xref: /linux/drivers/hwmon/adm1031.c (revision f0967eea)
1 /*
2   adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
3   monitoring
4   Based on lm75.c and lm85.c
5   Supports adm1030 / adm1031
6   Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
7   Reworked by Jean Delvare <khali@linux-fr.org>
8 
9   This program is free software; you can redistribute it and/or modify
10   it under the terms of the GNU General Public License as published by
11   the Free Software Foundation; either version 2 of the License, or
12   (at your option) any later version.
13 
14   This program is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17   GNU General Public License for more details.
18 
19   You should have received a copy of the GNU General Public License
20   along with this program; if not, write to the Free Software
21   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 */
23 
24 #include <linux/module.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/jiffies.h>
28 #include <linux/i2c.h>
29 #include <linux/hwmon.h>
30 #include <linux/hwmon-sysfs.h>
31 #include <linux/err.h>
32 #include <linux/mutex.h>
33 
34 /* Following macros takes channel parameter starting from 0 to 2 */
35 #define ADM1031_REG_FAN_SPEED(nr)	(0x08 + (nr))
36 #define ADM1031_REG_FAN_DIV(nr)		(0x20 + (nr))
37 #define ADM1031_REG_PWM			(0x22)
38 #define ADM1031_REG_FAN_MIN(nr)		(0x10 + (nr))
39 #define ADM1031_REG_FAN_FILTER		(0x23)
40 
41 #define ADM1031_REG_TEMP_OFFSET(nr)	(0x0d + (nr))
42 #define ADM1031_REG_TEMP_MAX(nr)	(0x14 + 4 * (nr))
43 #define ADM1031_REG_TEMP_MIN(nr)	(0x15 + 4 * (nr))
44 #define ADM1031_REG_TEMP_CRIT(nr)	(0x16 + 4 * (nr))
45 
46 #define ADM1031_REG_TEMP(nr)		(0x0a + (nr))
47 #define ADM1031_REG_AUTO_TEMP(nr)	(0x24 + (nr))
48 
49 #define ADM1031_REG_STATUS(nr)		(0x2 + (nr))
50 
51 #define ADM1031_REG_CONF1		0x00
52 #define ADM1031_REG_CONF2		0x01
53 #define ADM1031_REG_EXT_TEMP		0x06
54 
55 #define ADM1031_CONF1_MONITOR_ENABLE	0x01	/* Monitoring enable */
56 #define ADM1031_CONF1_PWM_INVERT	0x08	/* PWM Invert */
57 #define ADM1031_CONF1_AUTO_MODE		0x80	/* Auto FAN */
58 
59 #define ADM1031_CONF2_PWM1_ENABLE	0x01
60 #define ADM1031_CONF2_PWM2_ENABLE	0x02
61 #define ADM1031_CONF2_TACH1_ENABLE	0x04
62 #define ADM1031_CONF2_TACH2_ENABLE	0x08
63 #define ADM1031_CONF2_TEMP_ENABLE(chan)	(0x10 << (chan))
64 
65 #define ADM1031_UPDATE_RATE_MASK	0x1c
66 #define ADM1031_UPDATE_RATE_SHIFT	2
67 
68 /* Addresses to scan */
69 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
70 
71 enum chips { adm1030, adm1031 };
72 
73 typedef u8 auto_chan_table_t[8][2];
74 
75 /* Each client has this additional data */
76 struct adm1031_data {
77 	struct device *hwmon_dev;
78 	struct mutex update_lock;
79 	int chip_type;
80 	char valid;		/* !=0 if following fields are valid */
81 	unsigned long last_updated;	/* In jiffies */
82 	unsigned int update_interval;	/* In milliseconds */
83 	/* The chan_select_table contains the possible configurations for
84 	 * auto fan control.
85 	 */
86 	const auto_chan_table_t *chan_select_table;
87 	u16 alarm;
88 	u8 conf1;
89 	u8 conf2;
90 	u8 fan[2];
91 	u8 fan_div[2];
92 	u8 fan_min[2];
93 	u8 pwm[2];
94 	u8 old_pwm[2];
95 	s8 temp[3];
96 	u8 ext_temp[3];
97 	u8 auto_temp[3];
98 	u8 auto_temp_min[3];
99 	u8 auto_temp_off[3];
100 	u8 auto_temp_max[3];
101 	s8 temp_offset[3];
102 	s8 temp_min[3];
103 	s8 temp_max[3];
104 	s8 temp_crit[3];
105 };
106 
107 static int adm1031_probe(struct i2c_client *client,
108 			 const struct i2c_device_id *id);
109 static int adm1031_detect(struct i2c_client *client,
110 			  struct i2c_board_info *info);
111 static void adm1031_init_client(struct i2c_client *client);
112 static int adm1031_remove(struct i2c_client *client);
113 static struct adm1031_data *adm1031_update_device(struct device *dev);
114 
115 static const struct i2c_device_id adm1031_id[] = {
116 	{ "adm1030", adm1030 },
117 	{ "adm1031", adm1031 },
118 	{ }
119 };
120 MODULE_DEVICE_TABLE(i2c, adm1031_id);
121 
122 /* This is the driver that will be inserted */
123 static struct i2c_driver adm1031_driver = {
124 	.class		= I2C_CLASS_HWMON,
125 	.driver = {
126 		.name = "adm1031",
127 	},
128 	.probe		= adm1031_probe,
129 	.remove		= adm1031_remove,
130 	.id_table	= adm1031_id,
131 	.detect		= adm1031_detect,
132 	.address_list	= normal_i2c,
133 };
134 
135 static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
136 {
137 	return i2c_smbus_read_byte_data(client, reg);
138 }
139 
140 static inline int
141 adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
142 {
143 	return i2c_smbus_write_byte_data(client, reg, value);
144 }
145 
146 
147 #define TEMP_TO_REG(val)		(((val) < 0 ? ((val - 500) / 1000) : \
148 					((val + 500) / 1000)))
149 
150 #define TEMP_FROM_REG(val)		((val) * 1000)
151 
152 #define TEMP_FROM_REG_EXT(val, ext)	(TEMP_FROM_REG(val) + (ext) * 125)
153 
154 #define TEMP_OFFSET_TO_REG(val)		(TEMP_TO_REG(val) & 0x8f)
155 #define TEMP_OFFSET_FROM_REG(val)	TEMP_FROM_REG((val) < 0 ? \
156 						      (val) | 0x70 : (val))
157 
158 #define FAN_FROM_REG(reg, div)		((reg) ? \
159 					 (11250 * 60) / ((reg) * (div)) : 0)
160 
161 static int FAN_TO_REG(int reg, int div)
162 {
163 	int tmp;
164 	tmp = FAN_FROM_REG(SENSORS_LIMIT(reg, 0, 65535), div);
165 	return tmp > 255 ? 255 : tmp;
166 }
167 
168 #define FAN_DIV_FROM_REG(reg)		(1<<(((reg)&0xc0)>>6))
169 
170 #define PWM_TO_REG(val)			(SENSORS_LIMIT((val), 0, 255) >> 4)
171 #define PWM_FROM_REG(val)		((val) << 4)
172 
173 #define FAN_CHAN_FROM_REG(reg)		(((reg) >> 5) & 7)
174 #define FAN_CHAN_TO_REG(val, reg)	\
175 	(((reg) & 0x1F) | (((val) << 5) & 0xe0))
176 
177 #define AUTO_TEMP_MIN_TO_REG(val, reg)	\
178 	((((val) / 500) & 0xf8) | ((reg) & 0x7))
179 #define AUTO_TEMP_RANGE_FROM_REG(reg)	(5000 * (1 << ((reg) & 0x7)))
180 #define AUTO_TEMP_MIN_FROM_REG(reg)	(1000 * ((((reg) >> 3) & 0x1f) << 2))
181 
182 #define AUTO_TEMP_MIN_FROM_REG_DEG(reg)	((((reg) >> 3) & 0x1f) << 2)
183 
184 #define AUTO_TEMP_OFF_FROM_REG(reg)		\
185 	(AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
186 
187 #define AUTO_TEMP_MAX_FROM_REG(reg)		\
188 	(AUTO_TEMP_RANGE_FROM_REG(reg) +	\
189 	AUTO_TEMP_MIN_FROM_REG(reg))
190 
191 static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
192 {
193 	int ret;
194 	int range = val - AUTO_TEMP_MIN_FROM_REG(reg);
195 
196 	range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
197 	ret = ((reg & 0xf8) |
198 	       (range < 10000 ? 0 :
199 		range < 20000 ? 1 :
200 		range < 40000 ? 2 : range < 80000 ? 3 : 4));
201 	return ret;
202 }
203 
204 /* FAN auto control */
205 #define GET_FAN_AUTO_BITFIELD(data, idx)	\
206 	(*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx % 2]
207 
208 /* The tables below contains the possible values for the auto fan
209  * control bitfields. the index in the table is the register value.
210  * MSb is the auto fan control enable bit, so the four first entries
211  * in the table disables auto fan control when both bitfields are zero.
212  */
213 static const auto_chan_table_t auto_channel_select_table_adm1031 = {
214 	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
215 	{ 2 /* 0b010 */ , 4 /* 0b100 */ },
216 	{ 2 /* 0b010 */ , 2 /* 0b010 */ },
217 	{ 4 /* 0b100 */ , 4 /* 0b100 */ },
218 	{ 7 /* 0b111 */ , 7 /* 0b111 */ },
219 };
220 
221 static const auto_chan_table_t auto_channel_select_table_adm1030 = {
222 	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
223 	{ 2 /* 0b10 */		, 0 },
224 	{ 0xff /* invalid */	, 0 },
225 	{ 0xff /* invalid */	, 0 },
226 	{ 3 /* 0b11 */		, 0 },
227 };
228 
229 /* That function checks if a bitfield is valid and returns the other bitfield
230  * nearest match if no exact match where found.
231  */
232 static int
233 get_fan_auto_nearest(struct adm1031_data *data,
234 		     int chan, u8 val, u8 reg, u8 *new_reg)
235 {
236 	int i;
237 	int first_match = -1, exact_match = -1;
238 	u8 other_reg_val =
239 	    (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
240 
241 	if (val == 0) {
242 		*new_reg = 0;
243 		return 0;
244 	}
245 
246 	for (i = 0; i < 8; i++) {
247 		if ((val == (*data->chan_select_table)[i][chan]) &&
248 		    ((*data->chan_select_table)[i][chan ? 0 : 1] ==
249 		     other_reg_val)) {
250 			/* We found an exact match */
251 			exact_match = i;
252 			break;
253 		} else if (val == (*data->chan_select_table)[i][chan] &&
254 			   first_match == -1) {
255 			/* Save the first match in case of an exact match has
256 			 * not been found
257 			 */
258 			first_match = i;
259 		}
260 	}
261 
262 	if (exact_match >= 0)
263 		*new_reg = exact_match;
264 	else if (first_match >= 0)
265 		*new_reg = first_match;
266 	else
267 		return -EINVAL;
268 
269 	return 0;
270 }
271 
272 static ssize_t show_fan_auto_channel(struct device *dev,
273 				     struct device_attribute *attr, char *buf)
274 {
275 	int nr = to_sensor_dev_attr(attr)->index;
276 	struct adm1031_data *data = adm1031_update_device(dev);
277 	return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
278 }
279 
280 static ssize_t
281 set_fan_auto_channel(struct device *dev, struct device_attribute *attr,
282 		     const char *buf, size_t count)
283 {
284 	struct i2c_client *client = to_i2c_client(dev);
285 	struct adm1031_data *data = i2c_get_clientdata(client);
286 	int nr = to_sensor_dev_attr(attr)->index;
287 	long val;
288 	u8 reg;
289 	int ret;
290 	u8 old_fan_mode;
291 
292 	ret = kstrtol(buf, 10, &val);
293 	if (ret)
294 		return ret;
295 
296 	old_fan_mode = data->conf1;
297 
298 	mutex_lock(&data->update_lock);
299 
300 	ret = get_fan_auto_nearest(data, nr, val, data->conf1, &reg);
301 	if (ret) {
302 		mutex_unlock(&data->update_lock);
303 		return ret;
304 	}
305 	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
306 	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
307 	    (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
308 		if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
309 			/* Switch to Auto Fan Mode
310 			 * Save PWM registers
311 			 * Set PWM registers to 33% Both */
312 			data->old_pwm[0] = data->pwm[0];
313 			data->old_pwm[1] = data->pwm[1];
314 			adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
315 		} else {
316 			/* Switch to Manual Mode */
317 			data->pwm[0] = data->old_pwm[0];
318 			data->pwm[1] = data->old_pwm[1];
319 			/* Restore PWM registers */
320 			adm1031_write_value(client, ADM1031_REG_PWM,
321 					    data->pwm[0] | (data->pwm[1] << 4));
322 		}
323 	}
324 	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
325 	adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
326 	mutex_unlock(&data->update_lock);
327 	return count;
328 }
329 
330 static SENSOR_DEVICE_ATTR(auto_fan1_channel, S_IRUGO | S_IWUSR,
331 		show_fan_auto_channel, set_fan_auto_channel, 0);
332 static SENSOR_DEVICE_ATTR(auto_fan2_channel, S_IRUGO | S_IWUSR,
333 		show_fan_auto_channel, set_fan_auto_channel, 1);
334 
335 /* Auto Temps */
336 static ssize_t show_auto_temp_off(struct device *dev,
337 				  struct device_attribute *attr, char *buf)
338 {
339 	int nr = to_sensor_dev_attr(attr)->index;
340 	struct adm1031_data *data = adm1031_update_device(dev);
341 	return sprintf(buf, "%d\n",
342 		       AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
343 }
344 static ssize_t show_auto_temp_min(struct device *dev,
345 				  struct device_attribute *attr, char *buf)
346 {
347 	int nr = to_sensor_dev_attr(attr)->index;
348 	struct adm1031_data *data = adm1031_update_device(dev);
349 	return sprintf(buf, "%d\n",
350 		       AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
351 }
352 static ssize_t
353 set_auto_temp_min(struct device *dev, struct device_attribute *attr,
354 		  const char *buf, size_t count)
355 {
356 	struct i2c_client *client = to_i2c_client(dev);
357 	struct adm1031_data *data = i2c_get_clientdata(client);
358 	int nr = to_sensor_dev_attr(attr)->index;
359 	long val;
360 	int ret;
361 
362 	ret = kstrtol(buf, 10, &val);
363 	if (ret)
364 		return ret;
365 
366 	mutex_lock(&data->update_lock);
367 	data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
368 	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
369 			    data->auto_temp[nr]);
370 	mutex_unlock(&data->update_lock);
371 	return count;
372 }
373 static ssize_t show_auto_temp_max(struct device *dev,
374 				  struct device_attribute *attr, char *buf)
375 {
376 	int nr = to_sensor_dev_attr(attr)->index;
377 	struct adm1031_data *data = adm1031_update_device(dev);
378 	return sprintf(buf, "%d\n",
379 		       AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
380 }
381 static ssize_t
382 set_auto_temp_max(struct device *dev, struct device_attribute *attr,
383 		  const char *buf, size_t count)
384 {
385 	struct i2c_client *client = to_i2c_client(dev);
386 	struct adm1031_data *data = i2c_get_clientdata(client);
387 	int nr = to_sensor_dev_attr(attr)->index;
388 	long val;
389 	int ret;
390 
391 	ret = kstrtol(buf, 10, &val);
392 	if (ret)
393 		return ret;
394 
395 	mutex_lock(&data->update_lock);
396 	data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr],
397 						  data->pwm[nr]);
398 	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
399 			    data->temp_max[nr]);
400 	mutex_unlock(&data->update_lock);
401 	return count;
402 }
403 
404 #define auto_temp_reg(offset)						\
405 static SENSOR_DEVICE_ATTR(auto_temp##offset##_off, S_IRUGO,		\
406 		show_auto_temp_off, NULL, offset - 1);			\
407 static SENSOR_DEVICE_ATTR(auto_temp##offset##_min, S_IRUGO | S_IWUSR,	\
408 		show_auto_temp_min, set_auto_temp_min, offset - 1);	\
409 static SENSOR_DEVICE_ATTR(auto_temp##offset##_max, S_IRUGO | S_IWUSR,	\
410 		show_auto_temp_max, set_auto_temp_max, offset - 1)
411 
412 auto_temp_reg(1);
413 auto_temp_reg(2);
414 auto_temp_reg(3);
415 
416 /* pwm */
417 static ssize_t show_pwm(struct device *dev,
418 			struct device_attribute *attr, char *buf)
419 {
420 	int nr = to_sensor_dev_attr(attr)->index;
421 	struct adm1031_data *data = adm1031_update_device(dev);
422 	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
423 }
424 static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
425 		       const char *buf, size_t count)
426 {
427 	struct i2c_client *client = to_i2c_client(dev);
428 	struct adm1031_data *data = i2c_get_clientdata(client);
429 	int nr = to_sensor_dev_attr(attr)->index;
430 	long val;
431 	int ret, reg;
432 
433 	ret = kstrtol(buf, 10, &val);
434 	if (ret)
435 		return ret;
436 
437 	mutex_lock(&data->update_lock);
438 	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
439 	    (((val>>4) & 0xf) != 5)) {
440 		/* In automatic mode, the only PWM accepted is 33% */
441 		mutex_unlock(&data->update_lock);
442 		return -EINVAL;
443 	}
444 	data->pwm[nr] = PWM_TO_REG(val);
445 	reg = adm1031_read_value(client, ADM1031_REG_PWM);
446 	adm1031_write_value(client, ADM1031_REG_PWM,
447 			    nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
448 			    : (data->pwm[nr] & 0xf) | (reg & 0xf0));
449 	mutex_unlock(&data->update_lock);
450 	return count;
451 }
452 
453 static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 0);
454 static SENSOR_DEVICE_ATTR(pwm2, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 1);
455 static SENSOR_DEVICE_ATTR(auto_fan1_min_pwm, S_IRUGO | S_IWUSR,
456 		show_pwm, set_pwm, 0);
457 static SENSOR_DEVICE_ATTR(auto_fan2_min_pwm, S_IRUGO | S_IWUSR,
458 		show_pwm, set_pwm, 1);
459 
460 /* Fans */
461 
462 /*
463  * That function checks the cases where the fan reading is not
464  * relevant.  It is used to provide 0 as fan reading when the fan is
465  * not supposed to run
466  */
467 static int trust_fan_readings(struct adm1031_data *data, int chan)
468 {
469 	int res = 0;
470 
471 	if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
472 		switch (data->conf1 & 0x60) {
473 		case 0x00:
474 			/*
475 			 * remote temp1 controls fan1,
476 			 * remote temp2 controls fan2
477 			 */
478 			res = data->temp[chan+1] >=
479 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
480 			break;
481 		case 0x20:	/* remote temp1 controls both fans */
482 			res =
483 			    data->temp[1] >=
484 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
485 			break;
486 		case 0x40:	/* remote temp2 controls both fans */
487 			res =
488 			    data->temp[2] >=
489 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
490 			break;
491 		case 0x60:	/* max controls both fans */
492 			res =
493 			    data->temp[0] >=
494 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
495 			    || data->temp[1] >=
496 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
497 			    || (data->chip_type == adm1031
498 				&& data->temp[2] >=
499 				AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
500 			break;
501 		}
502 	} else {
503 		res = data->pwm[chan] > 0;
504 	}
505 	return res;
506 }
507 
508 
509 static ssize_t show_fan(struct device *dev,
510 			struct device_attribute *attr, char *buf)
511 {
512 	int nr = to_sensor_dev_attr(attr)->index;
513 	struct adm1031_data *data = adm1031_update_device(dev);
514 	int value;
515 
516 	value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
517 				 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
518 	return sprintf(buf, "%d\n", value);
519 }
520 
521 static ssize_t show_fan_div(struct device *dev,
522 			    struct device_attribute *attr, char *buf)
523 {
524 	int nr = to_sensor_dev_attr(attr)->index;
525 	struct adm1031_data *data = adm1031_update_device(dev);
526 	return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
527 }
528 static ssize_t show_fan_min(struct device *dev,
529 			    struct device_attribute *attr, char *buf)
530 {
531 	int nr = to_sensor_dev_attr(attr)->index;
532 	struct adm1031_data *data = adm1031_update_device(dev);
533 	return sprintf(buf, "%d\n",
534 		       FAN_FROM_REG(data->fan_min[nr],
535 				    FAN_DIV_FROM_REG(data->fan_div[nr])));
536 }
537 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
538 			   const char *buf, size_t count)
539 {
540 	struct i2c_client *client = to_i2c_client(dev);
541 	struct adm1031_data *data = i2c_get_clientdata(client);
542 	int nr = to_sensor_dev_attr(attr)->index;
543 	long val;
544 	int ret;
545 
546 	ret = kstrtol(buf, 10, &val);
547 	if (ret)
548 		return ret;
549 
550 	mutex_lock(&data->update_lock);
551 	if (val) {
552 		data->fan_min[nr] =
553 			FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
554 	} else {
555 		data->fan_min[nr] = 0xff;
556 	}
557 	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
558 	mutex_unlock(&data->update_lock);
559 	return count;
560 }
561 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
562 			   const char *buf, size_t count)
563 {
564 	struct i2c_client *client = to_i2c_client(dev);
565 	struct adm1031_data *data = i2c_get_clientdata(client);
566 	int nr = to_sensor_dev_attr(attr)->index;
567 	long val;
568 	u8 tmp;
569 	int old_div;
570 	int new_min;
571 	int ret;
572 
573 	ret = kstrtol(buf, 10, &val);
574 	if (ret)
575 		return ret;
576 
577 	tmp = val == 8 ? 0xc0 :
578 	      val == 4 ? 0x80 :
579 	      val == 2 ? 0x40 :
580 	      val == 1 ? 0x00 :
581 	      0xff;
582 	if (tmp == 0xff)
583 		return -EINVAL;
584 
585 	mutex_lock(&data->update_lock);
586 	/* Get fresh readings */
587 	data->fan_div[nr] = adm1031_read_value(client,
588 					       ADM1031_REG_FAN_DIV(nr));
589 	data->fan_min[nr] = adm1031_read_value(client,
590 					       ADM1031_REG_FAN_MIN(nr));
591 
592 	/* Write the new clock divider and fan min */
593 	old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
594 	data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
595 	new_min = data->fan_min[nr] * old_div / val;
596 	data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
597 
598 	adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
599 			    data->fan_div[nr]);
600 	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
601 			    data->fan_min[nr]);
602 
603 	/* Invalidate the cache: fan speed is no longer valid */
604 	data->valid = 0;
605 	mutex_unlock(&data->update_lock);
606 	return count;
607 }
608 
609 #define fan_offset(offset)						\
610 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,			\
611 		show_fan, NULL, offset - 1);				\
612 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,		\
613 		show_fan_min, set_fan_min, offset - 1);			\
614 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR,		\
615 		show_fan_div, set_fan_div, offset - 1)
616 
617 fan_offset(1);
618 fan_offset(2);
619 
620 
621 /* Temps */
622 static ssize_t show_temp(struct device *dev,
623 			 struct device_attribute *attr, char *buf)
624 {
625 	int nr = to_sensor_dev_attr(attr)->index;
626 	struct adm1031_data *data = adm1031_update_device(dev);
627 	int ext;
628 	ext = nr == 0 ?
629 	    ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
630 	    (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
631 	return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
632 }
633 static ssize_t show_temp_offset(struct device *dev,
634 				struct device_attribute *attr, char *buf)
635 {
636 	int nr = to_sensor_dev_attr(attr)->index;
637 	struct adm1031_data *data = adm1031_update_device(dev);
638 	return sprintf(buf, "%d\n",
639 		       TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
640 }
641 static ssize_t show_temp_min(struct device *dev,
642 			     struct device_attribute *attr, char *buf)
643 {
644 	int nr = to_sensor_dev_attr(attr)->index;
645 	struct adm1031_data *data = adm1031_update_device(dev);
646 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
647 }
648 static ssize_t show_temp_max(struct device *dev,
649 			     struct device_attribute *attr, char *buf)
650 {
651 	int nr = to_sensor_dev_attr(attr)->index;
652 	struct adm1031_data *data = adm1031_update_device(dev);
653 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
654 }
655 static ssize_t show_temp_crit(struct device *dev,
656 			      struct device_attribute *attr, char *buf)
657 {
658 	int nr = to_sensor_dev_attr(attr)->index;
659 	struct adm1031_data *data = adm1031_update_device(dev);
660 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
661 }
662 static ssize_t set_temp_offset(struct device *dev,
663 			       struct device_attribute *attr, const char *buf,
664 			       size_t count)
665 {
666 	struct i2c_client *client = to_i2c_client(dev);
667 	struct adm1031_data *data = i2c_get_clientdata(client);
668 	int nr = to_sensor_dev_attr(attr)->index;
669 	long val;
670 	int ret;
671 
672 	ret = kstrtol(buf, 10, &val);
673 	if (ret)
674 		return ret;
675 
676 	val = SENSORS_LIMIT(val, -15000, 15000);
677 	mutex_lock(&data->update_lock);
678 	data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
679 	adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
680 			    data->temp_offset[nr]);
681 	mutex_unlock(&data->update_lock);
682 	return count;
683 }
684 static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
685 			    const char *buf, size_t count)
686 {
687 	struct i2c_client *client = to_i2c_client(dev);
688 	struct adm1031_data *data = i2c_get_clientdata(client);
689 	int nr = to_sensor_dev_attr(attr)->index;
690 	long val;
691 	int ret;
692 
693 	ret = kstrtol(buf, 10, &val);
694 	if (ret)
695 		return ret;
696 
697 	val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
698 	mutex_lock(&data->update_lock);
699 	data->temp_min[nr] = TEMP_TO_REG(val);
700 	adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
701 			    data->temp_min[nr]);
702 	mutex_unlock(&data->update_lock);
703 	return count;
704 }
705 static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
706 			    const char *buf, size_t count)
707 {
708 	struct i2c_client *client = to_i2c_client(dev);
709 	struct adm1031_data *data = i2c_get_clientdata(client);
710 	int nr = to_sensor_dev_attr(attr)->index;
711 	long val;
712 	int ret;
713 
714 	ret = kstrtol(buf, 10, &val);
715 	if (ret)
716 		return ret;
717 
718 	val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
719 	mutex_lock(&data->update_lock);
720 	data->temp_max[nr] = TEMP_TO_REG(val);
721 	adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
722 			    data->temp_max[nr]);
723 	mutex_unlock(&data->update_lock);
724 	return count;
725 }
726 static ssize_t set_temp_crit(struct device *dev, struct device_attribute *attr,
727 			     const char *buf, size_t count)
728 {
729 	struct i2c_client *client = to_i2c_client(dev);
730 	struct adm1031_data *data = i2c_get_clientdata(client);
731 	int nr = to_sensor_dev_attr(attr)->index;
732 	long val;
733 	int ret;
734 
735 	ret = kstrtol(buf, 10, &val);
736 	if (ret)
737 		return ret;
738 
739 	val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
740 	mutex_lock(&data->update_lock);
741 	data->temp_crit[nr] = TEMP_TO_REG(val);
742 	adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
743 			    data->temp_crit[nr]);
744 	mutex_unlock(&data->update_lock);
745 	return count;
746 }
747 
748 #define temp_reg(offset)						\
749 static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,		\
750 		show_temp, NULL, offset - 1);				\
751 static SENSOR_DEVICE_ATTR(temp##offset##_offset, S_IRUGO | S_IWUSR,	\
752 		show_temp_offset, set_temp_offset, offset - 1);		\
753 static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,	\
754 		show_temp_min, set_temp_min, offset - 1);		\
755 static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,	\
756 		show_temp_max, set_temp_max, offset - 1);		\
757 static SENSOR_DEVICE_ATTR(temp##offset##_crit, S_IRUGO | S_IWUSR,	\
758 		show_temp_crit, set_temp_crit, offset - 1)
759 
760 temp_reg(1);
761 temp_reg(2);
762 temp_reg(3);
763 
764 /* Alarms */
765 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
766 			   char *buf)
767 {
768 	struct adm1031_data *data = adm1031_update_device(dev);
769 	return sprintf(buf, "%d\n", data->alarm);
770 }
771 
772 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
773 
774 static ssize_t show_alarm(struct device *dev,
775 			  struct device_attribute *attr, char *buf)
776 {
777 	int bitnr = to_sensor_dev_attr(attr)->index;
778 	struct adm1031_data *data = adm1031_update_device(dev);
779 	return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
780 }
781 
782 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 0);
783 static SENSOR_DEVICE_ATTR(fan1_fault, S_IRUGO, show_alarm, NULL, 1);
784 static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 2);
785 static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
786 static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 4);
787 static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 5);
788 static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
789 static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 7);
790 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 8);
791 static SENSOR_DEVICE_ATTR(fan2_fault, S_IRUGO, show_alarm, NULL, 9);
792 static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 10);
793 static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
794 static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 12);
795 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 13);
796 static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 14);
797 
798 /* Update Interval */
799 static const unsigned int update_intervals[] = {
800 	16000, 8000, 4000, 2000, 1000, 500, 250, 125,
801 };
802 
803 static ssize_t show_update_interval(struct device *dev,
804 				    struct device_attribute *attr, char *buf)
805 {
806 	struct i2c_client *client = to_i2c_client(dev);
807 	struct adm1031_data *data = i2c_get_clientdata(client);
808 
809 	return sprintf(buf, "%u\n", data->update_interval);
810 }
811 
812 static ssize_t set_update_interval(struct device *dev,
813 				   struct device_attribute *attr,
814 				   const char *buf, size_t count)
815 {
816 	struct i2c_client *client = to_i2c_client(dev);
817 	struct adm1031_data *data = i2c_get_clientdata(client);
818 	unsigned long val;
819 	int i, err;
820 	u8 reg;
821 
822 	err = kstrtoul(buf, 10, &val);
823 	if (err)
824 		return err;
825 
826 	/*
827 	 * Find the nearest update interval from the table.
828 	 * Use it to determine the matching update rate.
829 	 */
830 	for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) {
831 		if (val >= update_intervals[i])
832 			break;
833 	}
834 	/* if not found, we point to the last entry (lowest update interval) */
835 
836 	/* set the new update rate while preserving other settings */
837 	reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
838 	reg &= ~ADM1031_UPDATE_RATE_MASK;
839 	reg |= i << ADM1031_UPDATE_RATE_SHIFT;
840 	adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);
841 
842 	mutex_lock(&data->update_lock);
843 	data->update_interval = update_intervals[i];
844 	mutex_unlock(&data->update_lock);
845 
846 	return count;
847 }
848 
849 static DEVICE_ATTR(update_interval, S_IRUGO | S_IWUSR, show_update_interval,
850 		   set_update_interval);
851 
852 static struct attribute *adm1031_attributes[] = {
853 	&sensor_dev_attr_fan1_input.dev_attr.attr,
854 	&sensor_dev_attr_fan1_div.dev_attr.attr,
855 	&sensor_dev_attr_fan1_min.dev_attr.attr,
856 	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
857 	&sensor_dev_attr_fan1_fault.dev_attr.attr,
858 	&sensor_dev_attr_pwm1.dev_attr.attr,
859 	&sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
860 	&sensor_dev_attr_temp1_input.dev_attr.attr,
861 	&sensor_dev_attr_temp1_offset.dev_attr.attr,
862 	&sensor_dev_attr_temp1_min.dev_attr.attr,
863 	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
864 	&sensor_dev_attr_temp1_max.dev_attr.attr,
865 	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
866 	&sensor_dev_attr_temp1_crit.dev_attr.attr,
867 	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
868 	&sensor_dev_attr_temp2_input.dev_attr.attr,
869 	&sensor_dev_attr_temp2_offset.dev_attr.attr,
870 	&sensor_dev_attr_temp2_min.dev_attr.attr,
871 	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
872 	&sensor_dev_attr_temp2_max.dev_attr.attr,
873 	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
874 	&sensor_dev_attr_temp2_crit.dev_attr.attr,
875 	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
876 	&sensor_dev_attr_temp2_fault.dev_attr.attr,
877 
878 	&sensor_dev_attr_auto_temp1_off.dev_attr.attr,
879 	&sensor_dev_attr_auto_temp1_min.dev_attr.attr,
880 	&sensor_dev_attr_auto_temp1_max.dev_attr.attr,
881 
882 	&sensor_dev_attr_auto_temp2_off.dev_attr.attr,
883 	&sensor_dev_attr_auto_temp2_min.dev_attr.attr,
884 	&sensor_dev_attr_auto_temp2_max.dev_attr.attr,
885 
886 	&sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
887 
888 	&dev_attr_update_interval.attr,
889 	&dev_attr_alarms.attr,
890 
891 	NULL
892 };
893 
894 static const struct attribute_group adm1031_group = {
895 	.attrs = adm1031_attributes,
896 };
897 
898 static struct attribute *adm1031_attributes_opt[] = {
899 	&sensor_dev_attr_fan2_input.dev_attr.attr,
900 	&sensor_dev_attr_fan2_div.dev_attr.attr,
901 	&sensor_dev_attr_fan2_min.dev_attr.attr,
902 	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
903 	&sensor_dev_attr_fan2_fault.dev_attr.attr,
904 	&sensor_dev_attr_pwm2.dev_attr.attr,
905 	&sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
906 	&sensor_dev_attr_temp3_input.dev_attr.attr,
907 	&sensor_dev_attr_temp3_offset.dev_attr.attr,
908 	&sensor_dev_attr_temp3_min.dev_attr.attr,
909 	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
910 	&sensor_dev_attr_temp3_max.dev_attr.attr,
911 	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
912 	&sensor_dev_attr_temp3_crit.dev_attr.attr,
913 	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
914 	&sensor_dev_attr_temp3_fault.dev_attr.attr,
915 	&sensor_dev_attr_auto_temp3_off.dev_attr.attr,
916 	&sensor_dev_attr_auto_temp3_min.dev_attr.attr,
917 	&sensor_dev_attr_auto_temp3_max.dev_attr.attr,
918 	&sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
919 	NULL
920 };
921 
922 static const struct attribute_group adm1031_group_opt = {
923 	.attrs = adm1031_attributes_opt,
924 };
925 
926 /* Return 0 if detection is successful, -ENODEV otherwise */
927 static int adm1031_detect(struct i2c_client *client,
928 			  struct i2c_board_info *info)
929 {
930 	struct i2c_adapter *adapter = client->adapter;
931 	const char *name;
932 	int id, co;
933 
934 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
935 		return -ENODEV;
936 
937 	id = i2c_smbus_read_byte_data(client, 0x3d);
938 	co = i2c_smbus_read_byte_data(client, 0x3e);
939 
940 	if (!((id == 0x31 || id == 0x30) && co == 0x41))
941 		return -ENODEV;
942 	name = (id == 0x30) ? "adm1030" : "adm1031";
943 
944 	strlcpy(info->type, name, I2C_NAME_SIZE);
945 
946 	return 0;
947 }
948 
949 static int adm1031_probe(struct i2c_client *client,
950 			 const struct i2c_device_id *id)
951 {
952 	struct adm1031_data *data;
953 	int err;
954 
955 	data = kzalloc(sizeof(struct adm1031_data), GFP_KERNEL);
956 	if (!data) {
957 		err = -ENOMEM;
958 		goto exit;
959 	}
960 
961 	i2c_set_clientdata(client, data);
962 	data->chip_type = id->driver_data;
963 	mutex_init(&data->update_lock);
964 
965 	if (data->chip_type == adm1030)
966 		data->chan_select_table = &auto_channel_select_table_adm1030;
967 	else
968 		data->chan_select_table = &auto_channel_select_table_adm1031;
969 
970 	/* Initialize the ADM1031 chip */
971 	adm1031_init_client(client);
972 
973 	/* Register sysfs hooks */
974 	err = sysfs_create_group(&client->dev.kobj, &adm1031_group);
975 	if (err)
976 		goto exit_free;
977 
978 	if (data->chip_type == adm1031) {
979 		err = sysfs_create_group(&client->dev.kobj, &adm1031_group_opt);
980 		if (err)
981 			goto exit_remove;
982 	}
983 
984 	data->hwmon_dev = hwmon_device_register(&client->dev);
985 	if (IS_ERR(data->hwmon_dev)) {
986 		err = PTR_ERR(data->hwmon_dev);
987 		goto exit_remove;
988 	}
989 
990 	return 0;
991 
992 exit_remove:
993 	sysfs_remove_group(&client->dev.kobj, &adm1031_group);
994 	sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
995 exit_free:
996 	kfree(data);
997 exit:
998 	return err;
999 }
1000 
1001 static int adm1031_remove(struct i2c_client *client)
1002 {
1003 	struct adm1031_data *data = i2c_get_clientdata(client);
1004 
1005 	hwmon_device_unregister(data->hwmon_dev);
1006 	sysfs_remove_group(&client->dev.kobj, &adm1031_group);
1007 	sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
1008 	kfree(data);
1009 	return 0;
1010 }
1011 
1012 static void adm1031_init_client(struct i2c_client *client)
1013 {
1014 	unsigned int read_val;
1015 	unsigned int mask;
1016 	int i;
1017 	struct adm1031_data *data = i2c_get_clientdata(client);
1018 
1019 	mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
1020 	if (data->chip_type == adm1031) {
1021 		mask |= (ADM1031_CONF2_PWM2_ENABLE |
1022 			ADM1031_CONF2_TACH2_ENABLE);
1023 	}
1024 	/* Initialize the ADM1031 chip (enables fan speed reading ) */
1025 	read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
1026 	if ((read_val | mask) != read_val)
1027 		adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
1028 
1029 	read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
1030 	if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
1031 		adm1031_write_value(client, ADM1031_REG_CONF1,
1032 				    read_val | ADM1031_CONF1_MONITOR_ENABLE);
1033 	}
1034 
1035 	/* Read the chip's update rate */
1036 	mask = ADM1031_UPDATE_RATE_MASK;
1037 	read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
1038 	i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
1039 	/* Save it as update interval */
1040 	data->update_interval = update_intervals[i];
1041 }
1042 
1043 static struct adm1031_data *adm1031_update_device(struct device *dev)
1044 {
1045 	struct i2c_client *client = to_i2c_client(dev);
1046 	struct adm1031_data *data = i2c_get_clientdata(client);
1047 	unsigned long next_update;
1048 	int chan;
1049 
1050 	mutex_lock(&data->update_lock);
1051 
1052 	next_update = data->last_updated
1053 	  + msecs_to_jiffies(data->update_interval);
1054 	if (time_after(jiffies, next_update) || !data->valid) {
1055 
1056 		dev_dbg(&client->dev, "Starting adm1031 update\n");
1057 		for (chan = 0;
1058 		     chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
1059 			u8 oldh, newh;
1060 
1061 			oldh =
1062 			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
1063 			data->ext_temp[chan] =
1064 			    adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
1065 			newh =
1066 			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
1067 			if (newh != oldh) {
1068 				data->ext_temp[chan] =
1069 				    adm1031_read_value(client,
1070 						       ADM1031_REG_EXT_TEMP);
1071 #ifdef DEBUG
1072 				oldh =
1073 				    adm1031_read_value(client,
1074 						       ADM1031_REG_TEMP(chan));
1075 
1076 				/* oldh is actually newer */
1077 				if (newh != oldh)
1078 					dev_warn(&client->dev,
1079 					  "Remote temperature may be wrong.\n");
1080 #endif
1081 			}
1082 			data->temp[chan] = newh;
1083 
1084 			data->temp_offset[chan] =
1085 			    adm1031_read_value(client,
1086 					       ADM1031_REG_TEMP_OFFSET(chan));
1087 			data->temp_min[chan] =
1088 			    adm1031_read_value(client,
1089 					       ADM1031_REG_TEMP_MIN(chan));
1090 			data->temp_max[chan] =
1091 			    adm1031_read_value(client,
1092 					       ADM1031_REG_TEMP_MAX(chan));
1093 			data->temp_crit[chan] =
1094 			    adm1031_read_value(client,
1095 					       ADM1031_REG_TEMP_CRIT(chan));
1096 			data->auto_temp[chan] =
1097 			    adm1031_read_value(client,
1098 					       ADM1031_REG_AUTO_TEMP(chan));
1099 
1100 		}
1101 
1102 		data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
1103 		data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
1104 
1105 		data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
1106 		    | (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8);
1107 		if (data->chip_type == adm1030)
1108 			data->alarm &= 0xc0ff;
1109 
1110 		for (chan = 0; chan < (data->chip_type == adm1030 ? 1 : 2);
1111 		     chan++) {
1112 			data->fan_div[chan] =
1113 			    adm1031_read_value(client,
1114 					       ADM1031_REG_FAN_DIV(chan));
1115 			data->fan_min[chan] =
1116 			    adm1031_read_value(client,
1117 					       ADM1031_REG_FAN_MIN(chan));
1118 			data->fan[chan] =
1119 			    adm1031_read_value(client,
1120 					       ADM1031_REG_FAN_SPEED(chan));
1121 			data->pwm[chan] =
1122 			  (adm1031_read_value(client,
1123 					ADM1031_REG_PWM) >> (4 * chan)) & 0x0f;
1124 		}
1125 		data->last_updated = jiffies;
1126 		data->valid = 1;
1127 	}
1128 
1129 	mutex_unlock(&data->update_lock);
1130 
1131 	return data;
1132 }
1133 
1134 module_i2c_driver(adm1031_driver);
1135 
1136 MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
1137 MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
1138 MODULE_LICENSE("GPL");
1139