xref: /linux/arch/x86/kernel/smpboot.c (revision 56402d63)
1  /*
2  *	x86 SMP booting functions
3  *
4  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6  *	Copyright 2001 Andi Kleen, SuSE Labs.
7  *
8  *	Much of the core SMP work is based on previous work by Thomas Radke, to
9  *	whom a great many thanks are extended.
10  *
11  *	Thanks to Intel for making available several different Pentium,
12  *	Pentium Pro and Pentium-II/Xeon MP machines.
13  *	Original development of Linux SMP code supported by Caldera.
14  *
15  *	This code is released under the GNU General Public License version 2 or
16  *	later.
17  *
18  *	Fixes
19  *		Felix Koop	:	NR_CPUS used properly
20  *		Jose Renau	:	Handle single CPU case.
21  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
22  *		Greg Wright	:	Fix for kernel stacks panic.
23  *		Erich Boleyn	:	MP v1.4 and additional changes.
24  *	Matthias Sattler	:	Changes for 2.1 kernel map.
25  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
26  *	Michael Chastain	:	Change trampoline.S to gnu as.
27  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
28  *		Ingo Molnar	:	Added APIC timers, based on code
29  *					from Jose Renau
30  *		Ingo Molnar	:	various cleanups and rewrites
31  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
32  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
33  *	Andi Kleen		:	Changed for SMP boot into long mode.
34  *		Martin J. Bligh	: 	Added support for multi-quad systems
35  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
36  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
37  *      Andi Kleen              :       Converted to new state machine.
38  *	Ashok Raj		: 	CPU hotplug support
39  *	Glauber Costa		:	i386 and x86_64 integration
40  */
41 
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43 
44 #include <linux/init.h>
45 #include <linux/smp.h>
46 #include <linux/module.h>
47 #include <linux/sched.h>
48 #include <linux/percpu.h>
49 #include <linux/bootmem.h>
50 #include <linux/err.h>
51 #include <linux/nmi.h>
52 #include <linux/tboot.h>
53 #include <linux/stackprotector.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 
57 #include <asm/acpi.h>
58 #include <asm/desc.h>
59 #include <asm/nmi.h>
60 #include <asm/irq.h>
61 #include <asm/idle.h>
62 #include <asm/realmode.h>
63 #include <asm/cpu.h>
64 #include <asm/numa.h>
65 #include <asm/pgtable.h>
66 #include <asm/tlbflush.h>
67 #include <asm/mtrr.h>
68 #include <asm/mwait.h>
69 #include <asm/apic.h>
70 #include <asm/io_apic.h>
71 #include <asm/fpu/internal.h>
72 #include <asm/setup.h>
73 #include <asm/uv/uv.h>
74 #include <linux/mc146818rtc.h>
75 #include <asm/i8259.h>
76 #include <asm/realmode.h>
77 #include <asm/misc.h>
78 
79 /* Number of siblings per CPU package */
80 int smp_num_siblings = 1;
81 EXPORT_SYMBOL(smp_num_siblings);
82 
83 /* Last level cache ID of each logical CPU */
84 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
85 
86 /* representing HT siblings of each logical CPU */
87 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
88 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
89 
90 /* representing HT and core siblings of each logical CPU */
91 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
92 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
93 
94 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
95 
96 /* Per CPU bogomips and other parameters */
97 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
98 EXPORT_PER_CPU_SYMBOL(cpu_info);
99 
100 /* Logical package management. We might want to allocate that dynamically */
101 static int *physical_to_logical_pkg __read_mostly;
102 static unsigned long *physical_package_map __read_mostly;;
103 static unsigned long *logical_package_map  __read_mostly;
104 static unsigned int max_physical_pkg_id __read_mostly;
105 unsigned int __max_logical_packages __read_mostly;
106 EXPORT_SYMBOL(__max_logical_packages);
107 
108 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
109 {
110 	unsigned long flags;
111 
112 	spin_lock_irqsave(&rtc_lock, flags);
113 	CMOS_WRITE(0xa, 0xf);
114 	spin_unlock_irqrestore(&rtc_lock, flags);
115 	local_flush_tlb();
116 	pr_debug("1.\n");
117 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
118 							start_eip >> 4;
119 	pr_debug("2.\n");
120 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
121 							start_eip & 0xf;
122 	pr_debug("3.\n");
123 }
124 
125 static inline void smpboot_restore_warm_reset_vector(void)
126 {
127 	unsigned long flags;
128 
129 	/*
130 	 * Install writable page 0 entry to set BIOS data area.
131 	 */
132 	local_flush_tlb();
133 
134 	/*
135 	 * Paranoid:  Set warm reset code and vector here back
136 	 * to default values.
137 	 */
138 	spin_lock_irqsave(&rtc_lock, flags);
139 	CMOS_WRITE(0, 0xf);
140 	spin_unlock_irqrestore(&rtc_lock, flags);
141 
142 	*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
143 }
144 
145 /*
146  * Report back to the Boot Processor during boot time or to the caller processor
147  * during CPU online.
148  */
149 static void smp_callin(void)
150 {
151 	int cpuid, phys_id;
152 
153 	/*
154 	 * If waken up by an INIT in an 82489DX configuration
155 	 * cpu_callout_mask guarantees we don't get here before
156 	 * an INIT_deassert IPI reaches our local APIC, so it is
157 	 * now safe to touch our local APIC.
158 	 */
159 	cpuid = smp_processor_id();
160 
161 	/*
162 	 * (This works even if the APIC is not enabled.)
163 	 */
164 	phys_id = read_apic_id();
165 
166 	/*
167 	 * the boot CPU has finished the init stage and is spinning
168 	 * on callin_map until we finish. We are free to set up this
169 	 * CPU, first the APIC. (this is probably redundant on most
170 	 * boards)
171 	 */
172 	apic_ap_setup();
173 
174 	/*
175 	 * Save our processor parameters. Note: this information
176 	 * is needed for clock calibration.
177 	 */
178 	smp_store_cpu_info(cpuid);
179 
180 	/*
181 	 * Get our bogomips.
182 	 * Update loops_per_jiffy in cpu_data. Previous call to
183 	 * smp_store_cpu_info() stored a value that is close but not as
184 	 * accurate as the value just calculated.
185 	 */
186 	calibrate_delay();
187 	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
188 	pr_debug("Stack at about %p\n", &cpuid);
189 
190 	/*
191 	 * This must be done before setting cpu_online_mask
192 	 * or calling notify_cpu_starting.
193 	 */
194 	set_cpu_sibling_map(raw_smp_processor_id());
195 	wmb();
196 
197 	notify_cpu_starting(cpuid);
198 
199 	/*
200 	 * Allow the master to continue.
201 	 */
202 	cpumask_set_cpu(cpuid, cpu_callin_mask);
203 }
204 
205 static int cpu0_logical_apicid;
206 static int enable_start_cpu0;
207 /*
208  * Activate a secondary processor.
209  */
210 static void notrace start_secondary(void *unused)
211 {
212 	/*
213 	 * Don't put *anything* before cpu_init(), SMP booting is too
214 	 * fragile that we want to limit the things done here to the
215 	 * most necessary things.
216 	 */
217 	cpu_init();
218 	x86_cpuinit.early_percpu_clock_init();
219 	preempt_disable();
220 	smp_callin();
221 
222 	enable_start_cpu0 = 0;
223 
224 #ifdef CONFIG_X86_32
225 	/* switch away from the initial page table */
226 	load_cr3(swapper_pg_dir);
227 	__flush_tlb_all();
228 #endif
229 
230 	/* otherwise gcc will move up smp_processor_id before the cpu_init */
231 	barrier();
232 	/*
233 	 * Check TSC synchronization with the BP:
234 	 */
235 	check_tsc_sync_target();
236 
237 	/*
238 	 * Lock vector_lock and initialize the vectors on this cpu
239 	 * before setting the cpu online. We must set it online with
240 	 * vector_lock held to prevent a concurrent setup/teardown
241 	 * from seeing a half valid vector space.
242 	 */
243 	lock_vector_lock();
244 	setup_vector_irq(smp_processor_id());
245 	set_cpu_online(smp_processor_id(), true);
246 	unlock_vector_lock();
247 	cpu_set_state_online(smp_processor_id());
248 	x86_platform.nmi_init();
249 
250 	/* enable local interrupts */
251 	local_irq_enable();
252 
253 	/* to prevent fake stack check failure in clock setup */
254 	boot_init_stack_canary();
255 
256 	x86_cpuinit.setup_percpu_clockev();
257 
258 	wmb();
259 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
260 }
261 
262 int topology_update_package_map(unsigned int apicid, unsigned int cpu)
263 {
264 	unsigned int new, pkg = apicid >> boot_cpu_data.x86_coreid_bits;
265 
266 	/* Called from early boot ? */
267 	if (!physical_package_map)
268 		return 0;
269 
270 	if (pkg >= max_physical_pkg_id)
271 		return -EINVAL;
272 
273 	/* Set the logical package id */
274 	if (test_and_set_bit(pkg, physical_package_map))
275 		goto found;
276 
277 	new = find_first_zero_bit(logical_package_map, __max_logical_packages);
278 	if (new >= __max_logical_packages) {
279 		physical_to_logical_pkg[pkg] = -1;
280 		pr_warn("APIC(%x) Package %u exceeds logical package map\n",
281 			apicid, pkg);
282 		return -ENOSPC;
283 	}
284 	set_bit(new, logical_package_map);
285 	pr_info("APIC(%x) Converting physical %u to logical package %u\n",
286 		apicid, pkg, new);
287 	physical_to_logical_pkg[pkg] = new;
288 
289 found:
290 	cpu_data(cpu).logical_proc_id = physical_to_logical_pkg[pkg];
291 	return 0;
292 }
293 
294 /**
295  * topology_phys_to_logical_pkg - Map a physical package id to a logical
296  *
297  * Returns logical package id or -1 if not found
298  */
299 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
300 {
301 	if (phys_pkg >= max_physical_pkg_id)
302 		return -1;
303 	return physical_to_logical_pkg[phys_pkg];
304 }
305 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
306 
307 static void __init smp_init_package_map(void)
308 {
309 	unsigned int ncpus, cpu;
310 	size_t size;
311 
312 	/*
313 	 * Today neither Intel nor AMD support heterogenous systems. That
314 	 * might change in the future....
315 	 *
316 	 * While ideally we'd want '* smp_num_siblings' in the below @ncpus
317 	 * computation, this won't actually work since some Intel BIOSes
318 	 * report inconsistent HT data when they disable HT.
319 	 *
320 	 * In particular, they reduce the APIC-IDs to only include the cores,
321 	 * but leave the CPUID topology to say there are (2) siblings.
322 	 * This means we don't know how many threads there will be until
323 	 * after the APIC enumeration.
324 	 *
325 	 * By not including this we'll sometimes over-estimate the number of
326 	 * logical packages by the amount of !present siblings, but this is
327 	 * still better than MAX_LOCAL_APIC.
328 	 *
329 	 * We use total_cpus not nr_cpu_ids because nr_cpu_ids can be limited
330 	 * on the command line leading to a similar issue as the HT disable
331 	 * problem because the hyperthreads are usually enumerated after the
332 	 * primary cores.
333 	 */
334 	ncpus = boot_cpu_data.x86_max_cores;
335 	if (!ncpus) {
336 		pr_warn("x86_max_cores == zero !?!?");
337 		ncpus = 1;
338 	}
339 
340 	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
341 
342 	/*
343 	 * Possibly larger than what we need as the number of apic ids per
344 	 * package can be smaller than the actual used apic ids.
345 	 */
346 	max_physical_pkg_id = DIV_ROUND_UP(MAX_LOCAL_APIC, ncpus);
347 	size = max_physical_pkg_id * sizeof(unsigned int);
348 	physical_to_logical_pkg = kmalloc(size, GFP_KERNEL);
349 	memset(physical_to_logical_pkg, 0xff, size);
350 	size = BITS_TO_LONGS(max_physical_pkg_id) * sizeof(unsigned long);
351 	physical_package_map = kzalloc(size, GFP_KERNEL);
352 	size = BITS_TO_LONGS(__max_logical_packages) * sizeof(unsigned long);
353 	logical_package_map = kzalloc(size, GFP_KERNEL);
354 
355 	pr_info("Max logical packages: %u\n", __max_logical_packages);
356 
357 	for_each_present_cpu(cpu) {
358 		unsigned int apicid = apic->cpu_present_to_apicid(cpu);
359 
360 		if (apicid == BAD_APICID || !apic->apic_id_valid(apicid))
361 			continue;
362 		if (!topology_update_package_map(apicid, cpu))
363 			continue;
364 		pr_warn("CPU %u APICId %x disabled\n", cpu, apicid);
365 		per_cpu(x86_bios_cpu_apicid, cpu) = BAD_APICID;
366 		set_cpu_possible(cpu, false);
367 		set_cpu_present(cpu, false);
368 	}
369 }
370 
371 void __init smp_store_boot_cpu_info(void)
372 {
373 	int id = 0; /* CPU 0 */
374 	struct cpuinfo_x86 *c = &cpu_data(id);
375 
376 	*c = boot_cpu_data;
377 	c->cpu_index = id;
378 	smp_init_package_map();
379 }
380 
381 /*
382  * The bootstrap kernel entry code has set these up. Save them for
383  * a given CPU
384  */
385 void smp_store_cpu_info(int id)
386 {
387 	struct cpuinfo_x86 *c = &cpu_data(id);
388 
389 	*c = boot_cpu_data;
390 	c->cpu_index = id;
391 	/*
392 	 * During boot time, CPU0 has this setup already. Save the info when
393 	 * bringing up AP or offlined CPU0.
394 	 */
395 	identify_secondary_cpu(c);
396 }
397 
398 static bool
399 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
400 {
401 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
402 
403 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
404 }
405 
406 static bool
407 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
408 {
409 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
410 
411 	return !WARN_ONCE(!topology_same_node(c, o),
412 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
413 		"[node: %d != %d]. Ignoring dependency.\n",
414 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
415 }
416 
417 #define link_mask(mfunc, c1, c2)					\
418 do {									\
419 	cpumask_set_cpu((c1), mfunc(c2));				\
420 	cpumask_set_cpu((c2), mfunc(c1));				\
421 } while (0)
422 
423 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
424 {
425 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
426 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
427 
428 		if (c->phys_proc_id == o->phys_proc_id &&
429 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2) &&
430 		    c->cpu_core_id == o->cpu_core_id)
431 			return topology_sane(c, o, "smt");
432 
433 	} else if (c->phys_proc_id == o->phys_proc_id &&
434 		   c->cpu_core_id == o->cpu_core_id) {
435 		return topology_sane(c, o, "smt");
436 	}
437 
438 	return false;
439 }
440 
441 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
442 {
443 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
444 
445 	if (per_cpu(cpu_llc_id, cpu1) != BAD_APICID &&
446 	    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2))
447 		return topology_sane(c, o, "llc");
448 
449 	return false;
450 }
451 
452 /*
453  * Unlike the other levels, we do not enforce keeping a
454  * multicore group inside a NUMA node.  If this happens, we will
455  * discard the MC level of the topology later.
456  */
457 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
458 {
459 	if (c->phys_proc_id == o->phys_proc_id)
460 		return true;
461 	return false;
462 }
463 
464 static struct sched_domain_topology_level numa_inside_package_topology[] = {
465 #ifdef CONFIG_SCHED_SMT
466 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
467 #endif
468 #ifdef CONFIG_SCHED_MC
469 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
470 #endif
471 	{ NULL, },
472 };
473 /*
474  * set_sched_topology() sets the topology internal to a CPU.  The
475  * NUMA topologies are layered on top of it to build the full
476  * system topology.
477  *
478  * If NUMA nodes are observed to occur within a CPU package, this
479  * function should be called.  It forces the sched domain code to
480  * only use the SMT level for the CPU portion of the topology.
481  * This essentially falls back to relying on NUMA information
482  * from the SRAT table to describe the entire system topology
483  * (except for hyperthreads).
484  */
485 static void primarily_use_numa_for_topology(void)
486 {
487 	set_sched_topology(numa_inside_package_topology);
488 }
489 
490 void set_cpu_sibling_map(int cpu)
491 {
492 	bool has_smt = smp_num_siblings > 1;
493 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
494 	struct cpuinfo_x86 *c = &cpu_data(cpu);
495 	struct cpuinfo_x86 *o;
496 	int i;
497 
498 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
499 
500 	if (!has_mp) {
501 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
502 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
503 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
504 		c->booted_cores = 1;
505 		return;
506 	}
507 
508 	for_each_cpu(i, cpu_sibling_setup_mask) {
509 		o = &cpu_data(i);
510 
511 		if ((i == cpu) || (has_smt && match_smt(c, o)))
512 			link_mask(topology_sibling_cpumask, cpu, i);
513 
514 		if ((i == cpu) || (has_mp && match_llc(c, o)))
515 			link_mask(cpu_llc_shared_mask, cpu, i);
516 
517 	}
518 
519 	/*
520 	 * This needs a separate iteration over the cpus because we rely on all
521 	 * topology_sibling_cpumask links to be set-up.
522 	 */
523 	for_each_cpu(i, cpu_sibling_setup_mask) {
524 		o = &cpu_data(i);
525 
526 		if ((i == cpu) || (has_mp && match_die(c, o))) {
527 			link_mask(topology_core_cpumask, cpu, i);
528 
529 			/*
530 			 *  Does this new cpu bringup a new core?
531 			 */
532 			if (cpumask_weight(
533 			    topology_sibling_cpumask(cpu)) == 1) {
534 				/*
535 				 * for each core in package, increment
536 				 * the booted_cores for this new cpu
537 				 */
538 				if (cpumask_first(
539 				    topology_sibling_cpumask(i)) == i)
540 					c->booted_cores++;
541 				/*
542 				 * increment the core count for all
543 				 * the other cpus in this package
544 				 */
545 				if (i != cpu)
546 					cpu_data(i).booted_cores++;
547 			} else if (i != cpu && !c->booted_cores)
548 				c->booted_cores = cpu_data(i).booted_cores;
549 		}
550 		if (match_die(c, o) && !topology_same_node(c, o))
551 			primarily_use_numa_for_topology();
552 	}
553 }
554 
555 /* maps the cpu to the sched domain representing multi-core */
556 const struct cpumask *cpu_coregroup_mask(int cpu)
557 {
558 	return cpu_llc_shared_mask(cpu);
559 }
560 
561 static void impress_friends(void)
562 {
563 	int cpu;
564 	unsigned long bogosum = 0;
565 	/*
566 	 * Allow the user to impress friends.
567 	 */
568 	pr_debug("Before bogomips\n");
569 	for_each_possible_cpu(cpu)
570 		if (cpumask_test_cpu(cpu, cpu_callout_mask))
571 			bogosum += cpu_data(cpu).loops_per_jiffy;
572 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
573 		num_online_cpus(),
574 		bogosum/(500000/HZ),
575 		(bogosum/(5000/HZ))%100);
576 
577 	pr_debug("Before bogocount - setting activated=1\n");
578 }
579 
580 void __inquire_remote_apic(int apicid)
581 {
582 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
583 	const char * const names[] = { "ID", "VERSION", "SPIV" };
584 	int timeout;
585 	u32 status;
586 
587 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
588 
589 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
590 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
591 
592 		/*
593 		 * Wait for idle.
594 		 */
595 		status = safe_apic_wait_icr_idle();
596 		if (status)
597 			pr_cont("a previous APIC delivery may have failed\n");
598 
599 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
600 
601 		timeout = 0;
602 		do {
603 			udelay(100);
604 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
605 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
606 
607 		switch (status) {
608 		case APIC_ICR_RR_VALID:
609 			status = apic_read(APIC_RRR);
610 			pr_cont("%08x\n", status);
611 			break;
612 		default:
613 			pr_cont("failed\n");
614 		}
615 	}
616 }
617 
618 /*
619  * The Multiprocessor Specification 1.4 (1997) example code suggests
620  * that there should be a 10ms delay between the BSP asserting INIT
621  * and de-asserting INIT, when starting a remote processor.
622  * But that slows boot and resume on modern processors, which include
623  * many cores and don't require that delay.
624  *
625  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
626  * Modern processor families are quirked to remove the delay entirely.
627  */
628 #define UDELAY_10MS_DEFAULT 10000
629 
630 static unsigned int init_udelay = UINT_MAX;
631 
632 static int __init cpu_init_udelay(char *str)
633 {
634 	get_option(&str, &init_udelay);
635 
636 	return 0;
637 }
638 early_param("cpu_init_udelay", cpu_init_udelay);
639 
640 static void __init smp_quirk_init_udelay(void)
641 {
642 	/* if cmdline changed it from default, leave it alone */
643 	if (init_udelay != UINT_MAX)
644 		return;
645 
646 	/* if modern processor, use no delay */
647 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
648 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
649 		init_udelay = 0;
650 		return;
651 	}
652 	/* else, use legacy delay */
653 	init_udelay = UDELAY_10MS_DEFAULT;
654 }
655 
656 /*
657  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
658  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
659  * won't ... remember to clear down the APIC, etc later.
660  */
661 int
662 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
663 {
664 	unsigned long send_status, accept_status = 0;
665 	int maxlvt;
666 
667 	/* Target chip */
668 	/* Boot on the stack */
669 	/* Kick the second */
670 	apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
671 
672 	pr_debug("Waiting for send to finish...\n");
673 	send_status = safe_apic_wait_icr_idle();
674 
675 	/*
676 	 * Give the other CPU some time to accept the IPI.
677 	 */
678 	udelay(200);
679 	if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
680 		maxlvt = lapic_get_maxlvt();
681 		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
682 			apic_write(APIC_ESR, 0);
683 		accept_status = (apic_read(APIC_ESR) & 0xEF);
684 	}
685 	pr_debug("NMI sent\n");
686 
687 	if (send_status)
688 		pr_err("APIC never delivered???\n");
689 	if (accept_status)
690 		pr_err("APIC delivery error (%lx)\n", accept_status);
691 
692 	return (send_status | accept_status);
693 }
694 
695 static int
696 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
697 {
698 	unsigned long send_status = 0, accept_status = 0;
699 	int maxlvt, num_starts, j;
700 
701 	maxlvt = lapic_get_maxlvt();
702 
703 	/*
704 	 * Be paranoid about clearing APIC errors.
705 	 */
706 	if (APIC_INTEGRATED(apic_version[phys_apicid])) {
707 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
708 			apic_write(APIC_ESR, 0);
709 		apic_read(APIC_ESR);
710 	}
711 
712 	pr_debug("Asserting INIT\n");
713 
714 	/*
715 	 * Turn INIT on target chip
716 	 */
717 	/*
718 	 * Send IPI
719 	 */
720 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
721 		       phys_apicid);
722 
723 	pr_debug("Waiting for send to finish...\n");
724 	send_status = safe_apic_wait_icr_idle();
725 
726 	udelay(init_udelay);
727 
728 	pr_debug("Deasserting INIT\n");
729 
730 	/* Target chip */
731 	/* Send IPI */
732 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
733 
734 	pr_debug("Waiting for send to finish...\n");
735 	send_status = safe_apic_wait_icr_idle();
736 
737 	mb();
738 
739 	/*
740 	 * Should we send STARTUP IPIs ?
741 	 *
742 	 * Determine this based on the APIC version.
743 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
744 	 */
745 	if (APIC_INTEGRATED(apic_version[phys_apicid]))
746 		num_starts = 2;
747 	else
748 		num_starts = 0;
749 
750 	/*
751 	 * Run STARTUP IPI loop.
752 	 */
753 	pr_debug("#startup loops: %d\n", num_starts);
754 
755 	for (j = 1; j <= num_starts; j++) {
756 		pr_debug("Sending STARTUP #%d\n", j);
757 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
758 			apic_write(APIC_ESR, 0);
759 		apic_read(APIC_ESR);
760 		pr_debug("After apic_write\n");
761 
762 		/*
763 		 * STARTUP IPI
764 		 */
765 
766 		/* Target chip */
767 		/* Boot on the stack */
768 		/* Kick the second */
769 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
770 			       phys_apicid);
771 
772 		/*
773 		 * Give the other CPU some time to accept the IPI.
774 		 */
775 		if (init_udelay == 0)
776 			udelay(10);
777 		else
778 			udelay(300);
779 
780 		pr_debug("Startup point 1\n");
781 
782 		pr_debug("Waiting for send to finish...\n");
783 		send_status = safe_apic_wait_icr_idle();
784 
785 		/*
786 		 * Give the other CPU some time to accept the IPI.
787 		 */
788 		if (init_udelay == 0)
789 			udelay(10);
790 		else
791 			udelay(200);
792 
793 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
794 			apic_write(APIC_ESR, 0);
795 		accept_status = (apic_read(APIC_ESR) & 0xEF);
796 		if (send_status || accept_status)
797 			break;
798 	}
799 	pr_debug("After Startup\n");
800 
801 	if (send_status)
802 		pr_err("APIC never delivered???\n");
803 	if (accept_status)
804 		pr_err("APIC delivery error (%lx)\n", accept_status);
805 
806 	return (send_status | accept_status);
807 }
808 
809 void smp_announce(void)
810 {
811 	int num_nodes = num_online_nodes();
812 
813 	printk(KERN_INFO "x86: Booted up %d node%s, %d CPUs\n",
814 	       num_nodes, (num_nodes > 1 ? "s" : ""), num_online_cpus());
815 }
816 
817 /* reduce the number of lines printed when booting a large cpu count system */
818 static void announce_cpu(int cpu, int apicid)
819 {
820 	static int current_node = -1;
821 	int node = early_cpu_to_node(cpu);
822 	static int width, node_width;
823 
824 	if (!width)
825 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
826 
827 	if (!node_width)
828 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
829 
830 	if (cpu == 1)
831 		printk(KERN_INFO "x86: Booting SMP configuration:\n");
832 
833 	if (system_state == SYSTEM_BOOTING) {
834 		if (node != current_node) {
835 			if (current_node > (-1))
836 				pr_cont("\n");
837 			current_node = node;
838 
839 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
840 			       node_width - num_digits(node), " ", node);
841 		}
842 
843 		/* Add padding for the BSP */
844 		if (cpu == 1)
845 			pr_cont("%*s", width + 1, " ");
846 
847 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
848 
849 	} else
850 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
851 			node, cpu, apicid);
852 }
853 
854 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
855 {
856 	int cpu;
857 
858 	cpu = smp_processor_id();
859 	if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
860 		return NMI_HANDLED;
861 
862 	return NMI_DONE;
863 }
864 
865 /*
866  * Wake up AP by INIT, INIT, STARTUP sequence.
867  *
868  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
869  * boot-strap code which is not a desired behavior for waking up BSP. To
870  * void the boot-strap code, wake up CPU0 by NMI instead.
871  *
872  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
873  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
874  * We'll change this code in the future to wake up hard offlined CPU0 if
875  * real platform and request are available.
876  */
877 static int
878 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
879 	       int *cpu0_nmi_registered)
880 {
881 	int id;
882 	int boot_error;
883 
884 	preempt_disable();
885 
886 	/*
887 	 * Wake up AP by INIT, INIT, STARTUP sequence.
888 	 */
889 	if (cpu) {
890 		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
891 		goto out;
892 	}
893 
894 	/*
895 	 * Wake up BSP by nmi.
896 	 *
897 	 * Register a NMI handler to help wake up CPU0.
898 	 */
899 	boot_error = register_nmi_handler(NMI_LOCAL,
900 					  wakeup_cpu0_nmi, 0, "wake_cpu0");
901 
902 	if (!boot_error) {
903 		enable_start_cpu0 = 1;
904 		*cpu0_nmi_registered = 1;
905 		if (apic->dest_logical == APIC_DEST_LOGICAL)
906 			id = cpu0_logical_apicid;
907 		else
908 			id = apicid;
909 		boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
910 	}
911 
912 out:
913 	preempt_enable();
914 
915 	return boot_error;
916 }
917 
918 void common_cpu_up(unsigned int cpu, struct task_struct *idle)
919 {
920 	/* Just in case we booted with a single CPU. */
921 	alternatives_enable_smp();
922 
923 	per_cpu(current_task, cpu) = idle;
924 
925 #ifdef CONFIG_X86_32
926 	/* Stack for startup_32 can be just as for start_secondary onwards */
927 	irq_ctx_init(cpu);
928 	per_cpu(cpu_current_top_of_stack, cpu) =
929 		(unsigned long)task_stack_page(idle) + THREAD_SIZE;
930 #else
931 	clear_tsk_thread_flag(idle, TIF_FORK);
932 	initial_gs = per_cpu_offset(cpu);
933 #endif
934 }
935 
936 /*
937  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
938  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
939  * Returns zero if CPU booted OK, else error code from
940  * ->wakeup_secondary_cpu.
941  */
942 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle)
943 {
944 	volatile u32 *trampoline_status =
945 		(volatile u32 *) __va(real_mode_header->trampoline_status);
946 	/* start_ip had better be page-aligned! */
947 	unsigned long start_ip = real_mode_header->trampoline_start;
948 
949 	unsigned long boot_error = 0;
950 	int cpu0_nmi_registered = 0;
951 	unsigned long timeout;
952 
953 	idle->thread.sp = (unsigned long) (((struct pt_regs *)
954 			  (THREAD_SIZE +  task_stack_page(idle))) - 1);
955 
956 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
957 	initial_code = (unsigned long)start_secondary;
958 	stack_start  = idle->thread.sp;
959 
960 	/*
961 	 * Enable the espfix hack for this CPU
962 	*/
963 #ifdef CONFIG_X86_ESPFIX64
964 	init_espfix_ap(cpu);
965 #endif
966 
967 	/* So we see what's up */
968 	announce_cpu(cpu, apicid);
969 
970 	/*
971 	 * This grunge runs the startup process for
972 	 * the targeted processor.
973 	 */
974 
975 	if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
976 
977 		pr_debug("Setting warm reset code and vector.\n");
978 
979 		smpboot_setup_warm_reset_vector(start_ip);
980 		/*
981 		 * Be paranoid about clearing APIC errors.
982 		*/
983 		if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
984 			apic_write(APIC_ESR, 0);
985 			apic_read(APIC_ESR);
986 		}
987 	}
988 
989 	/*
990 	 * AP might wait on cpu_callout_mask in cpu_init() with
991 	 * cpu_initialized_mask set if previous attempt to online
992 	 * it timed-out. Clear cpu_initialized_mask so that after
993 	 * INIT/SIPI it could start with a clean state.
994 	 */
995 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
996 	smp_mb();
997 
998 	/*
999 	 * Wake up a CPU in difference cases:
1000 	 * - Use the method in the APIC driver if it's defined
1001 	 * Otherwise,
1002 	 * - Use an INIT boot APIC message for APs or NMI for BSP.
1003 	 */
1004 	if (apic->wakeup_secondary_cpu)
1005 		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1006 	else
1007 		boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1008 						     &cpu0_nmi_registered);
1009 
1010 	if (!boot_error) {
1011 		/*
1012 		 * Wait 10s total for first sign of life from AP
1013 		 */
1014 		boot_error = -1;
1015 		timeout = jiffies + 10*HZ;
1016 		while (time_before(jiffies, timeout)) {
1017 			if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1018 				/*
1019 				 * Tell AP to proceed with initialization
1020 				 */
1021 				cpumask_set_cpu(cpu, cpu_callout_mask);
1022 				boot_error = 0;
1023 				break;
1024 			}
1025 			schedule();
1026 		}
1027 	}
1028 
1029 	if (!boot_error) {
1030 		/*
1031 		 * Wait till AP completes initial initialization
1032 		 */
1033 		while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1034 			/*
1035 			 * Allow other tasks to run while we wait for the
1036 			 * AP to come online. This also gives a chance
1037 			 * for the MTRR work(triggered by the AP coming online)
1038 			 * to be completed in the stop machine context.
1039 			 */
1040 			schedule();
1041 		}
1042 	}
1043 
1044 	/* mark "stuck" area as not stuck */
1045 	*trampoline_status = 0;
1046 
1047 	if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
1048 		/*
1049 		 * Cleanup possible dangling ends...
1050 		 */
1051 		smpboot_restore_warm_reset_vector();
1052 	}
1053 	/*
1054 	 * Clean up the nmi handler. Do this after the callin and callout sync
1055 	 * to avoid impact of possible long unregister time.
1056 	 */
1057 	if (cpu0_nmi_registered)
1058 		unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1059 
1060 	return boot_error;
1061 }
1062 
1063 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1064 {
1065 	int apicid = apic->cpu_present_to_apicid(cpu);
1066 	unsigned long flags;
1067 	int err;
1068 
1069 	WARN_ON(irqs_disabled());
1070 
1071 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1072 
1073 	if (apicid == BAD_APICID ||
1074 	    !physid_isset(apicid, phys_cpu_present_map) ||
1075 	    !apic->apic_id_valid(apicid)) {
1076 		pr_err("%s: bad cpu %d\n", __func__, cpu);
1077 		return -EINVAL;
1078 	}
1079 
1080 	/*
1081 	 * Already booted CPU?
1082 	 */
1083 	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1084 		pr_debug("do_boot_cpu %d Already started\n", cpu);
1085 		return -ENOSYS;
1086 	}
1087 
1088 	/*
1089 	 * Save current MTRR state in case it was changed since early boot
1090 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1091 	 */
1092 	mtrr_save_state();
1093 
1094 	/* x86 CPUs take themselves offline, so delayed offline is OK. */
1095 	err = cpu_check_up_prepare(cpu);
1096 	if (err && err != -EBUSY)
1097 		return err;
1098 
1099 	/* the FPU context is blank, nobody can own it */
1100 	__cpu_disable_lazy_restore(cpu);
1101 
1102 	common_cpu_up(cpu, tidle);
1103 
1104 	/*
1105 	 * We have to walk the irq descriptors to setup the vector
1106 	 * space for the cpu which comes online.  Prevent irq
1107 	 * alloc/free across the bringup.
1108 	 */
1109 	irq_lock_sparse();
1110 
1111 	err = do_boot_cpu(apicid, cpu, tidle);
1112 
1113 	if (err) {
1114 		irq_unlock_sparse();
1115 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1116 		return -EIO;
1117 	}
1118 
1119 	/*
1120 	 * Check TSC synchronization with the AP (keep irqs disabled
1121 	 * while doing so):
1122 	 */
1123 	local_irq_save(flags);
1124 	check_tsc_sync_source(cpu);
1125 	local_irq_restore(flags);
1126 
1127 	while (!cpu_online(cpu)) {
1128 		cpu_relax();
1129 		touch_nmi_watchdog();
1130 	}
1131 
1132 	irq_unlock_sparse();
1133 
1134 	return 0;
1135 }
1136 
1137 /**
1138  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1139  */
1140 void arch_disable_smp_support(void)
1141 {
1142 	disable_ioapic_support();
1143 }
1144 
1145 /*
1146  * Fall back to non SMP mode after errors.
1147  *
1148  * RED-PEN audit/test this more. I bet there is more state messed up here.
1149  */
1150 static __init void disable_smp(void)
1151 {
1152 	pr_info("SMP disabled\n");
1153 
1154 	disable_ioapic_support();
1155 
1156 	init_cpu_present(cpumask_of(0));
1157 	init_cpu_possible(cpumask_of(0));
1158 
1159 	if (smp_found_config)
1160 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1161 	else
1162 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1163 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1164 	cpumask_set_cpu(0, topology_core_cpumask(0));
1165 }
1166 
1167 enum {
1168 	SMP_OK,
1169 	SMP_NO_CONFIG,
1170 	SMP_NO_APIC,
1171 	SMP_FORCE_UP,
1172 };
1173 
1174 /*
1175  * Various sanity checks.
1176  */
1177 static int __init smp_sanity_check(unsigned max_cpus)
1178 {
1179 	preempt_disable();
1180 
1181 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1182 	if (def_to_bigsmp && nr_cpu_ids > 8) {
1183 		unsigned int cpu;
1184 		unsigned nr;
1185 
1186 		pr_warn("More than 8 CPUs detected - skipping them\n"
1187 			"Use CONFIG_X86_BIGSMP\n");
1188 
1189 		nr = 0;
1190 		for_each_present_cpu(cpu) {
1191 			if (nr >= 8)
1192 				set_cpu_present(cpu, false);
1193 			nr++;
1194 		}
1195 
1196 		nr = 0;
1197 		for_each_possible_cpu(cpu) {
1198 			if (nr >= 8)
1199 				set_cpu_possible(cpu, false);
1200 			nr++;
1201 		}
1202 
1203 		nr_cpu_ids = 8;
1204 	}
1205 #endif
1206 
1207 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1208 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1209 			hard_smp_processor_id());
1210 
1211 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1212 	}
1213 
1214 	/*
1215 	 * If we couldn't find an SMP configuration at boot time,
1216 	 * get out of here now!
1217 	 */
1218 	if (!smp_found_config && !acpi_lapic) {
1219 		preempt_enable();
1220 		pr_notice("SMP motherboard not detected\n");
1221 		return SMP_NO_CONFIG;
1222 	}
1223 
1224 	/*
1225 	 * Should not be necessary because the MP table should list the boot
1226 	 * CPU too, but we do it for the sake of robustness anyway.
1227 	 */
1228 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1229 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1230 			  boot_cpu_physical_apicid);
1231 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1232 	}
1233 	preempt_enable();
1234 
1235 	/*
1236 	 * If we couldn't find a local APIC, then get out of here now!
1237 	 */
1238 	if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) &&
1239 	    !cpu_has_apic) {
1240 		if (!disable_apic) {
1241 			pr_err("BIOS bug, local APIC #%d not detected!...\n",
1242 				boot_cpu_physical_apicid);
1243 			pr_err("... forcing use of dummy APIC emulation (tell your hw vendor)\n");
1244 		}
1245 		return SMP_NO_APIC;
1246 	}
1247 
1248 	/*
1249 	 * If SMP should be disabled, then really disable it!
1250 	 */
1251 	if (!max_cpus) {
1252 		pr_info("SMP mode deactivated\n");
1253 		return SMP_FORCE_UP;
1254 	}
1255 
1256 	return SMP_OK;
1257 }
1258 
1259 static void __init smp_cpu_index_default(void)
1260 {
1261 	int i;
1262 	struct cpuinfo_x86 *c;
1263 
1264 	for_each_possible_cpu(i) {
1265 		c = &cpu_data(i);
1266 		/* mark all to hotplug */
1267 		c->cpu_index = nr_cpu_ids;
1268 	}
1269 }
1270 
1271 /*
1272  * Prepare for SMP bootup.  The MP table or ACPI has been read
1273  * earlier.  Just do some sanity checking here and enable APIC mode.
1274  */
1275 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1276 {
1277 	unsigned int i;
1278 
1279 	smp_cpu_index_default();
1280 
1281 	/*
1282 	 * Setup boot CPU information
1283 	 */
1284 	smp_store_boot_cpu_info(); /* Final full version of the data */
1285 	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1286 	mb();
1287 
1288 	current_thread_info()->cpu = 0;  /* needed? */
1289 	for_each_possible_cpu(i) {
1290 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1291 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1292 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1293 	}
1294 	set_cpu_sibling_map(0);
1295 
1296 	switch (smp_sanity_check(max_cpus)) {
1297 	case SMP_NO_CONFIG:
1298 		disable_smp();
1299 		if (APIC_init_uniprocessor())
1300 			pr_notice("Local APIC not detected. Using dummy APIC emulation.\n");
1301 		return;
1302 	case SMP_NO_APIC:
1303 		disable_smp();
1304 		return;
1305 	case SMP_FORCE_UP:
1306 		disable_smp();
1307 		apic_bsp_setup(false);
1308 		return;
1309 	case SMP_OK:
1310 		break;
1311 	}
1312 
1313 	default_setup_apic_routing();
1314 
1315 	if (read_apic_id() != boot_cpu_physical_apicid) {
1316 		panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1317 		     read_apic_id(), boot_cpu_physical_apicid);
1318 		/* Or can we switch back to PIC here? */
1319 	}
1320 
1321 	cpu0_logical_apicid = apic_bsp_setup(false);
1322 
1323 	pr_info("CPU%d: ", 0);
1324 	print_cpu_info(&cpu_data(0));
1325 
1326 	if (is_uv_system())
1327 		uv_system_init();
1328 
1329 	set_mtrr_aps_delayed_init();
1330 
1331 	smp_quirk_init_udelay();
1332 }
1333 
1334 void arch_enable_nonboot_cpus_begin(void)
1335 {
1336 	set_mtrr_aps_delayed_init();
1337 }
1338 
1339 void arch_enable_nonboot_cpus_end(void)
1340 {
1341 	mtrr_aps_init();
1342 }
1343 
1344 /*
1345  * Early setup to make printk work.
1346  */
1347 void __init native_smp_prepare_boot_cpu(void)
1348 {
1349 	int me = smp_processor_id();
1350 	switch_to_new_gdt(me);
1351 	/* already set me in cpu_online_mask in boot_cpu_init() */
1352 	cpumask_set_cpu(me, cpu_callout_mask);
1353 	cpu_set_state_online(me);
1354 }
1355 
1356 void __init native_smp_cpus_done(unsigned int max_cpus)
1357 {
1358 	pr_debug("Boot done\n");
1359 
1360 	nmi_selftest();
1361 	impress_friends();
1362 	setup_ioapic_dest();
1363 	mtrr_aps_init();
1364 }
1365 
1366 static int __initdata setup_possible_cpus = -1;
1367 static int __init _setup_possible_cpus(char *str)
1368 {
1369 	get_option(&str, &setup_possible_cpus);
1370 	return 0;
1371 }
1372 early_param("possible_cpus", _setup_possible_cpus);
1373 
1374 
1375 /*
1376  * cpu_possible_mask should be static, it cannot change as cpu's
1377  * are onlined, or offlined. The reason is per-cpu data-structures
1378  * are allocated by some modules at init time, and dont expect to
1379  * do this dynamically on cpu arrival/departure.
1380  * cpu_present_mask on the other hand can change dynamically.
1381  * In case when cpu_hotplug is not compiled, then we resort to current
1382  * behaviour, which is cpu_possible == cpu_present.
1383  * - Ashok Raj
1384  *
1385  * Three ways to find out the number of additional hotplug CPUs:
1386  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1387  * - The user can overwrite it with possible_cpus=NUM
1388  * - Otherwise don't reserve additional CPUs.
1389  * We do this because additional CPUs waste a lot of memory.
1390  * -AK
1391  */
1392 __init void prefill_possible_map(void)
1393 {
1394 	int i, possible;
1395 
1396 	/* no processor from mptable or madt */
1397 	if (!num_processors)
1398 		num_processors = 1;
1399 
1400 	i = setup_max_cpus ?: 1;
1401 	if (setup_possible_cpus == -1) {
1402 		possible = num_processors;
1403 #ifdef CONFIG_HOTPLUG_CPU
1404 		if (setup_max_cpus)
1405 			possible += disabled_cpus;
1406 #else
1407 		if (possible > i)
1408 			possible = i;
1409 #endif
1410 	} else
1411 		possible = setup_possible_cpus;
1412 
1413 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1414 
1415 	/* nr_cpu_ids could be reduced via nr_cpus= */
1416 	if (possible > nr_cpu_ids) {
1417 		pr_warn("%d Processors exceeds NR_CPUS limit of %d\n",
1418 			possible, nr_cpu_ids);
1419 		possible = nr_cpu_ids;
1420 	}
1421 
1422 #ifdef CONFIG_HOTPLUG_CPU
1423 	if (!setup_max_cpus)
1424 #endif
1425 	if (possible > i) {
1426 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1427 			possible, setup_max_cpus);
1428 		possible = i;
1429 	}
1430 
1431 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1432 		possible, max_t(int, possible - num_processors, 0));
1433 
1434 	for (i = 0; i < possible; i++)
1435 		set_cpu_possible(i, true);
1436 	for (; i < NR_CPUS; i++)
1437 		set_cpu_possible(i, false);
1438 
1439 	nr_cpu_ids = possible;
1440 }
1441 
1442 #ifdef CONFIG_HOTPLUG_CPU
1443 
1444 static void remove_siblinginfo(int cpu)
1445 {
1446 	int sibling;
1447 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1448 
1449 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1450 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1451 		/*/
1452 		 * last thread sibling in this cpu core going down
1453 		 */
1454 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1455 			cpu_data(sibling).booted_cores--;
1456 	}
1457 
1458 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1459 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1460 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1461 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1462 	cpumask_clear(cpu_llc_shared_mask(cpu));
1463 	cpumask_clear(topology_sibling_cpumask(cpu));
1464 	cpumask_clear(topology_core_cpumask(cpu));
1465 	c->phys_proc_id = 0;
1466 	c->cpu_core_id = 0;
1467 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1468 }
1469 
1470 static void remove_cpu_from_maps(int cpu)
1471 {
1472 	set_cpu_online(cpu, false);
1473 	cpumask_clear_cpu(cpu, cpu_callout_mask);
1474 	cpumask_clear_cpu(cpu, cpu_callin_mask);
1475 	/* was set by cpu_init() */
1476 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1477 	numa_remove_cpu(cpu);
1478 }
1479 
1480 void cpu_disable_common(void)
1481 {
1482 	int cpu = smp_processor_id();
1483 
1484 	remove_siblinginfo(cpu);
1485 
1486 	/* It's now safe to remove this processor from the online map */
1487 	lock_vector_lock();
1488 	remove_cpu_from_maps(cpu);
1489 	unlock_vector_lock();
1490 	fixup_irqs();
1491 }
1492 
1493 int native_cpu_disable(void)
1494 {
1495 	int ret;
1496 
1497 	ret = check_irq_vectors_for_cpu_disable();
1498 	if (ret)
1499 		return ret;
1500 
1501 	clear_local_APIC();
1502 	cpu_disable_common();
1503 
1504 	return 0;
1505 }
1506 
1507 int common_cpu_die(unsigned int cpu)
1508 {
1509 	int ret = 0;
1510 
1511 	/* We don't do anything here: idle task is faking death itself. */
1512 
1513 	/* They ack this in play_dead() by setting CPU_DEAD */
1514 	if (cpu_wait_death(cpu, 5)) {
1515 		if (system_state == SYSTEM_RUNNING)
1516 			pr_info("CPU %u is now offline\n", cpu);
1517 	} else {
1518 		pr_err("CPU %u didn't die...\n", cpu);
1519 		ret = -1;
1520 	}
1521 
1522 	return ret;
1523 }
1524 
1525 void native_cpu_die(unsigned int cpu)
1526 {
1527 	common_cpu_die(cpu);
1528 }
1529 
1530 void play_dead_common(void)
1531 {
1532 	idle_task_exit();
1533 	reset_lazy_tlbstate();
1534 	amd_e400_remove_cpu(raw_smp_processor_id());
1535 
1536 	/* Ack it */
1537 	(void)cpu_report_death();
1538 
1539 	/*
1540 	 * With physical CPU hotplug, we should halt the cpu
1541 	 */
1542 	local_irq_disable();
1543 }
1544 
1545 static bool wakeup_cpu0(void)
1546 {
1547 	if (smp_processor_id() == 0 && enable_start_cpu0)
1548 		return true;
1549 
1550 	return false;
1551 }
1552 
1553 /*
1554  * We need to flush the caches before going to sleep, lest we have
1555  * dirty data in our caches when we come back up.
1556  */
1557 static inline void mwait_play_dead(void)
1558 {
1559 	unsigned int eax, ebx, ecx, edx;
1560 	unsigned int highest_cstate = 0;
1561 	unsigned int highest_subcstate = 0;
1562 	void *mwait_ptr;
1563 	int i;
1564 
1565 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1566 		return;
1567 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1568 		return;
1569 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1570 		return;
1571 
1572 	eax = CPUID_MWAIT_LEAF;
1573 	ecx = 0;
1574 	native_cpuid(&eax, &ebx, &ecx, &edx);
1575 
1576 	/*
1577 	 * eax will be 0 if EDX enumeration is not valid.
1578 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1579 	 */
1580 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1581 		eax = 0;
1582 	} else {
1583 		edx >>= MWAIT_SUBSTATE_SIZE;
1584 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1585 			if (edx & MWAIT_SUBSTATE_MASK) {
1586 				highest_cstate = i;
1587 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1588 			}
1589 		}
1590 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1591 			(highest_subcstate - 1);
1592 	}
1593 
1594 	/*
1595 	 * This should be a memory location in a cache line which is
1596 	 * unlikely to be touched by other processors.  The actual
1597 	 * content is immaterial as it is not actually modified in any way.
1598 	 */
1599 	mwait_ptr = &current_thread_info()->flags;
1600 
1601 	wbinvd();
1602 
1603 	while (1) {
1604 		/*
1605 		 * The CLFLUSH is a workaround for erratum AAI65 for
1606 		 * the Xeon 7400 series.  It's not clear it is actually
1607 		 * needed, but it should be harmless in either case.
1608 		 * The WBINVD is insufficient due to the spurious-wakeup
1609 		 * case where we return around the loop.
1610 		 */
1611 		mb();
1612 		clflush(mwait_ptr);
1613 		mb();
1614 		__monitor(mwait_ptr, 0, 0);
1615 		mb();
1616 		__mwait(eax, 0);
1617 		/*
1618 		 * If NMI wants to wake up CPU0, start CPU0.
1619 		 */
1620 		if (wakeup_cpu0())
1621 			start_cpu0();
1622 	}
1623 }
1624 
1625 static inline void hlt_play_dead(void)
1626 {
1627 	if (__this_cpu_read(cpu_info.x86) >= 4)
1628 		wbinvd();
1629 
1630 	while (1) {
1631 		native_halt();
1632 		/*
1633 		 * If NMI wants to wake up CPU0, start CPU0.
1634 		 */
1635 		if (wakeup_cpu0())
1636 			start_cpu0();
1637 	}
1638 }
1639 
1640 void native_play_dead(void)
1641 {
1642 	play_dead_common();
1643 	tboot_shutdown(TB_SHUTDOWN_WFS);
1644 
1645 	mwait_play_dead();	/* Only returns on failure */
1646 	if (cpuidle_play_dead())
1647 		hlt_play_dead();
1648 }
1649 
1650 #else /* ... !CONFIG_HOTPLUG_CPU */
1651 int native_cpu_disable(void)
1652 {
1653 	return -ENOSYS;
1654 }
1655 
1656 void native_cpu_die(unsigned int cpu)
1657 {
1658 	/* We said "no" in __cpu_disable */
1659 	BUG();
1660 }
1661 
1662 void native_play_dead(void)
1663 {
1664 	BUG();
1665 }
1666 
1667 #endif
1668