1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* 3 * caam - Freescale FSL CAAM support for Public Key Cryptography 4 * 5 * Copyright 2016 Freescale Semiconductor, Inc. 6 * Copyright 2018-2019 NXP 7 * 8 * There is no Shared Descriptor for PKC so that the Job Descriptor must carry 9 * all the desired key parameters, input and output pointers. 10 */ 11 #include "compat.h" 12 #include "regs.h" 13 #include "intern.h" 14 #include "jr.h" 15 #include "error.h" 16 #include "desc_constr.h" 17 #include "sg_sw_sec4.h" 18 #include "caampkc.h" 19 20 #define DESC_RSA_PUB_LEN (2 * CAAM_CMD_SZ + SIZEOF_RSA_PUB_PDB) 21 #define DESC_RSA_PRIV_F1_LEN (2 * CAAM_CMD_SZ + \ 22 SIZEOF_RSA_PRIV_F1_PDB) 23 #define DESC_RSA_PRIV_F2_LEN (2 * CAAM_CMD_SZ + \ 24 SIZEOF_RSA_PRIV_F2_PDB) 25 #define DESC_RSA_PRIV_F3_LEN (2 * CAAM_CMD_SZ + \ 26 SIZEOF_RSA_PRIV_F3_PDB) 27 #define CAAM_RSA_MAX_INPUT_SIZE 512 /* for a 4096-bit modulus */ 28 29 /* buffer filled with zeros, used for padding */ 30 static u8 *zero_buffer; 31 32 /* 33 * variable used to avoid double free of resources in case 34 * algorithm registration was unsuccessful 35 */ 36 static bool init_done; 37 38 struct caam_akcipher_alg { 39 struct akcipher_alg akcipher; 40 bool registered; 41 }; 42 43 static void rsa_io_unmap(struct device *dev, struct rsa_edesc *edesc, 44 struct akcipher_request *req) 45 { 46 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 47 48 dma_unmap_sg(dev, req->dst, edesc->dst_nents, DMA_FROM_DEVICE); 49 dma_unmap_sg(dev, req_ctx->fixup_src, edesc->src_nents, DMA_TO_DEVICE); 50 51 if (edesc->sec4_sg_bytes) 52 dma_unmap_single(dev, edesc->sec4_sg_dma, edesc->sec4_sg_bytes, 53 DMA_TO_DEVICE); 54 } 55 56 static void rsa_pub_unmap(struct device *dev, struct rsa_edesc *edesc, 57 struct akcipher_request *req) 58 { 59 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 60 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 61 struct caam_rsa_key *key = &ctx->key; 62 struct rsa_pub_pdb *pdb = &edesc->pdb.pub; 63 64 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); 65 dma_unmap_single(dev, pdb->e_dma, key->e_sz, DMA_TO_DEVICE); 66 } 67 68 static void rsa_priv_f1_unmap(struct device *dev, struct rsa_edesc *edesc, 69 struct akcipher_request *req) 70 { 71 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 72 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 73 struct caam_rsa_key *key = &ctx->key; 74 struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1; 75 76 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); 77 dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE); 78 } 79 80 static void rsa_priv_f2_unmap(struct device *dev, struct rsa_edesc *edesc, 81 struct akcipher_request *req) 82 { 83 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 84 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 85 struct caam_rsa_key *key = &ctx->key; 86 struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2; 87 size_t p_sz = key->p_sz; 88 size_t q_sz = key->q_sz; 89 90 dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE); 91 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); 92 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); 93 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); 94 dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_BIDIRECTIONAL); 95 } 96 97 static void rsa_priv_f3_unmap(struct device *dev, struct rsa_edesc *edesc, 98 struct akcipher_request *req) 99 { 100 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 101 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 102 struct caam_rsa_key *key = &ctx->key; 103 struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3; 104 size_t p_sz = key->p_sz; 105 size_t q_sz = key->q_sz; 106 107 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); 108 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); 109 dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE); 110 dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE); 111 dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE); 112 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); 113 dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_BIDIRECTIONAL); 114 } 115 116 /* RSA Job Completion handler */ 117 static void rsa_pub_done(struct device *dev, u32 *desc, u32 err, void *context) 118 { 119 struct akcipher_request *req = context; 120 struct rsa_edesc *edesc; 121 int ecode = 0; 122 123 if (err) 124 ecode = caam_jr_strstatus(dev, err); 125 126 edesc = container_of(desc, struct rsa_edesc, hw_desc[0]); 127 128 rsa_pub_unmap(dev, edesc, req); 129 rsa_io_unmap(dev, edesc, req); 130 kfree(edesc); 131 132 akcipher_request_complete(req, ecode); 133 } 134 135 static void rsa_priv_f_done(struct device *dev, u32 *desc, u32 err, 136 void *context) 137 { 138 struct akcipher_request *req = context; 139 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 140 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 141 struct caam_rsa_key *key = &ctx->key; 142 struct rsa_edesc *edesc; 143 int ecode = 0; 144 145 if (err) 146 ecode = caam_jr_strstatus(dev, err); 147 148 edesc = container_of(desc, struct rsa_edesc, hw_desc[0]); 149 150 switch (key->priv_form) { 151 case FORM1: 152 rsa_priv_f1_unmap(dev, edesc, req); 153 break; 154 case FORM2: 155 rsa_priv_f2_unmap(dev, edesc, req); 156 break; 157 case FORM3: 158 rsa_priv_f3_unmap(dev, edesc, req); 159 } 160 161 rsa_io_unmap(dev, edesc, req); 162 kfree(edesc); 163 164 akcipher_request_complete(req, ecode); 165 } 166 167 /** 168 * Count leading zeros, need it to strip, from a given scatterlist 169 * 170 * @sgl : scatterlist to count zeros from 171 * @nbytes: number of zeros, in bytes, to strip 172 * @flags : operation flags 173 */ 174 static int caam_rsa_count_leading_zeros(struct scatterlist *sgl, 175 unsigned int nbytes, 176 unsigned int flags) 177 { 178 struct sg_mapping_iter miter; 179 int lzeros, ents; 180 unsigned int len; 181 unsigned int tbytes = nbytes; 182 const u8 *buff; 183 184 ents = sg_nents_for_len(sgl, nbytes); 185 if (ents < 0) 186 return ents; 187 188 sg_miter_start(&miter, sgl, ents, SG_MITER_FROM_SG | flags); 189 190 lzeros = 0; 191 len = 0; 192 while (nbytes > 0) { 193 /* do not strip more than given bytes */ 194 while (len && !*buff && lzeros < nbytes) { 195 lzeros++; 196 len--; 197 buff++; 198 } 199 200 if (len && *buff) 201 break; 202 203 sg_miter_next(&miter); 204 buff = miter.addr; 205 len = miter.length; 206 207 nbytes -= lzeros; 208 lzeros = 0; 209 } 210 211 miter.consumed = lzeros; 212 sg_miter_stop(&miter); 213 nbytes -= lzeros; 214 215 return tbytes - nbytes; 216 } 217 218 static struct rsa_edesc *rsa_edesc_alloc(struct akcipher_request *req, 219 size_t desclen) 220 { 221 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 222 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 223 struct device *dev = ctx->dev; 224 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 225 struct caam_rsa_key *key = &ctx->key; 226 struct rsa_edesc *edesc; 227 gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? 228 GFP_KERNEL : GFP_ATOMIC; 229 int sg_flags = (flags == GFP_ATOMIC) ? SG_MITER_ATOMIC : 0; 230 int sec4_sg_index, sec4_sg_len = 0, sec4_sg_bytes; 231 int src_nents, dst_nents; 232 int mapped_src_nents, mapped_dst_nents; 233 unsigned int diff_size = 0; 234 int lzeros; 235 236 if (req->src_len > key->n_sz) { 237 /* 238 * strip leading zeros and 239 * return the number of zeros to skip 240 */ 241 lzeros = caam_rsa_count_leading_zeros(req->src, req->src_len - 242 key->n_sz, sg_flags); 243 if (lzeros < 0) 244 return ERR_PTR(lzeros); 245 246 req_ctx->fixup_src = scatterwalk_ffwd(req_ctx->src, req->src, 247 lzeros); 248 req_ctx->fixup_src_len = req->src_len - lzeros; 249 } else { 250 /* 251 * input src is less then n key modulus, 252 * so there will be zero padding 253 */ 254 diff_size = key->n_sz - req->src_len; 255 req_ctx->fixup_src = req->src; 256 req_ctx->fixup_src_len = req->src_len; 257 } 258 259 src_nents = sg_nents_for_len(req_ctx->fixup_src, 260 req_ctx->fixup_src_len); 261 dst_nents = sg_nents_for_len(req->dst, req->dst_len); 262 263 mapped_src_nents = dma_map_sg(dev, req_ctx->fixup_src, src_nents, 264 DMA_TO_DEVICE); 265 if (unlikely(!mapped_src_nents)) { 266 dev_err(dev, "unable to map source\n"); 267 return ERR_PTR(-ENOMEM); 268 } 269 mapped_dst_nents = dma_map_sg(dev, req->dst, dst_nents, 270 DMA_FROM_DEVICE); 271 if (unlikely(!mapped_dst_nents)) { 272 dev_err(dev, "unable to map destination\n"); 273 goto src_fail; 274 } 275 276 if (!diff_size && mapped_src_nents == 1) 277 sec4_sg_len = 0; /* no need for an input hw s/g table */ 278 else 279 sec4_sg_len = mapped_src_nents + !!diff_size; 280 sec4_sg_index = sec4_sg_len; 281 282 if (mapped_dst_nents > 1) 283 sec4_sg_len += pad_sg_nents(mapped_dst_nents); 284 else 285 sec4_sg_len = pad_sg_nents(sec4_sg_len); 286 287 sec4_sg_bytes = sec4_sg_len * sizeof(struct sec4_sg_entry); 288 289 /* allocate space for base edesc, hw desc commands and link tables */ 290 edesc = kzalloc(sizeof(*edesc) + desclen + sec4_sg_bytes, 291 GFP_DMA | flags); 292 if (!edesc) 293 goto dst_fail; 294 295 edesc->sec4_sg = (void *)edesc + sizeof(*edesc) + desclen; 296 if (diff_size) 297 dma_to_sec4_sg_one(edesc->sec4_sg, ctx->padding_dma, diff_size, 298 0); 299 300 if (sec4_sg_index) 301 sg_to_sec4_sg_last(req_ctx->fixup_src, req_ctx->fixup_src_len, 302 edesc->sec4_sg + !!diff_size, 0); 303 304 if (mapped_dst_nents > 1) 305 sg_to_sec4_sg_last(req->dst, req->dst_len, 306 edesc->sec4_sg + sec4_sg_index, 0); 307 308 /* Save nents for later use in Job Descriptor */ 309 edesc->src_nents = src_nents; 310 edesc->dst_nents = dst_nents; 311 312 if (!sec4_sg_bytes) 313 return edesc; 314 315 edesc->mapped_src_nents = mapped_src_nents; 316 edesc->mapped_dst_nents = mapped_dst_nents; 317 318 edesc->sec4_sg_dma = dma_map_single(dev, edesc->sec4_sg, 319 sec4_sg_bytes, DMA_TO_DEVICE); 320 if (dma_mapping_error(dev, edesc->sec4_sg_dma)) { 321 dev_err(dev, "unable to map S/G table\n"); 322 goto sec4_sg_fail; 323 } 324 325 edesc->sec4_sg_bytes = sec4_sg_bytes; 326 327 print_hex_dump_debug("caampkc sec4_sg@" __stringify(__LINE__) ": ", 328 DUMP_PREFIX_ADDRESS, 16, 4, edesc->sec4_sg, 329 edesc->sec4_sg_bytes, 1); 330 331 return edesc; 332 333 sec4_sg_fail: 334 kfree(edesc); 335 dst_fail: 336 dma_unmap_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE); 337 src_fail: 338 dma_unmap_sg(dev, req_ctx->fixup_src, src_nents, DMA_TO_DEVICE); 339 return ERR_PTR(-ENOMEM); 340 } 341 342 static int set_rsa_pub_pdb(struct akcipher_request *req, 343 struct rsa_edesc *edesc) 344 { 345 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 346 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 347 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 348 struct caam_rsa_key *key = &ctx->key; 349 struct device *dev = ctx->dev; 350 struct rsa_pub_pdb *pdb = &edesc->pdb.pub; 351 int sec4_sg_index = 0; 352 353 pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE); 354 if (dma_mapping_error(dev, pdb->n_dma)) { 355 dev_err(dev, "Unable to map RSA modulus memory\n"); 356 return -ENOMEM; 357 } 358 359 pdb->e_dma = dma_map_single(dev, key->e, key->e_sz, DMA_TO_DEVICE); 360 if (dma_mapping_error(dev, pdb->e_dma)) { 361 dev_err(dev, "Unable to map RSA public exponent memory\n"); 362 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); 363 return -ENOMEM; 364 } 365 366 if (edesc->mapped_src_nents > 1) { 367 pdb->sgf |= RSA_PDB_SGF_F; 368 pdb->f_dma = edesc->sec4_sg_dma; 369 sec4_sg_index += edesc->mapped_src_nents; 370 } else { 371 pdb->f_dma = sg_dma_address(req_ctx->fixup_src); 372 } 373 374 if (edesc->mapped_dst_nents > 1) { 375 pdb->sgf |= RSA_PDB_SGF_G; 376 pdb->g_dma = edesc->sec4_sg_dma + 377 sec4_sg_index * sizeof(struct sec4_sg_entry); 378 } else { 379 pdb->g_dma = sg_dma_address(req->dst); 380 } 381 382 pdb->sgf |= (key->e_sz << RSA_PDB_E_SHIFT) | key->n_sz; 383 pdb->f_len = req_ctx->fixup_src_len; 384 385 return 0; 386 } 387 388 static int set_rsa_priv_f1_pdb(struct akcipher_request *req, 389 struct rsa_edesc *edesc) 390 { 391 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 392 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 393 struct caam_rsa_key *key = &ctx->key; 394 struct device *dev = ctx->dev; 395 struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1; 396 int sec4_sg_index = 0; 397 398 pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE); 399 if (dma_mapping_error(dev, pdb->n_dma)) { 400 dev_err(dev, "Unable to map modulus memory\n"); 401 return -ENOMEM; 402 } 403 404 pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE); 405 if (dma_mapping_error(dev, pdb->d_dma)) { 406 dev_err(dev, "Unable to map RSA private exponent memory\n"); 407 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); 408 return -ENOMEM; 409 } 410 411 if (edesc->mapped_src_nents > 1) { 412 pdb->sgf |= RSA_PRIV_PDB_SGF_G; 413 pdb->g_dma = edesc->sec4_sg_dma; 414 sec4_sg_index += edesc->mapped_src_nents; 415 416 } else { 417 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 418 419 pdb->g_dma = sg_dma_address(req_ctx->fixup_src); 420 } 421 422 if (edesc->mapped_dst_nents > 1) { 423 pdb->sgf |= RSA_PRIV_PDB_SGF_F; 424 pdb->f_dma = edesc->sec4_sg_dma + 425 sec4_sg_index * sizeof(struct sec4_sg_entry); 426 } else { 427 pdb->f_dma = sg_dma_address(req->dst); 428 } 429 430 pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz; 431 432 return 0; 433 } 434 435 static int set_rsa_priv_f2_pdb(struct akcipher_request *req, 436 struct rsa_edesc *edesc) 437 { 438 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 439 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 440 struct caam_rsa_key *key = &ctx->key; 441 struct device *dev = ctx->dev; 442 struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2; 443 int sec4_sg_index = 0; 444 size_t p_sz = key->p_sz; 445 size_t q_sz = key->q_sz; 446 447 pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE); 448 if (dma_mapping_error(dev, pdb->d_dma)) { 449 dev_err(dev, "Unable to map RSA private exponent memory\n"); 450 return -ENOMEM; 451 } 452 453 pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE); 454 if (dma_mapping_error(dev, pdb->p_dma)) { 455 dev_err(dev, "Unable to map RSA prime factor p memory\n"); 456 goto unmap_d; 457 } 458 459 pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE); 460 if (dma_mapping_error(dev, pdb->q_dma)) { 461 dev_err(dev, "Unable to map RSA prime factor q memory\n"); 462 goto unmap_p; 463 } 464 465 pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_BIDIRECTIONAL); 466 if (dma_mapping_error(dev, pdb->tmp1_dma)) { 467 dev_err(dev, "Unable to map RSA tmp1 memory\n"); 468 goto unmap_q; 469 } 470 471 pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_BIDIRECTIONAL); 472 if (dma_mapping_error(dev, pdb->tmp2_dma)) { 473 dev_err(dev, "Unable to map RSA tmp2 memory\n"); 474 goto unmap_tmp1; 475 } 476 477 if (edesc->mapped_src_nents > 1) { 478 pdb->sgf |= RSA_PRIV_PDB_SGF_G; 479 pdb->g_dma = edesc->sec4_sg_dma; 480 sec4_sg_index += edesc->mapped_src_nents; 481 } else { 482 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 483 484 pdb->g_dma = sg_dma_address(req_ctx->fixup_src); 485 } 486 487 if (edesc->mapped_dst_nents > 1) { 488 pdb->sgf |= RSA_PRIV_PDB_SGF_F; 489 pdb->f_dma = edesc->sec4_sg_dma + 490 sec4_sg_index * sizeof(struct sec4_sg_entry); 491 } else { 492 pdb->f_dma = sg_dma_address(req->dst); 493 } 494 495 pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz; 496 pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz; 497 498 return 0; 499 500 unmap_tmp1: 501 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); 502 unmap_q: 503 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); 504 unmap_p: 505 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); 506 unmap_d: 507 dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE); 508 509 return -ENOMEM; 510 } 511 512 static int set_rsa_priv_f3_pdb(struct akcipher_request *req, 513 struct rsa_edesc *edesc) 514 { 515 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 516 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 517 struct caam_rsa_key *key = &ctx->key; 518 struct device *dev = ctx->dev; 519 struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3; 520 int sec4_sg_index = 0; 521 size_t p_sz = key->p_sz; 522 size_t q_sz = key->q_sz; 523 524 pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE); 525 if (dma_mapping_error(dev, pdb->p_dma)) { 526 dev_err(dev, "Unable to map RSA prime factor p memory\n"); 527 return -ENOMEM; 528 } 529 530 pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE); 531 if (dma_mapping_error(dev, pdb->q_dma)) { 532 dev_err(dev, "Unable to map RSA prime factor q memory\n"); 533 goto unmap_p; 534 } 535 536 pdb->dp_dma = dma_map_single(dev, key->dp, p_sz, DMA_TO_DEVICE); 537 if (dma_mapping_error(dev, pdb->dp_dma)) { 538 dev_err(dev, "Unable to map RSA exponent dp memory\n"); 539 goto unmap_q; 540 } 541 542 pdb->dq_dma = dma_map_single(dev, key->dq, q_sz, DMA_TO_DEVICE); 543 if (dma_mapping_error(dev, pdb->dq_dma)) { 544 dev_err(dev, "Unable to map RSA exponent dq memory\n"); 545 goto unmap_dp; 546 } 547 548 pdb->c_dma = dma_map_single(dev, key->qinv, p_sz, DMA_TO_DEVICE); 549 if (dma_mapping_error(dev, pdb->c_dma)) { 550 dev_err(dev, "Unable to map RSA CRT coefficient qinv memory\n"); 551 goto unmap_dq; 552 } 553 554 pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_BIDIRECTIONAL); 555 if (dma_mapping_error(dev, pdb->tmp1_dma)) { 556 dev_err(dev, "Unable to map RSA tmp1 memory\n"); 557 goto unmap_qinv; 558 } 559 560 pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_BIDIRECTIONAL); 561 if (dma_mapping_error(dev, pdb->tmp2_dma)) { 562 dev_err(dev, "Unable to map RSA tmp2 memory\n"); 563 goto unmap_tmp1; 564 } 565 566 if (edesc->mapped_src_nents > 1) { 567 pdb->sgf |= RSA_PRIV_PDB_SGF_G; 568 pdb->g_dma = edesc->sec4_sg_dma; 569 sec4_sg_index += edesc->mapped_src_nents; 570 } else { 571 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 572 573 pdb->g_dma = sg_dma_address(req_ctx->fixup_src); 574 } 575 576 if (edesc->mapped_dst_nents > 1) { 577 pdb->sgf |= RSA_PRIV_PDB_SGF_F; 578 pdb->f_dma = edesc->sec4_sg_dma + 579 sec4_sg_index * sizeof(struct sec4_sg_entry); 580 } else { 581 pdb->f_dma = sg_dma_address(req->dst); 582 } 583 584 pdb->sgf |= key->n_sz; 585 pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz; 586 587 return 0; 588 589 unmap_tmp1: 590 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); 591 unmap_qinv: 592 dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE); 593 unmap_dq: 594 dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE); 595 unmap_dp: 596 dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE); 597 unmap_q: 598 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); 599 unmap_p: 600 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); 601 602 return -ENOMEM; 603 } 604 605 static int caam_rsa_enc(struct akcipher_request *req) 606 { 607 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 608 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 609 struct caam_rsa_key *key = &ctx->key; 610 struct device *jrdev = ctx->dev; 611 struct rsa_edesc *edesc; 612 int ret; 613 614 if (unlikely(!key->n || !key->e)) 615 return -EINVAL; 616 617 if (req->dst_len < key->n_sz) { 618 req->dst_len = key->n_sz; 619 dev_err(jrdev, "Output buffer length less than parameter n\n"); 620 return -EOVERFLOW; 621 } 622 623 /* Allocate extended descriptor */ 624 edesc = rsa_edesc_alloc(req, DESC_RSA_PUB_LEN); 625 if (IS_ERR(edesc)) 626 return PTR_ERR(edesc); 627 628 /* Set RSA Encrypt Protocol Data Block */ 629 ret = set_rsa_pub_pdb(req, edesc); 630 if (ret) 631 goto init_fail; 632 633 /* Initialize Job Descriptor */ 634 init_rsa_pub_desc(edesc->hw_desc, &edesc->pdb.pub); 635 636 ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_pub_done, req); 637 if (!ret) 638 return -EINPROGRESS; 639 640 rsa_pub_unmap(jrdev, edesc, req); 641 642 init_fail: 643 rsa_io_unmap(jrdev, edesc, req); 644 kfree(edesc); 645 return ret; 646 } 647 648 static int caam_rsa_dec_priv_f1(struct akcipher_request *req) 649 { 650 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 651 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 652 struct device *jrdev = ctx->dev; 653 struct rsa_edesc *edesc; 654 int ret; 655 656 /* Allocate extended descriptor */ 657 edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F1_LEN); 658 if (IS_ERR(edesc)) 659 return PTR_ERR(edesc); 660 661 /* Set RSA Decrypt Protocol Data Block - Private Key Form #1 */ 662 ret = set_rsa_priv_f1_pdb(req, edesc); 663 if (ret) 664 goto init_fail; 665 666 /* Initialize Job Descriptor */ 667 init_rsa_priv_f1_desc(edesc->hw_desc, &edesc->pdb.priv_f1); 668 669 ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_priv_f_done, req); 670 if (!ret) 671 return -EINPROGRESS; 672 673 rsa_priv_f1_unmap(jrdev, edesc, req); 674 675 init_fail: 676 rsa_io_unmap(jrdev, edesc, req); 677 kfree(edesc); 678 return ret; 679 } 680 681 static int caam_rsa_dec_priv_f2(struct akcipher_request *req) 682 { 683 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 684 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 685 struct device *jrdev = ctx->dev; 686 struct rsa_edesc *edesc; 687 int ret; 688 689 /* Allocate extended descriptor */ 690 edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F2_LEN); 691 if (IS_ERR(edesc)) 692 return PTR_ERR(edesc); 693 694 /* Set RSA Decrypt Protocol Data Block - Private Key Form #2 */ 695 ret = set_rsa_priv_f2_pdb(req, edesc); 696 if (ret) 697 goto init_fail; 698 699 /* Initialize Job Descriptor */ 700 init_rsa_priv_f2_desc(edesc->hw_desc, &edesc->pdb.priv_f2); 701 702 ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_priv_f_done, req); 703 if (!ret) 704 return -EINPROGRESS; 705 706 rsa_priv_f2_unmap(jrdev, edesc, req); 707 708 init_fail: 709 rsa_io_unmap(jrdev, edesc, req); 710 kfree(edesc); 711 return ret; 712 } 713 714 static int caam_rsa_dec_priv_f3(struct akcipher_request *req) 715 { 716 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 717 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 718 struct device *jrdev = ctx->dev; 719 struct rsa_edesc *edesc; 720 int ret; 721 722 /* Allocate extended descriptor */ 723 edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F3_LEN); 724 if (IS_ERR(edesc)) 725 return PTR_ERR(edesc); 726 727 /* Set RSA Decrypt Protocol Data Block - Private Key Form #3 */ 728 ret = set_rsa_priv_f3_pdb(req, edesc); 729 if (ret) 730 goto init_fail; 731 732 /* Initialize Job Descriptor */ 733 init_rsa_priv_f3_desc(edesc->hw_desc, &edesc->pdb.priv_f3); 734 735 ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_priv_f_done, req); 736 if (!ret) 737 return -EINPROGRESS; 738 739 rsa_priv_f3_unmap(jrdev, edesc, req); 740 741 init_fail: 742 rsa_io_unmap(jrdev, edesc, req); 743 kfree(edesc); 744 return ret; 745 } 746 747 static int caam_rsa_dec(struct akcipher_request *req) 748 { 749 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 750 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 751 struct caam_rsa_key *key = &ctx->key; 752 int ret; 753 754 if (unlikely(!key->n || !key->d)) 755 return -EINVAL; 756 757 if (req->dst_len < key->n_sz) { 758 req->dst_len = key->n_sz; 759 dev_err(ctx->dev, "Output buffer length less than parameter n\n"); 760 return -EOVERFLOW; 761 } 762 763 if (key->priv_form == FORM3) 764 ret = caam_rsa_dec_priv_f3(req); 765 else if (key->priv_form == FORM2) 766 ret = caam_rsa_dec_priv_f2(req); 767 else 768 ret = caam_rsa_dec_priv_f1(req); 769 770 return ret; 771 } 772 773 static void caam_rsa_free_key(struct caam_rsa_key *key) 774 { 775 kzfree(key->d); 776 kzfree(key->p); 777 kzfree(key->q); 778 kzfree(key->dp); 779 kzfree(key->dq); 780 kzfree(key->qinv); 781 kzfree(key->tmp1); 782 kzfree(key->tmp2); 783 kfree(key->e); 784 kfree(key->n); 785 memset(key, 0, sizeof(*key)); 786 } 787 788 static void caam_rsa_drop_leading_zeros(const u8 **ptr, size_t *nbytes) 789 { 790 while (!**ptr && *nbytes) { 791 (*ptr)++; 792 (*nbytes)--; 793 } 794 } 795 796 /** 797 * caam_read_rsa_crt - Used for reading dP, dQ, qInv CRT members. 798 * dP, dQ and qInv could decode to less than corresponding p, q length, as the 799 * BER-encoding requires that the minimum number of bytes be used to encode the 800 * integer. dP, dQ, qInv decoded values have to be zero-padded to appropriate 801 * length. 802 * 803 * @ptr : pointer to {dP, dQ, qInv} CRT member 804 * @nbytes: length in bytes of {dP, dQ, qInv} CRT member 805 * @dstlen: length in bytes of corresponding p or q prime factor 806 */ 807 static u8 *caam_read_rsa_crt(const u8 *ptr, size_t nbytes, size_t dstlen) 808 { 809 u8 *dst; 810 811 caam_rsa_drop_leading_zeros(&ptr, &nbytes); 812 if (!nbytes) 813 return NULL; 814 815 dst = kzalloc(dstlen, GFP_DMA | GFP_KERNEL); 816 if (!dst) 817 return NULL; 818 819 memcpy(dst + (dstlen - nbytes), ptr, nbytes); 820 821 return dst; 822 } 823 824 /** 825 * caam_read_raw_data - Read a raw byte stream as a positive integer. 826 * The function skips buffer's leading zeros, copies the remained data 827 * to a buffer allocated in the GFP_DMA | GFP_KERNEL zone and returns 828 * the address of the new buffer. 829 * 830 * @buf : The data to read 831 * @nbytes: The amount of data to read 832 */ 833 static inline u8 *caam_read_raw_data(const u8 *buf, size_t *nbytes) 834 { 835 836 caam_rsa_drop_leading_zeros(&buf, nbytes); 837 if (!*nbytes) 838 return NULL; 839 840 return kmemdup(buf, *nbytes, GFP_DMA | GFP_KERNEL); 841 } 842 843 static int caam_rsa_check_key_length(unsigned int len) 844 { 845 if (len > 4096) 846 return -EINVAL; 847 return 0; 848 } 849 850 static int caam_rsa_set_pub_key(struct crypto_akcipher *tfm, const void *key, 851 unsigned int keylen) 852 { 853 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 854 struct rsa_key raw_key = {NULL}; 855 struct caam_rsa_key *rsa_key = &ctx->key; 856 int ret; 857 858 /* Free the old RSA key if any */ 859 caam_rsa_free_key(rsa_key); 860 861 ret = rsa_parse_pub_key(&raw_key, key, keylen); 862 if (ret) 863 return ret; 864 865 /* Copy key in DMA zone */ 866 rsa_key->e = kmemdup(raw_key.e, raw_key.e_sz, GFP_DMA | GFP_KERNEL); 867 if (!rsa_key->e) 868 goto err; 869 870 /* 871 * Skip leading zeros and copy the positive integer to a buffer 872 * allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor 873 * expects a positive integer for the RSA modulus and uses its length as 874 * decryption output length. 875 */ 876 rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz); 877 if (!rsa_key->n) 878 goto err; 879 880 if (caam_rsa_check_key_length(raw_key.n_sz << 3)) { 881 caam_rsa_free_key(rsa_key); 882 return -EINVAL; 883 } 884 885 rsa_key->e_sz = raw_key.e_sz; 886 rsa_key->n_sz = raw_key.n_sz; 887 888 return 0; 889 err: 890 caam_rsa_free_key(rsa_key); 891 return -ENOMEM; 892 } 893 894 static void caam_rsa_set_priv_key_form(struct caam_rsa_ctx *ctx, 895 struct rsa_key *raw_key) 896 { 897 struct caam_rsa_key *rsa_key = &ctx->key; 898 size_t p_sz = raw_key->p_sz; 899 size_t q_sz = raw_key->q_sz; 900 901 rsa_key->p = caam_read_raw_data(raw_key->p, &p_sz); 902 if (!rsa_key->p) 903 return; 904 rsa_key->p_sz = p_sz; 905 906 rsa_key->q = caam_read_raw_data(raw_key->q, &q_sz); 907 if (!rsa_key->q) 908 goto free_p; 909 rsa_key->q_sz = q_sz; 910 911 rsa_key->tmp1 = kzalloc(raw_key->p_sz, GFP_DMA | GFP_KERNEL); 912 if (!rsa_key->tmp1) 913 goto free_q; 914 915 rsa_key->tmp2 = kzalloc(raw_key->q_sz, GFP_DMA | GFP_KERNEL); 916 if (!rsa_key->tmp2) 917 goto free_tmp1; 918 919 rsa_key->priv_form = FORM2; 920 921 rsa_key->dp = caam_read_rsa_crt(raw_key->dp, raw_key->dp_sz, p_sz); 922 if (!rsa_key->dp) 923 goto free_tmp2; 924 925 rsa_key->dq = caam_read_rsa_crt(raw_key->dq, raw_key->dq_sz, q_sz); 926 if (!rsa_key->dq) 927 goto free_dp; 928 929 rsa_key->qinv = caam_read_rsa_crt(raw_key->qinv, raw_key->qinv_sz, 930 q_sz); 931 if (!rsa_key->qinv) 932 goto free_dq; 933 934 rsa_key->priv_form = FORM3; 935 936 return; 937 938 free_dq: 939 kzfree(rsa_key->dq); 940 free_dp: 941 kzfree(rsa_key->dp); 942 free_tmp2: 943 kzfree(rsa_key->tmp2); 944 free_tmp1: 945 kzfree(rsa_key->tmp1); 946 free_q: 947 kzfree(rsa_key->q); 948 free_p: 949 kzfree(rsa_key->p); 950 } 951 952 static int caam_rsa_set_priv_key(struct crypto_akcipher *tfm, const void *key, 953 unsigned int keylen) 954 { 955 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 956 struct rsa_key raw_key = {NULL}; 957 struct caam_rsa_key *rsa_key = &ctx->key; 958 int ret; 959 960 /* Free the old RSA key if any */ 961 caam_rsa_free_key(rsa_key); 962 963 ret = rsa_parse_priv_key(&raw_key, key, keylen); 964 if (ret) 965 return ret; 966 967 /* Copy key in DMA zone */ 968 rsa_key->d = kmemdup(raw_key.d, raw_key.d_sz, GFP_DMA | GFP_KERNEL); 969 if (!rsa_key->d) 970 goto err; 971 972 rsa_key->e = kmemdup(raw_key.e, raw_key.e_sz, GFP_DMA | GFP_KERNEL); 973 if (!rsa_key->e) 974 goto err; 975 976 /* 977 * Skip leading zeros and copy the positive integer to a buffer 978 * allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor 979 * expects a positive integer for the RSA modulus and uses its length as 980 * decryption output length. 981 */ 982 rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz); 983 if (!rsa_key->n) 984 goto err; 985 986 if (caam_rsa_check_key_length(raw_key.n_sz << 3)) { 987 caam_rsa_free_key(rsa_key); 988 return -EINVAL; 989 } 990 991 rsa_key->d_sz = raw_key.d_sz; 992 rsa_key->e_sz = raw_key.e_sz; 993 rsa_key->n_sz = raw_key.n_sz; 994 995 caam_rsa_set_priv_key_form(ctx, &raw_key); 996 997 return 0; 998 999 err: 1000 caam_rsa_free_key(rsa_key); 1001 return -ENOMEM; 1002 } 1003 1004 static unsigned int caam_rsa_max_size(struct crypto_akcipher *tfm) 1005 { 1006 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 1007 1008 return ctx->key.n_sz; 1009 } 1010 1011 /* Per session pkc's driver context creation function */ 1012 static int caam_rsa_init_tfm(struct crypto_akcipher *tfm) 1013 { 1014 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 1015 1016 ctx->dev = caam_jr_alloc(); 1017 1018 if (IS_ERR(ctx->dev)) { 1019 pr_err("Job Ring Device allocation for transform failed\n"); 1020 return PTR_ERR(ctx->dev); 1021 } 1022 1023 ctx->padding_dma = dma_map_single(ctx->dev, zero_buffer, 1024 CAAM_RSA_MAX_INPUT_SIZE - 1, 1025 DMA_TO_DEVICE); 1026 if (dma_mapping_error(ctx->dev, ctx->padding_dma)) { 1027 dev_err(ctx->dev, "unable to map padding\n"); 1028 caam_jr_free(ctx->dev); 1029 return -ENOMEM; 1030 } 1031 1032 return 0; 1033 } 1034 1035 /* Per session pkc's driver context cleanup function */ 1036 static void caam_rsa_exit_tfm(struct crypto_akcipher *tfm) 1037 { 1038 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 1039 struct caam_rsa_key *key = &ctx->key; 1040 1041 dma_unmap_single(ctx->dev, ctx->padding_dma, CAAM_RSA_MAX_INPUT_SIZE - 1042 1, DMA_TO_DEVICE); 1043 caam_rsa_free_key(key); 1044 caam_jr_free(ctx->dev); 1045 } 1046 1047 static struct caam_akcipher_alg caam_rsa = { 1048 .akcipher = { 1049 .encrypt = caam_rsa_enc, 1050 .decrypt = caam_rsa_dec, 1051 .set_pub_key = caam_rsa_set_pub_key, 1052 .set_priv_key = caam_rsa_set_priv_key, 1053 .max_size = caam_rsa_max_size, 1054 .init = caam_rsa_init_tfm, 1055 .exit = caam_rsa_exit_tfm, 1056 .reqsize = sizeof(struct caam_rsa_req_ctx), 1057 .base = { 1058 .cra_name = "rsa", 1059 .cra_driver_name = "rsa-caam", 1060 .cra_priority = 3000, 1061 .cra_module = THIS_MODULE, 1062 .cra_ctxsize = sizeof(struct caam_rsa_ctx), 1063 }, 1064 } 1065 }; 1066 1067 /* Public Key Cryptography module initialization handler */ 1068 int caam_pkc_init(struct device *ctrldev) 1069 { 1070 struct caam_drv_private *priv = dev_get_drvdata(ctrldev); 1071 u32 pk_inst; 1072 int err; 1073 init_done = false; 1074 1075 /* Determine public key hardware accelerator presence. */ 1076 if (priv->era < 10) 1077 pk_inst = (rd_reg32(&priv->ctrl->perfmon.cha_num_ls) & 1078 CHA_ID_LS_PK_MASK) >> CHA_ID_LS_PK_SHIFT; 1079 else 1080 pk_inst = rd_reg32(&priv->ctrl->vreg.pkha) & CHA_VER_NUM_MASK; 1081 1082 /* Do not register algorithms if PKHA is not present. */ 1083 if (!pk_inst) 1084 return 0; 1085 1086 /* allocate zero buffer, used for padding input */ 1087 zero_buffer = kzalloc(CAAM_RSA_MAX_INPUT_SIZE - 1, GFP_DMA | 1088 GFP_KERNEL); 1089 if (!zero_buffer) 1090 return -ENOMEM; 1091 1092 err = crypto_register_akcipher(&caam_rsa.akcipher); 1093 1094 if (err) { 1095 kfree(zero_buffer); 1096 dev_warn(ctrldev, "%s alg registration failed\n", 1097 caam_rsa.akcipher.base.cra_driver_name); 1098 } else { 1099 init_done = true; 1100 caam_rsa.registered = true; 1101 dev_info(ctrldev, "caam pkc algorithms registered in /proc/crypto\n"); 1102 } 1103 1104 return err; 1105 } 1106 1107 void caam_pkc_exit(void) 1108 { 1109 if (!init_done) 1110 return; 1111 1112 if (caam_rsa.registered) 1113 crypto_unregister_akcipher(&caam_rsa.akcipher); 1114 1115 kfree(zero_buffer); 1116 } 1117