1 /* 2 * x86 SMP booting functions 3 * 4 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk> 5 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com> 6 * Copyright 2001 Andi Kleen, SuSE Labs. 7 * 8 * Much of the core SMP work is based on previous work by Thomas Radke, to 9 * whom a great many thanks are extended. 10 * 11 * Thanks to Intel for making available several different Pentium, 12 * Pentium Pro and Pentium-II/Xeon MP machines. 13 * Original development of Linux SMP code supported by Caldera. 14 * 15 * This code is released under the GNU General Public License version 2 or 16 * later. 17 * 18 * Fixes 19 * Felix Koop : NR_CPUS used properly 20 * Jose Renau : Handle single CPU case. 21 * Alan Cox : By repeated request 8) - Total BogoMIPS report. 22 * Greg Wright : Fix for kernel stacks panic. 23 * Erich Boleyn : MP v1.4 and additional changes. 24 * Matthias Sattler : Changes for 2.1 kernel map. 25 * Michel Lespinasse : Changes for 2.1 kernel map. 26 * Michael Chastain : Change trampoline.S to gnu as. 27 * Alan Cox : Dumb bug: 'B' step PPro's are fine 28 * Ingo Molnar : Added APIC timers, based on code 29 * from Jose Renau 30 * Ingo Molnar : various cleanups and rewrites 31 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug. 32 * Maciej W. Rozycki : Bits for genuine 82489DX APICs 33 * Andi Kleen : Changed for SMP boot into long mode. 34 * Martin J. Bligh : Added support for multi-quad systems 35 * Dave Jones : Report invalid combinations of Athlon CPUs. 36 * Rusty Russell : Hacked into shape for new "hotplug" boot process. 37 * Andi Kleen : Converted to new state machine. 38 * Ashok Raj : CPU hotplug support 39 * Glauber Costa : i386 and x86_64 integration 40 */ 41 42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 43 44 #include <linux/init.h> 45 #include <linux/smp.h> 46 #include <linux/module.h> 47 #include <linux/sched.h> 48 #include <linux/percpu.h> 49 #include <linux/bootmem.h> 50 #include <linux/err.h> 51 #include <linux/nmi.h> 52 #include <linux/tboot.h> 53 #include <linux/stackprotector.h> 54 #include <linux/gfp.h> 55 #include <linux/cpuidle.h> 56 57 #include <asm/acpi.h> 58 #include <asm/desc.h> 59 #include <asm/nmi.h> 60 #include <asm/irq.h> 61 #include <asm/idle.h> 62 #include <asm/realmode.h> 63 #include <asm/cpu.h> 64 #include <asm/numa.h> 65 #include <asm/pgtable.h> 66 #include <asm/tlbflush.h> 67 #include <asm/mtrr.h> 68 #include <asm/mwait.h> 69 #include <asm/apic.h> 70 #include <asm/io_apic.h> 71 #include <asm/fpu/internal.h> 72 #include <asm/setup.h> 73 #include <asm/uv/uv.h> 74 #include <linux/mc146818rtc.h> 75 #include <asm/i8259.h> 76 #include <asm/realmode.h> 77 #include <asm/misc.h> 78 79 /* Number of siblings per CPU package */ 80 int smp_num_siblings = 1; 81 EXPORT_SYMBOL(smp_num_siblings); 82 83 /* Last level cache ID of each logical CPU */ 84 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID; 85 86 /* representing HT siblings of each logical CPU */ 87 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map); 88 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 89 90 /* representing HT and core siblings of each logical CPU */ 91 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map); 92 EXPORT_PER_CPU_SYMBOL(cpu_core_map); 93 94 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map); 95 96 /* Per CPU bogomips and other parameters */ 97 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); 98 EXPORT_PER_CPU_SYMBOL(cpu_info); 99 100 /* Logical package management. We might want to allocate that dynamically */ 101 static int *physical_to_logical_pkg __read_mostly; 102 static unsigned long *physical_package_map __read_mostly;; 103 static unsigned long *logical_package_map __read_mostly; 104 static unsigned int max_physical_pkg_id __read_mostly; 105 unsigned int __max_logical_packages __read_mostly; 106 EXPORT_SYMBOL(__max_logical_packages); 107 108 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip) 109 { 110 unsigned long flags; 111 112 spin_lock_irqsave(&rtc_lock, flags); 113 CMOS_WRITE(0xa, 0xf); 114 spin_unlock_irqrestore(&rtc_lock, flags); 115 local_flush_tlb(); 116 pr_debug("1.\n"); 117 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = 118 start_eip >> 4; 119 pr_debug("2.\n"); 120 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 121 start_eip & 0xf; 122 pr_debug("3.\n"); 123 } 124 125 static inline void smpboot_restore_warm_reset_vector(void) 126 { 127 unsigned long flags; 128 129 /* 130 * Install writable page 0 entry to set BIOS data area. 131 */ 132 local_flush_tlb(); 133 134 /* 135 * Paranoid: Set warm reset code and vector here back 136 * to default values. 137 */ 138 spin_lock_irqsave(&rtc_lock, flags); 139 CMOS_WRITE(0, 0xf); 140 spin_unlock_irqrestore(&rtc_lock, flags); 141 142 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0; 143 } 144 145 /* 146 * Report back to the Boot Processor during boot time or to the caller processor 147 * during CPU online. 148 */ 149 static void smp_callin(void) 150 { 151 int cpuid, phys_id; 152 153 /* 154 * If waken up by an INIT in an 82489DX configuration 155 * cpu_callout_mask guarantees we don't get here before 156 * an INIT_deassert IPI reaches our local APIC, so it is 157 * now safe to touch our local APIC. 158 */ 159 cpuid = smp_processor_id(); 160 161 /* 162 * (This works even if the APIC is not enabled.) 163 */ 164 phys_id = read_apic_id(); 165 166 /* 167 * the boot CPU has finished the init stage and is spinning 168 * on callin_map until we finish. We are free to set up this 169 * CPU, first the APIC. (this is probably redundant on most 170 * boards) 171 */ 172 apic_ap_setup(); 173 174 /* 175 * Save our processor parameters. Note: this information 176 * is needed for clock calibration. 177 */ 178 smp_store_cpu_info(cpuid); 179 180 /* 181 * Get our bogomips. 182 * Update loops_per_jiffy in cpu_data. Previous call to 183 * smp_store_cpu_info() stored a value that is close but not as 184 * accurate as the value just calculated. 185 */ 186 calibrate_delay(); 187 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy; 188 pr_debug("Stack at about %p\n", &cpuid); 189 190 /* 191 * This must be done before setting cpu_online_mask 192 * or calling notify_cpu_starting. 193 */ 194 set_cpu_sibling_map(raw_smp_processor_id()); 195 wmb(); 196 197 notify_cpu_starting(cpuid); 198 199 /* 200 * Allow the master to continue. 201 */ 202 cpumask_set_cpu(cpuid, cpu_callin_mask); 203 } 204 205 static int cpu0_logical_apicid; 206 static int enable_start_cpu0; 207 /* 208 * Activate a secondary processor. 209 */ 210 static void notrace start_secondary(void *unused) 211 { 212 /* 213 * Don't put *anything* before cpu_init(), SMP booting is too 214 * fragile that we want to limit the things done here to the 215 * most necessary things. 216 */ 217 cpu_init(); 218 x86_cpuinit.early_percpu_clock_init(); 219 preempt_disable(); 220 smp_callin(); 221 222 enable_start_cpu0 = 0; 223 224 #ifdef CONFIG_X86_32 225 /* switch away from the initial page table */ 226 load_cr3(swapper_pg_dir); 227 __flush_tlb_all(); 228 #endif 229 230 /* otherwise gcc will move up smp_processor_id before the cpu_init */ 231 barrier(); 232 /* 233 * Check TSC synchronization with the BP: 234 */ 235 check_tsc_sync_target(); 236 237 /* 238 * Lock vector_lock and initialize the vectors on this cpu 239 * before setting the cpu online. We must set it online with 240 * vector_lock held to prevent a concurrent setup/teardown 241 * from seeing a half valid vector space. 242 */ 243 lock_vector_lock(); 244 setup_vector_irq(smp_processor_id()); 245 set_cpu_online(smp_processor_id(), true); 246 unlock_vector_lock(); 247 cpu_set_state_online(smp_processor_id()); 248 x86_platform.nmi_init(); 249 250 /* enable local interrupts */ 251 local_irq_enable(); 252 253 /* to prevent fake stack check failure in clock setup */ 254 boot_init_stack_canary(); 255 256 x86_cpuinit.setup_percpu_clockev(); 257 258 wmb(); 259 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 260 } 261 262 int topology_update_package_map(unsigned int apicid, unsigned int cpu) 263 { 264 unsigned int new, pkg = apicid >> boot_cpu_data.x86_coreid_bits; 265 266 /* Called from early boot ? */ 267 if (!physical_package_map) 268 return 0; 269 270 if (pkg >= max_physical_pkg_id) 271 return -EINVAL; 272 273 /* Set the logical package id */ 274 if (test_and_set_bit(pkg, physical_package_map)) 275 goto found; 276 277 new = find_first_zero_bit(logical_package_map, __max_logical_packages); 278 if (new >= __max_logical_packages) { 279 physical_to_logical_pkg[pkg] = -1; 280 pr_warn("APIC(%x) Package %u exceeds logical package map\n", 281 apicid, pkg); 282 return -ENOSPC; 283 } 284 set_bit(new, logical_package_map); 285 pr_info("APIC(%x) Converting physical %u to logical package %u\n", 286 apicid, pkg, new); 287 physical_to_logical_pkg[pkg] = new; 288 289 found: 290 cpu_data(cpu).logical_proc_id = physical_to_logical_pkg[pkg]; 291 return 0; 292 } 293 294 /** 295 * topology_phys_to_logical_pkg - Map a physical package id to a logical 296 * 297 * Returns logical package id or -1 if not found 298 */ 299 int topology_phys_to_logical_pkg(unsigned int phys_pkg) 300 { 301 if (phys_pkg >= max_physical_pkg_id) 302 return -1; 303 return physical_to_logical_pkg[phys_pkg]; 304 } 305 EXPORT_SYMBOL(topology_phys_to_logical_pkg); 306 307 static void __init smp_init_package_map(void) 308 { 309 unsigned int ncpus, cpu; 310 size_t size; 311 312 /* 313 * Today neither Intel nor AMD support heterogenous systems. That 314 * might change in the future.... 315 * 316 * While ideally we'd want '* smp_num_siblings' in the below @ncpus 317 * computation, this won't actually work since some Intel BIOSes 318 * report inconsistent HT data when they disable HT. 319 * 320 * In particular, they reduce the APIC-IDs to only include the cores, 321 * but leave the CPUID topology to say there are (2) siblings. 322 * This means we don't know how many threads there will be until 323 * after the APIC enumeration. 324 * 325 * By not including this we'll sometimes over-estimate the number of 326 * logical packages by the amount of !present siblings, but this is 327 * still better than MAX_LOCAL_APIC. 328 * 329 * We use total_cpus not nr_cpu_ids because nr_cpu_ids can be limited 330 * on the command line leading to a similar issue as the HT disable 331 * problem because the hyperthreads are usually enumerated after the 332 * primary cores. 333 */ 334 ncpus = boot_cpu_data.x86_max_cores; 335 if (!ncpus) { 336 pr_warn("x86_max_cores == zero !?!?"); 337 ncpus = 1; 338 } 339 340 __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus); 341 342 /* 343 * Possibly larger than what we need as the number of apic ids per 344 * package can be smaller than the actual used apic ids. 345 */ 346 max_physical_pkg_id = DIV_ROUND_UP(MAX_LOCAL_APIC, ncpus); 347 size = max_physical_pkg_id * sizeof(unsigned int); 348 physical_to_logical_pkg = kmalloc(size, GFP_KERNEL); 349 memset(physical_to_logical_pkg, 0xff, size); 350 size = BITS_TO_LONGS(max_physical_pkg_id) * sizeof(unsigned long); 351 physical_package_map = kzalloc(size, GFP_KERNEL); 352 size = BITS_TO_LONGS(__max_logical_packages) * sizeof(unsigned long); 353 logical_package_map = kzalloc(size, GFP_KERNEL); 354 355 pr_info("Max logical packages: %u\n", __max_logical_packages); 356 357 for_each_present_cpu(cpu) { 358 unsigned int apicid = apic->cpu_present_to_apicid(cpu); 359 360 if (apicid == BAD_APICID || !apic->apic_id_valid(apicid)) 361 continue; 362 if (!topology_update_package_map(apicid, cpu)) 363 continue; 364 pr_warn("CPU %u APICId %x disabled\n", cpu, apicid); 365 per_cpu(x86_bios_cpu_apicid, cpu) = BAD_APICID; 366 set_cpu_possible(cpu, false); 367 set_cpu_present(cpu, false); 368 } 369 } 370 371 void __init smp_store_boot_cpu_info(void) 372 { 373 int id = 0; /* CPU 0 */ 374 struct cpuinfo_x86 *c = &cpu_data(id); 375 376 *c = boot_cpu_data; 377 c->cpu_index = id; 378 smp_init_package_map(); 379 } 380 381 /* 382 * The bootstrap kernel entry code has set these up. Save them for 383 * a given CPU 384 */ 385 void smp_store_cpu_info(int id) 386 { 387 struct cpuinfo_x86 *c = &cpu_data(id); 388 389 *c = boot_cpu_data; 390 c->cpu_index = id; 391 /* 392 * During boot time, CPU0 has this setup already. Save the info when 393 * bringing up AP or offlined CPU0. 394 */ 395 identify_secondary_cpu(c); 396 } 397 398 static bool 399 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 400 { 401 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 402 403 return (cpu_to_node(cpu1) == cpu_to_node(cpu2)); 404 } 405 406 static bool 407 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name) 408 { 409 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 410 411 return !WARN_ONCE(!topology_same_node(c, o), 412 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! " 413 "[node: %d != %d]. Ignoring dependency.\n", 414 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2)); 415 } 416 417 #define link_mask(mfunc, c1, c2) \ 418 do { \ 419 cpumask_set_cpu((c1), mfunc(c2)); \ 420 cpumask_set_cpu((c2), mfunc(c1)); \ 421 } while (0) 422 423 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 424 { 425 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { 426 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 427 428 if (c->phys_proc_id == o->phys_proc_id && 429 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2) && 430 c->cpu_core_id == o->cpu_core_id) 431 return topology_sane(c, o, "smt"); 432 433 } else if (c->phys_proc_id == o->phys_proc_id && 434 c->cpu_core_id == o->cpu_core_id) { 435 return topology_sane(c, o, "smt"); 436 } 437 438 return false; 439 } 440 441 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 442 { 443 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 444 445 if (per_cpu(cpu_llc_id, cpu1) != BAD_APICID && 446 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) 447 return topology_sane(c, o, "llc"); 448 449 return false; 450 } 451 452 /* 453 * Unlike the other levels, we do not enforce keeping a 454 * multicore group inside a NUMA node. If this happens, we will 455 * discard the MC level of the topology later. 456 */ 457 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 458 { 459 if (c->phys_proc_id == o->phys_proc_id) 460 return true; 461 return false; 462 } 463 464 static struct sched_domain_topology_level numa_inside_package_topology[] = { 465 #ifdef CONFIG_SCHED_SMT 466 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 467 #endif 468 #ifdef CONFIG_SCHED_MC 469 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 470 #endif 471 { NULL, }, 472 }; 473 /* 474 * set_sched_topology() sets the topology internal to a CPU. The 475 * NUMA topologies are layered on top of it to build the full 476 * system topology. 477 * 478 * If NUMA nodes are observed to occur within a CPU package, this 479 * function should be called. It forces the sched domain code to 480 * only use the SMT level for the CPU portion of the topology. 481 * This essentially falls back to relying on NUMA information 482 * from the SRAT table to describe the entire system topology 483 * (except for hyperthreads). 484 */ 485 static void primarily_use_numa_for_topology(void) 486 { 487 set_sched_topology(numa_inside_package_topology); 488 } 489 490 void set_cpu_sibling_map(int cpu) 491 { 492 bool has_smt = smp_num_siblings > 1; 493 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1; 494 struct cpuinfo_x86 *c = &cpu_data(cpu); 495 struct cpuinfo_x86 *o; 496 int i; 497 498 cpumask_set_cpu(cpu, cpu_sibling_setup_mask); 499 500 if (!has_mp) { 501 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu)); 502 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu)); 503 cpumask_set_cpu(cpu, topology_core_cpumask(cpu)); 504 c->booted_cores = 1; 505 return; 506 } 507 508 for_each_cpu(i, cpu_sibling_setup_mask) { 509 o = &cpu_data(i); 510 511 if ((i == cpu) || (has_smt && match_smt(c, o))) 512 link_mask(topology_sibling_cpumask, cpu, i); 513 514 if ((i == cpu) || (has_mp && match_llc(c, o))) 515 link_mask(cpu_llc_shared_mask, cpu, i); 516 517 } 518 519 /* 520 * This needs a separate iteration over the cpus because we rely on all 521 * topology_sibling_cpumask links to be set-up. 522 */ 523 for_each_cpu(i, cpu_sibling_setup_mask) { 524 o = &cpu_data(i); 525 526 if ((i == cpu) || (has_mp && match_die(c, o))) { 527 link_mask(topology_core_cpumask, cpu, i); 528 529 /* 530 * Does this new cpu bringup a new core? 531 */ 532 if (cpumask_weight( 533 topology_sibling_cpumask(cpu)) == 1) { 534 /* 535 * for each core in package, increment 536 * the booted_cores for this new cpu 537 */ 538 if (cpumask_first( 539 topology_sibling_cpumask(i)) == i) 540 c->booted_cores++; 541 /* 542 * increment the core count for all 543 * the other cpus in this package 544 */ 545 if (i != cpu) 546 cpu_data(i).booted_cores++; 547 } else if (i != cpu && !c->booted_cores) 548 c->booted_cores = cpu_data(i).booted_cores; 549 } 550 if (match_die(c, o) && !topology_same_node(c, o)) 551 primarily_use_numa_for_topology(); 552 } 553 } 554 555 /* maps the cpu to the sched domain representing multi-core */ 556 const struct cpumask *cpu_coregroup_mask(int cpu) 557 { 558 return cpu_llc_shared_mask(cpu); 559 } 560 561 static void impress_friends(void) 562 { 563 int cpu; 564 unsigned long bogosum = 0; 565 /* 566 * Allow the user to impress friends. 567 */ 568 pr_debug("Before bogomips\n"); 569 for_each_possible_cpu(cpu) 570 if (cpumask_test_cpu(cpu, cpu_callout_mask)) 571 bogosum += cpu_data(cpu).loops_per_jiffy; 572 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n", 573 num_online_cpus(), 574 bogosum/(500000/HZ), 575 (bogosum/(5000/HZ))%100); 576 577 pr_debug("Before bogocount - setting activated=1\n"); 578 } 579 580 void __inquire_remote_apic(int apicid) 581 { 582 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 }; 583 const char * const names[] = { "ID", "VERSION", "SPIV" }; 584 int timeout; 585 u32 status; 586 587 pr_info("Inquiring remote APIC 0x%x...\n", apicid); 588 589 for (i = 0; i < ARRAY_SIZE(regs); i++) { 590 pr_info("... APIC 0x%x %s: ", apicid, names[i]); 591 592 /* 593 * Wait for idle. 594 */ 595 status = safe_apic_wait_icr_idle(); 596 if (status) 597 pr_cont("a previous APIC delivery may have failed\n"); 598 599 apic_icr_write(APIC_DM_REMRD | regs[i], apicid); 600 601 timeout = 0; 602 do { 603 udelay(100); 604 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK; 605 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000); 606 607 switch (status) { 608 case APIC_ICR_RR_VALID: 609 status = apic_read(APIC_RRR); 610 pr_cont("%08x\n", status); 611 break; 612 default: 613 pr_cont("failed\n"); 614 } 615 } 616 } 617 618 /* 619 * The Multiprocessor Specification 1.4 (1997) example code suggests 620 * that there should be a 10ms delay between the BSP asserting INIT 621 * and de-asserting INIT, when starting a remote processor. 622 * But that slows boot and resume on modern processors, which include 623 * many cores and don't require that delay. 624 * 625 * Cmdline "init_cpu_udelay=" is available to over-ride this delay. 626 * Modern processor families are quirked to remove the delay entirely. 627 */ 628 #define UDELAY_10MS_DEFAULT 10000 629 630 static unsigned int init_udelay = UINT_MAX; 631 632 static int __init cpu_init_udelay(char *str) 633 { 634 get_option(&str, &init_udelay); 635 636 return 0; 637 } 638 early_param("cpu_init_udelay", cpu_init_udelay); 639 640 static void __init smp_quirk_init_udelay(void) 641 { 642 /* if cmdline changed it from default, leave it alone */ 643 if (init_udelay != UINT_MAX) 644 return; 645 646 /* if modern processor, use no delay */ 647 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) || 648 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) { 649 init_udelay = 0; 650 return; 651 } 652 /* else, use legacy delay */ 653 init_udelay = UDELAY_10MS_DEFAULT; 654 } 655 656 /* 657 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal 658 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this 659 * won't ... remember to clear down the APIC, etc later. 660 */ 661 int 662 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip) 663 { 664 unsigned long send_status, accept_status = 0; 665 int maxlvt; 666 667 /* Target chip */ 668 /* Boot on the stack */ 669 /* Kick the second */ 670 apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid); 671 672 pr_debug("Waiting for send to finish...\n"); 673 send_status = safe_apic_wait_icr_idle(); 674 675 /* 676 * Give the other CPU some time to accept the IPI. 677 */ 678 udelay(200); 679 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) { 680 maxlvt = lapic_get_maxlvt(); 681 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 682 apic_write(APIC_ESR, 0); 683 accept_status = (apic_read(APIC_ESR) & 0xEF); 684 } 685 pr_debug("NMI sent\n"); 686 687 if (send_status) 688 pr_err("APIC never delivered???\n"); 689 if (accept_status) 690 pr_err("APIC delivery error (%lx)\n", accept_status); 691 692 return (send_status | accept_status); 693 } 694 695 static int 696 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip) 697 { 698 unsigned long send_status = 0, accept_status = 0; 699 int maxlvt, num_starts, j; 700 701 maxlvt = lapic_get_maxlvt(); 702 703 /* 704 * Be paranoid about clearing APIC errors. 705 */ 706 if (APIC_INTEGRATED(apic_version[phys_apicid])) { 707 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 708 apic_write(APIC_ESR, 0); 709 apic_read(APIC_ESR); 710 } 711 712 pr_debug("Asserting INIT\n"); 713 714 /* 715 * Turn INIT on target chip 716 */ 717 /* 718 * Send IPI 719 */ 720 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, 721 phys_apicid); 722 723 pr_debug("Waiting for send to finish...\n"); 724 send_status = safe_apic_wait_icr_idle(); 725 726 udelay(init_udelay); 727 728 pr_debug("Deasserting INIT\n"); 729 730 /* Target chip */ 731 /* Send IPI */ 732 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid); 733 734 pr_debug("Waiting for send to finish...\n"); 735 send_status = safe_apic_wait_icr_idle(); 736 737 mb(); 738 739 /* 740 * Should we send STARTUP IPIs ? 741 * 742 * Determine this based on the APIC version. 743 * If we don't have an integrated APIC, don't send the STARTUP IPIs. 744 */ 745 if (APIC_INTEGRATED(apic_version[phys_apicid])) 746 num_starts = 2; 747 else 748 num_starts = 0; 749 750 /* 751 * Run STARTUP IPI loop. 752 */ 753 pr_debug("#startup loops: %d\n", num_starts); 754 755 for (j = 1; j <= num_starts; j++) { 756 pr_debug("Sending STARTUP #%d\n", j); 757 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 758 apic_write(APIC_ESR, 0); 759 apic_read(APIC_ESR); 760 pr_debug("After apic_write\n"); 761 762 /* 763 * STARTUP IPI 764 */ 765 766 /* Target chip */ 767 /* Boot on the stack */ 768 /* Kick the second */ 769 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12), 770 phys_apicid); 771 772 /* 773 * Give the other CPU some time to accept the IPI. 774 */ 775 if (init_udelay == 0) 776 udelay(10); 777 else 778 udelay(300); 779 780 pr_debug("Startup point 1\n"); 781 782 pr_debug("Waiting for send to finish...\n"); 783 send_status = safe_apic_wait_icr_idle(); 784 785 /* 786 * Give the other CPU some time to accept the IPI. 787 */ 788 if (init_udelay == 0) 789 udelay(10); 790 else 791 udelay(200); 792 793 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 794 apic_write(APIC_ESR, 0); 795 accept_status = (apic_read(APIC_ESR) & 0xEF); 796 if (send_status || accept_status) 797 break; 798 } 799 pr_debug("After Startup\n"); 800 801 if (send_status) 802 pr_err("APIC never delivered???\n"); 803 if (accept_status) 804 pr_err("APIC delivery error (%lx)\n", accept_status); 805 806 return (send_status | accept_status); 807 } 808 809 void smp_announce(void) 810 { 811 int num_nodes = num_online_nodes(); 812 813 printk(KERN_INFO "x86: Booted up %d node%s, %d CPUs\n", 814 num_nodes, (num_nodes > 1 ? "s" : ""), num_online_cpus()); 815 } 816 817 /* reduce the number of lines printed when booting a large cpu count system */ 818 static void announce_cpu(int cpu, int apicid) 819 { 820 static int current_node = -1; 821 int node = early_cpu_to_node(cpu); 822 static int width, node_width; 823 824 if (!width) 825 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */ 826 827 if (!node_width) 828 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */ 829 830 if (cpu == 1) 831 printk(KERN_INFO "x86: Booting SMP configuration:\n"); 832 833 if (system_state == SYSTEM_BOOTING) { 834 if (node != current_node) { 835 if (current_node > (-1)) 836 pr_cont("\n"); 837 current_node = node; 838 839 printk(KERN_INFO ".... node %*s#%d, CPUs: ", 840 node_width - num_digits(node), " ", node); 841 } 842 843 /* Add padding for the BSP */ 844 if (cpu == 1) 845 pr_cont("%*s", width + 1, " "); 846 847 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu); 848 849 } else 850 pr_info("Booting Node %d Processor %d APIC 0x%x\n", 851 node, cpu, apicid); 852 } 853 854 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs) 855 { 856 int cpu; 857 858 cpu = smp_processor_id(); 859 if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0) 860 return NMI_HANDLED; 861 862 return NMI_DONE; 863 } 864 865 /* 866 * Wake up AP by INIT, INIT, STARTUP sequence. 867 * 868 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS 869 * boot-strap code which is not a desired behavior for waking up BSP. To 870 * void the boot-strap code, wake up CPU0 by NMI instead. 871 * 872 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined 873 * (i.e. physically hot removed and then hot added), NMI won't wake it up. 874 * We'll change this code in the future to wake up hard offlined CPU0 if 875 * real platform and request are available. 876 */ 877 static int 878 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid, 879 int *cpu0_nmi_registered) 880 { 881 int id; 882 int boot_error; 883 884 preempt_disable(); 885 886 /* 887 * Wake up AP by INIT, INIT, STARTUP sequence. 888 */ 889 if (cpu) { 890 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip); 891 goto out; 892 } 893 894 /* 895 * Wake up BSP by nmi. 896 * 897 * Register a NMI handler to help wake up CPU0. 898 */ 899 boot_error = register_nmi_handler(NMI_LOCAL, 900 wakeup_cpu0_nmi, 0, "wake_cpu0"); 901 902 if (!boot_error) { 903 enable_start_cpu0 = 1; 904 *cpu0_nmi_registered = 1; 905 if (apic->dest_logical == APIC_DEST_LOGICAL) 906 id = cpu0_logical_apicid; 907 else 908 id = apicid; 909 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip); 910 } 911 912 out: 913 preempt_enable(); 914 915 return boot_error; 916 } 917 918 void common_cpu_up(unsigned int cpu, struct task_struct *idle) 919 { 920 /* Just in case we booted with a single CPU. */ 921 alternatives_enable_smp(); 922 923 per_cpu(current_task, cpu) = idle; 924 925 #ifdef CONFIG_X86_32 926 /* Stack for startup_32 can be just as for start_secondary onwards */ 927 irq_ctx_init(cpu); 928 per_cpu(cpu_current_top_of_stack, cpu) = 929 (unsigned long)task_stack_page(idle) + THREAD_SIZE; 930 #else 931 clear_tsk_thread_flag(idle, TIF_FORK); 932 initial_gs = per_cpu_offset(cpu); 933 #endif 934 } 935 936 /* 937 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad 938 * (ie clustered apic addressing mode), this is a LOGICAL apic ID. 939 * Returns zero if CPU booted OK, else error code from 940 * ->wakeup_secondary_cpu. 941 */ 942 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle) 943 { 944 volatile u32 *trampoline_status = 945 (volatile u32 *) __va(real_mode_header->trampoline_status); 946 /* start_ip had better be page-aligned! */ 947 unsigned long start_ip = real_mode_header->trampoline_start; 948 949 unsigned long boot_error = 0; 950 int cpu0_nmi_registered = 0; 951 unsigned long timeout; 952 953 idle->thread.sp = (unsigned long) (((struct pt_regs *) 954 (THREAD_SIZE + task_stack_page(idle))) - 1); 955 956 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu); 957 initial_code = (unsigned long)start_secondary; 958 stack_start = idle->thread.sp; 959 960 /* 961 * Enable the espfix hack for this CPU 962 */ 963 #ifdef CONFIG_X86_ESPFIX64 964 init_espfix_ap(cpu); 965 #endif 966 967 /* So we see what's up */ 968 announce_cpu(cpu, apicid); 969 970 /* 971 * This grunge runs the startup process for 972 * the targeted processor. 973 */ 974 975 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) { 976 977 pr_debug("Setting warm reset code and vector.\n"); 978 979 smpboot_setup_warm_reset_vector(start_ip); 980 /* 981 * Be paranoid about clearing APIC errors. 982 */ 983 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) { 984 apic_write(APIC_ESR, 0); 985 apic_read(APIC_ESR); 986 } 987 } 988 989 /* 990 * AP might wait on cpu_callout_mask in cpu_init() with 991 * cpu_initialized_mask set if previous attempt to online 992 * it timed-out. Clear cpu_initialized_mask so that after 993 * INIT/SIPI it could start with a clean state. 994 */ 995 cpumask_clear_cpu(cpu, cpu_initialized_mask); 996 smp_mb(); 997 998 /* 999 * Wake up a CPU in difference cases: 1000 * - Use the method in the APIC driver if it's defined 1001 * Otherwise, 1002 * - Use an INIT boot APIC message for APs or NMI for BSP. 1003 */ 1004 if (apic->wakeup_secondary_cpu) 1005 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip); 1006 else 1007 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid, 1008 &cpu0_nmi_registered); 1009 1010 if (!boot_error) { 1011 /* 1012 * Wait 10s total for first sign of life from AP 1013 */ 1014 boot_error = -1; 1015 timeout = jiffies + 10*HZ; 1016 while (time_before(jiffies, timeout)) { 1017 if (cpumask_test_cpu(cpu, cpu_initialized_mask)) { 1018 /* 1019 * Tell AP to proceed with initialization 1020 */ 1021 cpumask_set_cpu(cpu, cpu_callout_mask); 1022 boot_error = 0; 1023 break; 1024 } 1025 schedule(); 1026 } 1027 } 1028 1029 if (!boot_error) { 1030 /* 1031 * Wait till AP completes initial initialization 1032 */ 1033 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) { 1034 /* 1035 * Allow other tasks to run while we wait for the 1036 * AP to come online. This also gives a chance 1037 * for the MTRR work(triggered by the AP coming online) 1038 * to be completed in the stop machine context. 1039 */ 1040 schedule(); 1041 } 1042 } 1043 1044 /* mark "stuck" area as not stuck */ 1045 *trampoline_status = 0; 1046 1047 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) { 1048 /* 1049 * Cleanup possible dangling ends... 1050 */ 1051 smpboot_restore_warm_reset_vector(); 1052 } 1053 /* 1054 * Clean up the nmi handler. Do this after the callin and callout sync 1055 * to avoid impact of possible long unregister time. 1056 */ 1057 if (cpu0_nmi_registered) 1058 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0"); 1059 1060 return boot_error; 1061 } 1062 1063 int native_cpu_up(unsigned int cpu, struct task_struct *tidle) 1064 { 1065 int apicid = apic->cpu_present_to_apicid(cpu); 1066 unsigned long flags; 1067 int err; 1068 1069 WARN_ON(irqs_disabled()); 1070 1071 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu); 1072 1073 if (apicid == BAD_APICID || 1074 !physid_isset(apicid, phys_cpu_present_map) || 1075 !apic->apic_id_valid(apicid)) { 1076 pr_err("%s: bad cpu %d\n", __func__, cpu); 1077 return -EINVAL; 1078 } 1079 1080 /* 1081 * Already booted CPU? 1082 */ 1083 if (cpumask_test_cpu(cpu, cpu_callin_mask)) { 1084 pr_debug("do_boot_cpu %d Already started\n", cpu); 1085 return -ENOSYS; 1086 } 1087 1088 /* 1089 * Save current MTRR state in case it was changed since early boot 1090 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync: 1091 */ 1092 mtrr_save_state(); 1093 1094 /* x86 CPUs take themselves offline, so delayed offline is OK. */ 1095 err = cpu_check_up_prepare(cpu); 1096 if (err && err != -EBUSY) 1097 return err; 1098 1099 /* the FPU context is blank, nobody can own it */ 1100 __cpu_disable_lazy_restore(cpu); 1101 1102 common_cpu_up(cpu, tidle); 1103 1104 /* 1105 * We have to walk the irq descriptors to setup the vector 1106 * space for the cpu which comes online. Prevent irq 1107 * alloc/free across the bringup. 1108 */ 1109 irq_lock_sparse(); 1110 1111 err = do_boot_cpu(apicid, cpu, tidle); 1112 1113 if (err) { 1114 irq_unlock_sparse(); 1115 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu); 1116 return -EIO; 1117 } 1118 1119 /* 1120 * Check TSC synchronization with the AP (keep irqs disabled 1121 * while doing so): 1122 */ 1123 local_irq_save(flags); 1124 check_tsc_sync_source(cpu); 1125 local_irq_restore(flags); 1126 1127 while (!cpu_online(cpu)) { 1128 cpu_relax(); 1129 touch_nmi_watchdog(); 1130 } 1131 1132 irq_unlock_sparse(); 1133 1134 return 0; 1135 } 1136 1137 /** 1138 * arch_disable_smp_support() - disables SMP support for x86 at runtime 1139 */ 1140 void arch_disable_smp_support(void) 1141 { 1142 disable_ioapic_support(); 1143 } 1144 1145 /* 1146 * Fall back to non SMP mode after errors. 1147 * 1148 * RED-PEN audit/test this more. I bet there is more state messed up here. 1149 */ 1150 static __init void disable_smp(void) 1151 { 1152 pr_info("SMP disabled\n"); 1153 1154 disable_ioapic_support(); 1155 1156 init_cpu_present(cpumask_of(0)); 1157 init_cpu_possible(cpumask_of(0)); 1158 1159 if (smp_found_config) 1160 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map); 1161 else 1162 physid_set_mask_of_physid(0, &phys_cpu_present_map); 1163 cpumask_set_cpu(0, topology_sibling_cpumask(0)); 1164 cpumask_set_cpu(0, topology_core_cpumask(0)); 1165 } 1166 1167 enum { 1168 SMP_OK, 1169 SMP_NO_CONFIG, 1170 SMP_NO_APIC, 1171 SMP_FORCE_UP, 1172 }; 1173 1174 /* 1175 * Various sanity checks. 1176 */ 1177 static int __init smp_sanity_check(unsigned max_cpus) 1178 { 1179 preempt_disable(); 1180 1181 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32) 1182 if (def_to_bigsmp && nr_cpu_ids > 8) { 1183 unsigned int cpu; 1184 unsigned nr; 1185 1186 pr_warn("More than 8 CPUs detected - skipping them\n" 1187 "Use CONFIG_X86_BIGSMP\n"); 1188 1189 nr = 0; 1190 for_each_present_cpu(cpu) { 1191 if (nr >= 8) 1192 set_cpu_present(cpu, false); 1193 nr++; 1194 } 1195 1196 nr = 0; 1197 for_each_possible_cpu(cpu) { 1198 if (nr >= 8) 1199 set_cpu_possible(cpu, false); 1200 nr++; 1201 } 1202 1203 nr_cpu_ids = 8; 1204 } 1205 #endif 1206 1207 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) { 1208 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n", 1209 hard_smp_processor_id()); 1210 1211 physid_set(hard_smp_processor_id(), phys_cpu_present_map); 1212 } 1213 1214 /* 1215 * If we couldn't find an SMP configuration at boot time, 1216 * get out of here now! 1217 */ 1218 if (!smp_found_config && !acpi_lapic) { 1219 preempt_enable(); 1220 pr_notice("SMP motherboard not detected\n"); 1221 return SMP_NO_CONFIG; 1222 } 1223 1224 /* 1225 * Should not be necessary because the MP table should list the boot 1226 * CPU too, but we do it for the sake of robustness anyway. 1227 */ 1228 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) { 1229 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n", 1230 boot_cpu_physical_apicid); 1231 physid_set(hard_smp_processor_id(), phys_cpu_present_map); 1232 } 1233 preempt_enable(); 1234 1235 /* 1236 * If we couldn't find a local APIC, then get out of here now! 1237 */ 1238 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) && 1239 !cpu_has_apic) { 1240 if (!disable_apic) { 1241 pr_err("BIOS bug, local APIC #%d not detected!...\n", 1242 boot_cpu_physical_apicid); 1243 pr_err("... forcing use of dummy APIC emulation (tell your hw vendor)\n"); 1244 } 1245 return SMP_NO_APIC; 1246 } 1247 1248 /* 1249 * If SMP should be disabled, then really disable it! 1250 */ 1251 if (!max_cpus) { 1252 pr_info("SMP mode deactivated\n"); 1253 return SMP_FORCE_UP; 1254 } 1255 1256 return SMP_OK; 1257 } 1258 1259 static void __init smp_cpu_index_default(void) 1260 { 1261 int i; 1262 struct cpuinfo_x86 *c; 1263 1264 for_each_possible_cpu(i) { 1265 c = &cpu_data(i); 1266 /* mark all to hotplug */ 1267 c->cpu_index = nr_cpu_ids; 1268 } 1269 } 1270 1271 /* 1272 * Prepare for SMP bootup. The MP table or ACPI has been read 1273 * earlier. Just do some sanity checking here and enable APIC mode. 1274 */ 1275 void __init native_smp_prepare_cpus(unsigned int max_cpus) 1276 { 1277 unsigned int i; 1278 1279 smp_cpu_index_default(); 1280 1281 /* 1282 * Setup boot CPU information 1283 */ 1284 smp_store_boot_cpu_info(); /* Final full version of the data */ 1285 cpumask_copy(cpu_callin_mask, cpumask_of(0)); 1286 mb(); 1287 1288 current_thread_info()->cpu = 0; /* needed? */ 1289 for_each_possible_cpu(i) { 1290 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL); 1291 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL); 1292 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL); 1293 } 1294 set_cpu_sibling_map(0); 1295 1296 switch (smp_sanity_check(max_cpus)) { 1297 case SMP_NO_CONFIG: 1298 disable_smp(); 1299 if (APIC_init_uniprocessor()) 1300 pr_notice("Local APIC not detected. Using dummy APIC emulation.\n"); 1301 return; 1302 case SMP_NO_APIC: 1303 disable_smp(); 1304 return; 1305 case SMP_FORCE_UP: 1306 disable_smp(); 1307 apic_bsp_setup(false); 1308 return; 1309 case SMP_OK: 1310 break; 1311 } 1312 1313 default_setup_apic_routing(); 1314 1315 if (read_apic_id() != boot_cpu_physical_apicid) { 1316 panic("Boot APIC ID in local APIC unexpected (%d vs %d)", 1317 read_apic_id(), boot_cpu_physical_apicid); 1318 /* Or can we switch back to PIC here? */ 1319 } 1320 1321 cpu0_logical_apicid = apic_bsp_setup(false); 1322 1323 pr_info("CPU%d: ", 0); 1324 print_cpu_info(&cpu_data(0)); 1325 1326 if (is_uv_system()) 1327 uv_system_init(); 1328 1329 set_mtrr_aps_delayed_init(); 1330 1331 smp_quirk_init_udelay(); 1332 } 1333 1334 void arch_enable_nonboot_cpus_begin(void) 1335 { 1336 set_mtrr_aps_delayed_init(); 1337 } 1338 1339 void arch_enable_nonboot_cpus_end(void) 1340 { 1341 mtrr_aps_init(); 1342 } 1343 1344 /* 1345 * Early setup to make printk work. 1346 */ 1347 void __init native_smp_prepare_boot_cpu(void) 1348 { 1349 int me = smp_processor_id(); 1350 switch_to_new_gdt(me); 1351 /* already set me in cpu_online_mask in boot_cpu_init() */ 1352 cpumask_set_cpu(me, cpu_callout_mask); 1353 cpu_set_state_online(me); 1354 } 1355 1356 void __init native_smp_cpus_done(unsigned int max_cpus) 1357 { 1358 pr_debug("Boot done\n"); 1359 1360 nmi_selftest(); 1361 impress_friends(); 1362 setup_ioapic_dest(); 1363 mtrr_aps_init(); 1364 } 1365 1366 static int __initdata setup_possible_cpus = -1; 1367 static int __init _setup_possible_cpus(char *str) 1368 { 1369 get_option(&str, &setup_possible_cpus); 1370 return 0; 1371 } 1372 early_param("possible_cpus", _setup_possible_cpus); 1373 1374 1375 /* 1376 * cpu_possible_mask should be static, it cannot change as cpu's 1377 * are onlined, or offlined. The reason is per-cpu data-structures 1378 * are allocated by some modules at init time, and dont expect to 1379 * do this dynamically on cpu arrival/departure. 1380 * cpu_present_mask on the other hand can change dynamically. 1381 * In case when cpu_hotplug is not compiled, then we resort to current 1382 * behaviour, which is cpu_possible == cpu_present. 1383 * - Ashok Raj 1384 * 1385 * Three ways to find out the number of additional hotplug CPUs: 1386 * - If the BIOS specified disabled CPUs in ACPI/mptables use that. 1387 * - The user can overwrite it with possible_cpus=NUM 1388 * - Otherwise don't reserve additional CPUs. 1389 * We do this because additional CPUs waste a lot of memory. 1390 * -AK 1391 */ 1392 __init void prefill_possible_map(void) 1393 { 1394 int i, possible; 1395 1396 /* no processor from mptable or madt */ 1397 if (!num_processors) 1398 num_processors = 1; 1399 1400 i = setup_max_cpus ?: 1; 1401 if (setup_possible_cpus == -1) { 1402 possible = num_processors; 1403 #ifdef CONFIG_HOTPLUG_CPU 1404 if (setup_max_cpus) 1405 possible += disabled_cpus; 1406 #else 1407 if (possible > i) 1408 possible = i; 1409 #endif 1410 } else 1411 possible = setup_possible_cpus; 1412 1413 total_cpus = max_t(int, possible, num_processors + disabled_cpus); 1414 1415 /* nr_cpu_ids could be reduced via nr_cpus= */ 1416 if (possible > nr_cpu_ids) { 1417 pr_warn("%d Processors exceeds NR_CPUS limit of %d\n", 1418 possible, nr_cpu_ids); 1419 possible = nr_cpu_ids; 1420 } 1421 1422 #ifdef CONFIG_HOTPLUG_CPU 1423 if (!setup_max_cpus) 1424 #endif 1425 if (possible > i) { 1426 pr_warn("%d Processors exceeds max_cpus limit of %u\n", 1427 possible, setup_max_cpus); 1428 possible = i; 1429 } 1430 1431 pr_info("Allowing %d CPUs, %d hotplug CPUs\n", 1432 possible, max_t(int, possible - num_processors, 0)); 1433 1434 for (i = 0; i < possible; i++) 1435 set_cpu_possible(i, true); 1436 for (; i < NR_CPUS; i++) 1437 set_cpu_possible(i, false); 1438 1439 nr_cpu_ids = possible; 1440 } 1441 1442 #ifdef CONFIG_HOTPLUG_CPU 1443 1444 static void remove_siblinginfo(int cpu) 1445 { 1446 int sibling; 1447 struct cpuinfo_x86 *c = &cpu_data(cpu); 1448 1449 for_each_cpu(sibling, topology_core_cpumask(cpu)) { 1450 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling)); 1451 /*/ 1452 * last thread sibling in this cpu core going down 1453 */ 1454 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1) 1455 cpu_data(sibling).booted_cores--; 1456 } 1457 1458 for_each_cpu(sibling, topology_sibling_cpumask(cpu)) 1459 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling)); 1460 for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) 1461 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling)); 1462 cpumask_clear(cpu_llc_shared_mask(cpu)); 1463 cpumask_clear(topology_sibling_cpumask(cpu)); 1464 cpumask_clear(topology_core_cpumask(cpu)); 1465 c->phys_proc_id = 0; 1466 c->cpu_core_id = 0; 1467 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask); 1468 } 1469 1470 static void remove_cpu_from_maps(int cpu) 1471 { 1472 set_cpu_online(cpu, false); 1473 cpumask_clear_cpu(cpu, cpu_callout_mask); 1474 cpumask_clear_cpu(cpu, cpu_callin_mask); 1475 /* was set by cpu_init() */ 1476 cpumask_clear_cpu(cpu, cpu_initialized_mask); 1477 numa_remove_cpu(cpu); 1478 } 1479 1480 void cpu_disable_common(void) 1481 { 1482 int cpu = smp_processor_id(); 1483 1484 remove_siblinginfo(cpu); 1485 1486 /* It's now safe to remove this processor from the online map */ 1487 lock_vector_lock(); 1488 remove_cpu_from_maps(cpu); 1489 unlock_vector_lock(); 1490 fixup_irqs(); 1491 } 1492 1493 int native_cpu_disable(void) 1494 { 1495 int ret; 1496 1497 ret = check_irq_vectors_for_cpu_disable(); 1498 if (ret) 1499 return ret; 1500 1501 clear_local_APIC(); 1502 cpu_disable_common(); 1503 1504 return 0; 1505 } 1506 1507 int common_cpu_die(unsigned int cpu) 1508 { 1509 int ret = 0; 1510 1511 /* We don't do anything here: idle task is faking death itself. */ 1512 1513 /* They ack this in play_dead() by setting CPU_DEAD */ 1514 if (cpu_wait_death(cpu, 5)) { 1515 if (system_state == SYSTEM_RUNNING) 1516 pr_info("CPU %u is now offline\n", cpu); 1517 } else { 1518 pr_err("CPU %u didn't die...\n", cpu); 1519 ret = -1; 1520 } 1521 1522 return ret; 1523 } 1524 1525 void native_cpu_die(unsigned int cpu) 1526 { 1527 common_cpu_die(cpu); 1528 } 1529 1530 void play_dead_common(void) 1531 { 1532 idle_task_exit(); 1533 reset_lazy_tlbstate(); 1534 amd_e400_remove_cpu(raw_smp_processor_id()); 1535 1536 /* Ack it */ 1537 (void)cpu_report_death(); 1538 1539 /* 1540 * With physical CPU hotplug, we should halt the cpu 1541 */ 1542 local_irq_disable(); 1543 } 1544 1545 static bool wakeup_cpu0(void) 1546 { 1547 if (smp_processor_id() == 0 && enable_start_cpu0) 1548 return true; 1549 1550 return false; 1551 } 1552 1553 /* 1554 * We need to flush the caches before going to sleep, lest we have 1555 * dirty data in our caches when we come back up. 1556 */ 1557 static inline void mwait_play_dead(void) 1558 { 1559 unsigned int eax, ebx, ecx, edx; 1560 unsigned int highest_cstate = 0; 1561 unsigned int highest_subcstate = 0; 1562 void *mwait_ptr; 1563 int i; 1564 1565 if (!this_cpu_has(X86_FEATURE_MWAIT)) 1566 return; 1567 if (!this_cpu_has(X86_FEATURE_CLFLUSH)) 1568 return; 1569 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF) 1570 return; 1571 1572 eax = CPUID_MWAIT_LEAF; 1573 ecx = 0; 1574 native_cpuid(&eax, &ebx, &ecx, &edx); 1575 1576 /* 1577 * eax will be 0 if EDX enumeration is not valid. 1578 * Initialized below to cstate, sub_cstate value when EDX is valid. 1579 */ 1580 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) { 1581 eax = 0; 1582 } else { 1583 edx >>= MWAIT_SUBSTATE_SIZE; 1584 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) { 1585 if (edx & MWAIT_SUBSTATE_MASK) { 1586 highest_cstate = i; 1587 highest_subcstate = edx & MWAIT_SUBSTATE_MASK; 1588 } 1589 } 1590 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) | 1591 (highest_subcstate - 1); 1592 } 1593 1594 /* 1595 * This should be a memory location in a cache line which is 1596 * unlikely to be touched by other processors. The actual 1597 * content is immaterial as it is not actually modified in any way. 1598 */ 1599 mwait_ptr = ¤t_thread_info()->flags; 1600 1601 wbinvd(); 1602 1603 while (1) { 1604 /* 1605 * The CLFLUSH is a workaround for erratum AAI65 for 1606 * the Xeon 7400 series. It's not clear it is actually 1607 * needed, but it should be harmless in either case. 1608 * The WBINVD is insufficient due to the spurious-wakeup 1609 * case where we return around the loop. 1610 */ 1611 mb(); 1612 clflush(mwait_ptr); 1613 mb(); 1614 __monitor(mwait_ptr, 0, 0); 1615 mb(); 1616 __mwait(eax, 0); 1617 /* 1618 * If NMI wants to wake up CPU0, start CPU0. 1619 */ 1620 if (wakeup_cpu0()) 1621 start_cpu0(); 1622 } 1623 } 1624 1625 static inline void hlt_play_dead(void) 1626 { 1627 if (__this_cpu_read(cpu_info.x86) >= 4) 1628 wbinvd(); 1629 1630 while (1) { 1631 native_halt(); 1632 /* 1633 * If NMI wants to wake up CPU0, start CPU0. 1634 */ 1635 if (wakeup_cpu0()) 1636 start_cpu0(); 1637 } 1638 } 1639 1640 void native_play_dead(void) 1641 { 1642 play_dead_common(); 1643 tboot_shutdown(TB_SHUTDOWN_WFS); 1644 1645 mwait_play_dead(); /* Only returns on failure */ 1646 if (cpuidle_play_dead()) 1647 hlt_play_dead(); 1648 } 1649 1650 #else /* ... !CONFIG_HOTPLUG_CPU */ 1651 int native_cpu_disable(void) 1652 { 1653 return -ENOSYS; 1654 } 1655 1656 void native_cpu_die(unsigned int cpu) 1657 { 1658 /* We said "no" in __cpu_disable */ 1659 BUG(); 1660 } 1661 1662 void native_play_dead(void) 1663 { 1664 BUG(); 1665 } 1666 1667 #endif 1668