that support dynamic addition of
2367  * memory at run-time there are two cases where memsegs need to
2368  * be initialized and added to the memseg list.
2369  * 1) memsegs that are constructed at startup.
2370  * 2) memsegs that are constructed at run-time on
2371  *    hot-plug capable architectures.
2372  * This code was originally part of the function kphysm_init().
2373  */
2374 
2375 static void
2376 memseg_list_add(struct memseg *memsegp)
2377 {
2378 	struct memseg **prev_memsegp;
2379 	pgcnt_t num;
2380 
2381 	/* insert in memseg list, decreasing number of pages order */
2382 
2383 	num = MSEG_NPAGES(memsegp);
2384 
2385 	for (prev_memsegp = &memsegs; *prev_memsegp;
2386 	    prev_memsegp = &((*prev_memsegp)->next)) {
2387 		if (num > MSEG_NPAGES(*prev_memsegp))
2388 			break;
2389 	}
2390 
2391 	memsegp->next = *prev_memsegp;
2392 	*prev_memsegp = memsegp;
2393 
2394 	if (kpm_enable) {
2395 		memsegp->nextpa = (memsegp->next) ?
2396 			va_to_pa(memsegp->next) : MSEG_NULLPTR_PA;
2397 
2398 		if (prev_memsegp != &memsegs) {
2399 			struct memseg *msp;
2400 			msp = (struct memseg *)((caddr_t)prev_memsegp -
2401 				offsetof(struct memseg, next));
2402 			msp->nextpa = va_to_pa(memsegp);
2403 		} else {
2404 			memsegspa = va_to_pa(memsegs);
2405 		}
2406 	}
2407 }
2408 
2409 /*
2410  * PSM add_physmem_cb(). US-II and newer processors have some
2411  * flavor of the prefetch capability implemented. We exploit
2412  * this capability for optimum performance.
2413  */
2414 #define	PREFETCH_BYTES	64
2415 
2416 void
2417 add_physmem_cb(page_t *pp, pfn_t pnum)
2418 {
2419 	extern void	 prefetch_page_w(void *);
2420 
2421 	pp->p_pagenum = pnum;
2422 
2423 	/*
2424 	 * Prefetch one more page_t into E$. To prevent future
2425 	 * mishaps with the sizeof(page_t) changing on us, we
2426 	 * catch this on debug kernels if we can't bring in the
2427 	 * entire hpage with 2 PREFETCH_BYTES reads. See
2428 	 * also, sun4u/cpu/cpu_module.c
2429 	 */
2430 	/*LINTED*/
2431 	ASSERT(sizeof (page_t) <= 2*PREFETCH_BYTES);
2432 	prefetch_page_w((char *)pp);
2433 }
2434 
2435 /*
2436  * kphysm_init() tackles the problem of initializing physical memory.
2437  * The old startup made some assumptions about the kernel living in
2438  * physically contiguous space which is no longer valid.
2439  */
2440 static void
2441 kphysm_init(page_t *pp, struct memseg *memsegp, pgcnt_t npages,
2442 	uintptr_t kpm_pp, pgcnt_t kpm_npages)
2443 {
2444 	struct memlist	*pmem;
2445 	struct memseg	*msp;
2446 	pfn_t		 base;
2447 	pgcnt_t		 num;
2448 	pfn_t		 lastseg_pages_end = 0;
2449 	pgcnt_t		 nelem_used = 0;
2450 
2451 	ASSERT(page_hash != NULL && page_hashsz != 0);
2452 
2453 	msp = memsegp;
2454 	for (pmem = phys_avail; pmem && npages; pmem = pmem->next) {
2455 
2456 		/*
2457 		 * Build the memsegs entry
2458 		 */
2459 		num = btop(pmem->size);
2460 		if (num > npages)
2461 			num = npages;
2462 		npages -= num;
2463 		base = btop(pmem->address);
2464 
2465 		msp->pages = pp;
2466 		msp->epages = pp + num;
2467 		msp->pages_base = base;
2468 		msp->pages_end = base + num;
2469 
2470 		if (kpm_enable) {
2471 			pfn_t pbase_a;
2472 			pfn_t pend_a;
2473 			pfn_t prev_pend_a;
2474 			pgcnt_t	nelem;
2475 
2476 			msp->pagespa = va_to_pa(pp);
2477 			msp->epagespa = va_to_pa(pp + num);
2478 			pbase_a = kpmptop(ptokpmp(base));
2479 			pend_a = kpmptop(ptokpmp(base + num - 1)) + kpmpnpgs;
2480 			nelem = ptokpmp(pend_a - pbase_a);
2481 			msp->kpm_nkpmpgs = nelem;
2482 			msp->kpm_pbase = pbase_a;
2483 			if (lastseg_pages_end) {
2484 				/*
2485 				 * Assume phys_avail is in ascending order
2486 				 * of physical addresses.
2487 				 */
2488 				ASSERT(base + num > lastseg_pages_end);
2489 				prev_pend_a = kpmptop(
2490 				    ptokpmp(lastseg_pages_end - 1)) + kpmpnpgs;
2491 
2492 				if (prev_pend_a > pbase_a) {
2493 					/*
2494 					 * Overlap, more than one memseg may
2495 					 * point to the same kpm_page range.
2496 					 */
2497 					if (kpm_smallpages == 0) {
2498 						msp->kpm_pages =
2499 						    (kpm_page_t *)kpm_pp - 1;
2500 						kpm_pp = (uintptr_t)
2501 							((kpm_page_t *)kpm_pp
2502 							+ nelem - 1);
2503 					} else {
2504 						msp->kpm_spages =
2505 						    (kpm_spage_t *)kpm_pp - 1;
2506 						kpm_pp = (uintptr_t)
2507 							((kpm_spage_t *)kpm_pp
2508 							+ nelem - 1);
2509 					}
2510 					nelem_used += nelem - 1;
2511 
2512 				} else {
2513 					if (kpm_smallpages == 0) {
2514 						msp->kpm_pages =
2515 						    (kpm_page_t *)kpm_pp;
2516 						kpm_pp = (uintptr_t)
2517 							((kpm_page_t *)kpm_pp
2518 							+ nelem);
2519 					} else {
2520 						msp->kpm_spages =
2521 						    (kpm_spage_t *)kpm_pp;
2522 						kpm_pp = (uintptr_t)
2523 							((kpm_spage_t *)
2524 							kpm_pp + nelem);
2525 					}
2526 					nelem_used += nelem;
2527 				}
2528 
2529 			} else {
2530 				if (kpm_smallpages == 0) {
2531 					msp->kpm_pages = (kpm_page_t *)kpm_pp;
2532 					kpm_pp = (uintptr_t)
2533 						((kpm_page_t *)kpm_pp + nelem);
2534 				} else {
2535 					msp->kpm_spages = (kpm_spage_t *)kpm_pp;
2536 					kpm_pp = (uintptr_t)
2537 						((kpm_spage_t *)kpm_pp + nelem);
2538 				}
2539 				nelem_used = nelem;
2540 			}
2541 
2542 			if (nelem_used > kpm_npages)
2543 				panic("kphysm_init: kpm_pp overflow\n");
2544 
2545 			msp->kpm_pagespa = va_to_pa(msp->kpm_pages);
2546 			lastseg_pages_end = msp->pages_end;
2547 		}
2548 
2549 		memseg_list_add(msp);
2550 
2551 		/*
2552 		 * add_physmem() initializes the PSM part of the page
2553 		 * struct by calling the PSM back with add_physmem_cb().
2554 		 * In addition it coalesces pages into larger pages as
2555 		 * it initializes them.
2556 		 */
2557 		add_physmem(pp, num, base);
2558 		pp += num;
2559 		msp++;
2560 	}
2561 
2562 	build_pfn_hash();
2563 }
2564 
2565 /*
2566  * Kernel VM initialization.
2567  * Assumptions about kernel address space ordering:
2568  *	(1) gap (user space)
2569  *	(2) kernel text
2570  *	(3) kernel data/bss
2571  *	(4) gap
2572  *	(5) kernel data structures
2573  *	(6) gap
2574  *	(7) debugger (optional)
2575  *	(8) monitor
2576  *	(9) gap (possibly null)
2577  *	(10) dvma
2578  *	(11) devices
2579  */
2580 static void
2581 kvm_init(void)
2582 {
2583 	/*
2584 	 * Put the kernel segments in kernel address space.
2585 	 */
2586 	rw_enter(&kas.a_lock, RW_WRITER);
2587 	as_avlinit(&kas);
2588 
2589 	(void) seg_attach(&kas, (caddr_t)KERNELBASE,
2590 	    (size_t)(e_moddata - KERNELBASE), &ktextseg);
2591 	(void) segkmem_create(&ktextseg);
2592 
2593 	(void) seg_attach(&kas, (caddr_t)(KERNELBASE + MMU_PAGESIZE4M),
2594 	    (size_t)(MMU_PAGESIZE4M), &ktexthole);
2595 	(void) segkmem_create(&ktexthole);
2596 
2597 	(void) seg_attach(&kas, (caddr_t)valloc_base,
2598 	    (size_t)(econtig32 - valloc_base), &kvalloc);
2599 	(void) segkmem_create(&kvalloc);
2600 
2601 	if (kmem64_base) {
2602 	    (void) seg_attach(&kas, (caddr_t)kmem64_base,
2603 		(size_t)(kmem64_end - kmem64_base), &kmem64);
2604 	    (void) segkmem_create(&kmem64);
2605 	}
2606 
2607 	/*
2608 	 * We're about to map out /boot.  This is the beginning of the
2609 	 * system resource management transition. We can no longer
2610 	 * call into /boot for I/O or memory allocations.
2611 	 */
2612 	(void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg);
2613 	(void) segkmem_create(&kvseg);
2614 	hblk_alloc_dynamic = 1;
2615 
2616 	/*
2617 	 * we need to preallocate pages for DR operations before enabling large
2618 	 * page kernel heap because of memseg_remap_init() hat_unload() hack.
2619 	 */
2620 	memseg_remap_init();
2621 
2622 	/* at this point we are ready to use large page heap */
2623 	segkmem_heap_lp_init();
2624 
2625 	(void) seg_attach(&kas, (caddr_t)SYSBASE32, SYSLIMIT32 - SYSBASE32,
2626 	    &kvseg32);
2627 	(void) segkmem_create(&kvseg32);
2628 
2629 	/*
2630 	 * Create a segment for the debugger.
2631 	 */
2632 	(void) seg_attach(&kas, (caddr_t)SEGDEBUGBASE, (size_t)SEGDEBUGSIZE,
2633 	    &kdebugseg);
2634 	(void) segkmem_create(&kdebugseg);
2635 
2636 	rw_exit(&kas.a_lock);
2637 }
2638 
2639 char obp_tte_str[] =
2640 	"h# %x constant MMU_PAGESHIFT "
2641 	"h# %x constant TTE8K "
2642 	"h# %x constant SFHME_SIZE "
2643 	"h# %x constant SFHME_TTE "
2644 	"h# %x constant HMEBLK_TAG "
2645 	"h# %x constant HMEBLK_NEXT "
2646 	"h# %x constant HMEBLK_MISC "
2647 	"h# %x constant HMEBLK_HME1 "
2648 	"h# %x constant NHMENTS "
2649 	"h# %x constant HBLK_SZMASK "
2650 	"h# %x constant HBLK_RANGE_SHIFT "
2651 	"h# %x constant HMEBP_HBLK "
2652 	"h# %x constant HMEBUCKET_SIZE "
2653 	"h# %x constant HTAG_SFMMUPSZ "
2654 	"h# %x constant HTAG_REHASHSZ "
2655 	"h# %x constant mmu_hashcnt "
2656 	"h# %p constant uhme_hash "
2657 	"h# %p constant khme_hash "
2658 	"h# %x constant UHMEHASH_SZ "
2659 	"h# %x constant KHMEHASH_SZ "
2660 	"h# %p constant KHATID "
2661 	"h# %x constant CTX_SIZE "
2662 	"h# %x constant CTX_SFMMU "
2663 	"h# %p constant ctxs "
2664 	"h# %x constant ASI_MEM "
2665 
2666 	": PHYS-X@ ( phys -- data ) "
2667 	"   ASI_MEM spacex@ "
2668 	"; "
2669 
2670 	": PHYS-W@ ( phys -- data ) "
2671 	"   ASI_MEM spacew@ "
2672 	"; "
2673 
2674 	": PHYS-L@ ( phys -- data ) "
2675 	"   ASI_MEM spaceL@ "
2676 	"; "
2677 
2678 	": TTE_PAGE_SHIFT ( ttesz -- hmeshift ) "
2679 	"   3 * MMU_PAGESHIFT + "
2680 	"; "
2681 
2682 	": TTE_IS_VALID ( ttep -- flag ) "
2683 	"   PHYS-X@ 0< "
2684 	"; "
2685 
2686 	": HME_HASH_SHIFT ( ttesz -- hmeshift ) "
2687 	"   dup TTE8K =  if "
2688 	"      drop HBLK_RANGE_SHIFT "
2689 	"   else "
2690 	"      TTE_PAGE_SHIFT "
2691 	"   then "
2692 	"; "
2693 
2694 	": HME_HASH_BSPAGE ( addr hmeshift -- bspage ) "
2695 	"   tuck >> swap MMU_PAGESHIFT - << "
2696 	"; "
2697 
2698 	": HME_HASH_FUNCTION ( sfmmup addr hmeshift -- hmebp ) "
2699 	"   >> over xor swap                    ( hash sfmmup ) "
2700 	"   KHATID <>  if                       ( hash ) "
2701 	"      UHMEHASH_SZ and                  ( bucket ) "
2702 	"      HMEBUCKET_SIZE * uhme_hash +     ( hmebp ) "
2703 	"   else                                ( hash ) "
2704 	"      KHMEHASH_SZ and                  ( bucket ) "
2705 	"      HMEBUCKET_SIZE * khme_hash +     ( hmebp ) "
2706 	"   then                                ( hmebp ) "
2707 	"; "
2708 
2709 	": HME_HASH_TABLE_SEARCH "
2710 	"       ( sfmmup hmebp hblktag --  sfmmup null | sfmmup hmeblkp ) "
2711 	"   >r hmebp_hblk + phys-x@ begin ( sfmmup hmeblkp ) ( r: hblktag ) "
2712 	"      dup if   		( sfmmup hmeblkp ) ( r: hblktag ) "
2713 	"         dup hmeblk_tag + phys-x@ r@ = if ( sfmmup hmeblkp )	  "
2714 	"	     dup hmeblk_tag + 8 + phys-x@ 2 pick = if		  "
2715 	"		  true 	( sfmmup hmeblkp true ) ( r: hblktag )	  "
2716 	"	     else						  "
2717 	"	     	  hmeblk_next + phys-x@ false 			  "
2718 	"			( sfmmup hmeblkp false ) ( r: hblktag )   "
2719 	"	     then  						  "
2720 	"	  else							  "
2721 	"	     hmeblk_next + phys-x@ false 			  "
2722 	"			( sfmmup hmeblkp false ) ( r: hblktag )   "
2723 	"	  then 							  "
2724 	"      else							  "
2725 	"         true 							  "
2726 	"      then  							  "
2727 	"   until r> drop 						  "
2728 	"; "
2729 
2730 	": CNUM_TO_SFMMUP ( cnum -- sfmmup ) "
2731 	"   CTX_SIZE * ctxs + CTX_SFMMU + "
2732 	"x@ "
2733 	"; "
2734 
2735 	": HME_HASH_TAG ( sfmmup rehash addr -- hblktag ) "
2736 	"   over HME_HASH_SHIFT HME_HASH_BSPAGE      ( sfmmup rehash bspage ) "
2737 	"   HTAG_REHASHSZ << or nip		     ( hblktag ) "
2738 	"; "
2739 
2740 	": HBLK_TO_TTEP ( hmeblkp addr -- ttep ) "
2741 	"   over HMEBLK_MISC + PHYS-L@ HBLK_SZMASK and  ( hmeblkp addr ttesz ) "
2742 	"   TTE8K =  if                            ( hmeblkp addr ) "
2743 	"      MMU_PAGESHIFT >> NHMENTS 1- and     ( hmeblkp hme-index ) "
2744 	"   else                                   ( hmeblkp addr ) "
2745 	"      drop 0                              ( hmeblkp 0 ) "
2746 	"   then                                   ( hmeblkp hme-index ) "
2747 	"   SFHME_SIZE * + HMEBLK_HME1 +           ( hmep ) "
2748 	"   SFHME_TTE +                            ( ttep ) "
2749 	"; "
2750 
2751 	": unix-tte ( addr cnum -- false | tte-data true ) "
2752 	"      CNUM_TO_SFMMUP                 ( addr sfmmup ) "
2753 	"      mmu_hashcnt 1+ 1  do           ( addr sfmmup ) "
2754 	"         2dup swap i HME_HASH_SHIFT  "
2755 					"( addr sfmmup sfmmup addr hmeshift ) "
2756 	"         HME_HASH_FUNCTION           ( addr sfmmup hmebp ) "
2757 	"         over i 4 pick               "
2758 				"( addr sfmmup hmebp sfmmup rehash addr ) "
2759 	"         HME_HASH_TAG                ( addr sfmmup hmebp hblktag ) "
2760 	"         HME_HASH_TABLE_SEARCH       "
2761 					"( addr sfmmup { null | hmeblkp } ) "
2762 	"         ?dup  if                    ( addr sfmmup hmeblkp ) "
2763 	"            nip swap HBLK_TO_TTEP    ( ttep ) "
2764 	"            dup TTE_IS_VALID  if     ( valid-ttep ) "
2765 	"               PHYS-X@ true          ( tte-data true ) "
2766 	"            else                     ( invalid-tte ) "
2767 	"               drop false            ( false ) "
2768 	"            then                     ( false | tte-data true ) "
2769 	"            unloop exit              ( false | tte-data true ) "
2770 	"         then                        ( addr sfmmup ) "
2771 	"      loop                           ( addr sfmmup ) "
2772 	"      2drop false                    ( false ) "
2773 	"; "
2774 ;
2775 
2776 void
2777 create_va_to_tte(void)
2778 {
2779 	char *bp;
2780 	extern int khmehash_num, uhmehash_num;
2781 	extern struct hmehash_bucket *khme_hash, *uhme_hash;
2782 
2783 #define	OFFSET(type, field)	((uintptr_t)(&((type *)0)->field))
2784 
2785 	bp = (char *)kobj_zalloc(MMU_PAGESIZE, KM_SLEEP);
2786 
2787 	/*
2788 	 * Teach obp how to parse our sw ttes.
2789 	 */
2790 	(void) sprintf(bp, obp_tte_str,
2791 	    MMU_PAGESHIFT,
2792 	    TTE8K,
2793 	    sizeof (struct sf_hment),
2794 	    OFFSET(struct sf_hment, hme_tte),
2795 	    OFFSET(struct hme_blk, hblk_tag),
2796 	    OFFSET(struct hme_blk, hblk_nextpa),
2797 	    OFFSET(struct hme_blk, hblk_misc),
2798 	    OFFSET(struct hme_blk, hblk_hme),
2799 	    NHMENTS,
2800 	    HBLK_SZMASK,
2801 	    HBLK_RANGE_SHIFT,
2802 	    OFFSET(struct hmehash_bucket, hmeh_nextpa),
2803 	    sizeof (struct hmehash_bucket),
2804 	    HTAG_SFMMUPSZ,
2805 	    HTAG_REHASHSZ,
2806 	    mmu_hashcnt,
2807 	    (caddr_t)va_to_pa((caddr_t)uhme_hash),
2808 	    (caddr_t)va_to_pa((caddr_t)khme_hash),
2809 	    UHMEHASH_SZ,
2810 	    KHMEHASH_SZ,
2811 	    KHATID,
2812 	    sizeof (struct ctx),
2813 	    OFFSET(struct ctx, ctx_sfmmu),
2814 	    ctxs,
2815 	    ASI_MEM);
2816 	prom_interpret(bp, 0, 0, 0, 0, 0);
2817 
2818 	kobj_free(bp, MMU_PAGESIZE);
2819 }
2820 
2821 void
2822 install_va_to_tte(void)
2823 {
2824 	/*
2825 	 * advise prom that he can use unix-tte
2826 	 */
2827 	prom_interpret("' unix-tte is va>tte-data", 0, 0, 0, 0, 0);
2828 }
2829 
2830 
2831 static char *create_node =
2832 	"root-device "
2833 	"new-device "
2834 	"\" os-io\" device-name "
2835 	": cb-r/w  ( adr,len method$ -- #read/#written ) "
2836 	"   2>r swap 2 2r> ['] $callback  catch  if "
2837 	"      2drop 3drop 0 "
2838 	"   then "
2839 	"; "
2840 	": read ( adr,len -- #read ) "
2841 	"       \" read\" ['] cb-r/w catch  if  2drop 2drop -2 exit then "
2842 	"       ( retN ... ret1 N ) "
2843 	"       ?dup  if "
2844 	"               swap >r 1-  0  ?do  drop  loop  r> "
2845 	"       else "
2846 	"               -2 "
2847 	"       then l->n "
2848 	";    "
2849 	": write ( adr,len -- #written ) "
2850 	"       \" write\" ['] cb-r/w catch  if  2drop 2drop 0 exit  then "
2851 	"       ( retN ... ret1 N ) "
2852 	"       ?dup  if "
2853 	"               swap >r 1-  0  ?do  drop  loop  r> "
2854 	"        else "
2855 	"               0 "
2856 	"       then "
2857 	"; "
2858 	": poll-tty ( -- ) ; "
2859 	": install-abort  ( -- )  ['] poll-tty d# 10 alarm ; "
2860 	": remove-abort ( -- )  ['] poll-tty 0 alarm ; "
2861 	": cb-give/take ( $method -- ) "
2862 	"       0 -rot ['] $callback catch  ?dup  if "
2863 	"               >r 2drop 2drop r> throw "
2864 	"       else "
2865 	"               0  ?do  drop  loop "
2866 	"       then "
2867 	"; "
2868 	": give ( -- )  \" exit-input\" cb-give/take ; "
2869 	": take ( -- )  \" enter-input\" cb-give/take ; "
2870 	": open ( -- ok? )  true ; "
2871 	": close ( -- ) ; "
2872 	"finish-device "
2873 	"device-end ";
2874 
2875 /*
2876  * Create the obp input/output node only if the USB keyboard is the
2877  * standard input device.  When the USB software takes over the
2878  * input device at the time consconfig runs, it will switch OBP's
2879  * notion of the input device to this node.  Whenever the
2880  * forth user interface is used after this switch, the node will
2881  * call back into the kernel for console input.
2882  *
2883  * This callback mechanism is currently only used when the USB keyboard
2884  * is the input device.  If a serial device such as ttya or
2885  * a UART with a Type 5 keyboard attached is used, obp takes over the
2886  * serial device when the system goes to the debugger after the system is
2887  * booted.  This sharing of the relatively simple serial device is difficult
2888  * but possible.  Sharing the USB host controller is impossible due
2889  * its complexity
2890  */
2891 static void
2892 startup_create_input_node(void)
2893 {
2894 	char *stdin_path;
2895 
2896 	/*
2897 	 * If usb_node_debug is set in /etc/system
2898 	 * then the user would like to test the callbacks
2899 	 * from the input node regardless of whether or
2900 	 * not the USB keyboard is the console input.
2901 	 * This variable is useful for debugging.
2902 	 */
2903 	if (usb_node_debug) {
2904 
2905 		prom_interpret(create_node, 0, 0, 0, 0, 0);
2906 
2907 		return;
2908 	}
2909 
2910 	/* Obtain the console input device */
2911 	stdin_path = prom_stdinpath();
2912 
2913 	/*
2914 	 * If the string "usb" and "keyboard" are in the path
2915 	 * then a USB keyboard is the console input device,
2916 	 * create the node.
2917 	 */
2918 	if ((strstr(stdin_path, "usb") != 0) &&
2919 	    (strstr(stdin_path, "keyboard") != 0)) {
2920 
2921 		prom_interpret(create_node, 0, 0, 0, 0, 0);
2922 	}
2923 }
2924 
2925 
2926 static void
2927 do_prom_version_check(void)
2928 {
2929 	int i;
2930 	dnode_t node;
2931 	char buf[64];
2932 	static char drev[] = "Down-rev firmware detected%s\n"
2933 		"\tPlease upgrade to the following minimum version:\n"
2934 		"\t\t%s\n";
2935 
2936 	i = prom_version_check(buf, sizeof (buf), &node);
2937 
2938 	if (i == PROM_VER64_OK)
2939 		return;
2940 
2941 	if (i == PROM_VER64_UPGRADE) {
2942 		cmn_err(CE_WARN, drev, "", buf);
2943 
2944 #ifdef	DEBUG
2945 		prom_enter_mon();	/* Type 'go' to continue */
2946 		cmn_err(CE_WARN, "Booting with down-rev firmware\n");
2947 		return;
2948 #else
2949 		halt(0);
2950 #endif
2951 	}
2952 
2953 	/*
2954 	 * The other possibility is that this is a server running
2955 	 * good firmware, but down-rev firmware was detected on at
2956 	 * least one other cpu board. We just complain if we see
2957 	 * that.
2958 	 */
2959 	cmn_err(CE_WARN, drev, " on one or more CPU boards", buf);
2960 }
2961 
2962 static void
2963 kpm_init()
2964 {
2965 	kpm_pgshft = (kpm_smallpages == 0) ? MMU_PAGESHIFT4M : MMU_PAGESHIFT;
2966 	kpm_pgsz = 1ull << kpm_pgshft;
2967 	kpm_pgoff = kpm_pgsz - 1;
2968 	kpmp2pshft = kpm_pgshft - PAGESHIFT;
2969 	kpmpnpgs = 1 << kpmp2pshft;
2970 	ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
2971 }
2972 
2973 void
2974 kpm_npages_setup(int memblocks)
2975 {
2976 	/*
2977 	 * npages can be scattered in a maximum of 'memblocks'
2978 	 */
2979 	kpm_npages = ptokpmpr(npages) + memblocks;
2980 }
2981 
2982 /*
2983  * Must be defined in platform dependent code.
2984  */
2985 extern caddr_t modtext;
2986 extern size_t modtext_sz;
2987 extern caddr_t moddata;
2988 
2989 #define	HEAPTEXT_ARENA(addr)	\
2990 	((uintptr_t)(addr) < KERNELBASE + 2 * MMU_PAGESIZE4M ? 0 : \
2991 	(((uintptr_t)(addr) - HEAPTEXT_BASE) / \
2992 	(HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) + 1))
2993 
2994 #define	HEAPTEXT_OVERSIZED(addr)	\
2995 	((uintptr_t)(addr) >= HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE)
2996 
2997 vmem_t *texthole_source[HEAPTEXT_NARENAS];
2998 vmem_t *texthole_arena[HEAPTEXT_NARENAS];
2999 kmutex_t texthole_lock;
3000 
3001 char kern_bootargs[OBP_MAXPATHLEN];
3002 
3003 void
3004 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
3005 {
3006 	uintptr_t addr, limit;
3007 
3008 	addr = HEAPTEXT_BASE;
3009 	limit = addr + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE;
3010 
3011 	/*
3012 	 * Before we initialize the text_arena, we want to punch holes in the
3013 	 * underlying heaptext_arena.  This guarantees that for any text
3014 	 * address we can find a text hole less than HEAPTEXT_MAPPED away.
3015 	 */
3016 	for (; addr + HEAPTEXT_UNMAPPED <= limit;
3017 	    addr += HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) {
3018 		(void) vmem_xalloc(heaptext_arena, HEAPTEXT_UNMAPPED, PAGESIZE,
3019 		    0, 0, (void *)addr, (void *)(addr + HEAPTEXT_UNMAPPED),
3020 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3021 	}
3022 
3023 	/*
3024 	 * Allocate one page at the oversize to break up the text region
3025 	 * from the oversized region.
3026 	 */
3027 	(void) vmem_xalloc(heaptext_arena, PAGESIZE, PAGESIZE, 0, 0,
3028 	    (void *)limit, (void *)(limit + PAGESIZE),
3029 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3030 
3031 	*text_arena = vmem_create("module_text", modtext, modtext_sz,
3032 	    sizeof (uintptr_t), segkmem_alloc, segkmem_free,
3033 	    heaptext_arena, 0, VM_SLEEP);
3034 	*data_arena = vmem_create("module_data", moddata, MODDATA, 1,
3035 	    segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
3036 }
3037 
3038 caddr_t
3039 kobj_text_alloc(vmem_t *arena, size_t size)
3040 {
3041 	caddr_t rval, better;
3042 
3043 	/*
3044 	 * First, try a sleeping allocation.
3045 	 */
3046 	rval = vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT);
3047 
3048 	if (size >= HEAPTEXT_MAPPED || !HEAPTEXT_OVERSIZED(rval))
3049 		return (rval);
3050 
3051 	/*
3052 	 * We didn't get the area that we wanted.  We're going to try to do an
3053 	 * allocation with explicit constraints.
3054 	 */
3055 	better = vmem_xalloc(arena, size, sizeof (uintptr_t), 0, 0, NULL,
3056 	    (void *)(HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE),
3057 	    VM_NOSLEEP | VM_BESTFIT);
3058 
3059 	if (better != NULL) {
3060 		/*
3061 		 * That worked.  Free our first attempt and return.
3062 		 */
3063 		vmem_free(arena, rval, size);
3064 		return (better);
3065 	}
3066 
3067 	/*
3068 	 * That didn't work; we'll have to return our first attempt.
3069 	 */
3070 	return (rval);
3071 }
3072 
3073 caddr_t
3074 kobj_texthole_alloc(caddr_t addr, size_t size)
3075 {
3076 	int arena = HEAPTEXT_ARENA(addr);
3077 	char c[30];
3078 	uintptr_t base;
3079 
3080 	if (HEAPTEXT_OVERSIZED(addr)) {
3081 		/*
3082 		 * If this is an oversized allocation, there is no text hole
3083 		 * available for it; return NULL.
3084 		 */
3085 		return (NULL);
3086 	}
3087 
3088 	mutex_enter(&texthole_lock);
3089 
3090 	if (texthole_arena[arena] == NULL) {
3091 		ASSERT(texthole_source[arena] == NULL);
3092 
3093 		if (arena == 0) {
3094 			texthole_source[0] = vmem_create("module_text_holesrc",
3095 			    (void *)(KERNELBASE + MMU_PAGESIZE4M),
3096 			    MMU_PAGESIZE4M, PAGESIZE, NULL, NULL, NULL,
3097 			    0, VM_SLEEP);
3098 		} else {
3099 			base = HEAPTEXT_BASE +
3100 			    (arena - 1) * (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED);
3101 
3102 			(void) snprintf(c, sizeof (c),
3103 			    "heaptext_holesrc_%d", arena);
3104 
3105 			texthole_source[arena] = vmem_create(c, (void *)base,
3106 			    HEAPTEXT_UNMAPPED, PAGESIZE, NULL, NULL, NULL,
3107 			    0, VM_SLEEP);
3108 		}
3109 
3110 		(void) snprintf(c, sizeof (c), "heaptext_hole_%d", arena);
3111 
3112 		texthole_arena[arena] = vmem_create(c, NULL, 0,
3113 		    sizeof (uint32_t), segkmem_alloc_permanent, segkmem_free,
3114 		    texthole_source[arena], 0, VM_SLEEP);
3115 	}
3116 
3117 	mutex_exit(&texthole_lock);
3118 
3119 	ASSERT(texthole_arena[arena] != NULL);
3120 	ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3121 	return (vmem_alloc(texthole_arena[arena], size,
3122 	    VM_BESTFIT | VM_NOSLEEP));
3123 }
3124 
3125 void
3126 kobj_texthole_free(caddr_t addr, size_t size)
3127 {
3128 	int arena = HEAPTEXT_ARENA(addr);
3129 
3130 	ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3131 	ASSERT(texthole_arena[arena] != NULL);
3132 	vmem_free(texthole_arena[arena], addr, size);
3133 }
3134