1 /* crypto/ec/ecp_nistp224.c */
2 /*
3  * Written by Emilia Kasper (Google) for the OpenSSL project.
4  */
5 /* Copyright 2011 Google Inc.
6  *
7  * Licensed under the Apache License, Version 2.0 (the "License");
8  *
9  * you may not use this file except in compliance with the License.
10  * You may obtain a copy of the License at
11  *
12  *     http://www.apache.org/licenses/LICENSE-2.0
13  *
14  *  Unless required by applicable law or agreed to in writing, software
15  *  distributed under the License is distributed on an "AS IS" BASIS,
16  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17  *  See the License for the specific language governing permissions and
18  *  limitations under the License.
19  */
20 
21 /*
22  * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
23  *
24  * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
25  * and Adam Langley's public domain 64-bit C implementation of curve25519
26  */
27 
28 #include <openssl/opensslconf.h>
29 #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128
30 
31 #ifndef OPENSSL_SYS_VMS
32 #include <stdint.h>
33 #else
34 #include <inttypes.h>
35 #endif
36 
37 #include <string.h>
38 #include <openssl/err.h>
39 #include "ec_lcl.h"
40 
41 #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))
42   /* even with gcc, the typedef won't work for 32-bit platforms */
43   typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */
44 #else
45   #error "Need GCC 3.1 or later to define type uint128_t"
46 #endif
47 
48 typedef uint8_t u8;
49 typedef uint64_t u64;
50 typedef int64_t s64;
51 
52 
53 /******************************************************************************/
54 /*		    INTERNAL REPRESENTATION OF FIELD ELEMENTS
55  *
56  * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
57  * using 64-bit coefficients called 'limbs',
58  * and sometimes (for multiplication results) as
59  * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
60  * using 128-bit coefficients called 'widelimbs'.
61  * A 4-limb representation is an 'felem';
62  * a 7-widelimb representation is a 'widefelem'.
63  * Even within felems, bits of adjacent limbs overlap, and we don't always
64  * reduce the representations: we ensure that inputs to each felem
65  * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
66  * and fit into a 128-bit word without overflow. The coefficients are then
67  * again partially reduced to obtain an felem satisfying a_i < 2^57.
68  * We only reduce to the unique minimal representation at the end of the
69  * computation.
70  */
71 
72 typedef uint64_t limb;
73 typedef uint128_t widelimb;
74 
75 typedef limb felem[4];
76 typedef widelimb widefelem[7];
77 
78 /* Field element represented as a byte arrary.
79  * 28*8 = 224 bits is also the group order size for the elliptic curve,
80  * and we also use this type for scalars for point multiplication.
81   */
82 typedef u8 felem_bytearray[28];
83 
84 static const felem_bytearray nistp224_curve_params[5] = {
85 	{0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,    /* p */
86 	 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x00,
87 	 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01},
88 	{0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,    /* a */
89 	 0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFF,0xFF,
90 	 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE},
91 	{0xB4,0x05,0x0A,0x85,0x0C,0x04,0xB3,0xAB,0xF5,0x41,    /* b */
92 	 0x32,0x56,0x50,0x44,0xB0,0xB7,0xD7,0xBF,0xD8,0xBA,
93 	 0x27,0x0B,0x39,0x43,0x23,0x55,0xFF,0xB4},
94 	{0xB7,0x0E,0x0C,0xBD,0x6B,0xB4,0xBF,0x7F,0x32,0x13,    /* x */
95 	 0x90,0xB9,0x4A,0x03,0xC1,0xD3,0x56,0xC2,0x11,0x22,
96 	 0x34,0x32,0x80,0xD6,0x11,0x5C,0x1D,0x21},
97 	{0xbd,0x37,0x63,0x88,0xb5,0xf7,0x23,0xfb,0x4c,0x22,    /* y */
98 	 0xdf,0xe6,0xcd,0x43,0x75,0xa0,0x5a,0x07,0x47,0x64,
99 	 0x44,0xd5,0x81,0x99,0x85,0x00,0x7e,0x34}
100 };
101 
102 /* Precomputed multiples of the standard generator
103  * Points are given in coordinates (X, Y, Z) where Z normally is 1
104  * (0 for the point at infinity).
105  * For each field element, slice a_0 is word 0, etc.
106  *
107  * The table has 2 * 16 elements, starting with the following:
108  * index | bits    | point
109  * ------+---------+------------------------------
110  *     0 | 0 0 0 0 | 0G
111  *     1 | 0 0 0 1 | 1G
112  *     2 | 0 0 1 0 | 2^56G
113  *     3 | 0 0 1 1 | (2^56 + 1)G
114  *     4 | 0 1 0 0 | 2^112G
115  *     5 | 0 1 0 1 | (2^112 + 1)G
116  *     6 | 0 1 1 0 | (2^112 + 2^56)G
117  *     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
118  *     8 | 1 0 0 0 | 2^168G
119  *     9 | 1 0 0 1 | (2^168 + 1)G
120  *    10 | 1 0 1 0 | (2^168 + 2^56)G
121  *    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
122  *    12 | 1 1 0 0 | (2^168 + 2^112)G
123  *    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
124  *    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
125  *    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
126  * followed by a copy of this with each element multiplied by 2^28.
127  *
128  * The reason for this is so that we can clock bits into four different
129  * locations when doing simple scalar multiplies against the base point,
130  * and then another four locations using the second 16 elements.
131  */
132 static const felem gmul[2][16][3] =
133 {{{{0, 0, 0, 0},
134    {0, 0, 0, 0},
135    {0, 0, 0, 0}},
136   {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
137    {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
138    {1, 0, 0, 0}},
139   {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
140    {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
141    {1, 0, 0, 0}},
142   {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
143    {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
144    {1, 0, 0, 0}},
145   {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
146    {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
147    {1, 0, 0, 0}},
148   {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
149    {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
150    {1, 0, 0, 0}},
151   {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
152    {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
153    {1, 0, 0, 0}},
154   {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
155    {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
156    {1, 0, 0, 0}},
157   {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
158    {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
159    {1, 0, 0, 0}},
160   {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
161    {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
162    {1, 0, 0, 0}},
163   {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
164    {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
165    {1, 0, 0, 0}},
166   {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
167    {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
168    {1, 0, 0, 0}},
169   {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
170    {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
171    {1, 0, 0, 0}},
172   {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
173    {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
174    {1, 0, 0, 0}},
175   {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
176    {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
177    {1, 0, 0, 0}},
178   {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
179    {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
180    {1, 0, 0, 0}}},
181  {{{0, 0, 0, 0},
182    {0, 0, 0, 0},
183    {0, 0, 0, 0}},
184   {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
185    {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
186    {1, 0, 0, 0}},
187   {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
188    {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
189    {1, 0, 0, 0}},
190   {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
191    {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
192    {1, 0, 0, 0}},
193   {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
194    {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
195    {1, 0, 0, 0}},
196   {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
197    {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
198    {1, 0, 0, 0}},
199   {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
200    {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
201    {1, 0, 0, 0}},
202   {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
203    {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
204    {1, 0, 0, 0}},
205   {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
206    {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
207    {1, 0, 0, 0}},
208   {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
209    {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
210    {1, 0, 0, 0}},
211   {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
212    {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
213    {1, 0, 0, 0}},
214   {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
215    {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
216    {1, 0, 0, 0}},
217   {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
218    {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
219    {1, 0, 0, 0}},
220   {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
221    {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
222    {1, 0, 0, 0}},
223   {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
224    {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
225    {1, 0, 0, 0}},
226   {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
227    {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
228    {1, 0, 0, 0}}}};
229 
230 /* Precomputation for the group generator. */
231 typedef struct {
232 	felem g_pre_comp[2][16][3];
233 	int references;
234 } NISTP224_PRE_COMP;
235 
236 const EC_METHOD *EC_GFp_nistp224_method(void)
237 	{
238 	static const EC_METHOD ret = {
239 		EC_FLAGS_DEFAULT_OCT,
240 		NID_X9_62_prime_field,
241 		ec_GFp_nistp224_group_init,
242 		ec_GFp_simple_group_finish,
243 		ec_GFp_simple_group_clear_finish,
244 		ec_GFp_nist_group_copy,
245 		ec_GFp_nistp224_group_set_curve,
246 		ec_GFp_simple_group_get_curve,
247 		ec_GFp_simple_group_get_degree,
248 		ec_GFp_simple_group_check_discriminant,
249 		ec_GFp_simple_point_init,
250 		ec_GFp_simple_point_finish,
251 		ec_GFp_simple_point_clear_finish,
252 		ec_GFp_simple_point_copy,
253 		ec_GFp_simple_point_set_to_infinity,
254 		ec_GFp_simple_set_Jprojective_coordinates_GFp,
255 		ec_GFp_simple_get_Jprojective_coordinates_GFp,
256 		ec_GFp_simple_point_set_affine_coordinates,
257 		ec_GFp_nistp224_point_get_affine_coordinates,
258 		0 /* point_set_compressed_coordinates */,
259 		0 /* point2oct */,
260 		0 /* oct2point */,
261 		ec_GFp_simple_add,
262 		ec_GFp_simple_dbl,
263 		ec_GFp_simple_invert,
264 		ec_GFp_simple_is_at_infinity,
265 		ec_GFp_simple_is_on_curve,
266 		ec_GFp_simple_cmp,
267 		ec_GFp_simple_make_affine,
268 		ec_GFp_simple_points_make_affine,
269 		ec_GFp_nistp224_points_mul,
270 		ec_GFp_nistp224_precompute_mult,
271 		ec_GFp_nistp224_have_precompute_mult,
272 		ec_GFp_nist_field_mul,
273 		ec_GFp_nist_field_sqr,
274 		0 /* field_div */,
275 		0 /* field_encode */,
276 		0 /* field_decode */,
277 		0 /* field_set_to_one */ };
278 
279 	return &ret;
280 	}
281 
282 /* Helper functions to convert field elements to/from internal representation */
283 static void bin28_to_felem(felem out, const u8 in[28])
284 	{
285 	out[0] = *((const uint64_t *)(in)) & 0x00ffffffffffffff;
286 	out[1] = (*((const uint64_t *)(in+7))) & 0x00ffffffffffffff;
287 	out[2] = (*((const uint64_t *)(in+14))) & 0x00ffffffffffffff;
288 	out[3] = (*((const uint64_t *)(in+21))) & 0x00ffffffffffffff;
289 	}
290 
291 static void felem_to_bin28(u8 out[28], const felem in)
292 	{
293 	unsigned i;
294 	for (i = 0; i < 7; ++i)
295 		{
296 		out[i]	  = in[0]>>(8*i);
297 		out[i+7]  = in[1]>>(8*i);
298 		out[i+14] = in[2]>>(8*i);
299 		out[i+21] = in[3]>>(8*i);
300 		}
301 	}
302 
303 /* To preserve endianness when using BN_bn2bin and BN_bin2bn */
304 static void flip_endian(u8 *out, const u8 *in, unsigned len)
305 	{
306 	unsigned i;
307 	for (i = 0; i < len; ++i)
308 		out[i] = in[len-1-i];
309 	}
310 
311 /* From OpenSSL BIGNUM to internal representation */
312 static int BN_to_felem(felem out, const BIGNUM *bn)
313 	{
314 	felem_bytearray b_in;
315 	felem_bytearray b_out;
316 	unsigned num_bytes;
317 
318 	/* BN_bn2bin eats leading zeroes */
319 	memset(b_out, 0, sizeof b_out);
320 	num_bytes = BN_num_bytes(bn);
321 	if (num_bytes > sizeof b_out)
322 		{
323 		ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
324 		return 0;
325 		}
326 	if (BN_is_negative(bn))
327 		{
328 		ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
329 		return 0;
330 		}
331 	num_bytes = BN_bn2bin(bn, b_in);
332 	flip_endian(b_out, b_in, num_bytes);
333 	bin28_to_felem(out, b_out);
334 	return 1;
335 	}
336 
337 /* From internal representation to OpenSSL BIGNUM */
338 static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
339 	{
340 	felem_bytearray b_in, b_out;
341 	felem_to_bin28(b_in, in);
342 	flip_endian(b_out, b_in, sizeof b_out);
343 	return BN_bin2bn(b_out, sizeof b_out, out);
344 	}
345 
346 /******************************************************************************/
347 /*				FIELD OPERATIONS
348  *
349  * Field operations, using the internal representation of field elements.
350  * NB! These operations are specific to our point multiplication and cannot be
351  * expected to be correct in general - e.g., multiplication with a large scalar
352  * will cause an overflow.
353  *
354  */
355 
356 static void felem_one(felem out)
357 	{
358 	out[0] = 1;
359 	out[1] = 0;
360 	out[2] = 0;
361 	out[3] = 0;
362 	}
363 
364 static void felem_assign(felem out, const felem in)
365 	{
366 	out[0] = in[0];
367 	out[1] = in[1];
368 	out[2] = in[2];
369 	out[3] = in[3];
370 	}
371 
372 /* Sum two field elements: out += in */
373 static void felem_sum(felem out, const felem in)
374 	{
375 	out[0] += in[0];
376 	out[1] += in[1];
377 	out[2] += in[2];
378 	out[3] += in[3];
379 	}
380 
381 /* Get negative value: out = -in */
382 /* Assumes in[i] < 2^57 */
383 static void felem_neg(felem out, const felem in)
384 	{
385 	static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
386 	static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
387 	static const limb two58m42m2 = (((limb) 1) << 58) -
388 	    (((limb) 1) << 42) - (((limb) 1) << 2);
389 
390 	/* Set to 0 mod 2^224-2^96+1 to ensure out > in */
391 	out[0] = two58p2 - in[0];
392 	out[1] = two58m42m2 - in[1];
393 	out[2] = two58m2 - in[2];
394 	out[3] = two58m2 - in[3];
395 	}
396 
397 /* Subtract field elements: out -= in */
398 /* Assumes in[i] < 2^57 */
399 static void felem_diff(felem out, const felem in)
400 	{
401 	static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
402 	static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
403 	static const limb two58m42m2 = (((limb) 1) << 58) -
404 	    (((limb) 1) << 42) - (((limb) 1) << 2);
405 
406 	/* Add 0 mod 2^224-2^96+1 to ensure out > in */
407 	out[0] += two58p2;
408 	out[1] += two58m42m2;
409 	out[2] += two58m2;
410 	out[3] += two58m2;
411 
412 	out[0] -= in[0];
413 	out[1] -= in[1];
414 	out[2] -= in[2];
415 	out[3] -= in[3];
416 	}
417 
418 /* Subtract in unreduced 128-bit mode: out -= in */
419 /* Assumes in[i] < 2^119 */
420 static void widefelem_diff(widefelem out, const widefelem in)
421 	{
422 	static const widelimb two120 = ((widelimb) 1) << 120;
423 	static const widelimb two120m64 = (((widelimb) 1) << 120) -
424 		(((widelimb) 1) << 64);
425 	static const widelimb two120m104m64 = (((widelimb) 1) << 120) -
426 		(((widelimb) 1) << 104) - (((widelimb) 1) << 64);
427 
428 	/* Add 0 mod 2^224-2^96+1 to ensure out > in */
429 	out[0] += two120;
430 	out[1] += two120m64;
431 	out[2] += two120m64;
432 	out[3] += two120;
433 	out[4] += two120m104m64;
434 	out[5] += two120m64;
435 	out[6] += two120m64;
436 
437 	out[0] -= in[0];
438 	out[1] -= in[1];
439 	out[2] -= in[2];
440 	out[3] -= in[3];
441 	out[4] -= in[4];
442 	out[5] -= in[5];
443 	out[6] -= in[6];
444 	}
445 
446 /* Subtract in mixed mode: out128 -= in64 */
447 /* in[i] < 2^63 */
448 static void felem_diff_128_64(widefelem out, const felem in)
449 	{
450 	static const widelimb two64p8 = (((widelimb) 1) << 64) +
451 		(((widelimb) 1) << 8);
452 	static const widelimb two64m8 = (((widelimb) 1) << 64) -
453 		(((widelimb) 1) << 8);
454 	static const widelimb two64m48m8 = (((widelimb) 1) << 64) -
455 		(((widelimb) 1) << 48) - (((widelimb) 1) << 8);
456 
457 	/* Add 0 mod 2^224-2^96+1 to ensure out > in */
458 	out[0] += two64p8;
459 	out[1] += two64m48m8;
460 	out[2] += two64m8;
461 	out[3] += two64m8;
462 
463 	out[0] -= in[0];
464 	out[1] -= in[1];
465 	out[2] -= in[2];
466 	out[3] -= in[3];
467 	}
468 
469 /* Multiply a field element by a scalar: out = out * scalar
470  * The scalars we actually use are small, so results fit without overflow */
471 static void felem_scalar(felem out, const limb scalar)
472 	{
473 	out[0] *= scalar;
474 	out[1] *= scalar;
475 	out[2] *= scalar;
476 	out[3] *= scalar;
477 	}
478 
479 /* Multiply an unreduced field element by a scalar: out = out * scalar
480  * The scalars we actually use are small, so results fit without overflow */
481 static void widefelem_scalar(widefelem out, const widelimb scalar)
482 	{
483 	out[0] *= scalar;
484 	out[1] *= scalar;
485 	out[2] *= scalar;
486 	out[3] *= scalar;
487 	out[4] *= scalar;
488 	out[5] *= scalar;
489 	out[6] *= scalar;
490 	}
491 
492 /* Square a field element: out = in^2 */
493 static void felem_square(widefelem out, const felem in)
494 	{
495 	limb tmp0, tmp1, tmp2;
496 	tmp0 = 2 * in[0]; tmp1 = 2 * in[1]; tmp2 = 2 * in[2];
497 	out[0] = ((widelimb) in[0]) * in[0];
498 	out[1] = ((widelimb) in[0]) * tmp1;
499 	out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1];
500 	out[3] = ((widelimb) in[3]) * tmp0 +
501 		((widelimb) in[1]) * tmp2;
502 	out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2];
503 	out[5] = ((widelimb) in[3]) * tmp2;
504 	out[6] = ((widelimb) in[3]) * in[3];
505 	}
506 
507 /* Multiply two field elements: out = in1 * in2 */
508 static void felem_mul(widefelem out, const felem in1, const felem in2)
509 	{
510 	out[0] = ((widelimb) in1[0]) * in2[0];
511 	out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0];
512 	out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] +
513 		((widelimb) in1[2]) * in2[0];
514 	out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] +
515 		((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0];
516 	out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] +
517 		((widelimb) in1[3]) * in2[1];
518 	out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2];
519 	out[6] = ((widelimb) in1[3]) * in2[3];
520 	}
521 
522 /* Reduce seven 128-bit coefficients to four 64-bit coefficients.
523  * Requires in[i] < 2^126,
524  * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
525 static void felem_reduce(felem out, const widefelem in)
526 	{
527 	static const widelimb two127p15 = (((widelimb) 1) << 127) +
528 		(((widelimb) 1) << 15);
529 	static const widelimb two127m71 = (((widelimb) 1) << 127) -
530 		(((widelimb) 1) << 71);
531 	static const widelimb two127m71m55 = (((widelimb) 1) << 127) -
532 		(((widelimb) 1) << 71) - (((widelimb) 1) << 55);
533 	widelimb output[5];
534 
535 	/* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
536 	output[0] = in[0] + two127p15;
537 	output[1] = in[1] + two127m71m55;
538 	output[2] = in[2] + two127m71;
539 	output[3] = in[3];
540 	output[4] = in[4];
541 
542 	/* Eliminate in[4], in[5], in[6] */
543 	output[4] += in[6] >> 16;
544 	output[3] += (in[6] & 0xffff) << 40;
545 	output[2] -= in[6];
546 
547 	output[3] += in[5] >> 16;
548 	output[2] += (in[5] & 0xffff) << 40;
549 	output[1] -= in[5];
550 
551 	output[2] += output[4] >> 16;
552 	output[1] += (output[4] & 0xffff) << 40;
553 	output[0] -= output[4];
554 
555 	/* Carry 2 -> 3 -> 4 */
556 	output[3] += output[2] >> 56;
557 	output[2] &= 0x00ffffffffffffff;
558 
559 	output[4] = output[3] >> 56;
560 	output[3] &= 0x00ffffffffffffff;
561 
562 	/* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
563 
564 	/* Eliminate output[4] */
565 	output[2] += output[4] >> 16;
566 	/* output[2] < 2^56 + 2^56 = 2^57 */
567 	output[1] += (output[4] & 0xffff) << 40;
568 	output[0] -= output[4];
569 
570 	/* Carry 0 -> 1 -> 2 -> 3 */
571 	output[1] += output[0] >> 56;
572 	out[0] = output[0] & 0x00ffffffffffffff;
573 
574 	output[2] += output[1] >> 56;
575 	/* output[2] < 2^57 + 2^72 */
576 	out[1] = output[1] & 0x00ffffffffffffff;
577 	output[3] += output[2] >> 56;
578 	/* output[3] <= 2^56 + 2^16 */
579 	out[2] = output[2] & 0x00ffffffffffffff;
580 
581 	/* out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
582 	 * out[3] <= 2^56 + 2^16 (due to final carry),
583 	 * so out < 2*p */
584 	out[3] = output[3];
585 	}
586 
587 static void felem_square_reduce(felem out, const felem in)
588 	{
589 	widefelem tmp;
590 	felem_square(tmp, in);
591 	felem_reduce(out, tmp);
592 	}
593 
594 static void felem_mul_reduce(felem out, const felem in1, const felem in2)
595 	{
596 	widefelem tmp;
597 	felem_mul(tmp, in1, in2);
598 	felem_reduce(out, tmp);
599 	}
600 
601 /* Reduce to unique minimal representation.
602  * Requires 0 <= in < 2*p (always call felem_reduce first) */
603 static void felem_contract(felem out, const felem in)
604 	{
605 	static const int64_t two56 = ((limb) 1) << 56;
606 	/* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
607 	/* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
608 	int64_t tmp[4], a;
609 	tmp[0] = in[0];
610 	tmp[1] = in[1];
611 	tmp[2] = in[2];
612 	tmp[3] = in[3];
613 	/* Case 1: a = 1 iff in >= 2^224 */
614 	a = (in[3] >> 56);
615 	tmp[0] -= a;
616 	tmp[1] += a << 40;
617 	tmp[3] &= 0x00ffffffffffffff;
618 	/* Case 2: a = 0 iff p <= in < 2^224, i.e.,
619 	 * the high 128 bits are all 1 and the lower part is non-zero */
620 	a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
621 		(((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
622 	a &= 0x00ffffffffffffff;
623 	/* turn a into an all-one mask (if a = 0) or an all-zero mask */
624 	a = (a - 1) >> 63;
625 	/* subtract 2^224 - 2^96 + 1 if a is all-one*/
626 	tmp[3] &= a ^ 0xffffffffffffffff;
627 	tmp[2] &= a ^ 0xffffffffffffffff;
628 	tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
629 	tmp[0] -= 1 & a;
630 
631 	/* eliminate negative coefficients: if tmp[0] is negative, tmp[1] must
632 	 * be non-zero, so we only need one step */
633 	a = tmp[0] >> 63;
634 	tmp[0] += two56 & a;
635 	tmp[1] -= 1 & a;
636 
637 	/* carry 1 -> 2 -> 3 */
638 	tmp[2] += tmp[1] >> 56;
639 	tmp[1] &= 0x00ffffffffffffff;
640 
641 	tmp[3] += tmp[2] >> 56;
642 	tmp[2] &= 0x00ffffffffffffff;
643 
644 	/* Now 0 <= out < p */
645 	out[0] = tmp[0];
646 	out[1] = tmp[1];
647 	out[2] = tmp[2];
648 	out[3] = tmp[3];
649 	}
650 
651 /* Zero-check: returns 1 if input is 0, and 0 otherwise.
652  * We know that field elements are reduced to in < 2^225,
653  * so we only need to check three cases: 0, 2^224 - 2^96 + 1,
654  * and 2^225 - 2^97 + 2 */
655 static limb felem_is_zero(const felem in)
656 	{
657 	limb zero, two224m96p1, two225m97p2;
658 
659 	zero = in[0] | in[1] | in[2] | in[3];
660 	zero = (((int64_t)(zero) - 1) >> 63) & 1;
661 	two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)
662 		| (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);
663 	two224m96p1 = (((int64_t)(two224m96p1) - 1) >> 63) & 1;
664 	two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)
665 		| (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);
666 	two225m97p2 = (((int64_t)(two225m97p2) - 1) >> 63) & 1;
667 	return (zero | two224m96p1 | two225m97p2);
668 	}
669 
670 static limb felem_is_zero_int(const felem in)
671 	{
672 	return (int) (felem_is_zero(in) & ((limb)1));
673 	}
674 
675 /* Invert a field element */
676 /* Computation chain copied from djb's code */
677 static void felem_inv(felem out, const felem in)
678 	{
679 	felem ftmp, ftmp2, ftmp3, ftmp4;
680 	widefelem tmp;
681 	unsigned i;
682 
683 	felem_square(tmp, in); felem_reduce(ftmp, tmp);		/* 2 */
684 	felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp);	/* 2^2 - 1 */
685 	felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);	/* 2^3 - 2 */
686 	felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp);	/* 2^3 - 1 */
687 	felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp);	/* 2^4 - 2 */
688 	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^5 - 4 */
689 	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^6 - 8 */
690 	felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp);	/* 2^6 - 1 */
691 	felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp);	/* 2^7 - 2 */
692 	for (i = 0; i < 5; ++i)					/* 2^12 - 2^6 */
693 		{
694 		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
695 		}
696 	felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp2, tmp);	/* 2^12 - 1 */
697 	felem_square(tmp, ftmp2); felem_reduce(ftmp3, tmp);	/* 2^13 - 2 */
698 	for (i = 0; i < 11; ++i)				/* 2^24 - 2^12 */
699 		{
700 		felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp);
701 		}
702 	felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp2, tmp); /* 2^24 - 1 */
703 	felem_square(tmp, ftmp2); felem_reduce(ftmp3, tmp);	/* 2^25 - 2 */
704 	for (i = 0; i < 23; ++i)				/* 2^48 - 2^24 */
705 		{
706 		felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp);
707 		}
708 	felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp); /* 2^48 - 1 */
709 	felem_square(tmp, ftmp3); felem_reduce(ftmp4, tmp);	/* 2^49 - 2 */
710 	for (i = 0; i < 47; ++i)				/* 2^96 - 2^48 */
711 		{
712 		felem_square(tmp, ftmp4); felem_reduce(ftmp4, tmp);
713 		}
714 	felem_mul(tmp, ftmp3, ftmp4); felem_reduce(ftmp3, tmp); /* 2^96 - 1 */
715 	felem_square(tmp, ftmp3); felem_reduce(ftmp4, tmp);	/* 2^97 - 2 */
716 	for (i = 0; i < 23; ++i)				/* 2^120 - 2^24 */
717 		{
718 		felem_square(tmp, ftmp4); felem_reduce(ftmp4, tmp);
719 		}
720 	felem_mul(tmp, ftmp2, ftmp4); felem_reduce(ftmp2, tmp); /* 2^120 - 1 */
721 	for (i = 0; i < 6; ++i)					/* 2^126 - 2^6 */
722 		{
723 		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
724 		}
725 	felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp);	/* 2^126 - 1 */
726 	felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);	/* 2^127 - 2 */
727 	felem_mul(tmp, ftmp, in); felem_reduce(ftmp, tmp);	/* 2^127 - 1 */
728 	for (i = 0; i < 97; ++i)				/* 2^224 - 2^97 */
729 		{
730 		felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);
731 		}
732 	felem_mul(tmp, ftmp, ftmp3); felem_reduce(out, tmp);	/* 2^224 - 2^96 - 1 */
733 	}
734 
735 /* Copy in constant time:
736  * if icopy == 1, copy in to out,
737  * if icopy == 0, copy out to itself. */
738 static void
739 copy_conditional(felem out, const felem in, limb icopy)
740 	{
741 	unsigned i;
742 	/* icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one */
743 	const limb copy = -icopy;
744 	for (i = 0; i < 4; ++i)
745 		{
746 		const limb tmp = copy & (in[i] ^ out[i]);
747 		out[i] ^= tmp;
748 		}
749 	}
750 
751 /******************************************************************************/
752 /*			 ELLIPTIC CURVE POINT OPERATIONS
753  *
754  * Points are represented in Jacobian projective coordinates:
755  * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
756  * or to the point at infinity if Z == 0.
757  *
758  */
759 
760 /* Double an elliptic curve point:
761  * (X', Y', Z') = 2 * (X, Y, Z), where
762  * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
763  * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2
764  * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
765  * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
766  * while x_out == y_in is not (maybe this works, but it's not tested). */
767 static void
768 point_double(felem x_out, felem y_out, felem z_out,
769              const felem x_in, const felem y_in, const felem z_in)
770 	{
771 	widefelem tmp, tmp2;
772 	felem delta, gamma, beta, alpha, ftmp, ftmp2;
773 
774 	felem_assign(ftmp, x_in);
775 	felem_assign(ftmp2, x_in);
776 
777 	/* delta = z^2 */
778 	felem_square(tmp, z_in);
779 	felem_reduce(delta, tmp);
780 
781 	/* gamma = y^2 */
782 	felem_square(tmp, y_in);
783 	felem_reduce(gamma, tmp);
784 
785 	/* beta = x*gamma */
786 	felem_mul(tmp, x_in, gamma);
787 	felem_reduce(beta, tmp);
788 
789 	/* alpha = 3*(x-delta)*(x+delta) */
790 	felem_diff(ftmp, delta);
791 	/* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
792 	felem_sum(ftmp2, delta);
793 	/* ftmp2[i] < 2^57 + 2^57 = 2^58 */
794 	felem_scalar(ftmp2, 3);
795 	/* ftmp2[i] < 3 * 2^58 < 2^60 */
796 	felem_mul(tmp, ftmp, ftmp2);
797 	/* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
798 	felem_reduce(alpha, tmp);
799 
800 	/* x' = alpha^2 - 8*beta */
801 	felem_square(tmp, alpha);
802 	/* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
803 	felem_assign(ftmp, beta);
804 	felem_scalar(ftmp, 8);
805 	/* ftmp[i] < 8 * 2^57 = 2^60 */
806 	felem_diff_128_64(tmp, ftmp);
807 	/* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
808 	felem_reduce(x_out, tmp);
809 
810 	/* z' = (y + z)^2 - gamma - delta */
811 	felem_sum(delta, gamma);
812 	/* delta[i] < 2^57 + 2^57 = 2^58 */
813 	felem_assign(ftmp, y_in);
814 	felem_sum(ftmp, z_in);
815 	/* ftmp[i] < 2^57 + 2^57 = 2^58 */
816 	felem_square(tmp, ftmp);
817 	/* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
818 	felem_diff_128_64(tmp, delta);
819 	/* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
820 	felem_reduce(z_out, tmp);
821 
822 	/* y' = alpha*(4*beta - x') - 8*gamma^2 */
823 	felem_scalar(beta, 4);
824 	/* beta[i] < 4 * 2^57 = 2^59 */
825 	felem_diff(beta, x_out);
826 	/* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
827 	felem_mul(tmp, alpha, beta);
828 	/* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
829 	felem_square(tmp2, gamma);
830 	/* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
831 	widefelem_scalar(tmp2, 8);
832 	/* tmp2[i] < 8 * 2^116 = 2^119 */
833 	widefelem_diff(tmp, tmp2);
834 	/* tmp[i] < 2^119 + 2^120 < 2^121 */
835 	felem_reduce(y_out, tmp);
836 	}
837 
838 /* Add two elliptic curve points:
839  * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
840  * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
841  * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
842  * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
843  *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
844  * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
845  *
846  * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
847  */
848 
849 /* This function is not entirely constant-time:
850  * it includes a branch for checking whether the two input points are equal,
851  * (while not equal to the point at infinity).
852  * This case never happens during single point multiplication,
853  * so there is no timing leak for ECDH or ECDSA signing. */
854 static void point_add(felem x3, felem y3, felem z3,
855 	const felem x1, const felem y1, const felem z1,
856 	const int mixed, const felem x2, const felem y2, const felem z2)
857 	{
858 	felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
859 	widefelem tmp, tmp2;
860 	limb z1_is_zero, z2_is_zero, x_equal, y_equal;
861 
862 	if (!mixed)
863 		{
864 		/* ftmp2 = z2^2 */
865 		felem_square(tmp, z2);
866 		felem_reduce(ftmp2, tmp);
867 
868 		/* ftmp4 = z2^3 */
869 		felem_mul(tmp, ftmp2, z2);
870 		felem_reduce(ftmp4, tmp);
871 
872 		/* ftmp4 = z2^3*y1 */
873 		felem_mul(tmp2, ftmp4, y1);
874 		felem_reduce(ftmp4, tmp2);
875 
876 		/* ftmp2 = z2^2*x1 */
877 		felem_mul(tmp2, ftmp2, x1);
878 		felem_reduce(ftmp2, tmp2);
879 		}
880 	else
881 		{
882 		/* We'll assume z2 = 1 (special case z2 = 0 is handled later) */
883 
884 		/* ftmp4 = z2^3*y1 */
885 		felem_assign(ftmp4, y1);
886 
887 		/* ftmp2 = z2^2*x1 */
888 		felem_assign(ftmp2, x1);
889 		}
890 
891 	/* ftmp = z1^2 */
892 	felem_square(tmp, z1);
893 	felem_reduce(ftmp, tmp);
894 
895 	/* ftmp3 = z1^3 */
896 	felem_mul(tmp, ftmp, z1);
897 	felem_reduce(ftmp3, tmp);
898 
899 	/* tmp = z1^3*y2 */
900 	felem_mul(tmp, ftmp3, y2);
901 	/* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
902 
903 	/* ftmp3 = z1^3*y2 - z2^3*y1 */
904 	felem_diff_128_64(tmp, ftmp4);
905 	/* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
906 	felem_reduce(ftmp3, tmp);
907 
908 	/* tmp = z1^2*x2 */
909 	felem_mul(tmp, ftmp, x2);
910 	/* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
911 
912 	/* ftmp = z1^2*x2 - z2^2*x1 */
913 	felem_diff_128_64(tmp, ftmp2);
914 	/* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
915 	felem_reduce(ftmp, tmp);
916 
917 	/* the formulae are incorrect if the points are equal
918 	 * so we check for this and do doubling if this happens */
919 	x_equal = felem_is_zero(ftmp);
920 	y_equal = felem_is_zero(ftmp3);
921 	z1_is_zero = felem_is_zero(z1);
922 	z2_is_zero = felem_is_zero(z2);
923 	/* In affine coordinates, (X_1, Y_1) == (X_2, Y_2) */
924 	if (x_equal && y_equal && !z1_is_zero && !z2_is_zero)
925 		{
926 		point_double(x3, y3, z3, x1, y1, z1);
927 		return;
928 		}
929 
930 	/* ftmp5 = z1*z2 */
931 	if (!mixed)
932 		{
933 		felem_mul(tmp, z1, z2);
934 		felem_reduce(ftmp5, tmp);
935 		}
936 	else
937 		{
938 		/* special case z2 = 0 is handled later */
939 		felem_assign(ftmp5, z1);
940 		}
941 
942 	/* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
943 	felem_mul(tmp, ftmp, ftmp5);
944 	felem_reduce(z_out, tmp);
945 
946 	/* ftmp = (z1^2*x2 - z2^2*x1)^2 */
947 	felem_assign(ftmp5, ftmp);
948 	felem_square(tmp, ftmp);
949 	felem_reduce(ftmp, tmp);
950 
951 	/* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
952 	felem_mul(tmp, ftmp, ftmp5);
953 	felem_reduce(ftmp5, tmp);
954 
955 	/* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
956 	felem_mul(tmp, ftmp2, ftmp);
957 	felem_reduce(ftmp2, tmp);
958 
959 	/* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
960 	felem_mul(tmp, ftmp4, ftmp5);
961 	/* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
962 
963 	/* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
964 	felem_square(tmp2, ftmp3);
965 	/* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
966 
967 	/* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
968 	felem_diff_128_64(tmp2, ftmp5);
969 	/* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
970 
971 	/* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
972 	felem_assign(ftmp5, ftmp2);
973 	felem_scalar(ftmp5, 2);
974 	/* ftmp5[i] < 2 * 2^57 = 2^58 */
975 
976 	/* x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
977 	   2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
978 	felem_diff_128_64(tmp2, ftmp5);
979 	/* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
980 	felem_reduce(x_out, tmp2);
981 
982 	/* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
983 	felem_diff(ftmp2, x_out);
984 	/* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
985 
986 	/* tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) */
987 	felem_mul(tmp2, ftmp3, ftmp2);
988 	/* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
989 
990 	/* y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
991 	   z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
992 	widefelem_diff(tmp2, tmp);
993 	/* tmp2[i] < 2^118 + 2^120 < 2^121 */
994 	felem_reduce(y_out, tmp2);
995 
996 	/* the result (x_out, y_out, z_out) is incorrect if one of the inputs is
997 	 * the point at infinity, so we need to check for this separately */
998 
999 	/* if point 1 is at infinity, copy point 2 to output, and vice versa */
1000 	copy_conditional(x_out, x2, z1_is_zero);
1001 	copy_conditional(x_out, x1, z2_is_zero);
1002 	copy_conditional(y_out, y2, z1_is_zero);
1003 	copy_conditional(y_out, y1, z2_is_zero);
1004 	copy_conditional(z_out, z2, z1_is_zero);
1005 	copy_conditional(z_out, z1, z2_is_zero);
1006 	felem_assign(x3, x_out);
1007 	felem_assign(y3, y_out);
1008 	felem_assign(z3, z_out);
1009 	}
1010 
1011 /* select_point selects the |idx|th point from a precomputation table and
1012  * copies it to out. */
1013 static void select_point(const u64 idx, unsigned int size, const felem pre_comp[/*size*/][3], felem out[3])
1014 	{
1015 	unsigned i, j;
1016 	limb *outlimbs = &out[0][0];
1017 	memset(outlimbs, 0, 3 * sizeof(felem));
1018 
1019 	for (i = 0; i < size; i++)
1020 		{
1021 		const limb *inlimbs = &pre_comp[i][0][0];
1022 		u64 mask = i ^ idx;
1023 		mask |= mask >> 4;
1024 		mask |= mask >> 2;
1025 		mask |= mask >> 1;
1026 		mask &= 1;
1027 		mask--;
1028 		for (j = 0; j < 4 * 3; j++)
1029 			outlimbs[j] |= inlimbs[j] & mask;
1030 		}
1031 	}
1032 
1033 /* get_bit returns the |i|th bit in |in| */
1034 static char get_bit(const felem_bytearray in, unsigned i)
1035 	{
1036 	if (i >= 224)
1037 		return 0;
1038 	return (in[i >> 3] >> (i & 7)) & 1;
1039 	}
1040 
1041 /* Interleaved point multiplication using precomputed point multiples:
1042  * The small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[],
1043  * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple
1044  * of the generator, using certain (large) precomputed multiples in g_pre_comp.
1045  * Output point (X, Y, Z) is stored in x_out, y_out, z_out */
1046 static void batch_mul(felem x_out, felem y_out, felem z_out,
1047 	const felem_bytearray scalars[], const unsigned num_points, const u8 *g_scalar,
1048 	const int mixed, const felem pre_comp[][17][3], const felem g_pre_comp[2][16][3])
1049 	{
1050 	int i, skip;
1051 	unsigned num;
1052 	unsigned gen_mul = (g_scalar != NULL);
1053 	felem nq[3], tmp[4];
1054 	u64 bits;
1055 	u8 sign, digit;
1056 
1057 	/* set nq to the point at infinity */
1058 	memset(nq, 0, 3 * sizeof(felem));
1059 
1060 	/* Loop over all scalars msb-to-lsb, interleaving additions
1061 	 * of multiples of the generator (two in each of the last 28 rounds)
1062 	 * and additions of other points multiples (every 5th round).
1063 	 */
1064 	skip = 1; /* save two point operations in the first round */
1065 	for (i = (num_points ? 220 : 27); i >= 0; --i)
1066 		{
1067 		/* double */
1068 		if (!skip)
1069 			point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1070 
1071 		/* add multiples of the generator */
1072 		if (gen_mul && (i <= 27))
1073 			{
1074 			/* first, look 28 bits upwards */
1075 			bits = get_bit(g_scalar, i + 196) << 3;
1076 			bits |= get_bit(g_scalar, i + 140) << 2;
1077 			bits |= get_bit(g_scalar, i + 84) << 1;
1078 			bits |= get_bit(g_scalar, i + 28);
1079 			/* select the point to add, in constant time */
1080 			select_point(bits, 16, g_pre_comp[1], tmp);
1081 
1082 			if (!skip)
1083 				{
1084 				point_add(nq[0], nq[1], nq[2],
1085 					nq[0], nq[1], nq[2],
1086 					1 /* mixed */, tmp[0], tmp[1], tmp[2]);
1087 				}
1088 			else
1089 				{
1090 				memcpy(nq, tmp, 3 * sizeof(felem));
1091 				skip = 0;
1092 				}
1093 
1094 			/* second, look at the current position */
1095 			bits = get_bit(g_scalar, i + 168) << 3;
1096 			bits |= get_bit(g_scalar, i + 112) << 2;
1097 			bits |= get_bit(g_scalar, i + 56) << 1;
1098 			bits |= get_bit(g_scalar, i);
1099 			/* select the point to add, in constant time */
1100 			select_point(bits, 16, g_pre_comp[0], tmp);
1101 			point_add(nq[0], nq[1], nq[2],
1102 				nq[0], nq[1], nq[2],
1103 				1 /* mixed */, tmp[0], tmp[1], tmp[2]);
1104 			}
1105 
1106 		/* do other additions every 5 doublings */
1107 		if (num_points && (i % 5 == 0))
1108 			{
1109 			/* loop over all scalars */
1110 			for (num = 0; num < num_points; ++num)
1111 				{
1112 				bits = get_bit(scalars[num], i + 4) << 5;
1113 				bits |= get_bit(scalars[num], i + 3) << 4;
1114 				bits |= get_bit(scalars[num], i + 2) << 3;
1115 				bits |= get_bit(scalars[num], i + 1) << 2;
1116 				bits |= get_bit(scalars[num], i) << 1;
1117 				bits |= get_bit(scalars[num], i - 1);
1118 				ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1119 
1120 				/* select the point to add or subtract */
1121 				select_point(digit, 17, pre_comp[num], tmp);
1122 				felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative point */
1123 				copy_conditional(tmp[1], tmp[3], sign);
1124 
1125 				if (!skip)
1126 					{
1127 					point_add(nq[0], nq[1], nq[2],
1128 						nq[0], nq[1], nq[2],
1129 						mixed, tmp[0], tmp[1], tmp[2]);
1130 					}
1131 				else
1132 					{
1133 					memcpy(nq, tmp, 3 * sizeof(felem));
1134 					skip = 0;
1135 					}
1136 				}
1137 			}
1138 		}
1139 	felem_assign(x_out, nq[0]);
1140 	felem_assign(y_out, nq[1]);
1141 	felem_assign(z_out, nq[2]);
1142 	}
1143 
1144 /******************************************************************************/
1145 /*		       FUNCTIONS TO MANAGE PRECOMPUTATION
1146  */
1147 
1148 static NISTP224_PRE_COMP *nistp224_pre_comp_new()
1149 	{
1150 	NISTP224_PRE_COMP *ret = NULL;
1151 	ret = (NISTP224_PRE_COMP *) OPENSSL_malloc(sizeof *ret);
1152 	if (!ret)
1153 		{
1154 		ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1155 		return ret;
1156 		}
1157 	memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp));
1158 	ret->references = 1;
1159 	return ret;
1160 	}
1161 
1162 static void *nistp224_pre_comp_dup(void *src_)
1163 	{
1164 	NISTP224_PRE_COMP *src = src_;
1165 
1166 	/* no need to actually copy, these objects never change! */
1167 	CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
1168 
1169 	return src_;
1170 	}
1171 
1172 static void nistp224_pre_comp_free(void *pre_)
1173 	{
1174 	int i;
1175 	NISTP224_PRE_COMP *pre = pre_;
1176 
1177 	if (!pre)
1178 		return;
1179 
1180 	i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
1181 	if (i > 0)
1182 		return;
1183 
1184 	OPENSSL_free(pre);
1185 	}
1186 
1187 static void nistp224_pre_comp_clear_free(void *pre_)
1188 	{
1189 	int i;
1190 	NISTP224_PRE_COMP *pre = pre_;
1191 
1192 	if (!pre)
1193 		return;
1194 
1195 	i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
1196 	if (i > 0)
1197 		return;
1198 
1199 	OPENSSL_cleanse(pre, sizeof *pre);
1200 	OPENSSL_free(pre);
1201 	}
1202 
1203 /******************************************************************************/
1204 /*			   OPENSSL EC_METHOD FUNCTIONS
1205  */
1206 
1207 int ec_GFp_nistp224_group_init(EC_GROUP *group)
1208 	{
1209 	int ret;
1210 	ret = ec_GFp_simple_group_init(group);
1211 	group->a_is_minus3 = 1;
1212 	return ret;
1213 	}
1214 
1215 int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1216 	const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
1217 	{
1218 	int ret = 0;
1219 	BN_CTX *new_ctx = NULL;
1220 	BIGNUM *curve_p, *curve_a, *curve_b;
1221 
1222 	if (ctx == NULL)
1223 		if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
1224 	BN_CTX_start(ctx);
1225 	if (((curve_p = BN_CTX_get(ctx)) == NULL) ||
1226 		((curve_a = BN_CTX_get(ctx)) == NULL) ||
1227 		((curve_b = BN_CTX_get(ctx)) == NULL)) goto err;
1228 	BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
1229 	BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
1230 	BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
1231 	if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) ||
1232 		(BN_cmp(curve_b, b)))
1233 		{
1234 		ECerr(EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE,
1235 			EC_R_WRONG_CURVE_PARAMETERS);
1236 		goto err;
1237 		}
1238 	group->field_mod_func = BN_nist_mod_224;
1239 	ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1240 err:
1241 	BN_CTX_end(ctx);
1242 	if (new_ctx != NULL)
1243 		BN_CTX_free(new_ctx);
1244 	return ret;
1245 	}
1246 
1247 /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns
1248  * (X', Y') = (X/Z^2, Y/Z^3) */
1249 int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
1250 	const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
1251 	{
1252 	felem z1, z2, x_in, y_in, x_out, y_out;
1253 	widefelem tmp;
1254 
1255 	if (EC_POINT_is_at_infinity(group, point))
1256 		{
1257 		ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1258 			EC_R_POINT_AT_INFINITY);
1259 		return 0;
1260 		}
1261 	if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) ||
1262 		(!BN_to_felem(z1, &point->Z))) return 0;
1263 	felem_inv(z2, z1);
1264 	felem_square(tmp, z2); felem_reduce(z1, tmp);
1265 	felem_mul(tmp, x_in, z1); felem_reduce(x_in, tmp);
1266 	felem_contract(x_out, x_in);
1267 	if (x != NULL)
1268 		{
1269 		if (!felem_to_BN(x, x_out)) {
1270 		ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1271 			ERR_R_BN_LIB);
1272 		return 0;
1273 		}
1274 		}
1275 	felem_mul(tmp, z1, z2); felem_reduce(z1, tmp);
1276 	felem_mul(tmp, y_in, z1); felem_reduce(y_in, tmp);
1277 	felem_contract(y_out, y_in);
1278 	if (y != NULL)
1279 		{
1280 		if (!felem_to_BN(y, y_out)) {
1281 		ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1282 			ERR_R_BN_LIB);
1283 		return 0;
1284 		}
1285 		}
1286 	return 1;
1287 	}
1288 
1289 static void make_points_affine(size_t num, felem points[/*num*/][3], felem tmp_felems[/*num+1*/])
1290 	{
1291 	/* Runs in constant time, unless an input is the point at infinity
1292 	 * (which normally shouldn't happen). */
1293 	ec_GFp_nistp_points_make_affine_internal(
1294 		num,
1295 		points,
1296 		sizeof(felem),
1297 		tmp_felems,
1298 		(void (*)(void *)) felem_one,
1299 		(int (*)(const void *)) felem_is_zero_int,
1300 		(void (*)(void *, const void *)) felem_assign,
1301 		(void (*)(void *, const void *)) felem_square_reduce,
1302 		(void (*)(void *, const void *, const void *)) felem_mul_reduce,
1303 		(void (*)(void *, const void *)) felem_inv,
1304 		(void (*)(void *, const void *)) felem_contract);
1305 	}
1306 
1307 /* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values
1308  * Result is stored in r (r can equal one of the inputs). */
1309 int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
1310 	const BIGNUM *scalar, size_t num, const EC_POINT *points[],
1311 	const BIGNUM *scalars[], BN_CTX *ctx)
1312 	{
1313 	int ret = 0;
1314 	int j;
1315 	unsigned i;
1316 	int mixed = 0;
1317 	BN_CTX *new_ctx = NULL;
1318 	BIGNUM *x, *y, *z, *tmp_scalar;
1319 	felem_bytearray g_secret;
1320 	felem_bytearray *secrets = NULL;
1321 	felem (*pre_comp)[17][3] = NULL;
1322 	felem *tmp_felems = NULL;
1323 	felem_bytearray tmp;
1324 	unsigned num_bytes;
1325 	int have_pre_comp = 0;
1326 	size_t num_points = num;
1327 	felem x_in, y_in, z_in, x_out, y_out, z_out;
1328 	NISTP224_PRE_COMP *pre = NULL;
1329 	const felem (*g_pre_comp)[16][3] = NULL;
1330 	EC_POINT *generator = NULL;
1331 	const EC_POINT *p = NULL;
1332 	const BIGNUM *p_scalar = NULL;
1333 
1334 	if (ctx == NULL)
1335 		if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
1336 	BN_CTX_start(ctx);
1337 	if (((x = BN_CTX_get(ctx)) == NULL) ||
1338 		((y = BN_CTX_get(ctx)) == NULL) ||
1339 		((z = BN_CTX_get(ctx)) == NULL) ||
1340 		((tmp_scalar = BN_CTX_get(ctx)) == NULL))
1341 		goto err;
1342 
1343 	if (scalar != NULL)
1344 		{
1345 		pre = EC_EX_DATA_get_data(group->extra_data,
1346 			nistp224_pre_comp_dup, nistp224_pre_comp_free,
1347 			nistp224_pre_comp_clear_free);
1348 		if (pre)
1349 			/* we have precomputation, try to use it */
1350 			g_pre_comp = (const felem (*)[16][3]) pre->g_pre_comp;
1351 		else
1352 			/* try to use the standard precomputation */
1353 			g_pre_comp = &gmul[0];
1354 		generator = EC_POINT_new(group);
1355 		if (generator == NULL)
1356 			goto err;
1357 		/* get the generator from precomputation */
1358 		if (!felem_to_BN(x, g_pre_comp[0][1][0]) ||
1359 			!felem_to_BN(y, g_pre_comp[0][1][1]) ||
1360 			!felem_to_BN(z, g_pre_comp[0][1][2]))
1361 			{
1362 			ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1363 			goto err;
1364 			}
1365 		if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
1366 				generator, x, y, z, ctx))
1367 			goto err;
1368 		if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1369 			/* precomputation matches generator */
1370 			have_pre_comp = 1;
1371 		else
1372 			/* we don't have valid precomputation:
1373 			 * treat the generator as a random point */
1374 			num_points = num_points + 1;
1375 		}
1376 
1377 	if (num_points > 0)
1378 		{
1379 		if (num_points >= 3)
1380 			{
1381 			/* unless we precompute multiples for just one or two points,
1382 			 * converting those into affine form is time well spent  */
1383 			mixed = 1;
1384 			}
1385 		secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray));
1386 		pre_comp = OPENSSL_malloc(num_points * 17 * 3 * sizeof(felem));
1387 		if (mixed)
1388 			tmp_felems = OPENSSL_malloc((num_points * 17 + 1) * sizeof(felem));
1389 		if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_felems == NULL)))
1390 			{
1391 			ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1392 			goto err;
1393 			}
1394 
1395 		/* we treat NULL scalars as 0, and NULL points as points at infinity,
1396 		 * i.e., they contribute nothing to the linear combination */
1397 		memset(secrets, 0, num_points * sizeof(felem_bytearray));
1398 		memset(pre_comp, 0, num_points * 17 * 3 * sizeof(felem));
1399 		for (i = 0; i < num_points; ++i)
1400 			{
1401 			if (i == num)
1402 				/* the generator */
1403 				{
1404 				p = EC_GROUP_get0_generator(group);
1405 				p_scalar = scalar;
1406 				}
1407 			else
1408 				/* the i^th point */
1409 				{
1410 				p = points[i];
1411 				p_scalar = scalars[i];
1412 				}
1413 			if ((p_scalar != NULL) && (p != NULL))
1414 				{
1415 				/* reduce scalar to 0 <= scalar < 2^224 */
1416 				if ((BN_num_bits(p_scalar) > 224) || (BN_is_negative(p_scalar)))
1417 					{
1418 					/* this is an unusual input, and we don't guarantee
1419 					 * constant-timeness */
1420 					if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx))
1421 						{
1422 						ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1423 						goto err;
1424 						}
1425 					num_bytes = BN_bn2bin(tmp_scalar, tmp);
1426 					}
1427 				else
1428 					num_bytes = BN_bn2bin(p_scalar, tmp);
1429 				flip_endian(secrets[i], tmp, num_bytes);
1430 				/* precompute multiples */
1431 				if ((!BN_to_felem(x_out, &p->X)) ||
1432 					(!BN_to_felem(y_out, &p->Y)) ||
1433 					(!BN_to_felem(z_out, &p->Z))) goto err;
1434 				felem_assign(pre_comp[i][1][0], x_out);
1435 				felem_assign(pre_comp[i][1][1], y_out);
1436 				felem_assign(pre_comp[i][1][2], z_out);
1437 				for (j = 2; j <= 16; ++j)
1438 					{
1439 					if (j & 1)
1440 						{
1441 						point_add(
1442 							pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
1443 							pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2],
1444 							0, pre_comp[i][j-1][0], pre_comp[i][j-1][1], pre_comp[i][j-1][2]);
1445 						}
1446 					else
1447 						{
1448 						point_double(
1449 							pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
1450 							pre_comp[i][j/2][0], pre_comp[i][j/2][1], pre_comp[i][j/2][2]);
1451 						}
1452 					}
1453 				}
1454 			}
1455 		if (mixed)
1456 			make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1457 		}
1458 
1459 	/* the scalar for the generator */
1460 	if ((scalar != NULL) && (have_pre_comp))
1461 		{
1462 		memset(g_secret, 0, sizeof g_secret);
1463 		/* reduce scalar to 0 <= scalar < 2^224 */
1464 		if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar)))
1465 			{
1466 			/* this is an unusual input, and we don't guarantee
1467 			 * constant-timeness */
1468 			if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx))
1469 				{
1470 				ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1471 				goto err;
1472 				}
1473 			num_bytes = BN_bn2bin(tmp_scalar, tmp);
1474 			}
1475 		else
1476 			num_bytes = BN_bn2bin(scalar, tmp);
1477 		flip_endian(g_secret, tmp, num_bytes);
1478 		/* do the multiplication with generator precomputation*/
1479 		batch_mul(x_out, y_out, z_out,
1480 			(const felem_bytearray (*)) secrets, num_points,
1481 			g_secret,
1482 			mixed, (const felem (*)[17][3]) pre_comp,
1483 			g_pre_comp);
1484 		}
1485 	else
1486 		/* do the multiplication without generator precomputation */
1487 		batch_mul(x_out, y_out, z_out,
1488 			(const felem_bytearray (*)) secrets, num_points,
1489 			NULL, mixed, (const felem (*)[17][3]) pre_comp, NULL);
1490 	/* reduce the output to its unique minimal representation */
1491 	felem_contract(x_in, x_out);
1492 	felem_contract(y_in, y_out);
1493 	felem_contract(z_in, z_out);
1494 	if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
1495 		(!felem_to_BN(z, z_in)))
1496 		{
1497 		ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1498 		goto err;
1499 		}
1500 	ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
1501 
1502 err:
1503 	BN_CTX_end(ctx);
1504 	if (generator != NULL)
1505 		EC_POINT_free(generator);
1506 	if (new_ctx != NULL)
1507 		BN_CTX_free(new_ctx);
1508 	if (secrets != NULL)
1509 		OPENSSL_free(secrets);
1510 	if (pre_comp != NULL)
1511 		OPENSSL_free(pre_comp);
1512 	if (tmp_felems != NULL)
1513 		OPENSSL_free(tmp_felems);
1514 	return ret;
1515 	}
1516 
1517 int ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
1518 	{
1519 	int ret = 0;
1520 	NISTP224_PRE_COMP *pre = NULL;
1521 	int i, j;
1522 	BN_CTX *new_ctx = NULL;
1523 	BIGNUM *x, *y;
1524 	EC_POINT *generator = NULL;
1525 	felem tmp_felems[32];
1526 
1527 	/* throw away old precomputation */
1528 	EC_EX_DATA_free_data(&group->extra_data, nistp224_pre_comp_dup,
1529 		nistp224_pre_comp_free, nistp224_pre_comp_clear_free);
1530 	if (ctx == NULL)
1531 		if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
1532 	BN_CTX_start(ctx);
1533 	if (((x = BN_CTX_get(ctx)) == NULL) ||
1534 		((y = BN_CTX_get(ctx)) == NULL))
1535 		goto err;
1536 	/* get the generator */
1537 	if (group->generator == NULL) goto err;
1538 	generator = EC_POINT_new(group);
1539 	if (generator == NULL)
1540 		goto err;
1541 	BN_bin2bn(nistp224_curve_params[3], sizeof (felem_bytearray), x);
1542 	BN_bin2bn(nistp224_curve_params[4], sizeof (felem_bytearray), y);
1543 	if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx))
1544 		goto err;
1545 	if ((pre = nistp224_pre_comp_new()) == NULL)
1546 		goto err;
1547 	/* if the generator is the standard one, use built-in precomputation */
1548 	if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1549 		{
1550 		memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
1551 		ret = 1;
1552 		goto err;
1553 		}
1554 	if ((!BN_to_felem(pre->g_pre_comp[0][1][0], &group->generator->X)) ||
1555 		(!BN_to_felem(pre->g_pre_comp[0][1][1], &group->generator->Y)) ||
1556 		(!BN_to_felem(pre->g_pre_comp[0][1][2], &group->generator->Z)))
1557 		goto err;
1558 	/* compute 2^56*G, 2^112*G, 2^168*G for the first table,
1559 	 * 2^28*G, 2^84*G, 2^140*G, 2^196*G for the second one
1560 	 */
1561 	for (i = 1; i <= 8; i <<= 1)
1562 		{
1563 		point_double(
1564 			pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2],
1565 			pre->g_pre_comp[0][i][0], pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
1566 		for (j = 0; j < 27; ++j)
1567 			{
1568 			point_double(
1569 				pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2],
1570 				pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1571 			}
1572 		if (i == 8)
1573 			break;
1574 		point_double(
1575 			pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2],
1576 			pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1577 		for (j = 0; j < 27; ++j)
1578 			{
1579 			point_double(
1580 				pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2],
1581 				pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2]);
1582 			}
1583 		}
1584 	for (i = 0; i < 2; i++)
1585 		{
1586 		/* g_pre_comp[i][0] is the point at infinity */
1587 		memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
1588 		/* the remaining multiples */
1589 		/* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
1590 		point_add(
1591 			pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
1592 			pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
1593 			pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
1594 			0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1595 			pre->g_pre_comp[i][2][2]);
1596 		/* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
1597 		point_add(
1598 			pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
1599 			pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
1600 			pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1601 			0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1602 			pre->g_pre_comp[i][2][2]);
1603 		/* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
1604 		point_add(
1605 			pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
1606 			pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
1607 			pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1608 			0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
1609 			pre->g_pre_comp[i][4][2]);
1610 		/* 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G */
1611 		point_add(
1612 			pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
1613 			pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
1614 			pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
1615 			0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1616 			pre->g_pre_comp[i][2][2]);
1617 		for (j = 1; j < 8; ++j)
1618 			{
1619 			/* odd multiples: add G resp. 2^28*G */
1620 			point_add(
1621 				pre->g_pre_comp[i][2*j+1][0], pre->g_pre_comp[i][2*j+1][1],
1622 				pre->g_pre_comp[i][2*j+1][2], pre->g_pre_comp[i][2*j][0],
1623 				pre->g_pre_comp[i][2*j][1], pre->g_pre_comp[i][2*j][2],
1624 				0, pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],
1625 				pre->g_pre_comp[i][1][2]);
1626 			}
1627 		}
1628 	make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);
1629 
1630 	if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp224_pre_comp_dup,
1631 			nistp224_pre_comp_free, nistp224_pre_comp_clear_free))
1632 		goto err;
1633 	ret = 1;
1634 	pre = NULL;
1635  err:
1636 	BN_CTX_end(ctx);
1637 	if (generator != NULL)
1638 		EC_POINT_free(generator);
1639 	if (new_ctx != NULL)
1640 		BN_CTX_free(new_ctx);
1641 	if (pre)
1642 		nistp224_pre_comp_free(pre);
1643 	return ret;
1644 	}
1645 
1646 int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
1647 	{
1648 	if (EC_EX_DATA_get_data(group->extra_data, nistp224_pre_comp_dup,
1649 			nistp224_pre_comp_free, nistp224_pre_comp_clear_free)
1650 		!= NULL)
1651 		return 1;
1652 	else
1653 		return 0;
1654 	}
1655 
1656 #else
1657 static void *dummy=&dummy;
1658 #endif
1659