xref: /linux/drivers/hwmon/adm1031.c (revision 87c33daa)
1 /*
2   adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
3   monitoring
4   Based on lm75.c and lm85.c
5   Supports adm1030 / adm1031
6   Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
7   Reworked by Jean Delvare <khali@linux-fr.org>
8 
9   This program is free software; you can redistribute it and/or modify
10   it under the terms of the GNU General Public License as published by
11   the Free Software Foundation; either version 2 of the License, or
12   (at your option) any later version.
13 
14   This program is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17   GNU General Public License for more details.
18 
19   You should have received a copy of the GNU General Public License
20   along with this program; if not, write to the Free Software
21   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 */
23 
24 #include <linux/module.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/jiffies.h>
28 #include <linux/i2c.h>
29 #include <linux/hwmon.h>
30 #include <linux/hwmon-sysfs.h>
31 #include <linux/err.h>
32 #include <linux/mutex.h>
33 
34 /* Following macros takes channel parameter starting from 0 to 2 */
35 #define ADM1031_REG_FAN_SPEED(nr)	(0x08 + (nr))
36 #define ADM1031_REG_FAN_DIV(nr)		(0x20 + (nr))
37 #define ADM1031_REG_PWM			(0x22)
38 #define ADM1031_REG_FAN_MIN(nr)		(0x10 + (nr))
39 #define ADM1031_REG_FAN_FILTER		(0x23)
40 
41 #define ADM1031_REG_TEMP_OFFSET(nr)	(0x0d + (nr))
42 #define ADM1031_REG_TEMP_MAX(nr)	(0x14 + 4 * (nr))
43 #define ADM1031_REG_TEMP_MIN(nr)	(0x15 + 4 * (nr))
44 #define ADM1031_REG_TEMP_CRIT(nr)	(0x16 + 4 * (nr))
45 
46 #define ADM1031_REG_TEMP(nr)		(0x0a + (nr))
47 #define ADM1031_REG_AUTO_TEMP(nr)	(0x24 + (nr))
48 
49 #define ADM1031_REG_STATUS(nr)		(0x2 + (nr))
50 
51 #define ADM1031_REG_CONF1		0x00
52 #define ADM1031_REG_CONF2		0x01
53 #define ADM1031_REG_EXT_TEMP		0x06
54 
55 #define ADM1031_CONF1_MONITOR_ENABLE	0x01	/* Monitoring enable */
56 #define ADM1031_CONF1_PWM_INVERT	0x08	/* PWM Invert */
57 #define ADM1031_CONF1_AUTO_MODE		0x80	/* Auto FAN */
58 
59 #define ADM1031_CONF2_PWM1_ENABLE	0x01
60 #define ADM1031_CONF2_PWM2_ENABLE	0x02
61 #define ADM1031_CONF2_TACH1_ENABLE	0x04
62 #define ADM1031_CONF2_TACH2_ENABLE	0x08
63 #define ADM1031_CONF2_TEMP_ENABLE(chan)	(0x10 << (chan))
64 
65 #define ADM1031_UPDATE_RATE_MASK	0x1c
66 #define ADM1031_UPDATE_RATE_SHIFT	2
67 
68 /* Addresses to scan */
69 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
70 
71 enum chips { adm1030, adm1031 };
72 
73 typedef u8 auto_chan_table_t[8][2];
74 
75 /* Each client has this additional data */
76 struct adm1031_data {
77 	struct device *hwmon_dev;
78 	struct mutex update_lock;
79 	int chip_type;
80 	char valid;		/* !=0 if following fields are valid */
81 	unsigned long last_updated;	/* In jiffies */
82 	unsigned int update_rate;	/* In milliseconds */
83 	/* The chan_select_table contains the possible configurations for
84 	 * auto fan control.
85 	 */
86 	const auto_chan_table_t *chan_select_table;
87 	u16 alarm;
88 	u8 conf1;
89 	u8 conf2;
90 	u8 fan[2];
91 	u8 fan_div[2];
92 	u8 fan_min[2];
93 	u8 pwm[2];
94 	u8 old_pwm[2];
95 	s8 temp[3];
96 	u8 ext_temp[3];
97 	u8 auto_temp[3];
98 	u8 auto_temp_min[3];
99 	u8 auto_temp_off[3];
100 	u8 auto_temp_max[3];
101 	s8 temp_offset[3];
102 	s8 temp_min[3];
103 	s8 temp_max[3];
104 	s8 temp_crit[3];
105 };
106 
107 static int adm1031_probe(struct i2c_client *client,
108 			 const struct i2c_device_id *id);
109 static int adm1031_detect(struct i2c_client *client,
110 			  struct i2c_board_info *info);
111 static void adm1031_init_client(struct i2c_client *client);
112 static int adm1031_remove(struct i2c_client *client);
113 static struct adm1031_data *adm1031_update_device(struct device *dev);
114 
115 static const struct i2c_device_id adm1031_id[] = {
116 	{ "adm1030", adm1030 },
117 	{ "adm1031", adm1031 },
118 	{ }
119 };
120 MODULE_DEVICE_TABLE(i2c, adm1031_id);
121 
122 /* This is the driver that will be inserted */
123 static struct i2c_driver adm1031_driver = {
124 	.class		= I2C_CLASS_HWMON,
125 	.driver = {
126 		.name = "adm1031",
127 	},
128 	.probe		= adm1031_probe,
129 	.remove		= adm1031_remove,
130 	.id_table	= adm1031_id,
131 	.detect		= adm1031_detect,
132 	.address_list	= normal_i2c,
133 };
134 
135 static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
136 {
137 	return i2c_smbus_read_byte_data(client, reg);
138 }
139 
140 static inline int
141 adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
142 {
143 	return i2c_smbus_write_byte_data(client, reg, value);
144 }
145 
146 
147 #define TEMP_TO_REG(val)		(((val) < 0 ? ((val - 500) / 1000) : \
148 					((val + 500) / 1000)))
149 
150 #define TEMP_FROM_REG(val)		((val) * 1000)
151 
152 #define TEMP_FROM_REG_EXT(val, ext)	(TEMP_FROM_REG(val) + (ext) * 125)
153 
154 #define TEMP_OFFSET_TO_REG(val)		(TEMP_TO_REG(val) & 0x8f)
155 #define TEMP_OFFSET_FROM_REG(val)	TEMP_FROM_REG((val) < 0 ? \
156 						      (val) | 0x70 : (val))
157 
158 #define FAN_FROM_REG(reg, div)		((reg) ? (11250 * 60) / ((reg) * (div)) : 0)
159 
160 static int FAN_TO_REG(int reg, int div)
161 {
162 	int tmp;
163 	tmp = FAN_FROM_REG(SENSORS_LIMIT(reg, 0, 65535), div);
164 	return tmp > 255 ? 255 : tmp;
165 }
166 
167 #define FAN_DIV_FROM_REG(reg)		(1<<(((reg)&0xc0)>>6))
168 
169 #define PWM_TO_REG(val)			(SENSORS_LIMIT((val), 0, 255) >> 4)
170 #define PWM_FROM_REG(val)		((val) << 4)
171 
172 #define FAN_CHAN_FROM_REG(reg)		(((reg) >> 5) & 7)
173 #define FAN_CHAN_TO_REG(val, reg)	\
174 	(((reg) & 0x1F) | (((val) << 5) & 0xe0))
175 
176 #define AUTO_TEMP_MIN_TO_REG(val, reg)	\
177 	((((val)/500) & 0xf8)|((reg) & 0x7))
178 #define AUTO_TEMP_RANGE_FROM_REG(reg)	(5000 * (1<< ((reg)&0x7)))
179 #define AUTO_TEMP_MIN_FROM_REG(reg)	(1000 * ((((reg) >> 3) & 0x1f) << 2))
180 
181 #define AUTO_TEMP_MIN_FROM_REG_DEG(reg)	((((reg) >> 3) & 0x1f) << 2)
182 
183 #define AUTO_TEMP_OFF_FROM_REG(reg)		\
184 	(AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
185 
186 #define AUTO_TEMP_MAX_FROM_REG(reg)		\
187 	(AUTO_TEMP_RANGE_FROM_REG(reg) +	\
188 	AUTO_TEMP_MIN_FROM_REG(reg))
189 
190 static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
191 {
192 	int ret;
193 	int range = val - AUTO_TEMP_MIN_FROM_REG(reg);
194 
195 	range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
196 	ret = ((reg & 0xf8) |
197 	       (range < 10000 ? 0 :
198 		range < 20000 ? 1 :
199 		range < 40000 ? 2 : range < 80000 ? 3 : 4));
200 	return ret;
201 }
202 
203 /* FAN auto control */
204 #define GET_FAN_AUTO_BITFIELD(data, idx)	\
205 	(*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx%2]
206 
207 /* The tables below contains the possible values for the auto fan
208  * control bitfields. the index in the table is the register value.
209  * MSb is the auto fan control enable bit, so the four first entries
210  * in the table disables auto fan control when both bitfields are zero.
211  */
212 static const auto_chan_table_t auto_channel_select_table_adm1031 = {
213 	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
214 	{ 2 /* 0b010 */ , 4 /* 0b100 */ },
215 	{ 2 /* 0b010 */ , 2 /* 0b010 */ },
216 	{ 4 /* 0b100 */ , 4 /* 0b100 */ },
217 	{ 7 /* 0b111 */ , 7 /* 0b111 */ },
218 };
219 
220 static const auto_chan_table_t auto_channel_select_table_adm1030 = {
221 	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
222 	{ 2 /* 0b10 */		, 0 },
223 	{ 0xff /* invalid */	, 0 },
224 	{ 0xff /* invalid */	, 0 },
225 	{ 3 /* 0b11 */		, 0 },
226 };
227 
228 /* That function checks if a bitfield is valid and returns the other bitfield
229  * nearest match if no exact match where found.
230  */
231 static int
232 get_fan_auto_nearest(struct adm1031_data *data,
233 		     int chan, u8 val, u8 reg, u8 * new_reg)
234 {
235 	int i;
236 	int first_match = -1, exact_match = -1;
237 	u8 other_reg_val =
238 	    (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
239 
240 	if (val == 0) {
241 		*new_reg = 0;
242 		return 0;
243 	}
244 
245 	for (i = 0; i < 8; i++) {
246 		if ((val == (*data->chan_select_table)[i][chan]) &&
247 		    ((*data->chan_select_table)[i][chan ? 0 : 1] ==
248 		     other_reg_val)) {
249 			/* We found an exact match */
250 			exact_match = i;
251 			break;
252 		} else if (val == (*data->chan_select_table)[i][chan] &&
253 			   first_match == -1) {
254 			/* Save the first match in case of an exact match has
255 			 * not been found
256 			 */
257 			first_match = i;
258 		}
259 	}
260 
261 	if (exact_match >= 0) {
262 		*new_reg = exact_match;
263 	} else if (first_match >= 0) {
264 		*new_reg = first_match;
265 	} else {
266 		return -EINVAL;
267 	}
268 	return 0;
269 }
270 
271 static ssize_t show_fan_auto_channel(struct device *dev,
272 				     struct device_attribute *attr, char *buf)
273 {
274 	int nr = to_sensor_dev_attr(attr)->index;
275 	struct adm1031_data *data = adm1031_update_device(dev);
276 	return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
277 }
278 
279 static ssize_t
280 set_fan_auto_channel(struct device *dev, struct device_attribute *attr,
281 		     const char *buf, size_t count)
282 {
283 	struct i2c_client *client = to_i2c_client(dev);
284 	struct adm1031_data *data = i2c_get_clientdata(client);
285 	int nr = to_sensor_dev_attr(attr)->index;
286 	int val = simple_strtol(buf, NULL, 10);
287 	u8 reg;
288 	int ret;
289 	u8 old_fan_mode;
290 
291 	old_fan_mode = data->conf1;
292 
293 	mutex_lock(&data->update_lock);
294 
295 	if ((ret = get_fan_auto_nearest(data, nr, val, data->conf1, &reg))) {
296 		mutex_unlock(&data->update_lock);
297 		return ret;
298 	}
299 	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
300 	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
301 	    (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
302 		if (data->conf1 & ADM1031_CONF1_AUTO_MODE){
303 			/* Switch to Auto Fan Mode
304 			 * Save PWM registers
305 			 * Set PWM registers to 33% Both */
306 			data->old_pwm[0] = data->pwm[0];
307 			data->old_pwm[1] = data->pwm[1];
308 			adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
309 		} else {
310 			/* Switch to Manual Mode */
311 			data->pwm[0] = data->old_pwm[0];
312 			data->pwm[1] = data->old_pwm[1];
313 			/* Restore PWM registers */
314 			adm1031_write_value(client, ADM1031_REG_PWM,
315 					    data->pwm[0] | (data->pwm[1] << 4));
316 		}
317 	}
318 	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
319 	adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
320 	mutex_unlock(&data->update_lock);
321 	return count;
322 }
323 
324 static SENSOR_DEVICE_ATTR(auto_fan1_channel, S_IRUGO | S_IWUSR,
325 		show_fan_auto_channel, set_fan_auto_channel, 0);
326 static SENSOR_DEVICE_ATTR(auto_fan2_channel, S_IRUGO | S_IWUSR,
327 		show_fan_auto_channel, set_fan_auto_channel, 1);
328 
329 /* Auto Temps */
330 static ssize_t show_auto_temp_off(struct device *dev,
331 				  struct device_attribute *attr, char *buf)
332 {
333 	int nr = to_sensor_dev_attr(attr)->index;
334 	struct adm1031_data *data = adm1031_update_device(dev);
335 	return sprintf(buf, "%d\n",
336 		       AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
337 }
338 static ssize_t show_auto_temp_min(struct device *dev,
339 				  struct device_attribute *attr, char *buf)
340 {
341 	int nr = to_sensor_dev_attr(attr)->index;
342 	struct adm1031_data *data = adm1031_update_device(dev);
343 	return sprintf(buf, "%d\n",
344 		       AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
345 }
346 static ssize_t
347 set_auto_temp_min(struct device *dev, struct device_attribute *attr,
348 		  const char *buf, size_t count)
349 {
350 	struct i2c_client *client = to_i2c_client(dev);
351 	struct adm1031_data *data = i2c_get_clientdata(client);
352 	int nr = to_sensor_dev_attr(attr)->index;
353 	int val = simple_strtol(buf, NULL, 10);
354 
355 	mutex_lock(&data->update_lock);
356 	data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
357 	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
358 			    data->auto_temp[nr]);
359 	mutex_unlock(&data->update_lock);
360 	return count;
361 }
362 static ssize_t show_auto_temp_max(struct device *dev,
363 				  struct device_attribute *attr, char *buf)
364 {
365 	int nr = to_sensor_dev_attr(attr)->index;
366 	struct adm1031_data *data = adm1031_update_device(dev);
367 	return sprintf(buf, "%d\n",
368 		       AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
369 }
370 static ssize_t
371 set_auto_temp_max(struct device *dev, struct device_attribute *attr,
372 		  const char *buf, size_t count)
373 {
374 	struct i2c_client *client = to_i2c_client(dev);
375 	struct adm1031_data *data = i2c_get_clientdata(client);
376 	int nr = to_sensor_dev_attr(attr)->index;
377 	int val = simple_strtol(buf, NULL, 10);
378 
379 	mutex_lock(&data->update_lock);
380 	data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr], data->pwm[nr]);
381 	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
382 			    data->temp_max[nr]);
383 	mutex_unlock(&data->update_lock);
384 	return count;
385 }
386 
387 #define auto_temp_reg(offset)						\
388 static SENSOR_DEVICE_ATTR(auto_temp##offset##_off, S_IRUGO,		\
389 		show_auto_temp_off, NULL, offset - 1);			\
390 static SENSOR_DEVICE_ATTR(auto_temp##offset##_min, S_IRUGO | S_IWUSR,	\
391 		show_auto_temp_min, set_auto_temp_min, offset - 1);	\
392 static SENSOR_DEVICE_ATTR(auto_temp##offset##_max, S_IRUGO | S_IWUSR,	\
393 		show_auto_temp_max, set_auto_temp_max, offset - 1)
394 
395 auto_temp_reg(1);
396 auto_temp_reg(2);
397 auto_temp_reg(3);
398 
399 /* pwm */
400 static ssize_t show_pwm(struct device *dev,
401 			struct device_attribute *attr, char *buf)
402 {
403 	int nr = to_sensor_dev_attr(attr)->index;
404 	struct adm1031_data *data = adm1031_update_device(dev);
405 	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
406 }
407 static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
408 		       const char *buf, size_t count)
409 {
410 	struct i2c_client *client = to_i2c_client(dev);
411 	struct adm1031_data *data = i2c_get_clientdata(client);
412 	int nr = to_sensor_dev_attr(attr)->index;
413 	int val = simple_strtol(buf, NULL, 10);
414 	int reg;
415 
416 	mutex_lock(&data->update_lock);
417 	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
418 	    (((val>>4) & 0xf) != 5)) {
419 		/* In automatic mode, the only PWM accepted is 33% */
420 		mutex_unlock(&data->update_lock);
421 		return -EINVAL;
422 	}
423 	data->pwm[nr] = PWM_TO_REG(val);
424 	reg = adm1031_read_value(client, ADM1031_REG_PWM);
425 	adm1031_write_value(client, ADM1031_REG_PWM,
426 			    nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
427 			    : (data->pwm[nr] & 0xf) | (reg & 0xf0));
428 	mutex_unlock(&data->update_lock);
429 	return count;
430 }
431 
432 static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 0);
433 static SENSOR_DEVICE_ATTR(pwm2, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 1);
434 static SENSOR_DEVICE_ATTR(auto_fan1_min_pwm, S_IRUGO | S_IWUSR,
435 		show_pwm, set_pwm, 0);
436 static SENSOR_DEVICE_ATTR(auto_fan2_min_pwm, S_IRUGO | S_IWUSR,
437 		show_pwm, set_pwm, 1);
438 
439 /* Fans */
440 
441 /*
442  * That function checks the cases where the fan reading is not
443  * relevant.  It is used to provide 0 as fan reading when the fan is
444  * not supposed to run
445  */
446 static int trust_fan_readings(struct adm1031_data *data, int chan)
447 {
448 	int res = 0;
449 
450 	if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
451 		switch (data->conf1 & 0x60) {
452 		case 0x00:	/* remote temp1 controls fan1 remote temp2 controls fan2 */
453 			res = data->temp[chan+1] >=
454 			      AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
455 			break;
456 		case 0x20:	/* remote temp1 controls both fans */
457 			res =
458 			    data->temp[1] >=
459 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
460 			break;
461 		case 0x40:	/* remote temp2 controls both fans */
462 			res =
463 			    data->temp[2] >=
464 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
465 			break;
466 		case 0x60:	/* max controls both fans */
467 			res =
468 			    data->temp[0] >=
469 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
470 			    || data->temp[1] >=
471 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
472 			    || (data->chip_type == adm1031
473 				&& data->temp[2] >=
474 				AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
475 			break;
476 		}
477 	} else {
478 		res = data->pwm[chan] > 0;
479 	}
480 	return res;
481 }
482 
483 
484 static ssize_t show_fan(struct device *dev,
485 			struct device_attribute *attr, char *buf)
486 {
487 	int nr = to_sensor_dev_attr(attr)->index;
488 	struct adm1031_data *data = adm1031_update_device(dev);
489 	int value;
490 
491 	value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
492 				 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
493 	return sprintf(buf, "%d\n", value);
494 }
495 
496 static ssize_t show_fan_div(struct device *dev,
497 			    struct device_attribute *attr, char *buf)
498 {
499 	int nr = to_sensor_dev_attr(attr)->index;
500 	struct adm1031_data *data = adm1031_update_device(dev);
501 	return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
502 }
503 static ssize_t show_fan_min(struct device *dev,
504 			    struct device_attribute *attr, char *buf)
505 {
506 	int nr = to_sensor_dev_attr(attr)->index;
507 	struct adm1031_data *data = adm1031_update_device(dev);
508 	return sprintf(buf, "%d\n",
509 		       FAN_FROM_REG(data->fan_min[nr],
510 				    FAN_DIV_FROM_REG(data->fan_div[nr])));
511 }
512 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
513 			   const char *buf, size_t count)
514 {
515 	struct i2c_client *client = to_i2c_client(dev);
516 	struct adm1031_data *data = i2c_get_clientdata(client);
517 	int nr = to_sensor_dev_attr(attr)->index;
518 	int val = simple_strtol(buf, NULL, 10);
519 
520 	mutex_lock(&data->update_lock);
521 	if (val) {
522 		data->fan_min[nr] =
523 			FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
524 	} else {
525 		data->fan_min[nr] = 0xff;
526 	}
527 	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
528 	mutex_unlock(&data->update_lock);
529 	return count;
530 }
531 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
532 			   const char *buf, size_t count)
533 {
534 	struct i2c_client *client = to_i2c_client(dev);
535 	struct adm1031_data *data = i2c_get_clientdata(client);
536 	int nr = to_sensor_dev_attr(attr)->index;
537 	int val = simple_strtol(buf, NULL, 10);
538 	u8 tmp;
539 	int old_div;
540 	int new_min;
541 
542 	tmp = val == 8 ? 0xc0 :
543 	      val == 4 ? 0x80 :
544 	      val == 2 ? 0x40 :
545 	      val == 1 ? 0x00 :
546 	      0xff;
547 	if (tmp == 0xff)
548 		return -EINVAL;
549 
550 	mutex_lock(&data->update_lock);
551 	/* Get fresh readings */
552 	data->fan_div[nr] = adm1031_read_value(client,
553 					       ADM1031_REG_FAN_DIV(nr));
554 	data->fan_min[nr] = adm1031_read_value(client,
555 					       ADM1031_REG_FAN_MIN(nr));
556 
557 	/* Write the new clock divider and fan min */
558 	old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
559 	data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
560 	new_min = data->fan_min[nr] * old_div / val;
561 	data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
562 
563 	adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
564 			    data->fan_div[nr]);
565 	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
566 			    data->fan_min[nr]);
567 
568 	/* Invalidate the cache: fan speed is no longer valid */
569 	data->valid = 0;
570 	mutex_unlock(&data->update_lock);
571 	return count;
572 }
573 
574 #define fan_offset(offset)						\
575 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,			\
576 		show_fan, NULL, offset - 1);				\
577 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,		\
578 		show_fan_min, set_fan_min, offset - 1);			\
579 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR,		\
580 		show_fan_div, set_fan_div, offset - 1)
581 
582 fan_offset(1);
583 fan_offset(2);
584 
585 
586 /* Temps */
587 static ssize_t show_temp(struct device *dev,
588 			 struct device_attribute *attr, char *buf)
589 {
590 	int nr = to_sensor_dev_attr(attr)->index;
591 	struct adm1031_data *data = adm1031_update_device(dev);
592 	int ext;
593 	ext = nr == 0 ?
594 	    ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
595 	    (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
596 	return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
597 }
598 static ssize_t show_temp_offset(struct device *dev,
599 				struct device_attribute *attr, char *buf)
600 {
601 	int nr = to_sensor_dev_attr(attr)->index;
602 	struct adm1031_data *data = adm1031_update_device(dev);
603 	return sprintf(buf, "%d\n",
604 		       TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
605 }
606 static ssize_t show_temp_min(struct device *dev,
607 			     struct device_attribute *attr, char *buf)
608 {
609 	int nr = to_sensor_dev_attr(attr)->index;
610 	struct adm1031_data *data = adm1031_update_device(dev);
611 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
612 }
613 static ssize_t show_temp_max(struct device *dev,
614 			     struct device_attribute *attr, char *buf)
615 {
616 	int nr = to_sensor_dev_attr(attr)->index;
617 	struct adm1031_data *data = adm1031_update_device(dev);
618 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
619 }
620 static ssize_t show_temp_crit(struct device *dev,
621 			      struct device_attribute *attr, char *buf)
622 {
623 	int nr = to_sensor_dev_attr(attr)->index;
624 	struct adm1031_data *data = adm1031_update_device(dev);
625 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
626 }
627 static ssize_t set_temp_offset(struct device *dev,
628 			       struct device_attribute *attr, const char *buf,
629 			       size_t count)
630 {
631 	struct i2c_client *client = to_i2c_client(dev);
632 	struct adm1031_data *data = i2c_get_clientdata(client);
633 	int nr = to_sensor_dev_attr(attr)->index;
634 	int val;
635 
636 	val = simple_strtol(buf, NULL, 10);
637 	val = SENSORS_LIMIT(val, -15000, 15000);
638 	mutex_lock(&data->update_lock);
639 	data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
640 	adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
641 			    data->temp_offset[nr]);
642 	mutex_unlock(&data->update_lock);
643 	return count;
644 }
645 static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
646 			    const char *buf, size_t count)
647 {
648 	struct i2c_client *client = to_i2c_client(dev);
649 	struct adm1031_data *data = i2c_get_clientdata(client);
650 	int nr = to_sensor_dev_attr(attr)->index;
651 	int val;
652 
653 	val = simple_strtol(buf, NULL, 10);
654 	val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
655 	mutex_lock(&data->update_lock);
656 	data->temp_min[nr] = TEMP_TO_REG(val);
657 	adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
658 			    data->temp_min[nr]);
659 	mutex_unlock(&data->update_lock);
660 	return count;
661 }
662 static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
663 			    const char *buf, size_t count)
664 {
665 	struct i2c_client *client = to_i2c_client(dev);
666 	struct adm1031_data *data = i2c_get_clientdata(client);
667 	int nr = to_sensor_dev_attr(attr)->index;
668 	int val;
669 
670 	val = simple_strtol(buf, NULL, 10);
671 	val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
672 	mutex_lock(&data->update_lock);
673 	data->temp_max[nr] = TEMP_TO_REG(val);
674 	adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
675 			    data->temp_max[nr]);
676 	mutex_unlock(&data->update_lock);
677 	return count;
678 }
679 static ssize_t set_temp_crit(struct device *dev, struct device_attribute *attr,
680 			     const char *buf, size_t count)
681 {
682 	struct i2c_client *client = to_i2c_client(dev);
683 	struct adm1031_data *data = i2c_get_clientdata(client);
684 	int nr = to_sensor_dev_attr(attr)->index;
685 	int val;
686 
687 	val = simple_strtol(buf, NULL, 10);
688 	val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
689 	mutex_lock(&data->update_lock);
690 	data->temp_crit[nr] = TEMP_TO_REG(val);
691 	adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
692 			    data->temp_crit[nr]);
693 	mutex_unlock(&data->update_lock);
694 	return count;
695 }
696 
697 #define temp_reg(offset)						\
698 static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,		\
699 		show_temp, NULL, offset - 1);				\
700 static SENSOR_DEVICE_ATTR(temp##offset##_offset, S_IRUGO | S_IWUSR,	\
701 		show_temp_offset, set_temp_offset, offset - 1);		\
702 static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,	\
703 		show_temp_min, set_temp_min, offset - 1);		\
704 static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,	\
705 		show_temp_max, set_temp_max, offset - 1);		\
706 static SENSOR_DEVICE_ATTR(temp##offset##_crit, S_IRUGO | S_IWUSR,	\
707 		show_temp_crit, set_temp_crit, offset - 1)
708 
709 temp_reg(1);
710 temp_reg(2);
711 temp_reg(3);
712 
713 /* Alarms */
714 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf)
715 {
716 	struct adm1031_data *data = adm1031_update_device(dev);
717 	return sprintf(buf, "%d\n", data->alarm);
718 }
719 
720 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
721 
722 static ssize_t show_alarm(struct device *dev,
723 			  struct device_attribute *attr, char *buf)
724 {
725 	int bitnr = to_sensor_dev_attr(attr)->index;
726 	struct adm1031_data *data = adm1031_update_device(dev);
727 	return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
728 }
729 
730 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 0);
731 static SENSOR_DEVICE_ATTR(fan1_fault, S_IRUGO, show_alarm, NULL, 1);
732 static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 2);
733 static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
734 static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 4);
735 static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 5);
736 static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
737 static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 7);
738 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 8);
739 static SENSOR_DEVICE_ATTR(fan2_fault, S_IRUGO, show_alarm, NULL, 9);
740 static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 10);
741 static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
742 static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 12);
743 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 13);
744 static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 14);
745 
746 /* Update Rate */
747 static const unsigned int update_rates[] = {
748 	16000, 8000, 4000, 2000, 1000, 500, 250, 125,
749 };
750 
751 static ssize_t show_update_rate(struct device *dev,
752 				struct device_attribute *attr, char *buf)
753 {
754 	struct i2c_client *client = to_i2c_client(dev);
755 	struct adm1031_data *data = i2c_get_clientdata(client);
756 
757 	return sprintf(buf, "%u\n", data->update_rate);
758 }
759 
760 static ssize_t set_update_rate(struct device *dev,
761 			       struct device_attribute *attr,
762 			       const char *buf, size_t count)
763 {
764 	struct i2c_client *client = to_i2c_client(dev);
765 	struct adm1031_data *data = i2c_get_clientdata(client);
766 	unsigned long val;
767 	int i, err;
768 	u8 reg;
769 
770 	err = strict_strtoul(buf, 10, &val);
771 	if (err)
772 		return err;
773 
774 	/* find the nearest update rate from the table */
775 	for (i = 0; i < ARRAY_SIZE(update_rates) - 1; i++) {
776 		if (val >= update_rates[i])
777 			break;
778 	}
779 	/* if not found, we point to the last entry (lowest update rate) */
780 
781 	/* set the new update rate while preserving other settings */
782 	reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
783 	reg &= ~ADM1031_UPDATE_RATE_MASK;
784 	reg |= i << ADM1031_UPDATE_RATE_SHIFT;
785 	adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);
786 
787 	mutex_lock(&data->update_lock);
788 	data->update_rate = update_rates[i];
789 	mutex_unlock(&data->update_lock);
790 
791 	return count;
792 }
793 
794 static DEVICE_ATTR(update_rate, S_IRUGO | S_IWUSR, show_update_rate,
795 		   set_update_rate);
796 
797 static struct attribute *adm1031_attributes[] = {
798 	&sensor_dev_attr_fan1_input.dev_attr.attr,
799 	&sensor_dev_attr_fan1_div.dev_attr.attr,
800 	&sensor_dev_attr_fan1_min.dev_attr.attr,
801 	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
802 	&sensor_dev_attr_fan1_fault.dev_attr.attr,
803 	&sensor_dev_attr_pwm1.dev_attr.attr,
804 	&sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
805 	&sensor_dev_attr_temp1_input.dev_attr.attr,
806 	&sensor_dev_attr_temp1_offset.dev_attr.attr,
807 	&sensor_dev_attr_temp1_min.dev_attr.attr,
808 	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
809 	&sensor_dev_attr_temp1_max.dev_attr.attr,
810 	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
811 	&sensor_dev_attr_temp1_crit.dev_attr.attr,
812 	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
813 	&sensor_dev_attr_temp2_input.dev_attr.attr,
814 	&sensor_dev_attr_temp2_offset.dev_attr.attr,
815 	&sensor_dev_attr_temp2_min.dev_attr.attr,
816 	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
817 	&sensor_dev_attr_temp2_max.dev_attr.attr,
818 	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
819 	&sensor_dev_attr_temp2_crit.dev_attr.attr,
820 	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
821 	&sensor_dev_attr_temp2_fault.dev_attr.attr,
822 
823 	&sensor_dev_attr_auto_temp1_off.dev_attr.attr,
824 	&sensor_dev_attr_auto_temp1_min.dev_attr.attr,
825 	&sensor_dev_attr_auto_temp1_max.dev_attr.attr,
826 
827 	&sensor_dev_attr_auto_temp2_off.dev_attr.attr,
828 	&sensor_dev_attr_auto_temp2_min.dev_attr.attr,
829 	&sensor_dev_attr_auto_temp2_max.dev_attr.attr,
830 
831 	&sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
832 
833 	&dev_attr_update_rate.attr,
834 	&dev_attr_alarms.attr,
835 
836 	NULL
837 };
838 
839 static const struct attribute_group adm1031_group = {
840 	.attrs = adm1031_attributes,
841 };
842 
843 static struct attribute *adm1031_attributes_opt[] = {
844 	&sensor_dev_attr_fan2_input.dev_attr.attr,
845 	&sensor_dev_attr_fan2_div.dev_attr.attr,
846 	&sensor_dev_attr_fan2_min.dev_attr.attr,
847 	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
848 	&sensor_dev_attr_fan2_fault.dev_attr.attr,
849 	&sensor_dev_attr_pwm2.dev_attr.attr,
850 	&sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
851 	&sensor_dev_attr_temp3_input.dev_attr.attr,
852 	&sensor_dev_attr_temp3_offset.dev_attr.attr,
853 	&sensor_dev_attr_temp3_min.dev_attr.attr,
854 	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
855 	&sensor_dev_attr_temp3_max.dev_attr.attr,
856 	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
857 	&sensor_dev_attr_temp3_crit.dev_attr.attr,
858 	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
859 	&sensor_dev_attr_temp3_fault.dev_attr.attr,
860 	&sensor_dev_attr_auto_temp3_off.dev_attr.attr,
861 	&sensor_dev_attr_auto_temp3_min.dev_attr.attr,
862 	&sensor_dev_attr_auto_temp3_max.dev_attr.attr,
863 	&sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
864 	NULL
865 };
866 
867 static const struct attribute_group adm1031_group_opt = {
868 	.attrs = adm1031_attributes_opt,
869 };
870 
871 /* Return 0 if detection is successful, -ENODEV otherwise */
872 static int adm1031_detect(struct i2c_client *client,
873 			  struct i2c_board_info *info)
874 {
875 	struct i2c_adapter *adapter = client->adapter;
876 	const char *name;
877 	int id, co;
878 
879 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
880 		return -ENODEV;
881 
882 	id = i2c_smbus_read_byte_data(client, 0x3d);
883 	co = i2c_smbus_read_byte_data(client, 0x3e);
884 
885 	if (!((id == 0x31 || id == 0x30) && co == 0x41))
886 		return -ENODEV;
887 	name = (id == 0x30) ? "adm1030" : "adm1031";
888 
889 	strlcpy(info->type, name, I2C_NAME_SIZE);
890 
891 	return 0;
892 }
893 
894 static int adm1031_probe(struct i2c_client *client,
895 			 const struct i2c_device_id *id)
896 {
897 	struct adm1031_data *data;
898 	int err;
899 
900 	data = kzalloc(sizeof(struct adm1031_data), GFP_KERNEL);
901 	if (!data) {
902 		err = -ENOMEM;
903 		goto exit;
904 	}
905 
906 	i2c_set_clientdata(client, data);
907 	data->chip_type = id->driver_data;
908 	mutex_init(&data->update_lock);
909 
910 	if (data->chip_type == adm1030)
911 		data->chan_select_table = &auto_channel_select_table_adm1030;
912 	else
913 		data->chan_select_table = &auto_channel_select_table_adm1031;
914 
915 	/* Initialize the ADM1031 chip */
916 	adm1031_init_client(client);
917 
918 	/* Register sysfs hooks */
919 	if ((err = sysfs_create_group(&client->dev.kobj, &adm1031_group)))
920 		goto exit_free;
921 
922 	if (data->chip_type == adm1031) {
923 		if ((err = sysfs_create_group(&client->dev.kobj,
924 						&adm1031_group_opt)))
925 			goto exit_remove;
926 	}
927 
928 	data->hwmon_dev = hwmon_device_register(&client->dev);
929 	if (IS_ERR(data->hwmon_dev)) {
930 		err = PTR_ERR(data->hwmon_dev);
931 		goto exit_remove;
932 	}
933 
934 	return 0;
935 
936 exit_remove:
937 	sysfs_remove_group(&client->dev.kobj, &adm1031_group);
938 	sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
939 exit_free:
940 	kfree(data);
941 exit:
942 	return err;
943 }
944 
945 static int adm1031_remove(struct i2c_client *client)
946 {
947 	struct adm1031_data *data = i2c_get_clientdata(client);
948 
949 	hwmon_device_unregister(data->hwmon_dev);
950 	sysfs_remove_group(&client->dev.kobj, &adm1031_group);
951 	sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
952 	kfree(data);
953 	return 0;
954 }
955 
956 static void adm1031_init_client(struct i2c_client *client)
957 {
958 	unsigned int read_val;
959 	unsigned int mask;
960 	int i;
961 	struct adm1031_data *data = i2c_get_clientdata(client);
962 
963 	mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
964 	if (data->chip_type == adm1031) {
965 		mask |= (ADM1031_CONF2_PWM2_ENABLE |
966 			ADM1031_CONF2_TACH2_ENABLE);
967 	}
968 	/* Initialize the ADM1031 chip (enables fan speed reading ) */
969 	read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
970 	if ((read_val | mask) != read_val) {
971 	    adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
972 	}
973 
974 	read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
975 	if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
976 	    adm1031_write_value(client, ADM1031_REG_CONF1, read_val |
977 				ADM1031_CONF1_MONITOR_ENABLE);
978 	}
979 
980 	/* Read the chip's update rate */
981 	mask = ADM1031_UPDATE_RATE_MASK;
982 	read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
983 	i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
984 	data->update_rate = update_rates[i];
985 }
986 
987 static struct adm1031_data *adm1031_update_device(struct device *dev)
988 {
989 	struct i2c_client *client = to_i2c_client(dev);
990 	struct adm1031_data *data = i2c_get_clientdata(client);
991 	unsigned long next_update;
992 	int chan;
993 
994 	mutex_lock(&data->update_lock);
995 
996 	next_update = data->last_updated + msecs_to_jiffies(data->update_rate);
997 	if (time_after(jiffies, next_update) || !data->valid) {
998 
999 		dev_dbg(&client->dev, "Starting adm1031 update\n");
1000 		for (chan = 0;
1001 		     chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
1002 			u8 oldh, newh;
1003 
1004 			oldh =
1005 			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
1006 			data->ext_temp[chan] =
1007 			    adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
1008 			newh =
1009 			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
1010 			if (newh != oldh) {
1011 				data->ext_temp[chan] =
1012 				    adm1031_read_value(client,
1013 						       ADM1031_REG_EXT_TEMP);
1014 #ifdef DEBUG
1015 				oldh =
1016 				    adm1031_read_value(client,
1017 						       ADM1031_REG_TEMP(chan));
1018 
1019 				/* oldh is actually newer */
1020 				if (newh != oldh)
1021 					dev_warn(&client->dev,
1022 						 "Remote temperature may be "
1023 						 "wrong.\n");
1024 #endif
1025 			}
1026 			data->temp[chan] = newh;
1027 
1028 			data->temp_offset[chan] =
1029 			    adm1031_read_value(client,
1030 					       ADM1031_REG_TEMP_OFFSET(chan));
1031 			data->temp_min[chan] =
1032 			    adm1031_read_value(client,
1033 					       ADM1031_REG_TEMP_MIN(chan));
1034 			data->temp_max[chan] =
1035 			    adm1031_read_value(client,
1036 					       ADM1031_REG_TEMP_MAX(chan));
1037 			data->temp_crit[chan] =
1038 			    adm1031_read_value(client,
1039 					       ADM1031_REG_TEMP_CRIT(chan));
1040 			data->auto_temp[chan] =
1041 			    adm1031_read_value(client,
1042 					       ADM1031_REG_AUTO_TEMP(chan));
1043 
1044 		}
1045 
1046 		data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
1047 		data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
1048 
1049 		data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
1050 			     | (adm1031_read_value(client, ADM1031_REG_STATUS(1))
1051 				<< 8);
1052 		if (data->chip_type == adm1030) {
1053 			data->alarm &= 0xc0ff;
1054 		}
1055 
1056 		for (chan=0; chan<(data->chip_type == adm1030 ? 1 : 2); chan++) {
1057 			data->fan_div[chan] =
1058 			    adm1031_read_value(client, ADM1031_REG_FAN_DIV(chan));
1059 			data->fan_min[chan] =
1060 			    adm1031_read_value(client, ADM1031_REG_FAN_MIN(chan));
1061 			data->fan[chan] =
1062 			    adm1031_read_value(client, ADM1031_REG_FAN_SPEED(chan));
1063 			data->pwm[chan] =
1064 			    0xf & (adm1031_read_value(client, ADM1031_REG_PWM) >>
1065 				   (4*chan));
1066 		}
1067 		data->last_updated = jiffies;
1068 		data->valid = 1;
1069 	}
1070 
1071 	mutex_unlock(&data->update_lock);
1072 
1073 	return data;
1074 }
1075 
1076 static int __init sensors_adm1031_init(void)
1077 {
1078 	return i2c_add_driver(&adm1031_driver);
1079 }
1080 
1081 static void __exit sensors_adm1031_exit(void)
1082 {
1083 	i2c_del_driver(&adm1031_driver);
1084 }
1085 
1086 MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
1087 MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
1088 MODULE_LICENSE("GPL");
1089 
1090 module_init(sensors_adm1031_init);
1091 module_exit(sensors_adm1031_exit);
1092