xref: /linux/arch/x86/kernel/smpboot.c (revision 6055f6cf)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *	x86 SMP booting functions
4  *
5  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *	Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *	Much of the core SMP work is based on previous work by Thomas Radke, to
10  *	whom a great many thanks are extended.
11  *
12  *	Thanks to Intel for making available several different Pentium,
13  *	Pentium Pro and Pentium-II/Xeon MP machines.
14  *	Original development of Linux SMP code supported by Caldera.
15  *
16  *	Fixes
17  *		Felix Koop	:	NR_CPUS used properly
18  *		Jose Renau	:	Handle single CPU case.
19  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
20  *		Greg Wright	:	Fix for kernel stacks panic.
21  *		Erich Boleyn	:	MP v1.4 and additional changes.
22  *	Matthias Sattler	:	Changes for 2.1 kernel map.
23  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
24  *	Michael Chastain	:	Change trampoline.S to gnu as.
25  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
26  *		Ingo Molnar	:	Added APIC timers, based on code
27  *					from Jose Renau
28  *		Ingo Molnar	:	various cleanups and rewrites
29  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
30  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
31  *	Andi Kleen		:	Changed for SMP boot into long mode.
32  *		Martin J. Bligh	: 	Added support for multi-quad systems
33  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
34  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *	Ashok Raj		: 	CPU hotplug support
37  *	Glauber Costa		:	i386 and x86_64 integration
38  */
39 
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/kexec.h>
57 #include <linux/numa.h>
58 #include <linux/pgtable.h>
59 #include <linux/overflow.h>
60 #include <linux/stackprotector.h>
61 #include <linux/cpuhotplug.h>
62 #include <linux/mc146818rtc.h>
63 
64 #include <asm/acpi.h>
65 #include <asm/cacheinfo.h>
66 #include <asm/desc.h>
67 #include <asm/nmi.h>
68 #include <asm/irq.h>
69 #include <asm/realmode.h>
70 #include <asm/cpu.h>
71 #include <asm/numa.h>
72 #include <asm/tlbflush.h>
73 #include <asm/mtrr.h>
74 #include <asm/mwait.h>
75 #include <asm/apic.h>
76 #include <asm/io_apic.h>
77 #include <asm/fpu/api.h>
78 #include <asm/setup.h>
79 #include <asm/uv/uv.h>
80 #include <asm/microcode.h>
81 #include <asm/i8259.h>
82 #include <asm/misc.h>
83 #include <asm/qspinlock.h>
84 #include <asm/intel-family.h>
85 #include <asm/cpu_device_id.h>
86 #include <asm/spec-ctrl.h>
87 #include <asm/hw_irq.h>
88 #include <asm/stackprotector.h>
89 #include <asm/sev.h>
90 #include <asm/spec-ctrl.h>
91 
92 /* representing HT siblings of each logical CPU */
93 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
94 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
95 
96 /* representing HT and core siblings of each logical CPU */
97 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
98 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
99 
100 /* representing HT, core, and die siblings of each logical CPU */
101 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
102 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
103 
104 /* Per CPU bogomips and other parameters */
105 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
106 EXPORT_PER_CPU_SYMBOL(cpu_info);
107 
108 /* CPUs which are the primary SMT threads */
109 struct cpumask __cpu_primary_thread_mask __read_mostly;
110 
111 /* Representing CPUs for which sibling maps can be computed */
112 static cpumask_var_t cpu_sibling_setup_mask;
113 
114 struct mwait_cpu_dead {
115 	unsigned int	control;
116 	unsigned int	status;
117 };
118 
119 #define CPUDEAD_MWAIT_WAIT	0xDEADBEEF
120 #define CPUDEAD_MWAIT_KEXEC_HLT	0x4A17DEAD
121 
122 /*
123  * Cache line aligned data for mwait_play_dead(). Separate on purpose so
124  * that it's unlikely to be touched by other CPUs.
125  */
126 static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
127 
128 /* Logical package management. */
129 struct logical_maps {
130 	u32	phys_pkg_id;
131 	u32	phys_die_id;
132 	u32	logical_pkg_id;
133 	u32	logical_die_id;
134 };
135 
136 /* Temporary workaround until the full topology mechanics is in place */
137 static DEFINE_PER_CPU_READ_MOSTLY(struct logical_maps, logical_maps) = {
138 	.phys_pkg_id	= U32_MAX,
139 	.phys_die_id	= U32_MAX,
140 };
141 
142 unsigned int __max_logical_packages __read_mostly;
143 EXPORT_SYMBOL(__max_logical_packages);
144 static unsigned int logical_packages __read_mostly;
145 static unsigned int logical_die __read_mostly;
146 
147 /* Maximum number of SMT threads on any online core */
148 int __read_mostly __max_smt_threads = 1;
149 
150 /* Flag to indicate if a complete sched domain rebuild is required */
151 bool x86_topology_update;
152 
153 int arch_update_cpu_topology(void)
154 {
155 	int retval = x86_topology_update;
156 
157 	x86_topology_update = false;
158 	return retval;
159 }
160 
161 static unsigned int smpboot_warm_reset_vector_count;
162 
163 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
164 {
165 	unsigned long flags;
166 
167 	spin_lock_irqsave(&rtc_lock, flags);
168 	if (!smpboot_warm_reset_vector_count++) {
169 		CMOS_WRITE(0xa, 0xf);
170 		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4;
171 		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf;
172 	}
173 	spin_unlock_irqrestore(&rtc_lock, flags);
174 }
175 
176 static inline void smpboot_restore_warm_reset_vector(void)
177 {
178 	unsigned long flags;
179 
180 	/*
181 	 * Paranoid:  Set warm reset code and vector here back
182 	 * to default values.
183 	 */
184 	spin_lock_irqsave(&rtc_lock, flags);
185 	if (!--smpboot_warm_reset_vector_count) {
186 		CMOS_WRITE(0, 0xf);
187 		*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
188 	}
189 	spin_unlock_irqrestore(&rtc_lock, flags);
190 
191 }
192 
193 /* Run the next set of setup steps for the upcoming CPU */
194 static void ap_starting(void)
195 {
196 	int cpuid = smp_processor_id();
197 
198 	/* Mop up eventual mwait_play_dead() wreckage */
199 	this_cpu_write(mwait_cpu_dead.status, 0);
200 	this_cpu_write(mwait_cpu_dead.control, 0);
201 
202 	/*
203 	 * If woken up by an INIT in an 82489DX configuration the alive
204 	 * synchronization guarantees that the CPU does not reach this
205 	 * point before an INIT_deassert IPI reaches the local APIC, so it
206 	 * is now safe to touch the local APIC.
207 	 *
208 	 * Set up this CPU, first the APIC, which is probably redundant on
209 	 * most boards.
210 	 */
211 	apic_ap_setup();
212 
213 	/* Save the processor parameters. */
214 	smp_store_cpu_info(cpuid);
215 
216 	/*
217 	 * The topology information must be up to date before
218 	 * notify_cpu_starting().
219 	 */
220 	set_cpu_sibling_map(cpuid);
221 
222 	ap_init_aperfmperf();
223 
224 	pr_debug("Stack at about %p\n", &cpuid);
225 
226 	wmb();
227 
228 	/*
229 	 * This runs the AP through all the cpuhp states to its target
230 	 * state CPUHP_ONLINE.
231 	 */
232 	notify_cpu_starting(cpuid);
233 }
234 
235 static void ap_calibrate_delay(void)
236 {
237 	/*
238 	 * Calibrate the delay loop and update loops_per_jiffy in cpu_data.
239 	 * smp_store_cpu_info() stored a value that is close but not as
240 	 * accurate as the value just calculated.
241 	 *
242 	 * As this is invoked after the TSC synchronization check,
243 	 * calibrate_delay_is_known() will skip the calibration routine
244 	 * when TSC is synchronized across sockets.
245 	 */
246 	calibrate_delay();
247 	cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy;
248 }
249 
250 /*
251  * Activate a secondary processor.
252  */
253 static void notrace start_secondary(void *unused)
254 {
255 	/*
256 	 * Don't put *anything* except direct CPU state initialization
257 	 * before cpu_init(), SMP booting is too fragile that we want to
258 	 * limit the things done here to the most necessary things.
259 	 */
260 	cr4_init();
261 
262 	/*
263 	 * 32-bit specific. 64-bit reaches this code with the correct page
264 	 * table established. Yet another historical divergence.
265 	 */
266 	if (IS_ENABLED(CONFIG_X86_32)) {
267 		/* switch away from the initial page table */
268 		load_cr3(swapper_pg_dir);
269 		__flush_tlb_all();
270 	}
271 
272 	cpu_init_exception_handling();
273 
274 	/*
275 	 * Load the microcode before reaching the AP alive synchronization
276 	 * point below so it is not part of the full per CPU serialized
277 	 * bringup part when "parallel" bringup is enabled.
278 	 *
279 	 * That's even safe when hyperthreading is enabled in the CPU as
280 	 * the core code starts the primary threads first and leaves the
281 	 * secondary threads waiting for SIPI. Loading microcode on
282 	 * physical cores concurrently is a safe operation.
283 	 *
284 	 * This covers both the Intel specific issue that concurrent
285 	 * microcode loading on SMT siblings must be prohibited and the
286 	 * vendor independent issue`that microcode loading which changes
287 	 * CPUID, MSRs etc. must be strictly serialized to maintain
288 	 * software state correctness.
289 	 */
290 	load_ucode_ap();
291 
292 	/*
293 	 * Synchronization point with the hotplug core. Sets this CPUs
294 	 * synchronization state to ALIVE and spin-waits for the control CPU to
295 	 * release this CPU for further bringup.
296 	 */
297 	cpuhp_ap_sync_alive();
298 
299 	cpu_init();
300 	fpu__init_cpu();
301 	rcutree_report_cpu_starting(raw_smp_processor_id());
302 	x86_cpuinit.early_percpu_clock_init();
303 
304 	ap_starting();
305 
306 	/* Check TSC synchronization with the control CPU. */
307 	check_tsc_sync_target();
308 
309 	/*
310 	 * Calibrate the delay loop after the TSC synchronization check.
311 	 * This allows to skip the calibration when TSC is synchronized
312 	 * across sockets.
313 	 */
314 	ap_calibrate_delay();
315 
316 	speculative_store_bypass_ht_init();
317 
318 	/*
319 	 * Lock vector_lock, set CPU online and bring the vector
320 	 * allocator online. Online must be set with vector_lock held
321 	 * to prevent a concurrent irq setup/teardown from seeing a
322 	 * half valid vector space.
323 	 */
324 	lock_vector_lock();
325 	set_cpu_online(smp_processor_id(), true);
326 	lapic_online();
327 	unlock_vector_lock();
328 	x86_platform.nmi_init();
329 
330 	/* enable local interrupts */
331 	local_irq_enable();
332 
333 	x86_cpuinit.setup_percpu_clockev();
334 
335 	wmb();
336 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
337 }
338 
339 /**
340  * topology_phys_to_logical_pkg - Map a physical package id to a logical
341  * @phys_pkg:	The physical package id to map
342  *
343  * Returns logical package id or -1 if not found
344  */
345 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
346 {
347 	int cpu;
348 
349 	for_each_possible_cpu(cpu) {
350 		if (per_cpu(logical_maps.phys_pkg_id, cpu) == phys_pkg)
351 			return per_cpu(logical_maps.logical_pkg_id, cpu);
352 	}
353 	return -1;
354 }
355 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
356 
357 /**
358  * topology_phys_to_logical_die - Map a physical die id to logical
359  * @die_id:	The physical die id to map
360  * @cur_cpu:	The CPU for which the mapping is done
361  *
362  * Returns logical die id or -1 if not found
363  */
364 static int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
365 {
366 	int cpu, proc_id = cpu_data(cur_cpu).topo.pkg_id;
367 
368 	for_each_possible_cpu(cpu) {
369 		if (per_cpu(logical_maps.phys_pkg_id, cpu) == proc_id &&
370 		    per_cpu(logical_maps.phys_die_id, cpu) == die_id)
371 			return per_cpu(logical_maps.logical_die_id, cpu);
372 	}
373 	return -1;
374 }
375 
376 /**
377  * topology_update_package_map - Update the physical to logical package map
378  * @pkg:	The physical package id as retrieved via CPUID
379  * @cpu:	The cpu for which this is updated
380  */
381 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
382 {
383 	int new;
384 
385 	/* Already available somewhere? */
386 	new = topology_phys_to_logical_pkg(pkg);
387 	if (new >= 0)
388 		goto found;
389 
390 	new = logical_packages++;
391 	if (new != pkg) {
392 		pr_info("CPU %u Converting physical %u to logical package %u\n",
393 			cpu, pkg, new);
394 	}
395 found:
396 	per_cpu(logical_maps.phys_pkg_id, cpu) = pkg;
397 	per_cpu(logical_maps.logical_pkg_id, cpu) = new;
398 	cpu_data(cpu).topo.logical_pkg_id = new;
399 	return 0;
400 }
401 /**
402  * topology_update_die_map - Update the physical to logical die map
403  * @die:	The die id as retrieved via CPUID
404  * @cpu:	The cpu for which this is updated
405  */
406 int topology_update_die_map(unsigned int die, unsigned int cpu)
407 {
408 	int new;
409 
410 	/* Already available somewhere? */
411 	new = topology_phys_to_logical_die(die, cpu);
412 	if (new >= 0)
413 		goto found;
414 
415 	new = logical_die++;
416 	if (new != die) {
417 		pr_info("CPU %u Converting physical %u to logical die %u\n",
418 			cpu, die, new);
419 	}
420 found:
421 	per_cpu(logical_maps.phys_die_id, cpu) = die;
422 	per_cpu(logical_maps.logical_die_id, cpu) = new;
423 	cpu_data(cpu).topo.logical_die_id = new;
424 	return 0;
425 }
426 
427 static void __init smp_store_boot_cpu_info(void)
428 {
429 	int id = 0; /* CPU 0 */
430 	struct cpuinfo_x86 *c = &cpu_data(id);
431 
432 	*c = boot_cpu_data;
433 	c->cpu_index = id;
434 	topology_update_package_map(c->topo.pkg_id, id);
435 	topology_update_die_map(c->topo.die_id, id);
436 	c->initialized = true;
437 }
438 
439 /*
440  * The bootstrap kernel entry code has set these up. Save them for
441  * a given CPU
442  */
443 void smp_store_cpu_info(int id)
444 {
445 	struct cpuinfo_x86 *c = &cpu_data(id);
446 
447 	/* Copy boot_cpu_data only on the first bringup */
448 	if (!c->initialized)
449 		*c = boot_cpu_data;
450 	c->cpu_index = id;
451 	/*
452 	 * During boot time, CPU0 has this setup already. Save the info when
453 	 * bringing up an AP.
454 	 */
455 	identify_secondary_cpu(c);
456 	c->initialized = true;
457 }
458 
459 static bool
460 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
461 {
462 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
463 
464 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
465 }
466 
467 static bool
468 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
469 {
470 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
471 
472 	return !WARN_ONCE(!topology_same_node(c, o),
473 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
474 		"[node: %d != %d]. Ignoring dependency.\n",
475 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
476 }
477 
478 #define link_mask(mfunc, c1, c2)					\
479 do {									\
480 	cpumask_set_cpu((c1), mfunc(c2));				\
481 	cpumask_set_cpu((c2), mfunc(c1));				\
482 } while (0)
483 
484 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
485 {
486 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
487 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
488 
489 		if (c->topo.pkg_id == o->topo.pkg_id &&
490 		    c->topo.die_id == o->topo.die_id &&
491 		    c->topo.amd_node_id == o->topo.amd_node_id &&
492 		    per_cpu_llc_id(cpu1) == per_cpu_llc_id(cpu2)) {
493 			if (c->topo.core_id == o->topo.core_id)
494 				return topology_sane(c, o, "smt");
495 
496 			if ((c->topo.cu_id != 0xff) &&
497 			    (o->topo.cu_id != 0xff) &&
498 			    (c->topo.cu_id == o->topo.cu_id))
499 				return topology_sane(c, o, "smt");
500 		}
501 
502 	} else if (c->topo.pkg_id == o->topo.pkg_id &&
503 		   c->topo.die_id == o->topo.die_id &&
504 		   c->topo.core_id == o->topo.core_id) {
505 		return topology_sane(c, o, "smt");
506 	}
507 
508 	return false;
509 }
510 
511 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
512 {
513 	if (c->topo.pkg_id != o->topo.pkg_id || c->topo.die_id != o->topo.die_id)
514 		return false;
515 
516 	if (cpu_feature_enabled(X86_FEATURE_TOPOEXT) && topology_amd_nodes_per_pkg() > 1)
517 		return c->topo.amd_node_id == o->topo.amd_node_id;
518 
519 	return true;
520 }
521 
522 static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
523 {
524 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
525 
526 	/* If the arch didn't set up l2c_id, fall back to SMT */
527 	if (per_cpu_l2c_id(cpu1) == BAD_APICID)
528 		return match_smt(c, o);
529 
530 	/* Do not match if L2 cache id does not match: */
531 	if (per_cpu_l2c_id(cpu1) != per_cpu_l2c_id(cpu2))
532 		return false;
533 
534 	return topology_sane(c, o, "l2c");
535 }
536 
537 /*
538  * Unlike the other levels, we do not enforce keeping a
539  * multicore group inside a NUMA node.  If this happens, we will
540  * discard the MC level of the topology later.
541  */
542 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
543 {
544 	if (c->topo.pkg_id == o->topo.pkg_id)
545 		return true;
546 	return false;
547 }
548 
549 /*
550  * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
551  *
552  * Any Intel CPU that has multiple nodes per package and does not
553  * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
554  *
555  * When in SNC mode, these CPUs enumerate an LLC that is shared
556  * by multiple NUMA nodes. The LLC is shared for off-package data
557  * access but private to the NUMA node (half of the package) for
558  * on-package access. CPUID (the source of the information about
559  * the LLC) can only enumerate the cache as shared or unshared,
560  * but not this particular configuration.
561  */
562 
563 static const struct x86_cpu_id intel_cod_cpu[] = {
564 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0),	/* COD */
565 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0),	/* COD */
566 	X86_MATCH_INTEL_FAM6_MODEL(ANY, 1),		/* SNC */
567 	{}
568 };
569 
570 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
571 {
572 	const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
573 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
574 	bool intel_snc = id && id->driver_data;
575 
576 	/* Do not match if we do not have a valid APICID for cpu: */
577 	if (per_cpu_llc_id(cpu1) == BAD_APICID)
578 		return false;
579 
580 	/* Do not match if LLC id does not match: */
581 	if (per_cpu_llc_id(cpu1) != per_cpu_llc_id(cpu2))
582 		return false;
583 
584 	/*
585 	 * Allow the SNC topology without warning. Return of false
586 	 * means 'c' does not share the LLC of 'o'. This will be
587 	 * reflected to userspace.
588 	 */
589 	if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
590 		return false;
591 
592 	return topology_sane(c, o, "llc");
593 }
594 
595 
596 static inline int x86_sched_itmt_flags(void)
597 {
598 	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
599 }
600 
601 #ifdef CONFIG_SCHED_MC
602 static int x86_core_flags(void)
603 {
604 	return cpu_core_flags() | x86_sched_itmt_flags();
605 }
606 #endif
607 #ifdef CONFIG_SCHED_SMT
608 static int x86_smt_flags(void)
609 {
610 	return cpu_smt_flags();
611 }
612 #endif
613 #ifdef CONFIG_SCHED_CLUSTER
614 static int x86_cluster_flags(void)
615 {
616 	return cpu_cluster_flags() | x86_sched_itmt_flags();
617 }
618 #endif
619 
620 static int x86_die_flags(void)
621 {
622 	if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
623 	       return x86_sched_itmt_flags();
624 
625 	return 0;
626 }
627 
628 /*
629  * Set if a package/die has multiple NUMA nodes inside.
630  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
631  * Sub-NUMA Clustering have this.
632  */
633 static bool x86_has_numa_in_package;
634 
635 static struct sched_domain_topology_level x86_topology[6];
636 
637 static void __init build_sched_topology(void)
638 {
639 	int i = 0;
640 
641 #ifdef CONFIG_SCHED_SMT
642 	x86_topology[i++] = (struct sched_domain_topology_level){
643 		cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT)
644 	};
645 #endif
646 #ifdef CONFIG_SCHED_CLUSTER
647 	x86_topology[i++] = (struct sched_domain_topology_level){
648 		cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS)
649 	};
650 #endif
651 #ifdef CONFIG_SCHED_MC
652 	x86_topology[i++] = (struct sched_domain_topology_level){
653 		cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC)
654 	};
655 #endif
656 	/*
657 	 * When there is NUMA topology inside the package skip the PKG domain
658 	 * since the NUMA domains will auto-magically create the right spanning
659 	 * domains based on the SLIT.
660 	 */
661 	if (!x86_has_numa_in_package) {
662 		x86_topology[i++] = (struct sched_domain_topology_level){
663 			cpu_cpu_mask, x86_die_flags, SD_INIT_NAME(PKG)
664 		};
665 	}
666 
667 	/*
668 	 * There must be one trailing NULL entry left.
669 	 */
670 	BUG_ON(i >= ARRAY_SIZE(x86_topology)-1);
671 
672 	set_sched_topology(x86_topology);
673 }
674 
675 void set_cpu_sibling_map(int cpu)
676 {
677 	bool has_smt = smp_num_siblings > 1;
678 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
679 	struct cpuinfo_x86 *c = &cpu_data(cpu);
680 	struct cpuinfo_x86 *o;
681 	int i, threads;
682 
683 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
684 
685 	if (!has_mp) {
686 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
687 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
688 		cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
689 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
690 		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
691 		c->booted_cores = 1;
692 		return;
693 	}
694 
695 	for_each_cpu(i, cpu_sibling_setup_mask) {
696 		o = &cpu_data(i);
697 
698 		if (match_pkg(c, o) && !topology_same_node(c, o))
699 			x86_has_numa_in_package = true;
700 
701 		if ((i == cpu) || (has_smt && match_smt(c, o)))
702 			link_mask(topology_sibling_cpumask, cpu, i);
703 
704 		if ((i == cpu) || (has_mp && match_llc(c, o)))
705 			link_mask(cpu_llc_shared_mask, cpu, i);
706 
707 		if ((i == cpu) || (has_mp && match_l2c(c, o)))
708 			link_mask(cpu_l2c_shared_mask, cpu, i);
709 
710 		if ((i == cpu) || (has_mp && match_die(c, o)))
711 			link_mask(topology_die_cpumask, cpu, i);
712 	}
713 
714 	threads = cpumask_weight(topology_sibling_cpumask(cpu));
715 	if (threads > __max_smt_threads)
716 		__max_smt_threads = threads;
717 
718 	for_each_cpu(i, topology_sibling_cpumask(cpu))
719 		cpu_data(i).smt_active = threads > 1;
720 
721 	/*
722 	 * This needs a separate iteration over the cpus because we rely on all
723 	 * topology_sibling_cpumask links to be set-up.
724 	 */
725 	for_each_cpu(i, cpu_sibling_setup_mask) {
726 		o = &cpu_data(i);
727 
728 		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
729 			link_mask(topology_core_cpumask, cpu, i);
730 
731 			/*
732 			 *  Does this new cpu bringup a new core?
733 			 */
734 			if (threads == 1) {
735 				/*
736 				 * for each core in package, increment
737 				 * the booted_cores for this new cpu
738 				 */
739 				if (cpumask_first(
740 				    topology_sibling_cpumask(i)) == i)
741 					c->booted_cores++;
742 				/*
743 				 * increment the core count for all
744 				 * the other cpus in this package
745 				 */
746 				if (i != cpu)
747 					cpu_data(i).booted_cores++;
748 			} else if (i != cpu && !c->booted_cores)
749 				c->booted_cores = cpu_data(i).booted_cores;
750 		}
751 	}
752 }
753 
754 /* maps the cpu to the sched domain representing multi-core */
755 const struct cpumask *cpu_coregroup_mask(int cpu)
756 {
757 	return cpu_llc_shared_mask(cpu);
758 }
759 
760 const struct cpumask *cpu_clustergroup_mask(int cpu)
761 {
762 	return cpu_l2c_shared_mask(cpu);
763 }
764 EXPORT_SYMBOL_GPL(cpu_clustergroup_mask);
765 
766 static void impress_friends(void)
767 {
768 	int cpu;
769 	unsigned long bogosum = 0;
770 	/*
771 	 * Allow the user to impress friends.
772 	 */
773 	pr_debug("Before bogomips\n");
774 	for_each_online_cpu(cpu)
775 		bogosum += cpu_data(cpu).loops_per_jiffy;
776 
777 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
778 		num_online_cpus(),
779 		bogosum/(500000/HZ),
780 		(bogosum/(5000/HZ))%100);
781 
782 	pr_debug("Before bogocount - setting activated=1\n");
783 }
784 
785 /*
786  * The Multiprocessor Specification 1.4 (1997) example code suggests
787  * that there should be a 10ms delay between the BSP asserting INIT
788  * and de-asserting INIT, when starting a remote processor.
789  * But that slows boot and resume on modern processors, which include
790  * many cores and don't require that delay.
791  *
792  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
793  * Modern processor families are quirked to remove the delay entirely.
794  */
795 #define UDELAY_10MS_DEFAULT 10000
796 
797 static unsigned int init_udelay = UINT_MAX;
798 
799 static int __init cpu_init_udelay(char *str)
800 {
801 	get_option(&str, &init_udelay);
802 
803 	return 0;
804 }
805 early_param("cpu_init_udelay", cpu_init_udelay);
806 
807 static void __init smp_quirk_init_udelay(void)
808 {
809 	/* if cmdline changed it from default, leave it alone */
810 	if (init_udelay != UINT_MAX)
811 		return;
812 
813 	/* if modern processor, use no delay */
814 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
815 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
816 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
817 		init_udelay = 0;
818 		return;
819 	}
820 	/* else, use legacy delay */
821 	init_udelay = UDELAY_10MS_DEFAULT;
822 }
823 
824 /*
825  * Wake up AP by INIT, INIT, STARTUP sequence.
826  */
827 static void send_init_sequence(u32 phys_apicid)
828 {
829 	int maxlvt = lapic_get_maxlvt();
830 
831 	/* Be paranoid about clearing APIC errors. */
832 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
833 		/* Due to the Pentium erratum 3AP.  */
834 		if (maxlvt > 3)
835 			apic_write(APIC_ESR, 0);
836 		apic_read(APIC_ESR);
837 	}
838 
839 	/* Assert INIT on the target CPU */
840 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid);
841 	safe_apic_wait_icr_idle();
842 
843 	udelay(init_udelay);
844 
845 	/* Deassert INIT on the target CPU */
846 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
847 	safe_apic_wait_icr_idle();
848 }
849 
850 /*
851  * Wake up AP by INIT, INIT, STARTUP sequence.
852  */
853 static int wakeup_secondary_cpu_via_init(u32 phys_apicid, unsigned long start_eip)
854 {
855 	unsigned long send_status = 0, accept_status = 0;
856 	int num_starts, j, maxlvt;
857 
858 	preempt_disable();
859 	maxlvt = lapic_get_maxlvt();
860 	send_init_sequence(phys_apicid);
861 
862 	mb();
863 
864 	/*
865 	 * Should we send STARTUP IPIs ?
866 	 *
867 	 * Determine this based on the APIC version.
868 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
869 	 */
870 	if (APIC_INTEGRATED(boot_cpu_apic_version))
871 		num_starts = 2;
872 	else
873 		num_starts = 0;
874 
875 	/*
876 	 * Run STARTUP IPI loop.
877 	 */
878 	pr_debug("#startup loops: %d\n", num_starts);
879 
880 	for (j = 1; j <= num_starts; j++) {
881 		pr_debug("Sending STARTUP #%d\n", j);
882 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
883 			apic_write(APIC_ESR, 0);
884 		apic_read(APIC_ESR);
885 		pr_debug("After apic_write\n");
886 
887 		/*
888 		 * STARTUP IPI
889 		 */
890 
891 		/* Target chip */
892 		/* Boot on the stack */
893 		/* Kick the second */
894 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
895 			       phys_apicid);
896 
897 		/*
898 		 * Give the other CPU some time to accept the IPI.
899 		 */
900 		if (init_udelay == 0)
901 			udelay(10);
902 		else
903 			udelay(300);
904 
905 		pr_debug("Startup point 1\n");
906 
907 		pr_debug("Waiting for send to finish...\n");
908 		send_status = safe_apic_wait_icr_idle();
909 
910 		/*
911 		 * Give the other CPU some time to accept the IPI.
912 		 */
913 		if (init_udelay == 0)
914 			udelay(10);
915 		else
916 			udelay(200);
917 
918 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
919 			apic_write(APIC_ESR, 0);
920 		accept_status = (apic_read(APIC_ESR) & 0xEF);
921 		if (send_status || accept_status)
922 			break;
923 	}
924 	pr_debug("After Startup\n");
925 
926 	if (send_status)
927 		pr_err("APIC never delivered???\n");
928 	if (accept_status)
929 		pr_err("APIC delivery error (%lx)\n", accept_status);
930 
931 	preempt_enable();
932 	return (send_status | accept_status);
933 }
934 
935 /* reduce the number of lines printed when booting a large cpu count system */
936 static void announce_cpu(int cpu, int apicid)
937 {
938 	static int width, node_width, first = 1;
939 	static int current_node = NUMA_NO_NODE;
940 	int node = early_cpu_to_node(cpu);
941 
942 	if (!width)
943 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
944 
945 	if (!node_width)
946 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
947 
948 	if (system_state < SYSTEM_RUNNING) {
949 		if (first)
950 			pr_info("x86: Booting SMP configuration:\n");
951 
952 		if (node != current_node) {
953 			if (current_node > (-1))
954 				pr_cont("\n");
955 			current_node = node;
956 
957 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
958 			       node_width - num_digits(node), " ", node);
959 		}
960 
961 		/* Add padding for the BSP */
962 		if (first)
963 			pr_cont("%*s", width + 1, " ");
964 		first = 0;
965 
966 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
967 	} else
968 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
969 			node, cpu, apicid);
970 }
971 
972 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
973 {
974 	int ret;
975 
976 	/* Just in case we booted with a single CPU. */
977 	alternatives_enable_smp();
978 
979 	per_cpu(pcpu_hot.current_task, cpu) = idle;
980 	cpu_init_stack_canary(cpu, idle);
981 
982 	/* Initialize the interrupt stack(s) */
983 	ret = irq_init_percpu_irqstack(cpu);
984 	if (ret)
985 		return ret;
986 
987 #ifdef CONFIG_X86_32
988 	/* Stack for startup_32 can be just as for start_secondary onwards */
989 	per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle);
990 #endif
991 	return 0;
992 }
993 
994 /*
995  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
996  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
997  * Returns zero if startup was successfully sent, else error code from
998  * ->wakeup_secondary_cpu.
999  */
1000 static int do_boot_cpu(u32 apicid, int cpu, struct task_struct *idle)
1001 {
1002 	unsigned long start_ip = real_mode_header->trampoline_start;
1003 	int ret;
1004 
1005 #ifdef CONFIG_X86_64
1006 	/* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
1007 	if (apic->wakeup_secondary_cpu_64)
1008 		start_ip = real_mode_header->trampoline_start64;
1009 #endif
1010 	idle->thread.sp = (unsigned long)task_pt_regs(idle);
1011 	initial_code = (unsigned long)start_secondary;
1012 
1013 	if (IS_ENABLED(CONFIG_X86_32)) {
1014 		early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1015 		initial_stack  = idle->thread.sp;
1016 	} else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) {
1017 		smpboot_control = cpu;
1018 	}
1019 
1020 	/* Enable the espfix hack for this CPU */
1021 	init_espfix_ap(cpu);
1022 
1023 	/* So we see what's up */
1024 	announce_cpu(cpu, apicid);
1025 
1026 	/*
1027 	 * This grunge runs the startup process for
1028 	 * the targeted processor.
1029 	 */
1030 	if (x86_platform.legacy.warm_reset) {
1031 
1032 		pr_debug("Setting warm reset code and vector.\n");
1033 
1034 		smpboot_setup_warm_reset_vector(start_ip);
1035 		/*
1036 		 * Be paranoid about clearing APIC errors.
1037 		*/
1038 		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1039 			apic_write(APIC_ESR, 0);
1040 			apic_read(APIC_ESR);
1041 		}
1042 	}
1043 
1044 	smp_mb();
1045 
1046 	/*
1047 	 * Wake up a CPU in difference cases:
1048 	 * - Use a method from the APIC driver if one defined, with wakeup
1049 	 *   straight to 64-bit mode preferred over wakeup to RM.
1050 	 * Otherwise,
1051 	 * - Use an INIT boot APIC message
1052 	 */
1053 	if (apic->wakeup_secondary_cpu_64)
1054 		ret = apic->wakeup_secondary_cpu_64(apicid, start_ip);
1055 	else if (apic->wakeup_secondary_cpu)
1056 		ret = apic->wakeup_secondary_cpu(apicid, start_ip);
1057 	else
1058 		ret = wakeup_secondary_cpu_via_init(apicid, start_ip);
1059 
1060 	/* If the wakeup mechanism failed, cleanup the warm reset vector */
1061 	if (ret)
1062 		arch_cpuhp_cleanup_kick_cpu(cpu);
1063 	return ret;
1064 }
1065 
1066 int native_kick_ap(unsigned int cpu, struct task_struct *tidle)
1067 {
1068 	u32 apicid = apic->cpu_present_to_apicid(cpu);
1069 	int err;
1070 
1071 	lockdep_assert_irqs_enabled();
1072 
1073 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1074 
1075 	if (apicid == BAD_APICID || !apic_id_valid(apicid)) {
1076 		pr_err("CPU %u has invalid APIC ID %x. Aborting bringup\n", cpu, apicid);
1077 		return -EINVAL;
1078 	}
1079 
1080 	if (!test_bit(apicid, phys_cpu_present_map)) {
1081 		pr_err("CPU %u APIC ID %x is not present. Aborting bringup\n", cpu, apicid);
1082 		return -EINVAL;
1083 	}
1084 
1085 	/*
1086 	 * Save current MTRR state in case it was changed since early boot
1087 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1088 	 */
1089 	mtrr_save_state();
1090 
1091 	/* the FPU context is blank, nobody can own it */
1092 	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1093 
1094 	err = common_cpu_up(cpu, tidle);
1095 	if (err)
1096 		return err;
1097 
1098 	err = do_boot_cpu(apicid, cpu, tidle);
1099 	if (err)
1100 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1101 
1102 	return err;
1103 }
1104 
1105 int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle)
1106 {
1107 	return smp_ops.kick_ap_alive(cpu, tidle);
1108 }
1109 
1110 void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)
1111 {
1112 	/* Cleanup possible dangling ends... */
1113 	if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset)
1114 		smpboot_restore_warm_reset_vector();
1115 }
1116 
1117 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
1118 {
1119 	if (smp_ops.cleanup_dead_cpu)
1120 		smp_ops.cleanup_dead_cpu(cpu);
1121 
1122 	if (system_state == SYSTEM_RUNNING)
1123 		pr_info("CPU %u is now offline\n", cpu);
1124 }
1125 
1126 void arch_cpuhp_sync_state_poll(void)
1127 {
1128 	if (smp_ops.poll_sync_state)
1129 		smp_ops.poll_sync_state();
1130 }
1131 
1132 /**
1133  * arch_disable_smp_support() - Disables SMP support for x86 at boottime
1134  */
1135 void __init arch_disable_smp_support(void)
1136 {
1137 	disable_ioapic_support();
1138 }
1139 
1140 /*
1141  * Fall back to non SMP mode after errors.
1142  *
1143  * RED-PEN audit/test this more. I bet there is more state messed up here.
1144  */
1145 static __init void disable_smp(void)
1146 {
1147 	pr_info("SMP disabled\n");
1148 
1149 	disable_ioapic_support();
1150 
1151 	init_cpu_present(cpumask_of(0));
1152 	init_cpu_possible(cpumask_of(0));
1153 
1154 	reset_phys_cpu_present_map(smp_found_config ? boot_cpu_physical_apicid : 0);
1155 
1156 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1157 	cpumask_set_cpu(0, topology_core_cpumask(0));
1158 	cpumask_set_cpu(0, topology_die_cpumask(0));
1159 }
1160 
1161 static void __init smp_cpu_index_default(void)
1162 {
1163 	int i;
1164 	struct cpuinfo_x86 *c;
1165 
1166 	for_each_possible_cpu(i) {
1167 		c = &cpu_data(i);
1168 		/* mark all to hotplug */
1169 		c->cpu_index = nr_cpu_ids;
1170 	}
1171 }
1172 
1173 void __init smp_prepare_cpus_common(void)
1174 {
1175 	unsigned int i;
1176 
1177 	smp_cpu_index_default();
1178 
1179 	/*
1180 	 * Setup boot CPU information
1181 	 */
1182 	smp_store_boot_cpu_info(); /* Final full version of the data */
1183 	mb();
1184 
1185 	for_each_possible_cpu(i) {
1186 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1187 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1188 		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1189 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1190 		zalloc_cpumask_var(&per_cpu(cpu_l2c_shared_map, i), GFP_KERNEL);
1191 	}
1192 
1193 	set_cpu_sibling_map(0);
1194 }
1195 
1196 #ifdef CONFIG_X86_64
1197 /* Establish whether parallel bringup can be supported. */
1198 bool __init arch_cpuhp_init_parallel_bringup(void)
1199 {
1200 	if (!x86_cpuinit.parallel_bringup) {
1201 		pr_info("Parallel CPU startup disabled by the platform\n");
1202 		return false;
1203 	}
1204 
1205 	smpboot_control = STARTUP_READ_APICID;
1206 	pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control);
1207 	return true;
1208 }
1209 #endif
1210 
1211 /*
1212  * Prepare for SMP bootup.
1213  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1214  *            for common interface support.
1215  */
1216 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1217 {
1218 	smp_prepare_cpus_common();
1219 
1220 	switch (apic_intr_mode) {
1221 	case APIC_PIC:
1222 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1223 		disable_smp();
1224 		return;
1225 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1226 		disable_smp();
1227 		/* Setup local timer */
1228 		x86_init.timers.setup_percpu_clockev();
1229 		return;
1230 	case APIC_VIRTUAL_WIRE:
1231 	case APIC_SYMMETRIC_IO:
1232 		break;
1233 	}
1234 
1235 	/* Setup local timer */
1236 	x86_init.timers.setup_percpu_clockev();
1237 
1238 	pr_info("CPU0: ");
1239 	print_cpu_info(&cpu_data(0));
1240 
1241 	uv_system_init();
1242 
1243 	smp_quirk_init_udelay();
1244 
1245 	speculative_store_bypass_ht_init();
1246 
1247 	snp_set_wakeup_secondary_cpu();
1248 }
1249 
1250 void arch_thaw_secondary_cpus_begin(void)
1251 {
1252 	set_cache_aps_delayed_init(true);
1253 }
1254 
1255 void arch_thaw_secondary_cpus_end(void)
1256 {
1257 	cache_aps_init();
1258 }
1259 
1260 /*
1261  * Early setup to make printk work.
1262  */
1263 void __init native_smp_prepare_boot_cpu(void)
1264 {
1265 	int me = smp_processor_id();
1266 
1267 	/* SMP handles this from setup_per_cpu_areas() */
1268 	if (!IS_ENABLED(CONFIG_SMP))
1269 		switch_gdt_and_percpu_base(me);
1270 
1271 	native_pv_lock_init();
1272 }
1273 
1274 void __init calculate_max_logical_packages(void)
1275 {
1276 	int ncpus;
1277 
1278 	/*
1279 	 * Today neither Intel nor AMD support heterogeneous systems so
1280 	 * extrapolate the boot cpu's data to all packages.
1281 	 */
1282 	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1283 	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1284 	pr_info("Max logical packages: %u\n", __max_logical_packages);
1285 }
1286 
1287 void __init native_smp_cpus_done(unsigned int max_cpus)
1288 {
1289 	pr_debug("Boot done\n");
1290 
1291 	calculate_max_logical_packages();
1292 	build_sched_topology();
1293 	nmi_selftest();
1294 	impress_friends();
1295 	cache_aps_init();
1296 }
1297 
1298 /* correctly size the local cpu masks */
1299 void __init setup_cpu_local_masks(void)
1300 {
1301 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
1302 }
1303 
1304 #ifdef CONFIG_HOTPLUG_CPU
1305 
1306 /* Recompute SMT state for all CPUs on offline */
1307 static void recompute_smt_state(void)
1308 {
1309 	int max_threads, cpu;
1310 
1311 	max_threads = 0;
1312 	for_each_online_cpu (cpu) {
1313 		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1314 
1315 		if (threads > max_threads)
1316 			max_threads = threads;
1317 	}
1318 	__max_smt_threads = max_threads;
1319 }
1320 
1321 static void remove_siblinginfo(int cpu)
1322 {
1323 	int sibling;
1324 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1325 
1326 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1327 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1328 		/*/
1329 		 * last thread sibling in this cpu core going down
1330 		 */
1331 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1332 			cpu_data(sibling).booted_cores--;
1333 	}
1334 
1335 	for_each_cpu(sibling, topology_die_cpumask(cpu))
1336 		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1337 
1338 	for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1339 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1340 		if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1341 			cpu_data(sibling).smt_active = false;
1342 	}
1343 
1344 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1345 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1346 	for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1347 		cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1348 	cpumask_clear(cpu_llc_shared_mask(cpu));
1349 	cpumask_clear(cpu_l2c_shared_mask(cpu));
1350 	cpumask_clear(topology_sibling_cpumask(cpu));
1351 	cpumask_clear(topology_core_cpumask(cpu));
1352 	cpumask_clear(topology_die_cpumask(cpu));
1353 	c->topo.core_id = 0;
1354 	c->booted_cores = 0;
1355 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1356 	recompute_smt_state();
1357 }
1358 
1359 static void remove_cpu_from_maps(int cpu)
1360 {
1361 	set_cpu_online(cpu, false);
1362 	numa_remove_cpu(cpu);
1363 }
1364 
1365 void cpu_disable_common(void)
1366 {
1367 	int cpu = smp_processor_id();
1368 
1369 	remove_siblinginfo(cpu);
1370 
1371 	/* It's now safe to remove this processor from the online map */
1372 	lock_vector_lock();
1373 	remove_cpu_from_maps(cpu);
1374 	unlock_vector_lock();
1375 	fixup_irqs();
1376 	lapic_offline();
1377 }
1378 
1379 int native_cpu_disable(void)
1380 {
1381 	int ret;
1382 
1383 	ret = lapic_can_unplug_cpu();
1384 	if (ret)
1385 		return ret;
1386 
1387 	cpu_disable_common();
1388 
1389         /*
1390          * Disable the local APIC. Otherwise IPI broadcasts will reach
1391          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1392          * messages.
1393          *
1394          * Disabling the APIC must happen after cpu_disable_common()
1395          * which invokes fixup_irqs().
1396          *
1397          * Disabling the APIC preserves already set bits in IRR, but
1398          * an interrupt arriving after disabling the local APIC does not
1399          * set the corresponding IRR bit.
1400          *
1401          * fixup_irqs() scans IRR for set bits so it can raise a not
1402          * yet handled interrupt on the new destination CPU via an IPI
1403          * but obviously it can't do so for IRR bits which are not set.
1404          * IOW, interrupts arriving after disabling the local APIC will
1405          * be lost.
1406          */
1407 	apic_soft_disable();
1408 
1409 	return 0;
1410 }
1411 
1412 void play_dead_common(void)
1413 {
1414 	idle_task_exit();
1415 
1416 	cpuhp_ap_report_dead();
1417 
1418 	local_irq_disable();
1419 }
1420 
1421 /*
1422  * We need to flush the caches before going to sleep, lest we have
1423  * dirty data in our caches when we come back up.
1424  */
1425 static inline void mwait_play_dead(void)
1426 {
1427 	struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1428 	unsigned int eax, ebx, ecx, edx;
1429 	unsigned int highest_cstate = 0;
1430 	unsigned int highest_subcstate = 0;
1431 	int i;
1432 
1433 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1434 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1435 		return;
1436 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1437 		return;
1438 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1439 		return;
1440 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1441 		return;
1442 
1443 	eax = CPUID_MWAIT_LEAF;
1444 	ecx = 0;
1445 	native_cpuid(&eax, &ebx, &ecx, &edx);
1446 
1447 	/*
1448 	 * eax will be 0 if EDX enumeration is not valid.
1449 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1450 	 */
1451 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1452 		eax = 0;
1453 	} else {
1454 		edx >>= MWAIT_SUBSTATE_SIZE;
1455 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1456 			if (edx & MWAIT_SUBSTATE_MASK) {
1457 				highest_cstate = i;
1458 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1459 			}
1460 		}
1461 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1462 			(highest_subcstate - 1);
1463 	}
1464 
1465 	/* Set up state for the kexec() hack below */
1466 	md->status = CPUDEAD_MWAIT_WAIT;
1467 	md->control = CPUDEAD_MWAIT_WAIT;
1468 
1469 	wbinvd();
1470 
1471 	while (1) {
1472 		/*
1473 		 * The CLFLUSH is a workaround for erratum AAI65 for
1474 		 * the Xeon 7400 series.  It's not clear it is actually
1475 		 * needed, but it should be harmless in either case.
1476 		 * The WBINVD is insufficient due to the spurious-wakeup
1477 		 * case where we return around the loop.
1478 		 */
1479 		mb();
1480 		clflush(md);
1481 		mb();
1482 		__monitor(md, 0, 0);
1483 		mb();
1484 		__mwait(eax, 0);
1485 
1486 		if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) {
1487 			/*
1488 			 * Kexec is about to happen. Don't go back into mwait() as
1489 			 * the kexec kernel might overwrite text and data including
1490 			 * page tables and stack. So mwait() would resume when the
1491 			 * monitor cache line is written to and then the CPU goes
1492 			 * south due to overwritten text, page tables and stack.
1493 			 *
1494 			 * Note: This does _NOT_ protect against a stray MCE, NMI,
1495 			 * SMI. They will resume execution at the instruction
1496 			 * following the HLT instruction and run into the problem
1497 			 * which this is trying to prevent.
1498 			 */
1499 			WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT);
1500 			while(1)
1501 				native_halt();
1502 		}
1503 	}
1504 }
1505 
1506 /*
1507  * Kick all "offline" CPUs out of mwait on kexec(). See comment in
1508  * mwait_play_dead().
1509  */
1510 void smp_kick_mwait_play_dead(void)
1511 {
1512 	u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT;
1513 	struct mwait_cpu_dead *md;
1514 	unsigned int cpu, i;
1515 
1516 	for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) {
1517 		md = per_cpu_ptr(&mwait_cpu_dead, cpu);
1518 
1519 		/* Does it sit in mwait_play_dead() ? */
1520 		if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT)
1521 			continue;
1522 
1523 		/* Wait up to 5ms */
1524 		for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) {
1525 			/* Bring it out of mwait */
1526 			WRITE_ONCE(md->control, newstate);
1527 			udelay(5);
1528 		}
1529 
1530 		if (READ_ONCE(md->status) != newstate)
1531 			pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu);
1532 	}
1533 }
1534 
1535 void __noreturn hlt_play_dead(void)
1536 {
1537 	if (__this_cpu_read(cpu_info.x86) >= 4)
1538 		wbinvd();
1539 
1540 	while (1)
1541 		native_halt();
1542 }
1543 
1544 /*
1545  * native_play_dead() is essentially a __noreturn function, but it can't
1546  * be marked as such as the compiler may complain about it.
1547  */
1548 void native_play_dead(void)
1549 {
1550 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
1551 		__update_spec_ctrl(0);
1552 
1553 	play_dead_common();
1554 	tboot_shutdown(TB_SHUTDOWN_WFS);
1555 
1556 	mwait_play_dead();
1557 	if (cpuidle_play_dead())
1558 		hlt_play_dead();
1559 }
1560 
1561 #else /* ... !CONFIG_HOTPLUG_CPU */
1562 int native_cpu_disable(void)
1563 {
1564 	return -ENOSYS;
1565 }
1566 
1567 void native_play_dead(void)
1568 {
1569 	BUG();
1570 }
1571 
1572 #endif
1573