1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright IBM Corporation, 2018 4 * Authors Suraj Jitindar Singh <sjitindarsingh@gmail.com> 5 * Paul Mackerras <paulus@ozlabs.org> 6 * 7 * Description: KVM functions specific to running nested KVM-HV guests 8 * on Book3S processors (specifically POWER9 and later). 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/kvm_host.h> 13 #include <linux/llist.h> 14 #include <linux/pgtable.h> 15 16 #include <asm/kvm_ppc.h> 17 #include <asm/kvm_book3s.h> 18 #include <asm/mmu.h> 19 #include <asm/pgalloc.h> 20 #include <asm/pte-walk.h> 21 #include <asm/reg.h> 22 #include <asm/plpar_wrappers.h> 23 24 static struct patb_entry *pseries_partition_tb; 25 26 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp); 27 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free); 28 29 void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr) 30 { 31 struct kvmppc_vcore *vc = vcpu->arch.vcore; 32 33 hr->pcr = vc->pcr | PCR_MASK; 34 hr->dpdes = vc->dpdes; 35 hr->hfscr = vcpu->arch.hfscr; 36 hr->tb_offset = vc->tb_offset; 37 hr->dawr0 = vcpu->arch.dawr0; 38 hr->dawrx0 = vcpu->arch.dawrx0; 39 hr->ciabr = vcpu->arch.ciabr; 40 hr->purr = vcpu->arch.purr; 41 hr->spurr = vcpu->arch.spurr; 42 hr->ic = vcpu->arch.ic; 43 hr->vtb = vc->vtb; 44 hr->srr0 = vcpu->arch.shregs.srr0; 45 hr->srr1 = vcpu->arch.shregs.srr1; 46 hr->sprg[0] = vcpu->arch.shregs.sprg0; 47 hr->sprg[1] = vcpu->arch.shregs.sprg1; 48 hr->sprg[2] = vcpu->arch.shregs.sprg2; 49 hr->sprg[3] = vcpu->arch.shregs.sprg3; 50 hr->pidr = vcpu->arch.pid; 51 hr->cfar = vcpu->arch.cfar; 52 hr->ppr = vcpu->arch.ppr; 53 hr->dawr1 = vcpu->arch.dawr1; 54 hr->dawrx1 = vcpu->arch.dawrx1; 55 } 56 57 static void byteswap_pt_regs(struct pt_regs *regs) 58 { 59 unsigned long *addr = (unsigned long *) regs; 60 61 for (; addr < ((unsigned long *) (regs + 1)); addr++) 62 *addr = swab64(*addr); 63 } 64 65 static void byteswap_hv_regs(struct hv_guest_state *hr) 66 { 67 hr->version = swab64(hr->version); 68 hr->lpid = swab32(hr->lpid); 69 hr->vcpu_token = swab32(hr->vcpu_token); 70 hr->lpcr = swab64(hr->lpcr); 71 hr->pcr = swab64(hr->pcr) | PCR_MASK; 72 hr->amor = swab64(hr->amor); 73 hr->dpdes = swab64(hr->dpdes); 74 hr->hfscr = swab64(hr->hfscr); 75 hr->tb_offset = swab64(hr->tb_offset); 76 hr->dawr0 = swab64(hr->dawr0); 77 hr->dawrx0 = swab64(hr->dawrx0); 78 hr->ciabr = swab64(hr->ciabr); 79 hr->hdec_expiry = swab64(hr->hdec_expiry); 80 hr->purr = swab64(hr->purr); 81 hr->spurr = swab64(hr->spurr); 82 hr->ic = swab64(hr->ic); 83 hr->vtb = swab64(hr->vtb); 84 hr->hdar = swab64(hr->hdar); 85 hr->hdsisr = swab64(hr->hdsisr); 86 hr->heir = swab64(hr->heir); 87 hr->asdr = swab64(hr->asdr); 88 hr->srr0 = swab64(hr->srr0); 89 hr->srr1 = swab64(hr->srr1); 90 hr->sprg[0] = swab64(hr->sprg[0]); 91 hr->sprg[1] = swab64(hr->sprg[1]); 92 hr->sprg[2] = swab64(hr->sprg[2]); 93 hr->sprg[3] = swab64(hr->sprg[3]); 94 hr->pidr = swab64(hr->pidr); 95 hr->cfar = swab64(hr->cfar); 96 hr->ppr = swab64(hr->ppr); 97 hr->dawr1 = swab64(hr->dawr1); 98 hr->dawrx1 = swab64(hr->dawrx1); 99 } 100 101 static void save_hv_return_state(struct kvm_vcpu *vcpu, int trap, 102 struct hv_guest_state *hr) 103 { 104 struct kvmppc_vcore *vc = vcpu->arch.vcore; 105 106 hr->dpdes = vc->dpdes; 107 hr->hfscr = vcpu->arch.hfscr; 108 hr->purr = vcpu->arch.purr; 109 hr->spurr = vcpu->arch.spurr; 110 hr->ic = vcpu->arch.ic; 111 hr->vtb = vc->vtb; 112 hr->srr0 = vcpu->arch.shregs.srr0; 113 hr->srr1 = vcpu->arch.shregs.srr1; 114 hr->sprg[0] = vcpu->arch.shregs.sprg0; 115 hr->sprg[1] = vcpu->arch.shregs.sprg1; 116 hr->sprg[2] = vcpu->arch.shregs.sprg2; 117 hr->sprg[3] = vcpu->arch.shregs.sprg3; 118 hr->pidr = vcpu->arch.pid; 119 hr->cfar = vcpu->arch.cfar; 120 hr->ppr = vcpu->arch.ppr; 121 switch (trap) { 122 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 123 hr->hdar = vcpu->arch.fault_dar; 124 hr->hdsisr = vcpu->arch.fault_dsisr; 125 hr->asdr = vcpu->arch.fault_gpa; 126 break; 127 case BOOK3S_INTERRUPT_H_INST_STORAGE: 128 hr->asdr = vcpu->arch.fault_gpa; 129 break; 130 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 131 hr->heir = vcpu->arch.emul_inst; 132 break; 133 } 134 } 135 136 /* 137 * This can result in some L0 HV register state being leaked to an L1 138 * hypervisor when the hv_guest_state is copied back to the guest after 139 * being modified here. 140 * 141 * There is no known problem with such a leak, and in many cases these 142 * register settings could be derived by the guest by observing behaviour 143 * and timing, interrupts, etc., but it is an issue to consider. 144 */ 145 static void sanitise_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr) 146 { 147 struct kvmppc_vcore *vc = vcpu->arch.vcore; 148 u64 mask; 149 150 /* 151 * Don't let L1 change LPCR bits for the L2 except these: 152 */ 153 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD | 154 LPCR_LPES | LPCR_MER; 155 156 /* 157 * Additional filtering is required depending on hardware 158 * and configuration. 159 */ 160 hr->lpcr = kvmppc_filter_lpcr_hv(vcpu->kvm, 161 (vc->lpcr & ~mask) | (hr->lpcr & mask)); 162 163 /* 164 * Don't let L1 enable features for L2 which we've disabled for L1, 165 * but preserve the interrupt cause field. 166 */ 167 hr->hfscr &= (HFSCR_INTR_CAUSE | vcpu->arch.hfscr); 168 169 /* Don't let data address watchpoint match in hypervisor state */ 170 hr->dawrx0 &= ~DAWRX_HYP; 171 hr->dawrx1 &= ~DAWRX_HYP; 172 173 /* Don't let completed instruction address breakpt match in HV state */ 174 if ((hr->ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 175 hr->ciabr &= ~CIABR_PRIV; 176 } 177 178 static void restore_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr) 179 { 180 struct kvmppc_vcore *vc = vcpu->arch.vcore; 181 182 vc->pcr = hr->pcr | PCR_MASK; 183 vc->dpdes = hr->dpdes; 184 vcpu->arch.hfscr = hr->hfscr; 185 vcpu->arch.dawr0 = hr->dawr0; 186 vcpu->arch.dawrx0 = hr->dawrx0; 187 vcpu->arch.ciabr = hr->ciabr; 188 vcpu->arch.purr = hr->purr; 189 vcpu->arch.spurr = hr->spurr; 190 vcpu->arch.ic = hr->ic; 191 vc->vtb = hr->vtb; 192 vcpu->arch.shregs.srr0 = hr->srr0; 193 vcpu->arch.shregs.srr1 = hr->srr1; 194 vcpu->arch.shregs.sprg0 = hr->sprg[0]; 195 vcpu->arch.shregs.sprg1 = hr->sprg[1]; 196 vcpu->arch.shregs.sprg2 = hr->sprg[2]; 197 vcpu->arch.shregs.sprg3 = hr->sprg[3]; 198 vcpu->arch.pid = hr->pidr; 199 vcpu->arch.cfar = hr->cfar; 200 vcpu->arch.ppr = hr->ppr; 201 vcpu->arch.dawr1 = hr->dawr1; 202 vcpu->arch.dawrx1 = hr->dawrx1; 203 } 204 205 void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu, 206 struct hv_guest_state *hr) 207 { 208 struct kvmppc_vcore *vc = vcpu->arch.vcore; 209 210 vc->dpdes = hr->dpdes; 211 vcpu->arch.hfscr = hr->hfscr; 212 vcpu->arch.purr = hr->purr; 213 vcpu->arch.spurr = hr->spurr; 214 vcpu->arch.ic = hr->ic; 215 vc->vtb = hr->vtb; 216 vcpu->arch.fault_dar = hr->hdar; 217 vcpu->arch.fault_dsisr = hr->hdsisr; 218 vcpu->arch.fault_gpa = hr->asdr; 219 vcpu->arch.emul_inst = hr->heir; 220 vcpu->arch.shregs.srr0 = hr->srr0; 221 vcpu->arch.shregs.srr1 = hr->srr1; 222 vcpu->arch.shregs.sprg0 = hr->sprg[0]; 223 vcpu->arch.shregs.sprg1 = hr->sprg[1]; 224 vcpu->arch.shregs.sprg2 = hr->sprg[2]; 225 vcpu->arch.shregs.sprg3 = hr->sprg[3]; 226 vcpu->arch.pid = hr->pidr; 227 vcpu->arch.cfar = hr->cfar; 228 vcpu->arch.ppr = hr->ppr; 229 } 230 231 static void kvmhv_nested_mmio_needed(struct kvm_vcpu *vcpu, u64 regs_ptr) 232 { 233 /* No need to reflect the page fault to L1, we've handled it */ 234 vcpu->arch.trap = 0; 235 236 /* 237 * Since the L2 gprs have already been written back into L1 memory when 238 * we complete the mmio, store the L1 memory location of the L2 gpr 239 * being loaded into by the mmio so that the loaded value can be 240 * written there in kvmppc_complete_mmio_load() 241 */ 242 if (((vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) == KVM_MMIO_REG_GPR) 243 && (vcpu->mmio_is_write == 0)) { 244 vcpu->arch.nested_io_gpr = (gpa_t) regs_ptr + 245 offsetof(struct pt_regs, 246 gpr[vcpu->arch.io_gpr]); 247 vcpu->arch.io_gpr = KVM_MMIO_REG_NESTED_GPR; 248 } 249 } 250 251 static int kvmhv_read_guest_state_and_regs(struct kvm_vcpu *vcpu, 252 struct hv_guest_state *l2_hv, 253 struct pt_regs *l2_regs, 254 u64 hv_ptr, u64 regs_ptr) 255 { 256 int size; 257 258 if (kvm_vcpu_read_guest(vcpu, hv_ptr, &l2_hv->version, 259 sizeof(l2_hv->version))) 260 return -1; 261 262 if (kvmppc_need_byteswap(vcpu)) 263 l2_hv->version = swab64(l2_hv->version); 264 265 size = hv_guest_state_size(l2_hv->version); 266 if (size < 0) 267 return -1; 268 269 return kvm_vcpu_read_guest(vcpu, hv_ptr, l2_hv, size) || 270 kvm_vcpu_read_guest(vcpu, regs_ptr, l2_regs, 271 sizeof(struct pt_regs)); 272 } 273 274 static int kvmhv_write_guest_state_and_regs(struct kvm_vcpu *vcpu, 275 struct hv_guest_state *l2_hv, 276 struct pt_regs *l2_regs, 277 u64 hv_ptr, u64 regs_ptr) 278 { 279 int size; 280 281 size = hv_guest_state_size(l2_hv->version); 282 if (size < 0) 283 return -1; 284 285 return kvm_vcpu_write_guest(vcpu, hv_ptr, l2_hv, size) || 286 kvm_vcpu_write_guest(vcpu, regs_ptr, l2_regs, 287 sizeof(struct pt_regs)); 288 } 289 290 long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu) 291 { 292 long int err, r; 293 struct kvm_nested_guest *l2; 294 struct pt_regs l2_regs, saved_l1_regs; 295 struct hv_guest_state l2_hv = {0}, saved_l1_hv; 296 struct kvmppc_vcore *vc = vcpu->arch.vcore; 297 u64 hv_ptr, regs_ptr; 298 u64 hdec_exp; 299 s64 delta_purr, delta_spurr, delta_ic, delta_vtb; 300 301 if (vcpu->kvm->arch.l1_ptcr == 0) 302 return H_NOT_AVAILABLE; 303 304 /* copy parameters in */ 305 hv_ptr = kvmppc_get_gpr(vcpu, 4); 306 regs_ptr = kvmppc_get_gpr(vcpu, 5); 307 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 308 err = kvmhv_read_guest_state_and_regs(vcpu, &l2_hv, &l2_regs, 309 hv_ptr, regs_ptr); 310 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 311 if (err) 312 return H_PARAMETER; 313 314 if (kvmppc_need_byteswap(vcpu)) 315 byteswap_hv_regs(&l2_hv); 316 if (l2_hv.version > HV_GUEST_STATE_VERSION) 317 return H_P2; 318 319 if (kvmppc_need_byteswap(vcpu)) 320 byteswap_pt_regs(&l2_regs); 321 if (l2_hv.vcpu_token >= NR_CPUS) 322 return H_PARAMETER; 323 324 /* translate lpid */ 325 l2 = kvmhv_get_nested(vcpu->kvm, l2_hv.lpid, true); 326 if (!l2) 327 return H_PARAMETER; 328 if (!l2->l1_gr_to_hr) { 329 mutex_lock(&l2->tlb_lock); 330 kvmhv_update_ptbl_cache(l2); 331 mutex_unlock(&l2->tlb_lock); 332 } 333 334 /* save l1 values of things */ 335 vcpu->arch.regs.msr = vcpu->arch.shregs.msr; 336 saved_l1_regs = vcpu->arch.regs; 337 kvmhv_save_hv_regs(vcpu, &saved_l1_hv); 338 339 /* convert TB values/offsets to host (L0) values */ 340 hdec_exp = l2_hv.hdec_expiry - vc->tb_offset; 341 vc->tb_offset += l2_hv.tb_offset; 342 343 /* set L1 state to L2 state */ 344 vcpu->arch.nested = l2; 345 vcpu->arch.nested_vcpu_id = l2_hv.vcpu_token; 346 vcpu->arch.regs = l2_regs; 347 348 /* Guest must always run with ME enabled, HV disabled. */ 349 vcpu->arch.shregs.msr = (vcpu->arch.regs.msr | MSR_ME) & ~MSR_HV; 350 351 sanitise_hv_regs(vcpu, &l2_hv); 352 restore_hv_regs(vcpu, &l2_hv); 353 354 vcpu->arch.ret = RESUME_GUEST; 355 vcpu->arch.trap = 0; 356 do { 357 if (mftb() >= hdec_exp) { 358 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER; 359 r = RESUME_HOST; 360 break; 361 } 362 r = kvmhv_run_single_vcpu(vcpu, hdec_exp, l2_hv.lpcr); 363 } while (is_kvmppc_resume_guest(r)); 364 365 /* save L2 state for return */ 366 l2_regs = vcpu->arch.regs; 367 l2_regs.msr = vcpu->arch.shregs.msr; 368 delta_purr = vcpu->arch.purr - l2_hv.purr; 369 delta_spurr = vcpu->arch.spurr - l2_hv.spurr; 370 delta_ic = vcpu->arch.ic - l2_hv.ic; 371 delta_vtb = vc->vtb - l2_hv.vtb; 372 save_hv_return_state(vcpu, vcpu->arch.trap, &l2_hv); 373 374 /* restore L1 state */ 375 vcpu->arch.nested = NULL; 376 vcpu->arch.regs = saved_l1_regs; 377 vcpu->arch.shregs.msr = saved_l1_regs.msr & ~MSR_TS_MASK; 378 /* set L1 MSR TS field according to L2 transaction state */ 379 if (l2_regs.msr & MSR_TS_MASK) 380 vcpu->arch.shregs.msr |= MSR_TS_S; 381 vc->tb_offset = saved_l1_hv.tb_offset; 382 restore_hv_regs(vcpu, &saved_l1_hv); 383 vcpu->arch.purr += delta_purr; 384 vcpu->arch.spurr += delta_spurr; 385 vcpu->arch.ic += delta_ic; 386 vc->vtb += delta_vtb; 387 388 kvmhv_put_nested(l2); 389 390 /* copy l2_hv_state and regs back to guest */ 391 if (kvmppc_need_byteswap(vcpu)) { 392 byteswap_hv_regs(&l2_hv); 393 byteswap_pt_regs(&l2_regs); 394 } 395 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 396 err = kvmhv_write_guest_state_and_regs(vcpu, &l2_hv, &l2_regs, 397 hv_ptr, regs_ptr); 398 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 399 if (err) 400 return H_AUTHORITY; 401 402 if (r == -EINTR) 403 return H_INTERRUPT; 404 405 if (vcpu->mmio_needed) { 406 kvmhv_nested_mmio_needed(vcpu, regs_ptr); 407 return H_TOO_HARD; 408 } 409 410 return vcpu->arch.trap; 411 } 412 413 long kvmhv_nested_init(void) 414 { 415 long int ptb_order; 416 unsigned long ptcr; 417 long rc; 418 419 if (!kvmhv_on_pseries()) 420 return 0; 421 if (!radix_enabled()) 422 return -ENODEV; 423 424 /* find log base 2 of KVMPPC_NR_LPIDS, rounding up */ 425 ptb_order = __ilog2(KVMPPC_NR_LPIDS - 1) + 1; 426 if (ptb_order < 8) 427 ptb_order = 8; 428 pseries_partition_tb = kmalloc(sizeof(struct patb_entry) << ptb_order, 429 GFP_KERNEL); 430 if (!pseries_partition_tb) { 431 pr_err("kvm-hv: failed to allocated nested partition table\n"); 432 return -ENOMEM; 433 } 434 435 ptcr = __pa(pseries_partition_tb) | (ptb_order - 8); 436 rc = plpar_hcall_norets(H_SET_PARTITION_TABLE, ptcr); 437 if (rc != H_SUCCESS) { 438 pr_err("kvm-hv: Parent hypervisor does not support nesting (rc=%ld)\n", 439 rc); 440 kfree(pseries_partition_tb); 441 pseries_partition_tb = NULL; 442 return -ENODEV; 443 } 444 445 return 0; 446 } 447 448 void kvmhv_nested_exit(void) 449 { 450 /* 451 * N.B. the kvmhv_on_pseries() test is there because it enables 452 * the compiler to remove the call to plpar_hcall_norets() 453 * when CONFIG_PPC_PSERIES=n. 454 */ 455 if (kvmhv_on_pseries() && pseries_partition_tb) { 456 plpar_hcall_norets(H_SET_PARTITION_TABLE, 0); 457 kfree(pseries_partition_tb); 458 pseries_partition_tb = NULL; 459 } 460 } 461 462 static void kvmhv_flush_lpid(unsigned int lpid) 463 { 464 long rc; 465 466 if (!kvmhv_on_pseries()) { 467 radix__flush_all_lpid(lpid); 468 return; 469 } 470 471 if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE)) 472 rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(2, 0, 1), 473 lpid, TLBIEL_INVAL_SET_LPID); 474 else 475 rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU, 476 H_RPTI_TYPE_NESTED | 477 H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC | 478 H_RPTI_TYPE_PAT, 479 H_RPTI_PAGE_ALL, 0, -1UL); 480 if (rc) 481 pr_err("KVM: TLB LPID invalidation hcall failed, rc=%ld\n", rc); 482 } 483 484 void kvmhv_set_ptbl_entry(unsigned int lpid, u64 dw0, u64 dw1) 485 { 486 if (!kvmhv_on_pseries()) { 487 mmu_partition_table_set_entry(lpid, dw0, dw1, true); 488 return; 489 } 490 491 pseries_partition_tb[lpid].patb0 = cpu_to_be64(dw0); 492 pseries_partition_tb[lpid].patb1 = cpu_to_be64(dw1); 493 /* L0 will do the necessary barriers */ 494 kvmhv_flush_lpid(lpid); 495 } 496 497 static void kvmhv_set_nested_ptbl(struct kvm_nested_guest *gp) 498 { 499 unsigned long dw0; 500 501 dw0 = PATB_HR | radix__get_tree_size() | 502 __pa(gp->shadow_pgtable) | RADIX_PGD_INDEX_SIZE; 503 kvmhv_set_ptbl_entry(gp->shadow_lpid, dw0, gp->process_table); 504 } 505 506 void kvmhv_vm_nested_init(struct kvm *kvm) 507 { 508 kvm->arch.max_nested_lpid = -1; 509 } 510 511 /* 512 * Handle the H_SET_PARTITION_TABLE hcall. 513 * r4 = guest real address of partition table + log_2(size) - 12 514 * (formatted as for the PTCR). 515 */ 516 long kvmhv_set_partition_table(struct kvm_vcpu *vcpu) 517 { 518 struct kvm *kvm = vcpu->kvm; 519 unsigned long ptcr = kvmppc_get_gpr(vcpu, 4); 520 int srcu_idx; 521 long ret = H_SUCCESS; 522 523 srcu_idx = srcu_read_lock(&kvm->srcu); 524 /* 525 * Limit the partition table to 4096 entries (because that's what 526 * hardware supports), and check the base address. 527 */ 528 if ((ptcr & PRTS_MASK) > 12 - 8 || 529 !kvm_is_visible_gfn(vcpu->kvm, (ptcr & PRTB_MASK) >> PAGE_SHIFT)) 530 ret = H_PARAMETER; 531 srcu_read_unlock(&kvm->srcu, srcu_idx); 532 if (ret == H_SUCCESS) 533 kvm->arch.l1_ptcr = ptcr; 534 return ret; 535 } 536 537 /* 538 * Handle the H_COPY_TOFROM_GUEST hcall. 539 * r4 = L1 lpid of nested guest 540 * r5 = pid 541 * r6 = eaddr to access 542 * r7 = to buffer (L1 gpa) 543 * r8 = from buffer (L1 gpa) 544 * r9 = n bytes to copy 545 */ 546 long kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu *vcpu) 547 { 548 struct kvm_nested_guest *gp; 549 int l1_lpid = kvmppc_get_gpr(vcpu, 4); 550 int pid = kvmppc_get_gpr(vcpu, 5); 551 gva_t eaddr = kvmppc_get_gpr(vcpu, 6); 552 gpa_t gp_to = (gpa_t) kvmppc_get_gpr(vcpu, 7); 553 gpa_t gp_from = (gpa_t) kvmppc_get_gpr(vcpu, 8); 554 void *buf; 555 unsigned long n = kvmppc_get_gpr(vcpu, 9); 556 bool is_load = !!gp_to; 557 long rc; 558 559 if (gp_to && gp_from) /* One must be NULL to determine the direction */ 560 return H_PARAMETER; 561 562 if (eaddr & (0xFFFUL << 52)) 563 return H_PARAMETER; 564 565 buf = kzalloc(n, GFP_KERNEL); 566 if (!buf) 567 return H_NO_MEM; 568 569 gp = kvmhv_get_nested(vcpu->kvm, l1_lpid, false); 570 if (!gp) { 571 rc = H_PARAMETER; 572 goto out_free; 573 } 574 575 mutex_lock(&gp->tlb_lock); 576 577 if (is_load) { 578 /* Load from the nested guest into our buffer */ 579 rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid, 580 eaddr, buf, NULL, n); 581 if (rc) 582 goto not_found; 583 584 /* Write what was loaded into our buffer back to the L1 guest */ 585 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 586 rc = kvm_vcpu_write_guest(vcpu, gp_to, buf, n); 587 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 588 if (rc) 589 goto not_found; 590 } else { 591 /* Load the data to be stored from the L1 guest into our buf */ 592 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 593 rc = kvm_vcpu_read_guest(vcpu, gp_from, buf, n); 594 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 595 if (rc) 596 goto not_found; 597 598 /* Store from our buffer into the nested guest */ 599 rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid, 600 eaddr, NULL, buf, n); 601 if (rc) 602 goto not_found; 603 } 604 605 out_unlock: 606 mutex_unlock(&gp->tlb_lock); 607 kvmhv_put_nested(gp); 608 out_free: 609 kfree(buf); 610 return rc; 611 not_found: 612 rc = H_NOT_FOUND; 613 goto out_unlock; 614 } 615 616 /* 617 * Reload the partition table entry for a guest. 618 * Caller must hold gp->tlb_lock. 619 */ 620 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp) 621 { 622 int ret; 623 struct patb_entry ptbl_entry; 624 unsigned long ptbl_addr; 625 struct kvm *kvm = gp->l1_host; 626 627 ret = -EFAULT; 628 ptbl_addr = (kvm->arch.l1_ptcr & PRTB_MASK) + (gp->l1_lpid << 4); 629 if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 8))) { 630 int srcu_idx = srcu_read_lock(&kvm->srcu); 631 ret = kvm_read_guest(kvm, ptbl_addr, 632 &ptbl_entry, sizeof(ptbl_entry)); 633 srcu_read_unlock(&kvm->srcu, srcu_idx); 634 } 635 if (ret) { 636 gp->l1_gr_to_hr = 0; 637 gp->process_table = 0; 638 } else { 639 gp->l1_gr_to_hr = be64_to_cpu(ptbl_entry.patb0); 640 gp->process_table = be64_to_cpu(ptbl_entry.patb1); 641 } 642 kvmhv_set_nested_ptbl(gp); 643 } 644 645 static struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid) 646 { 647 struct kvm_nested_guest *gp; 648 long shadow_lpid; 649 650 gp = kzalloc(sizeof(*gp), GFP_KERNEL); 651 if (!gp) 652 return NULL; 653 gp->l1_host = kvm; 654 gp->l1_lpid = lpid; 655 mutex_init(&gp->tlb_lock); 656 gp->shadow_pgtable = pgd_alloc(kvm->mm); 657 if (!gp->shadow_pgtable) 658 goto out_free; 659 shadow_lpid = kvmppc_alloc_lpid(); 660 if (shadow_lpid < 0) 661 goto out_free2; 662 gp->shadow_lpid = shadow_lpid; 663 gp->radix = 1; 664 665 memset(gp->prev_cpu, -1, sizeof(gp->prev_cpu)); 666 667 return gp; 668 669 out_free2: 670 pgd_free(kvm->mm, gp->shadow_pgtable); 671 out_free: 672 kfree(gp); 673 return NULL; 674 } 675 676 /* 677 * Free up any resources allocated for a nested guest. 678 */ 679 static void kvmhv_release_nested(struct kvm_nested_guest *gp) 680 { 681 struct kvm *kvm = gp->l1_host; 682 683 if (gp->shadow_pgtable) { 684 /* 685 * No vcpu is using this struct and no call to 686 * kvmhv_get_nested can find this struct, 687 * so we don't need to hold kvm->mmu_lock. 688 */ 689 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, 690 gp->shadow_lpid); 691 pgd_free(kvm->mm, gp->shadow_pgtable); 692 } 693 kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0); 694 kvmppc_free_lpid(gp->shadow_lpid); 695 kfree(gp); 696 } 697 698 static void kvmhv_remove_nested(struct kvm_nested_guest *gp) 699 { 700 struct kvm *kvm = gp->l1_host; 701 int lpid = gp->l1_lpid; 702 long ref; 703 704 spin_lock(&kvm->mmu_lock); 705 if (gp == kvm->arch.nested_guests[lpid]) { 706 kvm->arch.nested_guests[lpid] = NULL; 707 if (lpid == kvm->arch.max_nested_lpid) { 708 while (--lpid >= 0 && !kvm->arch.nested_guests[lpid]) 709 ; 710 kvm->arch.max_nested_lpid = lpid; 711 } 712 --gp->refcnt; 713 } 714 ref = gp->refcnt; 715 spin_unlock(&kvm->mmu_lock); 716 if (ref == 0) 717 kvmhv_release_nested(gp); 718 } 719 720 /* 721 * Free up all nested resources allocated for this guest. 722 * This is called with no vcpus of the guest running, when 723 * switching the guest to HPT mode or when destroying the 724 * guest. 725 */ 726 void kvmhv_release_all_nested(struct kvm *kvm) 727 { 728 int i; 729 struct kvm_nested_guest *gp; 730 struct kvm_nested_guest *freelist = NULL; 731 struct kvm_memory_slot *memslot; 732 int srcu_idx; 733 734 spin_lock(&kvm->mmu_lock); 735 for (i = 0; i <= kvm->arch.max_nested_lpid; i++) { 736 gp = kvm->arch.nested_guests[i]; 737 if (!gp) 738 continue; 739 kvm->arch.nested_guests[i] = NULL; 740 if (--gp->refcnt == 0) { 741 gp->next = freelist; 742 freelist = gp; 743 } 744 } 745 kvm->arch.max_nested_lpid = -1; 746 spin_unlock(&kvm->mmu_lock); 747 while ((gp = freelist) != NULL) { 748 freelist = gp->next; 749 kvmhv_release_nested(gp); 750 } 751 752 srcu_idx = srcu_read_lock(&kvm->srcu); 753 kvm_for_each_memslot(memslot, kvm_memslots(kvm)) 754 kvmhv_free_memslot_nest_rmap(memslot); 755 srcu_read_unlock(&kvm->srcu, srcu_idx); 756 } 757 758 /* caller must hold gp->tlb_lock */ 759 static void kvmhv_flush_nested(struct kvm_nested_guest *gp) 760 { 761 struct kvm *kvm = gp->l1_host; 762 763 spin_lock(&kvm->mmu_lock); 764 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, gp->shadow_lpid); 765 spin_unlock(&kvm->mmu_lock); 766 kvmhv_flush_lpid(gp->shadow_lpid); 767 kvmhv_update_ptbl_cache(gp); 768 if (gp->l1_gr_to_hr == 0) 769 kvmhv_remove_nested(gp); 770 } 771 772 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid, 773 bool create) 774 { 775 struct kvm_nested_guest *gp, *newgp; 776 777 if (l1_lpid >= KVM_MAX_NESTED_GUESTS || 778 l1_lpid >= (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4))) 779 return NULL; 780 781 spin_lock(&kvm->mmu_lock); 782 gp = kvm->arch.nested_guests[l1_lpid]; 783 if (gp) 784 ++gp->refcnt; 785 spin_unlock(&kvm->mmu_lock); 786 787 if (gp || !create) 788 return gp; 789 790 newgp = kvmhv_alloc_nested(kvm, l1_lpid); 791 if (!newgp) 792 return NULL; 793 spin_lock(&kvm->mmu_lock); 794 if (kvm->arch.nested_guests[l1_lpid]) { 795 /* someone else beat us to it */ 796 gp = kvm->arch.nested_guests[l1_lpid]; 797 } else { 798 kvm->arch.nested_guests[l1_lpid] = newgp; 799 ++newgp->refcnt; 800 gp = newgp; 801 newgp = NULL; 802 if (l1_lpid > kvm->arch.max_nested_lpid) 803 kvm->arch.max_nested_lpid = l1_lpid; 804 } 805 ++gp->refcnt; 806 spin_unlock(&kvm->mmu_lock); 807 808 if (newgp) 809 kvmhv_release_nested(newgp); 810 811 return gp; 812 } 813 814 void kvmhv_put_nested(struct kvm_nested_guest *gp) 815 { 816 struct kvm *kvm = gp->l1_host; 817 long ref; 818 819 spin_lock(&kvm->mmu_lock); 820 ref = --gp->refcnt; 821 spin_unlock(&kvm->mmu_lock); 822 if (ref == 0) 823 kvmhv_release_nested(gp); 824 } 825 826 static struct kvm_nested_guest *kvmhv_find_nested(struct kvm *kvm, int lpid) 827 { 828 if (lpid > kvm->arch.max_nested_lpid) 829 return NULL; 830 return kvm->arch.nested_guests[lpid]; 831 } 832 833 pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid, 834 unsigned long ea, unsigned *hshift) 835 { 836 struct kvm_nested_guest *gp; 837 pte_t *pte; 838 839 gp = kvmhv_find_nested(kvm, lpid); 840 if (!gp) 841 return NULL; 842 843 VM_WARN(!spin_is_locked(&kvm->mmu_lock), 844 "%s called with kvm mmu_lock not held \n", __func__); 845 pte = __find_linux_pte(gp->shadow_pgtable, ea, NULL, hshift); 846 847 return pte; 848 } 849 850 static inline bool kvmhv_n_rmap_is_equal(u64 rmap_1, u64 rmap_2) 851 { 852 return !((rmap_1 ^ rmap_2) & (RMAP_NESTED_LPID_MASK | 853 RMAP_NESTED_GPA_MASK)); 854 } 855 856 void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp, 857 struct rmap_nested **n_rmap) 858 { 859 struct llist_node *entry = ((struct llist_head *) rmapp)->first; 860 struct rmap_nested *cursor; 861 u64 rmap, new_rmap = (*n_rmap)->rmap; 862 863 /* Are there any existing entries? */ 864 if (!(*rmapp)) { 865 /* No -> use the rmap as a single entry */ 866 *rmapp = new_rmap | RMAP_NESTED_IS_SINGLE_ENTRY; 867 return; 868 } 869 870 /* Do any entries match what we're trying to insert? */ 871 for_each_nest_rmap_safe(cursor, entry, &rmap) { 872 if (kvmhv_n_rmap_is_equal(rmap, new_rmap)) 873 return; 874 } 875 876 /* Do we need to create a list or just add the new entry? */ 877 rmap = *rmapp; 878 if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */ 879 *rmapp = 0UL; 880 llist_add(&((*n_rmap)->list), (struct llist_head *) rmapp); 881 if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */ 882 (*n_rmap)->list.next = (struct llist_node *) rmap; 883 884 /* Set NULL so not freed by caller */ 885 *n_rmap = NULL; 886 } 887 888 static void kvmhv_update_nest_rmap_rc(struct kvm *kvm, u64 n_rmap, 889 unsigned long clr, unsigned long set, 890 unsigned long hpa, unsigned long mask) 891 { 892 unsigned long gpa; 893 unsigned int shift, lpid; 894 pte_t *ptep; 895 896 gpa = n_rmap & RMAP_NESTED_GPA_MASK; 897 lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT; 898 899 /* Find the pte */ 900 ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift); 901 /* 902 * If the pte is present and the pfn is still the same, update the pte. 903 * If the pfn has changed then this is a stale rmap entry, the nested 904 * gpa actually points somewhere else now, and there is nothing to do. 905 * XXX A future optimisation would be to remove the rmap entry here. 906 */ 907 if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) { 908 __radix_pte_update(ptep, clr, set); 909 kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid); 910 } 911 } 912 913 /* 914 * For a given list of rmap entries, update the rc bits in all ptes in shadow 915 * page tables for nested guests which are referenced by the rmap list. 916 */ 917 void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp, 918 unsigned long clr, unsigned long set, 919 unsigned long hpa, unsigned long nbytes) 920 { 921 struct llist_node *entry = ((struct llist_head *) rmapp)->first; 922 struct rmap_nested *cursor; 923 unsigned long rmap, mask; 924 925 if ((clr | set) & ~(_PAGE_DIRTY | _PAGE_ACCESSED)) 926 return; 927 928 mask = PTE_RPN_MASK & ~(nbytes - 1); 929 hpa &= mask; 930 931 for_each_nest_rmap_safe(cursor, entry, &rmap) 932 kvmhv_update_nest_rmap_rc(kvm, rmap, clr, set, hpa, mask); 933 } 934 935 static void kvmhv_remove_nest_rmap(struct kvm *kvm, u64 n_rmap, 936 unsigned long hpa, unsigned long mask) 937 { 938 struct kvm_nested_guest *gp; 939 unsigned long gpa; 940 unsigned int shift, lpid; 941 pte_t *ptep; 942 943 gpa = n_rmap & RMAP_NESTED_GPA_MASK; 944 lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT; 945 gp = kvmhv_find_nested(kvm, lpid); 946 if (!gp) 947 return; 948 949 /* Find and invalidate the pte */ 950 ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift); 951 /* Don't spuriously invalidate ptes if the pfn has changed */ 952 if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) 953 kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid); 954 } 955 956 static void kvmhv_remove_nest_rmap_list(struct kvm *kvm, unsigned long *rmapp, 957 unsigned long hpa, unsigned long mask) 958 { 959 struct llist_node *entry = llist_del_all((struct llist_head *) rmapp); 960 struct rmap_nested *cursor; 961 unsigned long rmap; 962 963 for_each_nest_rmap_safe(cursor, entry, &rmap) { 964 kvmhv_remove_nest_rmap(kvm, rmap, hpa, mask); 965 kfree(cursor); 966 } 967 } 968 969 /* called with kvm->mmu_lock held */ 970 void kvmhv_remove_nest_rmap_range(struct kvm *kvm, 971 const struct kvm_memory_slot *memslot, 972 unsigned long gpa, unsigned long hpa, 973 unsigned long nbytes) 974 { 975 unsigned long gfn, end_gfn; 976 unsigned long addr_mask; 977 978 if (!memslot) 979 return; 980 gfn = (gpa >> PAGE_SHIFT) - memslot->base_gfn; 981 end_gfn = gfn + (nbytes >> PAGE_SHIFT); 982 983 addr_mask = PTE_RPN_MASK & ~(nbytes - 1); 984 hpa &= addr_mask; 985 986 for (; gfn < end_gfn; gfn++) { 987 unsigned long *rmap = &memslot->arch.rmap[gfn]; 988 kvmhv_remove_nest_rmap_list(kvm, rmap, hpa, addr_mask); 989 } 990 } 991 992 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free) 993 { 994 unsigned long page; 995 996 for (page = 0; page < free->npages; page++) { 997 unsigned long rmap, *rmapp = &free->arch.rmap[page]; 998 struct rmap_nested *cursor; 999 struct llist_node *entry; 1000 1001 entry = llist_del_all((struct llist_head *) rmapp); 1002 for_each_nest_rmap_safe(cursor, entry, &rmap) 1003 kfree(cursor); 1004 } 1005 } 1006 1007 static bool kvmhv_invalidate_shadow_pte(struct kvm_vcpu *vcpu, 1008 struct kvm_nested_guest *gp, 1009 long gpa, int *shift_ret) 1010 { 1011 struct kvm *kvm = vcpu->kvm; 1012 bool ret = false; 1013 pte_t *ptep; 1014 int shift; 1015 1016 spin_lock(&kvm->mmu_lock); 1017 ptep = find_kvm_nested_guest_pte(kvm, gp->l1_lpid, gpa, &shift); 1018 if (!shift) 1019 shift = PAGE_SHIFT; 1020 if (ptep && pte_present(*ptep)) { 1021 kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid); 1022 ret = true; 1023 } 1024 spin_unlock(&kvm->mmu_lock); 1025 1026 if (shift_ret) 1027 *shift_ret = shift; 1028 return ret; 1029 } 1030 1031 static inline int get_ric(unsigned int instr) 1032 { 1033 return (instr >> 18) & 0x3; 1034 } 1035 1036 static inline int get_prs(unsigned int instr) 1037 { 1038 return (instr >> 17) & 0x1; 1039 } 1040 1041 static inline int get_r(unsigned int instr) 1042 { 1043 return (instr >> 16) & 0x1; 1044 } 1045 1046 static inline int get_lpid(unsigned long r_val) 1047 { 1048 return r_val & 0xffffffff; 1049 } 1050 1051 static inline int get_is(unsigned long r_val) 1052 { 1053 return (r_val >> 10) & 0x3; 1054 } 1055 1056 static inline int get_ap(unsigned long r_val) 1057 { 1058 return (r_val >> 5) & 0x7; 1059 } 1060 1061 static inline long get_epn(unsigned long r_val) 1062 { 1063 return r_val >> 12; 1064 } 1065 1066 static int kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu *vcpu, int lpid, 1067 int ap, long epn) 1068 { 1069 struct kvm *kvm = vcpu->kvm; 1070 struct kvm_nested_guest *gp; 1071 long npages; 1072 int shift, shadow_shift; 1073 unsigned long addr; 1074 1075 shift = ap_to_shift(ap); 1076 addr = epn << 12; 1077 if (shift < 0) 1078 /* Invalid ap encoding */ 1079 return -EINVAL; 1080 1081 addr &= ~((1UL << shift) - 1); 1082 npages = 1UL << (shift - PAGE_SHIFT); 1083 1084 gp = kvmhv_get_nested(kvm, lpid, false); 1085 if (!gp) /* No such guest -> nothing to do */ 1086 return 0; 1087 mutex_lock(&gp->tlb_lock); 1088 1089 /* There may be more than one host page backing this single guest pte */ 1090 do { 1091 kvmhv_invalidate_shadow_pte(vcpu, gp, addr, &shadow_shift); 1092 1093 npages -= 1UL << (shadow_shift - PAGE_SHIFT); 1094 addr += 1UL << shadow_shift; 1095 } while (npages > 0); 1096 1097 mutex_unlock(&gp->tlb_lock); 1098 kvmhv_put_nested(gp); 1099 return 0; 1100 } 1101 1102 static void kvmhv_emulate_tlbie_lpid(struct kvm_vcpu *vcpu, 1103 struct kvm_nested_guest *gp, int ric) 1104 { 1105 struct kvm *kvm = vcpu->kvm; 1106 1107 mutex_lock(&gp->tlb_lock); 1108 switch (ric) { 1109 case 0: 1110 /* Invalidate TLB */ 1111 spin_lock(&kvm->mmu_lock); 1112 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, 1113 gp->shadow_lpid); 1114 kvmhv_flush_lpid(gp->shadow_lpid); 1115 spin_unlock(&kvm->mmu_lock); 1116 break; 1117 case 1: 1118 /* 1119 * Invalidate PWC 1120 * We don't cache this -> nothing to do 1121 */ 1122 break; 1123 case 2: 1124 /* Invalidate TLB, PWC and caching of partition table entries */ 1125 kvmhv_flush_nested(gp); 1126 break; 1127 default: 1128 break; 1129 } 1130 mutex_unlock(&gp->tlb_lock); 1131 } 1132 1133 static void kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu *vcpu, int ric) 1134 { 1135 struct kvm *kvm = vcpu->kvm; 1136 struct kvm_nested_guest *gp; 1137 int i; 1138 1139 spin_lock(&kvm->mmu_lock); 1140 for (i = 0; i <= kvm->arch.max_nested_lpid; i++) { 1141 gp = kvm->arch.nested_guests[i]; 1142 if (gp) { 1143 spin_unlock(&kvm->mmu_lock); 1144 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric); 1145 spin_lock(&kvm->mmu_lock); 1146 } 1147 } 1148 spin_unlock(&kvm->mmu_lock); 1149 } 1150 1151 static int kvmhv_emulate_priv_tlbie(struct kvm_vcpu *vcpu, unsigned int instr, 1152 unsigned long rsval, unsigned long rbval) 1153 { 1154 struct kvm *kvm = vcpu->kvm; 1155 struct kvm_nested_guest *gp; 1156 int r, ric, prs, is, ap; 1157 int lpid; 1158 long epn; 1159 int ret = 0; 1160 1161 ric = get_ric(instr); 1162 prs = get_prs(instr); 1163 r = get_r(instr); 1164 lpid = get_lpid(rsval); 1165 is = get_is(rbval); 1166 1167 /* 1168 * These cases are invalid and are not handled: 1169 * r != 1 -> Only radix supported 1170 * prs == 1 -> Not HV privileged 1171 * ric == 3 -> No cluster bombs for radix 1172 * is == 1 -> Partition scoped translations not associated with pid 1173 * (!is) && (ric == 1 || ric == 2) -> Not supported by ISA 1174 */ 1175 if ((!r) || (prs) || (ric == 3) || (is == 1) || 1176 ((!is) && (ric == 1 || ric == 2))) 1177 return -EINVAL; 1178 1179 switch (is) { 1180 case 0: 1181 /* 1182 * We know ric == 0 1183 * Invalidate TLB for a given target address 1184 */ 1185 epn = get_epn(rbval); 1186 ap = get_ap(rbval); 1187 ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, epn); 1188 break; 1189 case 2: 1190 /* Invalidate matching LPID */ 1191 gp = kvmhv_get_nested(kvm, lpid, false); 1192 if (gp) { 1193 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric); 1194 kvmhv_put_nested(gp); 1195 } 1196 break; 1197 case 3: 1198 /* Invalidate ALL LPIDs */ 1199 kvmhv_emulate_tlbie_all_lpid(vcpu, ric); 1200 break; 1201 default: 1202 ret = -EINVAL; 1203 break; 1204 } 1205 1206 return ret; 1207 } 1208 1209 /* 1210 * This handles the H_TLB_INVALIDATE hcall. 1211 * Parameters are (r4) tlbie instruction code, (r5) rS contents, 1212 * (r6) rB contents. 1213 */ 1214 long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu) 1215 { 1216 int ret; 1217 1218 ret = kvmhv_emulate_priv_tlbie(vcpu, kvmppc_get_gpr(vcpu, 4), 1219 kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6)); 1220 if (ret) 1221 return H_PARAMETER; 1222 return H_SUCCESS; 1223 } 1224 1225 static long do_tlb_invalidate_nested_all(struct kvm_vcpu *vcpu, 1226 unsigned long lpid, unsigned long ric) 1227 { 1228 struct kvm *kvm = vcpu->kvm; 1229 struct kvm_nested_guest *gp; 1230 1231 gp = kvmhv_get_nested(kvm, lpid, false); 1232 if (gp) { 1233 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric); 1234 kvmhv_put_nested(gp); 1235 } 1236 return H_SUCCESS; 1237 } 1238 1239 /* 1240 * Number of pages above which we invalidate the entire LPID rather than 1241 * flush individual pages. 1242 */ 1243 static unsigned long tlb_range_flush_page_ceiling __read_mostly = 33; 1244 1245 static long do_tlb_invalidate_nested_tlb(struct kvm_vcpu *vcpu, 1246 unsigned long lpid, 1247 unsigned long pg_sizes, 1248 unsigned long start, 1249 unsigned long end) 1250 { 1251 int ret = H_P4; 1252 unsigned long addr, nr_pages; 1253 struct mmu_psize_def *def; 1254 unsigned long psize, ap, page_size; 1255 bool flush_lpid; 1256 1257 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { 1258 def = &mmu_psize_defs[psize]; 1259 if (!(pg_sizes & def->h_rpt_pgsize)) 1260 continue; 1261 1262 nr_pages = (end - start) >> def->shift; 1263 flush_lpid = nr_pages > tlb_range_flush_page_ceiling; 1264 if (flush_lpid) 1265 return do_tlb_invalidate_nested_all(vcpu, lpid, 1266 RIC_FLUSH_TLB); 1267 addr = start; 1268 ap = mmu_get_ap(psize); 1269 page_size = 1UL << def->shift; 1270 do { 1271 ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, 1272 get_epn(addr)); 1273 if (ret) 1274 return H_P4; 1275 addr += page_size; 1276 } while (addr < end); 1277 } 1278 return ret; 1279 } 1280 1281 /* 1282 * Performs partition-scoped invalidations for nested guests 1283 * as part of H_RPT_INVALIDATE hcall. 1284 */ 1285 long do_h_rpt_invalidate_pat(struct kvm_vcpu *vcpu, unsigned long lpid, 1286 unsigned long type, unsigned long pg_sizes, 1287 unsigned long start, unsigned long end) 1288 { 1289 /* 1290 * If L2 lpid isn't valid, we need to return H_PARAMETER. 1291 * 1292 * However, nested KVM issues a L2 lpid flush call when creating 1293 * partition table entries for L2. This happens even before the 1294 * corresponding shadow lpid is created in HV which happens in 1295 * H_ENTER_NESTED call. Since we can't differentiate this case from 1296 * the invalid case, we ignore such flush requests and return success. 1297 */ 1298 if (!kvmhv_find_nested(vcpu->kvm, lpid)) 1299 return H_SUCCESS; 1300 1301 /* 1302 * A flush all request can be handled by a full lpid flush only. 1303 */ 1304 if ((type & H_RPTI_TYPE_NESTED_ALL) == H_RPTI_TYPE_NESTED_ALL) 1305 return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_ALL); 1306 1307 /* 1308 * We don't need to handle a PWC flush like process table here, 1309 * because intermediate partition scoped table in nested guest doesn't 1310 * really have PWC. Only level we have PWC is in L0 and for nested 1311 * invalidate at L0 we always do kvm_flush_lpid() which does 1312 * radix__flush_all_lpid(). For range invalidate at any level, we 1313 * are not removing the higher level page tables and hence there is 1314 * no PWC invalidate needed. 1315 * 1316 * if (type & H_RPTI_TYPE_PWC) { 1317 * ret = do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_PWC); 1318 * if (ret) 1319 * return H_P4; 1320 * } 1321 */ 1322 1323 if (start == 0 && end == -1) 1324 return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_TLB); 1325 1326 if (type & H_RPTI_TYPE_TLB) 1327 return do_tlb_invalidate_nested_tlb(vcpu, lpid, pg_sizes, 1328 start, end); 1329 return H_SUCCESS; 1330 } 1331 1332 /* Used to convert a nested guest real address to a L1 guest real address */ 1333 static int kvmhv_translate_addr_nested(struct kvm_vcpu *vcpu, 1334 struct kvm_nested_guest *gp, 1335 unsigned long n_gpa, unsigned long dsisr, 1336 struct kvmppc_pte *gpte_p) 1337 { 1338 u64 fault_addr, flags = dsisr & DSISR_ISSTORE; 1339 int ret; 1340 1341 ret = kvmppc_mmu_walk_radix_tree(vcpu, n_gpa, gpte_p, gp->l1_gr_to_hr, 1342 &fault_addr); 1343 1344 if (ret) { 1345 /* We didn't find a pte */ 1346 if (ret == -EINVAL) { 1347 /* Unsupported mmu config */ 1348 flags |= DSISR_UNSUPP_MMU; 1349 } else if (ret == -ENOENT) { 1350 /* No translation found */ 1351 flags |= DSISR_NOHPTE; 1352 } else if (ret == -EFAULT) { 1353 /* Couldn't access L1 real address */ 1354 flags |= DSISR_PRTABLE_FAULT; 1355 vcpu->arch.fault_gpa = fault_addr; 1356 } else { 1357 /* Unknown error */ 1358 return ret; 1359 } 1360 goto forward_to_l1; 1361 } else { 1362 /* We found a pte -> check permissions */ 1363 if (dsisr & DSISR_ISSTORE) { 1364 /* Can we write? */ 1365 if (!gpte_p->may_write) { 1366 flags |= DSISR_PROTFAULT; 1367 goto forward_to_l1; 1368 } 1369 } else if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) { 1370 /* Can we execute? */ 1371 if (!gpte_p->may_execute) { 1372 flags |= SRR1_ISI_N_G_OR_CIP; 1373 goto forward_to_l1; 1374 } 1375 } else { 1376 /* Can we read? */ 1377 if (!gpte_p->may_read && !gpte_p->may_write) { 1378 flags |= DSISR_PROTFAULT; 1379 goto forward_to_l1; 1380 } 1381 } 1382 } 1383 1384 return 0; 1385 1386 forward_to_l1: 1387 vcpu->arch.fault_dsisr = flags; 1388 if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) { 1389 vcpu->arch.shregs.msr &= SRR1_MSR_BITS; 1390 vcpu->arch.shregs.msr |= flags; 1391 } 1392 return RESUME_HOST; 1393 } 1394 1395 static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu, 1396 struct kvm_nested_guest *gp, 1397 unsigned long n_gpa, 1398 struct kvmppc_pte gpte, 1399 unsigned long dsisr) 1400 { 1401 struct kvm *kvm = vcpu->kvm; 1402 bool writing = !!(dsisr & DSISR_ISSTORE); 1403 u64 pgflags; 1404 long ret; 1405 1406 /* Are the rc bits set in the L1 partition scoped pte? */ 1407 pgflags = _PAGE_ACCESSED; 1408 if (writing) 1409 pgflags |= _PAGE_DIRTY; 1410 if (pgflags & ~gpte.rc) 1411 return RESUME_HOST; 1412 1413 spin_lock(&kvm->mmu_lock); 1414 /* Set the rc bit in the pte of our (L0) pgtable for the L1 guest */ 1415 ret = kvmppc_hv_handle_set_rc(kvm, false, writing, 1416 gpte.raddr, kvm->arch.lpid); 1417 if (!ret) { 1418 ret = -EINVAL; 1419 goto out_unlock; 1420 } 1421 1422 /* Set the rc bit in the pte of the shadow_pgtable for the nest guest */ 1423 ret = kvmppc_hv_handle_set_rc(kvm, true, writing, 1424 n_gpa, gp->l1_lpid); 1425 if (!ret) 1426 ret = -EINVAL; 1427 else 1428 ret = 0; 1429 1430 out_unlock: 1431 spin_unlock(&kvm->mmu_lock); 1432 return ret; 1433 } 1434 1435 static inline int kvmppc_radix_level_to_shift(int level) 1436 { 1437 switch (level) { 1438 case 2: 1439 return PUD_SHIFT; 1440 case 1: 1441 return PMD_SHIFT; 1442 default: 1443 return PAGE_SHIFT; 1444 } 1445 } 1446 1447 static inline int kvmppc_radix_shift_to_level(int shift) 1448 { 1449 if (shift == PUD_SHIFT) 1450 return 2; 1451 if (shift == PMD_SHIFT) 1452 return 1; 1453 if (shift == PAGE_SHIFT) 1454 return 0; 1455 WARN_ON_ONCE(1); 1456 return 0; 1457 } 1458 1459 /* called with gp->tlb_lock held */ 1460 static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu, 1461 struct kvm_nested_guest *gp) 1462 { 1463 struct kvm *kvm = vcpu->kvm; 1464 struct kvm_memory_slot *memslot; 1465 struct rmap_nested *n_rmap; 1466 struct kvmppc_pte gpte; 1467 pte_t pte, *pte_p; 1468 unsigned long mmu_seq; 1469 unsigned long dsisr = vcpu->arch.fault_dsisr; 1470 unsigned long ea = vcpu->arch.fault_dar; 1471 unsigned long *rmapp; 1472 unsigned long n_gpa, gpa, gfn, perm = 0UL; 1473 unsigned int shift, l1_shift, level; 1474 bool writing = !!(dsisr & DSISR_ISSTORE); 1475 bool kvm_ro = false; 1476 long int ret; 1477 1478 if (!gp->l1_gr_to_hr) { 1479 kvmhv_update_ptbl_cache(gp); 1480 if (!gp->l1_gr_to_hr) 1481 return RESUME_HOST; 1482 } 1483 1484 /* Convert the nested guest real address into a L1 guest real address */ 1485 1486 n_gpa = vcpu->arch.fault_gpa & ~0xF000000000000FFFULL; 1487 if (!(dsisr & DSISR_PRTABLE_FAULT)) 1488 n_gpa |= ea & 0xFFF; 1489 ret = kvmhv_translate_addr_nested(vcpu, gp, n_gpa, dsisr, &gpte); 1490 1491 /* 1492 * If the hardware found a translation but we don't now have a usable 1493 * translation in the l1 partition-scoped tree, remove the shadow pte 1494 * and let the guest retry. 1495 */ 1496 if (ret == RESUME_HOST && 1497 (dsisr & (DSISR_PROTFAULT | DSISR_BADACCESS | DSISR_NOEXEC_OR_G | 1498 DSISR_BAD_COPYPASTE))) 1499 goto inval; 1500 if (ret) 1501 return ret; 1502 1503 /* Failed to set the reference/change bits */ 1504 if (dsisr & DSISR_SET_RC) { 1505 ret = kvmhv_handle_nested_set_rc(vcpu, gp, n_gpa, gpte, dsisr); 1506 if (ret == RESUME_HOST) 1507 return ret; 1508 if (ret) 1509 goto inval; 1510 dsisr &= ~DSISR_SET_RC; 1511 if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE | 1512 DSISR_PROTFAULT))) 1513 return RESUME_GUEST; 1514 } 1515 1516 /* 1517 * We took an HISI or HDSI while we were running a nested guest which 1518 * means we have no partition scoped translation for that. This means 1519 * we need to insert a pte for the mapping into our shadow_pgtable. 1520 */ 1521 1522 l1_shift = gpte.page_shift; 1523 if (l1_shift < PAGE_SHIFT) { 1524 /* We don't support l1 using a page size smaller than our own */ 1525 pr_err("KVM: L1 guest page shift (%d) less than our own (%d)\n", 1526 l1_shift, PAGE_SHIFT); 1527 return -EINVAL; 1528 } 1529 gpa = gpte.raddr; 1530 gfn = gpa >> PAGE_SHIFT; 1531 1532 /* 1. Get the corresponding host memslot */ 1533 1534 memslot = gfn_to_memslot(kvm, gfn); 1535 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) { 1536 if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS)) { 1537 /* unusual error -> reflect to the guest as a DSI */ 1538 kvmppc_core_queue_data_storage(vcpu, ea, dsisr); 1539 return RESUME_GUEST; 1540 } 1541 1542 /* passthrough of emulated MMIO case */ 1543 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing); 1544 } 1545 if (memslot->flags & KVM_MEM_READONLY) { 1546 if (writing) { 1547 /* Give the guest a DSI */ 1548 kvmppc_core_queue_data_storage(vcpu, ea, 1549 DSISR_ISSTORE | DSISR_PROTFAULT); 1550 return RESUME_GUEST; 1551 } 1552 kvm_ro = true; 1553 } 1554 1555 /* 2. Find the host pte for this L1 guest real address */ 1556 1557 /* Used to check for invalidations in progress */ 1558 mmu_seq = kvm->mmu_notifier_seq; 1559 smp_rmb(); 1560 1561 /* See if can find translation in our partition scoped tables for L1 */ 1562 pte = __pte(0); 1563 spin_lock(&kvm->mmu_lock); 1564 pte_p = find_kvm_secondary_pte(kvm, gpa, &shift); 1565 if (!shift) 1566 shift = PAGE_SHIFT; 1567 if (pte_p) 1568 pte = *pte_p; 1569 spin_unlock(&kvm->mmu_lock); 1570 1571 if (!pte_present(pte) || (writing && !(pte_val(pte) & _PAGE_WRITE))) { 1572 /* No suitable pte found -> try to insert a mapping */ 1573 ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot, 1574 writing, kvm_ro, &pte, &level); 1575 if (ret == -EAGAIN) 1576 return RESUME_GUEST; 1577 else if (ret) 1578 return ret; 1579 shift = kvmppc_radix_level_to_shift(level); 1580 } 1581 /* Align gfn to the start of the page */ 1582 gfn = (gpa & ~((1UL << shift) - 1)) >> PAGE_SHIFT; 1583 1584 /* 3. Compute the pte we need to insert for nest_gpa -> host r_addr */ 1585 1586 /* The permissions is the combination of the host and l1 guest ptes */ 1587 perm |= gpte.may_read ? 0UL : _PAGE_READ; 1588 perm |= gpte.may_write ? 0UL : _PAGE_WRITE; 1589 perm |= gpte.may_execute ? 0UL : _PAGE_EXEC; 1590 /* Only set accessed/dirty (rc) bits if set in host and l1 guest ptes */ 1591 perm |= (gpte.rc & _PAGE_ACCESSED) ? 0UL : _PAGE_ACCESSED; 1592 perm |= ((gpte.rc & _PAGE_DIRTY) && writing) ? 0UL : _PAGE_DIRTY; 1593 pte = __pte(pte_val(pte) & ~perm); 1594 1595 /* What size pte can we insert? */ 1596 if (shift > l1_shift) { 1597 u64 mask; 1598 unsigned int actual_shift = PAGE_SHIFT; 1599 if (PMD_SHIFT < l1_shift) 1600 actual_shift = PMD_SHIFT; 1601 mask = (1UL << shift) - (1UL << actual_shift); 1602 pte = __pte(pte_val(pte) | (gpa & mask)); 1603 shift = actual_shift; 1604 } 1605 level = kvmppc_radix_shift_to_level(shift); 1606 n_gpa &= ~((1UL << shift) - 1); 1607 1608 /* 4. Insert the pte into our shadow_pgtable */ 1609 1610 n_rmap = kzalloc(sizeof(*n_rmap), GFP_KERNEL); 1611 if (!n_rmap) 1612 return RESUME_GUEST; /* Let the guest try again */ 1613 n_rmap->rmap = (n_gpa & RMAP_NESTED_GPA_MASK) | 1614 (((unsigned long) gp->l1_lpid) << RMAP_NESTED_LPID_SHIFT); 1615 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 1616 ret = kvmppc_create_pte(kvm, gp->shadow_pgtable, pte, n_gpa, level, 1617 mmu_seq, gp->shadow_lpid, rmapp, &n_rmap); 1618 kfree(n_rmap); 1619 if (ret == -EAGAIN) 1620 ret = RESUME_GUEST; /* Let the guest try again */ 1621 1622 return ret; 1623 1624 inval: 1625 kvmhv_invalidate_shadow_pte(vcpu, gp, n_gpa, NULL); 1626 return RESUME_GUEST; 1627 } 1628 1629 long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu) 1630 { 1631 struct kvm_nested_guest *gp = vcpu->arch.nested; 1632 long int ret; 1633 1634 mutex_lock(&gp->tlb_lock); 1635 ret = __kvmhv_nested_page_fault(vcpu, gp); 1636 mutex_unlock(&gp->tlb_lock); 1637 return ret; 1638 } 1639 1640 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid) 1641 { 1642 int ret = -1; 1643 1644 spin_lock(&kvm->mmu_lock); 1645 while (++lpid <= kvm->arch.max_nested_lpid) { 1646 if (kvm->arch.nested_guests[lpid]) { 1647 ret = lpid; 1648 break; 1649 } 1650 } 1651 spin_unlock(&kvm->mmu_lock); 1652 return ret; 1653 } 1654