xref: /linux/arch/m68k/coldfire/intc-5272.c (revision bd0b9ac4)
1f86b9e03SGreg Ungerer /*
2f86b9e03SGreg Ungerer  * intc.c  --  interrupt controller or ColdFire 5272 SoC
3f86b9e03SGreg Ungerer  *
4f86b9e03SGreg Ungerer  * (C) Copyright 2009, Greg Ungerer <gerg@snapgear.com>
5f86b9e03SGreg Ungerer  *
6f86b9e03SGreg Ungerer  * This file is subject to the terms and conditions of the GNU General Public
7f86b9e03SGreg Ungerer  * License.  See the file COPYING in the main directory of this archive
8f86b9e03SGreg Ungerer  * for more details.
9f86b9e03SGreg Ungerer  */
10f86b9e03SGreg Ungerer 
11f86b9e03SGreg Ungerer #include <linux/types.h>
12f86b9e03SGreg Ungerer #include <linux/init.h>
13f86b9e03SGreg Ungerer #include <linux/kernel.h>
14f86b9e03SGreg Ungerer #include <linux/interrupt.h>
15f86b9e03SGreg Ungerer #include <linux/kernel_stat.h>
16f86b9e03SGreg Ungerer #include <linux/irq.h>
17f86b9e03SGreg Ungerer #include <linux/io.h>
18f86b9e03SGreg Ungerer #include <asm/coldfire.h>
19f86b9e03SGreg Ungerer #include <asm/mcfsim.h>
20f86b9e03SGreg Ungerer #include <asm/traps.h>
21f86b9e03SGreg Ungerer 
22f86b9e03SGreg Ungerer /*
23f86b9e03SGreg Ungerer  * The 5272 ColdFire interrupt controller is nothing like any other
24f86b9e03SGreg Ungerer  * ColdFire interrupt controller - it truly is completely different.
25f86b9e03SGreg Ungerer  * Given its age it is unlikely to be used on any other ColdFire CPU.
26f86b9e03SGreg Ungerer  */
27f86b9e03SGreg Ungerer 
28f86b9e03SGreg Ungerer /*
29f86b9e03SGreg Ungerer  * The masking and priproty setting of interrupts on the 5272 is done
30f86b9e03SGreg Ungerer  * via a set of 4 "Interrupt Controller Registers" (ICR). There is a
31f86b9e03SGreg Ungerer  * loose mapping of vector number to register and internal bits, but
32f86b9e03SGreg Ungerer  * a table is the easiest and quickest way to map them.
33f86b9e03SGreg Ungerer  *
34f86b9e03SGreg Ungerer  * Note that the external interrupts are edge triggered (unlike the
35f86b9e03SGreg Ungerer  * internal interrupt sources which are level triggered). Which means
36f86b9e03SGreg Ungerer  * they also need acknowledging via acknowledge bits.
37f86b9e03SGreg Ungerer  */
38f86b9e03SGreg Ungerer struct irqmap {
39ecb6bdcdSGreg Ungerer 	unsigned int	icr;
40f86b9e03SGreg Ungerer 	unsigned char	index;
41f86b9e03SGreg Ungerer 	unsigned char	ack;
42f86b9e03SGreg Ungerer };
43f86b9e03SGreg Ungerer 
44f86b9e03SGreg Ungerer static struct irqmap intc_irqmap[MCFINT_VECMAX - MCFINT_VECBASE] = {
45f86b9e03SGreg Ungerer 	/*MCF_IRQ_SPURIOUS*/	{ .icr = 0,           .index = 0,  .ack = 0, },
46f86b9e03SGreg Ungerer 	/*MCF_IRQ_EINT1*/	{ .icr = MCFSIM_ICR1, .index = 28, .ack = 1, },
47f86b9e03SGreg Ungerer 	/*MCF_IRQ_EINT2*/	{ .icr = MCFSIM_ICR1, .index = 24, .ack = 1, },
48f86b9e03SGreg Ungerer 	/*MCF_IRQ_EINT3*/	{ .icr = MCFSIM_ICR1, .index = 20, .ack = 1, },
49f86b9e03SGreg Ungerer 	/*MCF_IRQ_EINT4*/	{ .icr = MCFSIM_ICR1, .index = 16, .ack = 1, },
50f86b9e03SGreg Ungerer 	/*MCF_IRQ_TIMER1*/	{ .icr = MCFSIM_ICR1, .index = 12, .ack = 0, },
51f86b9e03SGreg Ungerer 	/*MCF_IRQ_TIMER2*/	{ .icr = MCFSIM_ICR1, .index = 8,  .ack = 0, },
52f86b9e03SGreg Ungerer 	/*MCF_IRQ_TIMER3*/	{ .icr = MCFSIM_ICR1, .index = 4,  .ack = 0, },
53f86b9e03SGreg Ungerer 	/*MCF_IRQ_TIMER4*/	{ .icr = MCFSIM_ICR1, .index = 0,  .ack = 0, },
54f86b9e03SGreg Ungerer 	/*MCF_IRQ_UART1*/	{ .icr = MCFSIM_ICR2, .index = 28, .ack = 0, },
55f86b9e03SGreg Ungerer 	/*MCF_IRQ_UART2*/	{ .icr = MCFSIM_ICR2, .index = 24, .ack = 0, },
56f86b9e03SGreg Ungerer 	/*MCF_IRQ_PLIP*/	{ .icr = MCFSIM_ICR2, .index = 20, .ack = 0, },
57f86b9e03SGreg Ungerer 	/*MCF_IRQ_PLIA*/	{ .icr = MCFSIM_ICR2, .index = 16, .ack = 0, },
58f86b9e03SGreg Ungerer 	/*MCF_IRQ_USB0*/	{ .icr = MCFSIM_ICR2, .index = 12, .ack = 0, },
59f86b9e03SGreg Ungerer 	/*MCF_IRQ_USB1*/	{ .icr = MCFSIM_ICR2, .index = 8,  .ack = 0, },
60f86b9e03SGreg Ungerer 	/*MCF_IRQ_USB2*/	{ .icr = MCFSIM_ICR2, .index = 4,  .ack = 0, },
61f86b9e03SGreg Ungerer 	/*MCF_IRQ_USB3*/	{ .icr = MCFSIM_ICR2, .index = 0,  .ack = 0, },
62f86b9e03SGreg Ungerer 	/*MCF_IRQ_USB4*/	{ .icr = MCFSIM_ICR3, .index = 28, .ack = 0, },
63f86b9e03SGreg Ungerer 	/*MCF_IRQ_USB5*/	{ .icr = MCFSIM_ICR3, .index = 24, .ack = 0, },
64f86b9e03SGreg Ungerer 	/*MCF_IRQ_USB6*/	{ .icr = MCFSIM_ICR3, .index = 20, .ack = 0, },
65f86b9e03SGreg Ungerer 	/*MCF_IRQ_USB7*/	{ .icr = MCFSIM_ICR3, .index = 16, .ack = 0, },
66f86b9e03SGreg Ungerer 	/*MCF_IRQ_DMA*/		{ .icr = MCFSIM_ICR3, .index = 12, .ack = 0, },
67f86b9e03SGreg Ungerer 	/*MCF_IRQ_ERX*/		{ .icr = MCFSIM_ICR3, .index = 8,  .ack = 0, },
68f86b9e03SGreg Ungerer 	/*MCF_IRQ_ETX*/		{ .icr = MCFSIM_ICR3, .index = 4,  .ack = 0, },
69f86b9e03SGreg Ungerer 	/*MCF_IRQ_ENTC*/	{ .icr = MCFSIM_ICR3, .index = 0,  .ack = 0, },
70f86b9e03SGreg Ungerer 	/*MCF_IRQ_QSPI*/	{ .icr = MCFSIM_ICR4, .index = 28, .ack = 0, },
71f86b9e03SGreg Ungerer 	/*MCF_IRQ_EINT5*/	{ .icr = MCFSIM_ICR4, .index = 24, .ack = 1, },
72f86b9e03SGreg Ungerer 	/*MCF_IRQ_EINT6*/	{ .icr = MCFSIM_ICR4, .index = 20, .ack = 1, },
73f86b9e03SGreg Ungerer 	/*MCF_IRQ_SWTO*/	{ .icr = MCFSIM_ICR4, .index = 16, .ack = 0, },
74f86b9e03SGreg Ungerer };
75f86b9e03SGreg Ungerer 
76f86b9e03SGreg Ungerer /*
77f86b9e03SGreg Ungerer  * The act of masking the interrupt also has a side effect of 'ack'ing
78f86b9e03SGreg Ungerer  * an interrupt on this irq (for the external irqs). So this mask function
79f86b9e03SGreg Ungerer  * is also an ack_mask function.
80f86b9e03SGreg Ungerer  */
intc_irq_mask(struct irq_data * d)81f86b9e03SGreg Ungerer static void intc_irq_mask(struct irq_data *d)
82f86b9e03SGreg Ungerer {
83f86b9e03SGreg Ungerer 	unsigned int irq = d->irq;
84f86b9e03SGreg Ungerer 
85f86b9e03SGreg Ungerer 	if ((irq >= MCFINT_VECBASE) && (irq <= MCFINT_VECMAX)) {
86f86b9e03SGreg Ungerer 		u32 v;
87f86b9e03SGreg Ungerer 		irq -= MCFINT_VECBASE;
88f86b9e03SGreg Ungerer 		v = 0x8 << intc_irqmap[irq].index;
89f86b9e03SGreg Ungerer 		writel(v, intc_irqmap[irq].icr);
90f86b9e03SGreg Ungerer 	}
91f86b9e03SGreg Ungerer }
92f86b9e03SGreg Ungerer 
intc_irq_unmask(struct irq_data * d)93f86b9e03SGreg Ungerer static void intc_irq_unmask(struct irq_data *d)
94f86b9e03SGreg Ungerer {
95f86b9e03SGreg Ungerer 	unsigned int irq = d->irq;
96f86b9e03SGreg Ungerer 
97f86b9e03SGreg Ungerer 	if ((irq >= MCFINT_VECBASE) && (irq <= MCFINT_VECMAX)) {
98f86b9e03SGreg Ungerer 		u32 v;
99f86b9e03SGreg Ungerer 		irq -= MCFINT_VECBASE;
100f86b9e03SGreg Ungerer 		v = 0xd << intc_irqmap[irq].index;
101f86b9e03SGreg Ungerer 		writel(v, intc_irqmap[irq].icr);
102f86b9e03SGreg Ungerer 	}
103f86b9e03SGreg Ungerer }
104f86b9e03SGreg Ungerer 
intc_irq_ack(struct irq_data * d)105f86b9e03SGreg Ungerer static void intc_irq_ack(struct irq_data *d)
106f86b9e03SGreg Ungerer {
107f86b9e03SGreg Ungerer 	unsigned int irq = d->irq;
108f86b9e03SGreg Ungerer 
109f86b9e03SGreg Ungerer 	/* Only external interrupts are acked */
110f86b9e03SGreg Ungerer 	if ((irq >= MCFINT_VECBASE) && (irq <= MCFINT_VECMAX)) {
111f86b9e03SGreg Ungerer 		irq -= MCFINT_VECBASE;
112f86b9e03SGreg Ungerer 		if (intc_irqmap[irq].ack) {
113f86b9e03SGreg Ungerer 			u32 v;
114f86b9e03SGreg Ungerer 			v = readl(intc_irqmap[irq].icr);
115f86b9e03SGreg Ungerer 			v &= (0x7 << intc_irqmap[irq].index);
116f86b9e03SGreg Ungerer 			v |= (0x8 << intc_irqmap[irq].index);
117f86b9e03SGreg Ungerer 			writel(v, intc_irqmap[irq].icr);
118f86b9e03SGreg Ungerer 		}
119f86b9e03SGreg Ungerer 	}
120f86b9e03SGreg Ungerer }
121f86b9e03SGreg Ungerer 
intc_irq_set_type(struct irq_data * d,unsigned int type)122f86b9e03SGreg Ungerer static int intc_irq_set_type(struct irq_data *d, unsigned int type)
123f86b9e03SGreg Ungerer {
124f86b9e03SGreg Ungerer 	unsigned int irq = d->irq;
125f86b9e03SGreg Ungerer 
126f86b9e03SGreg Ungerer 	if ((irq >= MCFINT_VECBASE) && (irq <= MCFINT_VECMAX)) {
127f86b9e03SGreg Ungerer 		irq -= MCFINT_VECBASE;
128f86b9e03SGreg Ungerer 		if (intc_irqmap[irq].ack) {
129f86b9e03SGreg Ungerer 			u32 v;
130f86b9e03SGreg Ungerer 			v = readl(MCFSIM_PITR);
131f86b9e03SGreg Ungerer 			if (type == IRQ_TYPE_EDGE_FALLING)
132f86b9e03SGreg Ungerer 				v &= ~(0x1 << (32 - irq));
133f86b9e03SGreg Ungerer 			else
134f86b9e03SGreg Ungerer 				v |= (0x1 << (32 - irq));
135f86b9e03SGreg Ungerer 			writel(v, MCFSIM_PITR);
136f86b9e03SGreg Ungerer 		}
137f86b9e03SGreg Ungerer 	}
138f86b9e03SGreg Ungerer 	return 0;
139f86b9e03SGreg Ungerer }
140f86b9e03SGreg Ungerer 
141f86b9e03SGreg Ungerer /*
142f86b9e03SGreg Ungerer  * Simple flow handler to deal with the external edge triggered interrupts.
143f86b9e03SGreg Ungerer  * We need to be careful with the masking/acking due to the side effects
144f86b9e03SGreg Ungerer  * of masking an interrupt.
145f86b9e03SGreg Ungerer  */
intc_external_irq(struct irq_desc * desc)146*bd0b9ac4SThomas Gleixner static void intc_external_irq(struct irq_desc *desc)
147f86b9e03SGreg Ungerer {
148f86b9e03SGreg Ungerer 	irq_desc_get_chip(desc)->irq_ack(&desc->irq_data);
149*bd0b9ac4SThomas Gleixner 	handle_simple_irq(desc);
150f86b9e03SGreg Ungerer }
151f86b9e03SGreg Ungerer 
152f86b9e03SGreg Ungerer static struct irq_chip intc_irq_chip = {
153f86b9e03SGreg Ungerer 	.name		= "CF-INTC",
154f86b9e03SGreg Ungerer 	.irq_mask	= intc_irq_mask,
155f86b9e03SGreg Ungerer 	.irq_unmask	= intc_irq_unmask,
156f86b9e03SGreg Ungerer 	.irq_mask_ack	= intc_irq_mask,
157f86b9e03SGreg Ungerer 	.irq_ack	= intc_irq_ack,
158f86b9e03SGreg Ungerer 	.irq_set_type	= intc_irq_set_type,
159f86b9e03SGreg Ungerer };
160f86b9e03SGreg Ungerer 
init_IRQ(void)161f86b9e03SGreg Ungerer void __init init_IRQ(void)
162f86b9e03SGreg Ungerer {
163f86b9e03SGreg Ungerer 	int irq, edge;
164f86b9e03SGreg Ungerer 
165f86b9e03SGreg Ungerer 	/* Mask all interrupt sources */
166f86b9e03SGreg Ungerer 	writel(0x88888888, MCFSIM_ICR1);
167f86b9e03SGreg Ungerer 	writel(0x88888888, MCFSIM_ICR2);
168f86b9e03SGreg Ungerer 	writel(0x88888888, MCFSIM_ICR3);
169f86b9e03SGreg Ungerer 	writel(0x88888888, MCFSIM_ICR4);
170f86b9e03SGreg Ungerer 
171f86b9e03SGreg Ungerer 	for (irq = 0; (irq < NR_IRQS); irq++) {
172f86b9e03SGreg Ungerer 		irq_set_chip(irq, &intc_irq_chip);
173f86b9e03SGreg Ungerer 		edge = 0;
174f86b9e03SGreg Ungerer 		if ((irq >= MCFINT_VECBASE) && (irq <= MCFINT_VECMAX))
175f86b9e03SGreg Ungerer 			edge = intc_irqmap[irq - MCFINT_VECBASE].ack;
176f86b9e03SGreg Ungerer 		if (edge) {
177f86b9e03SGreg Ungerer 			irq_set_irq_type(irq, IRQ_TYPE_EDGE_RISING);
178f86b9e03SGreg Ungerer 			irq_set_handler(irq, intc_external_irq);
179f86b9e03SGreg Ungerer 		} else {
180f86b9e03SGreg Ungerer 			irq_set_irq_type(irq, IRQ_TYPE_LEVEL_HIGH);
181f86b9e03SGreg Ungerer 			irq_set_handler(irq, handle_level_irq);
182f86b9e03SGreg Ungerer 		}
183f86b9e03SGreg Ungerer 	}
184f86b9e03SGreg Ungerer }
185f86b9e03SGreg Ungerer 
186