1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * Internal non-public definitions that provide either classic 5 * or preemptible semantics. 6 * 7 * Copyright Red Hat, 2009 8 * Copyright IBM Corporation, 2009 9 * Copyright SUSE, 2021 10 * 11 * Author: Ingo Molnar <mingo@elte.hu> 12 * Paul E. McKenney <paulmck@linux.ibm.com> 13 * Frederic Weisbecker <frederic@kernel.org> 14 */ 15 16 #ifdef CONFIG_RCU_NOCB_CPU 17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 18 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 19 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp) 20 { 21 return lockdep_is_held(&rdp->nocb_lock); 22 } 23 24 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp) 25 { 26 /* Race on early boot between thread creation and assignment */ 27 if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread) 28 return true; 29 30 if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread) 31 if (in_task()) 32 return true; 33 return false; 34 } 35 36 /* 37 * Offload callback processing from the boot-time-specified set of CPUs 38 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads 39 * created that pull the callbacks from the corresponding CPU, wait for 40 * a grace period to elapse, and invoke the callbacks. These kthreads 41 * are organized into GP kthreads, which manage incoming callbacks, wait for 42 * grace periods, and awaken CB kthreads, and the CB kthreads, which only 43 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs 44 * do a wake_up() on their GP kthread when they insert a callback into any 45 * empty list, unless the rcu_nocb_poll boot parameter has been specified, 46 * in which case each kthread actively polls its CPU. (Which isn't so great 47 * for energy efficiency, but which does reduce RCU's overhead on that CPU.) 48 * 49 * This is intended to be used in conjunction with Frederic Weisbecker's 50 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 51 * running CPU-bound user-mode computations. 52 * 53 * Offloading of callbacks can also be used as an energy-efficiency 54 * measure because CPUs with no RCU callbacks queued are more aggressive 55 * about entering dyntick-idle mode. 56 */ 57 58 59 /* 60 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. 61 * If the list is invalid, a warning is emitted and all CPUs are offloaded. 62 */ 63 static int __init rcu_nocb_setup(char *str) 64 { 65 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 66 if (*str == '=') { 67 if (cpulist_parse(++str, rcu_nocb_mask)) { 68 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n"); 69 cpumask_setall(rcu_nocb_mask); 70 } 71 } 72 rcu_state.nocb_is_setup = true; 73 return 1; 74 } 75 __setup("rcu_nocbs", rcu_nocb_setup); 76 77 static int __init parse_rcu_nocb_poll(char *arg) 78 { 79 rcu_nocb_poll = true; 80 return 1; 81 } 82 __setup("rcu_nocb_poll", parse_rcu_nocb_poll); 83 84 /* 85 * Don't bother bypassing ->cblist if the call_rcu() rate is low. 86 * After all, the main point of bypassing is to avoid lock contention 87 * on ->nocb_lock, which only can happen at high call_rcu() rates. 88 */ 89 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ; 90 module_param(nocb_nobypass_lim_per_jiffy, int, 0); 91 92 /* 93 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the 94 * lock isn't immediately available, increment ->nocb_lock_contended to 95 * flag the contention. 96 */ 97 static void rcu_nocb_bypass_lock(struct rcu_data *rdp) 98 __acquires(&rdp->nocb_bypass_lock) 99 { 100 lockdep_assert_irqs_disabled(); 101 if (raw_spin_trylock(&rdp->nocb_bypass_lock)) 102 return; 103 atomic_inc(&rdp->nocb_lock_contended); 104 WARN_ON_ONCE(smp_processor_id() != rdp->cpu); 105 smp_mb__after_atomic(); /* atomic_inc() before lock. */ 106 raw_spin_lock(&rdp->nocb_bypass_lock); 107 smp_mb__before_atomic(); /* atomic_dec() after lock. */ 108 atomic_dec(&rdp->nocb_lock_contended); 109 } 110 111 /* 112 * Spinwait until the specified rcu_data structure's ->nocb_lock is 113 * not contended. Please note that this is extremely special-purpose, 114 * relying on the fact that at most two kthreads and one CPU contend for 115 * this lock, and also that the two kthreads are guaranteed to have frequent 116 * grace-period-duration time intervals between successive acquisitions 117 * of the lock. This allows us to use an extremely simple throttling 118 * mechanism, and further to apply it only to the CPU doing floods of 119 * call_rcu() invocations. Don't try this at home! 120 */ 121 static void rcu_nocb_wait_contended(struct rcu_data *rdp) 122 { 123 WARN_ON_ONCE(smp_processor_id() != rdp->cpu); 124 while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended))) 125 cpu_relax(); 126 } 127 128 /* 129 * Conditionally acquire the specified rcu_data structure's 130 * ->nocb_bypass_lock. 131 */ 132 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp) 133 { 134 lockdep_assert_irqs_disabled(); 135 return raw_spin_trylock(&rdp->nocb_bypass_lock); 136 } 137 138 /* 139 * Release the specified rcu_data structure's ->nocb_bypass_lock. 140 */ 141 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp) 142 __releases(&rdp->nocb_bypass_lock) 143 { 144 lockdep_assert_irqs_disabled(); 145 raw_spin_unlock(&rdp->nocb_bypass_lock); 146 } 147 148 /* 149 * Acquire the specified rcu_data structure's ->nocb_lock, but only 150 * if it corresponds to a no-CBs CPU. 151 */ 152 static void rcu_nocb_lock(struct rcu_data *rdp) 153 { 154 lockdep_assert_irqs_disabled(); 155 if (!rcu_rdp_is_offloaded(rdp)) 156 return; 157 raw_spin_lock(&rdp->nocb_lock); 158 } 159 160 /* 161 * Release the specified rcu_data structure's ->nocb_lock, but only 162 * if it corresponds to a no-CBs CPU. 163 */ 164 static void rcu_nocb_unlock(struct rcu_data *rdp) 165 { 166 if (rcu_rdp_is_offloaded(rdp)) { 167 lockdep_assert_irqs_disabled(); 168 raw_spin_unlock(&rdp->nocb_lock); 169 } 170 } 171 172 /* 173 * Release the specified rcu_data structure's ->nocb_lock and restore 174 * interrupts, but only if it corresponds to a no-CBs CPU. 175 */ 176 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 177 unsigned long flags) 178 { 179 if (rcu_rdp_is_offloaded(rdp)) { 180 lockdep_assert_irqs_disabled(); 181 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 182 } else { 183 local_irq_restore(flags); 184 } 185 } 186 187 /* Lockdep check that ->cblist may be safely accessed. */ 188 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 189 { 190 lockdep_assert_irqs_disabled(); 191 if (rcu_rdp_is_offloaded(rdp)) 192 lockdep_assert_held(&rdp->nocb_lock); 193 } 194 195 /* 196 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 197 * grace period. 198 */ 199 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 200 { 201 swake_up_all(sq); 202 } 203 204 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 205 { 206 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1]; 207 } 208 209 static void rcu_init_one_nocb(struct rcu_node *rnp) 210 { 211 init_swait_queue_head(&rnp->nocb_gp_wq[0]); 212 init_swait_queue_head(&rnp->nocb_gp_wq[1]); 213 } 214 215 static bool __wake_nocb_gp(struct rcu_data *rdp_gp, 216 struct rcu_data *rdp, 217 bool force, unsigned long flags) 218 __releases(rdp_gp->nocb_gp_lock) 219 { 220 bool needwake = false; 221 222 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) { 223 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 224 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 225 TPS("AlreadyAwake")); 226 return false; 227 } 228 229 if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) { 230 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 231 del_timer(&rdp_gp->nocb_timer); 232 } 233 234 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) { 235 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false); 236 needwake = true; 237 } 238 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 239 if (needwake) { 240 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake")); 241 wake_up_process(rdp_gp->nocb_gp_kthread); 242 } 243 244 return needwake; 245 } 246 247 /* 248 * Kick the GP kthread for this NOCB group. 249 */ 250 static bool wake_nocb_gp(struct rcu_data *rdp, bool force) 251 { 252 unsigned long flags; 253 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 254 255 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 256 return __wake_nocb_gp(rdp_gp, rdp, force, flags); 257 } 258 259 /* 260 * LAZY_FLUSH_JIFFIES decides the maximum amount of time that 261 * can elapse before lazy callbacks are flushed. Lazy callbacks 262 * could be flushed much earlier for a number of other reasons 263 * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are 264 * left unsubmitted to RCU after those many jiffies. 265 */ 266 #define LAZY_FLUSH_JIFFIES (10 * HZ) 267 static unsigned long jiffies_till_flush = LAZY_FLUSH_JIFFIES; 268 269 #ifdef CONFIG_RCU_LAZY 270 // To be called only from test code. 271 void rcu_lazy_set_jiffies_till_flush(unsigned long jif) 272 { 273 jiffies_till_flush = jif; 274 } 275 EXPORT_SYMBOL(rcu_lazy_set_jiffies_till_flush); 276 277 unsigned long rcu_lazy_get_jiffies_till_flush(void) 278 { 279 return jiffies_till_flush; 280 } 281 EXPORT_SYMBOL(rcu_lazy_get_jiffies_till_flush); 282 #endif 283 284 /* 285 * Arrange to wake the GP kthread for this NOCB group at some future 286 * time when it is safe to do so. 287 */ 288 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype, 289 const char *reason) 290 { 291 unsigned long flags; 292 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 293 294 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 295 296 /* 297 * Bypass wakeup overrides previous deferments. In case of 298 * callback storms, no need to wake up too early. 299 */ 300 if (waketype == RCU_NOCB_WAKE_LAZY && 301 rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) { 302 mod_timer(&rdp_gp->nocb_timer, jiffies + jiffies_till_flush); 303 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 304 } else if (waketype == RCU_NOCB_WAKE_BYPASS) { 305 mod_timer(&rdp_gp->nocb_timer, jiffies + 2); 306 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 307 } else { 308 if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE) 309 mod_timer(&rdp_gp->nocb_timer, jiffies + 1); 310 if (rdp_gp->nocb_defer_wakeup < waketype) 311 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 312 } 313 314 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 315 316 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason); 317 } 318 319 /* 320 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 321 * However, if there is a callback to be enqueued and if ->nocb_bypass 322 * proves to be initially empty, just return false because the no-CB GP 323 * kthread may need to be awakened in this case. 324 * 325 * Return true if there was something to be flushed and it succeeded, otherwise 326 * false. 327 * 328 * Note that this function always returns true if rhp is NULL. 329 */ 330 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp_in, 331 unsigned long j, bool lazy) 332 { 333 struct rcu_cblist rcl; 334 struct rcu_head *rhp = rhp_in; 335 336 WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)); 337 rcu_lockdep_assert_cblist_protected(rdp); 338 lockdep_assert_held(&rdp->nocb_bypass_lock); 339 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) { 340 raw_spin_unlock(&rdp->nocb_bypass_lock); 341 return false; 342 } 343 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */ 344 if (rhp) 345 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 346 347 /* 348 * If the new CB requested was a lazy one, queue it onto the main 349 * ->cblist so that we can take advantage of the grace-period that will 350 * happen regardless. But queue it onto the bypass list first so that 351 * the lazy CB is ordered with the existing CBs in the bypass list. 352 */ 353 if (lazy && rhp) { 354 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); 355 rhp = NULL; 356 } 357 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp); 358 WRITE_ONCE(rdp->lazy_len, 0); 359 360 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl); 361 WRITE_ONCE(rdp->nocb_bypass_first, j); 362 rcu_nocb_bypass_unlock(rdp); 363 return true; 364 } 365 366 /* 367 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 368 * However, if there is a callback to be enqueued and if ->nocb_bypass 369 * proves to be initially empty, just return false because the no-CB GP 370 * kthread may need to be awakened in this case. 371 * 372 * Note that this function always returns true if rhp is NULL. 373 */ 374 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 375 unsigned long j, bool lazy) 376 { 377 if (!rcu_rdp_is_offloaded(rdp)) 378 return true; 379 rcu_lockdep_assert_cblist_protected(rdp); 380 rcu_nocb_bypass_lock(rdp); 381 return rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy); 382 } 383 384 /* 385 * If the ->nocb_bypass_lock is immediately available, flush the 386 * ->nocb_bypass queue into ->cblist. 387 */ 388 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j) 389 { 390 rcu_lockdep_assert_cblist_protected(rdp); 391 if (!rcu_rdp_is_offloaded(rdp) || 392 !rcu_nocb_bypass_trylock(rdp)) 393 return; 394 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false)); 395 } 396 397 /* 398 * See whether it is appropriate to use the ->nocb_bypass list in order 399 * to control contention on ->nocb_lock. A limited number of direct 400 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass 401 * is non-empty, further callbacks must be placed into ->nocb_bypass, 402 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch 403 * back to direct use of ->cblist. However, ->nocb_bypass should not be 404 * used if ->cblist is empty, because otherwise callbacks can be stranded 405 * on ->nocb_bypass because we cannot count on the current CPU ever again 406 * invoking call_rcu(). The general rule is that if ->nocb_bypass is 407 * non-empty, the corresponding no-CBs grace-period kthread must not be 408 * in an indefinite sleep state. 409 * 410 * Finally, it is not permitted to use the bypass during early boot, 411 * as doing so would confuse the auto-initialization code. Besides 412 * which, there is no point in worrying about lock contention while 413 * there is only one CPU in operation. 414 */ 415 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 416 bool *was_alldone, unsigned long flags, 417 bool lazy) 418 { 419 unsigned long c; 420 unsigned long cur_gp_seq; 421 unsigned long j = jiffies; 422 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 423 bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len)); 424 425 lockdep_assert_irqs_disabled(); 426 427 // Pure softirq/rcuc based processing: no bypassing, no 428 // locking. 429 if (!rcu_rdp_is_offloaded(rdp)) { 430 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 431 return false; 432 } 433 434 // In the process of (de-)offloading: no bypassing, but 435 // locking. 436 if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { 437 rcu_nocb_lock(rdp); 438 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 439 return false; /* Not offloaded, no bypassing. */ 440 } 441 442 // Don't use ->nocb_bypass during early boot. 443 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) { 444 rcu_nocb_lock(rdp); 445 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 446 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 447 return false; 448 } 449 450 // If we have advanced to a new jiffy, reset counts to allow 451 // moving back from ->nocb_bypass to ->cblist. 452 if (j == rdp->nocb_nobypass_last) { 453 c = rdp->nocb_nobypass_count + 1; 454 } else { 455 WRITE_ONCE(rdp->nocb_nobypass_last, j); 456 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy; 457 if (ULONG_CMP_LT(rdp->nocb_nobypass_count, 458 nocb_nobypass_lim_per_jiffy)) 459 c = 0; 460 else if (c > nocb_nobypass_lim_per_jiffy) 461 c = nocb_nobypass_lim_per_jiffy; 462 } 463 WRITE_ONCE(rdp->nocb_nobypass_count, c); 464 465 // If there hasn't yet been all that many ->cblist enqueues 466 // this jiffy, tell the caller to enqueue onto ->cblist. But flush 467 // ->nocb_bypass first. 468 // Lazy CBs throttle this back and do immediate bypass queuing. 469 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) { 470 rcu_nocb_lock(rdp); 471 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 472 if (*was_alldone) 473 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 474 TPS("FirstQ")); 475 476 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false)); 477 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 478 return false; // Caller must enqueue the callback. 479 } 480 481 // If ->nocb_bypass has been used too long or is too full, 482 // flush ->nocb_bypass to ->cblist. 483 if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) || 484 (ncbs && bypass_is_lazy && 485 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush))) || 486 ncbs >= qhimark) { 487 rcu_nocb_lock(rdp); 488 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 489 490 if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy)) { 491 if (*was_alldone) 492 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 493 TPS("FirstQ")); 494 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 495 return false; // Caller must enqueue the callback. 496 } 497 if (j != rdp->nocb_gp_adv_time && 498 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 499 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 500 rcu_advance_cbs_nowake(rdp->mynode, rdp); 501 rdp->nocb_gp_adv_time = j; 502 } 503 504 // The flush succeeded and we moved CBs into the regular list. 505 // Don't wait for the wake up timer as it may be too far ahead. 506 // Wake up the GP thread now instead, if the cblist was empty. 507 __call_rcu_nocb_wake(rdp, *was_alldone, flags); 508 509 return true; // Callback already enqueued. 510 } 511 512 // We need to use the bypass. 513 rcu_nocb_wait_contended(rdp); 514 rcu_nocb_bypass_lock(rdp); 515 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 516 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 517 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); 518 519 if (lazy) 520 WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1); 521 522 if (!ncbs) { 523 WRITE_ONCE(rdp->nocb_bypass_first, j); 524 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ")); 525 } 526 rcu_nocb_bypass_unlock(rdp); 527 smp_mb(); /* Order enqueue before wake. */ 528 // A wake up of the grace period kthread or timer adjustment 529 // needs to be done only if: 530 // 1. Bypass list was fully empty before (this is the first 531 // bypass list entry), or: 532 // 2. Both of these conditions are met: 533 // a. The bypass list previously had only lazy CBs, and: 534 // b. The new CB is non-lazy. 535 if (!ncbs || (bypass_is_lazy && !lazy)) { 536 // No-CBs GP kthread might be indefinitely asleep, if so, wake. 537 rcu_nocb_lock(rdp); // Rare during call_rcu() flood. 538 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) { 539 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 540 TPS("FirstBQwake")); 541 __call_rcu_nocb_wake(rdp, true, flags); 542 } else { 543 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 544 TPS("FirstBQnoWake")); 545 rcu_nocb_unlock(rdp); 546 } 547 } 548 return true; // Callback already enqueued. 549 } 550 551 /* 552 * Awaken the no-CBs grace-period kthread if needed, either due to it 553 * legitimately being asleep or due to overload conditions. 554 * 555 * If warranted, also wake up the kthread servicing this CPUs queues. 556 */ 557 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone, 558 unsigned long flags) 559 __releases(rdp->nocb_lock) 560 { 561 long bypass_len; 562 unsigned long cur_gp_seq; 563 unsigned long j; 564 long lazy_len; 565 long len; 566 struct task_struct *t; 567 568 // If we are being polled or there is no kthread, just leave. 569 t = READ_ONCE(rdp->nocb_gp_kthread); 570 if (rcu_nocb_poll || !t) { 571 rcu_nocb_unlock(rdp); 572 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 573 TPS("WakeNotPoll")); 574 return; 575 } 576 // Need to actually to a wakeup. 577 len = rcu_segcblist_n_cbs(&rdp->cblist); 578 bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass); 579 lazy_len = READ_ONCE(rdp->lazy_len); 580 if (was_alldone) { 581 rdp->qlen_last_fqs_check = len; 582 // Only lazy CBs in bypass list 583 if (lazy_len && bypass_len == lazy_len) { 584 rcu_nocb_unlock(rdp); 585 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY, 586 TPS("WakeLazy")); 587 } else if (!irqs_disabled_flags(flags)) { 588 /* ... if queue was empty ... */ 589 rcu_nocb_unlock(rdp); 590 wake_nocb_gp(rdp, false); 591 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 592 TPS("WakeEmpty")); 593 } else { 594 rcu_nocb_unlock(rdp); 595 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE, 596 TPS("WakeEmptyIsDeferred")); 597 } 598 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 599 /* ... or if many callbacks queued. */ 600 rdp->qlen_last_fqs_check = len; 601 j = jiffies; 602 if (j != rdp->nocb_gp_adv_time && 603 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 604 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 605 rcu_advance_cbs_nowake(rdp->mynode, rdp); 606 rdp->nocb_gp_adv_time = j; 607 } 608 smp_mb(); /* Enqueue before timer_pending(). */ 609 if ((rdp->nocb_cb_sleep || 610 !rcu_segcblist_ready_cbs(&rdp->cblist)) && 611 !timer_pending(&rdp->nocb_timer)) { 612 rcu_nocb_unlock(rdp); 613 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE, 614 TPS("WakeOvfIsDeferred")); 615 } else { 616 rcu_nocb_unlock(rdp); 617 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); 618 } 619 } else { 620 rcu_nocb_unlock(rdp); 621 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); 622 } 623 } 624 625 static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head, 626 rcu_callback_t func, unsigned long flags, bool lazy) 627 { 628 bool was_alldone; 629 630 if (!rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) { 631 /* Not enqueued on bypass but locked, do regular enqueue */ 632 rcutree_enqueue(rdp, head, func); 633 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 634 } 635 } 636 637 static int nocb_gp_toggle_rdp(struct rcu_data *rdp, 638 bool *wake_state) 639 { 640 struct rcu_segcblist *cblist = &rdp->cblist; 641 unsigned long flags; 642 int ret; 643 644 rcu_nocb_lock_irqsave(rdp, flags); 645 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) && 646 !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) { 647 /* 648 * Offloading. Set our flag and notify the offload worker. 649 * We will handle this rdp until it ever gets de-offloaded. 650 */ 651 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP); 652 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) 653 *wake_state = true; 654 ret = 1; 655 } else if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) && 656 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) { 657 /* 658 * De-offloading. Clear our flag and notify the de-offload worker. 659 * We will ignore this rdp until it ever gets re-offloaded. 660 */ 661 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP); 662 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) 663 *wake_state = true; 664 ret = 0; 665 } else { 666 WARN_ON_ONCE(1); 667 ret = -1; 668 } 669 670 rcu_nocb_unlock_irqrestore(rdp, flags); 671 672 return ret; 673 } 674 675 static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu) 676 { 677 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep")); 678 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq, 679 !READ_ONCE(my_rdp->nocb_gp_sleep)); 680 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep")); 681 } 682 683 /* 684 * No-CBs GP kthreads come here to wait for additional callbacks to show up 685 * or for grace periods to end. 686 */ 687 static void nocb_gp_wait(struct rcu_data *my_rdp) 688 { 689 bool bypass = false; 690 int __maybe_unused cpu = my_rdp->cpu; 691 unsigned long cur_gp_seq; 692 unsigned long flags; 693 bool gotcbs = false; 694 unsigned long j = jiffies; 695 bool lazy = false; 696 bool needwait_gp = false; // This prevents actual uninitialized use. 697 bool needwake; 698 bool needwake_gp; 699 struct rcu_data *rdp, *rdp_toggling = NULL; 700 struct rcu_node *rnp; 701 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning. 702 bool wasempty = false; 703 704 /* 705 * Each pass through the following loop checks for CBs and for the 706 * nearest grace period (if any) to wait for next. The CB kthreads 707 * and the global grace-period kthread are awakened if needed. 708 */ 709 WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp); 710 /* 711 * An rcu_data structure is removed from the list after its 712 * CPU is de-offloaded and added to the list before that CPU is 713 * (re-)offloaded. If the following loop happens to be referencing 714 * that rcu_data structure during the time that the corresponding 715 * CPU is de-offloaded and then immediately re-offloaded, this 716 * loop's rdp pointer will be carried to the end of the list by 717 * the resulting pair of list operations. This can cause the loop 718 * to skip over some of the rcu_data structures that were supposed 719 * to have been scanned. Fortunately a new iteration through the 720 * entire loop is forced after a given CPU's rcu_data structure 721 * is added to the list, so the skipped-over rcu_data structures 722 * won't be ignored for long. 723 */ 724 list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) { 725 long bypass_ncbs; 726 bool flush_bypass = false; 727 long lazy_ncbs; 728 729 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check")); 730 rcu_nocb_lock_irqsave(rdp, flags); 731 lockdep_assert_held(&rdp->nocb_lock); 732 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 733 lazy_ncbs = READ_ONCE(rdp->lazy_len); 734 735 if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) && 736 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush) || 737 bypass_ncbs > 2 * qhimark)) { 738 flush_bypass = true; 739 } else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) && 740 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) || 741 bypass_ncbs > 2 * qhimark)) { 742 flush_bypass = true; 743 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) { 744 rcu_nocb_unlock_irqrestore(rdp, flags); 745 continue; /* No callbacks here, try next. */ 746 } 747 748 if (flush_bypass) { 749 // Bypass full or old, so flush it. 750 (void)rcu_nocb_try_flush_bypass(rdp, j); 751 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 752 lazy_ncbs = READ_ONCE(rdp->lazy_len); 753 } 754 755 if (bypass_ncbs) { 756 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 757 bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass")); 758 if (bypass_ncbs == lazy_ncbs) 759 lazy = true; 760 else 761 bypass = true; 762 } 763 rnp = rdp->mynode; 764 765 // Advance callbacks if helpful and low contention. 766 needwake_gp = false; 767 if (!rcu_segcblist_restempty(&rdp->cblist, 768 RCU_NEXT_READY_TAIL) || 769 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 770 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) { 771 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */ 772 needwake_gp = rcu_advance_cbs(rnp, rdp); 773 wasempty = rcu_segcblist_restempty(&rdp->cblist, 774 RCU_NEXT_READY_TAIL); 775 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */ 776 } 777 // Need to wait on some grace period? 778 WARN_ON_ONCE(wasempty && 779 !rcu_segcblist_restempty(&rdp->cblist, 780 RCU_NEXT_READY_TAIL)); 781 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) { 782 if (!needwait_gp || 783 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq)) 784 wait_gp_seq = cur_gp_seq; 785 needwait_gp = true; 786 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 787 TPS("NeedWaitGP")); 788 } 789 if (rcu_segcblist_ready_cbs(&rdp->cblist)) { 790 needwake = rdp->nocb_cb_sleep; 791 WRITE_ONCE(rdp->nocb_cb_sleep, false); 792 } else { 793 needwake = false; 794 } 795 rcu_nocb_unlock_irqrestore(rdp, flags); 796 if (needwake) { 797 swake_up_one(&rdp->nocb_cb_wq); 798 gotcbs = true; 799 } 800 if (needwake_gp) 801 rcu_gp_kthread_wake(); 802 } 803 804 my_rdp->nocb_gp_bypass = bypass; 805 my_rdp->nocb_gp_gp = needwait_gp; 806 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0; 807 808 // At least one child with non-empty ->nocb_bypass, so set 809 // timer in order to avoid stranding its callbacks. 810 if (!rcu_nocb_poll) { 811 // If bypass list only has lazy CBs. Add a deferred lazy wake up. 812 if (lazy && !bypass) { 813 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY, 814 TPS("WakeLazyIsDeferred")); 815 // Otherwise add a deferred bypass wake up. 816 } else if (bypass) { 817 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS, 818 TPS("WakeBypassIsDeferred")); 819 } 820 } 821 822 if (rcu_nocb_poll) { 823 /* Polling, so trace if first poll in the series. */ 824 if (gotcbs) 825 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll")); 826 if (list_empty(&my_rdp->nocb_head_rdp)) { 827 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 828 if (!my_rdp->nocb_toggling_rdp) 829 WRITE_ONCE(my_rdp->nocb_gp_sleep, true); 830 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 831 /* Wait for any offloading rdp */ 832 nocb_gp_sleep(my_rdp, cpu); 833 } else { 834 schedule_timeout_idle(1); 835 } 836 } else if (!needwait_gp) { 837 /* Wait for callbacks to appear. */ 838 nocb_gp_sleep(my_rdp, cpu); 839 } else { 840 rnp = my_rdp->mynode; 841 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait")); 842 swait_event_interruptible_exclusive( 843 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1], 844 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) || 845 !READ_ONCE(my_rdp->nocb_gp_sleep)); 846 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait")); 847 } 848 849 if (!rcu_nocb_poll) { 850 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 851 // (De-)queue an rdp to/from the group if its nocb state is changing 852 rdp_toggling = my_rdp->nocb_toggling_rdp; 853 if (rdp_toggling) 854 my_rdp->nocb_toggling_rdp = NULL; 855 856 if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) { 857 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 858 del_timer(&my_rdp->nocb_timer); 859 } 860 WRITE_ONCE(my_rdp->nocb_gp_sleep, true); 861 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 862 } else { 863 rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp); 864 if (rdp_toggling) { 865 /* 866 * Paranoid locking to make sure nocb_toggling_rdp is well 867 * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could 868 * race with another round of nocb toggling for this rdp. 869 * Nocb locking should prevent from that already but we stick 870 * to paranoia, especially in rare path. 871 */ 872 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 873 my_rdp->nocb_toggling_rdp = NULL; 874 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 875 } 876 } 877 878 if (rdp_toggling) { 879 bool wake_state = false; 880 int ret; 881 882 ret = nocb_gp_toggle_rdp(rdp_toggling, &wake_state); 883 if (ret == 1) 884 list_add_tail(&rdp_toggling->nocb_entry_rdp, &my_rdp->nocb_head_rdp); 885 else if (ret == 0) 886 list_del(&rdp_toggling->nocb_entry_rdp); 887 if (wake_state) 888 swake_up_one(&rdp_toggling->nocb_state_wq); 889 } 890 891 my_rdp->nocb_gp_seq = -1; 892 WARN_ON(signal_pending(current)); 893 } 894 895 /* 896 * No-CBs grace-period-wait kthread. There is one of these per group 897 * of CPUs, but only once at least one CPU in that group has come online 898 * at least once since boot. This kthread checks for newly posted 899 * callbacks from any of the CPUs it is responsible for, waits for a 900 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances 901 * that then have callback-invocation work to do. 902 */ 903 static int rcu_nocb_gp_kthread(void *arg) 904 { 905 struct rcu_data *rdp = arg; 906 907 for (;;) { 908 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1); 909 nocb_gp_wait(rdp); 910 cond_resched_tasks_rcu_qs(); 911 } 912 return 0; 913 } 914 915 static inline bool nocb_cb_can_run(struct rcu_data *rdp) 916 { 917 u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB; 918 919 return rcu_segcblist_test_flags(&rdp->cblist, flags); 920 } 921 922 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp) 923 { 924 return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep); 925 } 926 927 /* 928 * Invoke any ready callbacks from the corresponding no-CBs CPU, 929 * then, if there are no more, wait for more to appear. 930 */ 931 static void nocb_cb_wait(struct rcu_data *rdp) 932 { 933 struct rcu_segcblist *cblist = &rdp->cblist; 934 unsigned long cur_gp_seq; 935 unsigned long flags; 936 bool needwake_state = false; 937 bool needwake_gp = false; 938 bool can_sleep = true; 939 struct rcu_node *rnp = rdp->mynode; 940 941 do { 942 swait_event_interruptible_exclusive(rdp->nocb_cb_wq, 943 nocb_cb_wait_cond(rdp)); 944 945 if (READ_ONCE(rdp->nocb_cb_sleep)) { 946 WARN_ON(signal_pending(current)); 947 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty")); 948 } 949 } while (!nocb_cb_can_run(rdp)); 950 951 952 local_irq_save(flags); 953 rcu_momentary_dyntick_idle(); 954 local_irq_restore(flags); 955 /* 956 * Disable BH to provide the expected environment. Also, when 957 * transitioning to/from NOCB mode, a self-requeuing callback might 958 * be invoked from softirq. A short grace period could cause both 959 * instances of this callback would execute concurrently. 960 */ 961 local_bh_disable(); 962 rcu_do_batch(rdp); 963 local_bh_enable(); 964 lockdep_assert_irqs_enabled(); 965 rcu_nocb_lock_irqsave(rdp, flags); 966 if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) && 967 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) && 968 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */ 969 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp); 970 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 971 } 972 973 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) { 974 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) { 975 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB); 976 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) 977 needwake_state = true; 978 } 979 if (rcu_segcblist_ready_cbs(cblist)) 980 can_sleep = false; 981 } else { 982 /* 983 * De-offloading. Clear our flag and notify the de-offload worker. 984 * We won't touch the callbacks and keep sleeping until we ever 985 * get re-offloaded. 986 */ 987 WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)); 988 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB); 989 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) 990 needwake_state = true; 991 } 992 993 WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep); 994 995 if (rdp->nocb_cb_sleep) 996 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep")); 997 998 rcu_nocb_unlock_irqrestore(rdp, flags); 999 if (needwake_gp) 1000 rcu_gp_kthread_wake(); 1001 1002 if (needwake_state) 1003 swake_up_one(&rdp->nocb_state_wq); 1004 } 1005 1006 /* 1007 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke 1008 * nocb_cb_wait() to do the dirty work. 1009 */ 1010 static int rcu_nocb_cb_kthread(void *arg) 1011 { 1012 struct rcu_data *rdp = arg; 1013 1014 // Each pass through this loop does one callback batch, and, 1015 // if there are no more ready callbacks, waits for them. 1016 for (;;) { 1017 nocb_cb_wait(rdp); 1018 cond_resched_tasks_rcu_qs(); 1019 } 1020 return 0; 1021 } 1022 1023 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 1024 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level) 1025 { 1026 return READ_ONCE(rdp->nocb_defer_wakeup) >= level; 1027 } 1028 1029 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 1030 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp, 1031 struct rcu_data *rdp, int level, 1032 unsigned long flags) 1033 __releases(rdp_gp->nocb_gp_lock) 1034 { 1035 int ndw; 1036 int ret; 1037 1038 if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) { 1039 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 1040 return false; 1041 } 1042 1043 ndw = rdp_gp->nocb_defer_wakeup; 1044 ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags); 1045 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake")); 1046 1047 return ret; 1048 } 1049 1050 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */ 1051 static void do_nocb_deferred_wakeup_timer(struct timer_list *t) 1052 { 1053 unsigned long flags; 1054 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer); 1055 1056 WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp); 1057 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer")); 1058 1059 raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags); 1060 smp_mb__after_spinlock(); /* Timer expire before wakeup. */ 1061 do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags); 1062 } 1063 1064 /* 1065 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath. 1066 * This means we do an inexact common-case check. Note that if 1067 * we miss, ->nocb_timer will eventually clean things up. 1068 */ 1069 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp) 1070 { 1071 unsigned long flags; 1072 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1073 1074 if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE)) 1075 return false; 1076 1077 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 1078 return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags); 1079 } 1080 1081 void rcu_nocb_flush_deferred_wakeup(void) 1082 { 1083 do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data)); 1084 } 1085 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup); 1086 1087 static int rdp_offload_toggle(struct rcu_data *rdp, 1088 bool offload, unsigned long flags) 1089 __releases(rdp->nocb_lock) 1090 { 1091 struct rcu_segcblist *cblist = &rdp->cblist; 1092 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1093 bool wake_gp = false; 1094 1095 rcu_segcblist_offload(cblist, offload); 1096 1097 if (rdp->nocb_cb_sleep) 1098 rdp->nocb_cb_sleep = false; 1099 rcu_nocb_unlock_irqrestore(rdp, flags); 1100 1101 /* 1102 * Ignore former value of nocb_cb_sleep and force wake up as it could 1103 * have been spuriously set to false already. 1104 */ 1105 swake_up_one(&rdp->nocb_cb_wq); 1106 1107 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 1108 // Queue this rdp for add/del to/from the list to iterate on rcuog 1109 WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp); 1110 if (rdp_gp->nocb_gp_sleep) { 1111 rdp_gp->nocb_gp_sleep = false; 1112 wake_gp = true; 1113 } 1114 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 1115 1116 return wake_gp; 1117 } 1118 1119 static long rcu_nocb_rdp_deoffload(void *arg) 1120 { 1121 struct rcu_data *rdp = arg; 1122 struct rcu_segcblist *cblist = &rdp->cblist; 1123 unsigned long flags; 1124 int wake_gp; 1125 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1126 1127 /* 1128 * rcu_nocb_rdp_deoffload() may be called directly if 1129 * rcuog/o[p] spawn failed, because at this time the rdp->cpu 1130 * is not online yet. 1131 */ 1132 WARN_ON_ONCE((rdp->cpu != raw_smp_processor_id()) && cpu_online(rdp->cpu)); 1133 1134 pr_info("De-offloading %d\n", rdp->cpu); 1135 1136 rcu_nocb_lock_irqsave(rdp, flags); 1137 /* 1138 * Flush once and for all now. This suffices because we are 1139 * running on the target CPU holding ->nocb_lock (thus having 1140 * interrupts disabled), and because rdp_offload_toggle() 1141 * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED. 1142 * Thus future calls to rcu_segcblist_completely_offloaded() will 1143 * return false, which means that future calls to rcu_nocb_try_bypass() 1144 * will refuse to put anything into the bypass. 1145 */ 1146 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false)); 1147 /* 1148 * Start with invoking rcu_core() early. This way if the current thread 1149 * happens to preempt an ongoing call to rcu_core() in the middle, 1150 * leaving some work dismissed because rcu_core() still thinks the rdp is 1151 * completely offloaded, we are guaranteed a nearby future instance of 1152 * rcu_core() to catch up. 1153 */ 1154 rcu_segcblist_set_flags(cblist, SEGCBLIST_RCU_CORE); 1155 invoke_rcu_core(); 1156 wake_gp = rdp_offload_toggle(rdp, false, flags); 1157 1158 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex); 1159 if (rdp_gp->nocb_gp_kthread) { 1160 if (wake_gp) 1161 wake_up_process(rdp_gp->nocb_gp_kthread); 1162 1163 /* 1164 * If rcuo[p] kthread spawn failed, directly remove SEGCBLIST_KTHREAD_CB. 1165 * Just wait SEGCBLIST_KTHREAD_GP to be cleared by rcuog. 1166 */ 1167 if (!rdp->nocb_cb_kthread) { 1168 rcu_nocb_lock_irqsave(rdp, flags); 1169 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB); 1170 rcu_nocb_unlock_irqrestore(rdp, flags); 1171 } 1172 1173 swait_event_exclusive(rdp->nocb_state_wq, 1174 !rcu_segcblist_test_flags(cblist, 1175 SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP)); 1176 } else { 1177 /* 1178 * No kthread to clear the flags for us or remove the rdp from the nocb list 1179 * to iterate. Do it here instead. Locking doesn't look stricly necessary 1180 * but we stick to paranoia in this rare path. 1181 */ 1182 rcu_nocb_lock_irqsave(rdp, flags); 1183 rcu_segcblist_clear_flags(&rdp->cblist, 1184 SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP); 1185 rcu_nocb_unlock_irqrestore(rdp, flags); 1186 1187 list_del(&rdp->nocb_entry_rdp); 1188 } 1189 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1190 1191 /* 1192 * Lock one last time to acquire latest callback updates from kthreads 1193 * so we can later handle callbacks locally without locking. 1194 */ 1195 rcu_nocb_lock_irqsave(rdp, flags); 1196 /* 1197 * Theoretically we could clear SEGCBLIST_LOCKING after the nocb 1198 * lock is released but how about being paranoid for once? 1199 */ 1200 rcu_segcblist_clear_flags(cblist, SEGCBLIST_LOCKING); 1201 /* 1202 * Without SEGCBLIST_LOCKING, we can't use 1203 * rcu_nocb_unlock_irqrestore() anymore. 1204 */ 1205 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1206 1207 /* Sanity check */ 1208 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 1209 1210 1211 return 0; 1212 } 1213 1214 int rcu_nocb_cpu_deoffload(int cpu) 1215 { 1216 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1217 int ret = 0; 1218 1219 cpus_read_lock(); 1220 mutex_lock(&rcu_state.barrier_mutex); 1221 if (rcu_rdp_is_offloaded(rdp)) { 1222 if (cpu_online(cpu)) { 1223 ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp); 1224 if (!ret) 1225 cpumask_clear_cpu(cpu, rcu_nocb_mask); 1226 } else { 1227 pr_info("NOCB: Cannot CB-deoffload offline CPU %d\n", rdp->cpu); 1228 ret = -EINVAL; 1229 } 1230 } 1231 mutex_unlock(&rcu_state.barrier_mutex); 1232 cpus_read_unlock(); 1233 1234 return ret; 1235 } 1236 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload); 1237 1238 static long rcu_nocb_rdp_offload(void *arg) 1239 { 1240 struct rcu_data *rdp = arg; 1241 struct rcu_segcblist *cblist = &rdp->cblist; 1242 unsigned long flags; 1243 int wake_gp; 1244 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1245 1246 WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id()); 1247 /* 1248 * For now we only support re-offload, ie: the rdp must have been 1249 * offloaded on boot first. 1250 */ 1251 if (!rdp->nocb_gp_rdp) 1252 return -EINVAL; 1253 1254 if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread)) 1255 return -EINVAL; 1256 1257 pr_info("Offloading %d\n", rdp->cpu); 1258 1259 /* 1260 * Can't use rcu_nocb_lock_irqsave() before SEGCBLIST_LOCKING 1261 * is set. 1262 */ 1263 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 1264 1265 /* 1266 * We didn't take the nocb lock while working on the 1267 * rdp->cblist with SEGCBLIST_LOCKING cleared (pure softirq/rcuc mode). 1268 * Every modifications that have been done previously on 1269 * rdp->cblist must be visible remotely by the nocb kthreads 1270 * upon wake up after reading the cblist flags. 1271 * 1272 * The layout against nocb_lock enforces that ordering: 1273 * 1274 * __rcu_nocb_rdp_offload() nocb_cb_wait()/nocb_gp_wait() 1275 * ------------------------- ---------------------------- 1276 * WRITE callbacks rcu_nocb_lock() 1277 * rcu_nocb_lock() READ flags 1278 * WRITE flags READ callbacks 1279 * rcu_nocb_unlock() rcu_nocb_unlock() 1280 */ 1281 wake_gp = rdp_offload_toggle(rdp, true, flags); 1282 if (wake_gp) 1283 wake_up_process(rdp_gp->nocb_gp_kthread); 1284 swait_event_exclusive(rdp->nocb_state_wq, 1285 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) && 1286 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)); 1287 1288 /* 1289 * All kthreads are ready to work, we can finally relieve rcu_core() and 1290 * enable nocb bypass. 1291 */ 1292 rcu_nocb_lock_irqsave(rdp, flags); 1293 rcu_segcblist_clear_flags(cblist, SEGCBLIST_RCU_CORE); 1294 rcu_nocb_unlock_irqrestore(rdp, flags); 1295 1296 return 0; 1297 } 1298 1299 int rcu_nocb_cpu_offload(int cpu) 1300 { 1301 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1302 int ret = 0; 1303 1304 cpus_read_lock(); 1305 mutex_lock(&rcu_state.barrier_mutex); 1306 if (!rcu_rdp_is_offloaded(rdp)) { 1307 if (cpu_online(cpu)) { 1308 ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp); 1309 if (!ret) 1310 cpumask_set_cpu(cpu, rcu_nocb_mask); 1311 } else { 1312 pr_info("NOCB: Cannot CB-offload offline CPU %d\n", rdp->cpu); 1313 ret = -EINVAL; 1314 } 1315 } 1316 mutex_unlock(&rcu_state.barrier_mutex); 1317 cpus_read_unlock(); 1318 1319 return ret; 1320 } 1321 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload); 1322 1323 #ifdef CONFIG_RCU_LAZY 1324 static unsigned long 1325 lazy_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1326 { 1327 int cpu; 1328 unsigned long count = 0; 1329 1330 if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask))) 1331 return 0; 1332 1333 /* Protect rcu_nocb_mask against concurrent (de-)offloading. */ 1334 if (!mutex_trylock(&rcu_state.barrier_mutex)) 1335 return 0; 1336 1337 /* Snapshot count of all CPUs */ 1338 for_each_cpu(cpu, rcu_nocb_mask) { 1339 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1340 1341 count += READ_ONCE(rdp->lazy_len); 1342 } 1343 1344 mutex_unlock(&rcu_state.barrier_mutex); 1345 1346 return count ? count : SHRINK_EMPTY; 1347 } 1348 1349 static unsigned long 1350 lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1351 { 1352 int cpu; 1353 unsigned long flags; 1354 unsigned long count = 0; 1355 1356 if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask))) 1357 return 0; 1358 /* 1359 * Protect against concurrent (de-)offloading. Otherwise nocb locking 1360 * may be ignored or imbalanced. 1361 */ 1362 if (!mutex_trylock(&rcu_state.barrier_mutex)) { 1363 /* 1364 * But really don't insist if barrier_mutex is contended since we 1365 * can't guarantee that it will never engage in a dependency 1366 * chain involving memory allocation. The lock is seldom contended 1367 * anyway. 1368 */ 1369 return 0; 1370 } 1371 1372 /* Snapshot count of all CPUs */ 1373 for_each_cpu(cpu, rcu_nocb_mask) { 1374 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1375 int _count; 1376 1377 if (WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp))) 1378 continue; 1379 1380 if (!READ_ONCE(rdp->lazy_len)) 1381 continue; 1382 1383 rcu_nocb_lock_irqsave(rdp, flags); 1384 /* 1385 * Recheck under the nocb lock. Since we are not holding the bypass 1386 * lock we may still race with increments from the enqueuer but still 1387 * we know for sure if there is at least one lazy callback. 1388 */ 1389 _count = READ_ONCE(rdp->lazy_len); 1390 if (!_count) { 1391 rcu_nocb_unlock_irqrestore(rdp, flags); 1392 continue; 1393 } 1394 rcu_nocb_try_flush_bypass(rdp, jiffies); 1395 rcu_nocb_unlock_irqrestore(rdp, flags); 1396 wake_nocb_gp(rdp, false); 1397 sc->nr_to_scan -= _count; 1398 count += _count; 1399 if (sc->nr_to_scan <= 0) 1400 break; 1401 } 1402 1403 mutex_unlock(&rcu_state.barrier_mutex); 1404 1405 return count ? count : SHRINK_STOP; 1406 } 1407 #endif // #ifdef CONFIG_RCU_LAZY 1408 1409 void __init rcu_init_nohz(void) 1410 { 1411 int cpu; 1412 struct rcu_data *rdp; 1413 const struct cpumask *cpumask = NULL; 1414 struct shrinker * __maybe_unused lazy_rcu_shrinker; 1415 1416 #if defined(CONFIG_NO_HZ_FULL) 1417 if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask)) 1418 cpumask = tick_nohz_full_mask; 1419 #endif 1420 1421 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) && 1422 !rcu_state.nocb_is_setup && !cpumask) 1423 cpumask = cpu_possible_mask; 1424 1425 if (cpumask) { 1426 if (!cpumask_available(rcu_nocb_mask)) { 1427 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 1428 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 1429 return; 1430 } 1431 } 1432 1433 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, cpumask); 1434 rcu_state.nocb_is_setup = true; 1435 } 1436 1437 if (!rcu_state.nocb_is_setup) 1438 return; 1439 1440 #ifdef CONFIG_RCU_LAZY 1441 lazy_rcu_shrinker = shrinker_alloc(0, "rcu-lazy"); 1442 if (!lazy_rcu_shrinker) { 1443 pr_err("Failed to allocate lazy_rcu shrinker!\n"); 1444 } else { 1445 lazy_rcu_shrinker->count_objects = lazy_rcu_shrink_count; 1446 lazy_rcu_shrinker->scan_objects = lazy_rcu_shrink_scan; 1447 1448 shrinker_register(lazy_rcu_shrinker); 1449 } 1450 #endif // #ifdef CONFIG_RCU_LAZY 1451 1452 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 1453 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n"); 1454 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 1455 rcu_nocb_mask); 1456 } 1457 if (cpumask_empty(rcu_nocb_mask)) 1458 pr_info("\tOffload RCU callbacks from CPUs: (none).\n"); 1459 else 1460 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 1461 cpumask_pr_args(rcu_nocb_mask)); 1462 if (rcu_nocb_poll) 1463 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 1464 1465 for_each_cpu(cpu, rcu_nocb_mask) { 1466 rdp = per_cpu_ptr(&rcu_data, cpu); 1467 if (rcu_segcblist_empty(&rdp->cblist)) 1468 rcu_segcblist_init(&rdp->cblist); 1469 rcu_segcblist_offload(&rdp->cblist, true); 1470 rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP); 1471 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_RCU_CORE); 1472 } 1473 rcu_organize_nocb_kthreads(); 1474 } 1475 1476 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 1477 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 1478 { 1479 init_swait_queue_head(&rdp->nocb_cb_wq); 1480 init_swait_queue_head(&rdp->nocb_gp_wq); 1481 init_swait_queue_head(&rdp->nocb_state_wq); 1482 raw_spin_lock_init(&rdp->nocb_lock); 1483 raw_spin_lock_init(&rdp->nocb_bypass_lock); 1484 raw_spin_lock_init(&rdp->nocb_gp_lock); 1485 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0); 1486 rcu_cblist_init(&rdp->nocb_bypass); 1487 WRITE_ONCE(rdp->lazy_len, 0); 1488 mutex_init(&rdp->nocb_gp_kthread_mutex); 1489 } 1490 1491 /* 1492 * If the specified CPU is a no-CBs CPU that does not already have its 1493 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread 1494 * for this CPU's group has not yet been created, spawn it as well. 1495 */ 1496 static void rcu_spawn_cpu_nocb_kthread(int cpu) 1497 { 1498 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1499 struct rcu_data *rdp_gp; 1500 struct task_struct *t; 1501 struct sched_param sp; 1502 1503 if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup) 1504 return; 1505 1506 /* If there already is an rcuo kthread, then nothing to do. */ 1507 if (rdp->nocb_cb_kthread) 1508 return; 1509 1510 /* If we didn't spawn the GP kthread first, reorganize! */ 1511 sp.sched_priority = kthread_prio; 1512 rdp_gp = rdp->nocb_gp_rdp; 1513 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex); 1514 if (!rdp_gp->nocb_gp_kthread) { 1515 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp, 1516 "rcuog/%d", rdp_gp->cpu); 1517 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) { 1518 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1519 goto end; 1520 } 1521 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t); 1522 if (kthread_prio) 1523 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1524 } 1525 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1526 1527 /* Spawn the kthread for this CPU. */ 1528 t = kthread_run(rcu_nocb_cb_kthread, rdp, 1529 "rcuo%c/%d", rcu_state.abbr, cpu); 1530 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__)) 1531 goto end; 1532 1533 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio) 1534 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1535 1536 WRITE_ONCE(rdp->nocb_cb_kthread, t); 1537 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread); 1538 return; 1539 end: 1540 mutex_lock(&rcu_state.barrier_mutex); 1541 if (rcu_rdp_is_offloaded(rdp)) { 1542 rcu_nocb_rdp_deoffload(rdp); 1543 cpumask_clear_cpu(cpu, rcu_nocb_mask); 1544 } 1545 mutex_unlock(&rcu_state.barrier_mutex); 1546 } 1547 1548 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */ 1549 static int rcu_nocb_gp_stride = -1; 1550 module_param(rcu_nocb_gp_stride, int, 0444); 1551 1552 /* 1553 * Initialize GP-CB relationships for all no-CBs CPU. 1554 */ 1555 static void __init rcu_organize_nocb_kthreads(void) 1556 { 1557 int cpu; 1558 bool firsttime = true; 1559 bool gotnocbs = false; 1560 bool gotnocbscbs = true; 1561 int ls = rcu_nocb_gp_stride; 1562 int nl = 0; /* Next GP kthread. */ 1563 struct rcu_data *rdp; 1564 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */ 1565 1566 if (!cpumask_available(rcu_nocb_mask)) 1567 return; 1568 if (ls == -1) { 1569 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids); 1570 rcu_nocb_gp_stride = ls; 1571 } 1572 1573 /* 1574 * Each pass through this loop sets up one rcu_data structure. 1575 * Should the corresponding CPU come online in the future, then 1576 * we will spawn the needed set of rcu_nocb_kthread() kthreads. 1577 */ 1578 for_each_possible_cpu(cpu) { 1579 rdp = per_cpu_ptr(&rcu_data, cpu); 1580 if (rdp->cpu >= nl) { 1581 /* New GP kthread, set up for CBs & next GP. */ 1582 gotnocbs = true; 1583 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 1584 rdp_gp = rdp; 1585 INIT_LIST_HEAD(&rdp->nocb_head_rdp); 1586 if (dump_tree) { 1587 if (!firsttime) 1588 pr_cont("%s\n", gotnocbscbs 1589 ? "" : " (self only)"); 1590 gotnocbscbs = false; 1591 firsttime = false; 1592 pr_alert("%s: No-CB GP kthread CPU %d:", 1593 __func__, cpu); 1594 } 1595 } else { 1596 /* Another CB kthread, link to previous GP kthread. */ 1597 gotnocbscbs = true; 1598 if (dump_tree) 1599 pr_cont(" %d", cpu); 1600 } 1601 rdp->nocb_gp_rdp = rdp_gp; 1602 if (cpumask_test_cpu(cpu, rcu_nocb_mask)) 1603 list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp); 1604 } 1605 if (gotnocbs && dump_tree) 1606 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)"); 1607 } 1608 1609 /* 1610 * Bind the current task to the offloaded CPUs. If there are no offloaded 1611 * CPUs, leave the task unbound. Splat if the bind attempt fails. 1612 */ 1613 void rcu_bind_current_to_nocb(void) 1614 { 1615 if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask)) 1616 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask)); 1617 } 1618 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb); 1619 1620 // The ->on_cpu field is available only in CONFIG_SMP=y, so... 1621 #ifdef CONFIG_SMP 1622 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp) 1623 { 1624 return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : ""; 1625 } 1626 #else // #ifdef CONFIG_SMP 1627 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp) 1628 { 1629 return ""; 1630 } 1631 #endif // #else #ifdef CONFIG_SMP 1632 1633 /* 1634 * Dump out nocb grace-period kthread state for the specified rcu_data 1635 * structure. 1636 */ 1637 static void show_rcu_nocb_gp_state(struct rcu_data *rdp) 1638 { 1639 struct rcu_node *rnp = rdp->mynode; 1640 1641 pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n", 1642 rdp->cpu, 1643 "kK"[!!rdp->nocb_gp_kthread], 1644 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)], 1645 "dD"[!!rdp->nocb_defer_wakeup], 1646 "tT"[timer_pending(&rdp->nocb_timer)], 1647 "sS"[!!rdp->nocb_gp_sleep], 1648 ".W"[swait_active(&rdp->nocb_gp_wq)], 1649 ".W"[swait_active(&rnp->nocb_gp_wq[0])], 1650 ".W"[swait_active(&rnp->nocb_gp_wq[1])], 1651 ".B"[!!rdp->nocb_gp_bypass], 1652 ".G"[!!rdp->nocb_gp_gp], 1653 (long)rdp->nocb_gp_seq, 1654 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops), 1655 rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.', 1656 rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1, 1657 show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread)); 1658 } 1659 1660 /* Dump out nocb kthread state for the specified rcu_data structure. */ 1661 static void show_rcu_nocb_state(struct rcu_data *rdp) 1662 { 1663 char bufw[20]; 1664 char bufr[20]; 1665 struct rcu_data *nocb_next_rdp; 1666 struct rcu_segcblist *rsclp = &rdp->cblist; 1667 bool waslocked; 1668 bool wassleep; 1669 1670 if (rdp->nocb_gp_rdp == rdp) 1671 show_rcu_nocb_gp_state(rdp); 1672 1673 nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp, 1674 &rdp->nocb_entry_rdp, 1675 typeof(*rdp), 1676 nocb_entry_rdp); 1677 1678 sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]); 1679 sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]); 1680 pr_info(" CB %d^%d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n", 1681 rdp->cpu, rdp->nocb_gp_rdp->cpu, 1682 nocb_next_rdp ? nocb_next_rdp->cpu : -1, 1683 "kK"[!!rdp->nocb_cb_kthread], 1684 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)], 1685 "cC"[!!atomic_read(&rdp->nocb_lock_contended)], 1686 "lL"[raw_spin_is_locked(&rdp->nocb_lock)], 1687 "sS"[!!rdp->nocb_cb_sleep], 1688 ".W"[swait_active(&rdp->nocb_cb_wq)], 1689 jiffies - rdp->nocb_bypass_first, 1690 jiffies - rdp->nocb_nobypass_last, 1691 rdp->nocb_nobypass_count, 1692 ".D"[rcu_segcblist_ready_cbs(rsclp)], 1693 ".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)], 1694 rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw, 1695 ".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)], 1696 rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr, 1697 ".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)], 1698 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)], 1699 rcu_segcblist_n_cbs(&rdp->cblist), 1700 rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.', 1701 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1, 1702 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread)); 1703 1704 /* It is OK for GP kthreads to have GP state. */ 1705 if (rdp->nocb_gp_rdp == rdp) 1706 return; 1707 1708 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock); 1709 wassleep = swait_active(&rdp->nocb_gp_wq); 1710 if (!rdp->nocb_gp_sleep && !waslocked && !wassleep) 1711 return; /* Nothing untoward. */ 1712 1713 pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c %c\n", 1714 "lL"[waslocked], 1715 "dD"[!!rdp->nocb_defer_wakeup], 1716 "sS"[!!rdp->nocb_gp_sleep], 1717 ".W"[wassleep]); 1718 } 1719 1720 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 1721 1722 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp) 1723 { 1724 return 0; 1725 } 1726 1727 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp) 1728 { 1729 return false; 1730 } 1731 1732 /* No ->nocb_lock to acquire. */ 1733 static void rcu_nocb_lock(struct rcu_data *rdp) 1734 { 1735 } 1736 1737 /* No ->nocb_lock to release. */ 1738 static void rcu_nocb_unlock(struct rcu_data *rdp) 1739 { 1740 } 1741 1742 /* No ->nocb_lock to release. */ 1743 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 1744 unsigned long flags) 1745 { 1746 local_irq_restore(flags); 1747 } 1748 1749 /* Lockdep check that ->cblist may be safely accessed. */ 1750 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 1751 { 1752 lockdep_assert_irqs_disabled(); 1753 } 1754 1755 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 1756 { 1757 } 1758 1759 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 1760 { 1761 return NULL; 1762 } 1763 1764 static void rcu_init_one_nocb(struct rcu_node *rnp) 1765 { 1766 } 1767 1768 static bool wake_nocb_gp(struct rcu_data *rdp, bool force) 1769 { 1770 return false; 1771 } 1772 1773 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1774 unsigned long j, bool lazy) 1775 { 1776 return true; 1777 } 1778 1779 static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head, 1780 rcu_callback_t func, unsigned long flags, bool lazy) 1781 { 1782 WARN_ON_ONCE(1); /* Should be dead code! */ 1783 } 1784 1785 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty, 1786 unsigned long flags) 1787 { 1788 WARN_ON_ONCE(1); /* Should be dead code! */ 1789 } 1790 1791 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 1792 { 1793 } 1794 1795 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level) 1796 { 1797 return false; 1798 } 1799 1800 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp) 1801 { 1802 return false; 1803 } 1804 1805 static void rcu_spawn_cpu_nocb_kthread(int cpu) 1806 { 1807 } 1808 1809 static void show_rcu_nocb_state(struct rcu_data *rdp) 1810 { 1811 } 1812 1813 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 1814