1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* 3 * caam - Freescale FSL CAAM support for Public Key Cryptography 4 * 5 * Copyright 2016 Freescale Semiconductor, Inc. 6 * Copyright 2018-2019 NXP 7 * 8 * There is no Shared Descriptor for PKC so that the Job Descriptor must carry 9 * all the desired key parameters, input and output pointers. 10 */ 11 #include "compat.h" 12 #include "regs.h" 13 #include "intern.h" 14 #include "jr.h" 15 #include "error.h" 16 #include "desc_constr.h" 17 #include "sg_sw_sec4.h" 18 #include "caampkc.h" 19 20 #define DESC_RSA_PUB_LEN (2 * CAAM_CMD_SZ + SIZEOF_RSA_PUB_PDB) 21 #define DESC_RSA_PRIV_F1_LEN (2 * CAAM_CMD_SZ + \ 22 SIZEOF_RSA_PRIV_F1_PDB) 23 #define DESC_RSA_PRIV_F2_LEN (2 * CAAM_CMD_SZ + \ 24 SIZEOF_RSA_PRIV_F2_PDB) 25 #define DESC_RSA_PRIV_F3_LEN (2 * CAAM_CMD_SZ + \ 26 SIZEOF_RSA_PRIV_F3_PDB) 27 #define CAAM_RSA_MAX_INPUT_SIZE 512 /* for a 4096-bit modulus */ 28 29 /* buffer filled with zeros, used for padding */ 30 static u8 *zero_buffer; 31 32 /* 33 * variable used to avoid double free of resources in case 34 * algorithm registration was unsuccessful 35 */ 36 static bool init_done; 37 38 struct caam_akcipher_alg { 39 struct akcipher_alg akcipher; 40 bool registered; 41 }; 42 43 static void rsa_io_unmap(struct device *dev, struct rsa_edesc *edesc, 44 struct akcipher_request *req) 45 { 46 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 47 48 dma_unmap_sg(dev, req->dst, edesc->dst_nents, DMA_FROM_DEVICE); 49 dma_unmap_sg(dev, req_ctx->fixup_src, edesc->src_nents, DMA_TO_DEVICE); 50 51 if (edesc->sec4_sg_bytes) 52 dma_unmap_single(dev, edesc->sec4_sg_dma, edesc->sec4_sg_bytes, 53 DMA_TO_DEVICE); 54 } 55 56 static void rsa_pub_unmap(struct device *dev, struct rsa_edesc *edesc, 57 struct akcipher_request *req) 58 { 59 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 60 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 61 struct caam_rsa_key *key = &ctx->key; 62 struct rsa_pub_pdb *pdb = &edesc->pdb.pub; 63 64 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); 65 dma_unmap_single(dev, pdb->e_dma, key->e_sz, DMA_TO_DEVICE); 66 } 67 68 static void rsa_priv_f1_unmap(struct device *dev, struct rsa_edesc *edesc, 69 struct akcipher_request *req) 70 { 71 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 72 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 73 struct caam_rsa_key *key = &ctx->key; 74 struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1; 75 76 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); 77 dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE); 78 } 79 80 static void rsa_priv_f2_unmap(struct device *dev, struct rsa_edesc *edesc, 81 struct akcipher_request *req) 82 { 83 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 84 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 85 struct caam_rsa_key *key = &ctx->key; 86 struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2; 87 size_t p_sz = key->p_sz; 88 size_t q_sz = key->q_sz; 89 90 dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE); 91 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); 92 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); 93 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); 94 dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_BIDIRECTIONAL); 95 } 96 97 static void rsa_priv_f3_unmap(struct device *dev, struct rsa_edesc *edesc, 98 struct akcipher_request *req) 99 { 100 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 101 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 102 struct caam_rsa_key *key = &ctx->key; 103 struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3; 104 size_t p_sz = key->p_sz; 105 size_t q_sz = key->q_sz; 106 107 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); 108 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); 109 dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE); 110 dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE); 111 dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE); 112 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); 113 dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_BIDIRECTIONAL); 114 } 115 116 /* RSA Job Completion handler */ 117 static void rsa_pub_done(struct device *dev, u32 *desc, u32 err, void *context) 118 { 119 struct akcipher_request *req = context; 120 struct rsa_edesc *edesc; 121 int ecode = 0; 122 123 if (err) 124 ecode = caam_jr_strstatus(dev, err); 125 126 edesc = container_of(desc, struct rsa_edesc, hw_desc[0]); 127 128 rsa_pub_unmap(dev, edesc, req); 129 rsa_io_unmap(dev, edesc, req); 130 kfree(edesc); 131 132 akcipher_request_complete(req, ecode); 133 } 134 135 static void rsa_priv_f1_done(struct device *dev, u32 *desc, u32 err, 136 void *context) 137 { 138 struct akcipher_request *req = context; 139 struct rsa_edesc *edesc; 140 int ecode = 0; 141 142 if (err) 143 ecode = caam_jr_strstatus(dev, err); 144 145 edesc = container_of(desc, struct rsa_edesc, hw_desc[0]); 146 147 rsa_priv_f1_unmap(dev, edesc, req); 148 rsa_io_unmap(dev, edesc, req); 149 kfree(edesc); 150 151 akcipher_request_complete(req, ecode); 152 } 153 154 static void rsa_priv_f2_done(struct device *dev, u32 *desc, u32 err, 155 void *context) 156 { 157 struct akcipher_request *req = context; 158 struct rsa_edesc *edesc; 159 int ecode = 0; 160 161 if (err) 162 ecode = caam_jr_strstatus(dev, err); 163 164 edesc = container_of(desc, struct rsa_edesc, hw_desc[0]); 165 166 rsa_priv_f2_unmap(dev, edesc, req); 167 rsa_io_unmap(dev, edesc, req); 168 kfree(edesc); 169 170 akcipher_request_complete(req, ecode); 171 } 172 173 static void rsa_priv_f3_done(struct device *dev, u32 *desc, u32 err, 174 void *context) 175 { 176 struct akcipher_request *req = context; 177 struct rsa_edesc *edesc; 178 int ecode = 0; 179 180 if (err) 181 ecode = caam_jr_strstatus(dev, err); 182 183 edesc = container_of(desc, struct rsa_edesc, hw_desc[0]); 184 185 rsa_priv_f3_unmap(dev, edesc, req); 186 rsa_io_unmap(dev, edesc, req); 187 kfree(edesc); 188 189 akcipher_request_complete(req, ecode); 190 } 191 192 /** 193 * Count leading zeros, need it to strip, from a given scatterlist 194 * 195 * @sgl : scatterlist to count zeros from 196 * @nbytes: number of zeros, in bytes, to strip 197 * @flags : operation flags 198 */ 199 static int caam_rsa_count_leading_zeros(struct scatterlist *sgl, 200 unsigned int nbytes, 201 unsigned int flags) 202 { 203 struct sg_mapping_iter miter; 204 int lzeros, ents; 205 unsigned int len; 206 unsigned int tbytes = nbytes; 207 const u8 *buff; 208 209 ents = sg_nents_for_len(sgl, nbytes); 210 if (ents < 0) 211 return ents; 212 213 sg_miter_start(&miter, sgl, ents, SG_MITER_FROM_SG | flags); 214 215 lzeros = 0; 216 len = 0; 217 while (nbytes > 0) { 218 /* do not strip more than given bytes */ 219 while (len && !*buff && lzeros < nbytes) { 220 lzeros++; 221 len--; 222 buff++; 223 } 224 225 if (len && *buff) 226 break; 227 228 sg_miter_next(&miter); 229 buff = miter.addr; 230 len = miter.length; 231 232 nbytes -= lzeros; 233 lzeros = 0; 234 } 235 236 miter.consumed = lzeros; 237 sg_miter_stop(&miter); 238 nbytes -= lzeros; 239 240 return tbytes - nbytes; 241 } 242 243 static struct rsa_edesc *rsa_edesc_alloc(struct akcipher_request *req, 244 size_t desclen) 245 { 246 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 247 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 248 struct device *dev = ctx->dev; 249 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 250 struct caam_rsa_key *key = &ctx->key; 251 struct rsa_edesc *edesc; 252 gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? 253 GFP_KERNEL : GFP_ATOMIC; 254 int sg_flags = (flags == GFP_ATOMIC) ? SG_MITER_ATOMIC : 0; 255 int sgc; 256 int sec4_sg_index, sec4_sg_len = 0, sec4_sg_bytes; 257 int src_nents, dst_nents; 258 unsigned int diff_size = 0; 259 int lzeros; 260 261 if (req->src_len > key->n_sz) { 262 /* 263 * strip leading zeros and 264 * return the number of zeros to skip 265 */ 266 lzeros = caam_rsa_count_leading_zeros(req->src, req->src_len - 267 key->n_sz, sg_flags); 268 if (lzeros < 0) 269 return ERR_PTR(lzeros); 270 271 req_ctx->fixup_src = scatterwalk_ffwd(req_ctx->src, req->src, 272 lzeros); 273 req_ctx->fixup_src_len = req->src_len - lzeros; 274 } else { 275 /* 276 * input src is less then n key modulus, 277 * so there will be zero padding 278 */ 279 diff_size = key->n_sz - req->src_len; 280 req_ctx->fixup_src = req->src; 281 req_ctx->fixup_src_len = req->src_len; 282 } 283 284 src_nents = sg_nents_for_len(req_ctx->fixup_src, 285 req_ctx->fixup_src_len); 286 dst_nents = sg_nents_for_len(req->dst, req->dst_len); 287 288 if (!diff_size && src_nents == 1) 289 sec4_sg_len = 0; /* no need for an input hw s/g table */ 290 else 291 sec4_sg_len = src_nents + !!diff_size; 292 sec4_sg_index = sec4_sg_len; 293 if (dst_nents > 1) 294 sec4_sg_len += pad_sg_nents(dst_nents); 295 else 296 sec4_sg_len = pad_sg_nents(sec4_sg_len); 297 298 sec4_sg_bytes = sec4_sg_len * sizeof(struct sec4_sg_entry); 299 300 /* allocate space for base edesc, hw desc commands and link tables */ 301 edesc = kzalloc(sizeof(*edesc) + desclen + sec4_sg_bytes, 302 GFP_DMA | flags); 303 if (!edesc) 304 return ERR_PTR(-ENOMEM); 305 306 sgc = dma_map_sg(dev, req_ctx->fixup_src, src_nents, DMA_TO_DEVICE); 307 if (unlikely(!sgc)) { 308 dev_err(dev, "unable to map source\n"); 309 goto src_fail; 310 } 311 312 sgc = dma_map_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE); 313 if (unlikely(!sgc)) { 314 dev_err(dev, "unable to map destination\n"); 315 goto dst_fail; 316 } 317 318 edesc->sec4_sg = (void *)edesc + sizeof(*edesc) + desclen; 319 if (diff_size) 320 dma_to_sec4_sg_one(edesc->sec4_sg, ctx->padding_dma, diff_size, 321 0); 322 323 if (sec4_sg_index) 324 sg_to_sec4_sg_last(req_ctx->fixup_src, req_ctx->fixup_src_len, 325 edesc->sec4_sg + !!diff_size, 0); 326 327 if (dst_nents > 1) 328 sg_to_sec4_sg_last(req->dst, req->dst_len, 329 edesc->sec4_sg + sec4_sg_index, 0); 330 331 /* Save nents for later use in Job Descriptor */ 332 edesc->src_nents = src_nents; 333 edesc->dst_nents = dst_nents; 334 335 if (!sec4_sg_bytes) 336 return edesc; 337 338 edesc->sec4_sg_dma = dma_map_single(dev, edesc->sec4_sg, 339 sec4_sg_bytes, DMA_TO_DEVICE); 340 if (dma_mapping_error(dev, edesc->sec4_sg_dma)) { 341 dev_err(dev, "unable to map S/G table\n"); 342 goto sec4_sg_fail; 343 } 344 345 edesc->sec4_sg_bytes = sec4_sg_bytes; 346 347 print_hex_dump_debug("caampkc sec4_sg@" __stringify(__LINE__) ": ", 348 DUMP_PREFIX_ADDRESS, 16, 4, edesc->sec4_sg, 349 edesc->sec4_sg_bytes, 1); 350 351 return edesc; 352 353 sec4_sg_fail: 354 dma_unmap_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE); 355 dst_fail: 356 dma_unmap_sg(dev, req_ctx->fixup_src, src_nents, DMA_TO_DEVICE); 357 src_fail: 358 kfree(edesc); 359 return ERR_PTR(-ENOMEM); 360 } 361 362 static int set_rsa_pub_pdb(struct akcipher_request *req, 363 struct rsa_edesc *edesc) 364 { 365 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 366 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 367 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 368 struct caam_rsa_key *key = &ctx->key; 369 struct device *dev = ctx->dev; 370 struct rsa_pub_pdb *pdb = &edesc->pdb.pub; 371 int sec4_sg_index = 0; 372 373 pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE); 374 if (dma_mapping_error(dev, pdb->n_dma)) { 375 dev_err(dev, "Unable to map RSA modulus memory\n"); 376 return -ENOMEM; 377 } 378 379 pdb->e_dma = dma_map_single(dev, key->e, key->e_sz, DMA_TO_DEVICE); 380 if (dma_mapping_error(dev, pdb->e_dma)) { 381 dev_err(dev, "Unable to map RSA public exponent memory\n"); 382 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); 383 return -ENOMEM; 384 } 385 386 if (edesc->src_nents > 1) { 387 pdb->sgf |= RSA_PDB_SGF_F; 388 pdb->f_dma = edesc->sec4_sg_dma; 389 sec4_sg_index += edesc->src_nents; 390 } else { 391 pdb->f_dma = sg_dma_address(req_ctx->fixup_src); 392 } 393 394 if (edesc->dst_nents > 1) { 395 pdb->sgf |= RSA_PDB_SGF_G; 396 pdb->g_dma = edesc->sec4_sg_dma + 397 sec4_sg_index * sizeof(struct sec4_sg_entry); 398 } else { 399 pdb->g_dma = sg_dma_address(req->dst); 400 } 401 402 pdb->sgf |= (key->e_sz << RSA_PDB_E_SHIFT) | key->n_sz; 403 pdb->f_len = req_ctx->fixup_src_len; 404 405 return 0; 406 } 407 408 static int set_rsa_priv_f1_pdb(struct akcipher_request *req, 409 struct rsa_edesc *edesc) 410 { 411 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 412 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 413 struct caam_rsa_key *key = &ctx->key; 414 struct device *dev = ctx->dev; 415 struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1; 416 int sec4_sg_index = 0; 417 418 pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE); 419 if (dma_mapping_error(dev, pdb->n_dma)) { 420 dev_err(dev, "Unable to map modulus memory\n"); 421 return -ENOMEM; 422 } 423 424 pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE); 425 if (dma_mapping_error(dev, pdb->d_dma)) { 426 dev_err(dev, "Unable to map RSA private exponent memory\n"); 427 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); 428 return -ENOMEM; 429 } 430 431 if (edesc->src_nents > 1) { 432 pdb->sgf |= RSA_PRIV_PDB_SGF_G; 433 pdb->g_dma = edesc->sec4_sg_dma; 434 sec4_sg_index += edesc->src_nents; 435 } else { 436 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 437 438 pdb->g_dma = sg_dma_address(req_ctx->fixup_src); 439 } 440 441 if (edesc->dst_nents > 1) { 442 pdb->sgf |= RSA_PRIV_PDB_SGF_F; 443 pdb->f_dma = edesc->sec4_sg_dma + 444 sec4_sg_index * sizeof(struct sec4_sg_entry); 445 } else { 446 pdb->f_dma = sg_dma_address(req->dst); 447 } 448 449 pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz; 450 451 return 0; 452 } 453 454 static int set_rsa_priv_f2_pdb(struct akcipher_request *req, 455 struct rsa_edesc *edesc) 456 { 457 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 458 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 459 struct caam_rsa_key *key = &ctx->key; 460 struct device *dev = ctx->dev; 461 struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2; 462 int sec4_sg_index = 0; 463 size_t p_sz = key->p_sz; 464 size_t q_sz = key->q_sz; 465 466 pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE); 467 if (dma_mapping_error(dev, pdb->d_dma)) { 468 dev_err(dev, "Unable to map RSA private exponent memory\n"); 469 return -ENOMEM; 470 } 471 472 pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE); 473 if (dma_mapping_error(dev, pdb->p_dma)) { 474 dev_err(dev, "Unable to map RSA prime factor p memory\n"); 475 goto unmap_d; 476 } 477 478 pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE); 479 if (dma_mapping_error(dev, pdb->q_dma)) { 480 dev_err(dev, "Unable to map RSA prime factor q memory\n"); 481 goto unmap_p; 482 } 483 484 pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_BIDIRECTIONAL); 485 if (dma_mapping_error(dev, pdb->tmp1_dma)) { 486 dev_err(dev, "Unable to map RSA tmp1 memory\n"); 487 goto unmap_q; 488 } 489 490 pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_BIDIRECTIONAL); 491 if (dma_mapping_error(dev, pdb->tmp2_dma)) { 492 dev_err(dev, "Unable to map RSA tmp2 memory\n"); 493 goto unmap_tmp1; 494 } 495 496 if (edesc->src_nents > 1) { 497 pdb->sgf |= RSA_PRIV_PDB_SGF_G; 498 pdb->g_dma = edesc->sec4_sg_dma; 499 sec4_sg_index += edesc->src_nents; 500 } else { 501 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 502 503 pdb->g_dma = sg_dma_address(req_ctx->fixup_src); 504 } 505 506 if (edesc->dst_nents > 1) { 507 pdb->sgf |= RSA_PRIV_PDB_SGF_F; 508 pdb->f_dma = edesc->sec4_sg_dma + 509 sec4_sg_index * sizeof(struct sec4_sg_entry); 510 } else { 511 pdb->f_dma = sg_dma_address(req->dst); 512 } 513 514 pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz; 515 pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz; 516 517 return 0; 518 519 unmap_tmp1: 520 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); 521 unmap_q: 522 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); 523 unmap_p: 524 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); 525 unmap_d: 526 dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE); 527 528 return -ENOMEM; 529 } 530 531 static int set_rsa_priv_f3_pdb(struct akcipher_request *req, 532 struct rsa_edesc *edesc) 533 { 534 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 535 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 536 struct caam_rsa_key *key = &ctx->key; 537 struct device *dev = ctx->dev; 538 struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3; 539 int sec4_sg_index = 0; 540 size_t p_sz = key->p_sz; 541 size_t q_sz = key->q_sz; 542 543 pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE); 544 if (dma_mapping_error(dev, pdb->p_dma)) { 545 dev_err(dev, "Unable to map RSA prime factor p memory\n"); 546 return -ENOMEM; 547 } 548 549 pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE); 550 if (dma_mapping_error(dev, pdb->q_dma)) { 551 dev_err(dev, "Unable to map RSA prime factor q memory\n"); 552 goto unmap_p; 553 } 554 555 pdb->dp_dma = dma_map_single(dev, key->dp, p_sz, DMA_TO_DEVICE); 556 if (dma_mapping_error(dev, pdb->dp_dma)) { 557 dev_err(dev, "Unable to map RSA exponent dp memory\n"); 558 goto unmap_q; 559 } 560 561 pdb->dq_dma = dma_map_single(dev, key->dq, q_sz, DMA_TO_DEVICE); 562 if (dma_mapping_error(dev, pdb->dq_dma)) { 563 dev_err(dev, "Unable to map RSA exponent dq memory\n"); 564 goto unmap_dp; 565 } 566 567 pdb->c_dma = dma_map_single(dev, key->qinv, p_sz, DMA_TO_DEVICE); 568 if (dma_mapping_error(dev, pdb->c_dma)) { 569 dev_err(dev, "Unable to map RSA CRT coefficient qinv memory\n"); 570 goto unmap_dq; 571 } 572 573 pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_BIDIRECTIONAL); 574 if (dma_mapping_error(dev, pdb->tmp1_dma)) { 575 dev_err(dev, "Unable to map RSA tmp1 memory\n"); 576 goto unmap_qinv; 577 } 578 579 pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_BIDIRECTIONAL); 580 if (dma_mapping_error(dev, pdb->tmp2_dma)) { 581 dev_err(dev, "Unable to map RSA tmp2 memory\n"); 582 goto unmap_tmp1; 583 } 584 585 if (edesc->src_nents > 1) { 586 pdb->sgf |= RSA_PRIV_PDB_SGF_G; 587 pdb->g_dma = edesc->sec4_sg_dma; 588 sec4_sg_index += edesc->src_nents; 589 } else { 590 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 591 592 pdb->g_dma = sg_dma_address(req_ctx->fixup_src); 593 } 594 595 if (edesc->dst_nents > 1) { 596 pdb->sgf |= RSA_PRIV_PDB_SGF_F; 597 pdb->f_dma = edesc->sec4_sg_dma + 598 sec4_sg_index * sizeof(struct sec4_sg_entry); 599 } else { 600 pdb->f_dma = sg_dma_address(req->dst); 601 } 602 603 pdb->sgf |= key->n_sz; 604 pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz; 605 606 return 0; 607 608 unmap_tmp1: 609 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); 610 unmap_qinv: 611 dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE); 612 unmap_dq: 613 dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE); 614 unmap_dp: 615 dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE); 616 unmap_q: 617 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); 618 unmap_p: 619 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); 620 621 return -ENOMEM; 622 } 623 624 static int caam_rsa_enc(struct akcipher_request *req) 625 { 626 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 627 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 628 struct caam_rsa_key *key = &ctx->key; 629 struct device *jrdev = ctx->dev; 630 struct rsa_edesc *edesc; 631 int ret; 632 633 if (unlikely(!key->n || !key->e)) 634 return -EINVAL; 635 636 if (req->dst_len < key->n_sz) { 637 req->dst_len = key->n_sz; 638 dev_err(jrdev, "Output buffer length less than parameter n\n"); 639 return -EOVERFLOW; 640 } 641 642 /* Allocate extended descriptor */ 643 edesc = rsa_edesc_alloc(req, DESC_RSA_PUB_LEN); 644 if (IS_ERR(edesc)) 645 return PTR_ERR(edesc); 646 647 /* Set RSA Encrypt Protocol Data Block */ 648 ret = set_rsa_pub_pdb(req, edesc); 649 if (ret) 650 goto init_fail; 651 652 /* Initialize Job Descriptor */ 653 init_rsa_pub_desc(edesc->hw_desc, &edesc->pdb.pub); 654 655 ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_pub_done, req); 656 if (!ret) 657 return -EINPROGRESS; 658 659 rsa_pub_unmap(jrdev, edesc, req); 660 661 init_fail: 662 rsa_io_unmap(jrdev, edesc, req); 663 kfree(edesc); 664 return ret; 665 } 666 667 static int caam_rsa_dec_priv_f1(struct akcipher_request *req) 668 { 669 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 670 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 671 struct device *jrdev = ctx->dev; 672 struct rsa_edesc *edesc; 673 int ret; 674 675 /* Allocate extended descriptor */ 676 edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F1_LEN); 677 if (IS_ERR(edesc)) 678 return PTR_ERR(edesc); 679 680 /* Set RSA Decrypt Protocol Data Block - Private Key Form #1 */ 681 ret = set_rsa_priv_f1_pdb(req, edesc); 682 if (ret) 683 goto init_fail; 684 685 /* Initialize Job Descriptor */ 686 init_rsa_priv_f1_desc(edesc->hw_desc, &edesc->pdb.priv_f1); 687 688 ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_priv_f1_done, req); 689 if (!ret) 690 return -EINPROGRESS; 691 692 rsa_priv_f1_unmap(jrdev, edesc, req); 693 694 init_fail: 695 rsa_io_unmap(jrdev, edesc, req); 696 kfree(edesc); 697 return ret; 698 } 699 700 static int caam_rsa_dec_priv_f2(struct akcipher_request *req) 701 { 702 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 703 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 704 struct device *jrdev = ctx->dev; 705 struct rsa_edesc *edesc; 706 int ret; 707 708 /* Allocate extended descriptor */ 709 edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F2_LEN); 710 if (IS_ERR(edesc)) 711 return PTR_ERR(edesc); 712 713 /* Set RSA Decrypt Protocol Data Block - Private Key Form #2 */ 714 ret = set_rsa_priv_f2_pdb(req, edesc); 715 if (ret) 716 goto init_fail; 717 718 /* Initialize Job Descriptor */ 719 init_rsa_priv_f2_desc(edesc->hw_desc, &edesc->pdb.priv_f2); 720 721 ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_priv_f2_done, req); 722 if (!ret) 723 return -EINPROGRESS; 724 725 rsa_priv_f2_unmap(jrdev, edesc, req); 726 727 init_fail: 728 rsa_io_unmap(jrdev, edesc, req); 729 kfree(edesc); 730 return ret; 731 } 732 733 static int caam_rsa_dec_priv_f3(struct akcipher_request *req) 734 { 735 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 736 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 737 struct device *jrdev = ctx->dev; 738 struct rsa_edesc *edesc; 739 int ret; 740 741 /* Allocate extended descriptor */ 742 edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F3_LEN); 743 if (IS_ERR(edesc)) 744 return PTR_ERR(edesc); 745 746 /* Set RSA Decrypt Protocol Data Block - Private Key Form #3 */ 747 ret = set_rsa_priv_f3_pdb(req, edesc); 748 if (ret) 749 goto init_fail; 750 751 /* Initialize Job Descriptor */ 752 init_rsa_priv_f3_desc(edesc->hw_desc, &edesc->pdb.priv_f3); 753 754 ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_priv_f3_done, req); 755 if (!ret) 756 return -EINPROGRESS; 757 758 rsa_priv_f3_unmap(jrdev, edesc, req); 759 760 init_fail: 761 rsa_io_unmap(jrdev, edesc, req); 762 kfree(edesc); 763 return ret; 764 } 765 766 static int caam_rsa_dec(struct akcipher_request *req) 767 { 768 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 769 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 770 struct caam_rsa_key *key = &ctx->key; 771 int ret; 772 773 if (unlikely(!key->n || !key->d)) 774 return -EINVAL; 775 776 if (req->dst_len < key->n_sz) { 777 req->dst_len = key->n_sz; 778 dev_err(ctx->dev, "Output buffer length less than parameter n\n"); 779 return -EOVERFLOW; 780 } 781 782 if (key->priv_form == FORM3) 783 ret = caam_rsa_dec_priv_f3(req); 784 else if (key->priv_form == FORM2) 785 ret = caam_rsa_dec_priv_f2(req); 786 else 787 ret = caam_rsa_dec_priv_f1(req); 788 789 return ret; 790 } 791 792 static void caam_rsa_free_key(struct caam_rsa_key *key) 793 { 794 kzfree(key->d); 795 kzfree(key->p); 796 kzfree(key->q); 797 kzfree(key->dp); 798 kzfree(key->dq); 799 kzfree(key->qinv); 800 kzfree(key->tmp1); 801 kzfree(key->tmp2); 802 kfree(key->e); 803 kfree(key->n); 804 memset(key, 0, sizeof(*key)); 805 } 806 807 static void caam_rsa_drop_leading_zeros(const u8 **ptr, size_t *nbytes) 808 { 809 while (!**ptr && *nbytes) { 810 (*ptr)++; 811 (*nbytes)--; 812 } 813 } 814 815 /** 816 * caam_read_rsa_crt - Used for reading dP, dQ, qInv CRT members. 817 * dP, dQ and qInv could decode to less than corresponding p, q length, as the 818 * BER-encoding requires that the minimum number of bytes be used to encode the 819 * integer. dP, dQ, qInv decoded values have to be zero-padded to appropriate 820 * length. 821 * 822 * @ptr : pointer to {dP, dQ, qInv} CRT member 823 * @nbytes: length in bytes of {dP, dQ, qInv} CRT member 824 * @dstlen: length in bytes of corresponding p or q prime factor 825 */ 826 static u8 *caam_read_rsa_crt(const u8 *ptr, size_t nbytes, size_t dstlen) 827 { 828 u8 *dst; 829 830 caam_rsa_drop_leading_zeros(&ptr, &nbytes); 831 if (!nbytes) 832 return NULL; 833 834 dst = kzalloc(dstlen, GFP_DMA | GFP_KERNEL); 835 if (!dst) 836 return NULL; 837 838 memcpy(dst + (dstlen - nbytes), ptr, nbytes); 839 840 return dst; 841 } 842 843 /** 844 * caam_read_raw_data - Read a raw byte stream as a positive integer. 845 * The function skips buffer's leading zeros, copies the remained data 846 * to a buffer allocated in the GFP_DMA | GFP_KERNEL zone and returns 847 * the address of the new buffer. 848 * 849 * @buf : The data to read 850 * @nbytes: The amount of data to read 851 */ 852 static inline u8 *caam_read_raw_data(const u8 *buf, size_t *nbytes) 853 { 854 855 caam_rsa_drop_leading_zeros(&buf, nbytes); 856 if (!*nbytes) 857 return NULL; 858 859 return kmemdup(buf, *nbytes, GFP_DMA | GFP_KERNEL); 860 } 861 862 static int caam_rsa_check_key_length(unsigned int len) 863 { 864 if (len > 4096) 865 return -EINVAL; 866 return 0; 867 } 868 869 static int caam_rsa_set_pub_key(struct crypto_akcipher *tfm, const void *key, 870 unsigned int keylen) 871 { 872 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 873 struct rsa_key raw_key = {NULL}; 874 struct caam_rsa_key *rsa_key = &ctx->key; 875 int ret; 876 877 /* Free the old RSA key if any */ 878 caam_rsa_free_key(rsa_key); 879 880 ret = rsa_parse_pub_key(&raw_key, key, keylen); 881 if (ret) 882 return ret; 883 884 /* Copy key in DMA zone */ 885 rsa_key->e = kmemdup(raw_key.e, raw_key.e_sz, GFP_DMA | GFP_KERNEL); 886 if (!rsa_key->e) 887 goto err; 888 889 /* 890 * Skip leading zeros and copy the positive integer to a buffer 891 * allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor 892 * expects a positive integer for the RSA modulus and uses its length as 893 * decryption output length. 894 */ 895 rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz); 896 if (!rsa_key->n) 897 goto err; 898 899 if (caam_rsa_check_key_length(raw_key.n_sz << 3)) { 900 caam_rsa_free_key(rsa_key); 901 return -EINVAL; 902 } 903 904 rsa_key->e_sz = raw_key.e_sz; 905 rsa_key->n_sz = raw_key.n_sz; 906 907 return 0; 908 err: 909 caam_rsa_free_key(rsa_key); 910 return -ENOMEM; 911 } 912 913 static void caam_rsa_set_priv_key_form(struct caam_rsa_ctx *ctx, 914 struct rsa_key *raw_key) 915 { 916 struct caam_rsa_key *rsa_key = &ctx->key; 917 size_t p_sz = raw_key->p_sz; 918 size_t q_sz = raw_key->q_sz; 919 920 rsa_key->p = caam_read_raw_data(raw_key->p, &p_sz); 921 if (!rsa_key->p) 922 return; 923 rsa_key->p_sz = p_sz; 924 925 rsa_key->q = caam_read_raw_data(raw_key->q, &q_sz); 926 if (!rsa_key->q) 927 goto free_p; 928 rsa_key->q_sz = q_sz; 929 930 rsa_key->tmp1 = kzalloc(raw_key->p_sz, GFP_DMA | GFP_KERNEL); 931 if (!rsa_key->tmp1) 932 goto free_q; 933 934 rsa_key->tmp2 = kzalloc(raw_key->q_sz, GFP_DMA | GFP_KERNEL); 935 if (!rsa_key->tmp2) 936 goto free_tmp1; 937 938 rsa_key->priv_form = FORM2; 939 940 rsa_key->dp = caam_read_rsa_crt(raw_key->dp, raw_key->dp_sz, p_sz); 941 if (!rsa_key->dp) 942 goto free_tmp2; 943 944 rsa_key->dq = caam_read_rsa_crt(raw_key->dq, raw_key->dq_sz, q_sz); 945 if (!rsa_key->dq) 946 goto free_dp; 947 948 rsa_key->qinv = caam_read_rsa_crt(raw_key->qinv, raw_key->qinv_sz, 949 q_sz); 950 if (!rsa_key->qinv) 951 goto free_dq; 952 953 rsa_key->priv_form = FORM3; 954 955 return; 956 957 free_dq: 958 kzfree(rsa_key->dq); 959 free_dp: 960 kzfree(rsa_key->dp); 961 free_tmp2: 962 kzfree(rsa_key->tmp2); 963 free_tmp1: 964 kzfree(rsa_key->tmp1); 965 free_q: 966 kzfree(rsa_key->q); 967 free_p: 968 kzfree(rsa_key->p); 969 } 970 971 static int caam_rsa_set_priv_key(struct crypto_akcipher *tfm, const void *key, 972 unsigned int keylen) 973 { 974 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 975 struct rsa_key raw_key = {NULL}; 976 struct caam_rsa_key *rsa_key = &ctx->key; 977 int ret; 978 979 /* Free the old RSA key if any */ 980 caam_rsa_free_key(rsa_key); 981 982 ret = rsa_parse_priv_key(&raw_key, key, keylen); 983 if (ret) 984 return ret; 985 986 /* Copy key in DMA zone */ 987 rsa_key->d = kmemdup(raw_key.d, raw_key.d_sz, GFP_DMA | GFP_KERNEL); 988 if (!rsa_key->d) 989 goto err; 990 991 rsa_key->e = kmemdup(raw_key.e, raw_key.e_sz, GFP_DMA | GFP_KERNEL); 992 if (!rsa_key->e) 993 goto err; 994 995 /* 996 * Skip leading zeros and copy the positive integer to a buffer 997 * allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor 998 * expects a positive integer for the RSA modulus and uses its length as 999 * decryption output length. 1000 */ 1001 rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz); 1002 if (!rsa_key->n) 1003 goto err; 1004 1005 if (caam_rsa_check_key_length(raw_key.n_sz << 3)) { 1006 caam_rsa_free_key(rsa_key); 1007 return -EINVAL; 1008 } 1009 1010 rsa_key->d_sz = raw_key.d_sz; 1011 rsa_key->e_sz = raw_key.e_sz; 1012 rsa_key->n_sz = raw_key.n_sz; 1013 1014 caam_rsa_set_priv_key_form(ctx, &raw_key); 1015 1016 return 0; 1017 1018 err: 1019 caam_rsa_free_key(rsa_key); 1020 return -ENOMEM; 1021 } 1022 1023 static unsigned int caam_rsa_max_size(struct crypto_akcipher *tfm) 1024 { 1025 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 1026 1027 return ctx->key.n_sz; 1028 } 1029 1030 /* Per session pkc's driver context creation function */ 1031 static int caam_rsa_init_tfm(struct crypto_akcipher *tfm) 1032 { 1033 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 1034 1035 ctx->dev = caam_jr_alloc(); 1036 1037 if (IS_ERR(ctx->dev)) { 1038 pr_err("Job Ring Device allocation for transform failed\n"); 1039 return PTR_ERR(ctx->dev); 1040 } 1041 1042 ctx->padding_dma = dma_map_single(ctx->dev, zero_buffer, 1043 CAAM_RSA_MAX_INPUT_SIZE - 1, 1044 DMA_TO_DEVICE); 1045 if (dma_mapping_error(ctx->dev, ctx->padding_dma)) { 1046 dev_err(ctx->dev, "unable to map padding\n"); 1047 caam_jr_free(ctx->dev); 1048 return -ENOMEM; 1049 } 1050 1051 return 0; 1052 } 1053 1054 /* Per session pkc's driver context cleanup function */ 1055 static void caam_rsa_exit_tfm(struct crypto_akcipher *tfm) 1056 { 1057 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 1058 struct caam_rsa_key *key = &ctx->key; 1059 1060 dma_unmap_single(ctx->dev, ctx->padding_dma, CAAM_RSA_MAX_INPUT_SIZE - 1061 1, DMA_TO_DEVICE); 1062 caam_rsa_free_key(key); 1063 caam_jr_free(ctx->dev); 1064 } 1065 1066 static struct caam_akcipher_alg caam_rsa = { 1067 .akcipher = { 1068 .encrypt = caam_rsa_enc, 1069 .decrypt = caam_rsa_dec, 1070 .set_pub_key = caam_rsa_set_pub_key, 1071 .set_priv_key = caam_rsa_set_priv_key, 1072 .max_size = caam_rsa_max_size, 1073 .init = caam_rsa_init_tfm, 1074 .exit = caam_rsa_exit_tfm, 1075 .reqsize = sizeof(struct caam_rsa_req_ctx), 1076 .base = { 1077 .cra_name = "rsa", 1078 .cra_driver_name = "rsa-caam", 1079 .cra_priority = 3000, 1080 .cra_module = THIS_MODULE, 1081 .cra_ctxsize = sizeof(struct caam_rsa_ctx), 1082 }, 1083 } 1084 }; 1085 1086 /* Public Key Cryptography module initialization handler */ 1087 int caam_pkc_init(struct device *ctrldev) 1088 { 1089 struct caam_drv_private *priv = dev_get_drvdata(ctrldev); 1090 u32 pk_inst; 1091 int err; 1092 init_done = false; 1093 1094 /* Determine public key hardware accelerator presence. */ 1095 if (priv->era < 10) 1096 pk_inst = (rd_reg32(&priv->ctrl->perfmon.cha_num_ls) & 1097 CHA_ID_LS_PK_MASK) >> CHA_ID_LS_PK_SHIFT; 1098 else 1099 pk_inst = rd_reg32(&priv->ctrl->vreg.pkha) & CHA_VER_NUM_MASK; 1100 1101 /* Do not register algorithms if PKHA is not present. */ 1102 if (!pk_inst) 1103 return 0; 1104 1105 /* allocate zero buffer, used for padding input */ 1106 zero_buffer = kzalloc(CAAM_RSA_MAX_INPUT_SIZE - 1, GFP_DMA | 1107 GFP_KERNEL); 1108 if (!zero_buffer) 1109 return -ENOMEM; 1110 1111 err = crypto_register_akcipher(&caam_rsa.akcipher); 1112 1113 if (err) { 1114 kfree(zero_buffer); 1115 dev_warn(ctrldev, "%s alg registration failed\n", 1116 caam_rsa.akcipher.base.cra_driver_name); 1117 } else { 1118 init_done = true; 1119 caam_rsa.registered = true; 1120 dev_info(ctrldev, "caam pkc algorithms registered in /proc/crypto\n"); 1121 } 1122 1123 return err; 1124 } 1125 1126 void caam_pkc_exit(void) 1127 { 1128 if (!init_done) 1129 return; 1130 1131 if (caam_rsa.registered) 1132 crypto_unregister_akcipher(&caam_rsa.akcipher); 1133 1134 kfree(zero_buffer); 1135 } 1136