xref: /linux/drivers/crypto/caam/caampkc.c (revision cc2a58f1)
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * caam - Freescale FSL CAAM support for Public Key Cryptography
4  *
5  * Copyright 2016 Freescale Semiconductor, Inc.
6  * Copyright 2018-2019 NXP
7  *
8  * There is no Shared Descriptor for PKC so that the Job Descriptor must carry
9  * all the desired key parameters, input and output pointers.
10  */
11 #include "compat.h"
12 #include "regs.h"
13 #include "intern.h"
14 #include "jr.h"
15 #include "error.h"
16 #include "desc_constr.h"
17 #include "sg_sw_sec4.h"
18 #include "caampkc.h"
19 
20 #define DESC_RSA_PUB_LEN	(2 * CAAM_CMD_SZ + sizeof(struct rsa_pub_pdb))
21 #define DESC_RSA_PRIV_F1_LEN	(2 * CAAM_CMD_SZ + \
22 				 sizeof(struct rsa_priv_f1_pdb))
23 #define DESC_RSA_PRIV_F2_LEN	(2 * CAAM_CMD_SZ + \
24 				 sizeof(struct rsa_priv_f2_pdb))
25 #define DESC_RSA_PRIV_F3_LEN	(2 * CAAM_CMD_SZ + \
26 				 sizeof(struct rsa_priv_f3_pdb))
27 #define CAAM_RSA_MAX_INPUT_SIZE	512 /* for a 4096-bit modulus */
28 
29 /* buffer filled with zeros, used for padding */
30 static u8 *zero_buffer;
31 
32 static void rsa_io_unmap(struct device *dev, struct rsa_edesc *edesc,
33 			 struct akcipher_request *req)
34 {
35 	struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
36 
37 	dma_unmap_sg(dev, req->dst, edesc->dst_nents, DMA_FROM_DEVICE);
38 	dma_unmap_sg(dev, req_ctx->fixup_src, edesc->src_nents, DMA_TO_DEVICE);
39 
40 	if (edesc->sec4_sg_bytes)
41 		dma_unmap_single(dev, edesc->sec4_sg_dma, edesc->sec4_sg_bytes,
42 				 DMA_TO_DEVICE);
43 }
44 
45 static void rsa_pub_unmap(struct device *dev, struct rsa_edesc *edesc,
46 			  struct akcipher_request *req)
47 {
48 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
49 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
50 	struct caam_rsa_key *key = &ctx->key;
51 	struct rsa_pub_pdb *pdb = &edesc->pdb.pub;
52 
53 	dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
54 	dma_unmap_single(dev, pdb->e_dma, key->e_sz, DMA_TO_DEVICE);
55 }
56 
57 static void rsa_priv_f1_unmap(struct device *dev, struct rsa_edesc *edesc,
58 			      struct akcipher_request *req)
59 {
60 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
61 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
62 	struct caam_rsa_key *key = &ctx->key;
63 	struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1;
64 
65 	dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
66 	dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE);
67 }
68 
69 static void rsa_priv_f2_unmap(struct device *dev, struct rsa_edesc *edesc,
70 			      struct akcipher_request *req)
71 {
72 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
73 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
74 	struct caam_rsa_key *key = &ctx->key;
75 	struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2;
76 	size_t p_sz = key->p_sz;
77 	size_t q_sz = key->q_sz;
78 
79 	dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE);
80 	dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE);
81 	dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE);
82 	dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL);
83 	dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_BIDIRECTIONAL);
84 }
85 
86 static void rsa_priv_f3_unmap(struct device *dev, struct rsa_edesc *edesc,
87 			      struct akcipher_request *req)
88 {
89 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
90 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
91 	struct caam_rsa_key *key = &ctx->key;
92 	struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3;
93 	size_t p_sz = key->p_sz;
94 	size_t q_sz = key->q_sz;
95 
96 	dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE);
97 	dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE);
98 	dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE);
99 	dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE);
100 	dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE);
101 	dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL);
102 	dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_BIDIRECTIONAL);
103 }
104 
105 /* RSA Job Completion handler */
106 static void rsa_pub_done(struct device *dev, u32 *desc, u32 err, void *context)
107 {
108 	struct akcipher_request *req = context;
109 	struct rsa_edesc *edesc;
110 
111 	if (err)
112 		caam_jr_strstatus(dev, err);
113 
114 	edesc = container_of(desc, struct rsa_edesc, hw_desc[0]);
115 
116 	rsa_pub_unmap(dev, edesc, req);
117 	rsa_io_unmap(dev, edesc, req);
118 	kfree(edesc);
119 
120 	akcipher_request_complete(req, err);
121 }
122 
123 static void rsa_priv_f1_done(struct device *dev, u32 *desc, u32 err,
124 			     void *context)
125 {
126 	struct akcipher_request *req = context;
127 	struct rsa_edesc *edesc;
128 
129 	if (err)
130 		caam_jr_strstatus(dev, err);
131 
132 	edesc = container_of(desc, struct rsa_edesc, hw_desc[0]);
133 
134 	rsa_priv_f1_unmap(dev, edesc, req);
135 	rsa_io_unmap(dev, edesc, req);
136 	kfree(edesc);
137 
138 	akcipher_request_complete(req, err);
139 }
140 
141 static void rsa_priv_f2_done(struct device *dev, u32 *desc, u32 err,
142 			     void *context)
143 {
144 	struct akcipher_request *req = context;
145 	struct rsa_edesc *edesc;
146 
147 	if (err)
148 		caam_jr_strstatus(dev, err);
149 
150 	edesc = container_of(desc, struct rsa_edesc, hw_desc[0]);
151 
152 	rsa_priv_f2_unmap(dev, edesc, req);
153 	rsa_io_unmap(dev, edesc, req);
154 	kfree(edesc);
155 
156 	akcipher_request_complete(req, err);
157 }
158 
159 static void rsa_priv_f3_done(struct device *dev, u32 *desc, u32 err,
160 			     void *context)
161 {
162 	struct akcipher_request *req = context;
163 	struct rsa_edesc *edesc;
164 
165 	if (err)
166 		caam_jr_strstatus(dev, err);
167 
168 	edesc = container_of(desc, struct rsa_edesc, hw_desc[0]);
169 
170 	rsa_priv_f3_unmap(dev, edesc, req);
171 	rsa_io_unmap(dev, edesc, req);
172 	kfree(edesc);
173 
174 	akcipher_request_complete(req, err);
175 }
176 
177 /**
178  * Count leading zeros, need it to strip, from a given scatterlist
179  *
180  * @sgl   : scatterlist to count zeros from
181  * @nbytes: number of zeros, in bytes, to strip
182  * @flags : operation flags
183  */
184 static int caam_rsa_count_leading_zeros(struct scatterlist *sgl,
185 					unsigned int nbytes,
186 					unsigned int flags)
187 {
188 	struct sg_mapping_iter miter;
189 	int lzeros, ents;
190 	unsigned int len;
191 	unsigned int tbytes = nbytes;
192 	const u8 *buff;
193 
194 	ents = sg_nents_for_len(sgl, nbytes);
195 	if (ents < 0)
196 		return ents;
197 
198 	sg_miter_start(&miter, sgl, ents, SG_MITER_FROM_SG | flags);
199 
200 	lzeros = 0;
201 	len = 0;
202 	while (nbytes > 0) {
203 		/* do not strip more than given bytes */
204 		while (len && !*buff && lzeros < nbytes) {
205 			lzeros++;
206 			len--;
207 			buff++;
208 		}
209 
210 		if (len && *buff)
211 			break;
212 
213 		sg_miter_next(&miter);
214 		buff = miter.addr;
215 		len = miter.length;
216 
217 		nbytes -= lzeros;
218 		lzeros = 0;
219 	}
220 
221 	miter.consumed = lzeros;
222 	sg_miter_stop(&miter);
223 	nbytes -= lzeros;
224 
225 	return tbytes - nbytes;
226 }
227 
228 static struct rsa_edesc *rsa_edesc_alloc(struct akcipher_request *req,
229 					 size_t desclen)
230 {
231 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
232 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
233 	struct device *dev = ctx->dev;
234 	struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
235 	struct caam_rsa_key *key = &ctx->key;
236 	struct rsa_edesc *edesc;
237 	gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
238 		       GFP_KERNEL : GFP_ATOMIC;
239 	int sg_flags = (flags == GFP_ATOMIC) ? SG_MITER_ATOMIC : 0;
240 	int sgc;
241 	int sec4_sg_index, sec4_sg_len = 0, sec4_sg_bytes;
242 	int src_nents, dst_nents;
243 	unsigned int diff_size = 0;
244 	int lzeros;
245 
246 	if (req->src_len > key->n_sz) {
247 		/*
248 		 * strip leading zeros and
249 		 * return the number of zeros to skip
250 		 */
251 		lzeros = caam_rsa_count_leading_zeros(req->src, req->src_len -
252 						      key->n_sz, sg_flags);
253 		if (lzeros < 0)
254 			return ERR_PTR(lzeros);
255 
256 		req_ctx->fixup_src = scatterwalk_ffwd(req_ctx->src, req->src,
257 						      lzeros);
258 		req_ctx->fixup_src_len = req->src_len - lzeros;
259 	} else {
260 		/*
261 		 * input src is less then n key modulus,
262 		 * so there will be zero padding
263 		 */
264 		diff_size = key->n_sz - req->src_len;
265 		req_ctx->fixup_src = req->src;
266 		req_ctx->fixup_src_len = req->src_len;
267 	}
268 
269 	src_nents = sg_nents_for_len(req_ctx->fixup_src,
270 				     req_ctx->fixup_src_len);
271 	dst_nents = sg_nents_for_len(req->dst, req->dst_len);
272 
273 	if (!diff_size && src_nents == 1)
274 		sec4_sg_len = 0; /* no need for an input hw s/g table */
275 	else
276 		sec4_sg_len = src_nents + !!diff_size;
277 	sec4_sg_index = sec4_sg_len;
278 	if (dst_nents > 1)
279 		sec4_sg_len += pad_sg_nents(dst_nents);
280 	else
281 		sec4_sg_len = pad_sg_nents(sec4_sg_len);
282 
283 	sec4_sg_bytes = sec4_sg_len * sizeof(struct sec4_sg_entry);
284 
285 	/* allocate space for base edesc, hw desc commands and link tables */
286 	edesc = kzalloc(sizeof(*edesc) + desclen + sec4_sg_bytes,
287 			GFP_DMA | flags);
288 	if (!edesc)
289 		return ERR_PTR(-ENOMEM);
290 
291 	sgc = dma_map_sg(dev, req_ctx->fixup_src, src_nents, DMA_TO_DEVICE);
292 	if (unlikely(!sgc)) {
293 		dev_err(dev, "unable to map source\n");
294 		goto src_fail;
295 	}
296 
297 	sgc = dma_map_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE);
298 	if (unlikely(!sgc)) {
299 		dev_err(dev, "unable to map destination\n");
300 		goto dst_fail;
301 	}
302 
303 	edesc->sec4_sg = (void *)edesc + sizeof(*edesc) + desclen;
304 	if (diff_size)
305 		dma_to_sec4_sg_one(edesc->sec4_sg, ctx->padding_dma, diff_size,
306 				   0);
307 
308 	if (sec4_sg_index)
309 		sg_to_sec4_sg_last(req_ctx->fixup_src, req_ctx->fixup_src_len,
310 				   edesc->sec4_sg + !!diff_size, 0);
311 
312 	if (dst_nents > 1)
313 		sg_to_sec4_sg_last(req->dst, req->dst_len,
314 				   edesc->sec4_sg + sec4_sg_index, 0);
315 
316 	/* Save nents for later use in Job Descriptor */
317 	edesc->src_nents = src_nents;
318 	edesc->dst_nents = dst_nents;
319 
320 	if (!sec4_sg_bytes)
321 		return edesc;
322 
323 	edesc->sec4_sg_dma = dma_map_single(dev, edesc->sec4_sg,
324 					    sec4_sg_bytes, DMA_TO_DEVICE);
325 	if (dma_mapping_error(dev, edesc->sec4_sg_dma)) {
326 		dev_err(dev, "unable to map S/G table\n");
327 		goto sec4_sg_fail;
328 	}
329 
330 	edesc->sec4_sg_bytes = sec4_sg_bytes;
331 
332 	print_hex_dump_debug("caampkc sec4_sg@" __stringify(__LINE__) ": ",
333 			     DUMP_PREFIX_ADDRESS, 16, 4, edesc->sec4_sg,
334 			     edesc->sec4_sg_bytes, 1);
335 
336 	return edesc;
337 
338 sec4_sg_fail:
339 	dma_unmap_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE);
340 dst_fail:
341 	dma_unmap_sg(dev, req_ctx->fixup_src, src_nents, DMA_TO_DEVICE);
342 src_fail:
343 	kfree(edesc);
344 	return ERR_PTR(-ENOMEM);
345 }
346 
347 static int set_rsa_pub_pdb(struct akcipher_request *req,
348 			   struct rsa_edesc *edesc)
349 {
350 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
351 	struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
352 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
353 	struct caam_rsa_key *key = &ctx->key;
354 	struct device *dev = ctx->dev;
355 	struct rsa_pub_pdb *pdb = &edesc->pdb.pub;
356 	int sec4_sg_index = 0;
357 
358 	pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE);
359 	if (dma_mapping_error(dev, pdb->n_dma)) {
360 		dev_err(dev, "Unable to map RSA modulus memory\n");
361 		return -ENOMEM;
362 	}
363 
364 	pdb->e_dma = dma_map_single(dev, key->e, key->e_sz, DMA_TO_DEVICE);
365 	if (dma_mapping_error(dev, pdb->e_dma)) {
366 		dev_err(dev, "Unable to map RSA public exponent memory\n");
367 		dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
368 		return -ENOMEM;
369 	}
370 
371 	if (edesc->src_nents > 1) {
372 		pdb->sgf |= RSA_PDB_SGF_F;
373 		pdb->f_dma = edesc->sec4_sg_dma;
374 		sec4_sg_index += edesc->src_nents;
375 	} else {
376 		pdb->f_dma = sg_dma_address(req_ctx->fixup_src);
377 	}
378 
379 	if (edesc->dst_nents > 1) {
380 		pdb->sgf |= RSA_PDB_SGF_G;
381 		pdb->g_dma = edesc->sec4_sg_dma +
382 			     sec4_sg_index * sizeof(struct sec4_sg_entry);
383 	} else {
384 		pdb->g_dma = sg_dma_address(req->dst);
385 	}
386 
387 	pdb->sgf |= (key->e_sz << RSA_PDB_E_SHIFT) | key->n_sz;
388 	pdb->f_len = req_ctx->fixup_src_len;
389 
390 	return 0;
391 }
392 
393 static int set_rsa_priv_f1_pdb(struct akcipher_request *req,
394 			       struct rsa_edesc *edesc)
395 {
396 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
397 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
398 	struct caam_rsa_key *key = &ctx->key;
399 	struct device *dev = ctx->dev;
400 	struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1;
401 	int sec4_sg_index = 0;
402 
403 	pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE);
404 	if (dma_mapping_error(dev, pdb->n_dma)) {
405 		dev_err(dev, "Unable to map modulus memory\n");
406 		return -ENOMEM;
407 	}
408 
409 	pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE);
410 	if (dma_mapping_error(dev, pdb->d_dma)) {
411 		dev_err(dev, "Unable to map RSA private exponent memory\n");
412 		dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
413 		return -ENOMEM;
414 	}
415 
416 	if (edesc->src_nents > 1) {
417 		pdb->sgf |= RSA_PRIV_PDB_SGF_G;
418 		pdb->g_dma = edesc->sec4_sg_dma;
419 		sec4_sg_index += edesc->src_nents;
420 	} else {
421 		struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
422 
423 		pdb->g_dma = sg_dma_address(req_ctx->fixup_src);
424 	}
425 
426 	if (edesc->dst_nents > 1) {
427 		pdb->sgf |= RSA_PRIV_PDB_SGF_F;
428 		pdb->f_dma = edesc->sec4_sg_dma +
429 			     sec4_sg_index * sizeof(struct sec4_sg_entry);
430 	} else {
431 		pdb->f_dma = sg_dma_address(req->dst);
432 	}
433 
434 	pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz;
435 
436 	return 0;
437 }
438 
439 static int set_rsa_priv_f2_pdb(struct akcipher_request *req,
440 			       struct rsa_edesc *edesc)
441 {
442 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
443 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
444 	struct caam_rsa_key *key = &ctx->key;
445 	struct device *dev = ctx->dev;
446 	struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2;
447 	int sec4_sg_index = 0;
448 	size_t p_sz = key->p_sz;
449 	size_t q_sz = key->q_sz;
450 
451 	pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE);
452 	if (dma_mapping_error(dev, pdb->d_dma)) {
453 		dev_err(dev, "Unable to map RSA private exponent memory\n");
454 		return -ENOMEM;
455 	}
456 
457 	pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE);
458 	if (dma_mapping_error(dev, pdb->p_dma)) {
459 		dev_err(dev, "Unable to map RSA prime factor p memory\n");
460 		goto unmap_d;
461 	}
462 
463 	pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE);
464 	if (dma_mapping_error(dev, pdb->q_dma)) {
465 		dev_err(dev, "Unable to map RSA prime factor q memory\n");
466 		goto unmap_p;
467 	}
468 
469 	pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_BIDIRECTIONAL);
470 	if (dma_mapping_error(dev, pdb->tmp1_dma)) {
471 		dev_err(dev, "Unable to map RSA tmp1 memory\n");
472 		goto unmap_q;
473 	}
474 
475 	pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_BIDIRECTIONAL);
476 	if (dma_mapping_error(dev, pdb->tmp2_dma)) {
477 		dev_err(dev, "Unable to map RSA tmp2 memory\n");
478 		goto unmap_tmp1;
479 	}
480 
481 	if (edesc->src_nents > 1) {
482 		pdb->sgf |= RSA_PRIV_PDB_SGF_G;
483 		pdb->g_dma = edesc->sec4_sg_dma;
484 		sec4_sg_index += edesc->src_nents;
485 	} else {
486 		struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
487 
488 		pdb->g_dma = sg_dma_address(req_ctx->fixup_src);
489 	}
490 
491 	if (edesc->dst_nents > 1) {
492 		pdb->sgf |= RSA_PRIV_PDB_SGF_F;
493 		pdb->f_dma = edesc->sec4_sg_dma +
494 			     sec4_sg_index * sizeof(struct sec4_sg_entry);
495 	} else {
496 		pdb->f_dma = sg_dma_address(req->dst);
497 	}
498 
499 	pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz;
500 	pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz;
501 
502 	return 0;
503 
504 unmap_tmp1:
505 	dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL);
506 unmap_q:
507 	dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE);
508 unmap_p:
509 	dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE);
510 unmap_d:
511 	dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE);
512 
513 	return -ENOMEM;
514 }
515 
516 static int set_rsa_priv_f3_pdb(struct akcipher_request *req,
517 			       struct rsa_edesc *edesc)
518 {
519 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
520 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
521 	struct caam_rsa_key *key = &ctx->key;
522 	struct device *dev = ctx->dev;
523 	struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3;
524 	int sec4_sg_index = 0;
525 	size_t p_sz = key->p_sz;
526 	size_t q_sz = key->q_sz;
527 
528 	pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE);
529 	if (dma_mapping_error(dev, pdb->p_dma)) {
530 		dev_err(dev, "Unable to map RSA prime factor p memory\n");
531 		return -ENOMEM;
532 	}
533 
534 	pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE);
535 	if (dma_mapping_error(dev, pdb->q_dma)) {
536 		dev_err(dev, "Unable to map RSA prime factor q memory\n");
537 		goto unmap_p;
538 	}
539 
540 	pdb->dp_dma = dma_map_single(dev, key->dp, p_sz, DMA_TO_DEVICE);
541 	if (dma_mapping_error(dev, pdb->dp_dma)) {
542 		dev_err(dev, "Unable to map RSA exponent dp memory\n");
543 		goto unmap_q;
544 	}
545 
546 	pdb->dq_dma = dma_map_single(dev, key->dq, q_sz, DMA_TO_DEVICE);
547 	if (dma_mapping_error(dev, pdb->dq_dma)) {
548 		dev_err(dev, "Unable to map RSA exponent dq memory\n");
549 		goto unmap_dp;
550 	}
551 
552 	pdb->c_dma = dma_map_single(dev, key->qinv, p_sz, DMA_TO_DEVICE);
553 	if (dma_mapping_error(dev, pdb->c_dma)) {
554 		dev_err(dev, "Unable to map RSA CRT coefficient qinv memory\n");
555 		goto unmap_dq;
556 	}
557 
558 	pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_BIDIRECTIONAL);
559 	if (dma_mapping_error(dev, pdb->tmp1_dma)) {
560 		dev_err(dev, "Unable to map RSA tmp1 memory\n");
561 		goto unmap_qinv;
562 	}
563 
564 	pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_BIDIRECTIONAL);
565 	if (dma_mapping_error(dev, pdb->tmp2_dma)) {
566 		dev_err(dev, "Unable to map RSA tmp2 memory\n");
567 		goto unmap_tmp1;
568 	}
569 
570 	if (edesc->src_nents > 1) {
571 		pdb->sgf |= RSA_PRIV_PDB_SGF_G;
572 		pdb->g_dma = edesc->sec4_sg_dma;
573 		sec4_sg_index += edesc->src_nents;
574 	} else {
575 		struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
576 
577 		pdb->g_dma = sg_dma_address(req_ctx->fixup_src);
578 	}
579 
580 	if (edesc->dst_nents > 1) {
581 		pdb->sgf |= RSA_PRIV_PDB_SGF_F;
582 		pdb->f_dma = edesc->sec4_sg_dma +
583 			     sec4_sg_index * sizeof(struct sec4_sg_entry);
584 	} else {
585 		pdb->f_dma = sg_dma_address(req->dst);
586 	}
587 
588 	pdb->sgf |= key->n_sz;
589 	pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz;
590 
591 	return 0;
592 
593 unmap_tmp1:
594 	dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL);
595 unmap_qinv:
596 	dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE);
597 unmap_dq:
598 	dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE);
599 unmap_dp:
600 	dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE);
601 unmap_q:
602 	dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE);
603 unmap_p:
604 	dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE);
605 
606 	return -ENOMEM;
607 }
608 
609 static int caam_rsa_enc(struct akcipher_request *req)
610 {
611 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
612 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
613 	struct caam_rsa_key *key = &ctx->key;
614 	struct device *jrdev = ctx->dev;
615 	struct rsa_edesc *edesc;
616 	int ret;
617 
618 	if (unlikely(!key->n || !key->e))
619 		return -EINVAL;
620 
621 	if (req->dst_len < key->n_sz) {
622 		req->dst_len = key->n_sz;
623 		dev_err(jrdev, "Output buffer length less than parameter n\n");
624 		return -EOVERFLOW;
625 	}
626 
627 	/* Allocate extended descriptor */
628 	edesc = rsa_edesc_alloc(req, DESC_RSA_PUB_LEN);
629 	if (IS_ERR(edesc))
630 		return PTR_ERR(edesc);
631 
632 	/* Set RSA Encrypt Protocol Data Block */
633 	ret = set_rsa_pub_pdb(req, edesc);
634 	if (ret)
635 		goto init_fail;
636 
637 	/* Initialize Job Descriptor */
638 	init_rsa_pub_desc(edesc->hw_desc, &edesc->pdb.pub);
639 
640 	ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_pub_done, req);
641 	if (!ret)
642 		return -EINPROGRESS;
643 
644 	rsa_pub_unmap(jrdev, edesc, req);
645 
646 init_fail:
647 	rsa_io_unmap(jrdev, edesc, req);
648 	kfree(edesc);
649 	return ret;
650 }
651 
652 static int caam_rsa_dec_priv_f1(struct akcipher_request *req)
653 {
654 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
655 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
656 	struct device *jrdev = ctx->dev;
657 	struct rsa_edesc *edesc;
658 	int ret;
659 
660 	/* Allocate extended descriptor */
661 	edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F1_LEN);
662 	if (IS_ERR(edesc))
663 		return PTR_ERR(edesc);
664 
665 	/* Set RSA Decrypt Protocol Data Block - Private Key Form #1 */
666 	ret = set_rsa_priv_f1_pdb(req, edesc);
667 	if (ret)
668 		goto init_fail;
669 
670 	/* Initialize Job Descriptor */
671 	init_rsa_priv_f1_desc(edesc->hw_desc, &edesc->pdb.priv_f1);
672 
673 	ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_priv_f1_done, req);
674 	if (!ret)
675 		return -EINPROGRESS;
676 
677 	rsa_priv_f1_unmap(jrdev, edesc, req);
678 
679 init_fail:
680 	rsa_io_unmap(jrdev, edesc, req);
681 	kfree(edesc);
682 	return ret;
683 }
684 
685 static int caam_rsa_dec_priv_f2(struct akcipher_request *req)
686 {
687 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
688 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
689 	struct device *jrdev = ctx->dev;
690 	struct rsa_edesc *edesc;
691 	int ret;
692 
693 	/* Allocate extended descriptor */
694 	edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F2_LEN);
695 	if (IS_ERR(edesc))
696 		return PTR_ERR(edesc);
697 
698 	/* Set RSA Decrypt Protocol Data Block - Private Key Form #2 */
699 	ret = set_rsa_priv_f2_pdb(req, edesc);
700 	if (ret)
701 		goto init_fail;
702 
703 	/* Initialize Job Descriptor */
704 	init_rsa_priv_f2_desc(edesc->hw_desc, &edesc->pdb.priv_f2);
705 
706 	ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_priv_f2_done, req);
707 	if (!ret)
708 		return -EINPROGRESS;
709 
710 	rsa_priv_f2_unmap(jrdev, edesc, req);
711 
712 init_fail:
713 	rsa_io_unmap(jrdev, edesc, req);
714 	kfree(edesc);
715 	return ret;
716 }
717 
718 static int caam_rsa_dec_priv_f3(struct akcipher_request *req)
719 {
720 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
721 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
722 	struct device *jrdev = ctx->dev;
723 	struct rsa_edesc *edesc;
724 	int ret;
725 
726 	/* Allocate extended descriptor */
727 	edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F3_LEN);
728 	if (IS_ERR(edesc))
729 		return PTR_ERR(edesc);
730 
731 	/* Set RSA Decrypt Protocol Data Block - Private Key Form #3 */
732 	ret = set_rsa_priv_f3_pdb(req, edesc);
733 	if (ret)
734 		goto init_fail;
735 
736 	/* Initialize Job Descriptor */
737 	init_rsa_priv_f3_desc(edesc->hw_desc, &edesc->pdb.priv_f3);
738 
739 	ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_priv_f3_done, req);
740 	if (!ret)
741 		return -EINPROGRESS;
742 
743 	rsa_priv_f3_unmap(jrdev, edesc, req);
744 
745 init_fail:
746 	rsa_io_unmap(jrdev, edesc, req);
747 	kfree(edesc);
748 	return ret;
749 }
750 
751 static int caam_rsa_dec(struct akcipher_request *req)
752 {
753 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
754 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
755 	struct caam_rsa_key *key = &ctx->key;
756 	int ret;
757 
758 	if (unlikely(!key->n || !key->d))
759 		return -EINVAL;
760 
761 	if (req->dst_len < key->n_sz) {
762 		req->dst_len = key->n_sz;
763 		dev_err(ctx->dev, "Output buffer length less than parameter n\n");
764 		return -EOVERFLOW;
765 	}
766 
767 	if (key->priv_form == FORM3)
768 		ret = caam_rsa_dec_priv_f3(req);
769 	else if (key->priv_form == FORM2)
770 		ret = caam_rsa_dec_priv_f2(req);
771 	else
772 		ret = caam_rsa_dec_priv_f1(req);
773 
774 	return ret;
775 }
776 
777 static void caam_rsa_free_key(struct caam_rsa_key *key)
778 {
779 	kzfree(key->d);
780 	kzfree(key->p);
781 	kzfree(key->q);
782 	kzfree(key->dp);
783 	kzfree(key->dq);
784 	kzfree(key->qinv);
785 	kzfree(key->tmp1);
786 	kzfree(key->tmp2);
787 	kfree(key->e);
788 	kfree(key->n);
789 	memset(key, 0, sizeof(*key));
790 }
791 
792 static void caam_rsa_drop_leading_zeros(const u8 **ptr, size_t *nbytes)
793 {
794 	while (!**ptr && *nbytes) {
795 		(*ptr)++;
796 		(*nbytes)--;
797 	}
798 }
799 
800 /**
801  * caam_read_rsa_crt - Used for reading dP, dQ, qInv CRT members.
802  * dP, dQ and qInv could decode to less than corresponding p, q length, as the
803  * BER-encoding requires that the minimum number of bytes be used to encode the
804  * integer. dP, dQ, qInv decoded values have to be zero-padded to appropriate
805  * length.
806  *
807  * @ptr   : pointer to {dP, dQ, qInv} CRT member
808  * @nbytes: length in bytes of {dP, dQ, qInv} CRT member
809  * @dstlen: length in bytes of corresponding p or q prime factor
810  */
811 static u8 *caam_read_rsa_crt(const u8 *ptr, size_t nbytes, size_t dstlen)
812 {
813 	u8 *dst;
814 
815 	caam_rsa_drop_leading_zeros(&ptr, &nbytes);
816 	if (!nbytes)
817 		return NULL;
818 
819 	dst = kzalloc(dstlen, GFP_DMA | GFP_KERNEL);
820 	if (!dst)
821 		return NULL;
822 
823 	memcpy(dst + (dstlen - nbytes), ptr, nbytes);
824 
825 	return dst;
826 }
827 
828 /**
829  * caam_read_raw_data - Read a raw byte stream as a positive integer.
830  * The function skips buffer's leading zeros, copies the remained data
831  * to a buffer allocated in the GFP_DMA | GFP_KERNEL zone and returns
832  * the address of the new buffer.
833  *
834  * @buf   : The data to read
835  * @nbytes: The amount of data to read
836  */
837 static inline u8 *caam_read_raw_data(const u8 *buf, size_t *nbytes)
838 {
839 
840 	caam_rsa_drop_leading_zeros(&buf, nbytes);
841 	if (!*nbytes)
842 		return NULL;
843 
844 	return kmemdup(buf, *nbytes, GFP_DMA | GFP_KERNEL);
845 }
846 
847 static int caam_rsa_check_key_length(unsigned int len)
848 {
849 	if (len > 4096)
850 		return -EINVAL;
851 	return 0;
852 }
853 
854 static int caam_rsa_set_pub_key(struct crypto_akcipher *tfm, const void *key,
855 				unsigned int keylen)
856 {
857 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
858 	struct rsa_key raw_key = {NULL};
859 	struct caam_rsa_key *rsa_key = &ctx->key;
860 	int ret;
861 
862 	/* Free the old RSA key if any */
863 	caam_rsa_free_key(rsa_key);
864 
865 	ret = rsa_parse_pub_key(&raw_key, key, keylen);
866 	if (ret)
867 		return ret;
868 
869 	/* Copy key in DMA zone */
870 	rsa_key->e = kmemdup(raw_key.e, raw_key.e_sz, GFP_DMA | GFP_KERNEL);
871 	if (!rsa_key->e)
872 		goto err;
873 
874 	/*
875 	 * Skip leading zeros and copy the positive integer to a buffer
876 	 * allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor
877 	 * expects a positive integer for the RSA modulus and uses its length as
878 	 * decryption output length.
879 	 */
880 	rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz);
881 	if (!rsa_key->n)
882 		goto err;
883 
884 	if (caam_rsa_check_key_length(raw_key.n_sz << 3)) {
885 		caam_rsa_free_key(rsa_key);
886 		return -EINVAL;
887 	}
888 
889 	rsa_key->e_sz = raw_key.e_sz;
890 	rsa_key->n_sz = raw_key.n_sz;
891 
892 	return 0;
893 err:
894 	caam_rsa_free_key(rsa_key);
895 	return -ENOMEM;
896 }
897 
898 static void caam_rsa_set_priv_key_form(struct caam_rsa_ctx *ctx,
899 				       struct rsa_key *raw_key)
900 {
901 	struct caam_rsa_key *rsa_key = &ctx->key;
902 	size_t p_sz = raw_key->p_sz;
903 	size_t q_sz = raw_key->q_sz;
904 
905 	rsa_key->p = caam_read_raw_data(raw_key->p, &p_sz);
906 	if (!rsa_key->p)
907 		return;
908 	rsa_key->p_sz = p_sz;
909 
910 	rsa_key->q = caam_read_raw_data(raw_key->q, &q_sz);
911 	if (!rsa_key->q)
912 		goto free_p;
913 	rsa_key->q_sz = q_sz;
914 
915 	rsa_key->tmp1 = kzalloc(raw_key->p_sz, GFP_DMA | GFP_KERNEL);
916 	if (!rsa_key->tmp1)
917 		goto free_q;
918 
919 	rsa_key->tmp2 = kzalloc(raw_key->q_sz, GFP_DMA | GFP_KERNEL);
920 	if (!rsa_key->tmp2)
921 		goto free_tmp1;
922 
923 	rsa_key->priv_form = FORM2;
924 
925 	rsa_key->dp = caam_read_rsa_crt(raw_key->dp, raw_key->dp_sz, p_sz);
926 	if (!rsa_key->dp)
927 		goto free_tmp2;
928 
929 	rsa_key->dq = caam_read_rsa_crt(raw_key->dq, raw_key->dq_sz, q_sz);
930 	if (!rsa_key->dq)
931 		goto free_dp;
932 
933 	rsa_key->qinv = caam_read_rsa_crt(raw_key->qinv, raw_key->qinv_sz,
934 					  q_sz);
935 	if (!rsa_key->qinv)
936 		goto free_dq;
937 
938 	rsa_key->priv_form = FORM3;
939 
940 	return;
941 
942 free_dq:
943 	kzfree(rsa_key->dq);
944 free_dp:
945 	kzfree(rsa_key->dp);
946 free_tmp2:
947 	kzfree(rsa_key->tmp2);
948 free_tmp1:
949 	kzfree(rsa_key->tmp1);
950 free_q:
951 	kzfree(rsa_key->q);
952 free_p:
953 	kzfree(rsa_key->p);
954 }
955 
956 static int caam_rsa_set_priv_key(struct crypto_akcipher *tfm, const void *key,
957 				 unsigned int keylen)
958 {
959 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
960 	struct rsa_key raw_key = {NULL};
961 	struct caam_rsa_key *rsa_key = &ctx->key;
962 	int ret;
963 
964 	/* Free the old RSA key if any */
965 	caam_rsa_free_key(rsa_key);
966 
967 	ret = rsa_parse_priv_key(&raw_key, key, keylen);
968 	if (ret)
969 		return ret;
970 
971 	/* Copy key in DMA zone */
972 	rsa_key->d = kmemdup(raw_key.d, raw_key.d_sz, GFP_DMA | GFP_KERNEL);
973 	if (!rsa_key->d)
974 		goto err;
975 
976 	rsa_key->e = kmemdup(raw_key.e, raw_key.e_sz, GFP_DMA | GFP_KERNEL);
977 	if (!rsa_key->e)
978 		goto err;
979 
980 	/*
981 	 * Skip leading zeros and copy the positive integer to a buffer
982 	 * allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor
983 	 * expects a positive integer for the RSA modulus and uses its length as
984 	 * decryption output length.
985 	 */
986 	rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz);
987 	if (!rsa_key->n)
988 		goto err;
989 
990 	if (caam_rsa_check_key_length(raw_key.n_sz << 3)) {
991 		caam_rsa_free_key(rsa_key);
992 		return -EINVAL;
993 	}
994 
995 	rsa_key->d_sz = raw_key.d_sz;
996 	rsa_key->e_sz = raw_key.e_sz;
997 	rsa_key->n_sz = raw_key.n_sz;
998 
999 	caam_rsa_set_priv_key_form(ctx, &raw_key);
1000 
1001 	return 0;
1002 
1003 err:
1004 	caam_rsa_free_key(rsa_key);
1005 	return -ENOMEM;
1006 }
1007 
1008 static unsigned int caam_rsa_max_size(struct crypto_akcipher *tfm)
1009 {
1010 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
1011 
1012 	return ctx->key.n_sz;
1013 }
1014 
1015 /* Per session pkc's driver context creation function */
1016 static int caam_rsa_init_tfm(struct crypto_akcipher *tfm)
1017 {
1018 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
1019 
1020 	ctx->dev = caam_jr_alloc();
1021 
1022 	if (IS_ERR(ctx->dev)) {
1023 		pr_err("Job Ring Device allocation for transform failed\n");
1024 		return PTR_ERR(ctx->dev);
1025 	}
1026 
1027 	ctx->padding_dma = dma_map_single(ctx->dev, zero_buffer,
1028 					  CAAM_RSA_MAX_INPUT_SIZE - 1,
1029 					  DMA_TO_DEVICE);
1030 	if (dma_mapping_error(ctx->dev, ctx->padding_dma)) {
1031 		dev_err(ctx->dev, "unable to map padding\n");
1032 		caam_jr_free(ctx->dev);
1033 		return -ENOMEM;
1034 	}
1035 
1036 	return 0;
1037 }
1038 
1039 /* Per session pkc's driver context cleanup function */
1040 static void caam_rsa_exit_tfm(struct crypto_akcipher *tfm)
1041 {
1042 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
1043 	struct caam_rsa_key *key = &ctx->key;
1044 
1045 	dma_unmap_single(ctx->dev, ctx->padding_dma, CAAM_RSA_MAX_INPUT_SIZE -
1046 			 1, DMA_TO_DEVICE);
1047 	caam_rsa_free_key(key);
1048 	caam_jr_free(ctx->dev);
1049 }
1050 
1051 static struct akcipher_alg caam_rsa = {
1052 	.encrypt = caam_rsa_enc,
1053 	.decrypt = caam_rsa_dec,
1054 	.set_pub_key = caam_rsa_set_pub_key,
1055 	.set_priv_key = caam_rsa_set_priv_key,
1056 	.max_size = caam_rsa_max_size,
1057 	.init = caam_rsa_init_tfm,
1058 	.exit = caam_rsa_exit_tfm,
1059 	.reqsize = sizeof(struct caam_rsa_req_ctx),
1060 	.base = {
1061 		.cra_name = "rsa",
1062 		.cra_driver_name = "rsa-caam",
1063 		.cra_priority = 3000,
1064 		.cra_module = THIS_MODULE,
1065 		.cra_ctxsize = sizeof(struct caam_rsa_ctx),
1066 	},
1067 };
1068 
1069 /* Public Key Cryptography module initialization handler */
1070 int caam_pkc_init(struct device *ctrldev)
1071 {
1072 	struct caam_drv_private *priv = dev_get_drvdata(ctrldev);
1073 	u32 pk_inst;
1074 	int err;
1075 
1076 	/* Determine public key hardware accelerator presence. */
1077 	if (priv->era < 10)
1078 		pk_inst = (rd_reg32(&priv->ctrl->perfmon.cha_num_ls) &
1079 			   CHA_ID_LS_PK_MASK) >> CHA_ID_LS_PK_SHIFT;
1080 	else
1081 		pk_inst = rd_reg32(&priv->ctrl->vreg.pkha) & CHA_VER_NUM_MASK;
1082 
1083 	/* Do not register algorithms if PKHA is not present. */
1084 	if (!pk_inst)
1085 		return 0;
1086 
1087 	/* allocate zero buffer, used for padding input */
1088 	zero_buffer = kzalloc(CAAM_RSA_MAX_INPUT_SIZE - 1, GFP_DMA |
1089 			      GFP_KERNEL);
1090 	if (!zero_buffer)
1091 		return -ENOMEM;
1092 
1093 	err = crypto_register_akcipher(&caam_rsa);
1094 	if (err) {
1095 		kfree(zero_buffer);
1096 		dev_warn(ctrldev, "%s alg registration failed\n",
1097 			 caam_rsa.base.cra_driver_name);
1098 	} else {
1099 		dev_info(ctrldev, "caam pkc algorithms registered in /proc/crypto\n");
1100 	}
1101 
1102 	return err;
1103 }
1104 
1105 void caam_pkc_exit(void)
1106 {
1107 	kfree(zero_buffer);
1108 	crypto_unregister_akcipher(&caam_rsa);
1109 }
1110