1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "iavf.h" 5 #include "iavf_prototype.h" 6 /* All iavf tracepoints are defined by the include below, which must 7 * be included exactly once across the whole kernel with 8 * CREATE_TRACE_POINTS defined 9 */ 10 #define CREATE_TRACE_POINTS 11 #include "iavf_trace.h" 12 13 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 14 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 15 static int iavf_close(struct net_device *netdev); 16 static void iavf_init_get_resources(struct iavf_adapter *adapter); 17 static int iavf_check_reset_complete(struct iavf_hw *hw); 18 19 char iavf_driver_name[] = "iavf"; 20 static const char iavf_driver_string[] = 21 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 22 23 static const char iavf_copyright[] = 24 "Copyright (c) 2013 - 2018 Intel Corporation."; 25 26 /* iavf_pci_tbl - PCI Device ID Table 27 * 28 * Wildcard entries (PCI_ANY_ID) should come last 29 * Last entry must be all 0s 30 * 31 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 32 * Class, Class Mask, private data (not used) } 33 */ 34 static const struct pci_device_id iavf_pci_tbl[] = { 35 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 39 /* required last entry */ 40 {0, } 41 }; 42 43 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 44 45 MODULE_ALIAS("i40evf"); 46 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 47 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 48 MODULE_LICENSE("GPL v2"); 49 50 static const struct net_device_ops iavf_netdev_ops; 51 52 int iavf_status_to_errno(enum iavf_status status) 53 { 54 switch (status) { 55 case IAVF_SUCCESS: 56 return 0; 57 case IAVF_ERR_PARAM: 58 case IAVF_ERR_MAC_TYPE: 59 case IAVF_ERR_INVALID_MAC_ADDR: 60 case IAVF_ERR_INVALID_LINK_SETTINGS: 61 case IAVF_ERR_INVALID_PD_ID: 62 case IAVF_ERR_INVALID_QP_ID: 63 case IAVF_ERR_INVALID_CQ_ID: 64 case IAVF_ERR_INVALID_CEQ_ID: 65 case IAVF_ERR_INVALID_AEQ_ID: 66 case IAVF_ERR_INVALID_SIZE: 67 case IAVF_ERR_INVALID_ARP_INDEX: 68 case IAVF_ERR_INVALID_FPM_FUNC_ID: 69 case IAVF_ERR_QP_INVALID_MSG_SIZE: 70 case IAVF_ERR_INVALID_FRAG_COUNT: 71 case IAVF_ERR_INVALID_ALIGNMENT: 72 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 73 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 74 case IAVF_ERR_INVALID_VF_ID: 75 case IAVF_ERR_INVALID_HMCFN_ID: 76 case IAVF_ERR_INVALID_PBLE_INDEX: 77 case IAVF_ERR_INVALID_SD_INDEX: 78 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 79 case IAVF_ERR_INVALID_SD_TYPE: 80 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 81 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 82 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 83 return -EINVAL; 84 case IAVF_ERR_NVM: 85 case IAVF_ERR_NVM_CHECKSUM: 86 case IAVF_ERR_PHY: 87 case IAVF_ERR_CONFIG: 88 case IAVF_ERR_UNKNOWN_PHY: 89 case IAVF_ERR_LINK_SETUP: 90 case IAVF_ERR_ADAPTER_STOPPED: 91 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 92 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 93 case IAVF_ERR_RESET_FAILED: 94 case IAVF_ERR_BAD_PTR: 95 case IAVF_ERR_SWFW_SYNC: 96 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 97 case IAVF_ERR_QUEUE_EMPTY: 98 case IAVF_ERR_FLUSHED_QUEUE: 99 case IAVF_ERR_OPCODE_MISMATCH: 100 case IAVF_ERR_CQP_COMPL_ERROR: 101 case IAVF_ERR_BACKING_PAGE_ERROR: 102 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 103 case IAVF_ERR_MEMCPY_FAILED: 104 case IAVF_ERR_SRQ_ENABLED: 105 case IAVF_ERR_ADMIN_QUEUE_ERROR: 106 case IAVF_ERR_ADMIN_QUEUE_FULL: 107 case IAVF_ERR_BAD_RDMA_CQE: 108 case IAVF_ERR_NVM_BLANK_MODE: 109 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 110 case IAVF_ERR_DIAG_TEST_FAILED: 111 case IAVF_ERR_FIRMWARE_API_VERSION: 112 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 113 return -EIO; 114 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 115 return -ENODEV; 116 case IAVF_ERR_NO_AVAILABLE_VSI: 117 case IAVF_ERR_RING_FULL: 118 return -ENOSPC; 119 case IAVF_ERR_NO_MEMORY: 120 return -ENOMEM; 121 case IAVF_ERR_TIMEOUT: 122 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 123 return -ETIMEDOUT; 124 case IAVF_ERR_NOT_IMPLEMENTED: 125 case IAVF_NOT_SUPPORTED: 126 return -EOPNOTSUPP; 127 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 128 return -EALREADY; 129 case IAVF_ERR_NOT_READY: 130 return -EBUSY; 131 case IAVF_ERR_BUF_TOO_SHORT: 132 return -EMSGSIZE; 133 } 134 135 return -EIO; 136 } 137 138 int virtchnl_status_to_errno(enum virtchnl_status_code v_status) 139 { 140 switch (v_status) { 141 case VIRTCHNL_STATUS_SUCCESS: 142 return 0; 143 case VIRTCHNL_STATUS_ERR_PARAM: 144 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 145 return -EINVAL; 146 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 147 return -ENOMEM; 148 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 149 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 150 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 151 return -EIO; 152 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 153 return -EOPNOTSUPP; 154 } 155 156 return -EIO; 157 } 158 159 /** 160 * iavf_pdev_to_adapter - go from pci_dev to adapter 161 * @pdev: pci_dev pointer 162 */ 163 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 164 { 165 return netdev_priv(pci_get_drvdata(pdev)); 166 } 167 168 /** 169 * iavf_is_reset_in_progress - Check if a reset is in progress 170 * @adapter: board private structure 171 */ 172 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter) 173 { 174 if (adapter->state == __IAVF_RESETTING || 175 adapter->flags & (IAVF_FLAG_RESET_PENDING | 176 IAVF_FLAG_RESET_NEEDED)) 177 return true; 178 179 return false; 180 } 181 182 /** 183 * iavf_wait_for_reset - Wait for reset to finish. 184 * @adapter: board private structure 185 * 186 * Returns 0 if reset finished successfully, negative on timeout or interrupt. 187 */ 188 int iavf_wait_for_reset(struct iavf_adapter *adapter) 189 { 190 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue, 191 !iavf_is_reset_in_progress(adapter), 192 msecs_to_jiffies(5000)); 193 194 /* If ret < 0 then it means wait was interrupted. 195 * If ret == 0 then it means we got a timeout while waiting 196 * for reset to finish. 197 * If ret > 0 it means reset has finished. 198 */ 199 if (ret > 0) 200 return 0; 201 else if (ret < 0) 202 return -EINTR; 203 else 204 return -EBUSY; 205 } 206 207 /** 208 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 209 * @hw: pointer to the HW structure 210 * @mem: ptr to mem struct to fill out 211 * @size: size of memory requested 212 * @alignment: what to align the allocation to 213 **/ 214 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 215 struct iavf_dma_mem *mem, 216 u64 size, u32 alignment) 217 { 218 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 219 220 if (!mem) 221 return IAVF_ERR_PARAM; 222 223 mem->size = ALIGN(size, alignment); 224 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 225 (dma_addr_t *)&mem->pa, GFP_KERNEL); 226 if (mem->va) 227 return 0; 228 else 229 return IAVF_ERR_NO_MEMORY; 230 } 231 232 /** 233 * iavf_free_dma_mem - wrapper for DMA memory freeing 234 * @hw: pointer to the HW structure 235 * @mem: ptr to mem struct to free 236 **/ 237 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem) 238 { 239 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 240 241 if (!mem || !mem->va) 242 return IAVF_ERR_PARAM; 243 dma_free_coherent(&adapter->pdev->dev, mem->size, 244 mem->va, (dma_addr_t)mem->pa); 245 return 0; 246 } 247 248 /** 249 * iavf_allocate_virt_mem - virt memory alloc wrapper 250 * @hw: pointer to the HW structure 251 * @mem: ptr to mem struct to fill out 252 * @size: size of memory requested 253 **/ 254 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw, 255 struct iavf_virt_mem *mem, u32 size) 256 { 257 if (!mem) 258 return IAVF_ERR_PARAM; 259 260 mem->size = size; 261 mem->va = kzalloc(size, GFP_KERNEL); 262 263 if (mem->va) 264 return 0; 265 else 266 return IAVF_ERR_NO_MEMORY; 267 } 268 269 /** 270 * iavf_free_virt_mem - virt memory free wrapper 271 * @hw: pointer to the HW structure 272 * @mem: ptr to mem struct to free 273 **/ 274 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem) 275 { 276 kfree(mem->va); 277 } 278 279 /** 280 * iavf_lock_timeout - try to lock mutex but give up after timeout 281 * @lock: mutex that should be locked 282 * @msecs: timeout in msecs 283 * 284 * Returns 0 on success, negative on failure 285 **/ 286 static int iavf_lock_timeout(struct mutex *lock, unsigned int msecs) 287 { 288 unsigned int wait, delay = 10; 289 290 for (wait = 0; wait < msecs; wait += delay) { 291 if (mutex_trylock(lock)) 292 return 0; 293 294 msleep(delay); 295 } 296 297 return -1; 298 } 299 300 /** 301 * iavf_schedule_reset - Set the flags and schedule a reset event 302 * @adapter: board private structure 303 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED 304 **/ 305 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags) 306 { 307 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) && 308 !(adapter->flags & 309 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 310 adapter->flags |= flags; 311 queue_work(adapter->wq, &adapter->reset_task); 312 } 313 } 314 315 /** 316 * iavf_schedule_aq_request - Set the flags and schedule aq request 317 * @adapter: board private structure 318 * @flags: requested aq flags 319 **/ 320 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags) 321 { 322 adapter->aq_required |= flags; 323 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 324 } 325 326 /** 327 * iavf_tx_timeout - Respond to a Tx Hang 328 * @netdev: network interface device structure 329 * @txqueue: queue number that is timing out 330 **/ 331 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 332 { 333 struct iavf_adapter *adapter = netdev_priv(netdev); 334 335 adapter->tx_timeout_count++; 336 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 337 } 338 339 /** 340 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 341 * @adapter: board private structure 342 **/ 343 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 344 { 345 struct iavf_hw *hw = &adapter->hw; 346 347 if (!adapter->msix_entries) 348 return; 349 350 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 351 352 iavf_flush(hw); 353 354 synchronize_irq(adapter->msix_entries[0].vector); 355 } 356 357 /** 358 * iavf_misc_irq_enable - Enable default interrupt generation settings 359 * @adapter: board private structure 360 **/ 361 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 362 { 363 struct iavf_hw *hw = &adapter->hw; 364 365 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 366 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 367 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 368 369 iavf_flush(hw); 370 } 371 372 /** 373 * iavf_irq_disable - Mask off interrupt generation on the NIC 374 * @adapter: board private structure 375 **/ 376 static void iavf_irq_disable(struct iavf_adapter *adapter) 377 { 378 int i; 379 struct iavf_hw *hw = &adapter->hw; 380 381 if (!adapter->msix_entries) 382 return; 383 384 for (i = 1; i < adapter->num_msix_vectors; i++) { 385 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 386 synchronize_irq(adapter->msix_entries[i].vector); 387 } 388 iavf_flush(hw); 389 } 390 391 /** 392 * iavf_irq_enable_queues - Enable interrupt for all queues 393 * @adapter: board private structure 394 **/ 395 static void iavf_irq_enable_queues(struct iavf_adapter *adapter) 396 { 397 struct iavf_hw *hw = &adapter->hw; 398 int i; 399 400 for (i = 1; i < adapter->num_msix_vectors; i++) { 401 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 402 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 403 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 404 } 405 } 406 407 /** 408 * iavf_irq_enable - Enable default interrupt generation settings 409 * @adapter: board private structure 410 * @flush: boolean value whether to run rd32() 411 **/ 412 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 413 { 414 struct iavf_hw *hw = &adapter->hw; 415 416 iavf_misc_irq_enable(adapter); 417 iavf_irq_enable_queues(adapter); 418 419 if (flush) 420 iavf_flush(hw); 421 } 422 423 /** 424 * iavf_msix_aq - Interrupt handler for vector 0 425 * @irq: interrupt number 426 * @data: pointer to netdev 427 **/ 428 static irqreturn_t iavf_msix_aq(int irq, void *data) 429 { 430 struct net_device *netdev = data; 431 struct iavf_adapter *adapter = netdev_priv(netdev); 432 struct iavf_hw *hw = &adapter->hw; 433 434 /* handle non-queue interrupts, these reads clear the registers */ 435 rd32(hw, IAVF_VFINT_ICR01); 436 rd32(hw, IAVF_VFINT_ICR0_ENA1); 437 438 if (adapter->state != __IAVF_REMOVE) 439 /* schedule work on the private workqueue */ 440 queue_work(adapter->wq, &adapter->adminq_task); 441 442 return IRQ_HANDLED; 443 } 444 445 /** 446 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 447 * @irq: interrupt number 448 * @data: pointer to a q_vector 449 **/ 450 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 451 { 452 struct iavf_q_vector *q_vector = data; 453 454 if (!q_vector->tx.ring && !q_vector->rx.ring) 455 return IRQ_HANDLED; 456 457 napi_schedule_irqoff(&q_vector->napi); 458 459 return IRQ_HANDLED; 460 } 461 462 /** 463 * iavf_map_vector_to_rxq - associate irqs with rx queues 464 * @adapter: board private structure 465 * @v_idx: interrupt number 466 * @r_idx: queue number 467 **/ 468 static void 469 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 470 { 471 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 472 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 473 struct iavf_hw *hw = &adapter->hw; 474 475 rx_ring->q_vector = q_vector; 476 rx_ring->next = q_vector->rx.ring; 477 rx_ring->vsi = &adapter->vsi; 478 q_vector->rx.ring = rx_ring; 479 q_vector->rx.count++; 480 q_vector->rx.next_update = jiffies + 1; 481 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 482 q_vector->ring_mask |= BIT(r_idx); 483 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 484 q_vector->rx.current_itr >> 1); 485 q_vector->rx.current_itr = q_vector->rx.target_itr; 486 } 487 488 /** 489 * iavf_map_vector_to_txq - associate irqs with tx queues 490 * @adapter: board private structure 491 * @v_idx: interrupt number 492 * @t_idx: queue number 493 **/ 494 static void 495 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 496 { 497 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 498 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 499 struct iavf_hw *hw = &adapter->hw; 500 501 tx_ring->q_vector = q_vector; 502 tx_ring->next = q_vector->tx.ring; 503 tx_ring->vsi = &adapter->vsi; 504 q_vector->tx.ring = tx_ring; 505 q_vector->tx.count++; 506 q_vector->tx.next_update = jiffies + 1; 507 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 508 q_vector->num_ringpairs++; 509 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 510 q_vector->tx.target_itr >> 1); 511 q_vector->tx.current_itr = q_vector->tx.target_itr; 512 } 513 514 /** 515 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 516 * @adapter: board private structure to initialize 517 * 518 * This function maps descriptor rings to the queue-specific vectors 519 * we were allotted through the MSI-X enabling code. Ideally, we'd have 520 * one vector per ring/queue, but on a constrained vector budget, we 521 * group the rings as "efficiently" as possible. You would add new 522 * mapping configurations in here. 523 **/ 524 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 525 { 526 int rings_remaining = adapter->num_active_queues; 527 int ridx = 0, vidx = 0; 528 int q_vectors; 529 530 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 531 532 for (; ridx < rings_remaining; ridx++) { 533 iavf_map_vector_to_rxq(adapter, vidx, ridx); 534 iavf_map_vector_to_txq(adapter, vidx, ridx); 535 536 /* In the case where we have more queues than vectors, continue 537 * round-robin on vectors until all queues are mapped. 538 */ 539 if (++vidx >= q_vectors) 540 vidx = 0; 541 } 542 543 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 544 } 545 546 /** 547 * iavf_irq_affinity_notify - Callback for affinity changes 548 * @notify: context as to what irq was changed 549 * @mask: the new affinity mask 550 * 551 * This is a callback function used by the irq_set_affinity_notifier function 552 * so that we may register to receive changes to the irq affinity masks. 553 **/ 554 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 555 const cpumask_t *mask) 556 { 557 struct iavf_q_vector *q_vector = 558 container_of(notify, struct iavf_q_vector, affinity_notify); 559 560 cpumask_copy(&q_vector->affinity_mask, mask); 561 } 562 563 /** 564 * iavf_irq_affinity_release - Callback for affinity notifier release 565 * @ref: internal core kernel usage 566 * 567 * This is a callback function used by the irq_set_affinity_notifier function 568 * to inform the current notification subscriber that they will no longer 569 * receive notifications. 570 **/ 571 static void iavf_irq_affinity_release(struct kref *ref) {} 572 573 /** 574 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 575 * @adapter: board private structure 576 * @basename: device basename 577 * 578 * Allocates MSI-X vectors for tx and rx handling, and requests 579 * interrupts from the kernel. 580 **/ 581 static int 582 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 583 { 584 unsigned int vector, q_vectors; 585 unsigned int rx_int_idx = 0, tx_int_idx = 0; 586 int irq_num, err; 587 int cpu; 588 589 iavf_irq_disable(adapter); 590 /* Decrement for Other and TCP Timer vectors */ 591 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 592 593 for (vector = 0; vector < q_vectors; vector++) { 594 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 595 596 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 597 598 if (q_vector->tx.ring && q_vector->rx.ring) { 599 snprintf(q_vector->name, sizeof(q_vector->name), 600 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 601 tx_int_idx++; 602 } else if (q_vector->rx.ring) { 603 snprintf(q_vector->name, sizeof(q_vector->name), 604 "iavf-%s-rx-%u", basename, rx_int_idx++); 605 } else if (q_vector->tx.ring) { 606 snprintf(q_vector->name, sizeof(q_vector->name), 607 "iavf-%s-tx-%u", basename, tx_int_idx++); 608 } else { 609 /* skip this unused q_vector */ 610 continue; 611 } 612 err = request_irq(irq_num, 613 iavf_msix_clean_rings, 614 0, 615 q_vector->name, 616 q_vector); 617 if (err) { 618 dev_info(&adapter->pdev->dev, 619 "Request_irq failed, error: %d\n", err); 620 goto free_queue_irqs; 621 } 622 /* register for affinity change notifications */ 623 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 624 q_vector->affinity_notify.release = 625 iavf_irq_affinity_release; 626 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 627 /* Spread the IRQ affinity hints across online CPUs. Note that 628 * get_cpu_mask returns a mask with a permanent lifetime so 629 * it's safe to use as a hint for irq_update_affinity_hint. 630 */ 631 cpu = cpumask_local_spread(q_vector->v_idx, -1); 632 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 633 } 634 635 return 0; 636 637 free_queue_irqs: 638 while (vector) { 639 vector--; 640 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 641 irq_set_affinity_notifier(irq_num, NULL); 642 irq_update_affinity_hint(irq_num, NULL); 643 free_irq(irq_num, &adapter->q_vectors[vector]); 644 } 645 return err; 646 } 647 648 /** 649 * iavf_request_misc_irq - Initialize MSI-X interrupts 650 * @adapter: board private structure 651 * 652 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 653 * vector is only for the admin queue, and stays active even when the netdev 654 * is closed. 655 **/ 656 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 657 { 658 struct net_device *netdev = adapter->netdev; 659 int err; 660 661 snprintf(adapter->misc_vector_name, 662 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 663 dev_name(&adapter->pdev->dev)); 664 err = request_irq(adapter->msix_entries[0].vector, 665 &iavf_msix_aq, 0, 666 adapter->misc_vector_name, netdev); 667 if (err) { 668 dev_err(&adapter->pdev->dev, 669 "request_irq for %s failed: %d\n", 670 adapter->misc_vector_name, err); 671 free_irq(adapter->msix_entries[0].vector, netdev); 672 } 673 return err; 674 } 675 676 /** 677 * iavf_free_traffic_irqs - Free MSI-X interrupts 678 * @adapter: board private structure 679 * 680 * Frees all MSI-X vectors other than 0. 681 **/ 682 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 683 { 684 int vector, irq_num, q_vectors; 685 686 if (!adapter->msix_entries) 687 return; 688 689 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 690 691 for (vector = 0; vector < q_vectors; vector++) { 692 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 693 irq_set_affinity_notifier(irq_num, NULL); 694 irq_update_affinity_hint(irq_num, NULL); 695 free_irq(irq_num, &adapter->q_vectors[vector]); 696 } 697 } 698 699 /** 700 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 701 * @adapter: board private structure 702 * 703 * Frees MSI-X vector 0. 704 **/ 705 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 706 { 707 struct net_device *netdev = adapter->netdev; 708 709 if (!adapter->msix_entries) 710 return; 711 712 free_irq(adapter->msix_entries[0].vector, netdev); 713 } 714 715 /** 716 * iavf_configure_tx - Configure Transmit Unit after Reset 717 * @adapter: board private structure 718 * 719 * Configure the Tx unit of the MAC after a reset. 720 **/ 721 static void iavf_configure_tx(struct iavf_adapter *adapter) 722 { 723 struct iavf_hw *hw = &adapter->hw; 724 int i; 725 726 for (i = 0; i < adapter->num_active_queues; i++) 727 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 728 } 729 730 /** 731 * iavf_configure_rx - Configure Receive Unit after Reset 732 * @adapter: board private structure 733 * 734 * Configure the Rx unit of the MAC after a reset. 735 **/ 736 static void iavf_configure_rx(struct iavf_adapter *adapter) 737 { 738 unsigned int rx_buf_len = IAVF_RXBUFFER_2048; 739 struct iavf_hw *hw = &adapter->hw; 740 int i; 741 742 /* Legacy Rx will always default to a 2048 buffer size. */ 743 #if (PAGE_SIZE < 8192) 744 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { 745 struct net_device *netdev = adapter->netdev; 746 747 /* For jumbo frames on systems with 4K pages we have to use 748 * an order 1 page, so we might as well increase the size 749 * of our Rx buffer to make better use of the available space 750 */ 751 rx_buf_len = IAVF_RXBUFFER_3072; 752 753 /* We use a 1536 buffer size for configurations with 754 * standard Ethernet mtu. On x86 this gives us enough room 755 * for shared info and 192 bytes of padding. 756 */ 757 if (!IAVF_2K_TOO_SMALL_WITH_PADDING && 758 (netdev->mtu <= ETH_DATA_LEN)) 759 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; 760 } 761 #endif 762 763 for (i = 0; i < adapter->num_active_queues; i++) { 764 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 765 adapter->rx_rings[i].rx_buf_len = rx_buf_len; 766 767 if (adapter->flags & IAVF_FLAG_LEGACY_RX) 768 clear_ring_build_skb_enabled(&adapter->rx_rings[i]); 769 else 770 set_ring_build_skb_enabled(&adapter->rx_rings[i]); 771 } 772 } 773 774 /** 775 * iavf_find_vlan - Search filter list for specific vlan filter 776 * @adapter: board private structure 777 * @vlan: vlan tag 778 * 779 * Returns ptr to the filter object or NULL. Must be called while holding the 780 * mac_vlan_list_lock. 781 **/ 782 static struct 783 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 784 struct iavf_vlan vlan) 785 { 786 struct iavf_vlan_filter *f; 787 788 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 789 if (f->vlan.vid == vlan.vid && 790 f->vlan.tpid == vlan.tpid) 791 return f; 792 } 793 794 return NULL; 795 } 796 797 /** 798 * iavf_add_vlan - Add a vlan filter to the list 799 * @adapter: board private structure 800 * @vlan: VLAN tag 801 * 802 * Returns ptr to the filter object or NULL when no memory available. 803 **/ 804 static struct 805 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 806 struct iavf_vlan vlan) 807 { 808 struct iavf_vlan_filter *f = NULL; 809 810 spin_lock_bh(&adapter->mac_vlan_list_lock); 811 812 f = iavf_find_vlan(adapter, vlan); 813 if (!f) { 814 f = kzalloc(sizeof(*f), GFP_ATOMIC); 815 if (!f) 816 goto clearout; 817 818 f->vlan = vlan; 819 820 list_add_tail(&f->list, &adapter->vlan_filter_list); 821 f->state = IAVF_VLAN_ADD; 822 adapter->num_vlan_filters++; 823 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER); 824 } 825 826 clearout: 827 spin_unlock_bh(&adapter->mac_vlan_list_lock); 828 return f; 829 } 830 831 /** 832 * iavf_del_vlan - Remove a vlan filter from the list 833 * @adapter: board private structure 834 * @vlan: VLAN tag 835 **/ 836 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 837 { 838 struct iavf_vlan_filter *f; 839 840 spin_lock_bh(&adapter->mac_vlan_list_lock); 841 842 f = iavf_find_vlan(adapter, vlan); 843 if (f) { 844 f->state = IAVF_VLAN_REMOVE; 845 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_VLAN_FILTER); 846 } 847 848 spin_unlock_bh(&adapter->mac_vlan_list_lock); 849 } 850 851 /** 852 * iavf_restore_filters 853 * @adapter: board private structure 854 * 855 * Restore existing non MAC filters when VF netdev comes back up 856 **/ 857 static void iavf_restore_filters(struct iavf_adapter *adapter) 858 { 859 struct iavf_vlan_filter *f; 860 861 /* re-add all VLAN filters */ 862 spin_lock_bh(&adapter->mac_vlan_list_lock); 863 864 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 865 if (f->state == IAVF_VLAN_INACTIVE) 866 f->state = IAVF_VLAN_ADD; 867 } 868 869 spin_unlock_bh(&adapter->mac_vlan_list_lock); 870 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 871 } 872 873 /** 874 * iavf_get_num_vlans_added - get number of VLANs added 875 * @adapter: board private structure 876 */ 877 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 878 { 879 return adapter->num_vlan_filters; 880 } 881 882 /** 883 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 884 * @adapter: board private structure 885 * 886 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 887 * do not impose a limit as that maintains current behavior and for 888 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 889 **/ 890 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 891 { 892 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 893 * never been a limit on the VF driver side 894 */ 895 if (VLAN_ALLOWED(adapter)) 896 return VLAN_N_VID; 897 else if (VLAN_V2_ALLOWED(adapter)) 898 return adapter->vlan_v2_caps.filtering.max_filters; 899 900 return 0; 901 } 902 903 /** 904 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 905 * @adapter: board private structure 906 **/ 907 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 908 { 909 if (iavf_get_num_vlans_added(adapter) < 910 iavf_get_max_vlans_allowed(adapter)) 911 return false; 912 913 return true; 914 } 915 916 /** 917 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 918 * @netdev: network device struct 919 * @proto: unused protocol data 920 * @vid: VLAN tag 921 **/ 922 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 923 __always_unused __be16 proto, u16 vid) 924 { 925 struct iavf_adapter *adapter = netdev_priv(netdev); 926 927 /* Do not track VLAN 0 filter, always added by the PF on VF init */ 928 if (!vid) 929 return 0; 930 931 if (!VLAN_FILTERING_ALLOWED(adapter)) 932 return -EIO; 933 934 if (iavf_max_vlans_added(adapter)) { 935 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 936 iavf_get_max_vlans_allowed(adapter)); 937 return -EIO; 938 } 939 940 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 941 return -ENOMEM; 942 943 return 0; 944 } 945 946 /** 947 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 948 * @netdev: network device struct 949 * @proto: unused protocol data 950 * @vid: VLAN tag 951 **/ 952 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 953 __always_unused __be16 proto, u16 vid) 954 { 955 struct iavf_adapter *adapter = netdev_priv(netdev); 956 957 /* We do not track VLAN 0 filter */ 958 if (!vid) 959 return 0; 960 961 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 962 return 0; 963 } 964 965 /** 966 * iavf_find_filter - Search filter list for specific mac filter 967 * @adapter: board private structure 968 * @macaddr: the MAC address 969 * 970 * Returns ptr to the filter object or NULL. Must be called while holding the 971 * mac_vlan_list_lock. 972 **/ 973 static struct 974 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 975 const u8 *macaddr) 976 { 977 struct iavf_mac_filter *f; 978 979 if (!macaddr) 980 return NULL; 981 982 list_for_each_entry(f, &adapter->mac_filter_list, list) { 983 if (ether_addr_equal(macaddr, f->macaddr)) 984 return f; 985 } 986 return NULL; 987 } 988 989 /** 990 * iavf_add_filter - Add a mac filter to the filter list 991 * @adapter: board private structure 992 * @macaddr: the MAC address 993 * 994 * Returns ptr to the filter object or NULL when no memory available. 995 **/ 996 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 997 const u8 *macaddr) 998 { 999 struct iavf_mac_filter *f; 1000 1001 if (!macaddr) 1002 return NULL; 1003 1004 f = iavf_find_filter(adapter, macaddr); 1005 if (!f) { 1006 f = kzalloc(sizeof(*f), GFP_ATOMIC); 1007 if (!f) 1008 return f; 1009 1010 ether_addr_copy(f->macaddr, macaddr); 1011 1012 list_add_tail(&f->list, &adapter->mac_filter_list); 1013 f->add = true; 1014 f->add_handled = false; 1015 f->is_new_mac = true; 1016 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr); 1017 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 1018 } else { 1019 f->remove = false; 1020 } 1021 1022 return f; 1023 } 1024 1025 /** 1026 * iavf_replace_primary_mac - Replace current primary address 1027 * @adapter: board private structure 1028 * @new_mac: new MAC address to be applied 1029 * 1030 * Replace current dev_addr and send request to PF for removal of previous 1031 * primary MAC address filter and addition of new primary MAC filter. 1032 * Return 0 for success, -ENOMEM for failure. 1033 * 1034 * Do not call this with mac_vlan_list_lock! 1035 **/ 1036 static int iavf_replace_primary_mac(struct iavf_adapter *adapter, 1037 const u8 *new_mac) 1038 { 1039 struct iavf_hw *hw = &adapter->hw; 1040 struct iavf_mac_filter *new_f; 1041 struct iavf_mac_filter *old_f; 1042 1043 spin_lock_bh(&adapter->mac_vlan_list_lock); 1044 1045 new_f = iavf_add_filter(adapter, new_mac); 1046 if (!new_f) { 1047 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1048 return -ENOMEM; 1049 } 1050 1051 old_f = iavf_find_filter(adapter, hw->mac.addr); 1052 if (old_f) { 1053 old_f->is_primary = false; 1054 old_f->remove = true; 1055 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1056 } 1057 /* Always send the request to add if changing primary MAC, 1058 * even if filter is already present on the list 1059 */ 1060 new_f->is_primary = true; 1061 new_f->add = true; 1062 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 1063 ether_addr_copy(hw->mac.addr, new_mac); 1064 1065 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1066 1067 /* schedule the watchdog task to immediately process the request */ 1068 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1069 return 0; 1070 } 1071 1072 /** 1073 * iavf_is_mac_set_handled - wait for a response to set MAC from PF 1074 * @netdev: network interface device structure 1075 * @macaddr: MAC address to set 1076 * 1077 * Returns true on success, false on failure 1078 */ 1079 static bool iavf_is_mac_set_handled(struct net_device *netdev, 1080 const u8 *macaddr) 1081 { 1082 struct iavf_adapter *adapter = netdev_priv(netdev); 1083 struct iavf_mac_filter *f; 1084 bool ret = false; 1085 1086 spin_lock_bh(&adapter->mac_vlan_list_lock); 1087 1088 f = iavf_find_filter(adapter, macaddr); 1089 1090 if (!f || (!f->add && f->add_handled)) 1091 ret = true; 1092 1093 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1094 1095 return ret; 1096 } 1097 1098 /** 1099 * iavf_set_mac - NDO callback to set port MAC address 1100 * @netdev: network interface device structure 1101 * @p: pointer to an address structure 1102 * 1103 * Returns 0 on success, negative on failure 1104 */ 1105 static int iavf_set_mac(struct net_device *netdev, void *p) 1106 { 1107 struct iavf_adapter *adapter = netdev_priv(netdev); 1108 struct sockaddr *addr = p; 1109 int ret; 1110 1111 if (!is_valid_ether_addr(addr->sa_data)) 1112 return -EADDRNOTAVAIL; 1113 1114 ret = iavf_replace_primary_mac(adapter, addr->sa_data); 1115 1116 if (ret) 1117 return ret; 1118 1119 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue, 1120 iavf_is_mac_set_handled(netdev, addr->sa_data), 1121 msecs_to_jiffies(2500)); 1122 1123 /* If ret < 0 then it means wait was interrupted. 1124 * If ret == 0 then it means we got a timeout. 1125 * else it means we got response for set MAC from PF, 1126 * check if netdev MAC was updated to requested MAC, 1127 * if yes then set MAC succeeded otherwise it failed return -EACCES 1128 */ 1129 if (ret < 0) 1130 return ret; 1131 1132 if (!ret) 1133 return -EAGAIN; 1134 1135 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data)) 1136 return -EACCES; 1137 1138 return 0; 1139 } 1140 1141 /** 1142 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 1143 * @netdev: the netdevice 1144 * @addr: address to add 1145 * 1146 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1147 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1148 */ 1149 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 1150 { 1151 struct iavf_adapter *adapter = netdev_priv(netdev); 1152 1153 if (iavf_add_filter(adapter, addr)) 1154 return 0; 1155 else 1156 return -ENOMEM; 1157 } 1158 1159 /** 1160 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1161 * @netdev: the netdevice 1162 * @addr: address to add 1163 * 1164 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1165 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1166 */ 1167 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 1168 { 1169 struct iavf_adapter *adapter = netdev_priv(netdev); 1170 struct iavf_mac_filter *f; 1171 1172 /* Under some circumstances, we might receive a request to delete 1173 * our own device address from our uc list. Because we store the 1174 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1175 * such requests and not delete our device address from this list. 1176 */ 1177 if (ether_addr_equal(addr, netdev->dev_addr)) 1178 return 0; 1179 1180 f = iavf_find_filter(adapter, addr); 1181 if (f) { 1182 f->remove = true; 1183 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1184 } 1185 return 0; 1186 } 1187 1188 /** 1189 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed 1190 * @adapter: device specific adapter 1191 */ 1192 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter) 1193 { 1194 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) & 1195 (IFF_PROMISC | IFF_ALLMULTI); 1196 } 1197 1198 /** 1199 * iavf_set_rx_mode - NDO callback to set the netdev filters 1200 * @netdev: network interface device structure 1201 **/ 1202 static void iavf_set_rx_mode(struct net_device *netdev) 1203 { 1204 struct iavf_adapter *adapter = netdev_priv(netdev); 1205 1206 spin_lock_bh(&adapter->mac_vlan_list_lock); 1207 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1208 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1209 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1210 1211 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock); 1212 if (iavf_promiscuous_mode_changed(adapter)) 1213 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE; 1214 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock); 1215 } 1216 1217 /** 1218 * iavf_napi_enable_all - enable NAPI on all queue vectors 1219 * @adapter: board private structure 1220 **/ 1221 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1222 { 1223 int q_idx; 1224 struct iavf_q_vector *q_vector; 1225 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1226 1227 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1228 struct napi_struct *napi; 1229 1230 q_vector = &adapter->q_vectors[q_idx]; 1231 napi = &q_vector->napi; 1232 napi_enable(napi); 1233 } 1234 } 1235 1236 /** 1237 * iavf_napi_disable_all - disable NAPI on all queue vectors 1238 * @adapter: board private structure 1239 **/ 1240 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1241 { 1242 int q_idx; 1243 struct iavf_q_vector *q_vector; 1244 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1245 1246 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1247 q_vector = &adapter->q_vectors[q_idx]; 1248 napi_disable(&q_vector->napi); 1249 } 1250 } 1251 1252 /** 1253 * iavf_configure - set up transmit and receive data structures 1254 * @adapter: board private structure 1255 **/ 1256 static void iavf_configure(struct iavf_adapter *adapter) 1257 { 1258 struct net_device *netdev = adapter->netdev; 1259 int i; 1260 1261 iavf_set_rx_mode(netdev); 1262 1263 iavf_configure_tx(adapter); 1264 iavf_configure_rx(adapter); 1265 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1266 1267 for (i = 0; i < adapter->num_active_queues; i++) { 1268 struct iavf_ring *ring = &adapter->rx_rings[i]; 1269 1270 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1271 } 1272 } 1273 1274 /** 1275 * iavf_up_complete - Finish the last steps of bringing up a connection 1276 * @adapter: board private structure 1277 * 1278 * Expects to be called while holding crit_lock. 1279 **/ 1280 static void iavf_up_complete(struct iavf_adapter *adapter) 1281 { 1282 iavf_change_state(adapter, __IAVF_RUNNING); 1283 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1284 1285 iavf_napi_enable_all(adapter); 1286 1287 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES; 1288 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1289 } 1290 1291 /** 1292 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF 1293 * yet and mark other to be removed. 1294 * @adapter: board private structure 1295 **/ 1296 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter) 1297 { 1298 struct iavf_vlan_filter *vlf, *vlftmp; 1299 struct iavf_mac_filter *f, *ftmp; 1300 1301 spin_lock_bh(&adapter->mac_vlan_list_lock); 1302 /* clear the sync flag on all filters */ 1303 __dev_uc_unsync(adapter->netdev, NULL); 1304 __dev_mc_unsync(adapter->netdev, NULL); 1305 1306 /* remove all MAC filters */ 1307 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, 1308 list) { 1309 if (f->add) { 1310 list_del(&f->list); 1311 kfree(f); 1312 } else { 1313 f->remove = true; 1314 } 1315 } 1316 1317 /* disable all VLAN filters */ 1318 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 1319 list) 1320 vlf->state = IAVF_VLAN_DISABLE; 1321 1322 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1323 } 1324 1325 /** 1326 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and 1327 * mark other to be removed. 1328 * @adapter: board private structure 1329 **/ 1330 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter) 1331 { 1332 struct iavf_cloud_filter *cf, *cftmp; 1333 1334 /* remove all cloud filters */ 1335 spin_lock_bh(&adapter->cloud_filter_list_lock); 1336 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 1337 list) { 1338 if (cf->add) { 1339 list_del(&cf->list); 1340 kfree(cf); 1341 adapter->num_cloud_filters--; 1342 } else { 1343 cf->del = true; 1344 } 1345 } 1346 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1347 } 1348 1349 /** 1350 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark 1351 * other to be removed. 1352 * @adapter: board private structure 1353 **/ 1354 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter) 1355 { 1356 struct iavf_fdir_fltr *fdir; 1357 1358 /* remove all Flow Director filters */ 1359 spin_lock_bh(&adapter->fdir_fltr_lock); 1360 list_for_each_entry(fdir, &adapter->fdir_list_head, list) { 1361 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) { 1362 /* Cancel a request, keep filter as inactive */ 1363 fdir->state = IAVF_FDIR_FLTR_INACTIVE; 1364 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING || 1365 fdir->state == IAVF_FDIR_FLTR_ACTIVE) { 1366 /* Disable filters which are active or have a pending 1367 * request to PF to be added 1368 */ 1369 fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST; 1370 } 1371 } 1372 spin_unlock_bh(&adapter->fdir_fltr_lock); 1373 } 1374 1375 /** 1376 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark 1377 * other to be removed. 1378 * @adapter: board private structure 1379 **/ 1380 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter) 1381 { 1382 struct iavf_adv_rss *rss, *rsstmp; 1383 1384 /* remove all advance RSS configuration */ 1385 spin_lock_bh(&adapter->adv_rss_lock); 1386 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 1387 list) { 1388 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) { 1389 list_del(&rss->list); 1390 kfree(rss); 1391 } else { 1392 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1393 } 1394 } 1395 spin_unlock_bh(&adapter->adv_rss_lock); 1396 } 1397 1398 /** 1399 * iavf_down - Shutdown the connection processing 1400 * @adapter: board private structure 1401 * 1402 * Expects to be called while holding crit_lock. 1403 **/ 1404 void iavf_down(struct iavf_adapter *adapter) 1405 { 1406 struct net_device *netdev = adapter->netdev; 1407 1408 if (adapter->state <= __IAVF_DOWN_PENDING) 1409 return; 1410 1411 netif_carrier_off(netdev); 1412 netif_tx_disable(netdev); 1413 adapter->link_up = false; 1414 iavf_napi_disable_all(adapter); 1415 iavf_irq_disable(adapter); 1416 1417 iavf_clear_mac_vlan_filters(adapter); 1418 iavf_clear_cloud_filters(adapter); 1419 iavf_clear_fdir_filters(adapter); 1420 iavf_clear_adv_rss_conf(adapter); 1421 1422 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 1423 return; 1424 1425 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 1426 /* cancel any current operation */ 1427 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1428 /* Schedule operations to close down the HW. Don't wait 1429 * here for this to complete. The watchdog is still running 1430 * and it will take care of this. 1431 */ 1432 if (!list_empty(&adapter->mac_filter_list)) 1433 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1434 if (!list_empty(&adapter->vlan_filter_list)) 1435 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1436 if (!list_empty(&adapter->cloud_filter_list)) 1437 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1438 if (!list_empty(&adapter->fdir_list_head)) 1439 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1440 if (!list_empty(&adapter->adv_rss_list_head)) 1441 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1442 } 1443 1444 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES; 1445 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1446 } 1447 1448 /** 1449 * iavf_acquire_msix_vectors - Setup the MSIX capability 1450 * @adapter: board private structure 1451 * @vectors: number of vectors to request 1452 * 1453 * Work with the OS to set up the MSIX vectors needed. 1454 * 1455 * Returns 0 on success, negative on failure 1456 **/ 1457 static int 1458 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1459 { 1460 int err, vector_threshold; 1461 1462 /* We'll want at least 3 (vector_threshold): 1463 * 0) Other (Admin Queue and link, mostly) 1464 * 1) TxQ[0] Cleanup 1465 * 2) RxQ[0] Cleanup 1466 */ 1467 vector_threshold = MIN_MSIX_COUNT; 1468 1469 /* The more we get, the more we will assign to Tx/Rx Cleanup 1470 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1471 * Right now, we simply care about how many we'll get; we'll 1472 * set them up later while requesting irq's. 1473 */ 1474 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1475 vector_threshold, vectors); 1476 if (err < 0) { 1477 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1478 kfree(adapter->msix_entries); 1479 adapter->msix_entries = NULL; 1480 return err; 1481 } 1482 1483 /* Adjust for only the vectors we'll use, which is minimum 1484 * of max_msix_q_vectors + NONQ_VECS, or the number of 1485 * vectors we were allocated. 1486 */ 1487 adapter->num_msix_vectors = err; 1488 return 0; 1489 } 1490 1491 /** 1492 * iavf_free_queues - Free memory for all rings 1493 * @adapter: board private structure to initialize 1494 * 1495 * Free all of the memory associated with queue pairs. 1496 **/ 1497 static void iavf_free_queues(struct iavf_adapter *adapter) 1498 { 1499 if (!adapter->vsi_res) 1500 return; 1501 adapter->num_active_queues = 0; 1502 kfree(adapter->tx_rings); 1503 adapter->tx_rings = NULL; 1504 kfree(adapter->rx_rings); 1505 adapter->rx_rings = NULL; 1506 } 1507 1508 /** 1509 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1510 * @adapter: board private structure 1511 * 1512 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1513 * stripped in certain descriptor fields. Instead of checking the offload 1514 * capability bits in the hot path, cache the location the ring specific 1515 * flags. 1516 */ 1517 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1518 { 1519 int i; 1520 1521 for (i = 0; i < adapter->num_active_queues; i++) { 1522 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1523 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1524 1525 /* prevent multiple L2TAG bits being set after VFR */ 1526 tx_ring->flags &= 1527 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1528 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1529 rx_ring->flags &= 1530 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1531 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1532 1533 if (VLAN_ALLOWED(adapter)) { 1534 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1535 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1536 } else if (VLAN_V2_ALLOWED(adapter)) { 1537 struct virtchnl_vlan_supported_caps *stripping_support; 1538 struct virtchnl_vlan_supported_caps *insertion_support; 1539 1540 stripping_support = 1541 &adapter->vlan_v2_caps.offloads.stripping_support; 1542 insertion_support = 1543 &adapter->vlan_v2_caps.offloads.insertion_support; 1544 1545 if (stripping_support->outer) { 1546 if (stripping_support->outer & 1547 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1548 rx_ring->flags |= 1549 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1550 else if (stripping_support->outer & 1551 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1552 rx_ring->flags |= 1553 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1554 } else if (stripping_support->inner) { 1555 if (stripping_support->inner & 1556 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1557 rx_ring->flags |= 1558 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1559 else if (stripping_support->inner & 1560 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1561 rx_ring->flags |= 1562 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1563 } 1564 1565 if (insertion_support->outer) { 1566 if (insertion_support->outer & 1567 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1568 tx_ring->flags |= 1569 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1570 else if (insertion_support->outer & 1571 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1572 tx_ring->flags |= 1573 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1574 } else if (insertion_support->inner) { 1575 if (insertion_support->inner & 1576 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1577 tx_ring->flags |= 1578 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1579 else if (insertion_support->inner & 1580 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1581 tx_ring->flags |= 1582 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1583 } 1584 } 1585 } 1586 } 1587 1588 /** 1589 * iavf_alloc_queues - Allocate memory for all rings 1590 * @adapter: board private structure to initialize 1591 * 1592 * We allocate one ring per queue at run-time since we don't know the 1593 * number of queues at compile-time. The polling_netdev array is 1594 * intended for Multiqueue, but should work fine with a single queue. 1595 **/ 1596 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1597 { 1598 int i, num_active_queues; 1599 1600 /* If we're in reset reallocating queues we don't actually know yet for 1601 * certain the PF gave us the number of queues we asked for but we'll 1602 * assume it did. Once basic reset is finished we'll confirm once we 1603 * start negotiating config with PF. 1604 */ 1605 if (adapter->num_req_queues) 1606 num_active_queues = adapter->num_req_queues; 1607 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1608 adapter->num_tc) 1609 num_active_queues = adapter->ch_config.total_qps; 1610 else 1611 num_active_queues = min_t(int, 1612 adapter->vsi_res->num_queue_pairs, 1613 (int)(num_online_cpus())); 1614 1615 1616 adapter->tx_rings = kcalloc(num_active_queues, 1617 sizeof(struct iavf_ring), GFP_KERNEL); 1618 if (!adapter->tx_rings) 1619 goto err_out; 1620 adapter->rx_rings = kcalloc(num_active_queues, 1621 sizeof(struct iavf_ring), GFP_KERNEL); 1622 if (!adapter->rx_rings) 1623 goto err_out; 1624 1625 for (i = 0; i < num_active_queues; i++) { 1626 struct iavf_ring *tx_ring; 1627 struct iavf_ring *rx_ring; 1628 1629 tx_ring = &adapter->tx_rings[i]; 1630 1631 tx_ring->queue_index = i; 1632 tx_ring->netdev = adapter->netdev; 1633 tx_ring->dev = &adapter->pdev->dev; 1634 tx_ring->count = adapter->tx_desc_count; 1635 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1636 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1637 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1638 1639 rx_ring = &adapter->rx_rings[i]; 1640 rx_ring->queue_index = i; 1641 rx_ring->netdev = adapter->netdev; 1642 rx_ring->dev = &adapter->pdev->dev; 1643 rx_ring->count = adapter->rx_desc_count; 1644 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1645 } 1646 1647 adapter->num_active_queues = num_active_queues; 1648 1649 iavf_set_queue_vlan_tag_loc(adapter); 1650 1651 return 0; 1652 1653 err_out: 1654 iavf_free_queues(adapter); 1655 return -ENOMEM; 1656 } 1657 1658 /** 1659 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1660 * @adapter: board private structure to initialize 1661 * 1662 * Attempt to configure the interrupts using the best available 1663 * capabilities of the hardware and the kernel. 1664 **/ 1665 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1666 { 1667 int vector, v_budget; 1668 int pairs = 0; 1669 int err = 0; 1670 1671 if (!adapter->vsi_res) { 1672 err = -EIO; 1673 goto out; 1674 } 1675 pairs = adapter->num_active_queues; 1676 1677 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1678 * us much good if we have more vectors than CPUs. However, we already 1679 * limit the total number of queues by the number of CPUs so we do not 1680 * need any further limiting here. 1681 */ 1682 v_budget = min_t(int, pairs + NONQ_VECS, 1683 (int)adapter->vf_res->max_vectors); 1684 1685 adapter->msix_entries = kcalloc(v_budget, 1686 sizeof(struct msix_entry), GFP_KERNEL); 1687 if (!adapter->msix_entries) { 1688 err = -ENOMEM; 1689 goto out; 1690 } 1691 1692 for (vector = 0; vector < v_budget; vector++) 1693 adapter->msix_entries[vector].entry = vector; 1694 1695 err = iavf_acquire_msix_vectors(adapter, v_budget); 1696 if (!err) 1697 iavf_schedule_finish_config(adapter); 1698 1699 out: 1700 return err; 1701 } 1702 1703 /** 1704 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1705 * @adapter: board private structure 1706 * 1707 * Return 0 on success, negative on failure 1708 **/ 1709 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1710 { 1711 struct iavf_aqc_get_set_rss_key_data *rss_key = 1712 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1713 struct iavf_hw *hw = &adapter->hw; 1714 enum iavf_status status; 1715 1716 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1717 /* bail because we already have a command pending */ 1718 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1719 adapter->current_op); 1720 return -EBUSY; 1721 } 1722 1723 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1724 if (status) { 1725 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1726 iavf_stat_str(hw, status), 1727 iavf_aq_str(hw, hw->aq.asq_last_status)); 1728 return iavf_status_to_errno(status); 1729 1730 } 1731 1732 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1733 adapter->rss_lut, adapter->rss_lut_size); 1734 if (status) { 1735 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1736 iavf_stat_str(hw, status), 1737 iavf_aq_str(hw, hw->aq.asq_last_status)); 1738 return iavf_status_to_errno(status); 1739 } 1740 1741 return 0; 1742 1743 } 1744 1745 /** 1746 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1747 * @adapter: board private structure 1748 * 1749 * Returns 0 on success, negative on failure 1750 **/ 1751 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1752 { 1753 struct iavf_hw *hw = &adapter->hw; 1754 u32 *dw; 1755 u16 i; 1756 1757 dw = (u32 *)adapter->rss_key; 1758 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1759 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1760 1761 dw = (u32 *)adapter->rss_lut; 1762 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1763 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1764 1765 iavf_flush(hw); 1766 1767 return 0; 1768 } 1769 1770 /** 1771 * iavf_config_rss - Configure RSS keys and lut 1772 * @adapter: board private structure 1773 * 1774 * Returns 0 on success, negative on failure 1775 **/ 1776 int iavf_config_rss(struct iavf_adapter *adapter) 1777 { 1778 1779 if (RSS_PF(adapter)) { 1780 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1781 IAVF_FLAG_AQ_SET_RSS_KEY; 1782 return 0; 1783 } else if (RSS_AQ(adapter)) { 1784 return iavf_config_rss_aq(adapter); 1785 } else { 1786 return iavf_config_rss_reg(adapter); 1787 } 1788 } 1789 1790 /** 1791 * iavf_fill_rss_lut - Fill the lut with default values 1792 * @adapter: board private structure 1793 **/ 1794 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1795 { 1796 u16 i; 1797 1798 for (i = 0; i < adapter->rss_lut_size; i++) 1799 adapter->rss_lut[i] = i % adapter->num_active_queues; 1800 } 1801 1802 /** 1803 * iavf_init_rss - Prepare for RSS 1804 * @adapter: board private structure 1805 * 1806 * Return 0 on success, negative on failure 1807 **/ 1808 static int iavf_init_rss(struct iavf_adapter *adapter) 1809 { 1810 struct iavf_hw *hw = &adapter->hw; 1811 1812 if (!RSS_PF(adapter)) { 1813 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1814 if (adapter->vf_res->vf_cap_flags & 1815 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1816 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1817 else 1818 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1819 1820 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1821 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1822 } 1823 1824 iavf_fill_rss_lut(adapter); 1825 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1826 1827 return iavf_config_rss(adapter); 1828 } 1829 1830 /** 1831 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1832 * @adapter: board private structure to initialize 1833 * 1834 * We allocate one q_vector per queue interrupt. If allocation fails we 1835 * return -ENOMEM. 1836 **/ 1837 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1838 { 1839 int q_idx = 0, num_q_vectors; 1840 struct iavf_q_vector *q_vector; 1841 1842 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1843 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1844 GFP_KERNEL); 1845 if (!adapter->q_vectors) 1846 return -ENOMEM; 1847 1848 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1849 q_vector = &adapter->q_vectors[q_idx]; 1850 q_vector->adapter = adapter; 1851 q_vector->vsi = &adapter->vsi; 1852 q_vector->v_idx = q_idx; 1853 q_vector->reg_idx = q_idx; 1854 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1855 netif_napi_add(adapter->netdev, &q_vector->napi, 1856 iavf_napi_poll); 1857 } 1858 1859 return 0; 1860 } 1861 1862 /** 1863 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1864 * @adapter: board private structure to initialize 1865 * 1866 * This function frees the memory allocated to the q_vectors. In addition if 1867 * NAPI is enabled it will delete any references to the NAPI struct prior 1868 * to freeing the q_vector. 1869 **/ 1870 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1871 { 1872 int q_idx, num_q_vectors; 1873 1874 if (!adapter->q_vectors) 1875 return; 1876 1877 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1878 1879 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1880 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1881 1882 netif_napi_del(&q_vector->napi); 1883 } 1884 kfree(adapter->q_vectors); 1885 adapter->q_vectors = NULL; 1886 } 1887 1888 /** 1889 * iavf_reset_interrupt_capability - Reset MSIX setup 1890 * @adapter: board private structure 1891 * 1892 **/ 1893 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1894 { 1895 if (!adapter->msix_entries) 1896 return; 1897 1898 pci_disable_msix(adapter->pdev); 1899 kfree(adapter->msix_entries); 1900 adapter->msix_entries = NULL; 1901 } 1902 1903 /** 1904 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1905 * @adapter: board private structure to initialize 1906 * 1907 **/ 1908 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1909 { 1910 int err; 1911 1912 err = iavf_alloc_queues(adapter); 1913 if (err) { 1914 dev_err(&adapter->pdev->dev, 1915 "Unable to allocate memory for queues\n"); 1916 goto err_alloc_queues; 1917 } 1918 1919 err = iavf_set_interrupt_capability(adapter); 1920 if (err) { 1921 dev_err(&adapter->pdev->dev, 1922 "Unable to setup interrupt capabilities\n"); 1923 goto err_set_interrupt; 1924 } 1925 1926 err = iavf_alloc_q_vectors(adapter); 1927 if (err) { 1928 dev_err(&adapter->pdev->dev, 1929 "Unable to allocate memory for queue vectors\n"); 1930 goto err_alloc_q_vectors; 1931 } 1932 1933 /* If we've made it so far while ADq flag being ON, then we haven't 1934 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1935 * resources have been allocated in the reset path. 1936 * Now we can truly claim that ADq is enabled. 1937 */ 1938 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1939 adapter->num_tc) 1940 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1941 adapter->num_tc); 1942 1943 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1944 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1945 adapter->num_active_queues); 1946 1947 return 0; 1948 err_alloc_q_vectors: 1949 iavf_reset_interrupt_capability(adapter); 1950 err_set_interrupt: 1951 iavf_free_queues(adapter); 1952 err_alloc_queues: 1953 return err; 1954 } 1955 1956 /** 1957 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does 1958 * @adapter: board private structure 1959 **/ 1960 static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter) 1961 { 1962 iavf_free_q_vectors(adapter); 1963 iavf_reset_interrupt_capability(adapter); 1964 iavf_free_queues(adapter); 1965 } 1966 1967 /** 1968 * iavf_free_rss - Free memory used by RSS structs 1969 * @adapter: board private structure 1970 **/ 1971 static void iavf_free_rss(struct iavf_adapter *adapter) 1972 { 1973 kfree(adapter->rss_key); 1974 adapter->rss_key = NULL; 1975 1976 kfree(adapter->rss_lut); 1977 adapter->rss_lut = NULL; 1978 } 1979 1980 /** 1981 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1982 * @adapter: board private structure 1983 * @running: true if adapter->state == __IAVF_RUNNING 1984 * 1985 * Returns 0 on success, negative on failure 1986 **/ 1987 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running) 1988 { 1989 struct net_device *netdev = adapter->netdev; 1990 int err; 1991 1992 if (running) 1993 iavf_free_traffic_irqs(adapter); 1994 iavf_free_misc_irq(adapter); 1995 iavf_free_interrupt_scheme(adapter); 1996 1997 err = iavf_init_interrupt_scheme(adapter); 1998 if (err) 1999 goto err; 2000 2001 netif_tx_stop_all_queues(netdev); 2002 2003 err = iavf_request_misc_irq(adapter); 2004 if (err) 2005 goto err; 2006 2007 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2008 2009 iavf_map_rings_to_vectors(adapter); 2010 err: 2011 return err; 2012 } 2013 2014 /** 2015 * iavf_finish_config - do all netdev work that needs RTNL 2016 * @work: our work_struct 2017 * 2018 * Do work that needs both RTNL and crit_lock. 2019 **/ 2020 static void iavf_finish_config(struct work_struct *work) 2021 { 2022 struct iavf_adapter *adapter; 2023 int pairs, err; 2024 2025 adapter = container_of(work, struct iavf_adapter, finish_config); 2026 2027 /* Always take RTNL first to prevent circular lock dependency */ 2028 rtnl_lock(); 2029 mutex_lock(&adapter->crit_lock); 2030 2031 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) && 2032 adapter->netdev->reg_state == NETREG_REGISTERED && 2033 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 2034 netdev_update_features(adapter->netdev); 2035 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 2036 } 2037 2038 switch (adapter->state) { 2039 case __IAVF_DOWN: 2040 if (adapter->netdev->reg_state != NETREG_REGISTERED) { 2041 err = register_netdevice(adapter->netdev); 2042 if (err) { 2043 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n", 2044 err); 2045 2046 /* go back and try again.*/ 2047 iavf_free_rss(adapter); 2048 iavf_free_misc_irq(adapter); 2049 iavf_reset_interrupt_capability(adapter); 2050 iavf_change_state(adapter, 2051 __IAVF_INIT_CONFIG_ADAPTER); 2052 goto out; 2053 } 2054 } 2055 2056 /* Set the real number of queues when reset occurs while 2057 * state == __IAVF_DOWN 2058 */ 2059 fallthrough; 2060 case __IAVF_RUNNING: 2061 pairs = adapter->num_active_queues; 2062 netif_set_real_num_rx_queues(adapter->netdev, pairs); 2063 netif_set_real_num_tx_queues(adapter->netdev, pairs); 2064 break; 2065 2066 default: 2067 break; 2068 } 2069 2070 out: 2071 mutex_unlock(&adapter->crit_lock); 2072 rtnl_unlock(); 2073 } 2074 2075 /** 2076 * iavf_schedule_finish_config - Set the flags and schedule a reset event 2077 * @adapter: board private structure 2078 **/ 2079 void iavf_schedule_finish_config(struct iavf_adapter *adapter) 2080 { 2081 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 2082 queue_work(adapter->wq, &adapter->finish_config); 2083 } 2084 2085 /** 2086 * iavf_process_aq_command - process aq_required flags 2087 * and sends aq command 2088 * @adapter: pointer to iavf adapter structure 2089 * 2090 * Returns 0 on success 2091 * Returns error code if no command was sent 2092 * or error code if the command failed. 2093 **/ 2094 static int iavf_process_aq_command(struct iavf_adapter *adapter) 2095 { 2096 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 2097 return iavf_send_vf_config_msg(adapter); 2098 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 2099 return iavf_send_vf_offload_vlan_v2_msg(adapter); 2100 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 2101 iavf_disable_queues(adapter); 2102 return 0; 2103 } 2104 2105 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 2106 iavf_map_queues(adapter); 2107 return 0; 2108 } 2109 2110 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 2111 iavf_add_ether_addrs(adapter); 2112 return 0; 2113 } 2114 2115 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 2116 iavf_add_vlans(adapter); 2117 return 0; 2118 } 2119 2120 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 2121 iavf_del_ether_addrs(adapter); 2122 return 0; 2123 } 2124 2125 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 2126 iavf_del_vlans(adapter); 2127 return 0; 2128 } 2129 2130 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 2131 iavf_enable_vlan_stripping(adapter); 2132 return 0; 2133 } 2134 2135 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 2136 iavf_disable_vlan_stripping(adapter); 2137 return 0; 2138 } 2139 2140 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 2141 iavf_configure_queues(adapter); 2142 return 0; 2143 } 2144 2145 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 2146 iavf_enable_queues(adapter); 2147 return 0; 2148 } 2149 2150 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 2151 /* This message goes straight to the firmware, not the 2152 * PF, so we don't have to set current_op as we will 2153 * not get a response through the ARQ. 2154 */ 2155 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 2156 return 0; 2157 } 2158 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 2159 iavf_get_hena(adapter); 2160 return 0; 2161 } 2162 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 2163 iavf_set_hena(adapter); 2164 return 0; 2165 } 2166 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 2167 iavf_set_rss_key(adapter); 2168 return 0; 2169 } 2170 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 2171 iavf_set_rss_lut(adapter); 2172 return 0; 2173 } 2174 2175 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) { 2176 iavf_set_promiscuous(adapter); 2177 return 0; 2178 } 2179 2180 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 2181 iavf_enable_channels(adapter); 2182 return 0; 2183 } 2184 2185 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 2186 iavf_disable_channels(adapter); 2187 return 0; 2188 } 2189 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2190 iavf_add_cloud_filter(adapter); 2191 return 0; 2192 } 2193 2194 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2195 iavf_del_cloud_filter(adapter); 2196 return 0; 2197 } 2198 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2199 iavf_del_cloud_filter(adapter); 2200 return 0; 2201 } 2202 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2203 iavf_add_cloud_filter(adapter); 2204 return 0; 2205 } 2206 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 2207 iavf_add_fdir_filter(adapter); 2208 return IAVF_SUCCESS; 2209 } 2210 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 2211 iavf_del_fdir_filter(adapter); 2212 return IAVF_SUCCESS; 2213 } 2214 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 2215 iavf_add_adv_rss_cfg(adapter); 2216 return 0; 2217 } 2218 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 2219 iavf_del_adv_rss_cfg(adapter); 2220 return 0; 2221 } 2222 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 2223 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2224 return 0; 2225 } 2226 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 2227 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2228 return 0; 2229 } 2230 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 2231 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2232 return 0; 2233 } 2234 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 2235 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2236 return 0; 2237 } 2238 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 2239 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2240 return 0; 2241 } 2242 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 2243 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2244 return 0; 2245 } 2246 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 2247 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2248 return 0; 2249 } 2250 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 2251 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2252 return 0; 2253 } 2254 2255 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 2256 iavf_request_stats(adapter); 2257 return 0; 2258 } 2259 2260 return -EAGAIN; 2261 } 2262 2263 /** 2264 * iavf_set_vlan_offload_features - set VLAN offload configuration 2265 * @adapter: board private structure 2266 * @prev_features: previous features used for comparison 2267 * @features: updated features used for configuration 2268 * 2269 * Set the aq_required bit(s) based on the requested features passed in to 2270 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 2271 * the watchdog if any changes are requested to expedite the request via 2272 * virtchnl. 2273 **/ 2274 static void 2275 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 2276 netdev_features_t prev_features, 2277 netdev_features_t features) 2278 { 2279 bool enable_stripping = true, enable_insertion = true; 2280 u16 vlan_ethertype = 0; 2281 u64 aq_required = 0; 2282 2283 /* keep cases separate because one ethertype for offloads can be 2284 * disabled at the same time as another is disabled, so check for an 2285 * enabled ethertype first, then check for disabled. Default to 2286 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 2287 * stripping. 2288 */ 2289 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2290 vlan_ethertype = ETH_P_8021AD; 2291 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2292 vlan_ethertype = ETH_P_8021Q; 2293 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2294 vlan_ethertype = ETH_P_8021AD; 2295 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2296 vlan_ethertype = ETH_P_8021Q; 2297 else 2298 vlan_ethertype = ETH_P_8021Q; 2299 2300 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 2301 enable_stripping = false; 2302 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 2303 enable_insertion = false; 2304 2305 if (VLAN_ALLOWED(adapter)) { 2306 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 2307 * stripping via virtchnl. VLAN insertion can be toggled on the 2308 * netdev, but it doesn't require a virtchnl message 2309 */ 2310 if (enable_stripping) 2311 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 2312 else 2313 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 2314 2315 } else if (VLAN_V2_ALLOWED(adapter)) { 2316 switch (vlan_ethertype) { 2317 case ETH_P_8021Q: 2318 if (enable_stripping) 2319 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 2320 else 2321 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 2322 2323 if (enable_insertion) 2324 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 2325 else 2326 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 2327 break; 2328 case ETH_P_8021AD: 2329 if (enable_stripping) 2330 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 2331 else 2332 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 2333 2334 if (enable_insertion) 2335 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 2336 else 2337 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 2338 break; 2339 } 2340 } 2341 2342 if (aq_required) { 2343 adapter->aq_required |= aq_required; 2344 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 2345 } 2346 } 2347 2348 /** 2349 * iavf_startup - first step of driver startup 2350 * @adapter: board private structure 2351 * 2352 * Function process __IAVF_STARTUP driver state. 2353 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2354 * when fails the state is changed to __IAVF_INIT_FAILED 2355 **/ 2356 static void iavf_startup(struct iavf_adapter *adapter) 2357 { 2358 struct pci_dev *pdev = adapter->pdev; 2359 struct iavf_hw *hw = &adapter->hw; 2360 enum iavf_status status; 2361 int ret; 2362 2363 WARN_ON(adapter->state != __IAVF_STARTUP); 2364 2365 /* driver loaded, probe complete */ 2366 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2367 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2368 2369 ret = iavf_check_reset_complete(hw); 2370 if (ret) { 2371 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2372 ret); 2373 goto err; 2374 } 2375 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2376 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2377 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2378 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2379 2380 status = iavf_init_adminq(hw); 2381 if (status) { 2382 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 2383 status); 2384 goto err; 2385 } 2386 ret = iavf_send_api_ver(adapter); 2387 if (ret) { 2388 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); 2389 iavf_shutdown_adminq(hw); 2390 goto err; 2391 } 2392 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2393 return; 2394 err: 2395 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2396 } 2397 2398 /** 2399 * iavf_init_version_check - second step of driver startup 2400 * @adapter: board private structure 2401 * 2402 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2403 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2404 * when fails the state is changed to __IAVF_INIT_FAILED 2405 **/ 2406 static void iavf_init_version_check(struct iavf_adapter *adapter) 2407 { 2408 struct pci_dev *pdev = adapter->pdev; 2409 struct iavf_hw *hw = &adapter->hw; 2410 int err = -EAGAIN; 2411 2412 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2413 2414 if (!iavf_asq_done(hw)) { 2415 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2416 iavf_shutdown_adminq(hw); 2417 iavf_change_state(adapter, __IAVF_STARTUP); 2418 goto err; 2419 } 2420 2421 /* aq msg sent, awaiting reply */ 2422 err = iavf_verify_api_ver(adapter); 2423 if (err) { 2424 if (err == -EALREADY) 2425 err = iavf_send_api_ver(adapter); 2426 else 2427 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2428 adapter->pf_version.major, 2429 adapter->pf_version.minor, 2430 VIRTCHNL_VERSION_MAJOR, 2431 VIRTCHNL_VERSION_MINOR); 2432 goto err; 2433 } 2434 err = iavf_send_vf_config_msg(adapter); 2435 if (err) { 2436 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2437 err); 2438 goto err; 2439 } 2440 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2441 return; 2442 err: 2443 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2444 } 2445 2446 /** 2447 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2448 * @adapter: board private structure 2449 */ 2450 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2451 { 2452 int i, num_req_queues = adapter->num_req_queues; 2453 struct iavf_vsi *vsi = &adapter->vsi; 2454 2455 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2456 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2457 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2458 } 2459 if (!adapter->vsi_res) { 2460 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2461 return -ENODEV; 2462 } 2463 2464 if (num_req_queues && 2465 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2466 /* Problem. The PF gave us fewer queues than what we had 2467 * negotiated in our request. Need a reset to see if we can't 2468 * get back to a working state. 2469 */ 2470 dev_err(&adapter->pdev->dev, 2471 "Requested %d queues, but PF only gave us %d.\n", 2472 num_req_queues, 2473 adapter->vsi_res->num_queue_pairs); 2474 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; 2475 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2476 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 2477 2478 return -EAGAIN; 2479 } 2480 adapter->num_req_queues = 0; 2481 adapter->vsi.id = adapter->vsi_res->vsi_id; 2482 2483 adapter->vsi.back = adapter; 2484 adapter->vsi.base_vector = 1; 2485 vsi->netdev = adapter->netdev; 2486 vsi->qs_handle = adapter->vsi_res->qset_handle; 2487 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2488 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2489 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2490 } else { 2491 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2492 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2493 } 2494 2495 return 0; 2496 } 2497 2498 /** 2499 * iavf_init_get_resources - third step of driver startup 2500 * @adapter: board private structure 2501 * 2502 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2503 * finishes driver initialization procedure. 2504 * When success the state is changed to __IAVF_DOWN 2505 * when fails the state is changed to __IAVF_INIT_FAILED 2506 **/ 2507 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2508 { 2509 struct pci_dev *pdev = adapter->pdev; 2510 struct iavf_hw *hw = &adapter->hw; 2511 int err; 2512 2513 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2514 /* aq msg sent, awaiting reply */ 2515 if (!adapter->vf_res) { 2516 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2517 GFP_KERNEL); 2518 if (!adapter->vf_res) { 2519 err = -ENOMEM; 2520 goto err; 2521 } 2522 } 2523 err = iavf_get_vf_config(adapter); 2524 if (err == -EALREADY) { 2525 err = iavf_send_vf_config_msg(adapter); 2526 goto err; 2527 } else if (err == -EINVAL) { 2528 /* We only get -EINVAL if the device is in a very bad 2529 * state or if we've been disabled for previous bad 2530 * behavior. Either way, we're done now. 2531 */ 2532 iavf_shutdown_adminq(hw); 2533 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2534 return; 2535 } 2536 if (err) { 2537 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2538 goto err_alloc; 2539 } 2540 2541 err = iavf_parse_vf_resource_msg(adapter); 2542 if (err) { 2543 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", 2544 err); 2545 goto err_alloc; 2546 } 2547 /* Some features require additional messages to negotiate extended 2548 * capabilities. These are processed in sequence by the 2549 * __IAVF_INIT_EXTENDED_CAPS driver state. 2550 */ 2551 adapter->extended_caps = IAVF_EXTENDED_CAPS; 2552 2553 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); 2554 return; 2555 2556 err_alloc: 2557 kfree(adapter->vf_res); 2558 adapter->vf_res = NULL; 2559 err: 2560 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2561 } 2562 2563 /** 2564 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2565 * @adapter: board private structure 2566 * 2567 * Function processes send of the extended VLAN V2 capability message to the 2568 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, 2569 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2570 */ 2571 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2572 { 2573 int ret; 2574 2575 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); 2576 2577 ret = iavf_send_vf_offload_vlan_v2_msg(adapter); 2578 if (ret && ret == -EOPNOTSUPP) { 2579 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, 2580 * we did not send the capability exchange message and do not 2581 * expect a response. 2582 */ 2583 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2584 } 2585 2586 /* We sent the message, so move on to the next step */ 2587 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2588 } 2589 2590 /** 2591 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2592 * @adapter: board private structure 2593 * 2594 * Function processes receipt of the extended VLAN V2 capability message from 2595 * the PF. 2596 **/ 2597 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2598 { 2599 int ret; 2600 2601 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); 2602 2603 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2604 2605 ret = iavf_get_vf_vlan_v2_caps(adapter); 2606 if (ret) 2607 goto err; 2608 2609 /* We've processed receipt of the VLAN V2 caps message */ 2610 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2611 return; 2612 err: 2613 /* We didn't receive a reply. Make sure we try sending again when 2614 * __IAVF_INIT_FAILED attempts to recover. 2615 */ 2616 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2617 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2618 } 2619 2620 /** 2621 * iavf_init_process_extended_caps - Part of driver startup 2622 * @adapter: board private structure 2623 * 2624 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state 2625 * handles negotiating capabilities for features which require an additional 2626 * message. 2627 * 2628 * Once all extended capabilities exchanges are finished, the driver will 2629 * transition into __IAVF_INIT_CONFIG_ADAPTER. 2630 */ 2631 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) 2632 { 2633 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); 2634 2635 /* Process capability exchange for VLAN V2 */ 2636 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { 2637 iavf_init_send_offload_vlan_v2_caps(adapter); 2638 return; 2639 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { 2640 iavf_init_recv_offload_vlan_v2_caps(adapter); 2641 return; 2642 } 2643 2644 /* When we reach here, no further extended capabilities exchanges are 2645 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER 2646 */ 2647 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2648 } 2649 2650 /** 2651 * iavf_init_config_adapter - last part of driver startup 2652 * @adapter: board private structure 2653 * 2654 * After all the supported capabilities are negotiated, then the 2655 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2656 */ 2657 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2658 { 2659 struct net_device *netdev = adapter->netdev; 2660 struct pci_dev *pdev = adapter->pdev; 2661 int err; 2662 2663 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2664 2665 if (iavf_process_config(adapter)) 2666 goto err; 2667 2668 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2669 2670 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2671 2672 netdev->netdev_ops = &iavf_netdev_ops; 2673 iavf_set_ethtool_ops(netdev); 2674 netdev->watchdog_timeo = 5 * HZ; 2675 2676 /* MTU range: 68 - 9710 */ 2677 netdev->min_mtu = ETH_MIN_MTU; 2678 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; 2679 2680 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2681 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2682 adapter->hw.mac.addr); 2683 eth_hw_addr_random(netdev); 2684 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2685 } else { 2686 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2687 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2688 } 2689 2690 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2691 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2692 err = iavf_init_interrupt_scheme(adapter); 2693 if (err) 2694 goto err_sw_init; 2695 iavf_map_rings_to_vectors(adapter); 2696 if (adapter->vf_res->vf_cap_flags & 2697 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2698 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2699 2700 err = iavf_request_misc_irq(adapter); 2701 if (err) 2702 goto err_sw_init; 2703 2704 netif_carrier_off(netdev); 2705 adapter->link_up = false; 2706 netif_tx_stop_all_queues(netdev); 2707 2708 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2709 if (netdev->features & NETIF_F_GRO) 2710 dev_info(&pdev->dev, "GRO is enabled\n"); 2711 2712 iavf_change_state(adapter, __IAVF_DOWN); 2713 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2714 2715 iavf_misc_irq_enable(adapter); 2716 wake_up(&adapter->down_waitqueue); 2717 2718 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2719 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2720 if (!adapter->rss_key || !adapter->rss_lut) { 2721 err = -ENOMEM; 2722 goto err_mem; 2723 } 2724 if (RSS_AQ(adapter)) 2725 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2726 else 2727 iavf_init_rss(adapter); 2728 2729 if (VLAN_V2_ALLOWED(adapter)) 2730 /* request initial VLAN offload settings */ 2731 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2732 2733 iavf_schedule_finish_config(adapter); 2734 return; 2735 2736 err_mem: 2737 iavf_free_rss(adapter); 2738 iavf_free_misc_irq(adapter); 2739 err_sw_init: 2740 iavf_reset_interrupt_capability(adapter); 2741 err: 2742 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2743 } 2744 2745 /** 2746 * iavf_watchdog_task - Periodic call-back task 2747 * @work: pointer to work_struct 2748 **/ 2749 static void iavf_watchdog_task(struct work_struct *work) 2750 { 2751 struct iavf_adapter *adapter = container_of(work, 2752 struct iavf_adapter, 2753 watchdog_task.work); 2754 struct iavf_hw *hw = &adapter->hw; 2755 u32 reg_val; 2756 2757 if (!mutex_trylock(&adapter->crit_lock)) { 2758 if (adapter->state == __IAVF_REMOVE) 2759 return; 2760 2761 goto restart_watchdog; 2762 } 2763 2764 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2765 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2766 2767 switch (adapter->state) { 2768 case __IAVF_STARTUP: 2769 iavf_startup(adapter); 2770 mutex_unlock(&adapter->crit_lock); 2771 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2772 msecs_to_jiffies(30)); 2773 return; 2774 case __IAVF_INIT_VERSION_CHECK: 2775 iavf_init_version_check(adapter); 2776 mutex_unlock(&adapter->crit_lock); 2777 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2778 msecs_to_jiffies(30)); 2779 return; 2780 case __IAVF_INIT_GET_RESOURCES: 2781 iavf_init_get_resources(adapter); 2782 mutex_unlock(&adapter->crit_lock); 2783 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2784 msecs_to_jiffies(1)); 2785 return; 2786 case __IAVF_INIT_EXTENDED_CAPS: 2787 iavf_init_process_extended_caps(adapter); 2788 mutex_unlock(&adapter->crit_lock); 2789 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2790 msecs_to_jiffies(1)); 2791 return; 2792 case __IAVF_INIT_CONFIG_ADAPTER: 2793 iavf_init_config_adapter(adapter); 2794 mutex_unlock(&adapter->crit_lock); 2795 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2796 msecs_to_jiffies(1)); 2797 return; 2798 case __IAVF_INIT_FAILED: 2799 if (test_bit(__IAVF_IN_REMOVE_TASK, 2800 &adapter->crit_section)) { 2801 /* Do not update the state and do not reschedule 2802 * watchdog task, iavf_remove should handle this state 2803 * as it can loop forever 2804 */ 2805 mutex_unlock(&adapter->crit_lock); 2806 return; 2807 } 2808 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2809 dev_err(&adapter->pdev->dev, 2810 "Failed to communicate with PF; waiting before retry\n"); 2811 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2812 iavf_shutdown_adminq(hw); 2813 mutex_unlock(&adapter->crit_lock); 2814 queue_delayed_work(adapter->wq, 2815 &adapter->watchdog_task, (5 * HZ)); 2816 return; 2817 } 2818 /* Try again from failed step*/ 2819 iavf_change_state(adapter, adapter->last_state); 2820 mutex_unlock(&adapter->crit_lock); 2821 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ); 2822 return; 2823 case __IAVF_COMM_FAILED: 2824 if (test_bit(__IAVF_IN_REMOVE_TASK, 2825 &adapter->crit_section)) { 2826 /* Set state to __IAVF_INIT_FAILED and perform remove 2827 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 2828 * doesn't bring the state back to __IAVF_COMM_FAILED. 2829 */ 2830 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2831 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2832 mutex_unlock(&adapter->crit_lock); 2833 return; 2834 } 2835 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2836 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2837 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 2838 reg_val == VIRTCHNL_VFR_COMPLETED) { 2839 /* A chance for redemption! */ 2840 dev_err(&adapter->pdev->dev, 2841 "Hardware came out of reset. Attempting reinit.\n"); 2842 /* When init task contacts the PF and 2843 * gets everything set up again, it'll restart the 2844 * watchdog for us. Down, boy. Sit. Stay. Woof. 2845 */ 2846 iavf_change_state(adapter, __IAVF_STARTUP); 2847 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2848 } 2849 adapter->aq_required = 0; 2850 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2851 mutex_unlock(&adapter->crit_lock); 2852 queue_delayed_work(adapter->wq, 2853 &adapter->watchdog_task, 2854 msecs_to_jiffies(10)); 2855 return; 2856 case __IAVF_RESETTING: 2857 mutex_unlock(&adapter->crit_lock); 2858 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2859 HZ * 2); 2860 return; 2861 case __IAVF_DOWN: 2862 case __IAVF_DOWN_PENDING: 2863 case __IAVF_TESTING: 2864 case __IAVF_RUNNING: 2865 if (adapter->current_op) { 2866 if (!iavf_asq_done(hw)) { 2867 dev_dbg(&adapter->pdev->dev, 2868 "Admin queue timeout\n"); 2869 iavf_send_api_ver(adapter); 2870 } 2871 } else { 2872 int ret = iavf_process_aq_command(adapter); 2873 2874 /* An error will be returned if no commands were 2875 * processed; use this opportunity to update stats 2876 * if the error isn't -ENOTSUPP 2877 */ 2878 if (ret && ret != -EOPNOTSUPP && 2879 adapter->state == __IAVF_RUNNING) 2880 iavf_request_stats(adapter); 2881 } 2882 if (adapter->state == __IAVF_RUNNING) 2883 iavf_detect_recover_hung(&adapter->vsi); 2884 break; 2885 case __IAVF_REMOVE: 2886 default: 2887 mutex_unlock(&adapter->crit_lock); 2888 return; 2889 } 2890 2891 /* check for hw reset */ 2892 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2893 if (!reg_val) { 2894 adapter->aq_required = 0; 2895 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2896 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 2897 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING); 2898 mutex_unlock(&adapter->crit_lock); 2899 queue_delayed_work(adapter->wq, 2900 &adapter->watchdog_task, HZ * 2); 2901 return; 2902 } 2903 2904 mutex_unlock(&adapter->crit_lock); 2905 restart_watchdog: 2906 if (adapter->state >= __IAVF_DOWN) 2907 queue_work(adapter->wq, &adapter->adminq_task); 2908 if (adapter->aq_required) 2909 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2910 msecs_to_jiffies(20)); 2911 else 2912 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2913 HZ * 2); 2914 } 2915 2916 /** 2917 * iavf_disable_vf - disable VF 2918 * @adapter: board private structure 2919 * 2920 * Set communication failed flag and free all resources. 2921 * NOTE: This function is expected to be called with crit_lock being held. 2922 **/ 2923 static void iavf_disable_vf(struct iavf_adapter *adapter) 2924 { 2925 struct iavf_mac_filter *f, *ftmp; 2926 struct iavf_vlan_filter *fv, *fvtmp; 2927 struct iavf_cloud_filter *cf, *cftmp; 2928 2929 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2930 2931 /* We don't use netif_running() because it may be true prior to 2932 * ndo_open() returning, so we can't assume it means all our open 2933 * tasks have finished, since we're not holding the rtnl_lock here. 2934 */ 2935 if (adapter->state == __IAVF_RUNNING) { 2936 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2937 netif_carrier_off(adapter->netdev); 2938 netif_tx_disable(adapter->netdev); 2939 adapter->link_up = false; 2940 iavf_napi_disable_all(adapter); 2941 iavf_irq_disable(adapter); 2942 iavf_free_traffic_irqs(adapter); 2943 iavf_free_all_tx_resources(adapter); 2944 iavf_free_all_rx_resources(adapter); 2945 } 2946 2947 spin_lock_bh(&adapter->mac_vlan_list_lock); 2948 2949 /* Delete all of the filters */ 2950 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2951 list_del(&f->list); 2952 kfree(f); 2953 } 2954 2955 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2956 list_del(&fv->list); 2957 kfree(fv); 2958 } 2959 adapter->num_vlan_filters = 0; 2960 2961 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2962 2963 spin_lock_bh(&adapter->cloud_filter_list_lock); 2964 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2965 list_del(&cf->list); 2966 kfree(cf); 2967 adapter->num_cloud_filters--; 2968 } 2969 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2970 2971 iavf_free_misc_irq(adapter); 2972 iavf_free_interrupt_scheme(adapter); 2973 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2974 iavf_shutdown_adminq(&adapter->hw); 2975 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2976 iavf_change_state(adapter, __IAVF_DOWN); 2977 wake_up(&adapter->down_waitqueue); 2978 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2979 } 2980 2981 /** 2982 * iavf_reset_task - Call-back task to handle hardware reset 2983 * @work: pointer to work_struct 2984 * 2985 * During reset we need to shut down and reinitialize the admin queue 2986 * before we can use it to communicate with the PF again. We also clear 2987 * and reinit the rings because that context is lost as well. 2988 **/ 2989 static void iavf_reset_task(struct work_struct *work) 2990 { 2991 struct iavf_adapter *adapter = container_of(work, 2992 struct iavf_adapter, 2993 reset_task); 2994 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2995 struct net_device *netdev = adapter->netdev; 2996 struct iavf_hw *hw = &adapter->hw; 2997 struct iavf_mac_filter *f, *ftmp; 2998 struct iavf_cloud_filter *cf; 2999 enum iavf_status status; 3000 u32 reg_val; 3001 int i = 0, err; 3002 bool running; 3003 3004 /* When device is being removed it doesn't make sense to run the reset 3005 * task, just return in such a case. 3006 */ 3007 if (!mutex_trylock(&adapter->crit_lock)) { 3008 if (adapter->state != __IAVF_REMOVE) 3009 queue_work(adapter->wq, &adapter->reset_task); 3010 3011 return; 3012 } 3013 3014 iavf_misc_irq_disable(adapter); 3015 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 3016 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 3017 /* Restart the AQ here. If we have been reset but didn't 3018 * detect it, or if the PF had to reinit, our AQ will be hosed. 3019 */ 3020 iavf_shutdown_adminq(hw); 3021 iavf_init_adminq(hw); 3022 iavf_request_reset(adapter); 3023 } 3024 adapter->flags |= IAVF_FLAG_RESET_PENDING; 3025 3026 /* poll until we see the reset actually happen */ 3027 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 3028 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 3029 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 3030 if (!reg_val) 3031 break; 3032 usleep_range(5000, 10000); 3033 } 3034 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 3035 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 3036 goto continue_reset; /* act like the reset happened */ 3037 } 3038 3039 /* wait until the reset is complete and the PF is responding to us */ 3040 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 3041 /* sleep first to make sure a minimum wait time is met */ 3042 msleep(IAVF_RESET_WAIT_MS); 3043 3044 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 3045 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3046 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 3047 break; 3048 } 3049 3050 pci_set_master(adapter->pdev); 3051 pci_restore_msi_state(adapter->pdev); 3052 3053 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 3054 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 3055 reg_val); 3056 iavf_disable_vf(adapter); 3057 mutex_unlock(&adapter->crit_lock); 3058 return; /* Do not attempt to reinit. It's dead, Jim. */ 3059 } 3060 3061 continue_reset: 3062 /* We don't use netif_running() because it may be true prior to 3063 * ndo_open() returning, so we can't assume it means all our open 3064 * tasks have finished, since we're not holding the rtnl_lock here. 3065 */ 3066 running = adapter->state == __IAVF_RUNNING; 3067 3068 if (running) { 3069 netif_carrier_off(netdev); 3070 netif_tx_stop_all_queues(netdev); 3071 adapter->link_up = false; 3072 iavf_napi_disable_all(adapter); 3073 } 3074 iavf_irq_disable(adapter); 3075 3076 iavf_change_state(adapter, __IAVF_RESETTING); 3077 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3078 3079 /* free the Tx/Rx rings and descriptors, might be better to just 3080 * re-use them sometime in the future 3081 */ 3082 iavf_free_all_rx_resources(adapter); 3083 iavf_free_all_tx_resources(adapter); 3084 3085 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 3086 /* kill and reinit the admin queue */ 3087 iavf_shutdown_adminq(hw); 3088 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3089 status = iavf_init_adminq(hw); 3090 if (status) { 3091 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 3092 status); 3093 goto reset_err; 3094 } 3095 adapter->aq_required = 0; 3096 3097 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3098 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3099 err = iavf_reinit_interrupt_scheme(adapter, running); 3100 if (err) 3101 goto reset_err; 3102 } 3103 3104 if (RSS_AQ(adapter)) { 3105 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 3106 } else { 3107 err = iavf_init_rss(adapter); 3108 if (err) 3109 goto reset_err; 3110 } 3111 3112 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 3113 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been 3114 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here, 3115 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until 3116 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have 3117 * been successfully sent and negotiated 3118 */ 3119 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS; 3120 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 3121 3122 spin_lock_bh(&adapter->mac_vlan_list_lock); 3123 3124 /* Delete filter for the current MAC address, it could have 3125 * been changed by the PF via administratively set MAC. 3126 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 3127 */ 3128 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3129 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 3130 list_del(&f->list); 3131 kfree(f); 3132 } 3133 } 3134 /* re-add all MAC filters */ 3135 list_for_each_entry(f, &adapter->mac_filter_list, list) { 3136 f->add = true; 3137 } 3138 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3139 3140 /* check if TCs are running and re-add all cloud filters */ 3141 spin_lock_bh(&adapter->cloud_filter_list_lock); 3142 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 3143 adapter->num_tc) { 3144 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 3145 cf->add = true; 3146 } 3147 } 3148 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3149 3150 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 3151 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3152 iavf_misc_irq_enable(adapter); 3153 3154 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2); 3155 3156 /* We were running when the reset started, so we need to restore some 3157 * state here. 3158 */ 3159 if (running) { 3160 /* allocate transmit descriptors */ 3161 err = iavf_setup_all_tx_resources(adapter); 3162 if (err) 3163 goto reset_err; 3164 3165 /* allocate receive descriptors */ 3166 err = iavf_setup_all_rx_resources(adapter); 3167 if (err) 3168 goto reset_err; 3169 3170 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3171 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3172 err = iavf_request_traffic_irqs(adapter, netdev->name); 3173 if (err) 3174 goto reset_err; 3175 3176 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; 3177 } 3178 3179 iavf_configure(adapter); 3180 3181 /* iavf_up_complete() will switch device back 3182 * to __IAVF_RUNNING 3183 */ 3184 iavf_up_complete(adapter); 3185 3186 iavf_irq_enable(adapter, true); 3187 } else { 3188 iavf_change_state(adapter, __IAVF_DOWN); 3189 wake_up(&adapter->down_waitqueue); 3190 } 3191 3192 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3193 3194 wake_up(&adapter->reset_waitqueue); 3195 mutex_unlock(&adapter->crit_lock); 3196 3197 return; 3198 reset_err: 3199 if (running) { 3200 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3201 iavf_free_traffic_irqs(adapter); 3202 } 3203 iavf_disable_vf(adapter); 3204 3205 mutex_unlock(&adapter->crit_lock); 3206 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 3207 } 3208 3209 /** 3210 * iavf_adminq_task - worker thread to clean the admin queue 3211 * @work: pointer to work_struct containing our data 3212 **/ 3213 static void iavf_adminq_task(struct work_struct *work) 3214 { 3215 struct iavf_adapter *adapter = 3216 container_of(work, struct iavf_adapter, adminq_task); 3217 struct iavf_hw *hw = &adapter->hw; 3218 struct iavf_arq_event_info event; 3219 enum virtchnl_ops v_op; 3220 enum iavf_status ret, v_ret; 3221 u32 val, oldval; 3222 u16 pending; 3223 3224 if (!mutex_trylock(&adapter->crit_lock)) { 3225 if (adapter->state == __IAVF_REMOVE) 3226 return; 3227 3228 queue_work(adapter->wq, &adapter->adminq_task); 3229 goto out; 3230 } 3231 3232 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 3233 goto unlock; 3234 3235 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 3236 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 3237 if (!event.msg_buf) 3238 goto unlock; 3239 3240 do { 3241 ret = iavf_clean_arq_element(hw, &event, &pending); 3242 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 3243 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 3244 3245 if (ret || !v_op) 3246 break; /* No event to process or error cleaning ARQ */ 3247 3248 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 3249 event.msg_len); 3250 if (pending != 0) 3251 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 3252 } while (pending); 3253 3254 if (iavf_is_reset_in_progress(adapter)) 3255 goto freedom; 3256 3257 /* check for error indications */ 3258 val = rd32(hw, hw->aq.arq.len); 3259 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 3260 goto freedom; 3261 oldval = val; 3262 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 3263 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 3264 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 3265 } 3266 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 3267 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 3268 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 3269 } 3270 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 3271 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 3272 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 3273 } 3274 if (oldval != val) 3275 wr32(hw, hw->aq.arq.len, val); 3276 3277 val = rd32(hw, hw->aq.asq.len); 3278 oldval = val; 3279 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 3280 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 3281 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 3282 } 3283 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 3284 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 3285 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 3286 } 3287 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 3288 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 3289 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 3290 } 3291 if (oldval != val) 3292 wr32(hw, hw->aq.asq.len, val); 3293 3294 freedom: 3295 kfree(event.msg_buf); 3296 unlock: 3297 mutex_unlock(&adapter->crit_lock); 3298 out: 3299 /* re-enable Admin queue interrupt cause */ 3300 iavf_misc_irq_enable(adapter); 3301 } 3302 3303 /** 3304 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 3305 * @adapter: board private structure 3306 * 3307 * Free all transmit software resources 3308 **/ 3309 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3310 { 3311 int i; 3312 3313 if (!adapter->tx_rings) 3314 return; 3315 3316 for (i = 0; i < adapter->num_active_queues; i++) 3317 if (adapter->tx_rings[i].desc) 3318 iavf_free_tx_resources(&adapter->tx_rings[i]); 3319 } 3320 3321 /** 3322 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3323 * @adapter: board private structure 3324 * 3325 * If this function returns with an error, then it's possible one or 3326 * more of the rings is populated (while the rest are not). It is the 3327 * callers duty to clean those orphaned rings. 3328 * 3329 * Return 0 on success, negative on failure 3330 **/ 3331 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3332 { 3333 int i, err = 0; 3334 3335 for (i = 0; i < adapter->num_active_queues; i++) { 3336 adapter->tx_rings[i].count = adapter->tx_desc_count; 3337 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3338 if (!err) 3339 continue; 3340 dev_err(&adapter->pdev->dev, 3341 "Allocation for Tx Queue %u failed\n", i); 3342 break; 3343 } 3344 3345 return err; 3346 } 3347 3348 /** 3349 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3350 * @adapter: board private structure 3351 * 3352 * If this function returns with an error, then it's possible one or 3353 * more of the rings is populated (while the rest are not). It is the 3354 * callers duty to clean those orphaned rings. 3355 * 3356 * Return 0 on success, negative on failure 3357 **/ 3358 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3359 { 3360 int i, err = 0; 3361 3362 for (i = 0; i < adapter->num_active_queues; i++) { 3363 adapter->rx_rings[i].count = adapter->rx_desc_count; 3364 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3365 if (!err) 3366 continue; 3367 dev_err(&adapter->pdev->dev, 3368 "Allocation for Rx Queue %u failed\n", i); 3369 break; 3370 } 3371 return err; 3372 } 3373 3374 /** 3375 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3376 * @adapter: board private structure 3377 * 3378 * Free all receive software resources 3379 **/ 3380 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3381 { 3382 int i; 3383 3384 if (!adapter->rx_rings) 3385 return; 3386 3387 for (i = 0; i < adapter->num_active_queues; i++) 3388 if (adapter->rx_rings[i].desc) 3389 iavf_free_rx_resources(&adapter->rx_rings[i]); 3390 } 3391 3392 /** 3393 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3394 * @adapter: board private structure 3395 * @max_tx_rate: max Tx bw for a tc 3396 **/ 3397 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3398 u64 max_tx_rate) 3399 { 3400 int speed = 0, ret = 0; 3401 3402 if (ADV_LINK_SUPPORT(adapter)) { 3403 if (adapter->link_speed_mbps < U32_MAX) { 3404 speed = adapter->link_speed_mbps; 3405 goto validate_bw; 3406 } else { 3407 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3408 return -EINVAL; 3409 } 3410 } 3411 3412 switch (adapter->link_speed) { 3413 case VIRTCHNL_LINK_SPEED_40GB: 3414 speed = SPEED_40000; 3415 break; 3416 case VIRTCHNL_LINK_SPEED_25GB: 3417 speed = SPEED_25000; 3418 break; 3419 case VIRTCHNL_LINK_SPEED_20GB: 3420 speed = SPEED_20000; 3421 break; 3422 case VIRTCHNL_LINK_SPEED_10GB: 3423 speed = SPEED_10000; 3424 break; 3425 case VIRTCHNL_LINK_SPEED_5GB: 3426 speed = SPEED_5000; 3427 break; 3428 case VIRTCHNL_LINK_SPEED_2_5GB: 3429 speed = SPEED_2500; 3430 break; 3431 case VIRTCHNL_LINK_SPEED_1GB: 3432 speed = SPEED_1000; 3433 break; 3434 case VIRTCHNL_LINK_SPEED_100MB: 3435 speed = SPEED_100; 3436 break; 3437 default: 3438 break; 3439 } 3440 3441 validate_bw: 3442 if (max_tx_rate > speed) { 3443 dev_err(&adapter->pdev->dev, 3444 "Invalid tx rate specified\n"); 3445 ret = -EINVAL; 3446 } 3447 3448 return ret; 3449 } 3450 3451 /** 3452 * iavf_validate_ch_config - validate queue mapping info 3453 * @adapter: board private structure 3454 * @mqprio_qopt: queue parameters 3455 * 3456 * This function validates if the config provided by the user to 3457 * configure queue channels is valid or not. Returns 0 on a valid 3458 * config. 3459 **/ 3460 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3461 struct tc_mqprio_qopt_offload *mqprio_qopt) 3462 { 3463 u64 total_max_rate = 0; 3464 u32 tx_rate_rem = 0; 3465 int i, num_qps = 0; 3466 u64 tx_rate = 0; 3467 int ret = 0; 3468 3469 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3470 mqprio_qopt->qopt.num_tc < 1) 3471 return -EINVAL; 3472 3473 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3474 if (!mqprio_qopt->qopt.count[i] || 3475 mqprio_qopt->qopt.offset[i] != num_qps) 3476 return -EINVAL; 3477 if (mqprio_qopt->min_rate[i]) { 3478 dev_err(&adapter->pdev->dev, 3479 "Invalid min tx rate (greater than 0) specified for TC%d\n", 3480 i); 3481 return -EINVAL; 3482 } 3483 3484 /* convert to Mbps */ 3485 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3486 IAVF_MBPS_DIVISOR); 3487 3488 if (mqprio_qopt->max_rate[i] && 3489 tx_rate < IAVF_MBPS_QUANTA) { 3490 dev_err(&adapter->pdev->dev, 3491 "Invalid max tx rate for TC%d, minimum %dMbps\n", 3492 i, IAVF_MBPS_QUANTA); 3493 return -EINVAL; 3494 } 3495 3496 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem); 3497 3498 if (tx_rate_rem != 0) { 3499 dev_err(&adapter->pdev->dev, 3500 "Invalid max tx rate for TC%d, not divisible by %d\n", 3501 i, IAVF_MBPS_QUANTA); 3502 return -EINVAL; 3503 } 3504 3505 total_max_rate += tx_rate; 3506 num_qps += mqprio_qopt->qopt.count[i]; 3507 } 3508 if (num_qps > adapter->num_active_queues) { 3509 dev_err(&adapter->pdev->dev, 3510 "Cannot support requested number of queues\n"); 3511 return -EINVAL; 3512 } 3513 3514 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3515 return ret; 3516 } 3517 3518 /** 3519 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3520 * @adapter: board private structure 3521 **/ 3522 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3523 { 3524 struct iavf_cloud_filter *cf, *cftmp; 3525 3526 spin_lock_bh(&adapter->cloud_filter_list_lock); 3527 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3528 list) { 3529 list_del(&cf->list); 3530 kfree(cf); 3531 adapter->num_cloud_filters--; 3532 } 3533 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3534 } 3535 3536 /** 3537 * __iavf_setup_tc - configure multiple traffic classes 3538 * @netdev: network interface device structure 3539 * @type_data: tc offload data 3540 * 3541 * This function processes the config information provided by the 3542 * user to configure traffic classes/queue channels and packages the 3543 * information to request the PF to setup traffic classes. 3544 * 3545 * Returns 0 on success. 3546 **/ 3547 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3548 { 3549 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3550 struct iavf_adapter *adapter = netdev_priv(netdev); 3551 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3552 u8 num_tc = 0, total_qps = 0; 3553 int ret = 0, netdev_tc = 0; 3554 u64 max_tx_rate; 3555 u16 mode; 3556 int i; 3557 3558 num_tc = mqprio_qopt->qopt.num_tc; 3559 mode = mqprio_qopt->mode; 3560 3561 /* delete queue_channel */ 3562 if (!mqprio_qopt->qopt.hw) { 3563 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3564 /* reset the tc configuration */ 3565 netdev_reset_tc(netdev); 3566 adapter->num_tc = 0; 3567 netif_tx_stop_all_queues(netdev); 3568 netif_tx_disable(netdev); 3569 iavf_del_all_cloud_filters(adapter); 3570 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3571 total_qps = adapter->orig_num_active_queues; 3572 goto exit; 3573 } else { 3574 return -EINVAL; 3575 } 3576 } 3577 3578 /* add queue channel */ 3579 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3580 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3581 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3582 return -EOPNOTSUPP; 3583 } 3584 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3585 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3586 return -EINVAL; 3587 } 3588 3589 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3590 if (ret) 3591 return ret; 3592 /* Return if same TC config is requested */ 3593 if (adapter->num_tc == num_tc) 3594 return 0; 3595 adapter->num_tc = num_tc; 3596 3597 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3598 if (i < num_tc) { 3599 adapter->ch_config.ch_info[i].count = 3600 mqprio_qopt->qopt.count[i]; 3601 adapter->ch_config.ch_info[i].offset = 3602 mqprio_qopt->qopt.offset[i]; 3603 total_qps += mqprio_qopt->qopt.count[i]; 3604 max_tx_rate = mqprio_qopt->max_rate[i]; 3605 /* convert to Mbps */ 3606 max_tx_rate = div_u64(max_tx_rate, 3607 IAVF_MBPS_DIVISOR); 3608 adapter->ch_config.ch_info[i].max_tx_rate = 3609 max_tx_rate; 3610 } else { 3611 adapter->ch_config.ch_info[i].count = 1; 3612 adapter->ch_config.ch_info[i].offset = 0; 3613 } 3614 } 3615 3616 /* Take snapshot of original config such as "num_active_queues" 3617 * It is used later when delete ADQ flow is exercised, so that 3618 * once delete ADQ flow completes, VF shall go back to its 3619 * original queue configuration 3620 */ 3621 3622 adapter->orig_num_active_queues = adapter->num_active_queues; 3623 3624 /* Store queue info based on TC so that VF gets configured 3625 * with correct number of queues when VF completes ADQ config 3626 * flow 3627 */ 3628 adapter->ch_config.total_qps = total_qps; 3629 3630 netif_tx_stop_all_queues(netdev); 3631 netif_tx_disable(netdev); 3632 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3633 netdev_reset_tc(netdev); 3634 /* Report the tc mapping up the stack */ 3635 netdev_set_num_tc(adapter->netdev, num_tc); 3636 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3637 u16 qcount = mqprio_qopt->qopt.count[i]; 3638 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3639 3640 if (i < num_tc) 3641 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3642 qoffset); 3643 } 3644 } 3645 exit: 3646 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 3647 return 0; 3648 3649 netif_set_real_num_rx_queues(netdev, total_qps); 3650 netif_set_real_num_tx_queues(netdev, total_qps); 3651 3652 return ret; 3653 } 3654 3655 /** 3656 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3657 * @adapter: board private structure 3658 * @f: pointer to struct flow_cls_offload 3659 * @filter: pointer to cloud filter structure 3660 */ 3661 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3662 struct flow_cls_offload *f, 3663 struct iavf_cloud_filter *filter) 3664 { 3665 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3666 struct flow_dissector *dissector = rule->match.dissector; 3667 u16 n_proto_mask = 0; 3668 u16 n_proto_key = 0; 3669 u8 field_flags = 0; 3670 u16 addr_type = 0; 3671 u16 n_proto = 0; 3672 int i = 0; 3673 struct virtchnl_filter *vf = &filter->f; 3674 3675 if (dissector->used_keys & 3676 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 3677 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 3678 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3679 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 3680 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3681 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3682 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | 3683 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3684 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n", 3685 dissector->used_keys); 3686 return -EOPNOTSUPP; 3687 } 3688 3689 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3690 struct flow_match_enc_keyid match; 3691 3692 flow_rule_match_enc_keyid(rule, &match); 3693 if (match.mask->keyid != 0) 3694 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3695 } 3696 3697 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3698 struct flow_match_basic match; 3699 3700 flow_rule_match_basic(rule, &match); 3701 n_proto_key = ntohs(match.key->n_proto); 3702 n_proto_mask = ntohs(match.mask->n_proto); 3703 3704 if (n_proto_key == ETH_P_ALL) { 3705 n_proto_key = 0; 3706 n_proto_mask = 0; 3707 } 3708 n_proto = n_proto_key & n_proto_mask; 3709 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3710 return -EINVAL; 3711 if (n_proto == ETH_P_IPV6) { 3712 /* specify flow type as TCP IPv6 */ 3713 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3714 } 3715 3716 if (match.key->ip_proto != IPPROTO_TCP) { 3717 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3718 return -EINVAL; 3719 } 3720 } 3721 3722 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3723 struct flow_match_eth_addrs match; 3724 3725 flow_rule_match_eth_addrs(rule, &match); 3726 3727 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3728 if (!is_zero_ether_addr(match.mask->dst)) { 3729 if (is_broadcast_ether_addr(match.mask->dst)) { 3730 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3731 } else { 3732 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3733 match.mask->dst); 3734 return -EINVAL; 3735 } 3736 } 3737 3738 if (!is_zero_ether_addr(match.mask->src)) { 3739 if (is_broadcast_ether_addr(match.mask->src)) { 3740 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3741 } else { 3742 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3743 match.mask->src); 3744 return -EINVAL; 3745 } 3746 } 3747 3748 if (!is_zero_ether_addr(match.key->dst)) 3749 if (is_valid_ether_addr(match.key->dst) || 3750 is_multicast_ether_addr(match.key->dst)) { 3751 /* set the mask if a valid dst_mac address */ 3752 for (i = 0; i < ETH_ALEN; i++) 3753 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 3754 ether_addr_copy(vf->data.tcp_spec.dst_mac, 3755 match.key->dst); 3756 } 3757 3758 if (!is_zero_ether_addr(match.key->src)) 3759 if (is_valid_ether_addr(match.key->src) || 3760 is_multicast_ether_addr(match.key->src)) { 3761 /* set the mask if a valid dst_mac address */ 3762 for (i = 0; i < ETH_ALEN; i++) 3763 vf->mask.tcp_spec.src_mac[i] |= 0xff; 3764 ether_addr_copy(vf->data.tcp_spec.src_mac, 3765 match.key->src); 3766 } 3767 } 3768 3769 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 3770 struct flow_match_vlan match; 3771 3772 flow_rule_match_vlan(rule, &match); 3773 if (match.mask->vlan_id) { 3774 if (match.mask->vlan_id == VLAN_VID_MASK) { 3775 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 3776 } else { 3777 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 3778 match.mask->vlan_id); 3779 return -EINVAL; 3780 } 3781 } 3782 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 3783 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 3784 } 3785 3786 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 3787 struct flow_match_control match; 3788 3789 flow_rule_match_control(rule, &match); 3790 addr_type = match.key->addr_type; 3791 } 3792 3793 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 3794 struct flow_match_ipv4_addrs match; 3795 3796 flow_rule_match_ipv4_addrs(rule, &match); 3797 if (match.mask->dst) { 3798 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 3799 field_flags |= IAVF_CLOUD_FIELD_IIP; 3800 } else { 3801 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 3802 be32_to_cpu(match.mask->dst)); 3803 return -EINVAL; 3804 } 3805 } 3806 3807 if (match.mask->src) { 3808 if (match.mask->src == cpu_to_be32(0xffffffff)) { 3809 field_flags |= IAVF_CLOUD_FIELD_IIP; 3810 } else { 3811 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 3812 be32_to_cpu(match.mask->src)); 3813 return -EINVAL; 3814 } 3815 } 3816 3817 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 3818 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 3819 return -EINVAL; 3820 } 3821 if (match.key->dst) { 3822 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 3823 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 3824 } 3825 if (match.key->src) { 3826 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 3827 vf->data.tcp_spec.src_ip[0] = match.key->src; 3828 } 3829 } 3830 3831 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 3832 struct flow_match_ipv6_addrs match; 3833 3834 flow_rule_match_ipv6_addrs(rule, &match); 3835 3836 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 3837 if (ipv6_addr_any(&match.mask->dst)) { 3838 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 3839 IPV6_ADDR_ANY); 3840 return -EINVAL; 3841 } 3842 3843 /* src and dest IPv6 address should not be LOOPBACK 3844 * (0:0:0:0:0:0:0:1) which can be represented as ::1 3845 */ 3846 if (ipv6_addr_loopback(&match.key->dst) || 3847 ipv6_addr_loopback(&match.key->src)) { 3848 dev_err(&adapter->pdev->dev, 3849 "ipv6 addr should not be loopback\n"); 3850 return -EINVAL; 3851 } 3852 if (!ipv6_addr_any(&match.mask->dst) || 3853 !ipv6_addr_any(&match.mask->src)) 3854 field_flags |= IAVF_CLOUD_FIELD_IIP; 3855 3856 for (i = 0; i < 4; i++) 3857 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 3858 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 3859 sizeof(vf->data.tcp_spec.dst_ip)); 3860 for (i = 0; i < 4; i++) 3861 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 3862 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 3863 sizeof(vf->data.tcp_spec.src_ip)); 3864 } 3865 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 3866 struct flow_match_ports match; 3867 3868 flow_rule_match_ports(rule, &match); 3869 if (match.mask->src) { 3870 if (match.mask->src == cpu_to_be16(0xffff)) { 3871 field_flags |= IAVF_CLOUD_FIELD_IIP; 3872 } else { 3873 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 3874 be16_to_cpu(match.mask->src)); 3875 return -EINVAL; 3876 } 3877 } 3878 3879 if (match.mask->dst) { 3880 if (match.mask->dst == cpu_to_be16(0xffff)) { 3881 field_flags |= IAVF_CLOUD_FIELD_IIP; 3882 } else { 3883 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 3884 be16_to_cpu(match.mask->dst)); 3885 return -EINVAL; 3886 } 3887 } 3888 if (match.key->dst) { 3889 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 3890 vf->data.tcp_spec.dst_port = match.key->dst; 3891 } 3892 3893 if (match.key->src) { 3894 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 3895 vf->data.tcp_spec.src_port = match.key->src; 3896 } 3897 } 3898 vf->field_flags = field_flags; 3899 3900 return 0; 3901 } 3902 3903 /** 3904 * iavf_handle_tclass - Forward to a traffic class on the device 3905 * @adapter: board private structure 3906 * @tc: traffic class index on the device 3907 * @filter: pointer to cloud filter structure 3908 */ 3909 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 3910 struct iavf_cloud_filter *filter) 3911 { 3912 if (tc == 0) 3913 return 0; 3914 if (tc < adapter->num_tc) { 3915 if (!filter->f.data.tcp_spec.dst_port) { 3916 dev_err(&adapter->pdev->dev, 3917 "Specify destination port to redirect to traffic class other than TC0\n"); 3918 return -EINVAL; 3919 } 3920 } 3921 /* redirect to a traffic class on the same device */ 3922 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 3923 filter->f.action_meta = tc; 3924 return 0; 3925 } 3926 3927 /** 3928 * iavf_find_cf - Find the cloud filter in the list 3929 * @adapter: Board private structure 3930 * @cookie: filter specific cookie 3931 * 3932 * Returns ptr to the filter object or NULL. Must be called while holding the 3933 * cloud_filter_list_lock. 3934 */ 3935 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 3936 unsigned long *cookie) 3937 { 3938 struct iavf_cloud_filter *filter = NULL; 3939 3940 if (!cookie) 3941 return NULL; 3942 3943 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 3944 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 3945 return filter; 3946 } 3947 return NULL; 3948 } 3949 3950 /** 3951 * iavf_configure_clsflower - Add tc flower filters 3952 * @adapter: board private structure 3953 * @cls_flower: Pointer to struct flow_cls_offload 3954 */ 3955 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 3956 struct flow_cls_offload *cls_flower) 3957 { 3958 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 3959 struct iavf_cloud_filter *filter = NULL; 3960 int err = -EINVAL, count = 50; 3961 3962 if (tc < 0) { 3963 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 3964 return -EINVAL; 3965 } 3966 3967 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 3968 if (!filter) 3969 return -ENOMEM; 3970 3971 while (!mutex_trylock(&adapter->crit_lock)) { 3972 if (--count == 0) { 3973 kfree(filter); 3974 return err; 3975 } 3976 udelay(1); 3977 } 3978 3979 filter->cookie = cls_flower->cookie; 3980 3981 /* bail out here if filter already exists */ 3982 spin_lock_bh(&adapter->cloud_filter_list_lock); 3983 if (iavf_find_cf(adapter, &cls_flower->cookie)) { 3984 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n"); 3985 err = -EEXIST; 3986 goto spin_unlock; 3987 } 3988 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3989 3990 /* set the mask to all zeroes to begin with */ 3991 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 3992 /* start out with flow type and eth type IPv4 to begin with */ 3993 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 3994 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 3995 if (err) 3996 goto err; 3997 3998 err = iavf_handle_tclass(adapter, tc, filter); 3999 if (err) 4000 goto err; 4001 4002 /* add filter to the list */ 4003 spin_lock_bh(&adapter->cloud_filter_list_lock); 4004 list_add_tail(&filter->list, &adapter->cloud_filter_list); 4005 adapter->num_cloud_filters++; 4006 filter->add = true; 4007 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 4008 spin_unlock: 4009 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4010 err: 4011 if (err) 4012 kfree(filter); 4013 4014 mutex_unlock(&adapter->crit_lock); 4015 return err; 4016 } 4017 4018 /** 4019 * iavf_delete_clsflower - Remove tc flower filters 4020 * @adapter: board private structure 4021 * @cls_flower: Pointer to struct flow_cls_offload 4022 */ 4023 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 4024 struct flow_cls_offload *cls_flower) 4025 { 4026 struct iavf_cloud_filter *filter = NULL; 4027 int err = 0; 4028 4029 spin_lock_bh(&adapter->cloud_filter_list_lock); 4030 filter = iavf_find_cf(adapter, &cls_flower->cookie); 4031 if (filter) { 4032 filter->del = true; 4033 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 4034 } else { 4035 err = -EINVAL; 4036 } 4037 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4038 4039 return err; 4040 } 4041 4042 /** 4043 * iavf_setup_tc_cls_flower - flower classifier offloads 4044 * @adapter: board private structure 4045 * @cls_flower: pointer to flow_cls_offload struct with flow info 4046 */ 4047 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 4048 struct flow_cls_offload *cls_flower) 4049 { 4050 switch (cls_flower->command) { 4051 case FLOW_CLS_REPLACE: 4052 return iavf_configure_clsflower(adapter, cls_flower); 4053 case FLOW_CLS_DESTROY: 4054 return iavf_delete_clsflower(adapter, cls_flower); 4055 case FLOW_CLS_STATS: 4056 return -EOPNOTSUPP; 4057 default: 4058 return -EOPNOTSUPP; 4059 } 4060 } 4061 4062 /** 4063 * iavf_setup_tc_block_cb - block callback for tc 4064 * @type: type of offload 4065 * @type_data: offload data 4066 * @cb_priv: 4067 * 4068 * This function is the block callback for traffic classes 4069 **/ 4070 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 4071 void *cb_priv) 4072 { 4073 struct iavf_adapter *adapter = cb_priv; 4074 4075 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 4076 return -EOPNOTSUPP; 4077 4078 switch (type) { 4079 case TC_SETUP_CLSFLOWER: 4080 return iavf_setup_tc_cls_flower(cb_priv, type_data); 4081 default: 4082 return -EOPNOTSUPP; 4083 } 4084 } 4085 4086 static LIST_HEAD(iavf_block_cb_list); 4087 4088 /** 4089 * iavf_setup_tc - configure multiple traffic classes 4090 * @netdev: network interface device structure 4091 * @type: type of offload 4092 * @type_data: tc offload data 4093 * 4094 * This function is the callback to ndo_setup_tc in the 4095 * netdev_ops. 4096 * 4097 * Returns 0 on success 4098 **/ 4099 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 4100 void *type_data) 4101 { 4102 struct iavf_adapter *adapter = netdev_priv(netdev); 4103 4104 switch (type) { 4105 case TC_SETUP_QDISC_MQPRIO: 4106 return __iavf_setup_tc(netdev, type_data); 4107 case TC_SETUP_BLOCK: 4108 return flow_block_cb_setup_simple(type_data, 4109 &iavf_block_cb_list, 4110 iavf_setup_tc_block_cb, 4111 adapter, adapter, true); 4112 default: 4113 return -EOPNOTSUPP; 4114 } 4115 } 4116 4117 /** 4118 * iavf_restore_fdir_filters 4119 * @adapter: board private structure 4120 * 4121 * Restore existing FDIR filters when VF netdev comes back up. 4122 **/ 4123 static void iavf_restore_fdir_filters(struct iavf_adapter *adapter) 4124 { 4125 struct iavf_fdir_fltr *f; 4126 4127 spin_lock_bh(&adapter->fdir_fltr_lock); 4128 list_for_each_entry(f, &adapter->fdir_list_head, list) { 4129 if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) { 4130 /* Cancel a request, keep filter as active */ 4131 f->state = IAVF_FDIR_FLTR_ACTIVE; 4132 } else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING || 4133 f->state == IAVF_FDIR_FLTR_INACTIVE) { 4134 /* Add filters which are inactive or have a pending 4135 * request to PF to be deleted 4136 */ 4137 f->state = IAVF_FDIR_FLTR_ADD_REQUEST; 4138 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER; 4139 } 4140 } 4141 spin_unlock_bh(&adapter->fdir_fltr_lock); 4142 } 4143 4144 /** 4145 * iavf_open - Called when a network interface is made active 4146 * @netdev: network interface device structure 4147 * 4148 * Returns 0 on success, negative value on failure 4149 * 4150 * The open entry point is called when a network interface is made 4151 * active by the system (IFF_UP). At this point all resources needed 4152 * for transmit and receive operations are allocated, the interrupt 4153 * handler is registered with the OS, the watchdog is started, 4154 * and the stack is notified that the interface is ready. 4155 **/ 4156 static int iavf_open(struct net_device *netdev) 4157 { 4158 struct iavf_adapter *adapter = netdev_priv(netdev); 4159 int err; 4160 4161 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 4162 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 4163 return -EIO; 4164 } 4165 4166 while (!mutex_trylock(&adapter->crit_lock)) { 4167 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock 4168 * is already taken and iavf_open is called from an upper 4169 * device's notifier reacting on NETDEV_REGISTER event. 4170 * We have to leave here to avoid dead lock. 4171 */ 4172 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER) 4173 return -EBUSY; 4174 4175 usleep_range(500, 1000); 4176 } 4177 4178 if (adapter->state != __IAVF_DOWN) { 4179 err = -EBUSY; 4180 goto err_unlock; 4181 } 4182 4183 if (adapter->state == __IAVF_RUNNING && 4184 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 4185 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 4186 err = 0; 4187 goto err_unlock; 4188 } 4189 4190 /* allocate transmit descriptors */ 4191 err = iavf_setup_all_tx_resources(adapter); 4192 if (err) 4193 goto err_setup_tx; 4194 4195 /* allocate receive descriptors */ 4196 err = iavf_setup_all_rx_resources(adapter); 4197 if (err) 4198 goto err_setup_rx; 4199 4200 /* clear any pending interrupts, may auto mask */ 4201 err = iavf_request_traffic_irqs(adapter, netdev->name); 4202 if (err) 4203 goto err_req_irq; 4204 4205 spin_lock_bh(&adapter->mac_vlan_list_lock); 4206 4207 iavf_add_filter(adapter, adapter->hw.mac.addr); 4208 4209 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4210 4211 /* Restore filters that were removed with IFF_DOWN */ 4212 iavf_restore_filters(adapter); 4213 iavf_restore_fdir_filters(adapter); 4214 4215 iavf_configure(adapter); 4216 4217 iavf_up_complete(adapter); 4218 4219 iavf_irq_enable(adapter, true); 4220 4221 mutex_unlock(&adapter->crit_lock); 4222 4223 return 0; 4224 4225 err_req_irq: 4226 iavf_down(adapter); 4227 iavf_free_traffic_irqs(adapter); 4228 err_setup_rx: 4229 iavf_free_all_rx_resources(adapter); 4230 err_setup_tx: 4231 iavf_free_all_tx_resources(adapter); 4232 err_unlock: 4233 mutex_unlock(&adapter->crit_lock); 4234 4235 return err; 4236 } 4237 4238 /** 4239 * iavf_close - Disables a network interface 4240 * @netdev: network interface device structure 4241 * 4242 * Returns 0, this is not allowed to fail 4243 * 4244 * The close entry point is called when an interface is de-activated 4245 * by the OS. The hardware is still under the drivers control, but 4246 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 4247 * are freed, along with all transmit and receive resources. 4248 **/ 4249 static int iavf_close(struct net_device *netdev) 4250 { 4251 struct iavf_adapter *adapter = netdev_priv(netdev); 4252 u64 aq_to_restore; 4253 int status; 4254 4255 mutex_lock(&adapter->crit_lock); 4256 4257 if (adapter->state <= __IAVF_DOWN_PENDING) { 4258 mutex_unlock(&adapter->crit_lock); 4259 return 0; 4260 } 4261 4262 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 4263 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before 4264 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl 4265 * deadlock with adminq_task() until iavf_close timeouts. We must send 4266 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make 4267 * disable queues possible for vf. Give only necessary flags to 4268 * iavf_down and save other to set them right before iavf_close() 4269 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and 4270 * iavf will be in DOWN state. 4271 */ 4272 aq_to_restore = adapter->aq_required; 4273 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG; 4274 4275 /* Remove flags which we do not want to send after close or we want to 4276 * send before disable queues. 4277 */ 4278 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG | 4279 IAVF_FLAG_AQ_ENABLE_QUEUES | 4280 IAVF_FLAG_AQ_CONFIGURE_QUEUES | 4281 IAVF_FLAG_AQ_ADD_VLAN_FILTER | 4282 IAVF_FLAG_AQ_ADD_MAC_FILTER | 4283 IAVF_FLAG_AQ_ADD_CLOUD_FILTER | 4284 IAVF_FLAG_AQ_ADD_FDIR_FILTER | 4285 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG); 4286 4287 iavf_down(adapter); 4288 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 4289 iavf_free_traffic_irqs(adapter); 4290 4291 mutex_unlock(&adapter->crit_lock); 4292 4293 /* We explicitly don't free resources here because the hardware is 4294 * still active and can DMA into memory. Resources are cleared in 4295 * iavf_virtchnl_completion() after we get confirmation from the PF 4296 * driver that the rings have been stopped. 4297 * 4298 * Also, we wait for state to transition to __IAVF_DOWN before 4299 * returning. State change occurs in iavf_virtchnl_completion() after 4300 * VF resources are released (which occurs after PF driver processes and 4301 * responds to admin queue commands). 4302 */ 4303 4304 status = wait_event_timeout(adapter->down_waitqueue, 4305 adapter->state == __IAVF_DOWN, 4306 msecs_to_jiffies(500)); 4307 if (!status) 4308 netdev_warn(netdev, "Device resources not yet released\n"); 4309 4310 mutex_lock(&adapter->crit_lock); 4311 adapter->aq_required |= aq_to_restore; 4312 mutex_unlock(&adapter->crit_lock); 4313 return 0; 4314 } 4315 4316 /** 4317 * iavf_change_mtu - Change the Maximum Transfer Unit 4318 * @netdev: network interface device structure 4319 * @new_mtu: new value for maximum frame size 4320 * 4321 * Returns 0 on success, negative on failure 4322 **/ 4323 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 4324 { 4325 struct iavf_adapter *adapter = netdev_priv(netdev); 4326 int ret = 0; 4327 4328 netdev_dbg(netdev, "changing MTU from %d to %d\n", 4329 netdev->mtu, new_mtu); 4330 netdev->mtu = new_mtu; 4331 4332 if (netif_running(netdev)) { 4333 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4334 ret = iavf_wait_for_reset(adapter); 4335 if (ret < 0) 4336 netdev_warn(netdev, "MTU change interrupted waiting for reset"); 4337 else if (ret) 4338 netdev_warn(netdev, "MTU change timed out waiting for reset"); 4339 } 4340 4341 return ret; 4342 } 4343 4344 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 4345 NETIF_F_HW_VLAN_CTAG_TX | \ 4346 NETIF_F_HW_VLAN_STAG_RX | \ 4347 NETIF_F_HW_VLAN_STAG_TX) 4348 4349 /** 4350 * iavf_set_features - set the netdev feature flags 4351 * @netdev: ptr to the netdev being adjusted 4352 * @features: the feature set that the stack is suggesting 4353 * Note: expects to be called while under rtnl_lock() 4354 **/ 4355 static int iavf_set_features(struct net_device *netdev, 4356 netdev_features_t features) 4357 { 4358 struct iavf_adapter *adapter = netdev_priv(netdev); 4359 4360 /* trigger update on any VLAN feature change */ 4361 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 4362 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 4363 iavf_set_vlan_offload_features(adapter, netdev->features, 4364 features); 4365 if (CRC_OFFLOAD_ALLOWED(adapter) && 4366 ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS))) 4367 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4368 4369 return 0; 4370 } 4371 4372 /** 4373 * iavf_features_check - Validate encapsulated packet conforms to limits 4374 * @skb: skb buff 4375 * @dev: This physical port's netdev 4376 * @features: Offload features that the stack believes apply 4377 **/ 4378 static netdev_features_t iavf_features_check(struct sk_buff *skb, 4379 struct net_device *dev, 4380 netdev_features_t features) 4381 { 4382 size_t len; 4383 4384 /* No point in doing any of this if neither checksum nor GSO are 4385 * being requested for this frame. We can rule out both by just 4386 * checking for CHECKSUM_PARTIAL 4387 */ 4388 if (skb->ip_summed != CHECKSUM_PARTIAL) 4389 return features; 4390 4391 /* We cannot support GSO if the MSS is going to be less than 4392 * 64 bytes. If it is then we need to drop support for GSO. 4393 */ 4394 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4395 features &= ~NETIF_F_GSO_MASK; 4396 4397 /* MACLEN can support at most 63 words */ 4398 len = skb_network_header(skb) - skb->data; 4399 if (len & ~(63 * 2)) 4400 goto out_err; 4401 4402 /* IPLEN and EIPLEN can support at most 127 dwords */ 4403 len = skb_transport_header(skb) - skb_network_header(skb); 4404 if (len & ~(127 * 4)) 4405 goto out_err; 4406 4407 if (skb->encapsulation) { 4408 /* L4TUNLEN can support 127 words */ 4409 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4410 if (len & ~(127 * 2)) 4411 goto out_err; 4412 4413 /* IPLEN can support at most 127 dwords */ 4414 len = skb_inner_transport_header(skb) - 4415 skb_inner_network_header(skb); 4416 if (len & ~(127 * 4)) 4417 goto out_err; 4418 } 4419 4420 /* No need to validate L4LEN as TCP is the only protocol with a 4421 * flexible value and we support all possible values supported 4422 * by TCP, which is at most 15 dwords 4423 */ 4424 4425 return features; 4426 out_err: 4427 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4428 } 4429 4430 /** 4431 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4432 * @adapter: board private structure 4433 * 4434 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4435 * were negotiated determine the VLAN features that can be toggled on and off. 4436 **/ 4437 static netdev_features_t 4438 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4439 { 4440 netdev_features_t hw_features = 0; 4441 4442 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4443 return hw_features; 4444 4445 /* Enable VLAN features if supported */ 4446 if (VLAN_ALLOWED(adapter)) { 4447 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4448 NETIF_F_HW_VLAN_CTAG_RX); 4449 } else if (VLAN_V2_ALLOWED(adapter)) { 4450 struct virtchnl_vlan_caps *vlan_v2_caps = 4451 &adapter->vlan_v2_caps; 4452 struct virtchnl_vlan_supported_caps *stripping_support = 4453 &vlan_v2_caps->offloads.stripping_support; 4454 struct virtchnl_vlan_supported_caps *insertion_support = 4455 &vlan_v2_caps->offloads.insertion_support; 4456 4457 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4458 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4459 if (stripping_support->outer & 4460 VIRTCHNL_VLAN_ETHERTYPE_8100) 4461 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4462 if (stripping_support->outer & 4463 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4464 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4465 } else if (stripping_support->inner != 4466 VIRTCHNL_VLAN_UNSUPPORTED && 4467 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4468 if (stripping_support->inner & 4469 VIRTCHNL_VLAN_ETHERTYPE_8100) 4470 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4471 } 4472 4473 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4474 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4475 if (insertion_support->outer & 4476 VIRTCHNL_VLAN_ETHERTYPE_8100) 4477 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4478 if (insertion_support->outer & 4479 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4480 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4481 } else if (insertion_support->inner && 4482 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4483 if (insertion_support->inner & 4484 VIRTCHNL_VLAN_ETHERTYPE_8100) 4485 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4486 } 4487 } 4488 4489 if (CRC_OFFLOAD_ALLOWED(adapter)) 4490 hw_features |= NETIF_F_RXFCS; 4491 4492 return hw_features; 4493 } 4494 4495 /** 4496 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4497 * @adapter: board private structure 4498 * 4499 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4500 * were negotiated determine the VLAN features that are enabled by default. 4501 **/ 4502 static netdev_features_t 4503 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4504 { 4505 netdev_features_t features = 0; 4506 4507 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4508 return features; 4509 4510 if (VLAN_ALLOWED(adapter)) { 4511 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4512 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4513 } else if (VLAN_V2_ALLOWED(adapter)) { 4514 struct virtchnl_vlan_caps *vlan_v2_caps = 4515 &adapter->vlan_v2_caps; 4516 struct virtchnl_vlan_supported_caps *filtering_support = 4517 &vlan_v2_caps->filtering.filtering_support; 4518 struct virtchnl_vlan_supported_caps *stripping_support = 4519 &vlan_v2_caps->offloads.stripping_support; 4520 struct virtchnl_vlan_supported_caps *insertion_support = 4521 &vlan_v2_caps->offloads.insertion_support; 4522 u32 ethertype_init; 4523 4524 /* give priority to outer stripping and don't support both outer 4525 * and inner stripping 4526 */ 4527 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4528 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4529 if (stripping_support->outer & 4530 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4531 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4532 features |= NETIF_F_HW_VLAN_CTAG_RX; 4533 else if (stripping_support->outer & 4534 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4535 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4536 features |= NETIF_F_HW_VLAN_STAG_RX; 4537 } else if (stripping_support->inner != 4538 VIRTCHNL_VLAN_UNSUPPORTED) { 4539 if (stripping_support->inner & 4540 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4541 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4542 features |= NETIF_F_HW_VLAN_CTAG_RX; 4543 } 4544 4545 /* give priority to outer insertion and don't support both outer 4546 * and inner insertion 4547 */ 4548 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4549 if (insertion_support->outer & 4550 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4551 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4552 features |= NETIF_F_HW_VLAN_CTAG_TX; 4553 else if (insertion_support->outer & 4554 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4555 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4556 features |= NETIF_F_HW_VLAN_STAG_TX; 4557 } else if (insertion_support->inner != 4558 VIRTCHNL_VLAN_UNSUPPORTED) { 4559 if (insertion_support->inner & 4560 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4561 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4562 features |= NETIF_F_HW_VLAN_CTAG_TX; 4563 } 4564 4565 /* give priority to outer filtering and don't bother if both 4566 * outer and inner filtering are enabled 4567 */ 4568 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 4569 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4570 if (filtering_support->outer & 4571 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4572 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4573 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4574 if (filtering_support->outer & 4575 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4576 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4577 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4578 } else if (filtering_support->inner != 4579 VIRTCHNL_VLAN_UNSUPPORTED) { 4580 if (filtering_support->inner & 4581 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4582 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4583 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4584 if (filtering_support->inner & 4585 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4586 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4587 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4588 } 4589 } 4590 4591 return features; 4592 } 4593 4594 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 4595 (!(((requested) & (feature_bit)) && \ 4596 !((allowed) & (feature_bit)))) 4597 4598 /** 4599 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 4600 * @adapter: board private structure 4601 * @requested_features: stack requested NETDEV features 4602 **/ 4603 static netdev_features_t 4604 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 4605 netdev_features_t requested_features) 4606 { 4607 netdev_features_t allowed_features; 4608 4609 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 4610 iavf_get_netdev_vlan_features(adapter); 4611 4612 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4613 allowed_features, 4614 NETIF_F_HW_VLAN_CTAG_TX)) 4615 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4616 4617 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4618 allowed_features, 4619 NETIF_F_HW_VLAN_CTAG_RX)) 4620 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 4621 4622 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4623 allowed_features, 4624 NETIF_F_HW_VLAN_STAG_TX)) 4625 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 4626 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4627 allowed_features, 4628 NETIF_F_HW_VLAN_STAG_RX)) 4629 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 4630 4631 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4632 allowed_features, 4633 NETIF_F_HW_VLAN_CTAG_FILTER)) 4634 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4635 4636 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4637 allowed_features, 4638 NETIF_F_HW_VLAN_STAG_FILTER)) 4639 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 4640 4641 if ((requested_features & 4642 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 4643 (requested_features & 4644 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 4645 adapter->vlan_v2_caps.offloads.ethertype_match == 4646 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 4647 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 4648 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 4649 NETIF_F_HW_VLAN_STAG_TX); 4650 } 4651 4652 return requested_features; 4653 } 4654 4655 /** 4656 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features 4657 * @adapter: board private structure 4658 * @requested_features: stack requested NETDEV features 4659 * 4660 * Returns fixed-up features bits 4661 **/ 4662 static netdev_features_t 4663 iavf_fix_strip_features(struct iavf_adapter *adapter, 4664 netdev_features_t requested_features) 4665 { 4666 struct net_device *netdev = adapter->netdev; 4667 bool crc_offload_req, is_vlan_strip; 4668 netdev_features_t vlan_strip; 4669 int num_non_zero_vlan; 4670 4671 crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) && 4672 (requested_features & NETIF_F_RXFCS); 4673 num_non_zero_vlan = iavf_get_num_vlans_added(adapter); 4674 vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX); 4675 is_vlan_strip = requested_features & vlan_strip; 4676 4677 if (!crc_offload_req) 4678 return requested_features; 4679 4680 if (!num_non_zero_vlan && (netdev->features & vlan_strip) && 4681 !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 4682 requested_features &= ~vlan_strip; 4683 netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 4684 return requested_features; 4685 } 4686 4687 if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 4688 requested_features &= ~vlan_strip; 4689 if (!(netdev->features & vlan_strip)) 4690 netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping"); 4691 4692 return requested_features; 4693 } 4694 4695 if (num_non_zero_vlan && is_vlan_strip && 4696 !(netdev->features & NETIF_F_RXFCS)) { 4697 requested_features &= ~NETIF_F_RXFCS; 4698 netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping"); 4699 } 4700 4701 return requested_features; 4702 } 4703 4704 /** 4705 * iavf_fix_features - fix up the netdev feature bits 4706 * @netdev: our net device 4707 * @features: desired feature bits 4708 * 4709 * Returns fixed-up features bits 4710 **/ 4711 static netdev_features_t iavf_fix_features(struct net_device *netdev, 4712 netdev_features_t features) 4713 { 4714 struct iavf_adapter *adapter = netdev_priv(netdev); 4715 4716 features = iavf_fix_netdev_vlan_features(adapter, features); 4717 4718 return iavf_fix_strip_features(adapter, features); 4719 } 4720 4721 static const struct net_device_ops iavf_netdev_ops = { 4722 .ndo_open = iavf_open, 4723 .ndo_stop = iavf_close, 4724 .ndo_start_xmit = iavf_xmit_frame, 4725 .ndo_set_rx_mode = iavf_set_rx_mode, 4726 .ndo_validate_addr = eth_validate_addr, 4727 .ndo_set_mac_address = iavf_set_mac, 4728 .ndo_change_mtu = iavf_change_mtu, 4729 .ndo_tx_timeout = iavf_tx_timeout, 4730 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 4731 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 4732 .ndo_features_check = iavf_features_check, 4733 .ndo_fix_features = iavf_fix_features, 4734 .ndo_set_features = iavf_set_features, 4735 .ndo_setup_tc = iavf_setup_tc, 4736 }; 4737 4738 /** 4739 * iavf_check_reset_complete - check that VF reset is complete 4740 * @hw: pointer to hw struct 4741 * 4742 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 4743 **/ 4744 static int iavf_check_reset_complete(struct iavf_hw *hw) 4745 { 4746 u32 rstat; 4747 int i; 4748 4749 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 4750 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 4751 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 4752 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 4753 (rstat == VIRTCHNL_VFR_COMPLETED)) 4754 return 0; 4755 msleep(IAVF_RESET_WAIT_MS); 4756 } 4757 return -EBUSY; 4758 } 4759 4760 /** 4761 * iavf_process_config - Process the config information we got from the PF 4762 * @adapter: board private structure 4763 * 4764 * Verify that we have a valid config struct, and set up our netdev features 4765 * and our VSI struct. 4766 **/ 4767 int iavf_process_config(struct iavf_adapter *adapter) 4768 { 4769 struct virtchnl_vf_resource *vfres = adapter->vf_res; 4770 netdev_features_t hw_vlan_features, vlan_features; 4771 struct net_device *netdev = adapter->netdev; 4772 netdev_features_t hw_enc_features; 4773 netdev_features_t hw_features; 4774 4775 hw_enc_features = NETIF_F_SG | 4776 NETIF_F_IP_CSUM | 4777 NETIF_F_IPV6_CSUM | 4778 NETIF_F_HIGHDMA | 4779 NETIF_F_SOFT_FEATURES | 4780 NETIF_F_TSO | 4781 NETIF_F_TSO_ECN | 4782 NETIF_F_TSO6 | 4783 NETIF_F_SCTP_CRC | 4784 NETIF_F_RXHASH | 4785 NETIF_F_RXCSUM | 4786 0; 4787 4788 /* advertise to stack only if offloads for encapsulated packets is 4789 * supported 4790 */ 4791 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 4792 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 4793 NETIF_F_GSO_GRE | 4794 NETIF_F_GSO_GRE_CSUM | 4795 NETIF_F_GSO_IPXIP4 | 4796 NETIF_F_GSO_IPXIP6 | 4797 NETIF_F_GSO_UDP_TUNNEL_CSUM | 4798 NETIF_F_GSO_PARTIAL | 4799 0; 4800 4801 if (!(vfres->vf_cap_flags & 4802 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 4803 netdev->gso_partial_features |= 4804 NETIF_F_GSO_UDP_TUNNEL_CSUM; 4805 4806 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 4807 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 4808 netdev->hw_enc_features |= hw_enc_features; 4809 } 4810 /* record features VLANs can make use of */ 4811 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 4812 4813 /* Write features and hw_features separately to avoid polluting 4814 * with, or dropping, features that are set when we registered. 4815 */ 4816 hw_features = hw_enc_features; 4817 4818 /* get HW VLAN features that can be toggled */ 4819 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 4820 4821 /* Enable cloud filter if ADQ is supported */ 4822 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) 4823 hw_features |= NETIF_F_HW_TC; 4824 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 4825 hw_features |= NETIF_F_GSO_UDP_L4; 4826 4827 netdev->hw_features |= hw_features | hw_vlan_features; 4828 vlan_features = iavf_get_netdev_vlan_features(adapter); 4829 4830 netdev->features |= hw_features | vlan_features; 4831 4832 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 4833 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4834 4835 netdev->priv_flags |= IFF_UNICAST_FLT; 4836 4837 /* Do not turn on offloads when they are requested to be turned off. 4838 * TSO needs minimum 576 bytes to work correctly. 4839 */ 4840 if (netdev->wanted_features) { 4841 if (!(netdev->wanted_features & NETIF_F_TSO) || 4842 netdev->mtu < 576) 4843 netdev->features &= ~NETIF_F_TSO; 4844 if (!(netdev->wanted_features & NETIF_F_TSO6) || 4845 netdev->mtu < 576) 4846 netdev->features &= ~NETIF_F_TSO6; 4847 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 4848 netdev->features &= ~NETIF_F_TSO_ECN; 4849 if (!(netdev->wanted_features & NETIF_F_GRO)) 4850 netdev->features &= ~NETIF_F_GRO; 4851 if (!(netdev->wanted_features & NETIF_F_GSO)) 4852 netdev->features &= ~NETIF_F_GSO; 4853 } 4854 4855 return 0; 4856 } 4857 4858 /** 4859 * iavf_shutdown - Shutdown the device in preparation for a reboot 4860 * @pdev: pci device structure 4861 **/ 4862 static void iavf_shutdown(struct pci_dev *pdev) 4863 { 4864 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 4865 struct net_device *netdev = adapter->netdev; 4866 4867 netif_device_detach(netdev); 4868 4869 if (netif_running(netdev)) 4870 iavf_close(netdev); 4871 4872 if (iavf_lock_timeout(&adapter->crit_lock, 5000)) 4873 dev_warn(&adapter->pdev->dev, "%s: failed to acquire crit_lock\n", __func__); 4874 /* Prevent the watchdog from running. */ 4875 iavf_change_state(adapter, __IAVF_REMOVE); 4876 adapter->aq_required = 0; 4877 mutex_unlock(&adapter->crit_lock); 4878 4879 #ifdef CONFIG_PM 4880 pci_save_state(pdev); 4881 4882 #endif 4883 pci_disable_device(pdev); 4884 } 4885 4886 /** 4887 * iavf_probe - Device Initialization Routine 4888 * @pdev: PCI device information struct 4889 * @ent: entry in iavf_pci_tbl 4890 * 4891 * Returns 0 on success, negative on failure 4892 * 4893 * iavf_probe initializes an adapter identified by a pci_dev structure. 4894 * The OS initialization, configuring of the adapter private structure, 4895 * and a hardware reset occur. 4896 **/ 4897 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4898 { 4899 struct net_device *netdev; 4900 struct iavf_adapter *adapter = NULL; 4901 struct iavf_hw *hw = NULL; 4902 int err; 4903 4904 err = pci_enable_device(pdev); 4905 if (err) 4906 return err; 4907 4908 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 4909 if (err) { 4910 dev_err(&pdev->dev, 4911 "DMA configuration failed: 0x%x\n", err); 4912 goto err_dma; 4913 } 4914 4915 err = pci_request_regions(pdev, iavf_driver_name); 4916 if (err) { 4917 dev_err(&pdev->dev, 4918 "pci_request_regions failed 0x%x\n", err); 4919 goto err_pci_reg; 4920 } 4921 4922 pci_set_master(pdev); 4923 4924 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 4925 IAVF_MAX_REQ_QUEUES); 4926 if (!netdev) { 4927 err = -ENOMEM; 4928 goto err_alloc_etherdev; 4929 } 4930 4931 SET_NETDEV_DEV(netdev, &pdev->dev); 4932 4933 pci_set_drvdata(pdev, netdev); 4934 adapter = netdev_priv(netdev); 4935 4936 adapter->netdev = netdev; 4937 adapter->pdev = pdev; 4938 4939 hw = &adapter->hw; 4940 hw->back = adapter; 4941 4942 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, 4943 iavf_driver_name); 4944 if (!adapter->wq) { 4945 err = -ENOMEM; 4946 goto err_alloc_wq; 4947 } 4948 4949 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 4950 iavf_change_state(adapter, __IAVF_STARTUP); 4951 4952 /* Call save state here because it relies on the adapter struct. */ 4953 pci_save_state(pdev); 4954 4955 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4956 pci_resource_len(pdev, 0)); 4957 if (!hw->hw_addr) { 4958 err = -EIO; 4959 goto err_ioremap; 4960 } 4961 hw->vendor_id = pdev->vendor; 4962 hw->device_id = pdev->device; 4963 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4964 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4965 hw->subsystem_device_id = pdev->subsystem_device; 4966 hw->bus.device = PCI_SLOT(pdev->devfn); 4967 hw->bus.func = PCI_FUNC(pdev->devfn); 4968 hw->bus.bus_id = pdev->bus->number; 4969 4970 /* set up the locks for the AQ, do this only once in probe 4971 * and destroy them only once in remove 4972 */ 4973 mutex_init(&adapter->crit_lock); 4974 mutex_init(&hw->aq.asq_mutex); 4975 mutex_init(&hw->aq.arq_mutex); 4976 4977 spin_lock_init(&adapter->mac_vlan_list_lock); 4978 spin_lock_init(&adapter->cloud_filter_list_lock); 4979 spin_lock_init(&adapter->fdir_fltr_lock); 4980 spin_lock_init(&adapter->adv_rss_lock); 4981 spin_lock_init(&adapter->current_netdev_promisc_flags_lock); 4982 4983 INIT_LIST_HEAD(&adapter->mac_filter_list); 4984 INIT_LIST_HEAD(&adapter->vlan_filter_list); 4985 INIT_LIST_HEAD(&adapter->cloud_filter_list); 4986 INIT_LIST_HEAD(&adapter->fdir_list_head); 4987 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 4988 4989 INIT_WORK(&adapter->reset_task, iavf_reset_task); 4990 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 4991 INIT_WORK(&adapter->finish_config, iavf_finish_config); 4992 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 4993 4994 /* Setup the wait queue for indicating transition to down status */ 4995 init_waitqueue_head(&adapter->down_waitqueue); 4996 4997 /* Setup the wait queue for indicating transition to running state */ 4998 init_waitqueue_head(&adapter->reset_waitqueue); 4999 5000 /* Setup the wait queue for indicating virtchannel events */ 5001 init_waitqueue_head(&adapter->vc_waitqueue); 5002 5003 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 5004 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 5005 /* Initialization goes on in the work. Do not add more of it below. */ 5006 return 0; 5007 5008 err_ioremap: 5009 destroy_workqueue(adapter->wq); 5010 err_alloc_wq: 5011 free_netdev(netdev); 5012 err_alloc_etherdev: 5013 pci_release_regions(pdev); 5014 err_pci_reg: 5015 err_dma: 5016 pci_disable_device(pdev); 5017 return err; 5018 } 5019 5020 /** 5021 * iavf_suspend - Power management suspend routine 5022 * @dev_d: device info pointer 5023 * 5024 * Called when the system (VM) is entering sleep/suspend. 5025 **/ 5026 static int __maybe_unused iavf_suspend(struct device *dev_d) 5027 { 5028 struct net_device *netdev = dev_get_drvdata(dev_d); 5029 struct iavf_adapter *adapter = netdev_priv(netdev); 5030 5031 netif_device_detach(netdev); 5032 5033 mutex_lock(&adapter->crit_lock); 5034 5035 if (netif_running(netdev)) { 5036 rtnl_lock(); 5037 iavf_down(adapter); 5038 rtnl_unlock(); 5039 } 5040 iavf_free_misc_irq(adapter); 5041 iavf_reset_interrupt_capability(adapter); 5042 5043 mutex_unlock(&adapter->crit_lock); 5044 5045 return 0; 5046 } 5047 5048 /** 5049 * iavf_resume - Power management resume routine 5050 * @dev_d: device info pointer 5051 * 5052 * Called when the system (VM) is resumed from sleep/suspend. 5053 **/ 5054 static int __maybe_unused iavf_resume(struct device *dev_d) 5055 { 5056 struct pci_dev *pdev = to_pci_dev(dev_d); 5057 struct iavf_adapter *adapter; 5058 u32 err; 5059 5060 adapter = iavf_pdev_to_adapter(pdev); 5061 5062 pci_set_master(pdev); 5063 5064 rtnl_lock(); 5065 err = iavf_set_interrupt_capability(adapter); 5066 if (err) { 5067 rtnl_unlock(); 5068 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 5069 return err; 5070 } 5071 err = iavf_request_misc_irq(adapter); 5072 rtnl_unlock(); 5073 if (err) { 5074 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 5075 return err; 5076 } 5077 5078 queue_work(adapter->wq, &adapter->reset_task); 5079 5080 netif_device_attach(adapter->netdev); 5081 5082 return err; 5083 } 5084 5085 /** 5086 * iavf_remove - Device Removal Routine 5087 * @pdev: PCI device information struct 5088 * 5089 * iavf_remove is called by the PCI subsystem to alert the driver 5090 * that it should release a PCI device. The could be caused by a 5091 * Hot-Plug event, or because the driver is going to be removed from 5092 * memory. 5093 **/ 5094 static void iavf_remove(struct pci_dev *pdev) 5095 { 5096 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev); 5097 struct iavf_fdir_fltr *fdir, *fdirtmp; 5098 struct iavf_vlan_filter *vlf, *vlftmp; 5099 struct iavf_cloud_filter *cf, *cftmp; 5100 struct iavf_adv_rss *rss, *rsstmp; 5101 struct iavf_mac_filter *f, *ftmp; 5102 struct net_device *netdev; 5103 struct iavf_hw *hw; 5104 5105 netdev = adapter->netdev; 5106 hw = &adapter->hw; 5107 5108 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 5109 return; 5110 5111 /* Wait until port initialization is complete. 5112 * There are flows where register/unregister netdev may race. 5113 */ 5114 while (1) { 5115 mutex_lock(&adapter->crit_lock); 5116 if (adapter->state == __IAVF_RUNNING || 5117 adapter->state == __IAVF_DOWN || 5118 adapter->state == __IAVF_INIT_FAILED) { 5119 mutex_unlock(&adapter->crit_lock); 5120 break; 5121 } 5122 /* Simply return if we already went through iavf_shutdown */ 5123 if (adapter->state == __IAVF_REMOVE) { 5124 mutex_unlock(&adapter->crit_lock); 5125 return; 5126 } 5127 5128 mutex_unlock(&adapter->crit_lock); 5129 usleep_range(500, 1000); 5130 } 5131 cancel_delayed_work_sync(&adapter->watchdog_task); 5132 cancel_work_sync(&adapter->finish_config); 5133 5134 if (netdev->reg_state == NETREG_REGISTERED) 5135 unregister_netdev(netdev); 5136 5137 mutex_lock(&adapter->crit_lock); 5138 dev_info(&adapter->pdev->dev, "Removing device\n"); 5139 iavf_change_state(adapter, __IAVF_REMOVE); 5140 5141 iavf_request_reset(adapter); 5142 msleep(50); 5143 /* If the FW isn't responding, kick it once, but only once. */ 5144 if (!iavf_asq_done(hw)) { 5145 iavf_request_reset(adapter); 5146 msleep(50); 5147 } 5148 5149 iavf_misc_irq_disable(adapter); 5150 /* Shut down all the garbage mashers on the detention level */ 5151 cancel_work_sync(&adapter->reset_task); 5152 cancel_delayed_work_sync(&adapter->watchdog_task); 5153 cancel_work_sync(&adapter->adminq_task); 5154 5155 adapter->aq_required = 0; 5156 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 5157 5158 iavf_free_all_tx_resources(adapter); 5159 iavf_free_all_rx_resources(adapter); 5160 iavf_free_misc_irq(adapter); 5161 iavf_free_interrupt_scheme(adapter); 5162 5163 iavf_free_rss(adapter); 5164 5165 if (hw->aq.asq.count) 5166 iavf_shutdown_adminq(hw); 5167 5168 /* destroy the locks only once, here */ 5169 mutex_destroy(&hw->aq.arq_mutex); 5170 mutex_destroy(&hw->aq.asq_mutex); 5171 mutex_unlock(&adapter->crit_lock); 5172 mutex_destroy(&adapter->crit_lock); 5173 5174 iounmap(hw->hw_addr); 5175 pci_release_regions(pdev); 5176 kfree(adapter->vf_res); 5177 spin_lock_bh(&adapter->mac_vlan_list_lock); 5178 /* If we got removed before an up/down sequence, we've got a filter 5179 * hanging out there that we need to get rid of. 5180 */ 5181 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 5182 list_del(&f->list); 5183 kfree(f); 5184 } 5185 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 5186 list) { 5187 list_del(&vlf->list); 5188 kfree(vlf); 5189 } 5190 5191 spin_unlock_bh(&adapter->mac_vlan_list_lock); 5192 5193 spin_lock_bh(&adapter->cloud_filter_list_lock); 5194 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 5195 list_del(&cf->list); 5196 kfree(cf); 5197 } 5198 spin_unlock_bh(&adapter->cloud_filter_list_lock); 5199 5200 spin_lock_bh(&adapter->fdir_fltr_lock); 5201 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 5202 list_del(&fdir->list); 5203 kfree(fdir); 5204 } 5205 spin_unlock_bh(&adapter->fdir_fltr_lock); 5206 5207 spin_lock_bh(&adapter->adv_rss_lock); 5208 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 5209 list) { 5210 list_del(&rss->list); 5211 kfree(rss); 5212 } 5213 spin_unlock_bh(&adapter->adv_rss_lock); 5214 5215 destroy_workqueue(adapter->wq); 5216 5217 free_netdev(netdev); 5218 5219 pci_disable_device(pdev); 5220 } 5221 5222 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 5223 5224 static struct pci_driver iavf_driver = { 5225 .name = iavf_driver_name, 5226 .id_table = iavf_pci_tbl, 5227 .probe = iavf_probe, 5228 .remove = iavf_remove, 5229 .driver.pm = &iavf_pm_ops, 5230 .shutdown = iavf_shutdown, 5231 }; 5232 5233 /** 5234 * iavf_init_module - Driver Registration Routine 5235 * 5236 * iavf_init_module is the first routine called when the driver is 5237 * loaded. All it does is register with the PCI subsystem. 5238 **/ 5239 static int __init iavf_init_module(void) 5240 { 5241 pr_info("iavf: %s\n", iavf_driver_string); 5242 5243 pr_info("%s\n", iavf_copyright); 5244 5245 return pci_register_driver(&iavf_driver); 5246 } 5247 5248 module_init(iavf_init_module); 5249 5250 /** 5251 * iavf_exit_module - Driver Exit Cleanup Routine 5252 * 5253 * iavf_exit_module is called just before the driver is removed 5254 * from memory. 5255 **/ 5256 static void __exit iavf_exit_module(void) 5257 { 5258 pci_unregister_driver(&iavf_driver); 5259 } 5260 5261 module_exit(iavf_exit_module); 5262 5263 /* iavf_main.c */ 5264