xref: /linux/mm/memblock.c (revision 5adfeaec)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Procedures for maintaining information about logical memory blocks.
4  *
5  * Peter Bergner, IBM Corp.	June 2001.
6  * Copyright (C) 2001 Peter Bergner.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19 
20 #include <asm/sections.h>
21 #include <linux/io.h>
22 
23 #include "internal.h"
24 
25 #define INIT_MEMBLOCK_REGIONS			128
26 #define INIT_PHYSMEM_REGIONS			4
27 
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
30 #endif
31 
32 #ifndef INIT_MEMBLOCK_MEMORY_REGIONS
33 #define INIT_MEMBLOCK_MEMORY_REGIONS		INIT_MEMBLOCK_REGIONS
34 #endif
35 
36 /**
37  * DOC: memblock overview
38  *
39  * Memblock is a method of managing memory regions during the early
40  * boot period when the usual kernel memory allocators are not up and
41  * running.
42  *
43  * Memblock views the system memory as collections of contiguous
44  * regions. There are several types of these collections:
45  *
46  * * ``memory`` - describes the physical memory available to the
47  *   kernel; this may differ from the actual physical memory installed
48  *   in the system, for instance when the memory is restricted with
49  *   ``mem=`` command line parameter
50  * * ``reserved`` - describes the regions that were allocated
51  * * ``physmem`` - describes the actual physical memory available during
52  *   boot regardless of the possible restrictions and memory hot(un)plug;
53  *   the ``physmem`` type is only available on some architectures.
54  *
55  * Each region is represented by struct memblock_region that
56  * defines the region extents, its attributes and NUMA node id on NUMA
57  * systems. Every memory type is described by the struct memblock_type
58  * which contains an array of memory regions along with
59  * the allocator metadata. The "memory" and "reserved" types are nicely
60  * wrapped with struct memblock. This structure is statically
61  * initialized at build time. The region arrays are initially sized to
62  * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63  * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
64  * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
65  * The memblock_allow_resize() enables automatic resizing of the region
66  * arrays during addition of new regions. This feature should be used
67  * with care so that memory allocated for the region array will not
68  * overlap with areas that should be reserved, for example initrd.
69  *
70  * The early architecture setup should tell memblock what the physical
71  * memory layout is by using memblock_add() or memblock_add_node()
72  * functions. The first function does not assign the region to a NUMA
73  * node and it is appropriate for UMA systems. Yet, it is possible to
74  * use it on NUMA systems as well and assign the region to a NUMA node
75  * later in the setup process using memblock_set_node(). The
76  * memblock_add_node() performs such an assignment directly.
77  *
78  * Once memblock is setup the memory can be allocated using one of the
79  * API variants:
80  *
81  * * memblock_phys_alloc*() - these functions return the **physical**
82  *   address of the allocated memory
83  * * memblock_alloc*() - these functions return the **virtual** address
84  *   of the allocated memory.
85  *
86  * Note, that both API variants use implicit assumptions about allowed
87  * memory ranges and the fallback methods. Consult the documentation
88  * of memblock_alloc_internal() and memblock_alloc_range_nid()
89  * functions for more elaborate description.
90  *
91  * As the system boot progresses, the architecture specific mem_init()
92  * function frees all the memory to the buddy page allocator.
93  *
94  * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
95  * memblock data structures (except "physmem") will be discarded after the
96  * system initialization completes.
97  */
98 
99 #ifndef CONFIG_NUMA
100 struct pglist_data __refdata contig_page_data;
101 EXPORT_SYMBOL(contig_page_data);
102 #endif
103 
104 unsigned long max_low_pfn;
105 unsigned long min_low_pfn;
106 unsigned long max_pfn;
107 unsigned long long max_possible_pfn;
108 
109 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
110 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
111 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
112 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
113 #endif
114 
115 struct memblock memblock __initdata_memblock = {
116 	.memory.regions		= memblock_memory_init_regions,
117 	.memory.max		= INIT_MEMBLOCK_MEMORY_REGIONS,
118 	.memory.name		= "memory",
119 
120 	.reserved.regions	= memblock_reserved_init_regions,
121 	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
122 	.reserved.name		= "reserved",
123 
124 	.bottom_up		= false,
125 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
126 };
127 
128 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
129 struct memblock_type physmem = {
130 	.regions		= memblock_physmem_init_regions,
131 	.max			= INIT_PHYSMEM_REGIONS,
132 	.name			= "physmem",
133 };
134 #endif
135 
136 /*
137  * keep a pointer to &memblock.memory in the text section to use it in
138  * __next_mem_range() and its helpers.
139  *  For architectures that do not keep memblock data after init, this
140  * pointer will be reset to NULL at memblock_discard()
141  */
142 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
143 
144 #define for_each_memblock_type(i, memblock_type, rgn)			\
145 	for (i = 0, rgn = &memblock_type->regions[0];			\
146 	     i < memblock_type->cnt;					\
147 	     i++, rgn = &memblock_type->regions[i])
148 
149 #define memblock_dbg(fmt, ...)						\
150 	do {								\
151 		if (memblock_debug)					\
152 			pr_info(fmt, ##__VA_ARGS__);			\
153 	} while (0)
154 
155 static int memblock_debug __initdata_memblock;
156 static bool system_has_some_mirror __initdata_memblock;
157 static int memblock_can_resize __initdata_memblock;
158 static int memblock_memory_in_slab __initdata_memblock;
159 static int memblock_reserved_in_slab __initdata_memblock;
160 
memblock_has_mirror(void)161 bool __init_memblock memblock_has_mirror(void)
162 {
163 	return system_has_some_mirror;
164 }
165 
choose_memblock_flags(void)166 static enum memblock_flags __init_memblock choose_memblock_flags(void)
167 {
168 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
169 }
170 
171 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
memblock_cap_size(phys_addr_t base,phys_addr_t * size)172 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
173 {
174 	return *size = min(*size, PHYS_ADDR_MAX - base);
175 }
176 
177 /*
178  * Address comparison utilities
179  */
180 unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)181 memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2,
182 		       phys_addr_t size2)
183 {
184 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
185 }
186 
memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)187 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
188 					phys_addr_t base, phys_addr_t size)
189 {
190 	unsigned long i;
191 
192 	memblock_cap_size(base, &size);
193 
194 	for (i = 0; i < type->cnt; i++)
195 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
196 					   type->regions[i].size))
197 			return true;
198 	return false;
199 }
200 
201 /**
202  * __memblock_find_range_bottom_up - find free area utility in bottom-up
203  * @start: start of candidate range
204  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
205  *       %MEMBLOCK_ALLOC_ACCESSIBLE
206  * @size: size of free area to find
207  * @align: alignment of free area to find
208  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
209  * @flags: pick from blocks based on memory attributes
210  *
211  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
212  *
213  * Return:
214  * Found address on success, 0 on failure.
215  */
216 static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)217 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
218 				phys_addr_t size, phys_addr_t align, int nid,
219 				enum memblock_flags flags)
220 {
221 	phys_addr_t this_start, this_end, cand;
222 	u64 i;
223 
224 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
225 		this_start = clamp(this_start, start, end);
226 		this_end = clamp(this_end, start, end);
227 
228 		cand = round_up(this_start, align);
229 		if (cand < this_end && this_end - cand >= size)
230 			return cand;
231 	}
232 
233 	return 0;
234 }
235 
236 /**
237  * __memblock_find_range_top_down - find free area utility, in top-down
238  * @start: start of candidate range
239  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
240  *       %MEMBLOCK_ALLOC_ACCESSIBLE
241  * @size: size of free area to find
242  * @align: alignment of free area to find
243  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
244  * @flags: pick from blocks based on memory attributes
245  *
246  * Utility called from memblock_find_in_range_node(), find free area top-down.
247  *
248  * Return:
249  * Found address on success, 0 on failure.
250  */
251 static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)252 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
253 			       phys_addr_t size, phys_addr_t align, int nid,
254 			       enum memblock_flags flags)
255 {
256 	phys_addr_t this_start, this_end, cand;
257 	u64 i;
258 
259 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
260 					NULL) {
261 		this_start = clamp(this_start, start, end);
262 		this_end = clamp(this_end, start, end);
263 
264 		if (this_end < size)
265 			continue;
266 
267 		cand = round_down(this_end - size, align);
268 		if (cand >= this_start)
269 			return cand;
270 	}
271 
272 	return 0;
273 }
274 
275 /**
276  * memblock_find_in_range_node - find free area in given range and node
277  * @size: size of free area to find
278  * @align: alignment of free area to find
279  * @start: start of candidate range
280  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
281  *       %MEMBLOCK_ALLOC_ACCESSIBLE
282  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
283  * @flags: pick from blocks based on memory attributes
284  *
285  * Find @size free area aligned to @align in the specified range and node.
286  *
287  * Return:
288  * Found address on success, 0 on failure.
289  */
memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,enum memblock_flags flags)290 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
291 					phys_addr_t align, phys_addr_t start,
292 					phys_addr_t end, int nid,
293 					enum memblock_flags flags)
294 {
295 	/* pump up @end */
296 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
297 	    end == MEMBLOCK_ALLOC_NOLEAKTRACE)
298 		end = memblock.current_limit;
299 
300 	/* avoid allocating the first page */
301 	start = max_t(phys_addr_t, start, PAGE_SIZE);
302 	end = max(start, end);
303 
304 	if (memblock_bottom_up())
305 		return __memblock_find_range_bottom_up(start, end, size, align,
306 						       nid, flags);
307 	else
308 		return __memblock_find_range_top_down(start, end, size, align,
309 						      nid, flags);
310 }
311 
312 /**
313  * memblock_find_in_range - find free area in given range
314  * @start: start of candidate range
315  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
316  *       %MEMBLOCK_ALLOC_ACCESSIBLE
317  * @size: size of free area to find
318  * @align: alignment of free area to find
319  *
320  * Find @size free area aligned to @align in the specified range.
321  *
322  * Return:
323  * Found address on success, 0 on failure.
324  */
memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)325 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
326 					phys_addr_t end, phys_addr_t size,
327 					phys_addr_t align)
328 {
329 	phys_addr_t ret;
330 	enum memblock_flags flags = choose_memblock_flags();
331 
332 again:
333 	ret = memblock_find_in_range_node(size, align, start, end,
334 					    NUMA_NO_NODE, flags);
335 
336 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
337 		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
338 			&size);
339 		flags &= ~MEMBLOCK_MIRROR;
340 		goto again;
341 	}
342 
343 	return ret;
344 }
345 
memblock_remove_region(struct memblock_type * type,unsigned long r)346 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
347 {
348 	type->total_size -= type->regions[r].size;
349 	memmove(&type->regions[r], &type->regions[r + 1],
350 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
351 	type->cnt--;
352 
353 	/* Special case for empty arrays */
354 	if (type->cnt == 0) {
355 		WARN_ON(type->total_size != 0);
356 		type->regions[0].base = 0;
357 		type->regions[0].size = 0;
358 		type->regions[0].flags = 0;
359 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
360 	}
361 }
362 
363 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
364 /**
365  * memblock_discard - discard memory and reserved arrays if they were allocated
366  */
memblock_discard(void)367 void __init memblock_discard(void)
368 {
369 	phys_addr_t addr, size;
370 
371 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
372 		addr = __pa(memblock.reserved.regions);
373 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
374 				  memblock.reserved.max);
375 		if (memblock_reserved_in_slab)
376 			kfree(memblock.reserved.regions);
377 		else
378 			memblock_free_late(addr, size);
379 	}
380 
381 	if (memblock.memory.regions != memblock_memory_init_regions) {
382 		addr = __pa(memblock.memory.regions);
383 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
384 				  memblock.memory.max);
385 		if (memblock_memory_in_slab)
386 			kfree(memblock.memory.regions);
387 		else
388 			memblock_free_late(addr, size);
389 	}
390 
391 	memblock_memory = NULL;
392 }
393 #endif
394 
395 /**
396  * memblock_double_array - double the size of the memblock regions array
397  * @type: memblock type of the regions array being doubled
398  * @new_area_start: starting address of memory range to avoid overlap with
399  * @new_area_size: size of memory range to avoid overlap with
400  *
401  * Double the size of the @type regions array. If memblock is being used to
402  * allocate memory for a new reserved regions array and there is a previously
403  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
404  * waiting to be reserved, ensure the memory used by the new array does
405  * not overlap.
406  *
407  * Return:
408  * 0 on success, -1 on failure.
409  */
memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)410 static int __init_memblock memblock_double_array(struct memblock_type *type,
411 						phys_addr_t new_area_start,
412 						phys_addr_t new_area_size)
413 {
414 	struct memblock_region *new_array, *old_array;
415 	phys_addr_t old_alloc_size, new_alloc_size;
416 	phys_addr_t old_size, new_size, addr, new_end;
417 	int use_slab = slab_is_available();
418 	int *in_slab;
419 
420 	/* We don't allow resizing until we know about the reserved regions
421 	 * of memory that aren't suitable for allocation
422 	 */
423 	if (!memblock_can_resize)
424 		panic("memblock: cannot resize %s array\n", type->name);
425 
426 	/* Calculate new doubled size */
427 	old_size = type->max * sizeof(struct memblock_region);
428 	new_size = old_size << 1;
429 	/*
430 	 * We need to allocated new one align to PAGE_SIZE,
431 	 *   so we can free them completely later.
432 	 */
433 	old_alloc_size = PAGE_ALIGN(old_size);
434 	new_alloc_size = PAGE_ALIGN(new_size);
435 
436 	/* Retrieve the slab flag */
437 	if (type == &memblock.memory)
438 		in_slab = &memblock_memory_in_slab;
439 	else
440 		in_slab = &memblock_reserved_in_slab;
441 
442 	/* Try to find some space for it */
443 	if (use_slab) {
444 		new_array = kmalloc(new_size, GFP_KERNEL);
445 		addr = new_array ? __pa(new_array) : 0;
446 	} else {
447 		/* only exclude range when trying to double reserved.regions */
448 		if (type != &memblock.reserved)
449 			new_area_start = new_area_size = 0;
450 
451 		addr = memblock_find_in_range(new_area_start + new_area_size,
452 						memblock.current_limit,
453 						new_alloc_size, PAGE_SIZE);
454 		if (!addr && new_area_size)
455 			addr = memblock_find_in_range(0,
456 				min(new_area_start, memblock.current_limit),
457 				new_alloc_size, PAGE_SIZE);
458 
459 		new_array = addr ? __va(addr) : NULL;
460 	}
461 	if (!addr) {
462 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
463 		       type->name, type->max, type->max * 2);
464 		return -1;
465 	}
466 
467 	new_end = addr + new_size - 1;
468 	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
469 			type->name, type->max * 2, &addr, &new_end);
470 
471 	/*
472 	 * Found space, we now need to move the array over before we add the
473 	 * reserved region since it may be our reserved array itself that is
474 	 * full.
475 	 */
476 	memcpy(new_array, type->regions, old_size);
477 	memset(new_array + type->max, 0, old_size);
478 	old_array = type->regions;
479 	type->regions = new_array;
480 	type->max <<= 1;
481 
482 	/* Free old array. We needn't free it if the array is the static one */
483 	if (*in_slab)
484 		kfree(old_array);
485 	else if (old_array != memblock_memory_init_regions &&
486 		 old_array != memblock_reserved_init_regions)
487 		memblock_free(old_array, old_alloc_size);
488 
489 	/*
490 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
491 	 * needn't do it
492 	 */
493 	if (!use_slab)
494 		BUG_ON(memblock_reserve(addr, new_alloc_size));
495 
496 	/* Update slab flag */
497 	*in_slab = use_slab;
498 
499 	return 0;
500 }
501 
502 /**
503  * memblock_merge_regions - merge neighboring compatible regions
504  * @type: memblock type to scan
505  * @start_rgn: start scanning from (@start_rgn - 1)
506  * @end_rgn: end scanning at (@end_rgn - 1)
507  * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
508  */
memblock_merge_regions(struct memblock_type * type,unsigned long start_rgn,unsigned long end_rgn)509 static void __init_memblock memblock_merge_regions(struct memblock_type *type,
510 						   unsigned long start_rgn,
511 						   unsigned long end_rgn)
512 {
513 	int i = 0;
514 	if (start_rgn)
515 		i = start_rgn - 1;
516 	end_rgn = min(end_rgn, type->cnt - 1);
517 	while (i < end_rgn) {
518 		struct memblock_region *this = &type->regions[i];
519 		struct memblock_region *next = &type->regions[i + 1];
520 
521 		if (this->base + this->size != next->base ||
522 		    memblock_get_region_node(this) !=
523 		    memblock_get_region_node(next) ||
524 		    this->flags != next->flags) {
525 			BUG_ON(this->base + this->size > next->base);
526 			i++;
527 			continue;
528 		}
529 
530 		this->size += next->size;
531 		/* move forward from next + 1, index of which is i + 2 */
532 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
533 		type->cnt--;
534 		end_rgn--;
535 	}
536 }
537 
538 /**
539  * memblock_insert_region - insert new memblock region
540  * @type:	memblock type to insert into
541  * @idx:	index for the insertion point
542  * @base:	base address of the new region
543  * @size:	size of the new region
544  * @nid:	node id of the new region
545  * @flags:	flags of the new region
546  *
547  * Insert new memblock region [@base, @base + @size) into @type at @idx.
548  * @type must already have extra room to accommodate the new region.
549  */
memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)550 static void __init_memblock memblock_insert_region(struct memblock_type *type,
551 						   int idx, phys_addr_t base,
552 						   phys_addr_t size,
553 						   int nid,
554 						   enum memblock_flags flags)
555 {
556 	struct memblock_region *rgn = &type->regions[idx];
557 
558 	BUG_ON(type->cnt >= type->max);
559 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
560 	rgn->base = base;
561 	rgn->size = size;
562 	rgn->flags = flags;
563 	memblock_set_region_node(rgn, nid);
564 	type->cnt++;
565 	type->total_size += size;
566 }
567 
568 /**
569  * memblock_add_range - add new memblock region
570  * @type: memblock type to add new region into
571  * @base: base address of the new region
572  * @size: size of the new region
573  * @nid: nid of the new region
574  * @flags: flags of the new region
575  *
576  * Add new memblock region [@base, @base + @size) into @type.  The new region
577  * is allowed to overlap with existing ones - overlaps don't affect already
578  * existing regions.  @type is guaranteed to be minimal (all neighbouring
579  * compatible regions are merged) after the addition.
580  *
581  * Return:
582  * 0 on success, -errno on failure.
583  */
memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)584 static int __init_memblock memblock_add_range(struct memblock_type *type,
585 				phys_addr_t base, phys_addr_t size,
586 				int nid, enum memblock_flags flags)
587 {
588 	bool insert = false;
589 	phys_addr_t obase = base;
590 	phys_addr_t end = base + memblock_cap_size(base, &size);
591 	int idx, nr_new, start_rgn = -1, end_rgn;
592 	struct memblock_region *rgn;
593 
594 	if (!size)
595 		return 0;
596 
597 	/* special case for empty array */
598 	if (type->regions[0].size == 0) {
599 		WARN_ON(type->cnt != 0 || type->total_size);
600 		type->regions[0].base = base;
601 		type->regions[0].size = size;
602 		type->regions[0].flags = flags;
603 		memblock_set_region_node(&type->regions[0], nid);
604 		type->total_size = size;
605 		type->cnt = 1;
606 		return 0;
607 	}
608 
609 	/*
610 	 * The worst case is when new range overlaps all existing regions,
611 	 * then we'll need type->cnt + 1 empty regions in @type. So if
612 	 * type->cnt * 2 + 1 is less than or equal to type->max, we know
613 	 * that there is enough empty regions in @type, and we can insert
614 	 * regions directly.
615 	 */
616 	if (type->cnt * 2 + 1 <= type->max)
617 		insert = true;
618 
619 repeat:
620 	/*
621 	 * The following is executed twice.  Once with %false @insert and
622 	 * then with %true.  The first counts the number of regions needed
623 	 * to accommodate the new area.  The second actually inserts them.
624 	 */
625 	base = obase;
626 	nr_new = 0;
627 
628 	for_each_memblock_type(idx, type, rgn) {
629 		phys_addr_t rbase = rgn->base;
630 		phys_addr_t rend = rbase + rgn->size;
631 
632 		if (rbase >= end)
633 			break;
634 		if (rend <= base)
635 			continue;
636 		/*
637 		 * @rgn overlaps.  If it separates the lower part of new
638 		 * area, insert that portion.
639 		 */
640 		if (rbase > base) {
641 #ifdef CONFIG_NUMA
642 			WARN_ON(nid != memblock_get_region_node(rgn));
643 #endif
644 			WARN_ON(flags != rgn->flags);
645 			nr_new++;
646 			if (insert) {
647 				if (start_rgn == -1)
648 					start_rgn = idx;
649 				end_rgn = idx + 1;
650 				memblock_insert_region(type, idx++, base,
651 						       rbase - base, nid,
652 						       flags);
653 			}
654 		}
655 		/* area below @rend is dealt with, forget about it */
656 		base = min(rend, end);
657 	}
658 
659 	/* insert the remaining portion */
660 	if (base < end) {
661 		nr_new++;
662 		if (insert) {
663 			if (start_rgn == -1)
664 				start_rgn = idx;
665 			end_rgn = idx + 1;
666 			memblock_insert_region(type, idx, base, end - base,
667 					       nid, flags);
668 		}
669 	}
670 
671 	if (!nr_new)
672 		return 0;
673 
674 	/*
675 	 * If this was the first round, resize array and repeat for actual
676 	 * insertions; otherwise, merge and return.
677 	 */
678 	if (!insert) {
679 		while (type->cnt + nr_new > type->max)
680 			if (memblock_double_array(type, obase, size) < 0)
681 				return -ENOMEM;
682 		insert = true;
683 		goto repeat;
684 	} else {
685 		memblock_merge_regions(type, start_rgn, end_rgn);
686 		return 0;
687 	}
688 }
689 
690 /**
691  * memblock_add_node - add new memblock region within a NUMA node
692  * @base: base address of the new region
693  * @size: size of the new region
694  * @nid: nid of the new region
695  * @flags: flags of the new region
696  *
697  * Add new memblock region [@base, @base + @size) to the "memory"
698  * type. See memblock_add_range() description for mode details
699  *
700  * Return:
701  * 0 on success, -errno on failure.
702  */
memblock_add_node(phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)703 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
704 				      int nid, enum memblock_flags flags)
705 {
706 	phys_addr_t end = base + size - 1;
707 
708 	memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
709 		     &base, &end, nid, flags, (void *)_RET_IP_);
710 
711 	return memblock_add_range(&memblock.memory, base, size, nid, flags);
712 }
713 
714 /**
715  * memblock_add - add new memblock region
716  * @base: base address of the new region
717  * @size: size of the new region
718  *
719  * Add new memblock region [@base, @base + @size) to the "memory"
720  * type. See memblock_add_range() description for mode details
721  *
722  * Return:
723  * 0 on success, -errno on failure.
724  */
memblock_add(phys_addr_t base,phys_addr_t size)725 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
726 {
727 	phys_addr_t end = base + size - 1;
728 
729 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
730 		     &base, &end, (void *)_RET_IP_);
731 
732 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
733 }
734 
735 /**
736  * memblock_validate_numa_coverage - check if amount of memory with
737  * no node ID assigned is less than a threshold
738  * @threshold_bytes: maximal number of pages that can have unassigned node
739  * ID (in bytes).
740  *
741  * A buggy firmware may report memory that does not belong to any node.
742  * Check if amount of such memory is below @threshold_bytes.
743  *
744  * Return: true on success, false on failure.
745  */
memblock_validate_numa_coverage(unsigned long threshold_bytes)746 bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes)
747 {
748 	unsigned long nr_pages = 0;
749 	unsigned long start_pfn, end_pfn, mem_size_mb;
750 	int nid, i;
751 
752 	/* calculate lose page */
753 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
754 		if (!numa_valid_node(nid))
755 			nr_pages += end_pfn - start_pfn;
756 	}
757 
758 	if ((nr_pages << PAGE_SHIFT) >= threshold_bytes) {
759 		mem_size_mb = memblock_phys_mem_size() >> 20;
760 		pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n",
761 		       (nr_pages << PAGE_SHIFT) >> 20, mem_size_mb);
762 		return false;
763 	}
764 
765 	return true;
766 }
767 
768 
769 /**
770  * memblock_isolate_range - isolate given range into disjoint memblocks
771  * @type: memblock type to isolate range for
772  * @base: base of range to isolate
773  * @size: size of range to isolate
774  * @start_rgn: out parameter for the start of isolated region
775  * @end_rgn: out parameter for the end of isolated region
776  *
777  * Walk @type and ensure that regions don't cross the boundaries defined by
778  * [@base, @base + @size).  Crossing regions are split at the boundaries,
779  * which may create at most two more regions.  The index of the first
780  * region inside the range is returned in *@start_rgn and the index of the
781  * first region after the range is returned in *@end_rgn.
782  *
783  * Return:
784  * 0 on success, -errno on failure.
785  */
memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)786 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
787 					phys_addr_t base, phys_addr_t size,
788 					int *start_rgn, int *end_rgn)
789 {
790 	phys_addr_t end = base + memblock_cap_size(base, &size);
791 	int idx;
792 	struct memblock_region *rgn;
793 
794 	*start_rgn = *end_rgn = 0;
795 
796 	if (!size)
797 		return 0;
798 
799 	/* we'll create at most two more regions */
800 	while (type->cnt + 2 > type->max)
801 		if (memblock_double_array(type, base, size) < 0)
802 			return -ENOMEM;
803 
804 	for_each_memblock_type(idx, type, rgn) {
805 		phys_addr_t rbase = rgn->base;
806 		phys_addr_t rend = rbase + rgn->size;
807 
808 		if (rbase >= end)
809 			break;
810 		if (rend <= base)
811 			continue;
812 
813 		if (rbase < base) {
814 			/*
815 			 * @rgn intersects from below.  Split and continue
816 			 * to process the next region - the new top half.
817 			 */
818 			rgn->base = base;
819 			rgn->size -= base - rbase;
820 			type->total_size -= base - rbase;
821 			memblock_insert_region(type, idx, rbase, base - rbase,
822 					       memblock_get_region_node(rgn),
823 					       rgn->flags);
824 		} else if (rend > end) {
825 			/*
826 			 * @rgn intersects from above.  Split and redo the
827 			 * current region - the new bottom half.
828 			 */
829 			rgn->base = end;
830 			rgn->size -= end - rbase;
831 			type->total_size -= end - rbase;
832 			memblock_insert_region(type, idx--, rbase, end - rbase,
833 					       memblock_get_region_node(rgn),
834 					       rgn->flags);
835 		} else {
836 			/* @rgn is fully contained, record it */
837 			if (!*end_rgn)
838 				*start_rgn = idx;
839 			*end_rgn = idx + 1;
840 		}
841 	}
842 
843 	return 0;
844 }
845 
memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)846 static int __init_memblock memblock_remove_range(struct memblock_type *type,
847 					  phys_addr_t base, phys_addr_t size)
848 {
849 	int start_rgn, end_rgn;
850 	int i, ret;
851 
852 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
853 	if (ret)
854 		return ret;
855 
856 	for (i = end_rgn - 1; i >= start_rgn; i--)
857 		memblock_remove_region(type, i);
858 	return 0;
859 }
860 
memblock_remove(phys_addr_t base,phys_addr_t size)861 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
862 {
863 	phys_addr_t end = base + size - 1;
864 
865 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
866 		     &base, &end, (void *)_RET_IP_);
867 
868 	return memblock_remove_range(&memblock.memory, base, size);
869 }
870 
871 /**
872  * memblock_free - free boot memory allocation
873  * @ptr: starting address of the  boot memory allocation
874  * @size: size of the boot memory block in bytes
875  *
876  * Free boot memory block previously allocated by memblock_alloc_xx() API.
877  * The freeing memory will not be released to the buddy allocator.
878  */
memblock_free(void * ptr,size_t size)879 void __init_memblock memblock_free(void *ptr, size_t size)
880 {
881 	if (ptr)
882 		memblock_phys_free(__pa(ptr), size);
883 }
884 
885 /**
886  * memblock_phys_free - free boot memory block
887  * @base: phys starting address of the  boot memory block
888  * @size: size of the boot memory block in bytes
889  *
890  * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
891  * The freeing memory will not be released to the buddy allocator.
892  */
memblock_phys_free(phys_addr_t base,phys_addr_t size)893 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
894 {
895 	phys_addr_t end = base + size - 1;
896 
897 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
898 		     &base, &end, (void *)_RET_IP_);
899 
900 	kmemleak_free_part_phys(base, size);
901 	return memblock_remove_range(&memblock.reserved, base, size);
902 }
903 
memblock_reserve(phys_addr_t base,phys_addr_t size)904 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
905 {
906 	phys_addr_t end = base + size - 1;
907 
908 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
909 		     &base, &end, (void *)_RET_IP_);
910 
911 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
912 }
913 
914 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
memblock_physmem_add(phys_addr_t base,phys_addr_t size)915 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
916 {
917 	phys_addr_t end = base + size - 1;
918 
919 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
920 		     &base, &end, (void *)_RET_IP_);
921 
922 	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
923 }
924 #endif
925 
926 /**
927  * memblock_setclr_flag - set or clear flag for a memory region
928  * @type: memblock type to set/clear flag for
929  * @base: base address of the region
930  * @size: size of the region
931  * @set: set or clear the flag
932  * @flag: the flag to update
933  *
934  * This function isolates region [@base, @base + @size), and sets/clears flag
935  *
936  * Return: 0 on success, -errno on failure.
937  */
memblock_setclr_flag(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int set,int flag)938 static int __init_memblock memblock_setclr_flag(struct memblock_type *type,
939 				phys_addr_t base, phys_addr_t size, int set, int flag)
940 {
941 	int i, ret, start_rgn, end_rgn;
942 
943 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
944 	if (ret)
945 		return ret;
946 
947 	for (i = start_rgn; i < end_rgn; i++) {
948 		struct memblock_region *r = &type->regions[i];
949 
950 		if (set)
951 			r->flags |= flag;
952 		else
953 			r->flags &= ~flag;
954 	}
955 
956 	memblock_merge_regions(type, start_rgn, end_rgn);
957 	return 0;
958 }
959 
960 /**
961  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
962  * @base: the base phys addr of the region
963  * @size: the size of the region
964  *
965  * Return: 0 on success, -errno on failure.
966  */
memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)967 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
968 {
969 	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG);
970 }
971 
972 /**
973  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
974  * @base: the base phys addr of the region
975  * @size: the size of the region
976  *
977  * Return: 0 on success, -errno on failure.
978  */
memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)979 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
980 {
981 	return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG);
982 }
983 
984 /**
985  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
986  * @base: the base phys addr of the region
987  * @size: the size of the region
988  *
989  * Return: 0 on success, -errno on failure.
990  */
memblock_mark_mirror(phys_addr_t base,phys_addr_t size)991 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
992 {
993 	if (!mirrored_kernelcore)
994 		return 0;
995 
996 	system_has_some_mirror = true;
997 
998 	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR);
999 }
1000 
1001 /**
1002  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
1003  * @base: the base phys addr of the region
1004  * @size: the size of the region
1005  *
1006  * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
1007  * direct mapping of the physical memory. These regions will still be
1008  * covered by the memory map. The struct page representing NOMAP memory
1009  * frames in the memory map will be PageReserved()
1010  *
1011  * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
1012  * memblock, the caller must inform kmemleak to ignore that memory
1013  *
1014  * Return: 0 on success, -errno on failure.
1015  */
memblock_mark_nomap(phys_addr_t base,phys_addr_t size)1016 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
1017 {
1018 	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP);
1019 }
1020 
1021 /**
1022  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
1023  * @base: the base phys addr of the region
1024  * @size: the size of the region
1025  *
1026  * Return: 0 on success, -errno on failure.
1027  */
memblock_clear_nomap(phys_addr_t base,phys_addr_t size)1028 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
1029 {
1030 	return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP);
1031 }
1032 
1033 /**
1034  * memblock_reserved_mark_noinit - Mark a reserved memory region with flag
1035  * MEMBLOCK_RSRV_NOINIT which results in the struct pages not being initialized
1036  * for this region.
1037  * @base: the base phys addr of the region
1038  * @size: the size of the region
1039  *
1040  * struct pages will not be initialized for reserved memory regions marked with
1041  * %MEMBLOCK_RSRV_NOINIT.
1042  *
1043  * Return: 0 on success, -errno on failure.
1044  */
memblock_reserved_mark_noinit(phys_addr_t base,phys_addr_t size)1045 int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size)
1046 {
1047 	return memblock_setclr_flag(&memblock.reserved, base, size, 1,
1048 				    MEMBLOCK_RSRV_NOINIT);
1049 }
1050 
should_skip_region(struct memblock_type * type,struct memblock_region * m,int nid,int flags)1051 static bool should_skip_region(struct memblock_type *type,
1052 			       struct memblock_region *m,
1053 			       int nid, int flags)
1054 {
1055 	int m_nid = memblock_get_region_node(m);
1056 
1057 	/* we never skip regions when iterating memblock.reserved or physmem */
1058 	if (type != memblock_memory)
1059 		return false;
1060 
1061 	/* only memory regions are associated with nodes, check it */
1062 	if (numa_valid_node(nid) && nid != m_nid)
1063 		return true;
1064 
1065 	/* skip hotpluggable memory regions if needed */
1066 	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1067 	    !(flags & MEMBLOCK_HOTPLUG))
1068 		return true;
1069 
1070 	/* if we want mirror memory skip non-mirror memory regions */
1071 	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1072 		return true;
1073 
1074 	/* skip nomap memory unless we were asked for it explicitly */
1075 	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1076 		return true;
1077 
1078 	/* skip driver-managed memory unless we were asked for it explicitly */
1079 	if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1080 		return true;
1081 
1082 	return false;
1083 }
1084 
1085 /**
1086  * __next_mem_range - next function for for_each_free_mem_range() etc.
1087  * @idx: pointer to u64 loop variable
1088  * @nid: node selector, %NUMA_NO_NODE for all nodes
1089  * @flags: pick from blocks based on memory attributes
1090  * @type_a: pointer to memblock_type from where the range is taken
1091  * @type_b: pointer to memblock_type which excludes memory from being taken
1092  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1093  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1094  * @out_nid: ptr to int for nid of the range, can be %NULL
1095  *
1096  * Find the first area from *@idx which matches @nid, fill the out
1097  * parameters, and update *@idx for the next iteration.  The lower 32bit of
1098  * *@idx contains index into type_a and the upper 32bit indexes the
1099  * areas before each region in type_b.	For example, if type_b regions
1100  * look like the following,
1101  *
1102  *	0:[0-16), 1:[32-48), 2:[128-130)
1103  *
1104  * The upper 32bit indexes the following regions.
1105  *
1106  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1107  *
1108  * As both region arrays are sorted, the function advances the two indices
1109  * in lockstep and returns each intersection.
1110  */
__next_mem_range(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1111 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1112 		      struct memblock_type *type_a,
1113 		      struct memblock_type *type_b, phys_addr_t *out_start,
1114 		      phys_addr_t *out_end, int *out_nid)
1115 {
1116 	int idx_a = *idx & 0xffffffff;
1117 	int idx_b = *idx >> 32;
1118 
1119 	for (; idx_a < type_a->cnt; idx_a++) {
1120 		struct memblock_region *m = &type_a->regions[idx_a];
1121 
1122 		phys_addr_t m_start = m->base;
1123 		phys_addr_t m_end = m->base + m->size;
1124 		int	    m_nid = memblock_get_region_node(m);
1125 
1126 		if (should_skip_region(type_a, m, nid, flags))
1127 			continue;
1128 
1129 		if (!type_b) {
1130 			if (out_start)
1131 				*out_start = m_start;
1132 			if (out_end)
1133 				*out_end = m_end;
1134 			if (out_nid)
1135 				*out_nid = m_nid;
1136 			idx_a++;
1137 			*idx = (u32)idx_a | (u64)idx_b << 32;
1138 			return;
1139 		}
1140 
1141 		/* scan areas before each reservation */
1142 		for (; idx_b < type_b->cnt + 1; idx_b++) {
1143 			struct memblock_region *r;
1144 			phys_addr_t r_start;
1145 			phys_addr_t r_end;
1146 
1147 			r = &type_b->regions[idx_b];
1148 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1149 			r_end = idx_b < type_b->cnt ?
1150 				r->base : PHYS_ADDR_MAX;
1151 
1152 			/*
1153 			 * if idx_b advanced past idx_a,
1154 			 * break out to advance idx_a
1155 			 */
1156 			if (r_start >= m_end)
1157 				break;
1158 			/* if the two regions intersect, we're done */
1159 			if (m_start < r_end) {
1160 				if (out_start)
1161 					*out_start =
1162 						max(m_start, r_start);
1163 				if (out_end)
1164 					*out_end = min(m_end, r_end);
1165 				if (out_nid)
1166 					*out_nid = m_nid;
1167 				/*
1168 				 * The region which ends first is
1169 				 * advanced for the next iteration.
1170 				 */
1171 				if (m_end <= r_end)
1172 					idx_a++;
1173 				else
1174 					idx_b++;
1175 				*idx = (u32)idx_a | (u64)idx_b << 32;
1176 				return;
1177 			}
1178 		}
1179 	}
1180 
1181 	/* signal end of iteration */
1182 	*idx = ULLONG_MAX;
1183 }
1184 
1185 /**
1186  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1187  *
1188  * @idx: pointer to u64 loop variable
1189  * @nid: node selector, %NUMA_NO_NODE for all nodes
1190  * @flags: pick from blocks based on memory attributes
1191  * @type_a: pointer to memblock_type from where the range is taken
1192  * @type_b: pointer to memblock_type which excludes memory from being taken
1193  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1194  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1195  * @out_nid: ptr to int for nid of the range, can be %NULL
1196  *
1197  * Finds the next range from type_a which is not marked as unsuitable
1198  * in type_b.
1199  *
1200  * Reverse of __next_mem_range().
1201  */
__next_mem_range_rev(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1202 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1203 					  enum memblock_flags flags,
1204 					  struct memblock_type *type_a,
1205 					  struct memblock_type *type_b,
1206 					  phys_addr_t *out_start,
1207 					  phys_addr_t *out_end, int *out_nid)
1208 {
1209 	int idx_a = *idx & 0xffffffff;
1210 	int idx_b = *idx >> 32;
1211 
1212 	if (*idx == (u64)ULLONG_MAX) {
1213 		idx_a = type_a->cnt - 1;
1214 		if (type_b != NULL)
1215 			idx_b = type_b->cnt;
1216 		else
1217 			idx_b = 0;
1218 	}
1219 
1220 	for (; idx_a >= 0; idx_a--) {
1221 		struct memblock_region *m = &type_a->regions[idx_a];
1222 
1223 		phys_addr_t m_start = m->base;
1224 		phys_addr_t m_end = m->base + m->size;
1225 		int m_nid = memblock_get_region_node(m);
1226 
1227 		if (should_skip_region(type_a, m, nid, flags))
1228 			continue;
1229 
1230 		if (!type_b) {
1231 			if (out_start)
1232 				*out_start = m_start;
1233 			if (out_end)
1234 				*out_end = m_end;
1235 			if (out_nid)
1236 				*out_nid = m_nid;
1237 			idx_a--;
1238 			*idx = (u32)idx_a | (u64)idx_b << 32;
1239 			return;
1240 		}
1241 
1242 		/* scan areas before each reservation */
1243 		for (; idx_b >= 0; idx_b--) {
1244 			struct memblock_region *r;
1245 			phys_addr_t r_start;
1246 			phys_addr_t r_end;
1247 
1248 			r = &type_b->regions[idx_b];
1249 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1250 			r_end = idx_b < type_b->cnt ?
1251 				r->base : PHYS_ADDR_MAX;
1252 			/*
1253 			 * if idx_b advanced past idx_a,
1254 			 * break out to advance idx_a
1255 			 */
1256 
1257 			if (r_end <= m_start)
1258 				break;
1259 			/* if the two regions intersect, we're done */
1260 			if (m_end > r_start) {
1261 				if (out_start)
1262 					*out_start = max(m_start, r_start);
1263 				if (out_end)
1264 					*out_end = min(m_end, r_end);
1265 				if (out_nid)
1266 					*out_nid = m_nid;
1267 				if (m_start >= r_start)
1268 					idx_a--;
1269 				else
1270 					idx_b--;
1271 				*idx = (u32)idx_a | (u64)idx_b << 32;
1272 				return;
1273 			}
1274 		}
1275 	}
1276 	/* signal end of iteration */
1277 	*idx = ULLONG_MAX;
1278 }
1279 
1280 /*
1281  * Common iterator interface used to define for_each_mem_pfn_range().
1282  */
__next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1283 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1284 				unsigned long *out_start_pfn,
1285 				unsigned long *out_end_pfn, int *out_nid)
1286 {
1287 	struct memblock_type *type = &memblock.memory;
1288 	struct memblock_region *r;
1289 	int r_nid;
1290 
1291 	while (++*idx < type->cnt) {
1292 		r = &type->regions[*idx];
1293 		r_nid = memblock_get_region_node(r);
1294 
1295 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1296 			continue;
1297 		if (!numa_valid_node(nid) || nid == r_nid)
1298 			break;
1299 	}
1300 	if (*idx >= type->cnt) {
1301 		*idx = -1;
1302 		return;
1303 	}
1304 
1305 	if (out_start_pfn)
1306 		*out_start_pfn = PFN_UP(r->base);
1307 	if (out_end_pfn)
1308 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1309 	if (out_nid)
1310 		*out_nid = r_nid;
1311 }
1312 
1313 /**
1314  * memblock_set_node - set node ID on memblock regions
1315  * @base: base of area to set node ID for
1316  * @size: size of area to set node ID for
1317  * @type: memblock type to set node ID for
1318  * @nid: node ID to set
1319  *
1320  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1321  * Regions which cross the area boundaries are split as necessary.
1322  *
1323  * Return:
1324  * 0 on success, -errno on failure.
1325  */
memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1326 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1327 				      struct memblock_type *type, int nid)
1328 {
1329 #ifdef CONFIG_NUMA
1330 	int start_rgn, end_rgn;
1331 	int i, ret;
1332 
1333 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1334 	if (ret)
1335 		return ret;
1336 
1337 	for (i = start_rgn; i < end_rgn; i++)
1338 		memblock_set_region_node(&type->regions[i], nid);
1339 
1340 	memblock_merge_regions(type, start_rgn, end_rgn);
1341 #endif
1342 	return 0;
1343 }
1344 
1345 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1346 /**
1347  * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1348  *
1349  * @idx: pointer to u64 loop variable
1350  * @zone: zone in which all of the memory blocks reside
1351  * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1352  * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1353  *
1354  * This function is meant to be a zone/pfn specific wrapper for the
1355  * for_each_mem_range type iterators. Specifically they are used in the
1356  * deferred memory init routines and as such we were duplicating much of
1357  * this logic throughout the code. So instead of having it in multiple
1358  * locations it seemed like it would make more sense to centralize this to
1359  * one new iterator that does everything they need.
1360  */
1361 void __init_memblock
__next_mem_pfn_range_in_zone(u64 * idx,struct zone * zone,unsigned long * out_spfn,unsigned long * out_epfn)1362 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1363 			     unsigned long *out_spfn, unsigned long *out_epfn)
1364 {
1365 	int zone_nid = zone_to_nid(zone);
1366 	phys_addr_t spa, epa;
1367 
1368 	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1369 			 &memblock.memory, &memblock.reserved,
1370 			 &spa, &epa, NULL);
1371 
1372 	while (*idx != U64_MAX) {
1373 		unsigned long epfn = PFN_DOWN(epa);
1374 		unsigned long spfn = PFN_UP(spa);
1375 
1376 		/*
1377 		 * Verify the end is at least past the start of the zone and
1378 		 * that we have at least one PFN to initialize.
1379 		 */
1380 		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1381 			/* if we went too far just stop searching */
1382 			if (zone_end_pfn(zone) <= spfn) {
1383 				*idx = U64_MAX;
1384 				break;
1385 			}
1386 
1387 			if (out_spfn)
1388 				*out_spfn = max(zone->zone_start_pfn, spfn);
1389 			if (out_epfn)
1390 				*out_epfn = min(zone_end_pfn(zone), epfn);
1391 
1392 			return;
1393 		}
1394 
1395 		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1396 				 &memblock.memory, &memblock.reserved,
1397 				 &spa, &epa, NULL);
1398 	}
1399 
1400 	/* signal end of iteration */
1401 	if (out_spfn)
1402 		*out_spfn = ULONG_MAX;
1403 	if (out_epfn)
1404 		*out_epfn = 0;
1405 }
1406 
1407 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1408 
1409 /**
1410  * memblock_alloc_range_nid - allocate boot memory block
1411  * @size: size of memory block to be allocated in bytes
1412  * @align: alignment of the region and block's size
1413  * @start: the lower bound of the memory region to allocate (phys address)
1414  * @end: the upper bound of the memory region to allocate (phys address)
1415  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1416  * @exact_nid: control the allocation fall back to other nodes
1417  *
1418  * The allocation is performed from memory region limited by
1419  * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1420  *
1421  * If the specified node can not hold the requested memory and @exact_nid
1422  * is false, the allocation falls back to any node in the system.
1423  *
1424  * For systems with memory mirroring, the allocation is attempted first
1425  * from the regions with mirroring enabled and then retried from any
1426  * memory region.
1427  *
1428  * In addition, function using kmemleak_alloc_phys for allocated boot
1429  * memory block, it is never reported as leaks.
1430  *
1431  * Return:
1432  * Physical address of allocated memory block on success, %0 on failure.
1433  */
memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,bool exact_nid)1434 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1435 					phys_addr_t align, phys_addr_t start,
1436 					phys_addr_t end, int nid,
1437 					bool exact_nid)
1438 {
1439 	enum memblock_flags flags = choose_memblock_flags();
1440 	phys_addr_t found;
1441 
1442 	/*
1443 	 * Detect any accidental use of these APIs after slab is ready, as at
1444 	 * this moment memblock may be deinitialized already and its
1445 	 * internal data may be destroyed (after execution of memblock_free_all)
1446 	 */
1447 	if (WARN_ON_ONCE(slab_is_available())) {
1448 		void *vaddr = kzalloc_node(size, GFP_NOWAIT, nid);
1449 
1450 		return vaddr ? virt_to_phys(vaddr) : 0;
1451 	}
1452 
1453 	if (!align) {
1454 		/* Can't use WARNs this early in boot on powerpc */
1455 		dump_stack();
1456 		align = SMP_CACHE_BYTES;
1457 	}
1458 
1459 again:
1460 	found = memblock_find_in_range_node(size, align, start, end, nid,
1461 					    flags);
1462 	if (found && !memblock_reserve(found, size))
1463 		goto done;
1464 
1465 	if (numa_valid_node(nid) && !exact_nid) {
1466 		found = memblock_find_in_range_node(size, align, start,
1467 						    end, NUMA_NO_NODE,
1468 						    flags);
1469 		if (found && !memblock_reserve(found, size))
1470 			goto done;
1471 	}
1472 
1473 	if (flags & MEMBLOCK_MIRROR) {
1474 		flags &= ~MEMBLOCK_MIRROR;
1475 		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1476 			&size);
1477 		goto again;
1478 	}
1479 
1480 	return 0;
1481 
1482 done:
1483 	/*
1484 	 * Skip kmemleak for those places like kasan_init() and
1485 	 * early_pgtable_alloc() due to high volume.
1486 	 */
1487 	if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1488 		/*
1489 		 * Memblock allocated blocks are never reported as
1490 		 * leaks. This is because many of these blocks are
1491 		 * only referred via the physical address which is
1492 		 * not looked up by kmemleak.
1493 		 */
1494 		kmemleak_alloc_phys(found, size, 0);
1495 
1496 	/*
1497 	 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1498 	 * require memory to be accepted before it can be used by the
1499 	 * guest.
1500 	 *
1501 	 * Accept the memory of the allocated buffer.
1502 	 */
1503 	accept_memory(found, size);
1504 
1505 	return found;
1506 }
1507 
1508 /**
1509  * memblock_phys_alloc_range - allocate a memory block inside specified range
1510  * @size: size of memory block to be allocated in bytes
1511  * @align: alignment of the region and block's size
1512  * @start: the lower bound of the memory region to allocate (physical address)
1513  * @end: the upper bound of the memory region to allocate (physical address)
1514  *
1515  * Allocate @size bytes in the between @start and @end.
1516  *
1517  * Return: physical address of the allocated memory block on success,
1518  * %0 on failure.
1519  */
memblock_phys_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end)1520 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1521 					     phys_addr_t align,
1522 					     phys_addr_t start,
1523 					     phys_addr_t end)
1524 {
1525 	memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1526 		     __func__, (u64)size, (u64)align, &start, &end,
1527 		     (void *)_RET_IP_);
1528 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1529 					false);
1530 }
1531 
1532 /**
1533  * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1534  * @size: size of memory block to be allocated in bytes
1535  * @align: alignment of the region and block's size
1536  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1537  *
1538  * Allocates memory block from the specified NUMA node. If the node
1539  * has no available memory, attempts to allocated from any node in the
1540  * system.
1541  *
1542  * Return: physical address of the allocated memory block on success,
1543  * %0 on failure.
1544  */
memblock_phys_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1545 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1546 {
1547 	return memblock_alloc_range_nid(size, align, 0,
1548 					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1549 }
1550 
1551 /**
1552  * memblock_alloc_internal - allocate boot memory block
1553  * @size: size of memory block to be allocated in bytes
1554  * @align: alignment of the region and block's size
1555  * @min_addr: the lower bound of the memory region to allocate (phys address)
1556  * @max_addr: the upper bound of the memory region to allocate (phys address)
1557  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1558  * @exact_nid: control the allocation fall back to other nodes
1559  *
1560  * Allocates memory block using memblock_alloc_range_nid() and
1561  * converts the returned physical address to virtual.
1562  *
1563  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1564  * will fall back to memory below @min_addr. Other constraints, such
1565  * as node and mirrored memory will be handled again in
1566  * memblock_alloc_range_nid().
1567  *
1568  * Return:
1569  * Virtual address of allocated memory block on success, NULL on failure.
1570  */
memblock_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid,bool exact_nid)1571 static void * __init memblock_alloc_internal(
1572 				phys_addr_t size, phys_addr_t align,
1573 				phys_addr_t min_addr, phys_addr_t max_addr,
1574 				int nid, bool exact_nid)
1575 {
1576 	phys_addr_t alloc;
1577 
1578 
1579 	if (max_addr > memblock.current_limit)
1580 		max_addr = memblock.current_limit;
1581 
1582 	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1583 					exact_nid);
1584 
1585 	/* retry allocation without lower limit */
1586 	if (!alloc && min_addr)
1587 		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1588 						exact_nid);
1589 
1590 	if (!alloc)
1591 		return NULL;
1592 
1593 	return phys_to_virt(alloc);
1594 }
1595 
1596 /**
1597  * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1598  * without zeroing memory
1599  * @size: size of memory block to be allocated in bytes
1600  * @align: alignment of the region and block's size
1601  * @min_addr: the lower bound of the memory region from where the allocation
1602  *	  is preferred (phys address)
1603  * @max_addr: the upper bound of the memory region from where the allocation
1604  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1605  *	      allocate only from memory limited by memblock.current_limit value
1606  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1607  *
1608  * Public function, provides additional debug information (including caller
1609  * info), if enabled. Does not zero allocated memory.
1610  *
1611  * Return:
1612  * Virtual address of allocated memory block on success, NULL on failure.
1613  */
memblock_alloc_exact_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1614 void * __init memblock_alloc_exact_nid_raw(
1615 			phys_addr_t size, phys_addr_t align,
1616 			phys_addr_t min_addr, phys_addr_t max_addr,
1617 			int nid)
1618 {
1619 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1620 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1621 		     &max_addr, (void *)_RET_IP_);
1622 
1623 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1624 				       true);
1625 }
1626 
1627 /**
1628  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1629  * memory and without panicking
1630  * @size: size of memory block to be allocated in bytes
1631  * @align: alignment of the region and block's size
1632  * @min_addr: the lower bound of the memory region from where the allocation
1633  *	  is preferred (phys address)
1634  * @max_addr: the upper bound of the memory region from where the allocation
1635  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1636  *	      allocate only from memory limited by memblock.current_limit value
1637  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1638  *
1639  * Public function, provides additional debug information (including caller
1640  * info), if enabled. Does not zero allocated memory, does not panic if request
1641  * cannot be satisfied.
1642  *
1643  * Return:
1644  * Virtual address of allocated memory block on success, NULL on failure.
1645  */
memblock_alloc_try_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1646 void * __init memblock_alloc_try_nid_raw(
1647 			phys_addr_t size, phys_addr_t align,
1648 			phys_addr_t min_addr, phys_addr_t max_addr,
1649 			int nid)
1650 {
1651 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1652 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1653 		     &max_addr, (void *)_RET_IP_);
1654 
1655 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1656 				       false);
1657 }
1658 
1659 /**
1660  * memblock_alloc_try_nid - allocate boot memory block
1661  * @size: size of memory block to be allocated in bytes
1662  * @align: alignment of the region and block's size
1663  * @min_addr: the lower bound of the memory region from where the allocation
1664  *	  is preferred (phys address)
1665  * @max_addr: the upper bound of the memory region from where the allocation
1666  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1667  *	      allocate only from memory limited by memblock.current_limit value
1668  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1669  *
1670  * Public function, provides additional debug information (including caller
1671  * info), if enabled. This function zeroes the allocated memory.
1672  *
1673  * Return:
1674  * Virtual address of allocated memory block on success, NULL on failure.
1675  */
memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1676 void * __init memblock_alloc_try_nid(
1677 			phys_addr_t size, phys_addr_t align,
1678 			phys_addr_t min_addr, phys_addr_t max_addr,
1679 			int nid)
1680 {
1681 	void *ptr;
1682 
1683 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1684 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1685 		     &max_addr, (void *)_RET_IP_);
1686 	ptr = memblock_alloc_internal(size, align,
1687 					   min_addr, max_addr, nid, false);
1688 	if (ptr)
1689 		memset(ptr, 0, size);
1690 
1691 	return ptr;
1692 }
1693 
1694 /**
1695  * memblock_free_late - free pages directly to buddy allocator
1696  * @base: phys starting address of the  boot memory block
1697  * @size: size of the boot memory block in bytes
1698  *
1699  * This is only useful when the memblock allocator has already been torn
1700  * down, but we are still initializing the system.  Pages are released directly
1701  * to the buddy allocator.
1702  */
memblock_free_late(phys_addr_t base,phys_addr_t size)1703 void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1704 {
1705 	phys_addr_t cursor, end;
1706 
1707 	end = base + size - 1;
1708 	memblock_dbg("%s: [%pa-%pa] %pS\n",
1709 		     __func__, &base, &end, (void *)_RET_IP_);
1710 	kmemleak_free_part_phys(base, size);
1711 	cursor = PFN_UP(base);
1712 	end = PFN_DOWN(base + size);
1713 
1714 	for (; cursor < end; cursor++) {
1715 		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1716 		totalram_pages_inc();
1717 	}
1718 }
1719 
1720 /*
1721  * Remaining API functions
1722  */
1723 
memblock_phys_mem_size(void)1724 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1725 {
1726 	return memblock.memory.total_size;
1727 }
1728 
memblock_reserved_size(void)1729 phys_addr_t __init_memblock memblock_reserved_size(void)
1730 {
1731 	return memblock.reserved.total_size;
1732 }
1733 
1734 /**
1735  * memblock_estimated_nr_free_pages - return estimated number of free pages
1736  * from memblock point of view
1737  *
1738  * During bootup, subsystems might need a rough estimate of the number of free
1739  * pages in the whole system, before precise numbers are available from the
1740  * buddy. Especially with CONFIG_DEFERRED_STRUCT_PAGE_INIT, the numbers
1741  * obtained from the buddy might be very imprecise during bootup.
1742  *
1743  * Return:
1744  * An estimated number of free pages from memblock point of view.
1745  */
memblock_estimated_nr_free_pages(void)1746 unsigned long __init memblock_estimated_nr_free_pages(void)
1747 {
1748 	return PHYS_PFN(memblock_phys_mem_size() - memblock_reserved_size());
1749 }
1750 
1751 /* lowest address */
memblock_start_of_DRAM(void)1752 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1753 {
1754 	return memblock.memory.regions[0].base;
1755 }
1756 
memblock_end_of_DRAM(void)1757 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1758 {
1759 	int idx = memblock.memory.cnt - 1;
1760 
1761 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1762 }
1763 
__find_max_addr(phys_addr_t limit)1764 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1765 {
1766 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1767 	struct memblock_region *r;
1768 
1769 	/*
1770 	 * translate the memory @limit size into the max address within one of
1771 	 * the memory memblock regions, if the @limit exceeds the total size
1772 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1773 	 */
1774 	for_each_mem_region(r) {
1775 		if (limit <= r->size) {
1776 			max_addr = r->base + limit;
1777 			break;
1778 		}
1779 		limit -= r->size;
1780 	}
1781 
1782 	return max_addr;
1783 }
1784 
memblock_enforce_memory_limit(phys_addr_t limit)1785 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1786 {
1787 	phys_addr_t max_addr;
1788 
1789 	if (!limit)
1790 		return;
1791 
1792 	max_addr = __find_max_addr(limit);
1793 
1794 	/* @limit exceeds the total size of the memory, do nothing */
1795 	if (max_addr == PHYS_ADDR_MAX)
1796 		return;
1797 
1798 	/* truncate both memory and reserved regions */
1799 	memblock_remove_range(&memblock.memory, max_addr,
1800 			      PHYS_ADDR_MAX);
1801 	memblock_remove_range(&memblock.reserved, max_addr,
1802 			      PHYS_ADDR_MAX);
1803 }
1804 
memblock_cap_memory_range(phys_addr_t base,phys_addr_t size)1805 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1806 {
1807 	int start_rgn, end_rgn;
1808 	int i, ret;
1809 
1810 	if (!size)
1811 		return;
1812 
1813 	if (!memblock_memory->total_size) {
1814 		pr_warn("%s: No memory registered yet\n", __func__);
1815 		return;
1816 	}
1817 
1818 	ret = memblock_isolate_range(&memblock.memory, base, size,
1819 						&start_rgn, &end_rgn);
1820 	if (ret)
1821 		return;
1822 
1823 	/* remove all the MAP regions */
1824 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1825 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1826 			memblock_remove_region(&memblock.memory, i);
1827 
1828 	for (i = start_rgn - 1; i >= 0; i--)
1829 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1830 			memblock_remove_region(&memblock.memory, i);
1831 
1832 	/* truncate the reserved regions */
1833 	memblock_remove_range(&memblock.reserved, 0, base);
1834 	memblock_remove_range(&memblock.reserved,
1835 			base + size, PHYS_ADDR_MAX);
1836 }
1837 
memblock_mem_limit_remove_map(phys_addr_t limit)1838 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1839 {
1840 	phys_addr_t max_addr;
1841 
1842 	if (!limit)
1843 		return;
1844 
1845 	max_addr = __find_max_addr(limit);
1846 
1847 	/* @limit exceeds the total size of the memory, do nothing */
1848 	if (max_addr == PHYS_ADDR_MAX)
1849 		return;
1850 
1851 	memblock_cap_memory_range(0, max_addr);
1852 }
1853 
memblock_search(struct memblock_type * type,phys_addr_t addr)1854 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1855 {
1856 	unsigned int left = 0, right = type->cnt;
1857 
1858 	do {
1859 		unsigned int mid = (right + left) / 2;
1860 
1861 		if (addr < type->regions[mid].base)
1862 			right = mid;
1863 		else if (addr >= (type->regions[mid].base +
1864 				  type->regions[mid].size))
1865 			left = mid + 1;
1866 		else
1867 			return mid;
1868 	} while (left < right);
1869 	return -1;
1870 }
1871 
memblock_is_reserved(phys_addr_t addr)1872 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1873 {
1874 	return memblock_search(&memblock.reserved, addr) != -1;
1875 }
1876 
memblock_is_memory(phys_addr_t addr)1877 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1878 {
1879 	return memblock_search(&memblock.memory, addr) != -1;
1880 }
1881 
memblock_is_map_memory(phys_addr_t addr)1882 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1883 {
1884 	int i = memblock_search(&memblock.memory, addr);
1885 
1886 	if (i == -1)
1887 		return false;
1888 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1889 }
1890 
memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)1891 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1892 			 unsigned long *start_pfn, unsigned long *end_pfn)
1893 {
1894 	struct memblock_type *type = &memblock.memory;
1895 	int mid = memblock_search(type, PFN_PHYS(pfn));
1896 
1897 	if (mid == -1)
1898 		return NUMA_NO_NODE;
1899 
1900 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1901 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1902 
1903 	return memblock_get_region_node(&type->regions[mid]);
1904 }
1905 
1906 /**
1907  * memblock_is_region_memory - check if a region is a subset of memory
1908  * @base: base of region to check
1909  * @size: size of region to check
1910  *
1911  * Check if the region [@base, @base + @size) is a subset of a memory block.
1912  *
1913  * Return:
1914  * 0 if false, non-zero if true
1915  */
memblock_is_region_memory(phys_addr_t base,phys_addr_t size)1916 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1917 {
1918 	int idx = memblock_search(&memblock.memory, base);
1919 	phys_addr_t end = base + memblock_cap_size(base, &size);
1920 
1921 	if (idx == -1)
1922 		return false;
1923 	return (memblock.memory.regions[idx].base +
1924 		 memblock.memory.regions[idx].size) >= end;
1925 }
1926 
1927 /**
1928  * memblock_is_region_reserved - check if a region intersects reserved memory
1929  * @base: base of region to check
1930  * @size: size of region to check
1931  *
1932  * Check if the region [@base, @base + @size) intersects a reserved
1933  * memory block.
1934  *
1935  * Return:
1936  * True if they intersect, false if not.
1937  */
memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)1938 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1939 {
1940 	return memblock_overlaps_region(&memblock.reserved, base, size);
1941 }
1942 
memblock_trim_memory(phys_addr_t align)1943 void __init_memblock memblock_trim_memory(phys_addr_t align)
1944 {
1945 	phys_addr_t start, end, orig_start, orig_end;
1946 	struct memblock_region *r;
1947 
1948 	for_each_mem_region(r) {
1949 		orig_start = r->base;
1950 		orig_end = r->base + r->size;
1951 		start = round_up(orig_start, align);
1952 		end = round_down(orig_end, align);
1953 
1954 		if (start == orig_start && end == orig_end)
1955 			continue;
1956 
1957 		if (start < end) {
1958 			r->base = start;
1959 			r->size = end - start;
1960 		} else {
1961 			memblock_remove_region(&memblock.memory,
1962 					       r - memblock.memory.regions);
1963 			r--;
1964 		}
1965 	}
1966 }
1967 
memblock_set_current_limit(phys_addr_t limit)1968 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1969 {
1970 	memblock.current_limit = limit;
1971 }
1972 
memblock_get_current_limit(void)1973 phys_addr_t __init_memblock memblock_get_current_limit(void)
1974 {
1975 	return memblock.current_limit;
1976 }
1977 
memblock_dump(struct memblock_type * type)1978 static void __init_memblock memblock_dump(struct memblock_type *type)
1979 {
1980 	phys_addr_t base, end, size;
1981 	enum memblock_flags flags;
1982 	int idx;
1983 	struct memblock_region *rgn;
1984 
1985 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1986 
1987 	for_each_memblock_type(idx, type, rgn) {
1988 		char nid_buf[32] = "";
1989 
1990 		base = rgn->base;
1991 		size = rgn->size;
1992 		end = base + size - 1;
1993 		flags = rgn->flags;
1994 #ifdef CONFIG_NUMA
1995 		if (numa_valid_node(memblock_get_region_node(rgn)))
1996 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1997 				 memblock_get_region_node(rgn));
1998 #endif
1999 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
2000 			type->name, idx, &base, &end, &size, nid_buf, flags);
2001 	}
2002 }
2003 
__memblock_dump_all(void)2004 static void __init_memblock __memblock_dump_all(void)
2005 {
2006 	pr_info("MEMBLOCK configuration:\n");
2007 	pr_info(" memory size = %pa reserved size = %pa\n",
2008 		&memblock.memory.total_size,
2009 		&memblock.reserved.total_size);
2010 
2011 	memblock_dump(&memblock.memory);
2012 	memblock_dump(&memblock.reserved);
2013 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2014 	memblock_dump(&physmem);
2015 #endif
2016 }
2017 
memblock_dump_all(void)2018 void __init_memblock memblock_dump_all(void)
2019 {
2020 	if (memblock_debug)
2021 		__memblock_dump_all();
2022 }
2023 
memblock_allow_resize(void)2024 void __init memblock_allow_resize(void)
2025 {
2026 	memblock_can_resize = 1;
2027 }
2028 
early_memblock(char * p)2029 static int __init early_memblock(char *p)
2030 {
2031 	if (p && strstr(p, "debug"))
2032 		memblock_debug = 1;
2033 	return 0;
2034 }
2035 early_param("memblock", early_memblock);
2036 
free_memmap(unsigned long start_pfn,unsigned long end_pfn)2037 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
2038 {
2039 	struct page *start_pg, *end_pg;
2040 	phys_addr_t pg, pgend;
2041 
2042 	/*
2043 	 * Convert start_pfn/end_pfn to a struct page pointer.
2044 	 */
2045 	start_pg = pfn_to_page(start_pfn - 1) + 1;
2046 	end_pg = pfn_to_page(end_pfn - 1) + 1;
2047 
2048 	/*
2049 	 * Convert to physical addresses, and round start upwards and end
2050 	 * downwards.
2051 	 */
2052 	pg = PAGE_ALIGN(__pa(start_pg));
2053 	pgend = PAGE_ALIGN_DOWN(__pa(end_pg));
2054 
2055 	/*
2056 	 * If there are free pages between these, free the section of the
2057 	 * memmap array.
2058 	 */
2059 	if (pg < pgend)
2060 		memblock_phys_free(pg, pgend - pg);
2061 }
2062 
2063 /*
2064  * The mem_map array can get very big.  Free the unused area of the memory map.
2065  */
free_unused_memmap(void)2066 static void __init free_unused_memmap(void)
2067 {
2068 	unsigned long start, end, prev_end = 0;
2069 	int i;
2070 
2071 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2072 	    IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2073 		return;
2074 
2075 	/*
2076 	 * This relies on each bank being in address order.
2077 	 * The banks are sorted previously in bootmem_init().
2078 	 */
2079 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2080 #ifdef CONFIG_SPARSEMEM
2081 		/*
2082 		 * Take care not to free memmap entries that don't exist
2083 		 * due to SPARSEMEM sections which aren't present.
2084 		 */
2085 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2086 #endif
2087 		/*
2088 		 * Align down here since many operations in VM subsystem
2089 		 * presume that there are no holes in the memory map inside
2090 		 * a pageblock
2091 		 */
2092 		start = pageblock_start_pfn(start);
2093 
2094 		/*
2095 		 * If we had a previous bank, and there is a space
2096 		 * between the current bank and the previous, free it.
2097 		 */
2098 		if (prev_end && prev_end < start)
2099 			free_memmap(prev_end, start);
2100 
2101 		/*
2102 		 * Align up here since many operations in VM subsystem
2103 		 * presume that there are no holes in the memory map inside
2104 		 * a pageblock
2105 		 */
2106 		prev_end = pageblock_align(end);
2107 	}
2108 
2109 #ifdef CONFIG_SPARSEMEM
2110 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2111 		prev_end = pageblock_align(end);
2112 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2113 	}
2114 #endif
2115 }
2116 
__free_pages_memory(unsigned long start,unsigned long end)2117 static void __init __free_pages_memory(unsigned long start, unsigned long end)
2118 {
2119 	int order;
2120 
2121 	while (start < end) {
2122 		/*
2123 		 * Free the pages in the largest chunks alignment allows.
2124 		 *
2125 		 * __ffs() behaviour is undefined for 0. start == 0 is
2126 		 * MAX_PAGE_ORDER-aligned, set order to MAX_PAGE_ORDER for
2127 		 * the case.
2128 		 */
2129 		if (start)
2130 			order = min_t(int, MAX_PAGE_ORDER, __ffs(start));
2131 		else
2132 			order = MAX_PAGE_ORDER;
2133 
2134 		while (start + (1UL << order) > end)
2135 			order--;
2136 
2137 		memblock_free_pages(pfn_to_page(start), start, order);
2138 
2139 		start += (1UL << order);
2140 	}
2141 }
2142 
__free_memory_core(phys_addr_t start,phys_addr_t end)2143 static unsigned long __init __free_memory_core(phys_addr_t start,
2144 				 phys_addr_t end)
2145 {
2146 	unsigned long start_pfn = PFN_UP(start);
2147 	unsigned long end_pfn = min_t(unsigned long,
2148 				      PFN_DOWN(end), max_low_pfn);
2149 
2150 	if (start_pfn >= end_pfn)
2151 		return 0;
2152 
2153 	__free_pages_memory(start_pfn, end_pfn);
2154 
2155 	return end_pfn - start_pfn;
2156 }
2157 
memmap_init_reserved_pages(void)2158 static void __init memmap_init_reserved_pages(void)
2159 {
2160 	struct memblock_region *region;
2161 	phys_addr_t start, end;
2162 	int nid;
2163 
2164 	/*
2165 	 * set nid on all reserved pages and also treat struct
2166 	 * pages for the NOMAP regions as PageReserved
2167 	 */
2168 	for_each_mem_region(region) {
2169 		nid = memblock_get_region_node(region);
2170 		start = region->base;
2171 		end = start + region->size;
2172 
2173 		if (memblock_is_nomap(region))
2174 			reserve_bootmem_region(start, end, nid);
2175 
2176 		memblock_set_node(start, end, &memblock.reserved, nid);
2177 	}
2178 
2179 	/*
2180 	 * initialize struct pages for reserved regions that don't have
2181 	 * the MEMBLOCK_RSRV_NOINIT flag set
2182 	 */
2183 	for_each_reserved_mem_region(region) {
2184 		if (!memblock_is_reserved_noinit(region)) {
2185 			nid = memblock_get_region_node(region);
2186 			start = region->base;
2187 			end = start + region->size;
2188 
2189 			if (!numa_valid_node(nid))
2190 				nid = early_pfn_to_nid(PFN_DOWN(start));
2191 
2192 			reserve_bootmem_region(start, end, nid);
2193 		}
2194 	}
2195 }
2196 
free_low_memory_core_early(void)2197 static unsigned long __init free_low_memory_core_early(void)
2198 {
2199 	unsigned long count = 0;
2200 	phys_addr_t start, end;
2201 	u64 i;
2202 
2203 	memblock_clear_hotplug(0, -1);
2204 
2205 	memmap_init_reserved_pages();
2206 
2207 	/*
2208 	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2209 	 *  because in some case like Node0 doesn't have RAM installed
2210 	 *  low ram will be on Node1
2211 	 */
2212 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2213 				NULL)
2214 		count += __free_memory_core(start, end);
2215 
2216 	return count;
2217 }
2218 
2219 static int reset_managed_pages_done __initdata;
2220 
reset_node_managed_pages(pg_data_t * pgdat)2221 static void __init reset_node_managed_pages(pg_data_t *pgdat)
2222 {
2223 	struct zone *z;
2224 
2225 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2226 		atomic_long_set(&z->managed_pages, 0);
2227 }
2228 
reset_all_zones_managed_pages(void)2229 void __init reset_all_zones_managed_pages(void)
2230 {
2231 	struct pglist_data *pgdat;
2232 
2233 	if (reset_managed_pages_done)
2234 		return;
2235 
2236 	for_each_online_pgdat(pgdat)
2237 		reset_node_managed_pages(pgdat);
2238 
2239 	reset_managed_pages_done = 1;
2240 }
2241 
2242 /**
2243  * memblock_free_all - release free pages to the buddy allocator
2244  */
memblock_free_all(void)2245 void __init memblock_free_all(void)
2246 {
2247 	unsigned long pages;
2248 
2249 	free_unused_memmap();
2250 	reset_all_zones_managed_pages();
2251 
2252 	pages = free_low_memory_core_early();
2253 	totalram_pages_add(pages);
2254 }
2255 
2256 /* Keep a table to reserve named memory */
2257 #define RESERVE_MEM_MAX_ENTRIES		8
2258 #define RESERVE_MEM_NAME_SIZE		16
2259 struct reserve_mem_table {
2260 	char			name[RESERVE_MEM_NAME_SIZE];
2261 	phys_addr_t		start;
2262 	phys_addr_t		size;
2263 };
2264 static struct reserve_mem_table reserved_mem_table[RESERVE_MEM_MAX_ENTRIES];
2265 static int reserved_mem_count;
2266 
2267 /* Add wildcard region with a lookup name */
reserved_mem_add(phys_addr_t start,phys_addr_t size,const char * name)2268 static void __init reserved_mem_add(phys_addr_t start, phys_addr_t size,
2269 				   const char *name)
2270 {
2271 	struct reserve_mem_table *map;
2272 
2273 	map = &reserved_mem_table[reserved_mem_count++];
2274 	map->start = start;
2275 	map->size = size;
2276 	strscpy(map->name, name);
2277 }
2278 
2279 /**
2280  * reserve_mem_find_by_name - Find reserved memory region with a given name
2281  * @name: The name that is attached to a reserved memory region
2282  * @start: If found, holds the start address
2283  * @size: If found, holds the size of the address.
2284  *
2285  * @start and @size are only updated if @name is found.
2286  *
2287  * Returns: 1 if found or 0 if not found.
2288  */
reserve_mem_find_by_name(const char * name,phys_addr_t * start,phys_addr_t * size)2289 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size)
2290 {
2291 	struct reserve_mem_table *map;
2292 	int i;
2293 
2294 	for (i = 0; i < reserved_mem_count; i++) {
2295 		map = &reserved_mem_table[i];
2296 		if (!map->size)
2297 			continue;
2298 		if (strcmp(name, map->name) == 0) {
2299 			*start = map->start;
2300 			*size = map->size;
2301 			return 1;
2302 		}
2303 	}
2304 	return 0;
2305 }
2306 EXPORT_SYMBOL_GPL(reserve_mem_find_by_name);
2307 
2308 /*
2309  * Parse reserve_mem=nn:align:name
2310  */
reserve_mem(char * p)2311 static int __init reserve_mem(char *p)
2312 {
2313 	phys_addr_t start, size, align, tmp;
2314 	char *name;
2315 	char *oldp;
2316 	int len;
2317 
2318 	if (!p)
2319 		return -EINVAL;
2320 
2321 	/* Check if there's room for more reserved memory */
2322 	if (reserved_mem_count >= RESERVE_MEM_MAX_ENTRIES)
2323 		return -EBUSY;
2324 
2325 	oldp = p;
2326 	size = memparse(p, &p);
2327 	if (!size || p == oldp)
2328 		return -EINVAL;
2329 
2330 	if (*p != ':')
2331 		return -EINVAL;
2332 
2333 	align = memparse(p+1, &p);
2334 	if (*p != ':')
2335 		return -EINVAL;
2336 
2337 	/*
2338 	 * memblock_phys_alloc() doesn't like a zero size align,
2339 	 * but it is OK for this command to have it.
2340 	 */
2341 	if (align < SMP_CACHE_BYTES)
2342 		align = SMP_CACHE_BYTES;
2343 
2344 	name = p + 1;
2345 	len = strlen(name);
2346 
2347 	/* name needs to have length but not too big */
2348 	if (!len || len >= RESERVE_MEM_NAME_SIZE)
2349 		return -EINVAL;
2350 
2351 	/* Make sure that name has text */
2352 	for (p = name; *p; p++) {
2353 		if (!isspace(*p))
2354 			break;
2355 	}
2356 	if (!*p)
2357 		return -EINVAL;
2358 
2359 	/* Make sure the name is not already used */
2360 	if (reserve_mem_find_by_name(name, &start, &tmp))
2361 		return -EBUSY;
2362 
2363 	start = memblock_phys_alloc(size, align);
2364 	if (!start)
2365 		return -ENOMEM;
2366 
2367 	reserved_mem_add(start, size, name);
2368 
2369 	return 1;
2370 }
2371 __setup("reserve_mem=", reserve_mem);
2372 
2373 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2374 static const char * const flagname[] = {
2375 	[ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2376 	[ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2377 	[ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2378 	[ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2379 	[ilog2(MEMBLOCK_RSRV_NOINIT)] = "RSV_NIT",
2380 };
2381 
memblock_debug_show(struct seq_file * m,void * private)2382 static int memblock_debug_show(struct seq_file *m, void *private)
2383 {
2384 	struct memblock_type *type = m->private;
2385 	struct memblock_region *reg;
2386 	int i, j, nid;
2387 	unsigned int count = ARRAY_SIZE(flagname);
2388 	phys_addr_t end;
2389 
2390 	for (i = 0; i < type->cnt; i++) {
2391 		reg = &type->regions[i];
2392 		end = reg->base + reg->size - 1;
2393 		nid = memblock_get_region_node(reg);
2394 
2395 		seq_printf(m, "%4d: ", i);
2396 		seq_printf(m, "%pa..%pa ", &reg->base, &end);
2397 		if (numa_valid_node(nid))
2398 			seq_printf(m, "%4d ", nid);
2399 		else
2400 			seq_printf(m, "%4c ", 'x');
2401 		if (reg->flags) {
2402 			for (j = 0; j < count; j++) {
2403 				if (reg->flags & (1U << j)) {
2404 					seq_printf(m, "%s\n", flagname[j]);
2405 					break;
2406 				}
2407 			}
2408 			if (j == count)
2409 				seq_printf(m, "%s\n", "UNKNOWN");
2410 		} else {
2411 			seq_printf(m, "%s\n", "NONE");
2412 		}
2413 	}
2414 	return 0;
2415 }
2416 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2417 
memblock_init_debugfs(void)2418 static int __init memblock_init_debugfs(void)
2419 {
2420 	struct dentry *root = debugfs_create_dir("memblock", NULL);
2421 
2422 	debugfs_create_file("memory", 0444, root,
2423 			    &memblock.memory, &memblock_debug_fops);
2424 	debugfs_create_file("reserved", 0444, root,
2425 			    &memblock.reserved, &memblock_debug_fops);
2426 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2427 	debugfs_create_file("physmem", 0444, root, &physmem,
2428 			    &memblock_debug_fops);
2429 #endif
2430 
2431 	return 0;
2432 }
2433 __initcall(memblock_init_debugfs);
2434 
2435 #endif /* CONFIG_DEBUG_FS */
2436