xref: /linux/drivers/net/ethernet/sfc/ef100_nic.c (revision 7e056e23)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2018 Solarflare Communications Inc.
5  * Copyright 2019-2022 Xilinx Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published
9  * by the Free Software Foundation, incorporated herein by reference.
10  */
11 
12 #include "ef100_nic.h"
13 #include "efx_common.h"
14 #include "efx_channels.h"
15 #include "io.h"
16 #include "selftest.h"
17 #include "ef100_regs.h"
18 #include "mcdi.h"
19 #include "mcdi_pcol.h"
20 #include "mcdi_port_common.h"
21 #include "mcdi_functions.h"
22 #include "mcdi_filters.h"
23 #include "ef100_rx.h"
24 #include "ef100_tx.h"
25 #include "ef100_sriov.h"
26 #include "ef100_netdev.h"
27 #include "tc.h"
28 #include "mae.h"
29 #include "rx_common.h"
30 
31 #define EF100_MAX_VIS 4096
32 #define EF100_NUM_MCDI_BUFFERS	1
33 #define MCDI_BUF_LEN (8 + MCDI_CTL_SDU_LEN_MAX)
34 
35 #define EF100_RESET_PORT ((ETH_RESET_MAC | ETH_RESET_PHY) << ETH_RESET_SHARED_SHIFT)
36 
37 /*	MCDI
38  */
39 static u8 *ef100_mcdi_buf(struct efx_nic *efx, u8 bufid, dma_addr_t *dma_addr)
40 {
41 	struct ef100_nic_data *nic_data = efx->nic_data;
42 
43 	if (dma_addr)
44 		*dma_addr = nic_data->mcdi_buf.dma_addr +
45 			    bufid * ALIGN(MCDI_BUF_LEN, 256);
46 	return nic_data->mcdi_buf.addr + bufid * ALIGN(MCDI_BUF_LEN, 256);
47 }
48 
49 static int ef100_get_warm_boot_count(struct efx_nic *efx)
50 {
51 	efx_dword_t reg;
52 
53 	efx_readd(efx, &reg, efx_reg(efx, ER_GZ_MC_SFT_STATUS));
54 
55 	if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) == 0xffffffff) {
56 		netif_err(efx, hw, efx->net_dev, "Hardware unavailable\n");
57 		efx->state = STATE_DISABLED;
58 		return -ENETDOWN;
59 	} else {
60 		return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
61 			EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
62 	}
63 }
64 
65 static void ef100_mcdi_request(struct efx_nic *efx,
66 			       const efx_dword_t *hdr, size_t hdr_len,
67 			       const efx_dword_t *sdu, size_t sdu_len)
68 {
69 	dma_addr_t dma_addr;
70 	u8 *pdu = ef100_mcdi_buf(efx, 0, &dma_addr);
71 
72 	memcpy(pdu, hdr, hdr_len);
73 	memcpy(pdu + hdr_len, sdu, sdu_len);
74 	wmb();
75 
76 	/* The hardware provides 'low' and 'high' (doorbell) registers
77 	 * for passing the 64-bit address of an MCDI request to
78 	 * firmware.  However the dwords are swapped by firmware.  The
79 	 * least significant bits of the doorbell are then 0 for all
80 	 * MCDI requests due to alignment.
81 	 */
82 	_efx_writed(efx, cpu_to_le32((u64)dma_addr >> 32),  efx_reg(efx, ER_GZ_MC_DB_LWRD));
83 	_efx_writed(efx, cpu_to_le32((u32)dma_addr),  efx_reg(efx, ER_GZ_MC_DB_HWRD));
84 }
85 
86 static bool ef100_mcdi_poll_response(struct efx_nic *efx)
87 {
88 	const efx_dword_t hdr =
89 		*(const efx_dword_t *)(ef100_mcdi_buf(efx, 0, NULL));
90 
91 	rmb();
92 	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
93 }
94 
95 static void ef100_mcdi_read_response(struct efx_nic *efx,
96 				     efx_dword_t *outbuf, size_t offset,
97 				     size_t outlen)
98 {
99 	const u8 *pdu = ef100_mcdi_buf(efx, 0, NULL);
100 
101 	memcpy(outbuf, pdu + offset, outlen);
102 }
103 
104 static int ef100_mcdi_poll_reboot(struct efx_nic *efx)
105 {
106 	struct ef100_nic_data *nic_data = efx->nic_data;
107 	int rc;
108 
109 	rc = ef100_get_warm_boot_count(efx);
110 	if (rc < 0) {
111 		/* The firmware is presumably in the process of
112 		 * rebooting.  However, we are supposed to report each
113 		 * reboot just once, so we must only do that once we
114 		 * can read and store the updated warm boot count.
115 		 */
116 		return 0;
117 	}
118 
119 	if (rc == nic_data->warm_boot_count)
120 		return 0;
121 
122 	nic_data->warm_boot_count = rc;
123 
124 	return -EIO;
125 }
126 
127 static void ef100_mcdi_reboot_detected(struct efx_nic *efx)
128 {
129 }
130 
131 /*	MCDI calls
132  */
133 int ef100_get_mac_address(struct efx_nic *efx, u8 *mac_address,
134 			  int client_handle, bool empty_ok)
135 {
136 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLIENT_MAC_ADDRESSES_OUT_LEN(1));
137 	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_CLIENT_MAC_ADDRESSES_IN_LEN);
138 	size_t outlen;
139 	int rc;
140 
141 	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
142 	MCDI_SET_DWORD(inbuf, GET_CLIENT_MAC_ADDRESSES_IN_CLIENT_HANDLE,
143 		       client_handle);
144 
145 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLIENT_MAC_ADDRESSES, inbuf,
146 			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
147 	if (rc)
148 		return rc;
149 
150 	if (outlen >= MC_CMD_GET_CLIENT_MAC_ADDRESSES_OUT_LEN(1)) {
151 		ether_addr_copy(mac_address,
152 				MCDI_PTR(outbuf, GET_CLIENT_MAC_ADDRESSES_OUT_MAC_ADDRS));
153 	} else if (empty_ok) {
154 		pci_warn(efx->pci_dev,
155 			 "No MAC address provisioned for client ID %#x.\n",
156 			 client_handle);
157 		eth_zero_addr(mac_address);
158 	} else {
159 		return -ENOENT;
160 	}
161 	return 0;
162 }
163 
164 int efx_ef100_init_datapath_caps(struct efx_nic *efx)
165 {
166 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V7_OUT_LEN);
167 	struct ef100_nic_data *nic_data = efx->nic_data;
168 	u8 vi_window_mode;
169 	size_t outlen;
170 	int rc;
171 
172 	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
173 
174 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
175 			  outbuf, sizeof(outbuf), &outlen);
176 	if (rc)
177 		return rc;
178 	if (outlen < MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
179 		netif_err(efx, drv, efx->net_dev,
180 			  "unable to read datapath firmware capabilities\n");
181 		return -EIO;
182 	}
183 
184 	nic_data->datapath_caps = MCDI_DWORD(outbuf,
185 					     GET_CAPABILITIES_OUT_FLAGS1);
186 	nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
187 					      GET_CAPABILITIES_V2_OUT_FLAGS2);
188 	if (outlen < MC_CMD_GET_CAPABILITIES_V7_OUT_LEN)
189 		nic_data->datapath_caps3 = 0;
190 	else
191 		nic_data->datapath_caps3 = MCDI_DWORD(outbuf,
192 						      GET_CAPABILITIES_V7_OUT_FLAGS3);
193 
194 	vi_window_mode = MCDI_BYTE(outbuf,
195 				   GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
196 	rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
197 	if (rc)
198 		return rc;
199 
200 	if (efx_ef100_has_cap(nic_data->datapath_caps2, TX_TSO_V3)) {
201 		struct net_device *net_dev = efx->net_dev;
202 		netdev_features_t tso = NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_PARTIAL |
203 					NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
204 					NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM;
205 
206 		net_dev->features |= tso;
207 		net_dev->hw_features |= tso;
208 		net_dev->hw_enc_features |= tso;
209 		/* EF100 HW can only offload outer checksums if they are UDP,
210 		 * so for GRE_CSUM we have to use GSO_PARTIAL.
211 		 */
212 		net_dev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
213 	}
214 	efx->num_mac_stats = MCDI_WORD(outbuf,
215 				       GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
216 	netif_dbg(efx, probe, efx->net_dev,
217 		  "firmware reports num_mac_stats = %u\n",
218 		  efx->num_mac_stats);
219 	return 0;
220 }
221 
222 /*	Event handling
223  */
224 static int ef100_ev_probe(struct efx_channel *channel)
225 {
226 	/* Allocate an extra descriptor for the QMDA status completion entry */
227 	return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
228 				    (channel->eventq_mask + 2) *
229 				    sizeof(efx_qword_t),
230 				    GFP_KERNEL);
231 }
232 
233 static int ef100_ev_init(struct efx_channel *channel)
234 {
235 	struct ef100_nic_data *nic_data = channel->efx->nic_data;
236 
237 	/* initial phase is 0 */
238 	clear_bit(channel->channel, nic_data->evq_phases);
239 
240 	return efx_mcdi_ev_init(channel, false, false);
241 }
242 
243 static void ef100_ev_read_ack(struct efx_channel *channel)
244 {
245 	efx_dword_t evq_prime;
246 
247 	EFX_POPULATE_DWORD_2(evq_prime,
248 			     ERF_GZ_EVQ_ID, channel->channel,
249 			     ERF_GZ_IDX, channel->eventq_read_ptr &
250 					 channel->eventq_mask);
251 
252 	efx_writed(channel->efx, &evq_prime,
253 		   efx_reg(channel->efx, ER_GZ_EVQ_INT_PRIME));
254 }
255 
256 static int ef100_ev_process(struct efx_channel *channel, int quota)
257 {
258 	struct efx_nic *efx = channel->efx;
259 	struct ef100_nic_data *nic_data;
260 	bool evq_phase, old_evq_phase;
261 	unsigned int read_ptr;
262 	efx_qword_t *p_event;
263 	int spent = 0;
264 	bool ev_phase;
265 	int ev_type;
266 
267 	if (unlikely(!channel->enabled))
268 		return 0;
269 
270 	nic_data = efx->nic_data;
271 	evq_phase = test_bit(channel->channel, nic_data->evq_phases);
272 	old_evq_phase = evq_phase;
273 	read_ptr = channel->eventq_read_ptr;
274 	BUILD_BUG_ON(ESF_GZ_EV_RXPKTS_PHASE_LBN != ESF_GZ_EV_TXCMPL_PHASE_LBN);
275 
276 	while (spent < quota) {
277 		p_event = efx_event(channel, read_ptr);
278 
279 		ev_phase = !!EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_RXPKTS_PHASE);
280 		if (ev_phase != evq_phase)
281 			break;
282 
283 		netif_vdbg(efx, drv, efx->net_dev,
284 			   "processing event on %d " EFX_QWORD_FMT "\n",
285 			   channel->channel, EFX_QWORD_VAL(*p_event));
286 
287 		ev_type = EFX_QWORD_FIELD(*p_event, ESF_GZ_E_TYPE);
288 
289 		switch (ev_type) {
290 		case ESE_GZ_EF100_EV_RX_PKTS:
291 			efx_ef100_ev_rx(channel, p_event);
292 			++spent;
293 			break;
294 		case ESE_GZ_EF100_EV_MCDI:
295 			efx_mcdi_process_event(channel, p_event);
296 			break;
297 		case ESE_GZ_EF100_EV_TX_COMPLETION:
298 			ef100_ev_tx(channel, p_event);
299 			break;
300 		case ESE_GZ_EF100_EV_DRIVER:
301 			netif_info(efx, drv, efx->net_dev,
302 				   "Driver initiated event " EFX_QWORD_FMT "\n",
303 				   EFX_QWORD_VAL(*p_event));
304 			break;
305 		default:
306 			netif_info(efx, drv, efx->net_dev,
307 				   "Unhandled event " EFX_QWORD_FMT "\n",
308 				   EFX_QWORD_VAL(*p_event));
309 		}
310 
311 		++read_ptr;
312 		if ((read_ptr & channel->eventq_mask) == 0)
313 			evq_phase = !evq_phase;
314 	}
315 
316 	channel->eventq_read_ptr = read_ptr;
317 	if (evq_phase != old_evq_phase)
318 		change_bit(channel->channel, nic_data->evq_phases);
319 
320 	return spent;
321 }
322 
323 static irqreturn_t ef100_msi_interrupt(int irq, void *dev_id)
324 {
325 	struct efx_msi_context *context = dev_id;
326 	struct efx_nic *efx = context->efx;
327 
328 	netif_vdbg(efx, intr, efx->net_dev,
329 		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
330 
331 	if (likely(READ_ONCE(efx->irq_soft_enabled))) {
332 		/* Note test interrupts */
333 		if (context->index == efx->irq_level)
334 			efx->last_irq_cpu = raw_smp_processor_id();
335 
336 		/* Schedule processing of the channel */
337 		efx_schedule_channel_irq(efx->channel[context->index]);
338 	}
339 
340 	return IRQ_HANDLED;
341 }
342 
343 int ef100_phy_probe(struct efx_nic *efx)
344 {
345 	struct efx_mcdi_phy_data *phy_data;
346 	int rc;
347 
348 	/* Probe for the PHY */
349 	efx->phy_data = kzalloc(sizeof(struct efx_mcdi_phy_data), GFP_KERNEL);
350 	if (!efx->phy_data)
351 		return -ENOMEM;
352 
353 	rc = efx_mcdi_get_phy_cfg(efx, efx->phy_data);
354 	if (rc)
355 		return rc;
356 
357 	/* Populate driver and ethtool settings */
358 	phy_data = efx->phy_data;
359 	mcdi_to_ethtool_linkset(phy_data->media, phy_data->supported_cap,
360 				efx->link_advertising);
361 	efx->fec_config = mcdi_fec_caps_to_ethtool(phy_data->supported_cap,
362 						   false);
363 
364 	/* Default to Autonegotiated flow control if the PHY supports it */
365 	efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
366 	if (phy_data->supported_cap & (1 << MC_CMD_PHY_CAP_AN_LBN))
367 		efx->wanted_fc |= EFX_FC_AUTO;
368 	efx_link_set_wanted_fc(efx, efx->wanted_fc);
369 
370 	/* Push settings to the PHY. Failure is not fatal, the user can try to
371 	 * fix it using ethtool.
372 	 */
373 	rc = efx_mcdi_port_reconfigure(efx);
374 	if (rc && rc != -EPERM)
375 		netif_warn(efx, drv, efx->net_dev,
376 			   "could not initialise PHY settings\n");
377 
378 	return 0;
379 }
380 
381 int ef100_filter_table_probe(struct efx_nic *efx)
382 {
383 	return efx_mcdi_filter_table_probe(efx, true);
384 }
385 
386 static int ef100_filter_table_up(struct efx_nic *efx)
387 {
388 	int rc;
389 
390 	down_write(&efx->filter_sem);
391 	rc = efx_mcdi_filter_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
392 	if (rc)
393 		goto fail_unspec;
394 
395 	rc = efx_mcdi_filter_add_vlan(efx, 0);
396 	if (rc)
397 		goto fail_vlan0;
398 	/* Drop the lock: we've finished altering table existence, and
399 	 * filter insertion will need to take the lock for read.
400 	 */
401 	up_write(&efx->filter_sem);
402 #ifdef CONFIG_SFC_SRIOV
403 	rc = efx_tc_insert_rep_filters(efx);
404 	/* Rep filter failure is nonfatal */
405 	if (rc)
406 		netif_warn(efx, drv, efx->net_dev,
407 			   "Failed to insert representor filters, rc %d\n",
408 			   rc);
409 #endif
410 	return 0;
411 
412 fail_vlan0:
413 	efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC);
414 fail_unspec:
415 	efx_mcdi_filter_table_down(efx);
416 	up_write(&efx->filter_sem);
417 	return rc;
418 }
419 
420 static void ef100_filter_table_down(struct efx_nic *efx)
421 {
422 #ifdef CONFIG_SFC_SRIOV
423 	efx_tc_remove_rep_filters(efx);
424 #endif
425 	down_write(&efx->filter_sem);
426 	efx_mcdi_filter_del_vlan(efx, 0);
427 	efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC);
428 	efx_mcdi_filter_table_down(efx);
429 	up_write(&efx->filter_sem);
430 }
431 
432 /*	Other
433  */
434 static int ef100_reconfigure_mac(struct efx_nic *efx, bool mtu_only)
435 {
436 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
437 
438 	efx_mcdi_filter_sync_rx_mode(efx);
439 
440 	if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
441 		return efx_mcdi_set_mtu(efx);
442 	return efx_mcdi_set_mac(efx);
443 }
444 
445 static enum reset_type ef100_map_reset_reason(enum reset_type reason)
446 {
447 	if (reason == RESET_TYPE_TX_WATCHDOG)
448 		return reason;
449 	return RESET_TYPE_DISABLE;
450 }
451 
452 static int ef100_map_reset_flags(u32 *flags)
453 {
454 	/* Only perform a RESET_TYPE_ALL because we don't support MC_REBOOTs */
455 	if ((*flags & EF100_RESET_PORT)) {
456 		*flags &= ~EF100_RESET_PORT;
457 		return RESET_TYPE_ALL;
458 	}
459 	if (*flags & ETH_RESET_MGMT) {
460 		*flags &= ~ETH_RESET_MGMT;
461 		return RESET_TYPE_DISABLE;
462 	}
463 
464 	return -EINVAL;
465 }
466 
467 static int ef100_reset(struct efx_nic *efx, enum reset_type reset_type)
468 {
469 	int rc;
470 
471 	dev_close(efx->net_dev);
472 
473 	if (reset_type == RESET_TYPE_TX_WATCHDOG) {
474 		netif_device_attach(efx->net_dev);
475 		__clear_bit(reset_type, &efx->reset_pending);
476 		rc = dev_open(efx->net_dev, NULL);
477 	} else if (reset_type == RESET_TYPE_ALL) {
478 		rc = efx_mcdi_reset(efx, reset_type);
479 		if (rc)
480 			return rc;
481 
482 		netif_device_attach(efx->net_dev);
483 
484 		rc = dev_open(efx->net_dev, NULL);
485 	} else {
486 		rc = 1;	/* Leave the device closed */
487 	}
488 	return rc;
489 }
490 
491 static void ef100_common_stat_mask(unsigned long *mask)
492 {
493 	__set_bit(EF100_STAT_port_rx_packets, mask);
494 	__set_bit(EF100_STAT_port_tx_packets, mask);
495 	__set_bit(EF100_STAT_port_rx_bytes, mask);
496 	__set_bit(EF100_STAT_port_tx_bytes, mask);
497 	__set_bit(EF100_STAT_port_rx_multicast, mask);
498 	__set_bit(EF100_STAT_port_rx_bad, mask);
499 	__set_bit(EF100_STAT_port_rx_align_error, mask);
500 	__set_bit(EF100_STAT_port_rx_overflow, mask);
501 }
502 
503 static void ef100_ethtool_stat_mask(unsigned long *mask)
504 {
505 	__set_bit(EF100_STAT_port_tx_pause, mask);
506 	__set_bit(EF100_STAT_port_tx_unicast, mask);
507 	__set_bit(EF100_STAT_port_tx_multicast, mask);
508 	__set_bit(EF100_STAT_port_tx_broadcast, mask);
509 	__set_bit(EF100_STAT_port_tx_lt64, mask);
510 	__set_bit(EF100_STAT_port_tx_64, mask);
511 	__set_bit(EF100_STAT_port_tx_65_to_127, mask);
512 	__set_bit(EF100_STAT_port_tx_128_to_255, mask);
513 	__set_bit(EF100_STAT_port_tx_256_to_511, mask);
514 	__set_bit(EF100_STAT_port_tx_512_to_1023, mask);
515 	__set_bit(EF100_STAT_port_tx_1024_to_15xx, mask);
516 	__set_bit(EF100_STAT_port_tx_15xx_to_jumbo, mask);
517 	__set_bit(EF100_STAT_port_rx_good, mask);
518 	__set_bit(EF100_STAT_port_rx_pause, mask);
519 	__set_bit(EF100_STAT_port_rx_unicast, mask);
520 	__set_bit(EF100_STAT_port_rx_broadcast, mask);
521 	__set_bit(EF100_STAT_port_rx_lt64, mask);
522 	__set_bit(EF100_STAT_port_rx_64, mask);
523 	__set_bit(EF100_STAT_port_rx_65_to_127, mask);
524 	__set_bit(EF100_STAT_port_rx_128_to_255, mask);
525 	__set_bit(EF100_STAT_port_rx_256_to_511, mask);
526 	__set_bit(EF100_STAT_port_rx_512_to_1023, mask);
527 	__set_bit(EF100_STAT_port_rx_1024_to_15xx, mask);
528 	__set_bit(EF100_STAT_port_rx_15xx_to_jumbo, mask);
529 	__set_bit(EF100_STAT_port_rx_gtjumbo, mask);
530 	__set_bit(EF100_STAT_port_rx_bad_gtjumbo, mask);
531 	__set_bit(EF100_STAT_port_rx_length_error, mask);
532 	__set_bit(EF100_STAT_port_rx_nodesc_drops, mask);
533 	__set_bit(GENERIC_STAT_rx_nodesc_trunc, mask);
534 	__set_bit(GENERIC_STAT_rx_noskb_drops, mask);
535 }
536 
537 #define EF100_DMA_STAT(ext_name, mcdi_name)			\
538 	[EF100_STAT_ ## ext_name] =				\
539 	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
540 
541 static const struct efx_hw_stat_desc ef100_stat_desc[EF100_STAT_COUNT] = {
542 	EF100_DMA_STAT(port_tx_bytes, TX_BYTES),
543 	EF100_DMA_STAT(port_tx_packets, TX_PKTS),
544 	EF100_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
545 	EF100_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
546 	EF100_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
547 	EF100_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
548 	EF100_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
549 	EF100_DMA_STAT(port_tx_64, TX_64_PKTS),
550 	EF100_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
551 	EF100_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
552 	EF100_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
553 	EF100_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
554 	EF100_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
555 	EF100_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
556 	EF100_DMA_STAT(port_rx_bytes, RX_BYTES),
557 	EF100_DMA_STAT(port_rx_packets, RX_PKTS),
558 	EF100_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
559 	EF100_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
560 	EF100_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
561 	EF100_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
562 	EF100_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
563 	EF100_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
564 	EF100_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
565 	EF100_DMA_STAT(port_rx_64, RX_64_PKTS),
566 	EF100_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
567 	EF100_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
568 	EF100_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
569 	EF100_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
570 	EF100_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
571 	EF100_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
572 	EF100_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
573 	EF100_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
574 	EF100_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
575 	EF100_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
576 	EF100_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
577 	EF100_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
578 	EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
579 	EFX_GENERIC_SW_STAT(rx_noskb_drops),
580 };
581 
582 static size_t ef100_describe_stats(struct efx_nic *efx, u8 *names)
583 {
584 	DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
585 
586 	ef100_ethtool_stat_mask(mask);
587 	return efx_nic_describe_stats(ef100_stat_desc, EF100_STAT_COUNT,
588 				      mask, names);
589 }
590 
591 static size_t ef100_update_stats_common(struct efx_nic *efx, u64 *full_stats,
592 					struct rtnl_link_stats64 *core_stats)
593 {
594 	struct ef100_nic_data *nic_data = efx->nic_data;
595 	DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
596 	size_t stats_count = 0, index;
597 	u64 *stats = nic_data->stats;
598 
599 	ef100_ethtool_stat_mask(mask);
600 
601 	if (full_stats) {
602 		for_each_set_bit(index, mask, EF100_STAT_COUNT) {
603 			if (ef100_stat_desc[index].name) {
604 				*full_stats++ = stats[index];
605 				++stats_count;
606 			}
607 		}
608 	}
609 
610 	if (!core_stats)
611 		return stats_count;
612 
613 	core_stats->rx_packets = stats[EF100_STAT_port_rx_packets];
614 	core_stats->tx_packets = stats[EF100_STAT_port_tx_packets];
615 	core_stats->rx_bytes = stats[EF100_STAT_port_rx_bytes];
616 	core_stats->tx_bytes = stats[EF100_STAT_port_tx_bytes];
617 	core_stats->rx_dropped = stats[EF100_STAT_port_rx_nodesc_drops] +
618 				 stats[GENERIC_STAT_rx_nodesc_trunc] +
619 				 stats[GENERIC_STAT_rx_noskb_drops];
620 	core_stats->multicast = stats[EF100_STAT_port_rx_multicast];
621 	core_stats->rx_length_errors =
622 			stats[EF100_STAT_port_rx_gtjumbo] +
623 			stats[EF100_STAT_port_rx_length_error];
624 	core_stats->rx_crc_errors = stats[EF100_STAT_port_rx_bad];
625 	core_stats->rx_frame_errors =
626 			stats[EF100_STAT_port_rx_align_error];
627 	core_stats->rx_fifo_errors = stats[EF100_STAT_port_rx_overflow];
628 	core_stats->rx_errors = (core_stats->rx_length_errors +
629 				 core_stats->rx_crc_errors +
630 				 core_stats->rx_frame_errors);
631 
632 	return stats_count;
633 }
634 
635 static size_t ef100_update_stats(struct efx_nic *efx,
636 				 u64 *full_stats,
637 				 struct rtnl_link_stats64 *core_stats)
638 {
639 	__le64 *mc_stats = kmalloc(array_size(efx->num_mac_stats, sizeof(__le64)), GFP_ATOMIC);
640 	struct ef100_nic_data *nic_data = efx->nic_data;
641 	DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
642 	u64 *stats = nic_data->stats;
643 
644 	ef100_common_stat_mask(mask);
645 	ef100_ethtool_stat_mask(mask);
646 
647 	if (!mc_stats)
648 		return 0;
649 
650 	efx_nic_copy_stats(efx, mc_stats);
651 	efx_nic_update_stats(ef100_stat_desc, EF100_STAT_COUNT, mask,
652 			     stats, mc_stats, false);
653 
654 	kfree(mc_stats);
655 
656 	return ef100_update_stats_common(efx, full_stats, core_stats);
657 }
658 
659 static int efx_ef100_get_phys_port_id(struct efx_nic *efx,
660 				      struct netdev_phys_item_id *ppid)
661 {
662 	struct ef100_nic_data *nic_data = efx->nic_data;
663 
664 	if (!is_valid_ether_addr(nic_data->port_id))
665 		return -EOPNOTSUPP;
666 
667 	ppid->id_len = ETH_ALEN;
668 	memcpy(ppid->id, nic_data->port_id, ppid->id_len);
669 
670 	return 0;
671 }
672 
673 static int efx_ef100_irq_test_generate(struct efx_nic *efx)
674 {
675 	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
676 
677 	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
678 
679 	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
680 	return efx_mcdi_rpc_quiet(efx, MC_CMD_TRIGGER_INTERRUPT,
681 				  inbuf, sizeof(inbuf), NULL, 0, NULL);
682 }
683 
684 #define EFX_EF100_TEST 1
685 
686 static void efx_ef100_ev_test_generate(struct efx_channel *channel)
687 {
688 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
689 	struct efx_nic *efx = channel->efx;
690 	efx_qword_t event;
691 	int rc;
692 
693 	EFX_POPULATE_QWORD_2(event,
694 			     ESF_GZ_E_TYPE, ESE_GZ_EF100_EV_DRIVER,
695 			     ESF_GZ_DRIVER_DATA, EFX_EF100_TEST);
696 
697 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
698 
699 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
700 	 * already swapped the data to little-endian order.
701 	 */
702 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
703 	       sizeof(efx_qword_t));
704 
705 	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
706 			  NULL, 0, NULL);
707 	if (rc && (rc != -ENETDOWN))
708 		goto fail;
709 
710 	return;
711 
712 fail:
713 	WARN_ON(true);
714 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
715 }
716 
717 static unsigned int ef100_check_caps(const struct efx_nic *efx,
718 				     u8 flag, u32 offset)
719 {
720 	const struct ef100_nic_data *nic_data = efx->nic_data;
721 
722 	switch (offset) {
723 	case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS1_OFST:
724 		return nic_data->datapath_caps & BIT_ULL(flag);
725 	case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS2_OFST:
726 		return nic_data->datapath_caps2 & BIT_ULL(flag);
727 	case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS3_OFST:
728 		return nic_data->datapath_caps3 & BIT_ULL(flag);
729 	default:
730 		return 0;
731 	}
732 }
733 
734 static unsigned int efx_ef100_recycle_ring_size(const struct efx_nic *efx)
735 {
736 	/* Maximum link speed for Riverhead is 100G */
737 	return 10 * EFX_RECYCLE_RING_SIZE_10G;
738 }
739 
740 #ifdef CONFIG_SFC_SRIOV
741 static int efx_ef100_get_base_mport(struct efx_nic *efx)
742 {
743 	struct ef100_nic_data *nic_data = efx->nic_data;
744 	u32 selector, id;
745 	int rc;
746 
747 	/* Construct mport selector for "physical network port" */
748 	efx_mae_mport_wire(efx, &selector);
749 	/* Look up actual mport ID */
750 	rc = efx_mae_fw_lookup_mport(efx, selector, &id);
751 	if (rc)
752 		return rc;
753 	/* The ID should always fit in 16 bits, because that's how wide the
754 	 * corresponding fields in the RX prefix & TX override descriptor are
755 	 */
756 	if (id >> 16)
757 		netif_warn(efx, probe, efx->net_dev, "Bad base m-port id %#x\n",
758 			   id);
759 	nic_data->base_mport = id;
760 	nic_data->have_mport = true;
761 
762 	/* Construct mport selector for "calling PF" */
763 	efx_mae_mport_uplink(efx, &selector);
764 	/* Look up actual mport ID */
765 	rc = efx_mae_fw_lookup_mport(efx, selector, &id);
766 	if (rc)
767 		return rc;
768 	if (id >> 16)
769 		netif_warn(efx, probe, efx->net_dev, "Bad own m-port id %#x\n",
770 			   id);
771 	nic_data->own_mport = id;
772 	nic_data->have_own_mport = true;
773 
774 	return 0;
775 }
776 #endif
777 
778 static int compare_versions(const char *a, const char *b)
779 {
780 	int a_major, a_minor, a_point, a_patch;
781 	int b_major, b_minor, b_point, b_patch;
782 	int a_matched, b_matched;
783 
784 	a_matched = sscanf(a, "%d.%d.%d.%d", &a_major, &a_minor, &a_point, &a_patch);
785 	b_matched = sscanf(b, "%d.%d.%d.%d", &b_major, &b_minor, &b_point, &b_patch);
786 
787 	if (a_matched == 4 && b_matched != 4)
788 		return +1;
789 
790 	if (a_matched != 4 && b_matched == 4)
791 		return -1;
792 
793 	if (a_matched != 4 && b_matched != 4)
794 		return 0;
795 
796 	if (a_major != b_major)
797 		return a_major - b_major;
798 
799 	if (a_minor != b_minor)
800 		return a_minor - b_minor;
801 
802 	if (a_point != b_point)
803 		return a_point - b_point;
804 
805 	return a_patch - b_patch;
806 }
807 
808 enum ef100_tlv_state_machine {
809 	EF100_TLV_TYPE,
810 	EF100_TLV_TYPE_CONT,
811 	EF100_TLV_LENGTH,
812 	EF100_TLV_VALUE
813 };
814 
815 struct ef100_tlv_state {
816 	enum ef100_tlv_state_machine state;
817 	u64 value;
818 	u32 value_offset;
819 	u16 type;
820 	u8 len;
821 };
822 
823 static int ef100_tlv_feed(struct ef100_tlv_state *state, u8 byte)
824 {
825 	switch (state->state) {
826 	case EF100_TLV_TYPE:
827 		state->type = byte & 0x7f;
828 		state->state = (byte & 0x80) ? EF100_TLV_TYPE_CONT
829 					     : EF100_TLV_LENGTH;
830 		/* Clear ready to read in a new entry */
831 		state->value = 0;
832 		state->value_offset = 0;
833 		return 0;
834 	case EF100_TLV_TYPE_CONT:
835 		state->type |= byte << 7;
836 		state->state = EF100_TLV_LENGTH;
837 		return 0;
838 	case EF100_TLV_LENGTH:
839 		state->len = byte;
840 		/* We only handle TLVs that fit in a u64 */
841 		if (state->len > sizeof(state->value))
842 			return -EOPNOTSUPP;
843 		/* len may be zero, implying a value of zero */
844 		state->state = state->len ? EF100_TLV_VALUE : EF100_TLV_TYPE;
845 		return 0;
846 	case EF100_TLV_VALUE:
847 		state->value |= ((u64)byte) << (state->value_offset * 8);
848 		state->value_offset++;
849 		if (state->value_offset >= state->len)
850 			state->state = EF100_TLV_TYPE;
851 		return 0;
852 	default: /* state machine error, can't happen */
853 		WARN_ON_ONCE(1);
854 		return -EIO;
855 	}
856 }
857 
858 static int ef100_process_design_param(struct efx_nic *efx,
859 				      const struct ef100_tlv_state *reader)
860 {
861 	struct ef100_nic_data *nic_data = efx->nic_data;
862 
863 	switch (reader->type) {
864 	case ESE_EF100_DP_GZ_PAD: /* padding, skip it */
865 		return 0;
866 	case ESE_EF100_DP_GZ_PARTIAL_TSTAMP_SUB_NANO_BITS:
867 		/* Driver doesn't support timestamping yet, so we don't care */
868 		return 0;
869 	case ESE_EF100_DP_GZ_EVQ_UNSOL_CREDIT_SEQ_BITS:
870 		/* Driver doesn't support unsolicited-event credits yet, so
871 		 * we don't care
872 		 */
873 		return 0;
874 	case ESE_EF100_DP_GZ_NMMU_GROUP_SIZE:
875 		/* Driver doesn't manage the NMMU (so we don't care) */
876 		return 0;
877 	case ESE_EF100_DP_GZ_RX_L4_CSUM_PROTOCOLS:
878 		/* Driver uses CHECKSUM_COMPLETE, so we don't care about
879 		 * protocol checksum validation
880 		 */
881 		return 0;
882 	case ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN:
883 		nic_data->tso_max_hdr_len = min_t(u64, reader->value, 0xffff);
884 		return 0;
885 	case ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS:
886 		/* We always put HDR_NUM_SEGS=1 in our TSO descriptors */
887 		if (!reader->value) {
888 			netif_err(efx, probe, efx->net_dev,
889 				  "TSO_MAX_HDR_NUM_SEGS < 1\n");
890 			return -EOPNOTSUPP;
891 		}
892 		return 0;
893 	case ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY:
894 	case ESE_EF100_DP_GZ_TXQ_SIZE_GRANULARITY:
895 		/* Our TXQ and RXQ sizes are always power-of-two and thus divisible by
896 		 * EFX_MIN_DMAQ_SIZE, so we just need to check that
897 		 * EFX_MIN_DMAQ_SIZE is divisible by GRANULARITY.
898 		 * This is very unlikely to fail.
899 		 */
900 		if (!reader->value || reader->value > EFX_MIN_DMAQ_SIZE ||
901 		    EFX_MIN_DMAQ_SIZE % (u32)reader->value) {
902 			netif_err(efx, probe, efx->net_dev,
903 				  "%s size granularity is %llu, can't guarantee safety\n",
904 				  reader->type == ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY ? "RXQ" : "TXQ",
905 				  reader->value);
906 			return -EOPNOTSUPP;
907 		}
908 		return 0;
909 	case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN:
910 		nic_data->tso_max_payload_len = min_t(u64, reader->value,
911 						      GSO_LEGACY_MAX_SIZE);
912 		netif_set_tso_max_size(efx->net_dev,
913 				       nic_data->tso_max_payload_len);
914 		return 0;
915 	case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS:
916 		nic_data->tso_max_payload_num_segs = min_t(u64, reader->value, 0xffff);
917 		netif_set_tso_max_segs(efx->net_dev,
918 				       nic_data->tso_max_payload_num_segs);
919 		return 0;
920 	case ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES:
921 		nic_data->tso_max_frames = min_t(u64, reader->value, 0xffff);
922 		return 0;
923 	case ESE_EF100_DP_GZ_COMPAT:
924 		if (reader->value) {
925 			netif_err(efx, probe, efx->net_dev,
926 				  "DP_COMPAT has unknown bits %#llx, driver not compatible with this hw\n",
927 				  reader->value);
928 			return -EOPNOTSUPP;
929 		}
930 		return 0;
931 	case ESE_EF100_DP_GZ_MEM2MEM_MAX_LEN:
932 		/* Driver doesn't use mem2mem transfers */
933 		return 0;
934 	case ESE_EF100_DP_GZ_EVQ_TIMER_TICK_NANOS:
935 		/* Driver doesn't currently use EVQ_TIMER */
936 		return 0;
937 	case ESE_EF100_DP_GZ_NMMU_PAGE_SIZES:
938 		/* Driver doesn't manage the NMMU (so we don't care) */
939 		return 0;
940 	case ESE_EF100_DP_GZ_VI_STRIDES:
941 		/* We never try to set the VI stride, and we don't rely on
942 		 * being able to find VIs past VI 0 until after we've learned
943 		 * the current stride from MC_CMD_GET_CAPABILITIES.
944 		 * So the value of this shouldn't matter.
945 		 */
946 		if (reader->value != ESE_EF100_DP_GZ_VI_STRIDES_DEFAULT)
947 			netif_dbg(efx, probe, efx->net_dev,
948 				  "NIC has other than default VI_STRIDES (mask "
949 				  "%#llx), early probing might use wrong one\n",
950 				  reader->value);
951 		return 0;
952 	case ESE_EF100_DP_GZ_RX_MAX_RUNT:
953 		/* Driver doesn't look at L2_STATUS:LEN_ERR bit, so we don't
954 		 * care whether it indicates runt or overlength for any given
955 		 * packet, so we don't care about this parameter.
956 		 */
957 		return 0;
958 	default:
959 		/* Host interface says "Drivers should ignore design parameters
960 		 * that they do not recognise."
961 		 */
962 		netif_dbg(efx, probe, efx->net_dev,
963 			  "Ignoring unrecognised design parameter %u\n",
964 			  reader->type);
965 		return 0;
966 	}
967 }
968 
969 static int ef100_check_design_params(struct efx_nic *efx)
970 {
971 	struct ef100_tlv_state reader = {};
972 	u32 total_len, offset = 0;
973 	efx_dword_t reg;
974 	int rc = 0, i;
975 	u32 data;
976 
977 	efx_readd(efx, &reg, ER_GZ_PARAMS_TLV_LEN);
978 	total_len = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
979 	pci_dbg(efx->pci_dev, "%u bytes of design parameters\n", total_len);
980 	while (offset < total_len) {
981 		efx_readd(efx, &reg, ER_GZ_PARAMS_TLV + offset);
982 		data = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
983 		for (i = 0; i < sizeof(data); i++) {
984 			rc = ef100_tlv_feed(&reader, data);
985 			/* Got a complete value? */
986 			if (!rc && reader.state == EF100_TLV_TYPE)
987 				rc = ef100_process_design_param(efx, &reader);
988 			if (rc)
989 				goto out;
990 			data >>= 8;
991 			offset++;
992 		}
993 	}
994 	/* Check we didn't end halfway through a TLV entry, which could either
995 	 * mean that the TLV stream is truncated or just that it's corrupted
996 	 * and our state machine is out of sync.
997 	 */
998 	if (reader.state != EF100_TLV_TYPE) {
999 		if (reader.state == EF100_TLV_TYPE_CONT)
1000 			netif_err(efx, probe, efx->net_dev,
1001 				  "truncated design parameter (incomplete type %u)\n",
1002 				  reader.type);
1003 		else
1004 			netif_err(efx, probe, efx->net_dev,
1005 				  "truncated design parameter %u\n",
1006 				  reader.type);
1007 		rc = -EIO;
1008 	}
1009 out:
1010 	return rc;
1011 }
1012 
1013 /*	NIC probe and remove
1014  */
1015 static int ef100_probe_main(struct efx_nic *efx)
1016 {
1017 	unsigned int bar_size = resource_size(&efx->pci_dev->resource[efx->mem_bar]);
1018 	struct ef100_nic_data *nic_data;
1019 	char fw_version[32];
1020 	u32 priv_mask = 0;
1021 	int i, rc;
1022 
1023 	if (WARN_ON(bar_size == 0))
1024 		return -EIO;
1025 
1026 	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
1027 	if (!nic_data)
1028 		return -ENOMEM;
1029 	efx->nic_data = nic_data;
1030 	nic_data->efx = efx;
1031 	efx->max_vis = EF100_MAX_VIS;
1032 
1033 	/* Populate design-parameter defaults */
1034 	nic_data->tso_max_hdr_len = ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN_DEFAULT;
1035 	nic_data->tso_max_frames = ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES_DEFAULT;
1036 	nic_data->tso_max_payload_num_segs = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS_DEFAULT;
1037 	nic_data->tso_max_payload_len = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN_DEFAULT;
1038 
1039 	/* Read design parameters */
1040 	rc = ef100_check_design_params(efx);
1041 	if (rc) {
1042 		pci_err(efx->pci_dev, "Unsupported design parameters\n");
1043 		goto fail;
1044 	}
1045 
1046 	/* we assume later that we can copy from this buffer in dwords */
1047 	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
1048 
1049 	/* MCDI buffers must be 256 byte aligned. */
1050 	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf, MCDI_BUF_LEN,
1051 				  GFP_KERNEL);
1052 	if (rc)
1053 		goto fail;
1054 
1055 	/* Get the MC's warm boot count.  In case it's rebooting right
1056 	 * now, be prepared to retry.
1057 	 */
1058 	i = 0;
1059 	for (;;) {
1060 		rc = ef100_get_warm_boot_count(efx);
1061 		if (rc >= 0)
1062 			break;
1063 		if (++i == 5)
1064 			goto fail;
1065 		ssleep(1);
1066 	}
1067 	nic_data->warm_boot_count = rc;
1068 
1069 	/* In case we're recovering from a crash (kexec), we want to
1070 	 * cancel any outstanding request by the previous user of this
1071 	 * function.  We send a special message using the least
1072 	 * significant bits of the 'high' (doorbell) register.
1073 	 */
1074 	_efx_writed(efx, cpu_to_le32(1), efx_reg(efx, ER_GZ_MC_DB_HWRD));
1075 
1076 	/* Post-IO section. */
1077 
1078 	rc = efx_mcdi_init(efx);
1079 	if (rc)
1080 		goto fail;
1081 	/* Reset (most) configuration for this function */
1082 	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
1083 	if (rc)
1084 		goto fail;
1085 	/* Enable event logging */
1086 	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
1087 	if (rc)
1088 		goto fail;
1089 
1090 	rc = efx_get_pf_index(efx, &nic_data->pf_index);
1091 	if (rc)
1092 		goto fail;
1093 
1094 	rc = efx_mcdi_port_get_number(efx);
1095 	if (rc < 0)
1096 		goto fail;
1097 	efx->port_num = rc;
1098 
1099 	efx_mcdi_print_fwver(efx, fw_version, sizeof(fw_version));
1100 	pci_dbg(efx->pci_dev, "Firmware version %s\n", fw_version);
1101 
1102 	rc = efx_mcdi_get_privilege_mask(efx, &priv_mask);
1103 	if (rc) /* non-fatal, and priv_mask will still be 0 */
1104 		pci_info(efx->pci_dev,
1105 			 "Failed to get privilege mask from FW, rc %d\n", rc);
1106 	nic_data->grp_mae = !!(priv_mask & MC_CMD_PRIVILEGE_MASK_IN_GRP_MAE);
1107 
1108 	if (compare_versions(fw_version, "1.1.0.1000") < 0) {
1109 		pci_info(efx->pci_dev, "Firmware uses old event descriptors\n");
1110 		rc = -EINVAL;
1111 		goto fail;
1112 	}
1113 
1114 	if (efx_has_cap(efx, UNSOL_EV_CREDIT_SUPPORTED)) {
1115 		pci_info(efx->pci_dev, "Firmware uses unsolicited-event credits\n");
1116 		rc = -EINVAL;
1117 		goto fail;
1118 	}
1119 
1120 	return 0;
1121 fail:
1122 	return rc;
1123 }
1124 
1125 int ef100_probe_netdev_pf(struct efx_nic *efx)
1126 {
1127 	struct ef100_nic_data *nic_data = efx->nic_data;
1128 	struct net_device *net_dev = efx->net_dev;
1129 	int rc;
1130 
1131 	if (!nic_data->grp_mae)
1132 		return 0;
1133 
1134 #ifdef CONFIG_SFC_SRIOV
1135 	rc = efx_init_struct_tc(efx);
1136 	if (rc)
1137 		return rc;
1138 
1139 	rc = efx_ef100_get_base_mport(efx);
1140 	if (rc) {
1141 		netif_warn(efx, probe, net_dev,
1142 			   "Failed to probe base mport rc %d; representors will not function\n",
1143 			   rc);
1144 	}
1145 
1146 	rc = efx_init_mae(efx);
1147 	if (rc)
1148 		netif_warn(efx, probe, net_dev,
1149 			   "Failed to init MAE rc %d; representors will not function\n",
1150 			   rc);
1151 	else
1152 		efx_ef100_init_reps(efx);
1153 
1154 	rc = efx_init_tc(efx);
1155 	if (rc) {
1156 		/* Either we don't have an MAE at all (i.e. legacy v-switching),
1157 		 * or we do but we failed to probe it.  In the latter case, we
1158 		 * may not have set up default rules, in which case we won't be
1159 		 * able to pass any traffic.  However, we don't fail the probe,
1160 		 * because the user might need to use the netdevice to apply
1161 		 * configuration changes to fix whatever's wrong with the MAE.
1162 		 */
1163 		netif_warn(efx, probe, net_dev, "Failed to probe MAE rc %d\n",
1164 			   rc);
1165 	} else {
1166 		net_dev->features |= NETIF_F_HW_TC;
1167 		efx->fixed_features |= NETIF_F_HW_TC;
1168 	}
1169 #endif
1170 	return rc;
1171 }
1172 
1173 int ef100_probe_vf(struct efx_nic *efx)
1174 {
1175 	return ef100_probe_main(efx);
1176 }
1177 
1178 void ef100_remove(struct efx_nic *efx)
1179 {
1180 	struct ef100_nic_data *nic_data = efx->nic_data;
1181 
1182 #ifdef CONFIG_SFC_SRIOV
1183 	if (efx->mae) {
1184 		efx_ef100_fini_reps(efx);
1185 		efx_fini_mae(efx);
1186 	}
1187 #endif
1188 	efx_mcdi_detach(efx);
1189 	efx_mcdi_fini(efx);
1190 	if (nic_data)
1191 		efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
1192 	kfree(nic_data);
1193 	efx->nic_data = NULL;
1194 }
1195 
1196 /*	NIC level access functions
1197  */
1198 #define EF100_OFFLOAD_FEATURES	(NETIF_F_HW_CSUM | NETIF_F_RXCSUM |	\
1199 	NETIF_F_HIGHDMA | NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_NTUPLE | \
1200 	NETIF_F_RXHASH | NETIF_F_RXFCS | NETIF_F_TSO_ECN | NETIF_F_RXALL | \
1201 	NETIF_F_HW_VLAN_CTAG_TX)
1202 
1203 const struct efx_nic_type ef100_pf_nic_type = {
1204 	.revision = EFX_REV_EF100,
1205 	.is_vf = false,
1206 	.probe = ef100_probe_main,
1207 	.offload_features = EF100_OFFLOAD_FEATURES,
1208 	.mcdi_max_ver = 2,
1209 	.mcdi_request = ef100_mcdi_request,
1210 	.mcdi_poll_response = ef100_mcdi_poll_response,
1211 	.mcdi_read_response = ef100_mcdi_read_response,
1212 	.mcdi_poll_reboot = ef100_mcdi_poll_reboot,
1213 	.mcdi_reboot_detected = ef100_mcdi_reboot_detected,
1214 	.irq_enable_master = efx_port_dummy_op_void,
1215 	.irq_test_generate = efx_ef100_irq_test_generate,
1216 	.irq_disable_non_ev = efx_port_dummy_op_void,
1217 	.push_irq_moderation = efx_channel_dummy_op_void,
1218 	.min_interrupt_mode = EFX_INT_MODE_MSIX,
1219 	.map_reset_reason = ef100_map_reset_reason,
1220 	.map_reset_flags = ef100_map_reset_flags,
1221 	.reset = ef100_reset,
1222 
1223 	.check_caps = ef100_check_caps,
1224 
1225 	.ev_probe = ef100_ev_probe,
1226 	.ev_init = ef100_ev_init,
1227 	.ev_fini = efx_mcdi_ev_fini,
1228 	.ev_remove = efx_mcdi_ev_remove,
1229 	.irq_handle_msi = ef100_msi_interrupt,
1230 	.ev_process = ef100_ev_process,
1231 	.ev_read_ack = ef100_ev_read_ack,
1232 	.ev_test_generate = efx_ef100_ev_test_generate,
1233 	.tx_probe = ef100_tx_probe,
1234 	.tx_init = ef100_tx_init,
1235 	.tx_write = ef100_tx_write,
1236 	.tx_enqueue = ef100_enqueue_skb,
1237 	.rx_probe = efx_mcdi_rx_probe,
1238 	.rx_init = efx_mcdi_rx_init,
1239 	.rx_remove = efx_mcdi_rx_remove,
1240 	.rx_write = ef100_rx_write,
1241 	.rx_packet = __ef100_rx_packet,
1242 	.rx_buf_hash_valid = ef100_rx_buf_hash_valid,
1243 	.fini_dmaq = efx_fini_dmaq,
1244 	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
1245 	.filter_table_probe = ef100_filter_table_up,
1246 	.filter_table_restore = efx_mcdi_filter_table_restore,
1247 	.filter_table_remove = ef100_filter_table_down,
1248 	.filter_insert = efx_mcdi_filter_insert,
1249 	.filter_remove_safe = efx_mcdi_filter_remove_safe,
1250 	.filter_get_safe = efx_mcdi_filter_get_safe,
1251 	.filter_clear_rx = efx_mcdi_filter_clear_rx,
1252 	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
1253 	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
1254 	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
1255 #ifdef CONFIG_RFS_ACCEL
1256 	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
1257 #endif
1258 
1259 	.get_phys_port_id = efx_ef100_get_phys_port_id,
1260 
1261 	.rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN,
1262 	.rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8,
1263 	.rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8,
1264 	.rx_hash_key_size = 40,
1265 	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
1266 	.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
1267 	.rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
1268 	.rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
1269 	.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
1270 	.rx_recycle_ring_size = efx_ef100_recycle_ring_size,
1271 
1272 	.reconfigure_mac = ef100_reconfigure_mac,
1273 	.reconfigure_port = efx_mcdi_port_reconfigure,
1274 	.test_nvram = efx_new_mcdi_nvram_test_all,
1275 	.describe_stats = ef100_describe_stats,
1276 	.start_stats = efx_mcdi_mac_start_stats,
1277 	.update_stats = ef100_update_stats,
1278 	.pull_stats = efx_mcdi_mac_pull_stats,
1279 	.stop_stats = efx_mcdi_mac_stop_stats,
1280 #ifdef CONFIG_SFC_SRIOV
1281 	.sriov_configure = efx_ef100_sriov_configure,
1282 #endif
1283 
1284 	/* Per-type bar/size configuration not used on ef100. Location of
1285 	 * registers is defined by extended capabilities.
1286 	 */
1287 	.mem_bar = NULL,
1288 	.mem_map_size = NULL,
1289 
1290 };
1291 
1292 const struct efx_nic_type ef100_vf_nic_type = {
1293 	.revision = EFX_REV_EF100,
1294 	.is_vf = true,
1295 	.probe = ef100_probe_vf,
1296 	.offload_features = EF100_OFFLOAD_FEATURES,
1297 	.mcdi_max_ver = 2,
1298 	.mcdi_request = ef100_mcdi_request,
1299 	.mcdi_poll_response = ef100_mcdi_poll_response,
1300 	.mcdi_read_response = ef100_mcdi_read_response,
1301 	.mcdi_poll_reboot = ef100_mcdi_poll_reboot,
1302 	.mcdi_reboot_detected = ef100_mcdi_reboot_detected,
1303 	.irq_enable_master = efx_port_dummy_op_void,
1304 	.irq_test_generate = efx_ef100_irq_test_generate,
1305 	.irq_disable_non_ev = efx_port_dummy_op_void,
1306 	.push_irq_moderation = efx_channel_dummy_op_void,
1307 	.min_interrupt_mode = EFX_INT_MODE_MSIX,
1308 	.map_reset_reason = ef100_map_reset_reason,
1309 	.map_reset_flags = ef100_map_reset_flags,
1310 	.reset = ef100_reset,
1311 	.check_caps = ef100_check_caps,
1312 	.ev_probe = ef100_ev_probe,
1313 	.ev_init = ef100_ev_init,
1314 	.ev_fini = efx_mcdi_ev_fini,
1315 	.ev_remove = efx_mcdi_ev_remove,
1316 	.irq_handle_msi = ef100_msi_interrupt,
1317 	.ev_process = ef100_ev_process,
1318 	.ev_read_ack = ef100_ev_read_ack,
1319 	.ev_test_generate = efx_ef100_ev_test_generate,
1320 	.tx_probe = ef100_tx_probe,
1321 	.tx_init = ef100_tx_init,
1322 	.tx_write = ef100_tx_write,
1323 	.tx_enqueue = ef100_enqueue_skb,
1324 	.rx_probe = efx_mcdi_rx_probe,
1325 	.rx_init = efx_mcdi_rx_init,
1326 	.rx_remove = efx_mcdi_rx_remove,
1327 	.rx_write = ef100_rx_write,
1328 	.rx_packet = __ef100_rx_packet,
1329 	.rx_buf_hash_valid = ef100_rx_buf_hash_valid,
1330 	.fini_dmaq = efx_fini_dmaq,
1331 	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
1332 	.filter_table_probe = ef100_filter_table_up,
1333 	.filter_table_restore = efx_mcdi_filter_table_restore,
1334 	.filter_table_remove = ef100_filter_table_down,
1335 	.filter_insert = efx_mcdi_filter_insert,
1336 	.filter_remove_safe = efx_mcdi_filter_remove_safe,
1337 	.filter_get_safe = efx_mcdi_filter_get_safe,
1338 	.filter_clear_rx = efx_mcdi_filter_clear_rx,
1339 	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
1340 	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
1341 	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
1342 #ifdef CONFIG_RFS_ACCEL
1343 	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
1344 #endif
1345 
1346 	.rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN,
1347 	.rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8,
1348 	.rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8,
1349 	.rx_hash_key_size = 40,
1350 	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
1351 	.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
1352 	.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
1353 	.rx_recycle_ring_size = efx_ef100_recycle_ring_size,
1354 
1355 	.reconfigure_mac = ef100_reconfigure_mac,
1356 	.test_nvram = efx_new_mcdi_nvram_test_all,
1357 	.describe_stats = ef100_describe_stats,
1358 	.start_stats = efx_mcdi_mac_start_stats,
1359 	.update_stats = ef100_update_stats,
1360 	.pull_stats = efx_mcdi_mac_pull_stats,
1361 	.stop_stats = efx_mcdi_mac_stop_stats,
1362 
1363 	.mem_bar = NULL,
1364 	.mem_map_size = NULL,
1365 
1366 };
1367