xref: /minix/common/lib/libc/gen/rb.c (revision ebfedea0)
1 /*	$NetBSD: rb.c,v 1.11 2011/06/20 09:11:16 mrg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Matt Thomas <matt@3am-software.com>.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #if !defined(_KERNEL) && !defined(_STANDALONE)
33 #include <sys/types.h>
34 #include <stddef.h>
35 #include <assert.h>
36 #include <stdbool.h>
37 #ifdef RBDEBUG
38 #define	KASSERT(s)	assert(s)
39 #else
40 #define KASSERT(s)	do { } while (/*CONSTCOND*/ 0)
41 #endif
42 __RCSID("$NetBSD: rb.c,v 1.11 2011/06/20 09:11:16 mrg Exp $");
43 #else
44 #include <lib/libkern/libkern.h>
45 __KERNEL_RCSID(0, "$NetBSD: rb.c,v 1.11 2011/06/20 09:11:16 mrg Exp $");
46 #endif
47 
48 #ifdef _LIBC
49 __weak_alias(rb_tree_init, _rb_tree_init)
50 __weak_alias(rb_tree_find_node, _rb_tree_find_node)
51 __weak_alias(rb_tree_find_node_geq, _rb_tree_find_node_geq)
52 __weak_alias(rb_tree_find_node_leq, _rb_tree_find_node_leq)
53 __weak_alias(rb_tree_insert_node, _rb_tree_insert_node)
54 __weak_alias(rb_tree_remove_node, _rb_tree_remove_node)
55 __weak_alias(rb_tree_iterate, _rb_tree_iterate)
56 #ifdef RBDEBUG
57 __weak_alias(rb_tree_check, _rb_tree_check)
58 __weak_alias(rb_tree_depths, _rb_tree_depths)
59 #endif
60 
61 #include "namespace.h"
62 #endif
63 
64 #ifdef RBTEST
65 #include "rbtree.h"
66 #else
67 #include <sys/rbtree.h>
68 #endif
69 
70 static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *);
71 static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *,
72 	unsigned int);
73 #ifdef RBDEBUG
74 static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *,
75 	const struct rb_node *, const unsigned int);
76 static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *,
77 	const struct rb_node *, bool);
78 #else
79 #define	rb_tree_check_node(a, b, c, d)	true
80 #endif
81 
82 #define	RB_NODETOITEM(rbto, rbn)	\
83     ((void *)((uintptr_t)(rbn) - (rbto)->rbto_node_offset))
84 #define	RB_ITEMTONODE(rbto, rbn)	\
85     ((rb_node_t *)((uintptr_t)(rbn) + (rbto)->rbto_node_offset))
86 
87 #define	RB_SENTINEL_NODE	NULL
88 
89 void
90 rb_tree_init(struct rb_tree *rbt, const rb_tree_ops_t *ops)
91 {
92 
93 	rbt->rbt_ops = ops;
94 	rbt->rbt_root = RB_SENTINEL_NODE;
95 	RB_TAILQ_INIT(&rbt->rbt_nodes);
96 #ifndef RBSMALL
97 	rbt->rbt_minmax[RB_DIR_LEFT] = rbt->rbt_root;	/* minimum node */
98 	rbt->rbt_minmax[RB_DIR_RIGHT] = rbt->rbt_root;	/* maximum node */
99 #endif
100 #ifdef RBSTATS
101 	rbt->rbt_count = 0;
102 	rbt->rbt_insertions = 0;
103 	rbt->rbt_removals = 0;
104 	rbt->rbt_insertion_rebalance_calls = 0;
105 	rbt->rbt_insertion_rebalance_passes = 0;
106 	rbt->rbt_removal_rebalance_calls = 0;
107 	rbt->rbt_removal_rebalance_passes = 0;
108 #endif
109 }
110 
111 void *
112 rb_tree_find_node(struct rb_tree *rbt, const void *key)
113 {
114 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
115 	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
116 	struct rb_node *parent = rbt->rbt_root;
117 
118 	while (!RB_SENTINEL_P(parent)) {
119 		void *pobj = RB_NODETOITEM(rbto, parent);
120 		const signed int diff = (*compare_key)(rbto->rbto_context,
121 		    pobj, key);
122 		if (diff == 0)
123 			return pobj;
124 		parent = parent->rb_nodes[diff < 0];
125 	}
126 
127 	return NULL;
128 }
129 
130 void *
131 rb_tree_find_node_geq(struct rb_tree *rbt, const void *key)
132 {
133 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
134 	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
135 	struct rb_node *parent = rbt->rbt_root, *last = NULL;
136 
137 	while (!RB_SENTINEL_P(parent)) {
138 		void *pobj = RB_NODETOITEM(rbto, parent);
139 		const signed int diff = (*compare_key)(rbto->rbto_context,
140 		    pobj, key);
141 		if (diff == 0)
142 			return pobj;
143 		if (diff > 0)
144 			last = parent;
145 		parent = parent->rb_nodes[diff < 0];
146 	}
147 
148 	return RB_NODETOITEM(rbto, last);
149 }
150 
151 void *
152 rb_tree_find_node_leq(struct rb_tree *rbt, const void *key)
153 {
154 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
155 	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
156 	struct rb_node *parent = rbt->rbt_root, *last = NULL;
157 
158 	while (!RB_SENTINEL_P(parent)) {
159 		void *pobj = RB_NODETOITEM(rbto, parent);
160 		const signed int diff = (*compare_key)(rbto->rbto_context,
161 		    pobj, key);
162 		if (diff == 0)
163 			return pobj;
164 		if (diff < 0)
165 			last = parent;
166 		parent = parent->rb_nodes[diff < 0];
167 	}
168 
169 	return RB_NODETOITEM(rbto, last);
170 }
171 
172 void *
173 rb_tree_insert_node(struct rb_tree *rbt, void *object)
174 {
175 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
176 	rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
177 	struct rb_node *parent, *tmp, *self = RB_ITEMTONODE(rbto, object);
178 	unsigned int position;
179 	bool rebalance;
180 
181 	RBSTAT_INC(rbt->rbt_insertions);
182 
183 	tmp = rbt->rbt_root;
184 	/*
185 	 * This is a hack.  Because rbt->rbt_root is just a struct rb_node *,
186 	 * just like rb_node->rb_nodes[RB_DIR_LEFT], we can use this fact to
187 	 * avoid a lot of tests for root and know that even at root,
188 	 * updating RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
189 	 * update rbt->rbt_root.
190 	 */
191 	parent = (struct rb_node *)(void *)&rbt->rbt_root;
192 	position = RB_DIR_LEFT;
193 
194 	/*
195 	 * Find out where to place this new leaf.
196 	 */
197 	while (!RB_SENTINEL_P(tmp)) {
198 		void *tobj = RB_NODETOITEM(rbto, tmp);
199 		const signed int diff = (*compare_nodes)(rbto->rbto_context,
200 		    tobj, object);
201 		if (__predict_false(diff == 0)) {
202 			/*
203 			 * Node already exists; return it.
204 			 */
205 			return tobj;
206 		}
207 		parent = tmp;
208 		position = (diff < 0);
209 		tmp = parent->rb_nodes[position];
210 	}
211 
212 #ifdef RBDEBUG
213 	{
214 		struct rb_node *prev = NULL, *next = NULL;
215 
216 		if (position == RB_DIR_RIGHT)
217 			prev = parent;
218 		else if (tmp != rbt->rbt_root)
219 			next = parent;
220 
221 		/*
222 		 * Verify our sequential position
223 		 */
224 		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
225 		KASSERT(next == NULL || !RB_SENTINEL_P(next));
226 		if (prev != NULL && next == NULL)
227 			next = TAILQ_NEXT(prev, rb_link);
228 		if (prev == NULL && next != NULL)
229 			prev = TAILQ_PREV(next, rb_node_qh, rb_link);
230 		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
231 		KASSERT(next == NULL || !RB_SENTINEL_P(next));
232 		KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
233 		    RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
234 		KASSERT(next == NULL || (*compare_nodes)(rbto->rbto_context,
235 		    RB_NODETOITEM(rbto, self), RB_NODETOITEM(rbto, next)) < 0);
236 	}
237 #endif
238 
239 	/*
240 	 * Initialize the node and insert as a leaf into the tree.
241 	 */
242 	RB_SET_FATHER(self, parent);
243 	RB_SET_POSITION(self, position);
244 	if (__predict_false(parent == (struct rb_node *)(void *)&rbt->rbt_root)) {
245 		RB_MARK_BLACK(self);		/* root is always black */
246 #ifndef RBSMALL
247 		rbt->rbt_minmax[RB_DIR_LEFT] = self;
248 		rbt->rbt_minmax[RB_DIR_RIGHT] = self;
249 #endif
250 		rebalance = false;
251 	} else {
252 		KASSERT(position == RB_DIR_LEFT || position == RB_DIR_RIGHT);
253 #ifndef RBSMALL
254 		/*
255 		 * Keep track of the minimum and maximum nodes.  If our
256 		 * parent is a minmax node and we on their min/max side,
257 		 * we must be the new min/max node.
258 		 */
259 		if (parent == rbt->rbt_minmax[position])
260 			rbt->rbt_minmax[position] = self;
261 #endif /* !RBSMALL */
262 		/*
263 		 * All new nodes are colored red.  We only need to rebalance
264 		 * if our parent is also red.
265 		 */
266 		RB_MARK_RED(self);
267 		rebalance = RB_RED_P(parent);
268 	}
269 	KASSERT(RB_SENTINEL_P(parent->rb_nodes[position]));
270 	self->rb_left = parent->rb_nodes[position];
271 	self->rb_right = parent->rb_nodes[position];
272 	parent->rb_nodes[position] = self;
273 	KASSERT(RB_CHILDLESS_P(self));
274 
275 	/*
276 	 * Insert the new node into a sorted list for easy sequential access
277 	 */
278 	RBSTAT_INC(rbt->rbt_count);
279 #ifdef RBDEBUG
280 	if (RB_ROOT_P(rbt, self)) {
281 		RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link);
282 	} else if (position == RB_DIR_LEFT) {
283 		KASSERT((*compare_nodes)(rbto->rbto_context,
284 		    RB_NODETOITEM(rbto, self),
285 		    RB_NODETOITEM(rbto, RB_FATHER(self))) < 0);
286 		RB_TAILQ_INSERT_BEFORE(RB_FATHER(self), self, rb_link);
287 	} else {
288 		KASSERT((*compare_nodes)(rbto->rbto_context,
289 		    RB_NODETOITEM(rbto, RB_FATHER(self)),
290 		    RB_NODETOITEM(rbto, self)) < 0);
291 		RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, RB_FATHER(self),
292 		    self, rb_link);
293 	}
294 #endif
295 	KASSERT(rb_tree_check_node(rbt, self, NULL, !rebalance));
296 
297 	/*
298 	 * Rebalance tree after insertion
299 	 */
300 	if (rebalance) {
301 		rb_tree_insert_rebalance(rbt, self);
302 		KASSERT(rb_tree_check_node(rbt, self, NULL, true));
303 	}
304 
305 	/* Succesfully inserted, return our node pointer. */
306 	return object;
307 }
308 
309 /*
310  * Swap the location and colors of 'self' and its child @ which.  The child
311  * can not be a sentinel node.  This is our rotation function.  However,
312  * since it preserves coloring, it great simplifies both insertion and
313  * removal since rotation almost always involves the exchanging of colors
314  * as a separate step.
315  */
316 /*ARGSUSED*/
317 static void
318 rb_tree_reparent_nodes(struct rb_tree *rbt, struct rb_node *old_father,
319 	const unsigned int which)
320 {
321 	const unsigned int other = which ^ RB_DIR_OTHER;
322 	struct rb_node * const grandpa = RB_FATHER(old_father);
323 	struct rb_node * const old_child = old_father->rb_nodes[which];
324 	struct rb_node * const new_father = old_child;
325 	struct rb_node * const new_child = old_father;
326 
327 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
328 
329 	KASSERT(!RB_SENTINEL_P(old_child));
330 	KASSERT(RB_FATHER(old_child) == old_father);
331 
332 	KASSERT(rb_tree_check_node(rbt, old_father, NULL, false));
333 	KASSERT(rb_tree_check_node(rbt, old_child, NULL, false));
334 	KASSERT(RB_ROOT_P(rbt, old_father) ||
335 	    rb_tree_check_node(rbt, grandpa, NULL, false));
336 
337 	/*
338 	 * Exchange descendant linkages.
339 	 */
340 	grandpa->rb_nodes[RB_POSITION(old_father)] = new_father;
341 	new_child->rb_nodes[which] = old_child->rb_nodes[other];
342 	new_father->rb_nodes[other] = new_child;
343 
344 	/*
345 	 * Update ancestor linkages
346 	 */
347 	RB_SET_FATHER(new_father, grandpa);
348 	RB_SET_FATHER(new_child, new_father);
349 
350 	/*
351 	 * Exchange properties between new_father and new_child.  The only
352 	 * change is that new_child's position is now on the other side.
353 	 */
354 #if 0
355 	{
356 		struct rb_node tmp;
357 		tmp.rb_info = 0;
358 		RB_COPY_PROPERTIES(&tmp, old_child);
359 		RB_COPY_PROPERTIES(new_father, old_father);
360 		RB_COPY_PROPERTIES(new_child, &tmp);
361 	}
362 #else
363 	RB_SWAP_PROPERTIES(new_father, new_child);
364 #endif
365 	RB_SET_POSITION(new_child, other);
366 
367 	/*
368 	 * Make sure to reparent the new child to ourself.
369 	 */
370 	if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
371 		RB_SET_FATHER(new_child->rb_nodes[which], new_child);
372 		RB_SET_POSITION(new_child->rb_nodes[which], which);
373 	}
374 
375 	KASSERT(rb_tree_check_node(rbt, new_father, NULL, false));
376 	KASSERT(rb_tree_check_node(rbt, new_child, NULL, false));
377 	KASSERT(RB_ROOT_P(rbt, new_father) ||
378 	    rb_tree_check_node(rbt, grandpa, NULL, false));
379 }
380 
381 static void
382 rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self)
383 {
384 	struct rb_node * father = RB_FATHER(self);
385 	struct rb_node * grandpa = RB_FATHER(father);
386 	struct rb_node * uncle;
387 	unsigned int which;
388 	unsigned int other;
389 
390 	KASSERT(!RB_ROOT_P(rbt, self));
391 	KASSERT(RB_RED_P(self));
392 	KASSERT(RB_RED_P(father));
393 	RBSTAT_INC(rbt->rbt_insertion_rebalance_calls);
394 
395 	for (;;) {
396 		KASSERT(!RB_SENTINEL_P(self));
397 
398 		KASSERT(RB_RED_P(self));
399 		KASSERT(RB_RED_P(father));
400 		/*
401 		 * We are red and our parent is red, therefore we must have a
402 		 * grandfather and he must be black.
403 		 */
404 		grandpa = RB_FATHER(father);
405 		KASSERT(RB_BLACK_P(grandpa));
406 		KASSERT(RB_DIR_RIGHT == 1 && RB_DIR_LEFT == 0);
407 		which = (father == grandpa->rb_right);
408 		other = which ^ RB_DIR_OTHER;
409 		uncle = grandpa->rb_nodes[other];
410 
411 		if (RB_BLACK_P(uncle))
412 			break;
413 
414 		RBSTAT_INC(rbt->rbt_insertion_rebalance_passes);
415 		/*
416 		 * Case 1: our uncle is red
417 		 *   Simply invert the colors of our parent and
418 		 *   uncle and make our grandparent red.  And
419 		 *   then solve the problem up at his level.
420 		 */
421 		RB_MARK_BLACK(uncle);
422 		RB_MARK_BLACK(father);
423 		if (__predict_false(RB_ROOT_P(rbt, grandpa))) {
424 			/*
425 			 * If our grandpa is root, don't bother
426 			 * setting him to red, just return.
427 			 */
428 			KASSERT(RB_BLACK_P(grandpa));
429 			return;
430 		}
431 		RB_MARK_RED(grandpa);
432 		self = grandpa;
433 		father = RB_FATHER(self);
434 		KASSERT(RB_RED_P(self));
435 		if (RB_BLACK_P(father)) {
436 			/*
437 			 * If our greatgrandpa is black, we're done.
438 			 */
439 			KASSERT(RB_BLACK_P(rbt->rbt_root));
440 			return;
441 		}
442 	}
443 
444 	KASSERT(!RB_ROOT_P(rbt, self));
445 	KASSERT(RB_RED_P(self));
446 	KASSERT(RB_RED_P(father));
447 	KASSERT(RB_BLACK_P(uncle));
448 	KASSERT(RB_BLACK_P(grandpa));
449 	/*
450 	 * Case 2&3: our uncle is black.
451 	 */
452 	if (self == father->rb_nodes[other]) {
453 		/*
454 		 * Case 2: we are on the same side as our uncle
455 		 *   Swap ourselves with our parent so this case
456 		 *   becomes case 3.  Basically our parent becomes our
457 		 *   child.
458 		 */
459 		rb_tree_reparent_nodes(rbt, father, other);
460 		KASSERT(RB_FATHER(father) == self);
461 		KASSERT(self->rb_nodes[which] == father);
462 		KASSERT(RB_FATHER(self) == grandpa);
463 		self = father;
464 		father = RB_FATHER(self);
465 	}
466 	KASSERT(RB_RED_P(self) && RB_RED_P(father));
467 	KASSERT(grandpa->rb_nodes[which] == father);
468 	/*
469 	 * Case 3: we are opposite a child of a black uncle.
470 	 *   Swap our parent and grandparent.  Since our grandfather
471 	 *   is black, our father will become black and our new sibling
472 	 *   (former grandparent) will become red.
473 	 */
474 	rb_tree_reparent_nodes(rbt, grandpa, which);
475 	KASSERT(RB_FATHER(self) == father);
476 	KASSERT(RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER] == grandpa);
477 	KASSERT(RB_RED_P(self));
478 	KASSERT(RB_BLACK_P(father));
479 	KASSERT(RB_RED_P(grandpa));
480 
481 	/*
482 	 * Final step: Set the root to black.
483 	 */
484 	RB_MARK_BLACK(rbt->rbt_root);
485 }
486 
487 static void
488 rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, bool rebalance)
489 {
490 	const unsigned int which = RB_POSITION(self);
491 	struct rb_node *father = RB_FATHER(self);
492 #ifndef RBSMALL
493 	const bool was_root = RB_ROOT_P(rbt, self);
494 #endif
495 
496 	KASSERT(rebalance || (RB_ROOT_P(rbt, self) || RB_RED_P(self)));
497 	KASSERT(!rebalance || RB_BLACK_P(self));
498 	KASSERT(RB_CHILDLESS_P(self));
499 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
500 
501 	/*
502 	 * Since we are childless, we know that self->rb_left is pointing
503 	 * to the sentinel node.
504 	 */
505 	father->rb_nodes[which] = self->rb_left;
506 
507 	/*
508 	 * Remove ourselves from the node list, decrement the count,
509 	 * and update min/max.
510 	 */
511 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
512 	RBSTAT_DEC(rbt->rbt_count);
513 #ifndef RBSMALL
514 	if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) {
515 		rbt->rbt_minmax[RB_POSITION(self)] = father;
516 		/*
517 		 * When removing the root, rbt->rbt_minmax[RB_DIR_LEFT] is
518 		 * updated automatically, but we also need to update
519 		 * rbt->rbt_minmax[RB_DIR_RIGHT];
520 		 */
521 		if (__predict_false(was_root)) {
522 			rbt->rbt_minmax[RB_DIR_RIGHT] = father;
523 		}
524 	}
525 	RB_SET_FATHER(self, NULL);
526 #endif
527 
528 	/*
529 	 * Rebalance if requested.
530 	 */
531 	if (rebalance)
532 		rb_tree_removal_rebalance(rbt, father, which);
533 	KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
534 }
535 
536 /*
537  * When deleting an interior node
538  */
539 static void
540 rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self,
541 	struct rb_node *standin)
542 {
543 	const unsigned int standin_which = RB_POSITION(standin);
544 	unsigned int standin_other = standin_which ^ RB_DIR_OTHER;
545 	struct rb_node *standin_son;
546 	struct rb_node *standin_father = RB_FATHER(standin);
547 	bool rebalance = RB_BLACK_P(standin);
548 
549 	if (standin_father == self) {
550 		/*
551 		 * As a child of self, any childen would be opposite of
552 		 * our parent.
553 		 */
554 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
555 		standin_son = standin->rb_nodes[standin_which];
556 	} else {
557 		/*
558 		 * Since we aren't a child of self, any childen would be
559 		 * on the same side as our parent.
560 		 */
561 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which]));
562 		standin_son = standin->rb_nodes[standin_other];
563 	}
564 
565 	/*
566 	 * the node we are removing must have two children.
567 	 */
568 	KASSERT(RB_TWOCHILDREN_P(self));
569 	/*
570 	 * If standin has a child, it must be red.
571 	 */
572 	KASSERT(RB_SENTINEL_P(standin_son) || RB_RED_P(standin_son));
573 
574 	/*
575 	 * Verify things are sane.
576 	 */
577 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
578 	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
579 
580 	if (__predict_false(RB_RED_P(standin_son))) {
581 		/*
582 		 * We know we have a red child so if we flip it to black
583 		 * we don't have to rebalance.
584 		 */
585 		KASSERT(rb_tree_check_node(rbt, standin_son, NULL, true));
586 		RB_MARK_BLACK(standin_son);
587 		rebalance = false;
588 
589 		if (standin_father == self) {
590 			KASSERT(RB_POSITION(standin_son) == standin_which);
591 		} else {
592 			KASSERT(RB_POSITION(standin_son) == standin_other);
593 			/*
594 			 * Change the son's parentage to point to his grandpa.
595 			 */
596 			RB_SET_FATHER(standin_son, standin_father);
597 			RB_SET_POSITION(standin_son, standin_which);
598 		}
599 	}
600 
601 	if (standin_father == self) {
602 		/*
603 		 * If we are about to delete the standin's father, then when
604 		 * we call rebalance, we need to use ourselves as our father.
605 		 * Otherwise remember our original father.  Also, sincef we are
606 		 * our standin's father we only need to reparent the standin's
607 		 * brother.
608 		 *
609 		 * |    R      -->     S    |
610 		 * |  Q   S    -->   Q   T  |
611 		 * |        t  -->          |
612 		 */
613 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
614 		KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other]));
615 		KASSERT(self->rb_nodes[standin_which] == standin);
616 		/*
617 		 * Have our son/standin adopt his brother as his new son.
618 		 */
619 		standin_father = standin;
620 	} else {
621 		/*
622 		 * |    R          -->    S       .  |
623 		 * |   / \  |   T  -->   / \  |  /   |
624 		 * |  ..... | S    -->  ..... | T    |
625 		 *
626 		 * Sever standin's connection to his father.
627 		 */
628 		standin_father->rb_nodes[standin_which] = standin_son;
629 		/*
630 		 * Adopt the far son.
631 		 */
632 		standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
633 		RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
634 		KASSERT(RB_POSITION(self->rb_nodes[standin_other]) == standin_other);
635 		/*
636 		 * Use standin_other because we need to preserve standin_which
637 		 * for the removal_rebalance.
638 		 */
639 		standin_other = standin_which;
640 	}
641 
642 	/*
643 	 * Move the only remaining son to our standin.  If our standin is our
644 	 * son, this will be the only son needed to be moved.
645 	 */
646 	KASSERT(standin->rb_nodes[standin_other] != self->rb_nodes[standin_other]);
647 	standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
648 	RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
649 
650 	/*
651 	 * Now copy the result of self to standin and then replace
652 	 * self with standin in the tree.
653 	 */
654 	RB_COPY_PROPERTIES(standin, self);
655 	RB_SET_FATHER(standin, RB_FATHER(self));
656 	RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin;
657 
658 	/*
659 	 * Remove ourselves from the node list, decrement the count,
660 	 * and update min/max.
661 	 */
662 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
663 	RBSTAT_DEC(rbt->rbt_count);
664 #ifndef RBSMALL
665 	if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self))
666 		rbt->rbt_minmax[RB_POSITION(self)] = RB_FATHER(self);
667 	RB_SET_FATHER(self, NULL);
668 #endif
669 
670 	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
671 	KASSERT(RB_FATHER_SENTINEL_P(standin)
672 		|| rb_tree_check_node(rbt, standin_father, NULL, false));
673 	KASSERT(RB_LEFT_SENTINEL_P(standin)
674 		|| rb_tree_check_node(rbt, standin->rb_left, NULL, false));
675 	KASSERT(RB_RIGHT_SENTINEL_P(standin)
676 		|| rb_tree_check_node(rbt, standin->rb_right, NULL, false));
677 
678 	if (!rebalance)
679 		return;
680 
681 	rb_tree_removal_rebalance(rbt, standin_father, standin_which);
682 	KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
683 }
684 
685 /*
686  * We could do this by doing
687  *	rb_tree_node_swap(rbt, self, which);
688  *	rb_tree_prune_node(rbt, self, false);
689  *
690  * But it's more efficient to just evalate and recolor the child.
691  */
692 static void
693 rb_tree_prune_blackred_branch(struct rb_tree *rbt, struct rb_node *self,
694 	unsigned int which)
695 {
696 	struct rb_node *father = RB_FATHER(self);
697 	struct rb_node *son = self->rb_nodes[which];
698 #ifndef RBSMALL
699 	const bool was_root = RB_ROOT_P(rbt, self);
700 #endif
701 
702 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
703 	KASSERT(RB_BLACK_P(self) && RB_RED_P(son));
704 	KASSERT(!RB_TWOCHILDREN_P(son));
705 	KASSERT(RB_CHILDLESS_P(son));
706 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
707 	KASSERT(rb_tree_check_node(rbt, son, NULL, false));
708 
709 	/*
710 	 * Remove ourselves from the tree and give our former child our
711 	 * properties (position, color, root).
712 	 */
713 	RB_COPY_PROPERTIES(son, self);
714 	father->rb_nodes[RB_POSITION(son)] = son;
715 	RB_SET_FATHER(son, father);
716 
717 	/*
718 	 * Remove ourselves from the node list, decrement the count,
719 	 * and update minmax.
720 	 */
721 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
722 	RBSTAT_DEC(rbt->rbt_count);
723 #ifndef RBSMALL
724 	if (__predict_false(was_root)) {
725 		KASSERT(rbt->rbt_minmax[which] == son);
726 		rbt->rbt_minmax[which ^ RB_DIR_OTHER] = son;
727 	} else if (rbt->rbt_minmax[RB_POSITION(self)] == self) {
728 		rbt->rbt_minmax[RB_POSITION(self)] = son;
729 	}
730 	RB_SET_FATHER(self, NULL);
731 #endif
732 
733 	KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
734 	KASSERT(rb_tree_check_node(rbt, son, NULL, true));
735 }
736 
737 void
738 rb_tree_remove_node(struct rb_tree *rbt, void *object)
739 {
740 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
741 	struct rb_node *standin, *self = RB_ITEMTONODE(rbto, object);
742 	unsigned int which;
743 
744 	KASSERT(!RB_SENTINEL_P(self));
745 	RBSTAT_INC(rbt->rbt_removals);
746 
747 	/*
748 	 * In the following diagrams, we (the node to be removed) are S.  Red
749 	 * nodes are lowercase.  T could be either red or black.
750 	 *
751 	 * Remember the major axiom of the red-black tree: the number of
752 	 * black nodes from the root to each leaf is constant across all
753 	 * leaves, only the number of red nodes varies.
754 	 *
755 	 * Thus removing a red leaf doesn't require any other changes to a
756 	 * red-black tree.  So if we must remove a node, attempt to rearrange
757 	 * the tree so we can remove a red node.
758 	 *
759 	 * The simpliest case is a childless red node or a childless root node:
760 	 *
761 	 * |    T  -->    T  |    or    |  R  -->  *  |
762 	 * |  s    -->  *    |
763 	 */
764 	if (RB_CHILDLESS_P(self)) {
765 		const bool rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self);
766 		rb_tree_prune_node(rbt, self, rebalance);
767 		return;
768 	}
769 	KASSERT(!RB_CHILDLESS_P(self));
770 	if (!RB_TWOCHILDREN_P(self)) {
771 		/*
772 		 * The next simpliest case is the node we are deleting is
773 		 * black and has one red child.
774 		 *
775 		 * |      T  -->      T  -->      T  |
776 		 * |    S    -->  R      -->  R      |
777 		 * |  r      -->    s    -->    *    |
778 		 */
779 		which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT;
780 		KASSERT(RB_BLACK_P(self));
781 		KASSERT(RB_RED_P(self->rb_nodes[which]));
782 		KASSERT(RB_CHILDLESS_P(self->rb_nodes[which]));
783 		rb_tree_prune_blackred_branch(rbt, self, which);
784 		return;
785 	}
786 	KASSERT(RB_TWOCHILDREN_P(self));
787 
788 	/*
789 	 * We invert these because we prefer to remove from the inside of
790 	 * the tree.
791 	 */
792 	which = RB_POSITION(self) ^ RB_DIR_OTHER;
793 
794 	/*
795 	 * Let's find the node closes to us opposite of our parent
796 	 * Now swap it with ourself, "prune" it, and rebalance, if needed.
797 	 */
798 	standin = RB_ITEMTONODE(rbto, rb_tree_iterate(rbt, object, which));
799 	rb_tree_swap_prune_and_rebalance(rbt, self, standin);
800 }
801 
802 static void
803 rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent,
804 	unsigned int which)
805 {
806 	KASSERT(!RB_SENTINEL_P(parent));
807 	KASSERT(RB_SENTINEL_P(parent->rb_nodes[which]));
808 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
809 	RBSTAT_INC(rbt->rbt_removal_rebalance_calls);
810 
811 	while (RB_BLACK_P(parent->rb_nodes[which])) {
812 		unsigned int other = which ^ RB_DIR_OTHER;
813 		struct rb_node *brother = parent->rb_nodes[other];
814 
815 		RBSTAT_INC(rbt->rbt_removal_rebalance_passes);
816 
817 		KASSERT(!RB_SENTINEL_P(brother));
818 		/*
819 		 * For cases 1, 2a, and 2b, our brother's children must
820 		 * be black and our father must be black
821 		 */
822 		if (RB_BLACK_P(parent)
823 		    && RB_BLACK_P(brother->rb_left)
824 		    && RB_BLACK_P(brother->rb_right)) {
825 			if (RB_RED_P(brother)) {
826 				/*
827 				 * Case 1: Our brother is red, swap its
828 				 * position (and colors) with our parent.
829 				 * This should now be case 2b (unless C or E
830 				 * has a red child which is case 3; thus no
831 				 * explicit branch to case 2b).
832 				 *
833 				 *    B         ->        D
834 				 *  A     d     ->    b     E
835 				 *      C   E   ->  A   C
836 				 */
837 				KASSERT(RB_BLACK_P(parent));
838 				rb_tree_reparent_nodes(rbt, parent, other);
839 				brother = parent->rb_nodes[other];
840 				KASSERT(!RB_SENTINEL_P(brother));
841 				KASSERT(RB_RED_P(parent));
842 				KASSERT(RB_BLACK_P(brother));
843 				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
844 				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
845 			} else {
846 				/*
847 				 * Both our parent and brother are black.
848 				 * Change our brother to red, advance up rank
849 				 * and go through the loop again.
850 				 *
851 				 *    B         ->   *B
852 				 * *A     D     ->  A     d
853 				 *      C   E   ->      C   E
854 				 */
855 				RB_MARK_RED(brother);
856 				KASSERT(RB_BLACK_P(brother->rb_left));
857 				KASSERT(RB_BLACK_P(brother->rb_right));
858 				if (RB_ROOT_P(rbt, parent))
859 					return;	/* root == parent == black */
860 				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
861 				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
862 				which = RB_POSITION(parent);
863 				parent = RB_FATHER(parent);
864 				continue;
865 			}
866 		}
867 		/*
868 		 * Avoid an else here so that case 2a above can hit either
869 		 * case 2b, 3, or 4.
870 		 */
871 		if (RB_RED_P(parent)
872 		    && RB_BLACK_P(brother)
873 		    && RB_BLACK_P(brother->rb_left)
874 		    && RB_BLACK_P(brother->rb_right)) {
875 			KASSERT(RB_RED_P(parent));
876 			KASSERT(RB_BLACK_P(brother));
877 			KASSERT(RB_BLACK_P(brother->rb_left));
878 			KASSERT(RB_BLACK_P(brother->rb_right));
879 			/*
880 			 * We are black, our father is red, our brother and
881 			 * both nephews are black.  Simply invert/exchange the
882 			 * colors of our father and brother (to black and red
883 			 * respectively).
884 			 *
885 			 *	|    f        -->    F        |
886 			 *	|  *     B    -->  *     b    |
887 			 *	|      N   N  -->      N   N  |
888 			 */
889 			RB_MARK_BLACK(parent);
890 			RB_MARK_RED(brother);
891 			KASSERT(rb_tree_check_node(rbt, brother, NULL, true));
892 			break;		/* We're done! */
893 		} else {
894 			/*
895 			 * Our brother must be black and have at least one
896 			 * red child (it may have two).
897 			 */
898 			KASSERT(RB_BLACK_P(brother));
899 			KASSERT(RB_RED_P(brother->rb_nodes[which]) ||
900 				RB_RED_P(brother->rb_nodes[other]));
901 			if (RB_BLACK_P(brother->rb_nodes[other])) {
902 				/*
903 				 * Case 3: our brother is black, our near
904 				 * nephew is red, and our far nephew is black.
905 				 * Swap our brother with our near nephew.
906 				 * This result in a tree that matches case 4.
907 				 * (Our father could be red or black).
908 				 *
909 				 *	|    F      -->    F      |
910 				 *	|  x     B  -->  x   B    |
911 				 *	|      n    -->        n  |
912 				 */
913 				KASSERT(RB_RED_P(brother->rb_nodes[which]));
914 				rb_tree_reparent_nodes(rbt, brother, which);
915 				KASSERT(RB_FATHER(brother) == parent->rb_nodes[other]);
916 				brother = parent->rb_nodes[other];
917 				KASSERT(RB_RED_P(brother->rb_nodes[other]));
918 			}
919 			/*
920 			 * Case 4: our brother is black and our far nephew
921 			 * is red.  Swap our father and brother locations and
922 			 * change our far nephew to black.  (these can be
923 			 * done in either order so we change the color first).
924 			 * The result is a valid red-black tree and is a
925 			 * terminal case.  (again we don't care about the
926 			 * father's color)
927 			 *
928 			 * If the father is red, we will get a red-black-black
929 			 * tree:
930 			 *	|  f      ->  f      -->    b    |
931 			 *	|    B    ->    B    -->  F   N  |
932 			 *	|      n  ->      N  -->         |
933 			 *
934 			 * If the father is black, we will get an all black
935 			 * tree:
936 			 *	|  F      ->  F      -->    B    |
937 			 *	|    B    ->    B    -->  F   N  |
938 			 *	|      n  ->      N  -->         |
939 			 *
940 			 * If we had two red nephews, then after the swap,
941 			 * our former father would have a red grandson.
942 			 */
943 			KASSERT(RB_BLACK_P(brother));
944 			KASSERT(RB_RED_P(brother->rb_nodes[other]));
945 			RB_MARK_BLACK(brother->rb_nodes[other]);
946 			rb_tree_reparent_nodes(rbt, parent, other);
947 			break;		/* We're done! */
948 		}
949 	}
950 	KASSERT(rb_tree_check_node(rbt, parent, NULL, true));
951 }
952 
953 void *
954 rb_tree_iterate(struct rb_tree *rbt, void *object, const unsigned int direction)
955 {
956 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
957 	const unsigned int other = direction ^ RB_DIR_OTHER;
958 	struct rb_node *self;
959 
960 	KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
961 
962 	if (object == NULL) {
963 #ifndef RBSMALL
964 		if (RB_SENTINEL_P(rbt->rbt_root))
965 			return NULL;
966 		return RB_NODETOITEM(rbto, rbt->rbt_minmax[direction]);
967 #else
968 		self = rbt->rbt_root;
969 		if (RB_SENTINEL_P(self))
970 			return NULL;
971 		while (!RB_SENTINEL_P(self->rb_nodes[direction]))
972 			self = self->rb_nodes[direction];
973 		return RB_NODETOITEM(rbto, self);
974 #endif /* !RBSMALL */
975 	}
976 	self = RB_ITEMTONODE(rbto, object);
977 	KASSERT(!RB_SENTINEL_P(self));
978 	/*
979 	 * We can't go any further in this direction.  We proceed up in the
980 	 * opposite direction until our parent is in direction we want to go.
981 	 */
982 	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
983 		while (!RB_ROOT_P(rbt, self)) {
984 			if (other == RB_POSITION(self))
985 				return RB_NODETOITEM(rbto, RB_FATHER(self));
986 			self = RB_FATHER(self);
987 		}
988 		return NULL;
989 	}
990 
991 	/*
992 	 * Advance down one in current direction and go down as far as possible
993 	 * in the opposite direction.
994 	 */
995 	self = self->rb_nodes[direction];
996 	KASSERT(!RB_SENTINEL_P(self));
997 	while (!RB_SENTINEL_P(self->rb_nodes[other]))
998 		self = self->rb_nodes[other];
999 	return RB_NODETOITEM(rbto, self);
1000 }
1001 
1002 #ifdef RBDEBUG
1003 static const struct rb_node *
1004 rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self,
1005 	const unsigned int direction)
1006 {
1007 	const unsigned int other = direction ^ RB_DIR_OTHER;
1008 	KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
1009 
1010 	if (self == NULL) {
1011 #ifndef RBSMALL
1012 		if (RB_SENTINEL_P(rbt->rbt_root))
1013 			return NULL;
1014 		return rbt->rbt_minmax[direction];
1015 #else
1016 		self = rbt->rbt_root;
1017 		if (RB_SENTINEL_P(self))
1018 			return NULL;
1019 		while (!RB_SENTINEL_P(self->rb_nodes[direction]))
1020 			self = self->rb_nodes[direction];
1021 		return self;
1022 #endif /* !RBSMALL */
1023 	}
1024 	KASSERT(!RB_SENTINEL_P(self));
1025 	/*
1026 	 * We can't go any further in this direction.  We proceed up in the
1027 	 * opposite direction until our parent is in direction we want to go.
1028 	 */
1029 	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
1030 		while (!RB_ROOT_P(rbt, self)) {
1031 			if (other == RB_POSITION(self))
1032 				return RB_FATHER(self);
1033 			self = RB_FATHER(self);
1034 		}
1035 		return NULL;
1036 	}
1037 
1038 	/*
1039 	 * Advance down one in current direction and go down as far as possible
1040 	 * in the opposite direction.
1041 	 */
1042 	self = self->rb_nodes[direction];
1043 	KASSERT(!RB_SENTINEL_P(self));
1044 	while (!RB_SENTINEL_P(self->rb_nodes[other]))
1045 		self = self->rb_nodes[other];
1046 	return self;
1047 }
1048 
1049 static unsigned int
1050 rb_tree_count_black(const struct rb_node *self)
1051 {
1052 	unsigned int left, right;
1053 
1054 	if (RB_SENTINEL_P(self))
1055 		return 0;
1056 
1057 	left = rb_tree_count_black(self->rb_left);
1058 	right = rb_tree_count_black(self->rb_right);
1059 
1060 	KASSERT(left == right);
1061 
1062 	return left + RB_BLACK_P(self);
1063 }
1064 
1065 static bool
1066 rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self,
1067 	const struct rb_node *prev, bool red_check)
1068 {
1069 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
1070 	rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
1071 
1072 	KASSERT(!RB_SENTINEL_P(self));
1073 	KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
1074 	    RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
1075 
1076 	/*
1077 	 * Verify our relationship to our parent.
1078 	 */
1079 	if (RB_ROOT_P(rbt, self)) {
1080 		KASSERT(self == rbt->rbt_root);
1081 		KASSERT(RB_POSITION(self) == RB_DIR_LEFT);
1082 		KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
1083 		KASSERT(RB_FATHER(self) == (const struct rb_node *) &rbt->rbt_root);
1084 	} else {
1085 		int diff = (*compare_nodes)(rbto->rbto_context,
1086 		    RB_NODETOITEM(rbto, self),
1087 		    RB_NODETOITEM(rbto, RB_FATHER(self)));
1088 
1089 		KASSERT(self != rbt->rbt_root);
1090 		KASSERT(!RB_FATHER_SENTINEL_P(self));
1091 		if (RB_POSITION(self) == RB_DIR_LEFT) {
1092 			KASSERT(diff < 0);
1093 			KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
1094 		} else {
1095 			KASSERT(diff > 0);
1096 			KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_RIGHT] == self);
1097 		}
1098 	}
1099 
1100 	/*
1101 	 * Verify our position in the linked list against the tree itself.
1102 	 */
1103 	{
1104 		const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
1105 		const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
1106 		KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link));
1107 		KASSERT(next0 == TAILQ_NEXT(self, rb_link));
1108 #ifndef RBSMALL
1109 		KASSERT(prev0 != NULL || self == rbt->rbt_minmax[RB_DIR_LEFT]);
1110 		KASSERT(next0 != NULL || self == rbt->rbt_minmax[RB_DIR_RIGHT]);
1111 #endif
1112 	}
1113 
1114 	/*
1115 	 * The root must be black.
1116 	 * There can never be two adjacent red nodes.
1117 	 */
1118 	if (red_check) {
1119 		KASSERT(!RB_ROOT_P(rbt, self) || RB_BLACK_P(self));
1120 		(void) rb_tree_count_black(self);
1121 		if (RB_RED_P(self)) {
1122 			const struct rb_node *brother;
1123 			KASSERT(!RB_ROOT_P(rbt, self));
1124 			brother = RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER];
1125 			KASSERT(RB_BLACK_P(RB_FATHER(self)));
1126 			/*
1127 			 * I'm red and have no children, then I must either
1128 			 * have no brother or my brother also be red and
1129 			 * also have no children.  (black count == 0)
1130 			 */
1131 			KASSERT(!RB_CHILDLESS_P(self)
1132 				|| RB_SENTINEL_P(brother)
1133 				|| RB_RED_P(brother)
1134 				|| RB_CHILDLESS_P(brother));
1135 			/*
1136 			 * If I'm not childless, I must have two children
1137 			 * and they must be both be black.
1138 			 */
1139 			KASSERT(RB_CHILDLESS_P(self)
1140 				|| (RB_TWOCHILDREN_P(self)
1141 				    && RB_BLACK_P(self->rb_left)
1142 				    && RB_BLACK_P(self->rb_right)));
1143 			/*
1144 			 * If I'm not childless, thus I have black children,
1145 			 * then my brother must either be black or have two
1146 			 * black children.
1147 			 */
1148 			KASSERT(RB_CHILDLESS_P(self)
1149 				|| RB_BLACK_P(brother)
1150 				|| (RB_TWOCHILDREN_P(brother)
1151 				    && RB_BLACK_P(brother->rb_left)
1152 				    && RB_BLACK_P(brother->rb_right)));
1153 		} else {
1154 			/*
1155 			 * If I'm black and have one child, that child must
1156 			 * be red and childless.
1157 			 */
1158 			KASSERT(RB_CHILDLESS_P(self)
1159 				|| RB_TWOCHILDREN_P(self)
1160 				|| (!RB_LEFT_SENTINEL_P(self)
1161 				    && RB_RIGHT_SENTINEL_P(self)
1162 				    && RB_RED_P(self->rb_left)
1163 				    && RB_CHILDLESS_P(self->rb_left))
1164 				|| (!RB_RIGHT_SENTINEL_P(self)
1165 				    && RB_LEFT_SENTINEL_P(self)
1166 				    && RB_RED_P(self->rb_right)
1167 				    && RB_CHILDLESS_P(self->rb_right)));
1168 
1169 			/*
1170 			 * If I'm a childless black node and my parent is
1171 			 * black, my 2nd closet relative away from my parent
1172 			 * is either red or has a red parent or red children.
1173 			 */
1174 			if (!RB_ROOT_P(rbt, self)
1175 			    && RB_CHILDLESS_P(self)
1176 			    && RB_BLACK_P(RB_FATHER(self))) {
1177 				const unsigned int which = RB_POSITION(self);
1178 				const unsigned int other = which ^ RB_DIR_OTHER;
1179 				const struct rb_node *relative0, *relative;
1180 
1181 				relative0 = rb_tree_iterate_const(rbt,
1182 				    self, other);
1183 				KASSERT(relative0 != NULL);
1184 				relative = rb_tree_iterate_const(rbt,
1185 				    relative0, other);
1186 				KASSERT(relative != NULL);
1187 				KASSERT(RB_SENTINEL_P(relative->rb_nodes[which]));
1188 #if 0
1189 				KASSERT(RB_RED_P(relative)
1190 					|| RB_RED_P(relative->rb_left)
1191 					|| RB_RED_P(relative->rb_right)
1192 					|| RB_RED_P(RB_FATHER(relative)));
1193 #endif
1194 			}
1195 		}
1196 		/*
1197 		 * A grandparent's children must be real nodes and not
1198 		 * sentinels.  First check out grandparent.
1199 		 */
1200 		KASSERT(RB_ROOT_P(rbt, self)
1201 			|| RB_ROOT_P(rbt, RB_FATHER(self))
1202 			|| RB_TWOCHILDREN_P(RB_FATHER(RB_FATHER(self))));
1203 		/*
1204 		 * If we are have grandchildren on our left, then
1205 		 * we must have a child on our right.
1206 		 */
1207 		KASSERT(RB_LEFT_SENTINEL_P(self)
1208 			|| RB_CHILDLESS_P(self->rb_left)
1209 			|| !RB_RIGHT_SENTINEL_P(self));
1210 		/*
1211 		 * If we are have grandchildren on our right, then
1212 		 * we must have a child on our left.
1213 		 */
1214 		KASSERT(RB_RIGHT_SENTINEL_P(self)
1215 			|| RB_CHILDLESS_P(self->rb_right)
1216 			|| !RB_LEFT_SENTINEL_P(self));
1217 
1218 		/*
1219 		 * If we have a child on the left and it doesn't have two
1220 		 * children make sure we don't have great-great-grandchildren on
1221 		 * the right.
1222 		 */
1223 		KASSERT(RB_TWOCHILDREN_P(self->rb_left)
1224 			|| RB_CHILDLESS_P(self->rb_right)
1225 			|| RB_CHILDLESS_P(self->rb_right->rb_left)
1226 			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_left)
1227 			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_right)
1228 			|| RB_CHILDLESS_P(self->rb_right->rb_right)
1229 			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_left)
1230 			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_right));
1231 
1232 		/*
1233 		 * If we have a child on the right and it doesn't have two
1234 		 * children make sure we don't have great-great-grandchildren on
1235 		 * the left.
1236 		 */
1237 		KASSERT(RB_TWOCHILDREN_P(self->rb_right)
1238 			|| RB_CHILDLESS_P(self->rb_left)
1239 			|| RB_CHILDLESS_P(self->rb_left->rb_left)
1240 			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_left)
1241 			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_right)
1242 			|| RB_CHILDLESS_P(self->rb_left->rb_right)
1243 			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_left)
1244 			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_right));
1245 
1246 		/*
1247 		 * If we are fully interior node, then our predecessors and
1248 		 * successors must have no children in our direction.
1249 		 */
1250 		if (RB_TWOCHILDREN_P(self)) {
1251 			const struct rb_node *prev0;
1252 			const struct rb_node *next0;
1253 
1254 			prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
1255 			KASSERT(prev0 != NULL);
1256 			KASSERT(RB_RIGHT_SENTINEL_P(prev0));
1257 
1258 			next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
1259 			KASSERT(next0 != NULL);
1260 			KASSERT(RB_LEFT_SENTINEL_P(next0));
1261 		}
1262 	}
1263 
1264 	return true;
1265 }
1266 
1267 void
1268 rb_tree_check(const struct rb_tree *rbt, bool red_check)
1269 {
1270 	const struct rb_node *self;
1271 	const struct rb_node *prev;
1272 #ifdef RBSTATS
1273 	unsigned int count = 0;
1274 #endif
1275 
1276 	KASSERT(rbt->rbt_root != NULL);
1277 	KASSERT(RB_LEFT_P(rbt->rbt_root));
1278 
1279 #if defined(RBSTATS) && !defined(RBSMALL)
1280 	KASSERT(rbt->rbt_count > 1
1281 	    || rbt->rbt_minmax[RB_DIR_LEFT] == rbt->rbt_minmax[RB_DIR_RIGHT]);
1282 #endif
1283 
1284 	prev = NULL;
1285 	TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
1286 		rb_tree_check_node(rbt, self, prev, false);
1287 #ifdef RBSTATS
1288 		count++;
1289 #endif
1290 	}
1291 #ifdef RBSTATS
1292 	KASSERT(rbt->rbt_count == count);
1293 #endif
1294 	if (red_check) {
1295 		KASSERT(RB_BLACK_P(rbt->rbt_root));
1296 		KASSERT(RB_SENTINEL_P(rbt->rbt_root)
1297 			|| rb_tree_count_black(rbt->rbt_root));
1298 
1299 		/*
1300 		 * The root must be black.
1301 		 * There can never be two adjacent red nodes.
1302 		 */
1303 		TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
1304 			rb_tree_check_node(rbt, self, NULL, true);
1305 		}
1306 	}
1307 }
1308 #endif /* RBDEBUG */
1309 
1310 #ifdef RBSTATS
1311 static void
1312 rb_tree_mark_depth(const struct rb_tree *rbt, const struct rb_node *self,
1313 	size_t *depths, size_t depth)
1314 {
1315 	if (RB_SENTINEL_P(self))
1316 		return;
1317 
1318 	if (RB_TWOCHILDREN_P(self)) {
1319 		rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
1320 		rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
1321 		return;
1322 	}
1323 	depths[depth]++;
1324 	if (!RB_LEFT_SENTINEL_P(self)) {
1325 		rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
1326 	}
1327 	if (!RB_RIGHT_SENTINEL_P(self)) {
1328 		rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
1329 	}
1330 }
1331 
1332 void
1333 rb_tree_depths(const struct rb_tree *rbt, size_t *depths)
1334 {
1335 	rb_tree_mark_depth(rbt, rbt->rbt_root, depths, 1);
1336 }
1337 #endif /* RBSTATS */
1338