1 /* 2 * Driver for SanDisk SDDR-09 SmartMedia reader 3 * 4 * (c) 2000, 2001 Robert Baruch (autophile@starband.net) 5 * (c) 2002 Andries Brouwer (aeb@cwi.nl) 6 * Developed with the assistance of: 7 * (c) 2002 Alan Stern <stern@rowland.org> 8 * 9 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip. 10 * This chip is a programmable USB controller. In the SDDR-09, it has 11 * been programmed to obey a certain limited set of SCSI commands. 12 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI 13 * commands. 14 * 15 * This program is free software; you can redistribute it and/or modify it 16 * under the terms of the GNU General Public License as published by the 17 * Free Software Foundation; either version 2, or (at your option) any 18 * later version. 19 * 20 * This program is distributed in the hope that it will be useful, but 21 * WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 23 * General Public License for more details. 24 * 25 * You should have received a copy of the GNU General Public License along 26 * with this program; if not, write to the Free Software Foundation, Inc., 27 * 675 Mass Ave, Cambridge, MA 02139, USA. 28 */ 29 30 /* 31 * Known vendor commands: 12 bytes, first byte is opcode 32 * 33 * E7: read scatter gather 34 * E8: read 35 * E9: write 36 * EA: erase 37 * EB: reset 38 * EC: read status 39 * ED: read ID 40 * EE: write CIS (?) 41 * EF: compute checksum (?) 42 */ 43 44 #include <linux/errno.h> 45 #include <linux/module.h> 46 #include <linux/slab.h> 47 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_cmnd.h> 50 #include <scsi/scsi_device.h> 51 52 #include "usb.h" 53 #include "transport.h" 54 #include "protocol.h" 55 #include "debug.h" 56 #include "scsiglue.h" 57 58 #define DRV_NAME "ums-sddr09" 59 60 MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader"); 61 MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>"); 62 MODULE_LICENSE("GPL"); 63 64 static int usb_stor_sddr09_dpcm_init(struct us_data *us); 65 static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us); 66 static int usb_stor_sddr09_init(struct us_data *us); 67 68 69 /* 70 * The table of devices 71 */ 72 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \ 73 vendorName, productName, useProtocol, useTransport, \ 74 initFunction, flags) \ 75 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \ 76 .driver_info = (flags) } 77 78 static struct usb_device_id sddr09_usb_ids[] = { 79 # include "unusual_sddr09.h" 80 { } /* Terminating entry */ 81 }; 82 MODULE_DEVICE_TABLE(usb, sddr09_usb_ids); 83 84 #undef UNUSUAL_DEV 85 86 /* 87 * The flags table 88 */ 89 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \ 90 vendor_name, product_name, use_protocol, use_transport, \ 91 init_function, Flags) \ 92 { \ 93 .vendorName = vendor_name, \ 94 .productName = product_name, \ 95 .useProtocol = use_protocol, \ 96 .useTransport = use_transport, \ 97 .initFunction = init_function, \ 98 } 99 100 static struct us_unusual_dev sddr09_unusual_dev_list[] = { 101 # include "unusual_sddr09.h" 102 { } /* Terminating entry */ 103 }; 104 105 #undef UNUSUAL_DEV 106 107 108 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) ) 109 #define LSB_of(s) ((s)&0xFF) 110 #define MSB_of(s) ((s)>>8) 111 112 /* 113 * First some stuff that does not belong here: 114 * data on SmartMedia and other cards, completely 115 * unrelated to this driver. 116 * Similar stuff occurs in <linux/mtd/nand_ids.h>. 117 */ 118 119 struct nand_flash_dev { 120 int model_id; 121 int chipshift; /* 1<<cs bytes total capacity */ 122 char pageshift; /* 1<<ps bytes in a page */ 123 char blockshift; /* 1<<bs pages in an erase block */ 124 char zoneshift; /* 1<<zs blocks in a zone */ 125 /* # of logical blocks is 125/128 of this */ 126 char pageadrlen; /* length of an address in bytes - 1 */ 127 }; 128 129 /* 130 * NAND Flash Manufacturer ID Codes 131 */ 132 #define NAND_MFR_AMD 0x01 133 #define NAND_MFR_NATSEMI 0x8f 134 #define NAND_MFR_TOSHIBA 0x98 135 #define NAND_MFR_SAMSUNG 0xec 136 137 static inline char *nand_flash_manufacturer(int manuf_id) { 138 switch(manuf_id) { 139 case NAND_MFR_AMD: 140 return "AMD"; 141 case NAND_MFR_NATSEMI: 142 return "NATSEMI"; 143 case NAND_MFR_TOSHIBA: 144 return "Toshiba"; 145 case NAND_MFR_SAMSUNG: 146 return "Samsung"; 147 default: 148 return "unknown"; 149 } 150 } 151 152 /* 153 * It looks like it is unnecessary to attach manufacturer to the 154 * remaining data: SSFDC prescribes manufacturer-independent id codes. 155 * 156 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda. 157 */ 158 159 static struct nand_flash_dev nand_flash_ids[] = { 160 /* NAND flash */ 161 { 0x6e, 20, 8, 4, 8, 2}, /* 1 MB */ 162 { 0xe8, 20, 8, 4, 8, 2}, /* 1 MB */ 163 { 0xec, 20, 8, 4, 8, 2}, /* 1 MB */ 164 { 0x64, 21, 8, 4, 9, 2}, /* 2 MB */ 165 { 0xea, 21, 8, 4, 9, 2}, /* 2 MB */ 166 { 0x6b, 22, 9, 4, 9, 2}, /* 4 MB */ 167 { 0xe3, 22, 9, 4, 9, 2}, /* 4 MB */ 168 { 0xe5, 22, 9, 4, 9, 2}, /* 4 MB */ 169 { 0xe6, 23, 9, 4, 10, 2}, /* 8 MB */ 170 { 0x73, 24, 9, 5, 10, 2}, /* 16 MB */ 171 { 0x75, 25, 9, 5, 10, 2}, /* 32 MB */ 172 { 0x76, 26, 9, 5, 10, 3}, /* 64 MB */ 173 { 0x79, 27, 9, 5, 10, 3}, /* 128 MB */ 174 175 /* MASK ROM */ 176 { 0x5d, 21, 9, 4, 8, 2}, /* 2 MB */ 177 { 0xd5, 22, 9, 4, 9, 2}, /* 4 MB */ 178 { 0xd6, 23, 9, 4, 10, 2}, /* 8 MB */ 179 { 0x57, 24, 9, 4, 11, 2}, /* 16 MB */ 180 { 0x58, 25, 9, 4, 12, 2}, /* 32 MB */ 181 { 0,} 182 }; 183 184 static struct nand_flash_dev * 185 nand_find_id(unsigned char id) { 186 int i; 187 188 for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++) 189 if (nand_flash_ids[i].model_id == id) 190 return &(nand_flash_ids[i]); 191 return NULL; 192 } 193 194 /* 195 * ECC computation. 196 */ 197 static unsigned char parity[256]; 198 static unsigned char ecc2[256]; 199 200 static void nand_init_ecc(void) { 201 int i, j, a; 202 203 parity[0] = 0; 204 for (i = 1; i < 256; i++) 205 parity[i] = (parity[i&(i-1)] ^ 1); 206 207 for (i = 0; i < 256; i++) { 208 a = 0; 209 for (j = 0; j < 8; j++) { 210 if (i & (1<<j)) { 211 if ((j & 1) == 0) 212 a ^= 0x04; 213 if ((j & 2) == 0) 214 a ^= 0x10; 215 if ((j & 4) == 0) 216 a ^= 0x40; 217 } 218 } 219 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0)); 220 } 221 } 222 223 /* compute 3-byte ecc on 256 bytes */ 224 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) { 225 int i, j, a; 226 unsigned char par = 0, bit, bits[8] = {0}; 227 228 /* collect 16 checksum bits */ 229 for (i = 0; i < 256; i++) { 230 par ^= data[i]; 231 bit = parity[data[i]]; 232 for (j = 0; j < 8; j++) 233 if ((i & (1<<j)) == 0) 234 bits[j] ^= bit; 235 } 236 237 /* put 4+4+4 = 12 bits in the ecc */ 238 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0]; 239 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); 240 241 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4]; 242 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); 243 244 ecc[2] = ecc2[par]; 245 } 246 247 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) { 248 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]); 249 } 250 251 static void nand_store_ecc(unsigned char *data, unsigned char *ecc) { 252 memcpy(data, ecc, 3); 253 } 254 255 /* 256 * The actual driver starts here. 257 */ 258 259 struct sddr09_card_info { 260 unsigned long capacity; /* Size of card in bytes */ 261 int pagesize; /* Size of page in bytes */ 262 int pageshift; /* log2 of pagesize */ 263 int blocksize; /* Size of block in pages */ 264 int blockshift; /* log2 of blocksize */ 265 int blockmask; /* 2^blockshift - 1 */ 266 int *lba_to_pba; /* logical to physical map */ 267 int *pba_to_lba; /* physical to logical map */ 268 int lbact; /* number of available pages */ 269 int flags; 270 #define SDDR09_WP 1 /* write protected */ 271 }; 272 273 /* 274 * On my 16MB card, control blocks have size 64 (16 real control bytes, 275 * and 48 junk bytes). In reality of course the card uses 16 control bytes, 276 * so the reader makes up the remaining 48. Don't know whether these numbers 277 * depend on the card. For now a constant. 278 */ 279 #define CONTROL_SHIFT 6 280 281 /* 282 * On my Combo CF/SM reader, the SM reader has LUN 1. 283 * (and things fail with LUN 0). 284 * It seems LUN is irrelevant for others. 285 */ 286 #define LUN 1 287 #define LUNBITS (LUN << 5) 288 289 /* 290 * LBA and PBA are unsigned ints. Special values. 291 */ 292 #define UNDEF 0xffffffff 293 #define SPARE 0xfffffffe 294 #define UNUSABLE 0xfffffffd 295 296 static const int erase_bad_lba_entries = 0; 297 298 /* send vendor interface command (0x41) */ 299 /* called for requests 0, 1, 8 */ 300 static int 301 sddr09_send_command(struct us_data *us, 302 unsigned char request, 303 unsigned char direction, 304 unsigned char *xfer_data, 305 unsigned int xfer_len) { 306 unsigned int pipe; 307 unsigned char requesttype = (0x41 | direction); 308 int rc; 309 310 // Get the receive or send control pipe number 311 312 if (direction == USB_DIR_IN) 313 pipe = us->recv_ctrl_pipe; 314 else 315 pipe = us->send_ctrl_pipe; 316 317 rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype, 318 0, 0, xfer_data, xfer_len); 319 switch (rc) { 320 case USB_STOR_XFER_GOOD: return 0; 321 case USB_STOR_XFER_STALLED: return -EPIPE; 322 default: return -EIO; 323 } 324 } 325 326 static int 327 sddr09_send_scsi_command(struct us_data *us, 328 unsigned char *command, 329 unsigned int command_len) { 330 return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len); 331 } 332 333 #if 0 334 /* 335 * Test Unit Ready Command: 12 bytes. 336 * byte 0: opcode: 00 337 */ 338 static int 339 sddr09_test_unit_ready(struct us_data *us) { 340 unsigned char *command = us->iobuf; 341 int result; 342 343 memset(command, 0, 6); 344 command[1] = LUNBITS; 345 346 result = sddr09_send_scsi_command(us, command, 6); 347 348 usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result); 349 350 return result; 351 } 352 #endif 353 354 /* 355 * Request Sense Command: 12 bytes. 356 * byte 0: opcode: 03 357 * byte 4: data length 358 */ 359 static int 360 sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) { 361 unsigned char *command = us->iobuf; 362 int result; 363 364 memset(command, 0, 12); 365 command[0] = 0x03; 366 command[1] = LUNBITS; 367 command[4] = buflen; 368 369 result = sddr09_send_scsi_command(us, command, 12); 370 if (result) 371 return result; 372 373 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 374 sensebuf, buflen, NULL); 375 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO); 376 } 377 378 /* 379 * Read Command: 12 bytes. 380 * byte 0: opcode: E8 381 * byte 1: last two bits: 00: read data, 01: read blockwise control, 382 * 10: read both, 11: read pagewise control. 383 * It turns out we need values 20, 21, 22, 23 here (LUN 1). 384 * bytes 2-5: address (interpretation depends on byte 1, see below) 385 * bytes 10-11: count (idem) 386 * 387 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk). 388 * A read data command gets data in 512-byte pages. 389 * A read control command gets control in 64-byte chunks. 390 * A read both command gets data+control in 576-byte chunks. 391 * 392 * Blocks are groups of 32 pages, and read blockwise control jumps to the 393 * next block, while read pagewise control jumps to the next page after 394 * reading a group of 64 control bytes. 395 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?] 396 * 397 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.) 398 */ 399 400 static int 401 sddr09_readX(struct us_data *us, int x, unsigned long fromaddress, 402 int nr_of_pages, int bulklen, unsigned char *buf, 403 int use_sg) { 404 405 unsigned char *command = us->iobuf; 406 int result; 407 408 command[0] = 0xE8; 409 command[1] = LUNBITS | x; 410 command[2] = MSB_of(fromaddress>>16); 411 command[3] = LSB_of(fromaddress>>16); 412 command[4] = MSB_of(fromaddress & 0xFFFF); 413 command[5] = LSB_of(fromaddress & 0xFFFF); 414 command[6] = 0; 415 command[7] = 0; 416 command[8] = 0; 417 command[9] = 0; 418 command[10] = MSB_of(nr_of_pages); 419 command[11] = LSB_of(nr_of_pages); 420 421 result = sddr09_send_scsi_command(us, command, 12); 422 423 if (result) { 424 usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n", 425 x, result); 426 return result; 427 } 428 429 result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe, 430 buf, bulklen, use_sg, NULL); 431 432 if (result != USB_STOR_XFER_GOOD) { 433 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n", 434 x, result); 435 return -EIO; 436 } 437 return 0; 438 } 439 440 /* 441 * Read Data 442 * 443 * fromaddress counts data shorts: 444 * increasing it by 256 shifts the bytestream by 512 bytes; 445 * the last 8 bits are ignored. 446 * 447 * nr_of_pages counts pages of size (1 << pageshift). 448 */ 449 static int 450 sddr09_read20(struct us_data *us, unsigned long fromaddress, 451 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) { 452 int bulklen = nr_of_pages << pageshift; 453 454 /* The last 8 bits of fromaddress are ignored. */ 455 return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen, 456 buf, use_sg); 457 } 458 459 /* 460 * Read Blockwise Control 461 * 462 * fromaddress gives the starting position (as in read data; 463 * the last 8 bits are ignored); increasing it by 32*256 shifts 464 * the output stream by 64 bytes. 465 * 466 * count counts control groups of size (1 << controlshift). 467 * For me, controlshift = 6. Is this constant? 468 * 469 * After getting one control group, jump to the next block 470 * (fromaddress += 8192). 471 */ 472 static int 473 sddr09_read21(struct us_data *us, unsigned long fromaddress, 474 int count, int controlshift, unsigned char *buf, int use_sg) { 475 476 int bulklen = (count << controlshift); 477 return sddr09_readX(us, 1, fromaddress, count, bulklen, 478 buf, use_sg); 479 } 480 481 /* 482 * Read both Data and Control 483 * 484 * fromaddress counts data shorts, ignoring control: 485 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes; 486 * the last 8 bits are ignored. 487 * 488 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift). 489 */ 490 static int 491 sddr09_read22(struct us_data *us, unsigned long fromaddress, 492 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) { 493 494 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT); 495 usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen); 496 return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen, 497 buf, use_sg); 498 } 499 500 #if 0 501 /* 502 * Read Pagewise Control 503 * 504 * fromaddress gives the starting position (as in read data; 505 * the last 8 bits are ignored); increasing it by 256 shifts 506 * the output stream by 64 bytes. 507 * 508 * count counts control groups of size (1 << controlshift). 509 * For me, controlshift = 6. Is this constant? 510 * 511 * After getting one control group, jump to the next page 512 * (fromaddress += 256). 513 */ 514 static int 515 sddr09_read23(struct us_data *us, unsigned long fromaddress, 516 int count, int controlshift, unsigned char *buf, int use_sg) { 517 518 int bulklen = (count << controlshift); 519 return sddr09_readX(us, 3, fromaddress, count, bulklen, 520 buf, use_sg); 521 } 522 #endif 523 524 /* 525 * Erase Command: 12 bytes. 526 * byte 0: opcode: EA 527 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned). 528 * 529 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored. 530 * The byte address being erased is 2*Eaddress. 531 * The CIS cannot be erased. 532 */ 533 static int 534 sddr09_erase(struct us_data *us, unsigned long Eaddress) { 535 unsigned char *command = us->iobuf; 536 int result; 537 538 usb_stor_dbg(us, "erase address %lu\n", Eaddress); 539 540 memset(command, 0, 12); 541 command[0] = 0xEA; 542 command[1] = LUNBITS; 543 command[6] = MSB_of(Eaddress>>16); 544 command[7] = LSB_of(Eaddress>>16); 545 command[8] = MSB_of(Eaddress & 0xFFFF); 546 command[9] = LSB_of(Eaddress & 0xFFFF); 547 548 result = sddr09_send_scsi_command(us, command, 12); 549 550 if (result) 551 usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n", 552 result); 553 554 return result; 555 } 556 557 /* 558 * Write CIS Command: 12 bytes. 559 * byte 0: opcode: EE 560 * bytes 2-5: write address in shorts 561 * bytes 10-11: sector count 562 * 563 * This writes at the indicated address. Don't know how it differs 564 * from E9. Maybe it does not erase? However, it will also write to 565 * the CIS. 566 * 567 * When two such commands on the same page follow each other directly, 568 * the second one is not done. 569 */ 570 571 /* 572 * Write Command: 12 bytes. 573 * byte 0: opcode: E9 574 * bytes 2-5: write address (big-endian, counting shorts, sector aligned). 575 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned). 576 * bytes 10-11: sector count (big-endian, in 512-byte sectors). 577 * 578 * If write address equals erase address, the erase is done first, 579 * otherwise the write is done first. When erase address equals zero 580 * no erase is done? 581 */ 582 static int 583 sddr09_writeX(struct us_data *us, 584 unsigned long Waddress, unsigned long Eaddress, 585 int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) { 586 587 unsigned char *command = us->iobuf; 588 int result; 589 590 command[0] = 0xE9; 591 command[1] = LUNBITS; 592 593 command[2] = MSB_of(Waddress>>16); 594 command[3] = LSB_of(Waddress>>16); 595 command[4] = MSB_of(Waddress & 0xFFFF); 596 command[5] = LSB_of(Waddress & 0xFFFF); 597 598 command[6] = MSB_of(Eaddress>>16); 599 command[7] = LSB_of(Eaddress>>16); 600 command[8] = MSB_of(Eaddress & 0xFFFF); 601 command[9] = LSB_of(Eaddress & 0xFFFF); 602 603 command[10] = MSB_of(nr_of_pages); 604 command[11] = LSB_of(nr_of_pages); 605 606 result = sddr09_send_scsi_command(us, command, 12); 607 608 if (result) { 609 usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n", 610 result); 611 return result; 612 } 613 614 result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe, 615 buf, bulklen, use_sg, NULL); 616 617 if (result != USB_STOR_XFER_GOOD) { 618 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n", 619 result); 620 return -EIO; 621 } 622 return 0; 623 } 624 625 /* erase address, write same address */ 626 static int 627 sddr09_write_inplace(struct us_data *us, unsigned long address, 628 int nr_of_pages, int pageshift, unsigned char *buf, 629 int use_sg) { 630 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT); 631 return sddr09_writeX(us, address, address, nr_of_pages, bulklen, 632 buf, use_sg); 633 } 634 635 #if 0 636 /* 637 * Read Scatter Gather Command: 3+4n bytes. 638 * byte 0: opcode E7 639 * byte 2: n 640 * bytes 4i-1,4i,4i+1: page address 641 * byte 4i+2: page count 642 * (i=1..n) 643 * 644 * This reads several pages from the card to a single memory buffer. 645 * The last two bits of byte 1 have the same meaning as for E8. 646 */ 647 static int 648 sddr09_read_sg_test_only(struct us_data *us) { 649 unsigned char *command = us->iobuf; 650 int result, bulklen, nsg, ct; 651 unsigned char *buf; 652 unsigned long address; 653 654 nsg = bulklen = 0; 655 command[0] = 0xE7; 656 command[1] = LUNBITS; 657 command[2] = 0; 658 address = 040000; ct = 1; 659 nsg++; 660 bulklen += (ct << 9); 661 command[4*nsg+2] = ct; 662 command[4*nsg+1] = ((address >> 9) & 0xFF); 663 command[4*nsg+0] = ((address >> 17) & 0xFF); 664 command[4*nsg-1] = ((address >> 25) & 0xFF); 665 666 address = 0340000; ct = 1; 667 nsg++; 668 bulklen += (ct << 9); 669 command[4*nsg+2] = ct; 670 command[4*nsg+1] = ((address >> 9) & 0xFF); 671 command[4*nsg+0] = ((address >> 17) & 0xFF); 672 command[4*nsg-1] = ((address >> 25) & 0xFF); 673 674 address = 01000000; ct = 2; 675 nsg++; 676 bulklen += (ct << 9); 677 command[4*nsg+2] = ct; 678 command[4*nsg+1] = ((address >> 9) & 0xFF); 679 command[4*nsg+0] = ((address >> 17) & 0xFF); 680 command[4*nsg-1] = ((address >> 25) & 0xFF); 681 682 command[2] = nsg; 683 684 result = sddr09_send_scsi_command(us, command, 4*nsg+3); 685 686 if (result) { 687 usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n", 688 result); 689 return result; 690 } 691 692 buf = kmalloc(bulklen, GFP_NOIO); 693 if (!buf) 694 return -ENOMEM; 695 696 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 697 buf, bulklen, NULL); 698 kfree(buf); 699 if (result != USB_STOR_XFER_GOOD) { 700 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n", 701 result); 702 return -EIO; 703 } 704 705 return 0; 706 } 707 #endif 708 709 /* 710 * Read Status Command: 12 bytes. 711 * byte 0: opcode: EC 712 * 713 * Returns 64 bytes, all zero except for the first. 714 * bit 0: 1: Error 715 * bit 5: 1: Suspended 716 * bit 6: 1: Ready 717 * bit 7: 1: Not write-protected 718 */ 719 720 static int 721 sddr09_read_status(struct us_data *us, unsigned char *status) { 722 723 unsigned char *command = us->iobuf; 724 unsigned char *data = us->iobuf; 725 int result; 726 727 usb_stor_dbg(us, "Reading status...\n"); 728 729 memset(command, 0, 12); 730 command[0] = 0xEC; 731 command[1] = LUNBITS; 732 733 result = sddr09_send_scsi_command(us, command, 12); 734 if (result) 735 return result; 736 737 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 738 data, 64, NULL); 739 *status = data[0]; 740 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO); 741 } 742 743 static int 744 sddr09_read_data(struct us_data *us, 745 unsigned long address, 746 unsigned int sectors) { 747 748 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra; 749 unsigned char *buffer; 750 unsigned int lba, maxlba, pba; 751 unsigned int page, pages; 752 unsigned int len, offset; 753 struct scatterlist *sg; 754 int result; 755 756 // Figure out the initial LBA and page 757 lba = address >> info->blockshift; 758 page = (address & info->blockmask); 759 maxlba = info->capacity >> (info->pageshift + info->blockshift); 760 if (lba >= maxlba) 761 return -EIO; 762 763 // Since we only read in one block at a time, we have to create 764 // a bounce buffer and move the data a piece at a time between the 765 // bounce buffer and the actual transfer buffer. 766 767 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize; 768 buffer = kmalloc(len, GFP_NOIO); 769 if (!buffer) 770 return -ENOMEM; 771 772 // This could be made much more efficient by checking for 773 // contiguous LBA's. Another exercise left to the student. 774 775 result = 0; 776 offset = 0; 777 sg = NULL; 778 779 while (sectors > 0) { 780 781 /* Find number of pages we can read in this block */ 782 pages = min(sectors, info->blocksize - page); 783 len = pages << info->pageshift; 784 785 /* Not overflowing capacity? */ 786 if (lba >= maxlba) { 787 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n", 788 lba, maxlba); 789 result = -EIO; 790 break; 791 } 792 793 /* Find where this lba lives on disk */ 794 pba = info->lba_to_pba[lba]; 795 796 if (pba == UNDEF) { /* this lba was never written */ 797 798 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n", 799 pages, lba, page); 800 801 /* 802 * This is not really an error. It just means 803 * that the block has never been written. 804 * Instead of returning an error 805 * it is better to return all zero data. 806 */ 807 808 memset(buffer, 0, len); 809 810 } else { 811 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n", 812 pages, pba, lba, page); 813 814 address = ((pba << info->blockshift) + page) << 815 info->pageshift; 816 817 result = sddr09_read20(us, address>>1, 818 pages, info->pageshift, buffer, 0); 819 if (result) 820 break; 821 } 822 823 // Store the data in the transfer buffer 824 usb_stor_access_xfer_buf(buffer, len, us->srb, 825 &sg, &offset, TO_XFER_BUF); 826 827 page = 0; 828 lba++; 829 sectors -= pages; 830 } 831 832 kfree(buffer); 833 return result; 834 } 835 836 static unsigned int 837 sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) { 838 static unsigned int lastpba = 1; 839 int zonestart, end, i; 840 841 zonestart = (lba/1000) << 10; 842 end = info->capacity >> (info->blockshift + info->pageshift); 843 end -= zonestart; 844 if (end > 1024) 845 end = 1024; 846 847 for (i = lastpba+1; i < end; i++) { 848 if (info->pba_to_lba[zonestart+i] == UNDEF) { 849 lastpba = i; 850 return zonestart+i; 851 } 852 } 853 for (i = 0; i <= lastpba; i++) { 854 if (info->pba_to_lba[zonestart+i] == UNDEF) { 855 lastpba = i; 856 return zonestart+i; 857 } 858 } 859 return 0; 860 } 861 862 static int 863 sddr09_write_lba(struct us_data *us, unsigned int lba, 864 unsigned int page, unsigned int pages, 865 unsigned char *ptr, unsigned char *blockbuffer) { 866 867 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra; 868 unsigned long address; 869 unsigned int pba, lbap; 870 unsigned int pagelen; 871 unsigned char *bptr, *cptr, *xptr; 872 unsigned char ecc[3]; 873 int i, result, isnew; 874 875 lbap = ((lba % 1000) << 1) | 0x1000; 876 if (parity[MSB_of(lbap) ^ LSB_of(lbap)]) 877 lbap ^= 1; 878 pba = info->lba_to_pba[lba]; 879 isnew = 0; 880 881 if (pba == UNDEF) { 882 pba = sddr09_find_unused_pba(info, lba); 883 if (!pba) { 884 printk(KERN_WARNING 885 "sddr09_write_lba: Out of unused blocks\n"); 886 return -ENOSPC; 887 } 888 info->pba_to_lba[pba] = lba; 889 info->lba_to_pba[lba] = pba; 890 isnew = 1; 891 } 892 893 if (pba == 1) { 894 /* 895 * Maybe it is impossible to write to PBA 1. 896 * Fake success, but don't do anything. 897 */ 898 printk(KERN_WARNING "sddr09: avoid writing to pba 1\n"); 899 return 0; 900 } 901 902 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT); 903 904 /* read old contents */ 905 address = (pba << (info->pageshift + info->blockshift)); 906 result = sddr09_read22(us, address>>1, info->blocksize, 907 info->pageshift, blockbuffer, 0); 908 if (result) 909 return result; 910 911 /* check old contents and fill lba */ 912 for (i = 0; i < info->blocksize; i++) { 913 bptr = blockbuffer + i*pagelen; 914 cptr = bptr + info->pagesize; 915 nand_compute_ecc(bptr, ecc); 916 if (!nand_compare_ecc(cptr+13, ecc)) { 917 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n", 918 i, pba); 919 nand_store_ecc(cptr+13, ecc); 920 } 921 nand_compute_ecc(bptr+(info->pagesize / 2), ecc); 922 if (!nand_compare_ecc(cptr+8, ecc)) { 923 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n", 924 i, pba); 925 nand_store_ecc(cptr+8, ecc); 926 } 927 cptr[6] = cptr[11] = MSB_of(lbap); 928 cptr[7] = cptr[12] = LSB_of(lbap); 929 } 930 931 /* copy in new stuff and compute ECC */ 932 xptr = ptr; 933 for (i = page; i < page+pages; i++) { 934 bptr = blockbuffer + i*pagelen; 935 cptr = bptr + info->pagesize; 936 memcpy(bptr, xptr, info->pagesize); 937 xptr += info->pagesize; 938 nand_compute_ecc(bptr, ecc); 939 nand_store_ecc(cptr+13, ecc); 940 nand_compute_ecc(bptr+(info->pagesize / 2), ecc); 941 nand_store_ecc(cptr+8, ecc); 942 } 943 944 usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba); 945 946 result = sddr09_write_inplace(us, address>>1, info->blocksize, 947 info->pageshift, blockbuffer, 0); 948 949 usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result); 950 951 #if 0 952 { 953 unsigned char status = 0; 954 int result2 = sddr09_read_status(us, &status); 955 if (result2) 956 usb_stor_dbg(us, "cannot read status\n"); 957 else if (status != 0xc0) 958 usb_stor_dbg(us, "status after write: 0x%x\n", status); 959 } 960 #endif 961 962 #if 0 963 { 964 int result2 = sddr09_test_unit_ready(us); 965 } 966 #endif 967 968 return result; 969 } 970 971 static int 972 sddr09_write_data(struct us_data *us, 973 unsigned long address, 974 unsigned int sectors) { 975 976 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra; 977 unsigned int lba, maxlba, page, pages; 978 unsigned int pagelen, blocklen; 979 unsigned char *blockbuffer; 980 unsigned char *buffer; 981 unsigned int len, offset; 982 struct scatterlist *sg; 983 int result; 984 985 /* Figure out the initial LBA and page */ 986 lba = address >> info->blockshift; 987 page = (address & info->blockmask); 988 maxlba = info->capacity >> (info->pageshift + info->blockshift); 989 if (lba >= maxlba) 990 return -EIO; 991 992 /* 993 * blockbuffer is used for reading in the old data, overwriting 994 * with the new data, and performing ECC calculations 995 */ 996 997 /* 998 * TODO: instead of doing kmalloc/kfree for each write, 999 * add a bufferpointer to the info structure 1000 */ 1001 1002 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT); 1003 blocklen = (pagelen << info->blockshift); 1004 blockbuffer = kmalloc(blocklen, GFP_NOIO); 1005 if (!blockbuffer) 1006 return -ENOMEM; 1007 1008 /* 1009 * Since we don't write the user data directly to the device, 1010 * we have to create a bounce buffer and move the data a piece 1011 * at a time between the bounce buffer and the actual transfer buffer. 1012 */ 1013 1014 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize; 1015 buffer = kmalloc(len, GFP_NOIO); 1016 if (!buffer) { 1017 kfree(blockbuffer); 1018 return -ENOMEM; 1019 } 1020 1021 result = 0; 1022 offset = 0; 1023 sg = NULL; 1024 1025 while (sectors > 0) { 1026 1027 /* Write as many sectors as possible in this block */ 1028 1029 pages = min(sectors, info->blocksize - page); 1030 len = (pages << info->pageshift); 1031 1032 /* Not overflowing capacity? */ 1033 if (lba >= maxlba) { 1034 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n", 1035 lba, maxlba); 1036 result = -EIO; 1037 break; 1038 } 1039 1040 /* Get the data from the transfer buffer */ 1041 usb_stor_access_xfer_buf(buffer, len, us->srb, 1042 &sg, &offset, FROM_XFER_BUF); 1043 1044 result = sddr09_write_lba(us, lba, page, pages, 1045 buffer, blockbuffer); 1046 if (result) 1047 break; 1048 1049 page = 0; 1050 lba++; 1051 sectors -= pages; 1052 } 1053 1054 kfree(buffer); 1055 kfree(blockbuffer); 1056 1057 return result; 1058 } 1059 1060 static int 1061 sddr09_read_control(struct us_data *us, 1062 unsigned long address, 1063 unsigned int blocks, 1064 unsigned char *content, 1065 int use_sg) { 1066 1067 usb_stor_dbg(us, "Read control address %lu, blocks %d\n", 1068 address, blocks); 1069 1070 return sddr09_read21(us, address, blocks, 1071 CONTROL_SHIFT, content, use_sg); 1072 } 1073 1074 /* 1075 * Read Device ID Command: 12 bytes. 1076 * byte 0: opcode: ED 1077 * 1078 * Returns 2 bytes: Manufacturer ID and Device ID. 1079 * On more recent cards 3 bytes: the third byte is an option code A5 1080 * signifying that the secret command to read an 128-bit ID is available. 1081 * On still more recent cards 4 bytes: the fourth byte C0 means that 1082 * a second read ID cmd is available. 1083 */ 1084 static int 1085 sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) { 1086 unsigned char *command = us->iobuf; 1087 unsigned char *content = us->iobuf; 1088 int result, i; 1089 1090 memset(command, 0, 12); 1091 command[0] = 0xED; 1092 command[1] = LUNBITS; 1093 1094 result = sddr09_send_scsi_command(us, command, 12); 1095 if (result) 1096 return result; 1097 1098 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 1099 content, 64, NULL); 1100 1101 for (i = 0; i < 4; i++) 1102 deviceID[i] = content[i]; 1103 1104 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO); 1105 } 1106 1107 static int 1108 sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) { 1109 int result; 1110 unsigned char status; 1111 const char *wp_fmt; 1112 1113 result = sddr09_read_status(us, &status); 1114 if (result) { 1115 usb_stor_dbg(us, "read_status fails\n"); 1116 return result; 1117 } 1118 if ((status & 0x80) == 0) { 1119 info->flags |= SDDR09_WP; /* write protected */ 1120 wp_fmt = " WP"; 1121 } else { 1122 wp_fmt = ""; 1123 } 1124 usb_stor_dbg(us, "status 0x%02X%s%s%s%s\n", status, wp_fmt, 1125 status & 0x40 ? " Ready" : "", 1126 status & LUNBITS ? " Suspended" : "", 1127 status & 0x01 ? " Error" : ""); 1128 1129 return 0; 1130 } 1131 1132 #if 0 1133 /* 1134 * Reset Command: 12 bytes. 1135 * byte 0: opcode: EB 1136 */ 1137 static int 1138 sddr09_reset(struct us_data *us) { 1139 1140 unsigned char *command = us->iobuf; 1141 1142 memset(command, 0, 12); 1143 command[0] = 0xEB; 1144 command[1] = LUNBITS; 1145 1146 return sddr09_send_scsi_command(us, command, 12); 1147 } 1148 #endif 1149 1150 static struct nand_flash_dev * 1151 sddr09_get_cardinfo(struct us_data *us, unsigned char flags) { 1152 struct nand_flash_dev *cardinfo; 1153 unsigned char deviceID[4]; 1154 char blurbtxt[256]; 1155 int result; 1156 1157 usb_stor_dbg(us, "Reading capacity...\n"); 1158 1159 result = sddr09_read_deviceID(us, deviceID); 1160 1161 if (result) { 1162 usb_stor_dbg(us, "Result of read_deviceID is %d\n", result); 1163 printk(KERN_WARNING "sddr09: could not read card info\n"); 1164 return NULL; 1165 } 1166 1167 sprintf(blurbtxt, "sddr09: Found Flash card, ID = %4ph", deviceID); 1168 1169 /* Byte 0 is the manufacturer */ 1170 sprintf(blurbtxt + strlen(blurbtxt), 1171 ": Manuf. %s", 1172 nand_flash_manufacturer(deviceID[0])); 1173 1174 /* Byte 1 is the device type */ 1175 cardinfo = nand_find_id(deviceID[1]); 1176 if (cardinfo) { 1177 /* 1178 * MB or MiB? It is neither. A 16 MB card has 1179 * 17301504 raw bytes, of which 16384000 are 1180 * usable for user data. 1181 */ 1182 sprintf(blurbtxt + strlen(blurbtxt), 1183 ", %d MB", 1<<(cardinfo->chipshift - 20)); 1184 } else { 1185 sprintf(blurbtxt + strlen(blurbtxt), 1186 ", type unrecognized"); 1187 } 1188 1189 /* Byte 2 is code to signal availability of 128-bit ID */ 1190 if (deviceID[2] == 0xa5) { 1191 sprintf(blurbtxt + strlen(blurbtxt), 1192 ", 128-bit ID"); 1193 } 1194 1195 /* Byte 3 announces the availability of another read ID command */ 1196 if (deviceID[3] == 0xc0) { 1197 sprintf(blurbtxt + strlen(blurbtxt), 1198 ", extra cmd"); 1199 } 1200 1201 if (flags & SDDR09_WP) 1202 sprintf(blurbtxt + strlen(blurbtxt), 1203 ", WP"); 1204 1205 printk(KERN_WARNING "%s\n", blurbtxt); 1206 1207 return cardinfo; 1208 } 1209 1210 static int 1211 sddr09_read_map(struct us_data *us) { 1212 1213 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra; 1214 int numblocks, alloc_len, alloc_blocks; 1215 int i, j, result; 1216 unsigned char *buffer, *buffer_end, *ptr; 1217 unsigned int lba, lbact; 1218 1219 if (!info->capacity) 1220 return -1; 1221 1222 /* 1223 * size of a block is 1 << (blockshift + pageshift) bytes 1224 * divide into the total capacity to get the number of blocks 1225 */ 1226 1227 numblocks = info->capacity >> (info->blockshift + info->pageshift); 1228 1229 /* 1230 * read 64 bytes for every block (actually 1 << CONTROL_SHIFT) 1231 * but only use a 64 KB buffer 1232 * buffer size used must be a multiple of (1 << CONTROL_SHIFT) 1233 */ 1234 #define SDDR09_READ_MAP_BUFSZ 65536 1235 1236 alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT); 1237 alloc_len = (alloc_blocks << CONTROL_SHIFT); 1238 buffer = kmalloc(alloc_len, GFP_NOIO); 1239 if (!buffer) { 1240 result = -1; 1241 goto done; 1242 } 1243 buffer_end = buffer + alloc_len; 1244 1245 #undef SDDR09_READ_MAP_BUFSZ 1246 1247 kfree(info->lba_to_pba); 1248 kfree(info->pba_to_lba); 1249 info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO); 1250 info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO); 1251 1252 if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) { 1253 printk(KERN_WARNING "sddr09_read_map: out of memory\n"); 1254 result = -1; 1255 goto done; 1256 } 1257 1258 for (i = 0; i < numblocks; i++) 1259 info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF; 1260 1261 /* 1262 * Define lba-pba translation table 1263 */ 1264 1265 ptr = buffer_end; 1266 for (i = 0; i < numblocks; i++) { 1267 ptr += (1 << CONTROL_SHIFT); 1268 if (ptr >= buffer_end) { 1269 unsigned long address; 1270 1271 address = i << (info->pageshift + info->blockshift); 1272 result = sddr09_read_control( 1273 us, address>>1, 1274 min(alloc_blocks, numblocks - i), 1275 buffer, 0); 1276 if (result) { 1277 result = -1; 1278 goto done; 1279 } 1280 ptr = buffer; 1281 } 1282 1283 if (i == 0 || i == 1) { 1284 info->pba_to_lba[i] = UNUSABLE; 1285 continue; 1286 } 1287 1288 /* special PBAs have control field 0^16 */ 1289 for (j = 0; j < 16; j++) 1290 if (ptr[j] != 0) 1291 goto nonz; 1292 info->pba_to_lba[i] = UNUSABLE; 1293 printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n", 1294 i); 1295 continue; 1296 1297 nonz: 1298 /* unwritten PBAs have control field FF^16 */ 1299 for (j = 0; j < 16; j++) 1300 if (ptr[j] != 0xff) 1301 goto nonff; 1302 continue; 1303 1304 nonff: 1305 /* normal PBAs start with six FFs */ 1306 if (j < 6) { 1307 printk(KERN_WARNING 1308 "sddr09: PBA %d has no logical mapping: " 1309 "reserved area = %02X%02X%02X%02X " 1310 "data status %02X block status %02X\n", 1311 i, ptr[0], ptr[1], ptr[2], ptr[3], 1312 ptr[4], ptr[5]); 1313 info->pba_to_lba[i] = UNUSABLE; 1314 continue; 1315 } 1316 1317 if ((ptr[6] >> 4) != 0x01) { 1318 printk(KERN_WARNING 1319 "sddr09: PBA %d has invalid address field " 1320 "%02X%02X/%02X%02X\n", 1321 i, ptr[6], ptr[7], ptr[11], ptr[12]); 1322 info->pba_to_lba[i] = UNUSABLE; 1323 continue; 1324 } 1325 1326 /* check even parity */ 1327 if (parity[ptr[6] ^ ptr[7]]) { 1328 printk(KERN_WARNING 1329 "sddr09: Bad parity in LBA for block %d" 1330 " (%02X %02X)\n", i, ptr[6], ptr[7]); 1331 info->pba_to_lba[i] = UNUSABLE; 1332 continue; 1333 } 1334 1335 lba = short_pack(ptr[7], ptr[6]); 1336 lba = (lba & 0x07FF) >> 1; 1337 1338 /* 1339 * Every 1024 physical blocks ("zone"), the LBA numbers 1340 * go back to zero, but are within a higher block of LBA's. 1341 * Also, there is a maximum of 1000 LBA's per zone. 1342 * In other words, in PBA 1024-2047 you will find LBA 0-999 1343 * which are really LBA 1000-1999. This allows for 24 bad 1344 * or special physical blocks per zone. 1345 */ 1346 1347 if (lba >= 1000) { 1348 printk(KERN_WARNING 1349 "sddr09: Bad low LBA %d for block %d\n", 1350 lba, i); 1351 goto possibly_erase; 1352 } 1353 1354 lba += 1000*(i/0x400); 1355 1356 if (info->lba_to_pba[lba] != UNDEF) { 1357 printk(KERN_WARNING 1358 "sddr09: LBA %d seen for PBA %d and %d\n", 1359 lba, info->lba_to_pba[lba], i); 1360 goto possibly_erase; 1361 } 1362 1363 info->pba_to_lba[i] = lba; 1364 info->lba_to_pba[lba] = i; 1365 continue; 1366 1367 possibly_erase: 1368 if (erase_bad_lba_entries) { 1369 unsigned long address; 1370 1371 address = (i << (info->pageshift + info->blockshift)); 1372 sddr09_erase(us, address>>1); 1373 info->pba_to_lba[i] = UNDEF; 1374 } else 1375 info->pba_to_lba[i] = UNUSABLE; 1376 } 1377 1378 /* 1379 * Approximate capacity. This is not entirely correct yet, 1380 * since a zone with less than 1000 usable pages leads to 1381 * missing LBAs. Especially if it is the last zone, some 1382 * LBAs can be past capacity. 1383 */ 1384 lbact = 0; 1385 for (i = 0; i < numblocks; i += 1024) { 1386 int ct = 0; 1387 1388 for (j = 0; j < 1024 && i+j < numblocks; j++) { 1389 if (info->pba_to_lba[i+j] != UNUSABLE) { 1390 if (ct >= 1000) 1391 info->pba_to_lba[i+j] = SPARE; 1392 else 1393 ct++; 1394 } 1395 } 1396 lbact += ct; 1397 } 1398 info->lbact = lbact; 1399 usb_stor_dbg(us, "Found %d LBA's\n", lbact); 1400 result = 0; 1401 1402 done: 1403 if (result != 0) { 1404 kfree(info->lba_to_pba); 1405 kfree(info->pba_to_lba); 1406 info->lba_to_pba = NULL; 1407 info->pba_to_lba = NULL; 1408 } 1409 kfree(buffer); 1410 return result; 1411 } 1412 1413 static void 1414 sddr09_card_info_destructor(void *extra) { 1415 struct sddr09_card_info *info = (struct sddr09_card_info *)extra; 1416 1417 if (!info) 1418 return; 1419 1420 kfree(info->lba_to_pba); 1421 kfree(info->pba_to_lba); 1422 } 1423 1424 static int 1425 sddr09_common_init(struct us_data *us) { 1426 int result; 1427 1428 /* set the configuration -- STALL is an acceptable response here */ 1429 if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) { 1430 usb_stor_dbg(us, "active config #%d != 1 ??\n", 1431 us->pusb_dev->actconfig->desc.bConfigurationValue); 1432 return -EINVAL; 1433 } 1434 1435 result = usb_reset_configuration(us->pusb_dev); 1436 usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result); 1437 if (result == -EPIPE) { 1438 usb_stor_dbg(us, "-- stall on control interface\n"); 1439 } else if (result != 0) { 1440 /* it's not a stall, but another error -- time to bail */ 1441 usb_stor_dbg(us, "-- Unknown error. Rejecting device\n"); 1442 return -EINVAL; 1443 } 1444 1445 us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO); 1446 if (!us->extra) 1447 return -ENOMEM; 1448 us->extra_destructor = sddr09_card_info_destructor; 1449 1450 nand_init_ecc(); 1451 return 0; 1452 } 1453 1454 1455 /* 1456 * This is needed at a very early stage. If this is not listed in the 1457 * unusual devices list but called from here then LUN 0 of the combo reader 1458 * is not recognized. But I do not know what precisely these calls do. 1459 */ 1460 static int 1461 usb_stor_sddr09_dpcm_init(struct us_data *us) { 1462 int result; 1463 unsigned char *data = us->iobuf; 1464 1465 result = sddr09_common_init(us); 1466 if (result) 1467 return result; 1468 1469 result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2); 1470 if (result) { 1471 usb_stor_dbg(us, "send_command fails\n"); 1472 return result; 1473 } 1474 1475 usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]); 1476 // get 07 02 1477 1478 result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2); 1479 if (result) { 1480 usb_stor_dbg(us, "2nd send_command fails\n"); 1481 return result; 1482 } 1483 1484 usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]); 1485 // get 07 00 1486 1487 result = sddr09_request_sense(us, data, 18); 1488 if (result == 0 && data[2] != 0) { 1489 int j; 1490 for (j=0; j<18; j++) 1491 printk(" %02X", data[j]); 1492 printk("\n"); 1493 // get 70 00 00 00 00 00 00 * 00 00 00 00 00 00 1494 // 70: current command 1495 // sense key 0, sense code 0, extd sense code 0 1496 // additional transfer length * = sizeof(data) - 7 1497 // Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00 1498 // sense key 06, sense code 28: unit attention, 1499 // not ready to ready transition 1500 } 1501 1502 // test unit ready 1503 1504 return 0; /* not result */ 1505 } 1506 1507 /* 1508 * Transport for the Microtech DPCM-USB 1509 */ 1510 static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us) 1511 { 1512 int ret; 1513 1514 usb_stor_dbg(us, "LUN=%d\n", (u8)srb->device->lun); 1515 1516 switch (srb->device->lun) { 1517 case 0: 1518 1519 /* 1520 * LUN 0 corresponds to the CompactFlash card reader. 1521 */ 1522 ret = usb_stor_CB_transport(srb, us); 1523 break; 1524 1525 case 1: 1526 1527 /* 1528 * LUN 1 corresponds to the SmartMedia card reader. 1529 */ 1530 1531 /* 1532 * Set the LUN to 0 (just in case). 1533 */ 1534 srb->device->lun = 0; 1535 ret = sddr09_transport(srb, us); 1536 srb->device->lun = 1; 1537 break; 1538 1539 default: 1540 usb_stor_dbg(us, "Invalid LUN %d\n", (u8)srb->device->lun); 1541 ret = USB_STOR_TRANSPORT_ERROR; 1542 break; 1543 } 1544 return ret; 1545 } 1546 1547 1548 /* 1549 * Transport for the Sandisk SDDR-09 1550 */ 1551 static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us) 1552 { 1553 static unsigned char sensekey = 0, sensecode = 0; 1554 static unsigned char havefakesense = 0; 1555 int result, i; 1556 unsigned char *ptr = us->iobuf; 1557 unsigned long capacity; 1558 unsigned int page, pages; 1559 1560 struct sddr09_card_info *info; 1561 1562 static unsigned char inquiry_response[8] = { 1563 0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00 1564 }; 1565 1566 /* note: no block descriptor support */ 1567 static unsigned char mode_page_01[19] = { 1568 0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00, 1569 0x01, 0x0A, 1570 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 1571 }; 1572 1573 info = (struct sddr09_card_info *)us->extra; 1574 1575 if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) { 1576 /* for a faked command, we have to follow with a faked sense */ 1577 memset(ptr, 0, 18); 1578 ptr[0] = 0x70; 1579 ptr[2] = sensekey; 1580 ptr[7] = 11; 1581 ptr[12] = sensecode; 1582 usb_stor_set_xfer_buf(ptr, 18, srb); 1583 sensekey = sensecode = havefakesense = 0; 1584 return USB_STOR_TRANSPORT_GOOD; 1585 } 1586 1587 havefakesense = 1; 1588 1589 /* 1590 * Dummy up a response for INQUIRY since SDDR09 doesn't 1591 * respond to INQUIRY commands 1592 */ 1593 1594 if (srb->cmnd[0] == INQUIRY) { 1595 memcpy(ptr, inquiry_response, 8); 1596 fill_inquiry_response(us, ptr, 36); 1597 return USB_STOR_TRANSPORT_GOOD; 1598 } 1599 1600 if (srb->cmnd[0] == READ_CAPACITY) { 1601 struct nand_flash_dev *cardinfo; 1602 1603 sddr09_get_wp(us, info); /* read WP bit */ 1604 1605 cardinfo = sddr09_get_cardinfo(us, info->flags); 1606 if (!cardinfo) { 1607 /* probably no media */ 1608 init_error: 1609 sensekey = 0x02; /* not ready */ 1610 sensecode = 0x3a; /* medium not present */ 1611 return USB_STOR_TRANSPORT_FAILED; 1612 } 1613 1614 info->capacity = (1 << cardinfo->chipshift); 1615 info->pageshift = cardinfo->pageshift; 1616 info->pagesize = (1 << info->pageshift); 1617 info->blockshift = cardinfo->blockshift; 1618 info->blocksize = (1 << info->blockshift); 1619 info->blockmask = info->blocksize - 1; 1620 1621 // map initialization, must follow get_cardinfo() 1622 if (sddr09_read_map(us)) { 1623 /* probably out of memory */ 1624 goto init_error; 1625 } 1626 1627 // Report capacity 1628 1629 capacity = (info->lbact << info->blockshift) - 1; 1630 1631 ((__be32 *) ptr)[0] = cpu_to_be32(capacity); 1632 1633 // Report page size 1634 1635 ((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize); 1636 usb_stor_set_xfer_buf(ptr, 8, srb); 1637 1638 return USB_STOR_TRANSPORT_GOOD; 1639 } 1640 1641 if (srb->cmnd[0] == MODE_SENSE_10) { 1642 int modepage = (srb->cmnd[2] & 0x3F); 1643 1644 /* 1645 * They ask for the Read/Write error recovery page, 1646 * or for all pages. 1647 */ 1648 /* %% We should check DBD %% */ 1649 if (modepage == 0x01 || modepage == 0x3F) { 1650 usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n", 1651 modepage); 1652 1653 memcpy(ptr, mode_page_01, sizeof(mode_page_01)); 1654 ((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2); 1655 ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0; 1656 usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb); 1657 return USB_STOR_TRANSPORT_GOOD; 1658 } 1659 1660 sensekey = 0x05; /* illegal request */ 1661 sensecode = 0x24; /* invalid field in CDB */ 1662 return USB_STOR_TRANSPORT_FAILED; 1663 } 1664 1665 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) 1666 return USB_STOR_TRANSPORT_GOOD; 1667 1668 havefakesense = 0; 1669 1670 if (srb->cmnd[0] == READ_10) { 1671 1672 page = short_pack(srb->cmnd[3], srb->cmnd[2]); 1673 page <<= 16; 1674 page |= short_pack(srb->cmnd[5], srb->cmnd[4]); 1675 pages = short_pack(srb->cmnd[8], srb->cmnd[7]); 1676 1677 usb_stor_dbg(us, "READ_10: read page %d pagect %d\n", 1678 page, pages); 1679 1680 result = sddr09_read_data(us, page, pages); 1681 return (result == 0 ? USB_STOR_TRANSPORT_GOOD : 1682 USB_STOR_TRANSPORT_ERROR); 1683 } 1684 1685 if (srb->cmnd[0] == WRITE_10) { 1686 1687 page = short_pack(srb->cmnd[3], srb->cmnd[2]); 1688 page <<= 16; 1689 page |= short_pack(srb->cmnd[5], srb->cmnd[4]); 1690 pages = short_pack(srb->cmnd[8], srb->cmnd[7]); 1691 1692 usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n", 1693 page, pages); 1694 1695 result = sddr09_write_data(us, page, pages); 1696 return (result == 0 ? USB_STOR_TRANSPORT_GOOD : 1697 USB_STOR_TRANSPORT_ERROR); 1698 } 1699 1700 /* 1701 * catch-all for all other commands, except 1702 * pass TEST_UNIT_READY and REQUEST_SENSE through 1703 */ 1704 if (srb->cmnd[0] != TEST_UNIT_READY && 1705 srb->cmnd[0] != REQUEST_SENSE) { 1706 sensekey = 0x05; /* illegal request */ 1707 sensecode = 0x20; /* invalid command */ 1708 havefakesense = 1; 1709 return USB_STOR_TRANSPORT_FAILED; 1710 } 1711 1712 for (; srb->cmd_len<12; srb->cmd_len++) 1713 srb->cmnd[srb->cmd_len] = 0; 1714 1715 srb->cmnd[1] = LUNBITS; 1716 1717 ptr[0] = 0; 1718 for (i=0; i<12; i++) 1719 sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]); 1720 1721 usb_stor_dbg(us, "Send control for command %s\n", ptr); 1722 1723 result = sddr09_send_scsi_command(us, srb->cmnd, 12); 1724 if (result) { 1725 usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n", 1726 result); 1727 return USB_STOR_TRANSPORT_ERROR; 1728 } 1729 1730 if (scsi_bufflen(srb) == 0) 1731 return USB_STOR_TRANSPORT_GOOD; 1732 1733 if (srb->sc_data_direction == DMA_TO_DEVICE || 1734 srb->sc_data_direction == DMA_FROM_DEVICE) { 1735 unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE) 1736 ? us->send_bulk_pipe : us->recv_bulk_pipe; 1737 1738 usb_stor_dbg(us, "%s %d bytes\n", 1739 (srb->sc_data_direction == DMA_TO_DEVICE) ? 1740 "sending" : "receiving", 1741 scsi_bufflen(srb)); 1742 1743 result = usb_stor_bulk_srb(us, pipe, srb); 1744 1745 return (result == USB_STOR_XFER_GOOD ? 1746 USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR); 1747 } 1748 1749 return USB_STOR_TRANSPORT_GOOD; 1750 } 1751 1752 /* 1753 * Initialization routine for the sddr09 subdriver 1754 */ 1755 static int 1756 usb_stor_sddr09_init(struct us_data *us) { 1757 return sddr09_common_init(us); 1758 } 1759 1760 static struct scsi_host_template sddr09_host_template; 1761 1762 static int sddr09_probe(struct usb_interface *intf, 1763 const struct usb_device_id *id) 1764 { 1765 struct us_data *us; 1766 int result; 1767 1768 result = usb_stor_probe1(&us, intf, id, 1769 (id - sddr09_usb_ids) + sddr09_unusual_dev_list, 1770 &sddr09_host_template); 1771 if (result) 1772 return result; 1773 1774 if (us->protocol == USB_PR_DPCM_USB) { 1775 us->transport_name = "Control/Bulk-EUSB/SDDR09"; 1776 us->transport = dpcm_transport; 1777 us->transport_reset = usb_stor_CB_reset; 1778 us->max_lun = 1; 1779 } else { 1780 us->transport_name = "EUSB/SDDR09"; 1781 us->transport = sddr09_transport; 1782 us->transport_reset = usb_stor_CB_reset; 1783 us->max_lun = 0; 1784 } 1785 1786 result = usb_stor_probe2(us); 1787 return result; 1788 } 1789 1790 static struct usb_driver sddr09_driver = { 1791 .name = DRV_NAME, 1792 .probe = sddr09_probe, 1793 .disconnect = usb_stor_disconnect, 1794 .suspend = usb_stor_suspend, 1795 .resume = usb_stor_resume, 1796 .reset_resume = usb_stor_reset_resume, 1797 .pre_reset = usb_stor_pre_reset, 1798 .post_reset = usb_stor_post_reset, 1799 .id_table = sddr09_usb_ids, 1800 .soft_unbind = 1, 1801 .no_dynamic_id = 1, 1802 }; 1803 1804 module_usb_stor_driver(sddr09_driver, sddr09_host_template, DRV_NAME); 1805