xref: /linux/arch/x86/kernel/smpboot.c (revision 134a1282)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *	x86 SMP booting functions
4  *
5  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *	Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *	Much of the core SMP work is based on previous work by Thomas Radke, to
10  *	whom a great many thanks are extended.
11  *
12  *	Thanks to Intel for making available several different Pentium,
13  *	Pentium Pro and Pentium-II/Xeon MP machines.
14  *	Original development of Linux SMP code supported by Caldera.
15  *
16  *	Fixes
17  *		Felix Koop	:	NR_CPUS used properly
18  *		Jose Renau	:	Handle single CPU case.
19  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
20  *		Greg Wright	:	Fix for kernel stacks panic.
21  *		Erich Boleyn	:	MP v1.4 and additional changes.
22  *	Matthias Sattler	:	Changes for 2.1 kernel map.
23  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
24  *	Michael Chastain	:	Change trampoline.S to gnu as.
25  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
26  *		Ingo Molnar	:	Added APIC timers, based on code
27  *					from Jose Renau
28  *		Ingo Molnar	:	various cleanups and rewrites
29  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
30  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
31  *	Andi Kleen		:	Changed for SMP boot into long mode.
32  *		Martin J. Bligh	: 	Added support for multi-quad systems
33  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
34  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *	Ashok Raj		: 	CPU hotplug support
37  *	Glauber Costa		:	i386 and x86_64 integration
38  */
39 
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/numa.h>
57 #include <linux/pgtable.h>
58 #include <linux/overflow.h>
59 #include <linux/stackprotector.h>
60 
61 #include <asm/acpi.h>
62 #include <asm/cacheinfo.h>
63 #include <asm/desc.h>
64 #include <asm/nmi.h>
65 #include <asm/irq.h>
66 #include <asm/realmode.h>
67 #include <asm/cpu.h>
68 #include <asm/numa.h>
69 #include <asm/tlbflush.h>
70 #include <asm/mtrr.h>
71 #include <asm/mwait.h>
72 #include <asm/apic.h>
73 #include <asm/io_apic.h>
74 #include <asm/fpu/api.h>
75 #include <asm/setup.h>
76 #include <asm/uv/uv.h>
77 #include <linux/mc146818rtc.h>
78 #include <asm/i8259.h>
79 #include <asm/misc.h>
80 #include <asm/qspinlock.h>
81 #include <asm/intel-family.h>
82 #include <asm/cpu_device_id.h>
83 #include <asm/spec-ctrl.h>
84 #include <asm/hw_irq.h>
85 #include <asm/stackprotector.h>
86 #include <asm/sev.h>
87 
88 /* representing HT siblings of each logical CPU */
89 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
90 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
91 
92 /* representing HT and core siblings of each logical CPU */
93 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
94 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
95 
96 /* representing HT, core, and die siblings of each logical CPU */
97 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
98 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
99 
100 /* Per CPU bogomips and other parameters */
101 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
102 EXPORT_PER_CPU_SYMBOL(cpu_info);
103 
104 /* Logical package management. We might want to allocate that dynamically */
105 unsigned int __max_logical_packages __read_mostly;
106 EXPORT_SYMBOL(__max_logical_packages);
107 static unsigned int logical_packages __read_mostly;
108 static unsigned int logical_die __read_mostly;
109 
110 /* Maximum number of SMT threads on any online core */
111 int __read_mostly __max_smt_threads = 1;
112 
113 /* Flag to indicate if a complete sched domain rebuild is required */
114 bool x86_topology_update;
115 
116 int arch_update_cpu_topology(void)
117 {
118 	int retval = x86_topology_update;
119 
120 	x86_topology_update = false;
121 	return retval;
122 }
123 
124 
125 static unsigned int smpboot_warm_reset_vector_count;
126 
127 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
128 {
129 	unsigned long flags;
130 
131 	spin_lock_irqsave(&rtc_lock, flags);
132 	if (!smpboot_warm_reset_vector_count++) {
133 		CMOS_WRITE(0xa, 0xf);
134 		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4;
135 		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf;
136 	}
137 	spin_unlock_irqrestore(&rtc_lock, flags);
138 }
139 
140 static inline void smpboot_restore_warm_reset_vector(void)
141 {
142 	unsigned long flags;
143 
144 	/*
145 	 * Paranoid:  Set warm reset code and vector here back
146 	 * to default values.
147 	 */
148 	spin_lock_irqsave(&rtc_lock, flags);
149 	if (!--smpboot_warm_reset_vector_count) {
150 		CMOS_WRITE(0, 0xf);
151 		*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
152 	}
153 	spin_unlock_irqrestore(&rtc_lock, flags);
154 
155 }
156 
157 /*
158  * Report back to the Boot Processor during boot time or to the caller processor
159  * during CPU online.
160  */
161 static void smp_callin(void)
162 {
163 	int cpuid;
164 
165 	/*
166 	 * If waken up by an INIT in an 82489DX configuration
167 	 * cpu_callout_mask guarantees we don't get here before
168 	 * an INIT_deassert IPI reaches our local APIC, so it is
169 	 * now safe to touch our local APIC.
170 	 */
171 	cpuid = smp_processor_id();
172 
173 	/*
174 	 * the boot CPU has finished the init stage and is spinning
175 	 * on callin_map until we finish. We are free to set up this
176 	 * CPU, first the APIC. (this is probably redundant on most
177 	 * boards)
178 	 */
179 	apic_ap_setup();
180 
181 	/* Save our processor parameters. */
182 	smp_store_cpu_info(cpuid);
183 
184 	/*
185 	 * The topology information must be up to date before
186 	 * notify_cpu_starting().
187 	 */
188 	set_cpu_sibling_map(raw_smp_processor_id());
189 
190 	ap_init_aperfmperf();
191 
192 	pr_debug("Stack at about %p\n", &cpuid);
193 
194 	wmb();
195 
196 	notify_cpu_starting(cpuid);
197 
198 	/*
199 	 * Allow the master to continue.
200 	 */
201 	cpumask_set_cpu(cpuid, cpu_callin_mask);
202 }
203 
204 static void ap_calibrate_delay(void)
205 {
206 	/*
207 	 * Calibrate the delay loop and update loops_per_jiffy in cpu_data.
208 	 * smp_store_cpu_info() stored a value that is close but not as
209 	 * accurate as the value just calculated.
210 	 *
211 	 * As this is invoked after the TSC synchronization check,
212 	 * calibrate_delay_is_known() will skip the calibration routine
213 	 * when TSC is synchronized across sockets.
214 	 */
215 	calibrate_delay();
216 	cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy;
217 }
218 
219 static int cpu0_logical_apicid;
220 static int enable_start_cpu0;
221 
222 /*
223  * Activate a secondary processor.
224  */
225 static void notrace start_secondary(void *unused)
226 {
227 	/*
228 	 * Don't put *anything* except direct CPU state initialization
229 	 * before cpu_init(), SMP booting is too fragile that we want to
230 	 * limit the things done here to the most necessary things.
231 	 */
232 	cr4_init();
233 
234 #ifdef CONFIG_X86_32
235 	/* switch away from the initial page table */
236 	load_cr3(swapper_pg_dir);
237 	__flush_tlb_all();
238 #endif
239 	cpu_init_secondary();
240 	rcu_cpu_starting(raw_smp_processor_id());
241 	x86_cpuinit.early_percpu_clock_init();
242 	smp_callin();
243 
244 	enable_start_cpu0 = 0;
245 
246 	/* otherwise gcc will move up smp_processor_id before the cpu_init */
247 	barrier();
248 	/* Check TSC synchronization with the control CPU: */
249 	check_tsc_sync_target();
250 
251 	/*
252 	 * Calibrate the delay loop after the TSC synchronization check.
253 	 * This allows to skip the calibration when TSC is synchronized
254 	 * across sockets.
255 	 */
256 	ap_calibrate_delay();
257 
258 	speculative_store_bypass_ht_init();
259 
260 	/*
261 	 * Lock vector_lock, set CPU online and bring the vector
262 	 * allocator online. Online must be set with vector_lock held
263 	 * to prevent a concurrent irq setup/teardown from seeing a
264 	 * half valid vector space.
265 	 */
266 	lock_vector_lock();
267 	set_cpu_online(smp_processor_id(), true);
268 	lapic_online();
269 	unlock_vector_lock();
270 	cpu_set_state_online(smp_processor_id());
271 	x86_platform.nmi_init();
272 
273 	/* enable local interrupts */
274 	local_irq_enable();
275 
276 	x86_cpuinit.setup_percpu_clockev();
277 
278 	wmb();
279 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
280 }
281 
282 /**
283  * topology_is_primary_thread - Check whether CPU is the primary SMT thread
284  * @cpu:	CPU to check
285  */
286 bool topology_is_primary_thread(unsigned int cpu)
287 {
288 	return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
289 }
290 
291 /**
292  * topology_smt_supported - Check whether SMT is supported by the CPUs
293  */
294 bool topology_smt_supported(void)
295 {
296 	return smp_num_siblings > 1;
297 }
298 
299 /**
300  * topology_phys_to_logical_pkg - Map a physical package id to a logical
301  * @phys_pkg:	The physical package id to map
302  *
303  * Returns logical package id or -1 if not found
304  */
305 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
306 {
307 	int cpu;
308 
309 	for_each_possible_cpu(cpu) {
310 		struct cpuinfo_x86 *c = &cpu_data(cpu);
311 
312 		if (c->initialized && c->phys_proc_id == phys_pkg)
313 			return c->logical_proc_id;
314 	}
315 	return -1;
316 }
317 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
318 
319 /**
320  * topology_phys_to_logical_die - Map a physical die id to logical
321  * @die_id:	The physical die id to map
322  * @cur_cpu:	The CPU for which the mapping is done
323  *
324  * Returns logical die id or -1 if not found
325  */
326 static int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
327 {
328 	int cpu, proc_id = cpu_data(cur_cpu).phys_proc_id;
329 
330 	for_each_possible_cpu(cpu) {
331 		struct cpuinfo_x86 *c = &cpu_data(cpu);
332 
333 		if (c->initialized && c->cpu_die_id == die_id &&
334 		    c->phys_proc_id == proc_id)
335 			return c->logical_die_id;
336 	}
337 	return -1;
338 }
339 
340 /**
341  * topology_update_package_map - Update the physical to logical package map
342  * @pkg:	The physical package id as retrieved via CPUID
343  * @cpu:	The cpu for which this is updated
344  */
345 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
346 {
347 	int new;
348 
349 	/* Already available somewhere? */
350 	new = topology_phys_to_logical_pkg(pkg);
351 	if (new >= 0)
352 		goto found;
353 
354 	new = logical_packages++;
355 	if (new != pkg) {
356 		pr_info("CPU %u Converting physical %u to logical package %u\n",
357 			cpu, pkg, new);
358 	}
359 found:
360 	cpu_data(cpu).logical_proc_id = new;
361 	return 0;
362 }
363 /**
364  * topology_update_die_map - Update the physical to logical die map
365  * @die:	The die id as retrieved via CPUID
366  * @cpu:	The cpu for which this is updated
367  */
368 int topology_update_die_map(unsigned int die, unsigned int cpu)
369 {
370 	int new;
371 
372 	/* Already available somewhere? */
373 	new = topology_phys_to_logical_die(die, cpu);
374 	if (new >= 0)
375 		goto found;
376 
377 	new = logical_die++;
378 	if (new != die) {
379 		pr_info("CPU %u Converting physical %u to logical die %u\n",
380 			cpu, die, new);
381 	}
382 found:
383 	cpu_data(cpu).logical_die_id = new;
384 	return 0;
385 }
386 
387 void __init smp_store_boot_cpu_info(void)
388 {
389 	int id = 0; /* CPU 0 */
390 	struct cpuinfo_x86 *c = &cpu_data(id);
391 
392 	*c = boot_cpu_data;
393 	c->cpu_index = id;
394 	topology_update_package_map(c->phys_proc_id, id);
395 	topology_update_die_map(c->cpu_die_id, id);
396 	c->initialized = true;
397 }
398 
399 /*
400  * The bootstrap kernel entry code has set these up. Save them for
401  * a given CPU
402  */
403 void smp_store_cpu_info(int id)
404 {
405 	struct cpuinfo_x86 *c = &cpu_data(id);
406 
407 	/* Copy boot_cpu_data only on the first bringup */
408 	if (!c->initialized)
409 		*c = boot_cpu_data;
410 	c->cpu_index = id;
411 	/*
412 	 * During boot time, CPU0 has this setup already. Save the info when
413 	 * bringing up AP or offlined CPU0.
414 	 */
415 	identify_secondary_cpu(c);
416 	c->initialized = true;
417 }
418 
419 static bool
420 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
421 {
422 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
423 
424 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
425 }
426 
427 static bool
428 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
429 {
430 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
431 
432 	return !WARN_ONCE(!topology_same_node(c, o),
433 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
434 		"[node: %d != %d]. Ignoring dependency.\n",
435 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
436 }
437 
438 #define link_mask(mfunc, c1, c2)					\
439 do {									\
440 	cpumask_set_cpu((c1), mfunc(c2));				\
441 	cpumask_set_cpu((c2), mfunc(c1));				\
442 } while (0)
443 
444 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
445 {
446 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
447 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
448 
449 		if (c->phys_proc_id == o->phys_proc_id &&
450 		    c->cpu_die_id == o->cpu_die_id &&
451 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
452 			if (c->cpu_core_id == o->cpu_core_id)
453 				return topology_sane(c, o, "smt");
454 
455 			if ((c->cu_id != 0xff) &&
456 			    (o->cu_id != 0xff) &&
457 			    (c->cu_id == o->cu_id))
458 				return topology_sane(c, o, "smt");
459 		}
460 
461 	} else if (c->phys_proc_id == o->phys_proc_id &&
462 		   c->cpu_die_id == o->cpu_die_id &&
463 		   c->cpu_core_id == o->cpu_core_id) {
464 		return topology_sane(c, o, "smt");
465 	}
466 
467 	return false;
468 }
469 
470 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
471 {
472 	if (c->phys_proc_id == o->phys_proc_id &&
473 	    c->cpu_die_id == o->cpu_die_id)
474 		return true;
475 	return false;
476 }
477 
478 static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
479 {
480 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
481 
482 	/* If the arch didn't set up l2c_id, fall back to SMT */
483 	if (per_cpu(cpu_l2c_id, cpu1) == BAD_APICID)
484 		return match_smt(c, o);
485 
486 	/* Do not match if L2 cache id does not match: */
487 	if (per_cpu(cpu_l2c_id, cpu1) != per_cpu(cpu_l2c_id, cpu2))
488 		return false;
489 
490 	return topology_sane(c, o, "l2c");
491 }
492 
493 /*
494  * Unlike the other levels, we do not enforce keeping a
495  * multicore group inside a NUMA node.  If this happens, we will
496  * discard the MC level of the topology later.
497  */
498 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
499 {
500 	if (c->phys_proc_id == o->phys_proc_id)
501 		return true;
502 	return false;
503 }
504 
505 /*
506  * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
507  *
508  * Any Intel CPU that has multiple nodes per package and does not
509  * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
510  *
511  * When in SNC mode, these CPUs enumerate an LLC that is shared
512  * by multiple NUMA nodes. The LLC is shared for off-package data
513  * access but private to the NUMA node (half of the package) for
514  * on-package access. CPUID (the source of the information about
515  * the LLC) can only enumerate the cache as shared or unshared,
516  * but not this particular configuration.
517  */
518 
519 static const struct x86_cpu_id intel_cod_cpu[] = {
520 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0),	/* COD */
521 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0),	/* COD */
522 	X86_MATCH_INTEL_FAM6_MODEL(ANY, 1),		/* SNC */
523 	{}
524 };
525 
526 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
527 {
528 	const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
529 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
530 	bool intel_snc = id && id->driver_data;
531 
532 	/* Do not match if we do not have a valid APICID for cpu: */
533 	if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
534 		return false;
535 
536 	/* Do not match if LLC id does not match: */
537 	if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
538 		return false;
539 
540 	/*
541 	 * Allow the SNC topology without warning. Return of false
542 	 * means 'c' does not share the LLC of 'o'. This will be
543 	 * reflected to userspace.
544 	 */
545 	if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
546 		return false;
547 
548 	return topology_sane(c, o, "llc");
549 }
550 
551 
552 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_CLUSTER) || defined(CONFIG_SCHED_MC)
553 static inline int x86_sched_itmt_flags(void)
554 {
555 	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
556 }
557 
558 #ifdef CONFIG_SCHED_MC
559 static int x86_core_flags(void)
560 {
561 	return cpu_core_flags() | x86_sched_itmt_flags();
562 }
563 #endif
564 #ifdef CONFIG_SCHED_SMT
565 static int x86_smt_flags(void)
566 {
567 	return cpu_smt_flags() | x86_sched_itmt_flags();
568 }
569 #endif
570 #ifdef CONFIG_SCHED_CLUSTER
571 static int x86_cluster_flags(void)
572 {
573 	return cpu_cluster_flags() | x86_sched_itmt_flags();
574 }
575 #endif
576 #endif
577 
578 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
579 #ifdef CONFIG_SCHED_SMT
580 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
581 #endif
582 #ifdef CONFIG_SCHED_CLUSTER
583 	{ cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS) },
584 #endif
585 #ifdef CONFIG_SCHED_MC
586 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
587 #endif
588 	{ NULL, },
589 };
590 
591 static struct sched_domain_topology_level x86_hybrid_topology[] = {
592 #ifdef CONFIG_SCHED_SMT
593 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
594 #endif
595 #ifdef CONFIG_SCHED_MC
596 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
597 #endif
598 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
599 	{ NULL, },
600 };
601 
602 static struct sched_domain_topology_level x86_topology[] = {
603 #ifdef CONFIG_SCHED_SMT
604 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
605 #endif
606 #ifdef CONFIG_SCHED_CLUSTER
607 	{ cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS) },
608 #endif
609 #ifdef CONFIG_SCHED_MC
610 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
611 #endif
612 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
613 	{ NULL, },
614 };
615 
616 /*
617  * Set if a package/die has multiple NUMA nodes inside.
618  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
619  * Sub-NUMA Clustering have this.
620  */
621 static bool x86_has_numa_in_package;
622 
623 void set_cpu_sibling_map(int cpu)
624 {
625 	bool has_smt = smp_num_siblings > 1;
626 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
627 	struct cpuinfo_x86 *c = &cpu_data(cpu);
628 	struct cpuinfo_x86 *o;
629 	int i, threads;
630 
631 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
632 
633 	if (!has_mp) {
634 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
635 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
636 		cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
637 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
638 		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
639 		c->booted_cores = 1;
640 		return;
641 	}
642 
643 	for_each_cpu(i, cpu_sibling_setup_mask) {
644 		o = &cpu_data(i);
645 
646 		if (match_pkg(c, o) && !topology_same_node(c, o))
647 			x86_has_numa_in_package = true;
648 
649 		if ((i == cpu) || (has_smt && match_smt(c, o)))
650 			link_mask(topology_sibling_cpumask, cpu, i);
651 
652 		if ((i == cpu) || (has_mp && match_llc(c, o)))
653 			link_mask(cpu_llc_shared_mask, cpu, i);
654 
655 		if ((i == cpu) || (has_mp && match_l2c(c, o)))
656 			link_mask(cpu_l2c_shared_mask, cpu, i);
657 
658 		if ((i == cpu) || (has_mp && match_die(c, o)))
659 			link_mask(topology_die_cpumask, cpu, i);
660 	}
661 
662 	threads = cpumask_weight(topology_sibling_cpumask(cpu));
663 	if (threads > __max_smt_threads)
664 		__max_smt_threads = threads;
665 
666 	for_each_cpu(i, topology_sibling_cpumask(cpu))
667 		cpu_data(i).smt_active = threads > 1;
668 
669 	/*
670 	 * This needs a separate iteration over the cpus because we rely on all
671 	 * topology_sibling_cpumask links to be set-up.
672 	 */
673 	for_each_cpu(i, cpu_sibling_setup_mask) {
674 		o = &cpu_data(i);
675 
676 		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
677 			link_mask(topology_core_cpumask, cpu, i);
678 
679 			/*
680 			 *  Does this new cpu bringup a new core?
681 			 */
682 			if (threads == 1) {
683 				/*
684 				 * for each core in package, increment
685 				 * the booted_cores for this new cpu
686 				 */
687 				if (cpumask_first(
688 				    topology_sibling_cpumask(i)) == i)
689 					c->booted_cores++;
690 				/*
691 				 * increment the core count for all
692 				 * the other cpus in this package
693 				 */
694 				if (i != cpu)
695 					cpu_data(i).booted_cores++;
696 			} else if (i != cpu && !c->booted_cores)
697 				c->booted_cores = cpu_data(i).booted_cores;
698 		}
699 	}
700 }
701 
702 /* maps the cpu to the sched domain representing multi-core */
703 const struct cpumask *cpu_coregroup_mask(int cpu)
704 {
705 	return cpu_llc_shared_mask(cpu);
706 }
707 
708 const struct cpumask *cpu_clustergroup_mask(int cpu)
709 {
710 	return cpu_l2c_shared_mask(cpu);
711 }
712 
713 static void impress_friends(void)
714 {
715 	int cpu;
716 	unsigned long bogosum = 0;
717 	/*
718 	 * Allow the user to impress friends.
719 	 */
720 	pr_debug("Before bogomips\n");
721 	for_each_possible_cpu(cpu)
722 		if (cpumask_test_cpu(cpu, cpu_callout_mask))
723 			bogosum += cpu_data(cpu).loops_per_jiffy;
724 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
725 		num_online_cpus(),
726 		bogosum/(500000/HZ),
727 		(bogosum/(5000/HZ))%100);
728 
729 	pr_debug("Before bogocount - setting activated=1\n");
730 }
731 
732 void __inquire_remote_apic(int apicid)
733 {
734 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
735 	const char * const names[] = { "ID", "VERSION", "SPIV" };
736 	int timeout;
737 	u32 status;
738 
739 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
740 
741 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
742 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
743 
744 		/*
745 		 * Wait for idle.
746 		 */
747 		status = safe_apic_wait_icr_idle();
748 		if (status)
749 			pr_cont("a previous APIC delivery may have failed\n");
750 
751 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
752 
753 		timeout = 0;
754 		do {
755 			udelay(100);
756 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
757 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
758 
759 		switch (status) {
760 		case APIC_ICR_RR_VALID:
761 			status = apic_read(APIC_RRR);
762 			pr_cont("%08x\n", status);
763 			break;
764 		default:
765 			pr_cont("failed\n");
766 		}
767 	}
768 }
769 
770 /*
771  * The Multiprocessor Specification 1.4 (1997) example code suggests
772  * that there should be a 10ms delay between the BSP asserting INIT
773  * and de-asserting INIT, when starting a remote processor.
774  * But that slows boot and resume on modern processors, which include
775  * many cores and don't require that delay.
776  *
777  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
778  * Modern processor families are quirked to remove the delay entirely.
779  */
780 #define UDELAY_10MS_DEFAULT 10000
781 
782 static unsigned int init_udelay = UINT_MAX;
783 
784 static int __init cpu_init_udelay(char *str)
785 {
786 	get_option(&str, &init_udelay);
787 
788 	return 0;
789 }
790 early_param("cpu_init_udelay", cpu_init_udelay);
791 
792 static void __init smp_quirk_init_udelay(void)
793 {
794 	/* if cmdline changed it from default, leave it alone */
795 	if (init_udelay != UINT_MAX)
796 		return;
797 
798 	/* if modern processor, use no delay */
799 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
800 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
801 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
802 		init_udelay = 0;
803 		return;
804 	}
805 	/* else, use legacy delay */
806 	init_udelay = UDELAY_10MS_DEFAULT;
807 }
808 
809 /*
810  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
811  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
812  * won't ... remember to clear down the APIC, etc later.
813  */
814 int
815 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
816 {
817 	u32 dm = apic->dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
818 	unsigned long send_status, accept_status = 0;
819 	int maxlvt;
820 
821 	/* Target chip */
822 	/* Boot on the stack */
823 	/* Kick the second */
824 	apic_icr_write(APIC_DM_NMI | dm, apicid);
825 
826 	pr_debug("Waiting for send to finish...\n");
827 	send_status = safe_apic_wait_icr_idle();
828 
829 	/*
830 	 * Give the other CPU some time to accept the IPI.
831 	 */
832 	udelay(200);
833 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
834 		maxlvt = lapic_get_maxlvt();
835 		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
836 			apic_write(APIC_ESR, 0);
837 		accept_status = (apic_read(APIC_ESR) & 0xEF);
838 	}
839 	pr_debug("NMI sent\n");
840 
841 	if (send_status)
842 		pr_err("APIC never delivered???\n");
843 	if (accept_status)
844 		pr_err("APIC delivery error (%lx)\n", accept_status);
845 
846 	return (send_status | accept_status);
847 }
848 
849 static int
850 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
851 {
852 	unsigned long send_status = 0, accept_status = 0;
853 	int maxlvt, num_starts, j;
854 
855 	maxlvt = lapic_get_maxlvt();
856 
857 	/*
858 	 * Be paranoid about clearing APIC errors.
859 	 */
860 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
861 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
862 			apic_write(APIC_ESR, 0);
863 		apic_read(APIC_ESR);
864 	}
865 
866 	pr_debug("Asserting INIT\n");
867 
868 	/*
869 	 * Turn INIT on target chip
870 	 */
871 	/*
872 	 * Send IPI
873 	 */
874 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
875 		       phys_apicid);
876 
877 	pr_debug("Waiting for send to finish...\n");
878 	send_status = safe_apic_wait_icr_idle();
879 
880 	udelay(init_udelay);
881 
882 	pr_debug("Deasserting INIT\n");
883 
884 	/* Target chip */
885 	/* Send IPI */
886 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
887 
888 	pr_debug("Waiting for send to finish...\n");
889 	send_status = safe_apic_wait_icr_idle();
890 
891 	mb();
892 
893 	/*
894 	 * Should we send STARTUP IPIs ?
895 	 *
896 	 * Determine this based on the APIC version.
897 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
898 	 */
899 	if (APIC_INTEGRATED(boot_cpu_apic_version))
900 		num_starts = 2;
901 	else
902 		num_starts = 0;
903 
904 	/*
905 	 * Run STARTUP IPI loop.
906 	 */
907 	pr_debug("#startup loops: %d\n", num_starts);
908 
909 	for (j = 1; j <= num_starts; j++) {
910 		pr_debug("Sending STARTUP #%d\n", j);
911 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
912 			apic_write(APIC_ESR, 0);
913 		apic_read(APIC_ESR);
914 		pr_debug("After apic_write\n");
915 
916 		/*
917 		 * STARTUP IPI
918 		 */
919 
920 		/* Target chip */
921 		/* Boot on the stack */
922 		/* Kick the second */
923 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
924 			       phys_apicid);
925 
926 		/*
927 		 * Give the other CPU some time to accept the IPI.
928 		 */
929 		if (init_udelay == 0)
930 			udelay(10);
931 		else
932 			udelay(300);
933 
934 		pr_debug("Startup point 1\n");
935 
936 		pr_debug("Waiting for send to finish...\n");
937 		send_status = safe_apic_wait_icr_idle();
938 
939 		/*
940 		 * Give the other CPU some time to accept the IPI.
941 		 */
942 		if (init_udelay == 0)
943 			udelay(10);
944 		else
945 			udelay(200);
946 
947 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
948 			apic_write(APIC_ESR, 0);
949 		accept_status = (apic_read(APIC_ESR) & 0xEF);
950 		if (send_status || accept_status)
951 			break;
952 	}
953 	pr_debug("After Startup\n");
954 
955 	if (send_status)
956 		pr_err("APIC never delivered???\n");
957 	if (accept_status)
958 		pr_err("APIC delivery error (%lx)\n", accept_status);
959 
960 	return (send_status | accept_status);
961 }
962 
963 /* reduce the number of lines printed when booting a large cpu count system */
964 static void announce_cpu(int cpu, int apicid)
965 {
966 	static int current_node = NUMA_NO_NODE;
967 	int node = early_cpu_to_node(cpu);
968 	static int width, node_width;
969 
970 	if (!width)
971 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
972 
973 	if (!node_width)
974 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
975 
976 	if (cpu == 1)
977 		printk(KERN_INFO "x86: Booting SMP configuration:\n");
978 
979 	if (system_state < SYSTEM_RUNNING) {
980 		if (node != current_node) {
981 			if (current_node > (-1))
982 				pr_cont("\n");
983 			current_node = node;
984 
985 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
986 			       node_width - num_digits(node), " ", node);
987 		}
988 
989 		/* Add padding for the BSP */
990 		if (cpu == 1)
991 			pr_cont("%*s", width + 1, " ");
992 
993 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
994 
995 	} else
996 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
997 			node, cpu, apicid);
998 }
999 
1000 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
1001 {
1002 	int cpu;
1003 
1004 	cpu = smp_processor_id();
1005 	if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
1006 		return NMI_HANDLED;
1007 
1008 	return NMI_DONE;
1009 }
1010 
1011 /*
1012  * Wake up AP by INIT, INIT, STARTUP sequence.
1013  *
1014  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
1015  * boot-strap code which is not a desired behavior for waking up BSP. To
1016  * void the boot-strap code, wake up CPU0 by NMI instead.
1017  *
1018  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
1019  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
1020  * We'll change this code in the future to wake up hard offlined CPU0 if
1021  * real platform and request are available.
1022  */
1023 static int
1024 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
1025 	       int *cpu0_nmi_registered)
1026 {
1027 	int id;
1028 	int boot_error;
1029 
1030 	preempt_disable();
1031 
1032 	/*
1033 	 * Wake up AP by INIT, INIT, STARTUP sequence.
1034 	 */
1035 	if (cpu) {
1036 		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
1037 		goto out;
1038 	}
1039 
1040 	/*
1041 	 * Wake up BSP by nmi.
1042 	 *
1043 	 * Register a NMI handler to help wake up CPU0.
1044 	 */
1045 	boot_error = register_nmi_handler(NMI_LOCAL,
1046 					  wakeup_cpu0_nmi, 0, "wake_cpu0");
1047 
1048 	if (!boot_error) {
1049 		enable_start_cpu0 = 1;
1050 		*cpu0_nmi_registered = 1;
1051 		id = apic->dest_mode_logical ? cpu0_logical_apicid : apicid;
1052 		boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
1053 	}
1054 
1055 out:
1056 	preempt_enable();
1057 
1058 	return boot_error;
1059 }
1060 
1061 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
1062 {
1063 	int ret;
1064 
1065 	/* Just in case we booted with a single CPU. */
1066 	alternatives_enable_smp();
1067 
1068 	per_cpu(pcpu_hot.current_task, cpu) = idle;
1069 	cpu_init_stack_canary(cpu, idle);
1070 
1071 	/* Initialize the interrupt stack(s) */
1072 	ret = irq_init_percpu_irqstack(cpu);
1073 	if (ret)
1074 		return ret;
1075 
1076 #ifdef CONFIG_X86_32
1077 	/* Stack for startup_32 can be just as for start_secondary onwards */
1078 	per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle);
1079 #endif
1080 	return 0;
1081 }
1082 
1083 /*
1084  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1085  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1086  * Returns zero if CPU booted OK, else error code from
1087  * ->wakeup_secondary_cpu.
1088  */
1089 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1090 		       int *cpu0_nmi_registered)
1091 {
1092 	/* start_ip had better be page-aligned! */
1093 	unsigned long start_ip = real_mode_header->trampoline_start;
1094 
1095 	unsigned long boot_error = 0;
1096 	unsigned long timeout;
1097 
1098 #ifdef CONFIG_X86_64
1099 	/* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
1100 	if (apic->wakeup_secondary_cpu_64)
1101 		start_ip = real_mode_header->trampoline_start64;
1102 #endif
1103 	idle->thread.sp = (unsigned long)task_pt_regs(idle);
1104 	initial_code = (unsigned long)start_secondary;
1105 
1106 	if (IS_ENABLED(CONFIG_X86_32)) {
1107 		early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1108 		initial_stack  = idle->thread.sp;
1109 	} else {
1110 		smpboot_control = cpu;
1111 	}
1112 
1113 	/* Enable the espfix hack for this CPU */
1114 	init_espfix_ap(cpu);
1115 
1116 	/* So we see what's up */
1117 	announce_cpu(cpu, apicid);
1118 
1119 	/*
1120 	 * This grunge runs the startup process for
1121 	 * the targeted processor.
1122 	 */
1123 
1124 	if (x86_platform.legacy.warm_reset) {
1125 
1126 		pr_debug("Setting warm reset code and vector.\n");
1127 
1128 		smpboot_setup_warm_reset_vector(start_ip);
1129 		/*
1130 		 * Be paranoid about clearing APIC errors.
1131 		*/
1132 		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1133 			apic_write(APIC_ESR, 0);
1134 			apic_read(APIC_ESR);
1135 		}
1136 	}
1137 
1138 	/*
1139 	 * AP might wait on cpu_callout_mask in cpu_init() with
1140 	 * cpu_initialized_mask set if previous attempt to online
1141 	 * it timed-out. Clear cpu_initialized_mask so that after
1142 	 * INIT/SIPI it could start with a clean state.
1143 	 */
1144 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1145 	smp_mb();
1146 
1147 	/*
1148 	 * Wake up a CPU in difference cases:
1149 	 * - Use a method from the APIC driver if one defined, with wakeup
1150 	 *   straight to 64-bit mode preferred over wakeup to RM.
1151 	 * Otherwise,
1152 	 * - Use an INIT boot APIC message for APs or NMI for BSP.
1153 	 */
1154 	if (apic->wakeup_secondary_cpu_64)
1155 		boot_error = apic->wakeup_secondary_cpu_64(apicid, start_ip);
1156 	else if (apic->wakeup_secondary_cpu)
1157 		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1158 	else
1159 		boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1160 						     cpu0_nmi_registered);
1161 
1162 	if (!boot_error) {
1163 		/*
1164 		 * Wait 10s total for first sign of life from AP
1165 		 */
1166 		boot_error = -1;
1167 		timeout = jiffies + 10*HZ;
1168 		while (time_before(jiffies, timeout)) {
1169 			if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1170 				/*
1171 				 * Tell AP to proceed with initialization
1172 				 */
1173 				cpumask_set_cpu(cpu, cpu_callout_mask);
1174 				boot_error = 0;
1175 				break;
1176 			}
1177 			schedule();
1178 		}
1179 	}
1180 
1181 	if (!boot_error) {
1182 		/*
1183 		 * Wait till AP completes initial initialization
1184 		 */
1185 		while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1186 			/*
1187 			 * Allow other tasks to run while we wait for the
1188 			 * AP to come online. This also gives a chance
1189 			 * for the MTRR work(triggered by the AP coming online)
1190 			 * to be completed in the stop machine context.
1191 			 */
1192 			schedule();
1193 		}
1194 	}
1195 
1196 	if (x86_platform.legacy.warm_reset) {
1197 		/*
1198 		 * Cleanup possible dangling ends...
1199 		 */
1200 		smpboot_restore_warm_reset_vector();
1201 	}
1202 
1203 	return boot_error;
1204 }
1205 
1206 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1207 {
1208 	int apicid = apic->cpu_present_to_apicid(cpu);
1209 	int cpu0_nmi_registered = 0;
1210 	unsigned long flags;
1211 	int err, ret = 0;
1212 
1213 	lockdep_assert_irqs_enabled();
1214 
1215 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1216 
1217 	if (apicid == BAD_APICID ||
1218 	    !physid_isset(apicid, phys_cpu_present_map) ||
1219 	    !apic->apic_id_valid(apicid)) {
1220 		pr_err("%s: bad cpu %d\n", __func__, cpu);
1221 		return -EINVAL;
1222 	}
1223 
1224 	/*
1225 	 * Already booted CPU?
1226 	 */
1227 	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1228 		pr_debug("do_boot_cpu %d Already started\n", cpu);
1229 		return -ENOSYS;
1230 	}
1231 
1232 	/*
1233 	 * Save current MTRR state in case it was changed since early boot
1234 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1235 	 */
1236 	mtrr_save_state();
1237 
1238 	/* x86 CPUs take themselves offline, so delayed offline is OK. */
1239 	err = cpu_check_up_prepare(cpu);
1240 	if (err && err != -EBUSY)
1241 		return err;
1242 
1243 	/* the FPU context is blank, nobody can own it */
1244 	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1245 
1246 	err = common_cpu_up(cpu, tidle);
1247 	if (err)
1248 		return err;
1249 
1250 	err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1251 	if (err) {
1252 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1253 		ret = -EIO;
1254 		goto unreg_nmi;
1255 	}
1256 
1257 	/*
1258 	 * Check TSC synchronization with the AP (keep irqs disabled
1259 	 * while doing so):
1260 	 */
1261 	local_irq_save(flags);
1262 	check_tsc_sync_source(cpu);
1263 	local_irq_restore(flags);
1264 
1265 	while (!cpu_online(cpu)) {
1266 		cpu_relax();
1267 		touch_nmi_watchdog();
1268 	}
1269 
1270 unreg_nmi:
1271 	/*
1272 	 * Clean up the nmi handler. Do this after the callin and callout sync
1273 	 * to avoid impact of possible long unregister time.
1274 	 */
1275 	if (cpu0_nmi_registered)
1276 		unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1277 
1278 	return ret;
1279 }
1280 
1281 /**
1282  * arch_disable_smp_support() - Disables SMP support for x86 at boottime
1283  */
1284 void __init arch_disable_smp_support(void)
1285 {
1286 	disable_ioapic_support();
1287 }
1288 
1289 /*
1290  * Fall back to non SMP mode after errors.
1291  *
1292  * RED-PEN audit/test this more. I bet there is more state messed up here.
1293  */
1294 static __init void disable_smp(void)
1295 {
1296 	pr_info("SMP disabled\n");
1297 
1298 	disable_ioapic_support();
1299 
1300 	init_cpu_present(cpumask_of(0));
1301 	init_cpu_possible(cpumask_of(0));
1302 
1303 	if (smp_found_config)
1304 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1305 	else
1306 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1307 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1308 	cpumask_set_cpu(0, topology_core_cpumask(0));
1309 	cpumask_set_cpu(0, topology_die_cpumask(0));
1310 }
1311 
1312 /*
1313  * Various sanity checks.
1314  */
1315 static void __init smp_sanity_check(void)
1316 {
1317 	preempt_disable();
1318 
1319 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1320 	if (def_to_bigsmp && nr_cpu_ids > 8) {
1321 		unsigned int cpu;
1322 		unsigned nr;
1323 
1324 		pr_warn("More than 8 CPUs detected - skipping them\n"
1325 			"Use CONFIG_X86_BIGSMP\n");
1326 
1327 		nr = 0;
1328 		for_each_present_cpu(cpu) {
1329 			if (nr >= 8)
1330 				set_cpu_present(cpu, false);
1331 			nr++;
1332 		}
1333 
1334 		nr = 0;
1335 		for_each_possible_cpu(cpu) {
1336 			if (nr >= 8)
1337 				set_cpu_possible(cpu, false);
1338 			nr++;
1339 		}
1340 
1341 		set_nr_cpu_ids(8);
1342 	}
1343 #endif
1344 
1345 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1346 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1347 			hard_smp_processor_id());
1348 
1349 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1350 	}
1351 
1352 	/*
1353 	 * Should not be necessary because the MP table should list the boot
1354 	 * CPU too, but we do it for the sake of robustness anyway.
1355 	 */
1356 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1357 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1358 			  boot_cpu_physical_apicid);
1359 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1360 	}
1361 	preempt_enable();
1362 }
1363 
1364 static void __init smp_cpu_index_default(void)
1365 {
1366 	int i;
1367 	struct cpuinfo_x86 *c;
1368 
1369 	for_each_possible_cpu(i) {
1370 		c = &cpu_data(i);
1371 		/* mark all to hotplug */
1372 		c->cpu_index = nr_cpu_ids;
1373 	}
1374 }
1375 
1376 static void __init smp_get_logical_apicid(void)
1377 {
1378 	if (x2apic_mode)
1379 		cpu0_logical_apicid = apic_read(APIC_LDR);
1380 	else
1381 		cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1382 }
1383 
1384 void __init smp_prepare_cpus_common(void)
1385 {
1386 	unsigned int i;
1387 
1388 	smp_cpu_index_default();
1389 
1390 	/*
1391 	 * Setup boot CPU information
1392 	 */
1393 	smp_store_boot_cpu_info(); /* Final full version of the data */
1394 	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1395 	mb();
1396 
1397 	for_each_possible_cpu(i) {
1398 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1399 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1400 		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1401 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1402 		zalloc_cpumask_var(&per_cpu(cpu_l2c_shared_map, i), GFP_KERNEL);
1403 	}
1404 
1405 	/*
1406 	 * Set 'default' x86 topology, this matches default_topology() in that
1407 	 * it has NUMA nodes as a topology level. See also
1408 	 * native_smp_cpus_done().
1409 	 *
1410 	 * Must be done before set_cpus_sibling_map() is ran.
1411 	 */
1412 	set_sched_topology(x86_topology);
1413 
1414 	set_cpu_sibling_map(0);
1415 }
1416 
1417 /*
1418  * Prepare for SMP bootup.
1419  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1420  *            for common interface support.
1421  */
1422 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1423 {
1424 	smp_prepare_cpus_common();
1425 
1426 	smp_sanity_check();
1427 
1428 	switch (apic_intr_mode) {
1429 	case APIC_PIC:
1430 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1431 		disable_smp();
1432 		return;
1433 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1434 		disable_smp();
1435 		/* Setup local timer */
1436 		x86_init.timers.setup_percpu_clockev();
1437 		return;
1438 	case APIC_VIRTUAL_WIRE:
1439 	case APIC_SYMMETRIC_IO:
1440 		break;
1441 	}
1442 
1443 	/* Setup local timer */
1444 	x86_init.timers.setup_percpu_clockev();
1445 
1446 	smp_get_logical_apicid();
1447 
1448 	pr_info("CPU0: ");
1449 	print_cpu_info(&cpu_data(0));
1450 
1451 	uv_system_init();
1452 
1453 	smp_quirk_init_udelay();
1454 
1455 	speculative_store_bypass_ht_init();
1456 
1457 	snp_set_wakeup_secondary_cpu();
1458 }
1459 
1460 void arch_thaw_secondary_cpus_begin(void)
1461 {
1462 	set_cache_aps_delayed_init(true);
1463 }
1464 
1465 void arch_thaw_secondary_cpus_end(void)
1466 {
1467 	cache_aps_init();
1468 }
1469 
1470 /*
1471  * Early setup to make printk work.
1472  */
1473 void __init native_smp_prepare_boot_cpu(void)
1474 {
1475 	int me = smp_processor_id();
1476 
1477 	/* SMP handles this from setup_per_cpu_areas() */
1478 	if (!IS_ENABLED(CONFIG_SMP))
1479 		switch_gdt_and_percpu_base(me);
1480 
1481 	/* already set me in cpu_online_mask in boot_cpu_init() */
1482 	cpumask_set_cpu(me, cpu_callout_mask);
1483 	cpu_set_state_online(me);
1484 	native_pv_lock_init();
1485 }
1486 
1487 void __init calculate_max_logical_packages(void)
1488 {
1489 	int ncpus;
1490 
1491 	/*
1492 	 * Today neither Intel nor AMD support heterogeneous systems so
1493 	 * extrapolate the boot cpu's data to all packages.
1494 	 */
1495 	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1496 	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1497 	pr_info("Max logical packages: %u\n", __max_logical_packages);
1498 }
1499 
1500 void __init native_smp_cpus_done(unsigned int max_cpus)
1501 {
1502 	pr_debug("Boot done\n");
1503 
1504 	calculate_max_logical_packages();
1505 
1506 	/* XXX for now assume numa-in-package and hybrid don't overlap */
1507 	if (x86_has_numa_in_package)
1508 		set_sched_topology(x86_numa_in_package_topology);
1509 	if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
1510 		set_sched_topology(x86_hybrid_topology);
1511 
1512 	nmi_selftest();
1513 	impress_friends();
1514 	cache_aps_init();
1515 }
1516 
1517 static int __initdata setup_possible_cpus = -1;
1518 static int __init _setup_possible_cpus(char *str)
1519 {
1520 	get_option(&str, &setup_possible_cpus);
1521 	return 0;
1522 }
1523 early_param("possible_cpus", _setup_possible_cpus);
1524 
1525 
1526 /*
1527  * cpu_possible_mask should be static, it cannot change as cpu's
1528  * are onlined, or offlined. The reason is per-cpu data-structures
1529  * are allocated by some modules at init time, and don't expect to
1530  * do this dynamically on cpu arrival/departure.
1531  * cpu_present_mask on the other hand can change dynamically.
1532  * In case when cpu_hotplug is not compiled, then we resort to current
1533  * behaviour, which is cpu_possible == cpu_present.
1534  * - Ashok Raj
1535  *
1536  * Three ways to find out the number of additional hotplug CPUs:
1537  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1538  * - The user can overwrite it with possible_cpus=NUM
1539  * - Otherwise don't reserve additional CPUs.
1540  * We do this because additional CPUs waste a lot of memory.
1541  * -AK
1542  */
1543 __init void prefill_possible_map(void)
1544 {
1545 	int i, possible;
1546 
1547 	/* No boot processor was found in mptable or ACPI MADT */
1548 	if (!num_processors) {
1549 		if (boot_cpu_has(X86_FEATURE_APIC)) {
1550 			int apicid = boot_cpu_physical_apicid;
1551 			int cpu = hard_smp_processor_id();
1552 
1553 			pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1554 
1555 			/* Make sure boot cpu is enumerated */
1556 			if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1557 			    apic->apic_id_valid(apicid))
1558 				generic_processor_info(apicid, boot_cpu_apic_version);
1559 		}
1560 
1561 		if (!num_processors)
1562 			num_processors = 1;
1563 	}
1564 
1565 	i = setup_max_cpus ?: 1;
1566 	if (setup_possible_cpus == -1) {
1567 		possible = num_processors;
1568 #ifdef CONFIG_HOTPLUG_CPU
1569 		if (setup_max_cpus)
1570 			possible += disabled_cpus;
1571 #else
1572 		if (possible > i)
1573 			possible = i;
1574 #endif
1575 	} else
1576 		possible = setup_possible_cpus;
1577 
1578 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1579 
1580 	/* nr_cpu_ids could be reduced via nr_cpus= */
1581 	if (possible > nr_cpu_ids) {
1582 		pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1583 			possible, nr_cpu_ids);
1584 		possible = nr_cpu_ids;
1585 	}
1586 
1587 #ifdef CONFIG_HOTPLUG_CPU
1588 	if (!setup_max_cpus)
1589 #endif
1590 	if (possible > i) {
1591 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1592 			possible, setup_max_cpus);
1593 		possible = i;
1594 	}
1595 
1596 	set_nr_cpu_ids(possible);
1597 
1598 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1599 		possible, max_t(int, possible - num_processors, 0));
1600 
1601 	reset_cpu_possible_mask();
1602 
1603 	for (i = 0; i < possible; i++)
1604 		set_cpu_possible(i, true);
1605 }
1606 
1607 #ifdef CONFIG_HOTPLUG_CPU
1608 
1609 /* Recompute SMT state for all CPUs on offline */
1610 static void recompute_smt_state(void)
1611 {
1612 	int max_threads, cpu;
1613 
1614 	max_threads = 0;
1615 	for_each_online_cpu (cpu) {
1616 		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1617 
1618 		if (threads > max_threads)
1619 			max_threads = threads;
1620 	}
1621 	__max_smt_threads = max_threads;
1622 }
1623 
1624 static void remove_siblinginfo(int cpu)
1625 {
1626 	int sibling;
1627 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1628 
1629 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1630 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1631 		/*/
1632 		 * last thread sibling in this cpu core going down
1633 		 */
1634 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1635 			cpu_data(sibling).booted_cores--;
1636 	}
1637 
1638 	for_each_cpu(sibling, topology_die_cpumask(cpu))
1639 		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1640 
1641 	for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1642 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1643 		if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1644 			cpu_data(sibling).smt_active = false;
1645 	}
1646 
1647 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1648 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1649 	for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1650 		cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1651 	cpumask_clear(cpu_llc_shared_mask(cpu));
1652 	cpumask_clear(cpu_l2c_shared_mask(cpu));
1653 	cpumask_clear(topology_sibling_cpumask(cpu));
1654 	cpumask_clear(topology_core_cpumask(cpu));
1655 	cpumask_clear(topology_die_cpumask(cpu));
1656 	c->cpu_core_id = 0;
1657 	c->booted_cores = 0;
1658 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1659 	recompute_smt_state();
1660 }
1661 
1662 static void remove_cpu_from_maps(int cpu)
1663 {
1664 	set_cpu_online(cpu, false);
1665 	cpumask_clear_cpu(cpu, cpu_callout_mask);
1666 	cpumask_clear_cpu(cpu, cpu_callin_mask);
1667 	/* was set by cpu_init() */
1668 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1669 	numa_remove_cpu(cpu);
1670 }
1671 
1672 void cpu_disable_common(void)
1673 {
1674 	int cpu = smp_processor_id();
1675 
1676 	remove_siblinginfo(cpu);
1677 
1678 	/* It's now safe to remove this processor from the online map */
1679 	lock_vector_lock();
1680 	remove_cpu_from_maps(cpu);
1681 	unlock_vector_lock();
1682 	fixup_irqs();
1683 	lapic_offline();
1684 }
1685 
1686 int native_cpu_disable(void)
1687 {
1688 	int ret;
1689 
1690 	ret = lapic_can_unplug_cpu();
1691 	if (ret)
1692 		return ret;
1693 
1694 	cpu_disable_common();
1695 
1696         /*
1697          * Disable the local APIC. Otherwise IPI broadcasts will reach
1698          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1699          * messages.
1700          *
1701          * Disabling the APIC must happen after cpu_disable_common()
1702          * which invokes fixup_irqs().
1703          *
1704          * Disabling the APIC preserves already set bits in IRR, but
1705          * an interrupt arriving after disabling the local APIC does not
1706          * set the corresponding IRR bit.
1707          *
1708          * fixup_irqs() scans IRR for set bits so it can raise a not
1709          * yet handled interrupt on the new destination CPU via an IPI
1710          * but obviously it can't do so for IRR bits which are not set.
1711          * IOW, interrupts arriving after disabling the local APIC will
1712          * be lost.
1713          */
1714 	apic_soft_disable();
1715 
1716 	return 0;
1717 }
1718 
1719 int common_cpu_die(unsigned int cpu)
1720 {
1721 	int ret = 0;
1722 
1723 	/* We don't do anything here: idle task is faking death itself. */
1724 
1725 	/* They ack this in play_dead() by setting CPU_DEAD */
1726 	if (cpu_wait_death(cpu, 5)) {
1727 		if (system_state == SYSTEM_RUNNING)
1728 			pr_info("CPU %u is now offline\n", cpu);
1729 	} else {
1730 		pr_err("CPU %u didn't die...\n", cpu);
1731 		ret = -1;
1732 	}
1733 
1734 	return ret;
1735 }
1736 
1737 void native_cpu_die(unsigned int cpu)
1738 {
1739 	common_cpu_die(cpu);
1740 }
1741 
1742 void play_dead_common(void)
1743 {
1744 	idle_task_exit();
1745 
1746 	/* Ack it */
1747 	(void)cpu_report_death();
1748 
1749 	/*
1750 	 * With physical CPU hotplug, we should halt the cpu
1751 	 */
1752 	local_irq_disable();
1753 }
1754 
1755 /**
1756  * cond_wakeup_cpu0 - Wake up CPU0 if needed.
1757  *
1758  * If NMI wants to wake up CPU0, start CPU0.
1759  */
1760 void cond_wakeup_cpu0(void)
1761 {
1762 	if (smp_processor_id() == 0 && enable_start_cpu0)
1763 		start_cpu0();
1764 }
1765 EXPORT_SYMBOL_GPL(cond_wakeup_cpu0);
1766 
1767 /*
1768  * We need to flush the caches before going to sleep, lest we have
1769  * dirty data in our caches when we come back up.
1770  */
1771 static inline void mwait_play_dead(void)
1772 {
1773 	unsigned int eax, ebx, ecx, edx;
1774 	unsigned int highest_cstate = 0;
1775 	unsigned int highest_subcstate = 0;
1776 	void *mwait_ptr;
1777 	int i;
1778 
1779 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1780 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1781 		return;
1782 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1783 		return;
1784 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1785 		return;
1786 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1787 		return;
1788 
1789 	eax = CPUID_MWAIT_LEAF;
1790 	ecx = 0;
1791 	native_cpuid(&eax, &ebx, &ecx, &edx);
1792 
1793 	/*
1794 	 * eax will be 0 if EDX enumeration is not valid.
1795 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1796 	 */
1797 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1798 		eax = 0;
1799 	} else {
1800 		edx >>= MWAIT_SUBSTATE_SIZE;
1801 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1802 			if (edx & MWAIT_SUBSTATE_MASK) {
1803 				highest_cstate = i;
1804 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1805 			}
1806 		}
1807 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1808 			(highest_subcstate - 1);
1809 	}
1810 
1811 	/*
1812 	 * This should be a memory location in a cache line which is
1813 	 * unlikely to be touched by other processors.  The actual
1814 	 * content is immaterial as it is not actually modified in any way.
1815 	 */
1816 	mwait_ptr = &current_thread_info()->flags;
1817 
1818 	wbinvd();
1819 
1820 	while (1) {
1821 		/*
1822 		 * The CLFLUSH is a workaround for erratum AAI65 for
1823 		 * the Xeon 7400 series.  It's not clear it is actually
1824 		 * needed, but it should be harmless in either case.
1825 		 * The WBINVD is insufficient due to the spurious-wakeup
1826 		 * case where we return around the loop.
1827 		 */
1828 		mb();
1829 		clflush(mwait_ptr);
1830 		mb();
1831 		__monitor(mwait_ptr, 0, 0);
1832 		mb();
1833 		__mwait(eax, 0);
1834 
1835 		cond_wakeup_cpu0();
1836 	}
1837 }
1838 
1839 void __noreturn hlt_play_dead(void)
1840 {
1841 	if (__this_cpu_read(cpu_info.x86) >= 4)
1842 		wbinvd();
1843 
1844 	while (1) {
1845 		native_halt();
1846 
1847 		cond_wakeup_cpu0();
1848 	}
1849 }
1850 
1851 void native_play_dead(void)
1852 {
1853 	play_dead_common();
1854 	tboot_shutdown(TB_SHUTDOWN_WFS);
1855 
1856 	mwait_play_dead();
1857 	if (cpuidle_play_dead())
1858 		hlt_play_dead();
1859 }
1860 
1861 #else /* ... !CONFIG_HOTPLUG_CPU */
1862 int native_cpu_disable(void)
1863 {
1864 	return -ENOSYS;
1865 }
1866 
1867 void native_cpu_die(unsigned int cpu)
1868 {
1869 	/* We said "no" in __cpu_disable */
1870 	BUG();
1871 }
1872 
1873 void native_play_dead(void)
1874 {
1875 	BUG();
1876 }
1877 
1878 #endif
1879