1 /* crypto/ec/ecp_nistp256.c */
2 /*
3  * Written by Adam Langley (Google) for the OpenSSL project
4  */
5 /* Copyright 2011 Google Inc.
6  *
7  * Licensed under the Apache License, Version 2.0 (the "License");
8  *
9  * you may not use this file except in compliance with the License.
10  * You may obtain a copy of the License at
11  *
12  *     http://www.apache.org/licenses/LICENSE-2.0
13  *
14  *  Unless required by applicable law or agreed to in writing, software
15  *  distributed under the License is distributed on an "AS IS" BASIS,
16  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17  *  See the License for the specific language governing permissions and
18  *  limitations under the License.
19  */
20 
21 /*
22  * A 64-bit implementation of the NIST P-256 elliptic curve point multiplication
23  *
24  * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
25  * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
26  * work which got its smarts from Daniel J. Bernstein's work on the same.
27  */
28 
29 #include <openssl/opensslconf.h>
30 #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128
31 
32 #ifndef OPENSSL_SYS_VMS
33 #include <stdint.h>
34 #else
35 #include <inttypes.h>
36 #endif
37 
38 #include <string.h>
39 #include <openssl/err.h>
40 #include "ec_lcl.h"
41 
42 #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))
43   /* even with gcc, the typedef won't work for 32-bit platforms */
44   typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */
45   typedef __int128_t int128_t;
46 #else
47   #error "Need GCC 3.1 or later to define type uint128_t"
48 #endif
49 
50 typedef uint8_t u8;
51 typedef uint32_t u32;
52 typedef uint64_t u64;
53 typedef int64_t s64;
54 
55 /* The underlying field.
56  *
57  * P256 operates over GF(2^256-2^224+2^192+2^96-1). We can serialise an element
58  * of this field into 32 bytes. We call this an felem_bytearray. */
59 
60 typedef u8 felem_bytearray[32];
61 
62 /* These are the parameters of P256, taken from FIPS 186-3, page 86. These
63  * values are big-endian. */
64 static const felem_bytearray nistp256_curve_params[5] = {
65 	{0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01,       /* p */
66 	 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
67 	 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
68 	 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
69 	{0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01,       /* a = -3 */
70 	 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
71 	 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
72 	 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc},      /* b */
73 	{0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7,
74 	 0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc,
75 	 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6,
76 	 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b},
77 	{0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47,       /* x */
78 	 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2,
79 	 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0,
80 	 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96},
81 	{0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b,       /* y */
82 	 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16,
83 	 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce,
84 	 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5}
85 };
86 
87 /* The representation of field elements.
88  * ------------------------------------
89  *
90  * We represent field elements with either four 128-bit values, eight 128-bit
91  * values, or four 64-bit values. The field element represented is:
92  *   v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192  (mod p)
93  * or:
94  *   v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[8]*2^512  (mod p)
95  *
96  * 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits
97  * apart, but are 128-bits wide, the most significant bits of each limb overlap
98  * with the least significant bits of the next.
99  *
100  * A field element with four limbs is an 'felem'. One with eight limbs is a
101  * 'longfelem'
102  *
103  * A field element with four, 64-bit values is called a 'smallfelem'. Small
104  * values are used as intermediate values before multiplication.
105  */
106 
107 #define NLIMBS 4
108 
109 typedef uint128_t limb;
110 typedef limb felem[NLIMBS];
111 typedef limb longfelem[NLIMBS * 2];
112 typedef u64 smallfelem[NLIMBS];
113 
114 /* This is the value of the prime as four 64-bit words, little-endian. */
115 static const u64 kPrime[4] = { 0xfffffffffffffffful, 0xffffffff, 0, 0xffffffff00000001ul };
116 static const limb bottom32bits = 0xffffffff;
117 static const u64 bottom63bits = 0x7ffffffffffffffful;
118 
119 /* bin32_to_felem takes a little-endian byte array and converts it into felem
120  * form. This assumes that the CPU is little-endian. */
121 static void bin32_to_felem(felem out, const u8 in[32])
122 	{
123 	out[0] = *((u64*) &in[0]);
124 	out[1] = *((u64*) &in[8]);
125 	out[2] = *((u64*) &in[16]);
126 	out[3] = *((u64*) &in[24]);
127 	}
128 
129 /* smallfelem_to_bin32 takes a smallfelem and serialises into a little endian,
130  * 32 byte array. This assumes that the CPU is little-endian. */
131 static void smallfelem_to_bin32(u8 out[32], const smallfelem in)
132 	{
133 	*((u64*) &out[0]) = in[0];
134 	*((u64*) &out[8]) = in[1];
135 	*((u64*) &out[16]) = in[2];
136 	*((u64*) &out[24]) = in[3];
137 	}
138 
139 /* To preserve endianness when using BN_bn2bin and BN_bin2bn */
140 static void flip_endian(u8 *out, const u8 *in, unsigned len)
141 	{
142 	unsigned i;
143 	for (i = 0; i < len; ++i)
144 		out[i] = in[len-1-i];
145 	}
146 
147 /* BN_to_felem converts an OpenSSL BIGNUM into an felem */
148 static int BN_to_felem(felem out, const BIGNUM *bn)
149 	{
150 	felem_bytearray b_in;
151 	felem_bytearray b_out;
152 	unsigned num_bytes;
153 
154 	/* BN_bn2bin eats leading zeroes */
155 	memset(b_out, 0, sizeof b_out);
156 	num_bytes = BN_num_bytes(bn);
157 	if (num_bytes > sizeof b_out)
158 		{
159 		ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
160 		return 0;
161 		}
162 	if (BN_is_negative(bn))
163 		{
164 		ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
165 		return 0;
166 		}
167 	num_bytes = BN_bn2bin(bn, b_in);
168 	flip_endian(b_out, b_in, num_bytes);
169 	bin32_to_felem(out, b_out);
170 	return 1;
171 	}
172 
173 /* felem_to_BN converts an felem into an OpenSSL BIGNUM */
174 static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in)
175 	{
176 	felem_bytearray b_in, b_out;
177 	smallfelem_to_bin32(b_in, in);
178 	flip_endian(b_out, b_in, sizeof b_out);
179 	return BN_bin2bn(b_out, sizeof b_out, out);
180 	}
181 
182 
183 /* Field operations
184  * ---------------- */
185 
186 static void smallfelem_one(smallfelem out)
187 	{
188 	out[0] = 1;
189 	out[1] = 0;
190 	out[2] = 0;
191 	out[3] = 0;
192 	}
193 
194 static void smallfelem_assign(smallfelem out, const smallfelem in)
195 	{
196 	out[0] = in[0];
197 	out[1] = in[1];
198 	out[2] = in[2];
199 	out[3] = in[3];
200 	}
201 
202 static void felem_assign(felem out, const felem in)
203 	{
204 	out[0] = in[0];
205 	out[1] = in[1];
206 	out[2] = in[2];
207 	out[3] = in[3];
208 	}
209 
210 /* felem_sum sets out = out + in. */
211 static void felem_sum(felem out, const felem in)
212 	{
213 	out[0] += in[0];
214 	out[1] += in[1];
215 	out[2] += in[2];
216 	out[3] += in[3];
217 	}
218 
219 /* felem_small_sum sets out = out + in. */
220 static void felem_small_sum(felem out, const smallfelem in)
221 	{
222 	out[0] += in[0];
223 	out[1] += in[1];
224 	out[2] += in[2];
225 	out[3] += in[3];
226 	}
227 
228 /* felem_scalar sets out = out * scalar */
229 static void felem_scalar(felem out, const u64 scalar)
230 	{
231 	out[0] *= scalar;
232 	out[1] *= scalar;
233 	out[2] *= scalar;
234 	out[3] *= scalar;
235 	}
236 
237 /* longfelem_scalar sets out = out * scalar */
238 static void longfelem_scalar(longfelem out, const u64 scalar)
239 	{
240 	out[0] *= scalar;
241 	out[1] *= scalar;
242 	out[2] *= scalar;
243 	out[3] *= scalar;
244 	out[4] *= scalar;
245 	out[5] *= scalar;
246 	out[6] *= scalar;
247 	out[7] *= scalar;
248 	}
249 
250 #define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9)
251 #define two105 (((limb)1) << 105)
252 #define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9)
253 
254 /* zero105 is 0 mod p */
255 static const felem zero105 = { two105m41m9, two105, two105m41p9, two105m41p9 };
256 
257 /* smallfelem_neg sets |out| to |-small|
258  * On exit:
259  *   out[i] < out[i] + 2^105
260  */
261 static void smallfelem_neg(felem out, const smallfelem small)
262 	{
263 	/* In order to prevent underflow, we subtract from 0 mod p. */
264 	out[0] = zero105[0] - small[0];
265 	out[1] = zero105[1] - small[1];
266 	out[2] = zero105[2] - small[2];
267 	out[3] = zero105[3] - small[3];
268 	}
269 
270 /* felem_diff subtracts |in| from |out|
271  * On entry:
272  *   in[i] < 2^104
273  * On exit:
274  *   out[i] < out[i] + 2^105
275  */
276 static void felem_diff(felem out, const felem in)
277 	{
278 	/* In order to prevent underflow, we add 0 mod p before subtracting. */
279 	out[0] += zero105[0];
280 	out[1] += zero105[1];
281 	out[2] += zero105[2];
282 	out[3] += zero105[3];
283 
284 	out[0] -= in[0];
285 	out[1] -= in[1];
286 	out[2] -= in[2];
287 	out[3] -= in[3];
288 	}
289 
290 #define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11)
291 #define two107 (((limb)1) << 107)
292 #define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11)
293 
294 /* zero107 is 0 mod p */
295 static const felem zero107 = { two107m43m11, two107, two107m43p11, two107m43p11 };
296 
297 /* An alternative felem_diff for larger inputs |in|
298  * felem_diff_zero107 subtracts |in| from |out|
299  * On entry:
300  *   in[i] < 2^106
301  * On exit:
302  *   out[i] < out[i] + 2^107
303  */
304 static void felem_diff_zero107(felem out, const felem in)
305 	{
306 	/* In order to prevent underflow, we add 0 mod p before subtracting. */
307 	out[0] += zero107[0];
308 	out[1] += zero107[1];
309 	out[2] += zero107[2];
310 	out[3] += zero107[3];
311 
312 	out[0] -= in[0];
313 	out[1] -= in[1];
314 	out[2] -= in[2];
315 	out[3] -= in[3];
316 	}
317 
318 /* longfelem_diff subtracts |in| from |out|
319  * On entry:
320  *   in[i] < 7*2^67
321  * On exit:
322  *   out[i] < out[i] + 2^70 + 2^40
323  */
324 static void longfelem_diff(longfelem out, const longfelem in)
325 	{
326 	static const limb two70m8p6 = (((limb)1) << 70) - (((limb)1) << 8) + (((limb)1) << 6);
327 	static const limb two70p40 = (((limb)1) << 70) + (((limb)1) << 40);
328 	static const limb two70 = (((limb)1) << 70);
329 	static const limb two70m40m38p6 = (((limb)1) << 70) - (((limb)1) << 40) - (((limb)1) << 38) + (((limb)1) << 6);
330 	static const limb two70m6 = (((limb)1) << 70) - (((limb)1) << 6);
331 
332 	/* add 0 mod p to avoid underflow */
333 	out[0] += two70m8p6;
334 	out[1] += two70p40;
335 	out[2] += two70;
336 	out[3] += two70m40m38p6;
337 	out[4] += two70m6;
338 	out[5] += two70m6;
339 	out[6] += two70m6;
340 	out[7] += two70m6;
341 
342 	/* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */
343 	out[0] -= in[0];
344 	out[1] -= in[1];
345 	out[2] -= in[2];
346 	out[3] -= in[3];
347 	out[4] -= in[4];
348 	out[5] -= in[5];
349 	out[6] -= in[6];
350 	out[7] -= in[7];
351 	}
352 
353 #define two64m0 (((limb)1) << 64) - 1
354 #define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1
355 #define two64m46 (((limb)1) << 64) - (((limb)1) << 46)
356 #define two64m32 (((limb)1) << 64) - (((limb)1) << 32)
357 
358 /* zero110 is 0 mod p */
359 static const felem zero110 = { two64m0, two110p32m0, two64m46, two64m32 };
360 
361 /* felem_shrink converts an felem into a smallfelem. The result isn't quite
362  * minimal as the value may be greater than p.
363  *
364  * On entry:
365  *   in[i] < 2^109
366  * On exit:
367  *   out[i] < 2^64
368  */
369 static void felem_shrink(smallfelem out, const felem in)
370 	{
371 	felem tmp;
372 	u64 a, b, mask;
373 	s64 high, low;
374 	static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */
375 
376 	/* Carry 2->3 */
377 	tmp[3] = zero110[3] + in[3] + ((u64) (in[2] >> 64));
378 	/* tmp[3] < 2^110 */
379 
380 	tmp[2] = zero110[2] + (u64) in[2];
381 	tmp[0] = zero110[0] + in[0];
382 	tmp[1] = zero110[1] + in[1];
383 	/* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */
384 
385 	/* We perform two partial reductions where we eliminate the
386 	 * high-word of tmp[3]. We don't update the other words till the end.
387 	 */
388 	a = tmp[3] >> 64; /* a < 2^46 */
389 	tmp[3] = (u64) tmp[3];
390 	tmp[3] -= a;
391 	tmp[3] += ((limb)a) << 32;
392 	/* tmp[3] < 2^79 */
393 
394 	b = a;
395 	a = tmp[3] >> 64; /* a < 2^15 */
396 	b += a; /* b < 2^46 + 2^15 < 2^47 */
397 	tmp[3] = (u64) tmp[3];
398 	tmp[3] -= a;
399 	tmp[3] += ((limb)a) << 32;
400 	/* tmp[3] < 2^64 + 2^47 */
401 
402 	/* This adjusts the other two words to complete the two partial
403 	 * reductions. */
404 	tmp[0] += b;
405 	tmp[1] -= (((limb)b) << 32);
406 
407 	/* In order to make space in tmp[3] for the carry from 2 -> 3, we
408 	 * conditionally subtract kPrime if tmp[3] is large enough. */
409 	high = tmp[3] >> 64;
410 	/* As tmp[3] < 2^65, high is either 1 or 0 */
411 	high <<= 63;
412 	high >>= 63;
413 	/* high is:
414 	 *   all ones   if the high word of tmp[3] is 1
415 	 *   all zeros  if the high word of tmp[3] if 0 */
416 	low = tmp[3];
417 	mask = low >> 63;
418 	/* mask is:
419 	 *   all ones   if the MSB of low is 1
420 	 *   all zeros  if the MSB of low if 0 */
421 	low &= bottom63bits;
422 	low -= kPrime3Test;
423 	/* if low was greater than kPrime3Test then the MSB is zero */
424 	low = ~low;
425 	low >>= 63;
426 	/* low is:
427 	 *   all ones   if low was > kPrime3Test
428 	 *   all zeros  if low was <= kPrime3Test */
429 	mask = (mask & low) | high;
430 	tmp[0] -= mask & kPrime[0];
431 	tmp[1] -= mask & kPrime[1];
432 	/* kPrime[2] is zero, so omitted */
433 	tmp[3] -= mask & kPrime[3];
434 	/* tmp[3] < 2**64 - 2**32 + 1 */
435 
436 	tmp[1] += ((u64) (tmp[0] >> 64)); tmp[0] = (u64) tmp[0];
437 	tmp[2] += ((u64) (tmp[1] >> 64)); tmp[1] = (u64) tmp[1];
438 	tmp[3] += ((u64) (tmp[2] >> 64)); tmp[2] = (u64) tmp[2];
439 	/* tmp[i] < 2^64 */
440 
441 	out[0] = tmp[0];
442 	out[1] = tmp[1];
443 	out[2] = tmp[2];
444 	out[3] = tmp[3];
445 	}
446 
447 /* smallfelem_expand converts a smallfelem to an felem */
448 static void smallfelem_expand(felem out, const smallfelem in)
449 	{
450 	out[0] = in[0];
451 	out[1] = in[1];
452 	out[2] = in[2];
453 	out[3] = in[3];
454 	}
455 
456 /* smallfelem_square sets |out| = |small|^2
457  * On entry:
458  *   small[i] < 2^64
459  * On exit:
460  *   out[i] < 7 * 2^64 < 2^67
461  */
462 static void smallfelem_square(longfelem out, const smallfelem small)
463 	{
464 	limb a;
465 	u64 high, low;
466 
467 	a = ((uint128_t) small[0]) * small[0];
468 	low = a;
469 	high = a >> 64;
470 	out[0] = low;
471 	out[1] = high;
472 
473 	a = ((uint128_t) small[0]) * small[1];
474 	low = a;
475 	high = a >> 64;
476 	out[1] += low;
477 	out[1] += low;
478 	out[2] = high;
479 
480 	a = ((uint128_t) small[0]) * small[2];
481 	low = a;
482 	high = a >> 64;
483 	out[2] += low;
484 	out[2] *= 2;
485 	out[3] = high;
486 
487 	a = ((uint128_t) small[0]) * small[3];
488 	low = a;
489 	high = a >> 64;
490 	out[3] += low;
491 	out[4] = high;
492 
493 	a = ((uint128_t) small[1]) * small[2];
494 	low = a;
495 	high = a >> 64;
496 	out[3] += low;
497 	out[3] *= 2;
498 	out[4] += high;
499 
500 	a = ((uint128_t) small[1]) * small[1];
501 	low = a;
502 	high = a >> 64;
503 	out[2] += low;
504 	out[3] += high;
505 
506 	a = ((uint128_t) small[1]) * small[3];
507 	low = a;
508 	high = a >> 64;
509 	out[4] += low;
510 	out[4] *= 2;
511 	out[5] = high;
512 
513 	a = ((uint128_t) small[2]) * small[3];
514 	low = a;
515 	high = a >> 64;
516 	out[5] += low;
517 	out[5] *= 2;
518 	out[6] = high;
519 	out[6] += high;
520 
521 	a = ((uint128_t) small[2]) * small[2];
522 	low = a;
523 	high = a >> 64;
524 	out[4] += low;
525 	out[5] += high;
526 
527 	a = ((uint128_t) small[3]) * small[3];
528 	low = a;
529 	high = a >> 64;
530 	out[6] += low;
531 	out[7] = high;
532 	}
533 
534 /* felem_square sets |out| = |in|^2
535  * On entry:
536  *   in[i] < 2^109
537  * On exit:
538  *   out[i] < 7 * 2^64 < 2^67
539  */
540 static void felem_square(longfelem out, const felem in)
541 	{
542 	u64 small[4];
543 	felem_shrink(small, in);
544 	smallfelem_square(out, small);
545 	}
546 
547 /* smallfelem_mul sets |out| = |small1| * |small2|
548  * On entry:
549  *   small1[i] < 2^64
550  *   small2[i] < 2^64
551  * On exit:
552  *   out[i] < 7 * 2^64 < 2^67
553  */
554 static void smallfelem_mul(longfelem out, const smallfelem small1, const smallfelem small2)
555 	{
556 	limb a;
557 	u64 high, low;
558 
559 	a = ((uint128_t) small1[0]) * small2[0];
560 	low = a;
561 	high = a >> 64;
562 	out[0] = low;
563 	out[1] = high;
564 
565 
566 	a = ((uint128_t) small1[0]) * small2[1];
567 	low = a;
568 	high = a >> 64;
569 	out[1] += low;
570 	out[2] = high;
571 
572 	a = ((uint128_t) small1[1]) * small2[0];
573 	low = a;
574 	high = a >> 64;
575 	out[1] += low;
576 	out[2] += high;
577 
578 
579 	a = ((uint128_t) small1[0]) * small2[2];
580 	low = a;
581 	high = a >> 64;
582 	out[2] += low;
583 	out[3] = high;
584 
585 	a = ((uint128_t) small1[1]) * small2[1];
586 	low = a;
587 	high = a >> 64;
588 	out[2] += low;
589 	out[3] += high;
590 
591 	a = ((uint128_t) small1[2]) * small2[0];
592 	low = a;
593 	high = a >> 64;
594 	out[2] += low;
595 	out[3] += high;
596 
597 
598 	a = ((uint128_t) small1[0]) * small2[3];
599 	low = a;
600 	high = a >> 64;
601 	out[3] += low;
602 	out[4] = high;
603 
604 	a = ((uint128_t) small1[1]) * small2[2];
605 	low = a;
606 	high = a >> 64;
607 	out[3] += low;
608 	out[4] += high;
609 
610 	a = ((uint128_t) small1[2]) * small2[1];
611 	low = a;
612 	high = a >> 64;
613 	out[3] += low;
614 	out[4] += high;
615 
616 	a = ((uint128_t) small1[3]) * small2[0];
617 	low = a;
618 	high = a >> 64;
619 	out[3] += low;
620 	out[4] += high;
621 
622 
623 	a = ((uint128_t) small1[1]) * small2[3];
624 	low = a;
625 	high = a >> 64;
626 	out[4] += low;
627 	out[5] = high;
628 
629 	a = ((uint128_t) small1[2]) * small2[2];
630 	low = a;
631 	high = a >> 64;
632 	out[4] += low;
633 	out[5] += high;
634 
635 	a = ((uint128_t) small1[3]) * small2[1];
636 	low = a;
637 	high = a >> 64;
638 	out[4] += low;
639 	out[5] += high;
640 
641 
642 	a = ((uint128_t) small1[2]) * small2[3];
643 	low = a;
644 	high = a >> 64;
645 	out[5] += low;
646 	out[6] = high;
647 
648 	a = ((uint128_t) small1[3]) * small2[2];
649 	low = a;
650 	high = a >> 64;
651 	out[5] += low;
652 	out[6] += high;
653 
654 
655 	a = ((uint128_t) small1[3]) * small2[3];
656 	low = a;
657 	high = a >> 64;
658 	out[6] += low;
659 	out[7] = high;
660 	}
661 
662 /* felem_mul sets |out| = |in1| * |in2|
663  * On entry:
664  *   in1[i] < 2^109
665  *   in2[i] < 2^109
666  * On exit:
667  *   out[i] < 7 * 2^64 < 2^67
668  */
669 static void felem_mul(longfelem out, const felem in1, const felem in2)
670 	{
671 	smallfelem small1, small2;
672 	felem_shrink(small1, in1);
673 	felem_shrink(small2, in2);
674 	smallfelem_mul(out, small1, small2);
675 	}
676 
677 /* felem_small_mul sets |out| = |small1| * |in2|
678  * On entry:
679  *   small1[i] < 2^64
680  *   in2[i] < 2^109
681  * On exit:
682  *   out[i] < 7 * 2^64 < 2^67
683  */
684 static void felem_small_mul(longfelem out, const smallfelem small1, const felem in2)
685 	{
686 	smallfelem small2;
687 	felem_shrink(small2, in2);
688 	smallfelem_mul(out, small1, small2);
689 	}
690 
691 #define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4)
692 #define two100 (((limb)1) << 100)
693 #define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4)
694 /* zero100 is 0 mod p */
695 static const felem zero100 = { two100m36m4, two100, two100m36p4, two100m36p4 };
696 
697 /* Internal function for the different flavours of felem_reduce.
698  * felem_reduce_ reduces the higher coefficients in[4]-in[7].
699  * On entry:
700  *   out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7]
701  *   out[1] >= in[7] + 2^32*in[4]
702  *   out[2] >= in[5] + 2^32*in[5]
703  *   out[3] >= in[4] + 2^32*in[5] + 2^32*in[6]
704  * On exit:
705  *   out[0] <= out[0] + in[4] + 2^32*in[5]
706  *   out[1] <= out[1] + in[5] + 2^33*in[6]
707  *   out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7]
708  *   out[3] <= out[3] + 2^32*in[4] + 3*in[7]
709  */
710 static void felem_reduce_(felem out, const longfelem in)
711 	{
712 	int128_t c;
713 	/* combine common terms from below */
714 	c = in[4] + (in[5] << 32);
715 	out[0] += c;
716 	out[3] -= c;
717 
718 	c = in[5] - in[7];
719 	out[1] += c;
720 	out[2] -= c;
721 
722 	/* the remaining terms */
723 	/* 256: [(0,1),(96,-1),(192,-1),(224,1)] */
724 	out[1] -= (in[4] << 32);
725 	out[3] += (in[4] << 32);
726 
727 	/* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */
728 	out[2] -= (in[5] << 32);
729 
730 	/* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */
731 	out[0] -= in[6];
732 	out[0] -= (in[6] << 32);
733 	out[1] += (in[6] << 33);
734 	out[2] += (in[6] * 2);
735 	out[3] -= (in[6] << 32);
736 
737 	/* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */
738 	out[0] -= in[7];
739 	out[0] -= (in[7] << 32);
740 	out[2] += (in[7] << 33);
741 	out[3] += (in[7] * 3);
742 	}
743 
744 /* felem_reduce converts a longfelem into an felem.
745  * To be called directly after felem_square or felem_mul.
746  * On entry:
747  *   in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64
748  *   in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64
749  * On exit:
750  *   out[i] < 2^101
751  */
752 static void felem_reduce(felem out, const longfelem in)
753 	{
754 	out[0] = zero100[0] + in[0];
755 	out[1] = zero100[1] + in[1];
756 	out[2] = zero100[2] + in[2];
757 	out[3] = zero100[3] + in[3];
758 
759 	felem_reduce_(out, in);
760 
761 	/* out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0
762 	 * out[1] > 2^100 - 2^64 - 7*2^96 > 0
763 	 * out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0
764 	 * out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0
765 	 *
766 	 * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101
767 	 * out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101
768 	 * out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101
769 	 * out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101
770 	 */
771 	}
772 
773 /* felem_reduce_zero105 converts a larger longfelem into an felem.
774  * On entry:
775  *   in[0] < 2^71
776  * On exit:
777  *   out[i] < 2^106
778  */
779 static void felem_reduce_zero105(felem out, const longfelem in)
780 	{
781 	out[0] = zero105[0] + in[0];
782 	out[1] = zero105[1] + in[1];
783 	out[2] = zero105[2] + in[2];
784 	out[3] = zero105[3] + in[3];
785 
786 	felem_reduce_(out, in);
787 
788 	/* out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0
789 	 * out[1] > 2^105 - 2^71 - 2^103 > 0
790 	 * out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0
791 	 * out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0
792 	 *
793 	 * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
794 	 * out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
795 	 * out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106
796 	 * out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106
797 	 */
798 	}
799 
800 /* subtract_u64 sets *result = *result - v and *carry to one if the subtraction
801  * underflowed. */
802 static void subtract_u64(u64* result, u64* carry, u64 v)
803 	{
804 	uint128_t r = *result;
805 	r -= v;
806 	*carry = (r >> 64) & 1;
807 	*result = (u64) r;
808 	}
809 
810 /* felem_contract converts |in| to its unique, minimal representation.
811  * On entry:
812  *   in[i] < 2^109
813  */
814 static void felem_contract(smallfelem out, const felem in)
815 	{
816 	unsigned i;
817 	u64 all_equal_so_far = 0, result = 0, carry;
818 
819 	felem_shrink(out, in);
820 	/* small is minimal except that the value might be > p */
821 
822 	all_equal_so_far--;
823 	/* We are doing a constant time test if out >= kPrime. We need to
824 	 * compare each u64, from most-significant to least significant. For
825 	 * each one, if all words so far have been equal (m is all ones) then a
826 	 * non-equal result is the answer. Otherwise we continue. */
827 	for (i = 3; i < 4; i--)
828 		{
829 		u64 equal;
830 		uint128_t a = ((uint128_t) kPrime[i]) - out[i];
831 		/* if out[i] > kPrime[i] then a will underflow and the high
832 		 * 64-bits will all be set. */
833 		result |= all_equal_so_far & ((u64) (a >> 64));
834 
835 		/* if kPrime[i] == out[i] then |equal| will be all zeros and
836 		 * the decrement will make it all ones. */
837 		equal = kPrime[i] ^ out[i];
838 		equal--;
839 		equal &= equal << 32;
840 		equal &= equal << 16;
841 		equal &= equal << 8;
842 		equal &= equal << 4;
843 		equal &= equal << 2;
844 		equal &= equal << 1;
845 		equal = ((s64) equal) >> 63;
846 
847 		all_equal_so_far &= equal;
848 		}
849 
850 	/* if all_equal_so_far is still all ones then the two values are equal
851 	 * and so out >= kPrime is true. */
852 	result |= all_equal_so_far;
853 
854 	/* if out >= kPrime then we subtract kPrime. */
855 	subtract_u64(&out[0], &carry, result & kPrime[0]);
856 	subtract_u64(&out[1], &carry, carry);
857 	subtract_u64(&out[2], &carry, carry);
858 	subtract_u64(&out[3], &carry, carry);
859 
860 	subtract_u64(&out[1], &carry, result & kPrime[1]);
861 	subtract_u64(&out[2], &carry, carry);
862 	subtract_u64(&out[3], &carry, carry);
863 
864 	subtract_u64(&out[2], &carry, result & kPrime[2]);
865 	subtract_u64(&out[3], &carry, carry);
866 
867 	subtract_u64(&out[3], &carry, result & kPrime[3]);
868 	}
869 
870 static void smallfelem_square_contract(smallfelem out, const smallfelem in)
871 	{
872 	longfelem longtmp;
873 	felem tmp;
874 
875 	smallfelem_square(longtmp, in);
876 	felem_reduce(tmp, longtmp);
877 	felem_contract(out, tmp);
878 	}
879 
880 static void smallfelem_mul_contract(smallfelem out, const smallfelem in1, const smallfelem in2)
881 	{
882 	longfelem longtmp;
883 	felem tmp;
884 
885 	smallfelem_mul(longtmp, in1, in2);
886 	felem_reduce(tmp, longtmp);
887 	felem_contract(out, tmp);
888 	}
889 
890 /* felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
891  * otherwise.
892  * On entry:
893  *   small[i] < 2^64
894  */
895 static limb smallfelem_is_zero(const smallfelem small)
896 	{
897 	limb result;
898 	u64 is_p;
899 
900 	u64 is_zero = small[0] | small[1] | small[2] | small[3];
901 	is_zero--;
902 	is_zero &= is_zero << 32;
903 	is_zero &= is_zero << 16;
904 	is_zero &= is_zero << 8;
905 	is_zero &= is_zero << 4;
906 	is_zero &= is_zero << 2;
907 	is_zero &= is_zero << 1;
908 	is_zero = ((s64) is_zero) >> 63;
909 
910 	is_p = (small[0] ^ kPrime[0]) |
911 	       (small[1] ^ kPrime[1]) |
912 	       (small[2] ^ kPrime[2]) |
913 	       (small[3] ^ kPrime[3]);
914 	is_p--;
915 	is_p &= is_p << 32;
916 	is_p &= is_p << 16;
917 	is_p &= is_p << 8;
918 	is_p &= is_p << 4;
919 	is_p &= is_p << 2;
920 	is_p &= is_p << 1;
921 	is_p = ((s64) is_p) >> 63;
922 
923 	is_zero |= is_p;
924 
925 	result = is_zero;
926 	result |= ((limb) is_zero) << 64;
927 	return result;
928 	}
929 
930 static int smallfelem_is_zero_int(const smallfelem small)
931 	{
932 	return (int) (smallfelem_is_zero(small) & ((limb)1));
933 	}
934 
935 /* felem_inv calculates |out| = |in|^{-1}
936  *
937  * Based on Fermat's Little Theorem:
938  *   a^p = a (mod p)
939  *   a^{p-1} = 1 (mod p)
940  *   a^{p-2} = a^{-1} (mod p)
941  */
942 static void felem_inv(felem out, const felem in)
943 	{
944 	felem ftmp, ftmp2;
945 	/* each e_I will hold |in|^{2^I - 1} */
946 	felem e2, e4, e8, e16, e32, e64;
947 	longfelem tmp;
948 	unsigned i;
949 
950 	felem_square(tmp, in); felem_reduce(ftmp, tmp);			/* 2^1 */
951 	felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp);		/* 2^2 - 2^0 */
952 	felem_assign(e2, ftmp);
953 	felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);		/* 2^3 - 2^1 */
954 	felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);		/* 2^4 - 2^2 */
955 	felem_mul(tmp, ftmp, e2); felem_reduce(ftmp, tmp);		/* 2^4 - 2^0 */
956 	felem_assign(e4, ftmp);
957 	felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);		/* 2^5 - 2^1 */
958 	felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);		/* 2^6 - 2^2 */
959 	felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);		/* 2^7 - 2^3 */
960 	felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);		/* 2^8 - 2^4 */
961 	felem_mul(tmp, ftmp, e4); felem_reduce(ftmp, tmp);		/* 2^8 - 2^0 */
962 	felem_assign(e8, ftmp);
963 	for (i = 0; i < 8; i++) {
964 		felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);
965 	}								/* 2^16 - 2^8 */
966 	felem_mul(tmp, ftmp, e8); felem_reduce(ftmp, tmp);		/* 2^16 - 2^0 */
967 	felem_assign(e16, ftmp);
968 	for (i = 0; i < 16; i++) {
969 		felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);
970 	}								/* 2^32 - 2^16 */
971 	felem_mul(tmp, ftmp, e16); felem_reduce(ftmp, tmp);		/* 2^32 - 2^0 */
972 	felem_assign(e32, ftmp);
973 	for (i = 0; i < 32; i++) {
974 		felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);
975 	}								/* 2^64 - 2^32 */
976 	felem_assign(e64, ftmp);
977 	felem_mul(tmp, ftmp, in); felem_reduce(ftmp, tmp);		/* 2^64 - 2^32 + 2^0 */
978 	for (i = 0; i < 192; i++) {
979 		felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);
980 	}								/* 2^256 - 2^224 + 2^192 */
981 
982 	felem_mul(tmp, e64, e32); felem_reduce(ftmp2, tmp);		/* 2^64 - 2^0 */
983 	for (i = 0; i < 16; i++) {
984 		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
985 	}								/* 2^80 - 2^16 */
986 	felem_mul(tmp, ftmp2, e16); felem_reduce(ftmp2, tmp);		/* 2^80 - 2^0 */
987 	for (i = 0; i < 8; i++) {
988 		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
989 	}								/* 2^88 - 2^8 */
990 	felem_mul(tmp, ftmp2, e8); felem_reduce(ftmp2, tmp);		/* 2^88 - 2^0 */
991 	for (i = 0; i < 4; i++) {
992 		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
993 	}								/* 2^92 - 2^4 */
994 	felem_mul(tmp, ftmp2, e4); felem_reduce(ftmp2, tmp);		/* 2^92 - 2^0 */
995 	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);		/* 2^93 - 2^1 */
996 	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);		/* 2^94 - 2^2 */
997 	felem_mul(tmp, ftmp2, e2); felem_reduce(ftmp2, tmp);		/* 2^94 - 2^0 */
998 	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);		/* 2^95 - 2^1 */
999 	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);		/* 2^96 - 2^2 */
1000 	felem_mul(tmp, ftmp2, in); felem_reduce(ftmp2, tmp);		/* 2^96 - 3 */
1001 
1002 	felem_mul(tmp, ftmp2, ftmp); felem_reduce(out, tmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */
1003 	}
1004 
1005 static void smallfelem_inv_contract(smallfelem out, const smallfelem in)
1006 	{
1007 	felem tmp;
1008 
1009 	smallfelem_expand(tmp, in);
1010 	felem_inv(tmp, tmp);
1011 	felem_contract(out, tmp);
1012 	}
1013 
1014 /* Group operations
1015  * ----------------
1016  *
1017  * Building on top of the field operations we have the operations on the
1018  * elliptic curve group itself. Points on the curve are represented in Jacobian
1019  * coordinates */
1020 
1021 /* point_double calculates 2*(x_in, y_in, z_in)
1022  *
1023  * The method is taken from:
1024  *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1025  *
1026  * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1027  * while x_out == y_in is not (maybe this works, but it's not tested). */
1028 static void
1029 point_double(felem x_out, felem y_out, felem z_out,
1030 	     const felem x_in, const felem y_in, const felem z_in)
1031 	{
1032 	longfelem tmp, tmp2;
1033 	felem delta, gamma, beta, alpha, ftmp, ftmp2;
1034 	smallfelem small1, small2;
1035 
1036 	felem_assign(ftmp, x_in);
1037 	/* ftmp[i] < 2^106 */
1038 	felem_assign(ftmp2, x_in);
1039 	/* ftmp2[i] < 2^106 */
1040 
1041 	/* delta = z^2 */
1042 	felem_square(tmp, z_in);
1043 	felem_reduce(delta, tmp);
1044 	/* delta[i] < 2^101 */
1045 
1046 	/* gamma = y^2 */
1047 	felem_square(tmp, y_in);
1048 	felem_reduce(gamma, tmp);
1049 	/* gamma[i] < 2^101 */
1050 	felem_shrink(small1, gamma);
1051 
1052 	/* beta = x*gamma */
1053 	felem_small_mul(tmp, small1, x_in);
1054 	felem_reduce(beta, tmp);
1055 	/* beta[i] < 2^101 */
1056 
1057 	/* alpha = 3*(x-delta)*(x+delta) */
1058 	felem_diff(ftmp, delta);
1059 	/* ftmp[i] < 2^105 + 2^106 < 2^107 */
1060 	felem_sum(ftmp2, delta);
1061 	/* ftmp2[i] < 2^105 + 2^106 < 2^107 */
1062 	felem_scalar(ftmp2, 3);
1063 	/* ftmp2[i] < 3 * 2^107 < 2^109 */
1064 	felem_mul(tmp, ftmp, ftmp2);
1065 	felem_reduce(alpha, tmp);
1066 	/* alpha[i] < 2^101 */
1067 	felem_shrink(small2, alpha);
1068 
1069 	/* x' = alpha^2 - 8*beta */
1070 	smallfelem_square(tmp, small2);
1071 	felem_reduce(x_out, tmp);
1072 	felem_assign(ftmp, beta);
1073 	felem_scalar(ftmp, 8);
1074 	/* ftmp[i] < 8 * 2^101 = 2^104 */
1075 	felem_diff(x_out, ftmp);
1076 	/* x_out[i] < 2^105 + 2^101 < 2^106 */
1077 
1078 	/* z' = (y + z)^2 - gamma - delta */
1079 	felem_sum(delta, gamma);
1080 	/* delta[i] < 2^101 + 2^101 = 2^102 */
1081 	felem_assign(ftmp, y_in);
1082 	felem_sum(ftmp, z_in);
1083 	/* ftmp[i] < 2^106 + 2^106 = 2^107 */
1084 	felem_square(tmp, ftmp);
1085 	felem_reduce(z_out, tmp);
1086 	felem_diff(z_out, delta);
1087 	/* z_out[i] < 2^105 + 2^101 < 2^106 */
1088 
1089 	/* y' = alpha*(4*beta - x') - 8*gamma^2 */
1090 	felem_scalar(beta, 4);
1091 	/* beta[i] < 4 * 2^101 = 2^103 */
1092 	felem_diff_zero107(beta, x_out);
1093 	/* beta[i] < 2^107 + 2^103 < 2^108 */
1094 	felem_small_mul(tmp, small2, beta);
1095 	/* tmp[i] < 7 * 2^64 < 2^67 */
1096 	smallfelem_square(tmp2, small1);
1097 	/* tmp2[i] < 7 * 2^64 */
1098 	longfelem_scalar(tmp2, 8);
1099 	/* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */
1100 	longfelem_diff(tmp, tmp2);
1101 	/* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
1102 	felem_reduce_zero105(y_out, tmp);
1103 	/* y_out[i] < 2^106 */
1104 	}
1105 
1106 /* point_double_small is the same as point_double, except that it operates on
1107  * smallfelems */
1108 static void
1109 point_double_small(smallfelem x_out, smallfelem y_out, smallfelem z_out,
1110 		   const smallfelem x_in, const smallfelem y_in, const smallfelem z_in)
1111 	{
1112 	felem felem_x_out, felem_y_out, felem_z_out;
1113 	felem felem_x_in, felem_y_in, felem_z_in;
1114 
1115 	smallfelem_expand(felem_x_in, x_in);
1116 	smallfelem_expand(felem_y_in, y_in);
1117 	smallfelem_expand(felem_z_in, z_in);
1118 	point_double(felem_x_out, felem_y_out, felem_z_out,
1119 		     felem_x_in, felem_y_in, felem_z_in);
1120 	felem_shrink(x_out, felem_x_out);
1121 	felem_shrink(y_out, felem_y_out);
1122 	felem_shrink(z_out, felem_z_out);
1123 	}
1124 
1125 /* copy_conditional copies in to out iff mask is all ones. */
1126 static void
1127 copy_conditional(felem out, const felem in, limb mask)
1128 	{
1129 	unsigned i;
1130 	for (i = 0; i < NLIMBS; ++i)
1131 		{
1132 		const limb tmp = mask & (in[i] ^ out[i]);
1133 		out[i] ^= tmp;
1134 		}
1135 	}
1136 
1137 /* copy_small_conditional copies in to out iff mask is all ones. */
1138 static void
1139 copy_small_conditional(felem out, const smallfelem in, limb mask)
1140 	{
1141 	unsigned i;
1142 	const u64 mask64 = mask;
1143 	for (i = 0; i < NLIMBS; ++i)
1144 		{
1145 		out[i] = ((limb) (in[i] & mask64)) | (out[i] & ~mask);
1146 		}
1147 	}
1148 
1149 /* point_add calcuates (x1, y1, z1) + (x2, y2, z2)
1150  *
1151  * The method is taken from:
1152  *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1153  * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1154  *
1155  * This function includes a branch for checking whether the two input points
1156  * are equal, (while not equal to the point at infinity). This case never
1157  * happens during single point multiplication, so there is no timing leak for
1158  * ECDH or ECDSA signing. */
1159 static void point_add(felem x3, felem y3, felem z3,
1160 	const felem x1, const felem y1, const felem z1,
1161 	const int mixed, const smallfelem x2, const smallfelem y2, const smallfelem z2)
1162 	{
1163 	felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1164 	longfelem tmp, tmp2;
1165 	smallfelem small1, small2, small3, small4, small5;
1166 	limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1167 
1168 	felem_shrink(small3, z1);
1169 
1170 	z1_is_zero = smallfelem_is_zero(small3);
1171 	z2_is_zero = smallfelem_is_zero(z2);
1172 
1173 	/* ftmp = z1z1 = z1**2 */
1174 	smallfelem_square(tmp, small3);
1175 	felem_reduce(ftmp, tmp);
1176 	/* ftmp[i] < 2^101 */
1177 	felem_shrink(small1, ftmp);
1178 
1179 	if(!mixed)
1180 		{
1181 		/* ftmp2 = z2z2 = z2**2 */
1182 		smallfelem_square(tmp, z2);
1183 		felem_reduce(ftmp2, tmp);
1184 		/* ftmp2[i] < 2^101 */
1185 		felem_shrink(small2, ftmp2);
1186 
1187 		felem_shrink(small5, x1);
1188 
1189 		/* u1 = ftmp3 = x1*z2z2 */
1190 		smallfelem_mul(tmp, small5, small2);
1191 		felem_reduce(ftmp3, tmp);
1192 		/* ftmp3[i] < 2^101 */
1193 
1194 		/* ftmp5 = z1 + z2 */
1195 		felem_assign(ftmp5, z1);
1196 		felem_small_sum(ftmp5, z2);
1197 		/* ftmp5[i] < 2^107 */
1198 
1199 		/* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */
1200 		felem_square(tmp, ftmp5);
1201 		felem_reduce(ftmp5, tmp);
1202 		/* ftmp2 = z2z2 + z1z1 */
1203 		felem_sum(ftmp2, ftmp);
1204 		/* ftmp2[i] < 2^101 + 2^101 = 2^102 */
1205 		felem_diff(ftmp5, ftmp2);
1206 		/* ftmp5[i] < 2^105 + 2^101 < 2^106 */
1207 
1208 		/* ftmp2 = z2 * z2z2 */
1209 		smallfelem_mul(tmp, small2, z2);
1210 		felem_reduce(ftmp2, tmp);
1211 
1212 		/* s1 = ftmp2 = y1 * z2**3 */
1213 		felem_mul(tmp, y1, ftmp2);
1214 		felem_reduce(ftmp6, tmp);
1215 		/* ftmp6[i] < 2^101 */
1216 		}
1217 	else
1218 		{
1219 		/* We'll assume z2 = 1 (special case z2 = 0 is handled later) */
1220 
1221 		/* u1 = ftmp3 = x1*z2z2 */
1222 		felem_assign(ftmp3, x1);
1223 		/* ftmp3[i] < 2^106 */
1224 
1225 		/* ftmp5 = 2z1z2 */
1226 		felem_assign(ftmp5, z1);
1227 		felem_scalar(ftmp5, 2);
1228 		/* ftmp5[i] < 2*2^106 = 2^107 */
1229 
1230 		/* s1 = ftmp2 = y1 * z2**3 */
1231 		felem_assign(ftmp6, y1);
1232 		/* ftmp6[i] < 2^106 */
1233 		}
1234 
1235 	/* u2 = x2*z1z1 */
1236 	smallfelem_mul(tmp, x2, small1);
1237 	felem_reduce(ftmp4, tmp);
1238 
1239 	/* h = ftmp4 = u2 - u1 */
1240 	felem_diff_zero107(ftmp4, ftmp3);
1241 	/* ftmp4[i] < 2^107 + 2^101 < 2^108 */
1242 	felem_shrink(small4, ftmp4);
1243 
1244 	x_equal = smallfelem_is_zero(small4);
1245 
1246 	/* z_out = ftmp5 * h */
1247 	felem_small_mul(tmp, small4, ftmp5);
1248 	felem_reduce(z_out, tmp);
1249 	/* z_out[i] < 2^101 */
1250 
1251 	/* ftmp = z1 * z1z1 */
1252 	smallfelem_mul(tmp, small1, small3);
1253 	felem_reduce(ftmp, tmp);
1254 
1255 	/* s2 = tmp = y2 * z1**3 */
1256 	felem_small_mul(tmp, y2, ftmp);
1257 	felem_reduce(ftmp5, tmp);
1258 
1259 	/* r = ftmp5 = (s2 - s1)*2 */
1260 	felem_diff_zero107(ftmp5, ftmp6);
1261 	/* ftmp5[i] < 2^107 + 2^107 = 2^108*/
1262 	felem_scalar(ftmp5, 2);
1263 	/* ftmp5[i] < 2^109 */
1264 	felem_shrink(small1, ftmp5);
1265 	y_equal = smallfelem_is_zero(small1);
1266 
1267 	if (x_equal && y_equal && !z1_is_zero && !z2_is_zero)
1268 		{
1269 		point_double(x3, y3, z3, x1, y1, z1);
1270 		return;
1271 		}
1272 
1273 	/* I = ftmp = (2h)**2 */
1274 	felem_assign(ftmp, ftmp4);
1275 	felem_scalar(ftmp, 2);
1276 	/* ftmp[i] < 2*2^108 = 2^109 */
1277 	felem_square(tmp, ftmp);
1278 	felem_reduce(ftmp, tmp);
1279 
1280 	/* J = ftmp2 = h * I */
1281 	felem_mul(tmp, ftmp4, ftmp);
1282 	felem_reduce(ftmp2, tmp);
1283 
1284 	/* V = ftmp4 = U1 * I */
1285 	felem_mul(tmp, ftmp3, ftmp);
1286 	felem_reduce(ftmp4, tmp);
1287 
1288 	/* x_out = r**2 - J - 2V */
1289 	smallfelem_square(tmp, small1);
1290 	felem_reduce(x_out, tmp);
1291 	felem_assign(ftmp3, ftmp4);
1292 	felem_scalar(ftmp4, 2);
1293 	felem_sum(ftmp4, ftmp2);
1294 	/* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */
1295 	felem_diff(x_out, ftmp4);
1296 	/* x_out[i] < 2^105 + 2^101 */
1297 
1298 	/* y_out = r(V-x_out) - 2 * s1 * J */
1299 	felem_diff_zero107(ftmp3, x_out);
1300 	/* ftmp3[i] < 2^107 + 2^101 < 2^108 */
1301 	felem_small_mul(tmp, small1, ftmp3);
1302 	felem_mul(tmp2, ftmp6, ftmp2);
1303 	longfelem_scalar(tmp2, 2);
1304 	/* tmp2[i] < 2*2^67 = 2^68 */
1305 	longfelem_diff(tmp, tmp2);
1306 	/* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
1307 	felem_reduce_zero105(y_out, tmp);
1308 	/* y_out[i] < 2^106 */
1309 
1310 	copy_small_conditional(x_out, x2, z1_is_zero);
1311 	copy_conditional(x_out, x1, z2_is_zero);
1312 	copy_small_conditional(y_out, y2, z1_is_zero);
1313 	copy_conditional(y_out, y1, z2_is_zero);
1314 	copy_small_conditional(z_out, z2, z1_is_zero);
1315 	copy_conditional(z_out, z1, z2_is_zero);
1316 	felem_assign(x3, x_out);
1317 	felem_assign(y3, y_out);
1318 	felem_assign(z3, z_out);
1319 	}
1320 
1321 /* point_add_small is the same as point_add, except that it operates on
1322  * smallfelems */
1323 static void point_add_small(smallfelem x3, smallfelem y3, smallfelem z3,
1324 			    smallfelem x1, smallfelem y1, smallfelem z1,
1325 			    smallfelem x2, smallfelem y2, smallfelem z2)
1326 	{
1327 	felem felem_x3, felem_y3, felem_z3;
1328 	felem felem_x1, felem_y1, felem_z1;
1329 	smallfelem_expand(felem_x1, x1);
1330 	smallfelem_expand(felem_y1, y1);
1331 	smallfelem_expand(felem_z1, z1);
1332 	point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0, x2, y2, z2);
1333 	felem_shrink(x3, felem_x3);
1334 	felem_shrink(y3, felem_y3);
1335 	felem_shrink(z3, felem_z3);
1336 	}
1337 
1338 /* Base point pre computation
1339  * --------------------------
1340  *
1341  * Two different sorts of precomputed tables are used in the following code.
1342  * Each contain various points on the curve, where each point is three field
1343  * elements (x, y, z).
1344  *
1345  * For the base point table, z is usually 1 (0 for the point at infinity).
1346  * This table has 2 * 16 elements, starting with the following:
1347  * index | bits    | point
1348  * ------+---------+------------------------------
1349  *     0 | 0 0 0 0 | 0G
1350  *     1 | 0 0 0 1 | 1G
1351  *     2 | 0 0 1 0 | 2^64G
1352  *     3 | 0 0 1 1 | (2^64 + 1)G
1353  *     4 | 0 1 0 0 | 2^128G
1354  *     5 | 0 1 0 1 | (2^128 + 1)G
1355  *     6 | 0 1 1 0 | (2^128 + 2^64)G
1356  *     7 | 0 1 1 1 | (2^128 + 2^64 + 1)G
1357  *     8 | 1 0 0 0 | 2^192G
1358  *     9 | 1 0 0 1 | (2^192 + 1)G
1359  *    10 | 1 0 1 0 | (2^192 + 2^64)G
1360  *    11 | 1 0 1 1 | (2^192 + 2^64 + 1)G
1361  *    12 | 1 1 0 0 | (2^192 + 2^128)G
1362  *    13 | 1 1 0 1 | (2^192 + 2^128 + 1)G
1363  *    14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G
1364  *    15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G
1365  * followed by a copy of this with each element multiplied by 2^32.
1366  *
1367  * The reason for this is so that we can clock bits into four different
1368  * locations when doing simple scalar multiplies against the base point,
1369  * and then another four locations using the second 16 elements.
1370  *
1371  * Tables for other points have table[i] = iG for i in 0 .. 16. */
1372 
1373 /* gmul is the table of precomputed base points */
1374 static const smallfelem gmul[2][16][3] =
1375 {{{{0, 0, 0, 0},
1376    {0, 0, 0, 0},
1377    {0, 0, 0, 0}},
1378   {{0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2, 0x6b17d1f2e12c4247},
1379    {0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16, 0x4fe342e2fe1a7f9b},
1380    {1, 0, 0, 0}},
1381   {{0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de, 0x0fa822bc2811aaa5},
1382    {0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b, 0xbff44ae8f5dba80d},
1383    {1, 0, 0, 0}},
1384   {{0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789, 0x300a4bbc89d6726f},
1385    {0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f, 0x72aac7e0d09b4644},
1386    {1, 0, 0, 0}},
1387   {{0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e, 0x447d739beedb5e67},
1388    {0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7, 0x2d4825ab834131ee},
1389    {1, 0, 0, 0}},
1390   {{0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60, 0xef9519328a9c72ff},
1391    {0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c, 0x611e9fc37dbb2c9b},
1392    {1, 0, 0, 0}},
1393   {{0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf, 0x550663797b51f5d8},
1394    {0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5, 0x157164848aecb851},
1395    {1, 0, 0, 0}},
1396   {{0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391, 0xeb5d7745b21141ea},
1397    {0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee, 0xeafd72ebdbecc17b},
1398    {1, 0, 0, 0}},
1399   {{0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5, 0xa6d39677a7849276},
1400    {0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf, 0x674f84749b0b8816},
1401    {1, 0, 0, 0}},
1402   {{0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb, 0x4e769e7672c9ddad},
1403    {0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281, 0x42b99082de830663},
1404    {1, 0, 0, 0}},
1405   {{0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478, 0x78878ef61c6ce04d},
1406    {0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def, 0xb6cb3f5d7b72c321},
1407    {1, 0, 0, 0}},
1408   {{0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae, 0x0c88bc4d716b1287},
1409    {0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa, 0xdd5ddea3f3901dc6},
1410    {1, 0, 0, 0}},
1411   {{0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3, 0x68f344af6b317466},
1412    {0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3, 0x31b9c405f8540a20},
1413    {1, 0, 0, 0}},
1414   {{0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0, 0x4052bf4b6f461db9},
1415    {0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8, 0xfecf4d5190b0fc61},
1416    {1, 0, 0, 0}},
1417   {{0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a, 0x1eddbae2c802e41a},
1418    {0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0, 0x43104d86560ebcfc},
1419    {1, 0, 0, 0}},
1420   {{0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a, 0xb48e26b484f7a21c},
1421    {0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668, 0xfac015404d4d3dab},
1422    {1, 0, 0, 0}}},
1423  {{{0, 0, 0, 0},
1424    {0, 0, 0, 0},
1425    {0, 0, 0, 0}},
1426   {{0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da, 0x7fe36b40af22af89},
1427    {0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1, 0xe697d45825b63624},
1428    {1, 0, 0, 0}},
1429   {{0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902, 0x4a5b506612a677a6},
1430    {0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40, 0xeb13461ceac089f1},
1431    {1, 0, 0, 0}},
1432   {{0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857, 0x0781b8291c6a220a},
1433    {0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434, 0x690cde8df0151593},
1434    {1, 0, 0, 0}},
1435   {{0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326, 0x8a535f566ec73617},
1436    {0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf, 0x0455c08468b08bd7},
1437    {1, 0, 0, 0}},
1438   {{0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279, 0x06bada7ab77f8276},
1439    {0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70, 0x5b476dfd0e6cb18a},
1440    {1, 0, 0, 0}},
1441   {{0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8, 0x3e29864e8a2ec908},
1442    {0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed, 0x239b90ea3dc31e7e},
1443    {1, 0, 0, 0}},
1444   {{0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4, 0x820f4dd949f72ff7},
1445    {0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3, 0x140406ec783a05ec},
1446    {1, 0, 0, 0}},
1447   {{0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe, 0x68f6b8542783dfee},
1448    {0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028, 0xcbe1feba92e40ce6},
1449    {1, 0, 0, 0}},
1450   {{0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927, 0xd0b2f94d2f420109},
1451    {0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a, 0x971459828b0719e5},
1452    {1, 0, 0, 0}},
1453   {{0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687, 0x961610004a866aba},
1454    {0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c, 0x7acb9fadcee75e44},
1455    {1, 0, 0, 0}},
1456   {{0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea, 0x24eb9acca333bf5b},
1457    {0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d, 0x69f891c5acd079cc},
1458    {1, 0, 0, 0}},
1459   {{0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514, 0xe51f547c5972a107},
1460    {0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06, 0x1c309a2b25bb1387},
1461    {1, 0, 0, 0}},
1462   {{0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828, 0x20b87b8aa2c4e503},
1463    {0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044, 0xf5c6fa49919776be},
1464    {1, 0, 0, 0}},
1465   {{0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56, 0x1ed7d1b9332010b9},
1466    {0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24, 0x3a2b03f03217257a},
1467    {1, 0, 0, 0}},
1468   {{0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b, 0x15fee545c78dd9f6},
1469    {0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb, 0x4ab5b6b2b8753f81},
1470    {1, 0, 0, 0}}}};
1471 
1472 /* select_point selects the |idx|th point from a precomputation table and
1473  * copies it to out. */
1474 static void select_point(const u64 idx, unsigned int size, const smallfelem pre_comp[16][3], smallfelem out[3])
1475 	{
1476 	unsigned i, j;
1477 	u64 *outlimbs = &out[0][0];
1478 	memset(outlimbs, 0, 3 * sizeof(smallfelem));
1479 
1480 	for (i = 0; i < size; i++)
1481 		{
1482 		const u64 *inlimbs = (u64*) &pre_comp[i][0][0];
1483 		u64 mask = i ^ idx;
1484 		mask |= mask >> 4;
1485 		mask |= mask >> 2;
1486 		mask |= mask >> 1;
1487 		mask &= 1;
1488 		mask--;
1489 		for (j = 0; j < NLIMBS * 3; j++)
1490 			outlimbs[j] |= inlimbs[j] & mask;
1491 		}
1492 	}
1493 
1494 /* get_bit returns the |i|th bit in |in| */
1495 static char get_bit(const felem_bytearray in, int i)
1496 	{
1497 	if ((i < 0) || (i >= 256))
1498 		return 0;
1499 	return (in[i >> 3] >> (i & 7)) & 1;
1500 	}
1501 
1502 /* Interleaved point multiplication using precomputed point multiples:
1503  * The small point multiples 0*P, 1*P, ..., 17*P are in pre_comp[],
1504  * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple
1505  * of the generator, using certain (large) precomputed multiples in g_pre_comp.
1506  * Output point (X, Y, Z) is stored in x_out, y_out, z_out */
1507 static void batch_mul(felem x_out, felem y_out, felem z_out,
1508 	const felem_bytearray scalars[], const unsigned num_points, const u8 *g_scalar,
1509 	const int mixed, const smallfelem pre_comp[][17][3], const smallfelem g_pre_comp[2][16][3])
1510 	{
1511 	int i, skip;
1512 	unsigned num, gen_mul = (g_scalar != NULL);
1513 	felem nq[3], ftmp;
1514 	smallfelem tmp[3];
1515 	u64 bits;
1516 	u8 sign, digit;
1517 
1518 	/* set nq to the point at infinity */
1519 	memset(nq, 0, 3 * sizeof(felem));
1520 
1521 	/* Loop over all scalars msb-to-lsb, interleaving additions
1522 	 * of multiples of the generator (two in each of the last 32 rounds)
1523 	 * and additions of other points multiples (every 5th round).
1524 	 */
1525 	skip = 1; /* save two point operations in the first round */
1526 	for (i = (num_points ? 255 : 31); i >= 0; --i)
1527 		{
1528 		/* double */
1529 		if (!skip)
1530 			point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1531 
1532 		/* add multiples of the generator */
1533 		if (gen_mul && (i <= 31))
1534 			{
1535 			/* first, look 32 bits upwards */
1536 			bits = get_bit(g_scalar, i + 224) << 3;
1537 			bits |= get_bit(g_scalar, i + 160) << 2;
1538 			bits |= get_bit(g_scalar, i + 96) << 1;
1539 			bits |= get_bit(g_scalar, i + 32);
1540 			/* select the point to add, in constant time */
1541 			select_point(bits, 16, g_pre_comp[1], tmp);
1542 
1543 			if (!skip)
1544 				{
1545 				point_add(nq[0], nq[1], nq[2],
1546 					nq[0], nq[1], nq[2],
1547 					1 /* mixed */, tmp[0], tmp[1], tmp[2]);
1548 				}
1549 			else
1550 				{
1551 				smallfelem_expand(nq[0], tmp[0]);
1552 				smallfelem_expand(nq[1], tmp[1]);
1553 				smallfelem_expand(nq[2], tmp[2]);
1554 				skip = 0;
1555 				}
1556 
1557 			/* second, look at the current position */
1558 			bits = get_bit(g_scalar, i + 192) << 3;
1559 			bits |= get_bit(g_scalar, i + 128) << 2;
1560 			bits |= get_bit(g_scalar, i + 64) << 1;
1561 			bits |= get_bit(g_scalar, i);
1562 			/* select the point to add, in constant time */
1563 			select_point(bits, 16, g_pre_comp[0], tmp);
1564 			point_add(nq[0], nq[1], nq[2],
1565 				nq[0], nq[1], nq[2],
1566 				1 /* mixed */, tmp[0], tmp[1], tmp[2]);
1567 			}
1568 
1569 		/* do other additions every 5 doublings */
1570 		if (num_points && (i % 5 == 0))
1571 			{
1572 			/* loop over all scalars */
1573 			for (num = 0; num < num_points; ++num)
1574 				{
1575 				bits = get_bit(scalars[num], i + 4) << 5;
1576 				bits |= get_bit(scalars[num], i + 3) << 4;
1577 				bits |= get_bit(scalars[num], i + 2) << 3;
1578 				bits |= get_bit(scalars[num], i + 1) << 2;
1579 				bits |= get_bit(scalars[num], i) << 1;
1580 				bits |= get_bit(scalars[num], i - 1);
1581 				ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1582 
1583 				/* select the point to add or subtract, in constant time */
1584 				select_point(digit, 17, pre_comp[num], tmp);
1585 				smallfelem_neg(ftmp, tmp[1]); /* (X, -Y, Z) is the negative point */
1586 				copy_small_conditional(ftmp, tmp[1], (((limb) sign) - 1));
1587 				felem_contract(tmp[1], ftmp);
1588 
1589 				if (!skip)
1590 					{
1591 					point_add(nq[0], nq[1], nq[2],
1592 						nq[0], nq[1], nq[2],
1593 						mixed, tmp[0], tmp[1], tmp[2]);
1594 					}
1595 				else
1596 					{
1597 					smallfelem_expand(nq[0], tmp[0]);
1598 					smallfelem_expand(nq[1], tmp[1]);
1599 					smallfelem_expand(nq[2], tmp[2]);
1600 					skip = 0;
1601 					}
1602 				}
1603 			}
1604 		}
1605 	felem_assign(x_out, nq[0]);
1606 	felem_assign(y_out, nq[1]);
1607 	felem_assign(z_out, nq[2]);
1608 	}
1609 
1610 /* Precomputation for the group generator. */
1611 typedef struct {
1612 	smallfelem g_pre_comp[2][16][3];
1613 	int references;
1614 } NISTP256_PRE_COMP;
1615 
1616 const EC_METHOD *EC_GFp_nistp256_method(void)
1617 	{
1618 	static const EC_METHOD ret = {
1619 		EC_FLAGS_DEFAULT_OCT,
1620 		NID_X9_62_prime_field,
1621 		ec_GFp_nistp256_group_init,
1622 		ec_GFp_simple_group_finish,
1623 		ec_GFp_simple_group_clear_finish,
1624 		ec_GFp_nist_group_copy,
1625 		ec_GFp_nistp256_group_set_curve,
1626 		ec_GFp_simple_group_get_curve,
1627 		ec_GFp_simple_group_get_degree,
1628 		ec_GFp_simple_group_check_discriminant,
1629 		ec_GFp_simple_point_init,
1630 		ec_GFp_simple_point_finish,
1631 		ec_GFp_simple_point_clear_finish,
1632 		ec_GFp_simple_point_copy,
1633 		ec_GFp_simple_point_set_to_infinity,
1634 		ec_GFp_simple_set_Jprojective_coordinates_GFp,
1635 		ec_GFp_simple_get_Jprojective_coordinates_GFp,
1636 		ec_GFp_simple_point_set_affine_coordinates,
1637 		ec_GFp_nistp256_point_get_affine_coordinates,
1638 		0 /* point_set_compressed_coordinates */,
1639 		0 /* point2oct */,
1640 		0 /* oct2point */,
1641 		ec_GFp_simple_add,
1642 		ec_GFp_simple_dbl,
1643 		ec_GFp_simple_invert,
1644 		ec_GFp_simple_is_at_infinity,
1645 		ec_GFp_simple_is_on_curve,
1646 		ec_GFp_simple_cmp,
1647 		ec_GFp_simple_make_affine,
1648 		ec_GFp_simple_points_make_affine,
1649 		ec_GFp_nistp256_points_mul,
1650 		ec_GFp_nistp256_precompute_mult,
1651 		ec_GFp_nistp256_have_precompute_mult,
1652 		ec_GFp_nist_field_mul,
1653 		ec_GFp_nist_field_sqr,
1654 		0 /* field_div */,
1655 		0 /* field_encode */,
1656 		0 /* field_decode */,
1657 		0 /* field_set_to_one */ };
1658 
1659 	return &ret;
1660 	}
1661 
1662 /******************************************************************************/
1663 /*		       FUNCTIONS TO MANAGE PRECOMPUTATION
1664  */
1665 
1666 static NISTP256_PRE_COMP *nistp256_pre_comp_new()
1667 	{
1668 	NISTP256_PRE_COMP *ret = NULL;
1669 	ret = (NISTP256_PRE_COMP *) OPENSSL_malloc(sizeof *ret);
1670 	if (!ret)
1671 		{
1672 		ECerr(EC_F_NISTP256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1673 		return ret;
1674 		}
1675 	memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp));
1676 	ret->references = 1;
1677 	return ret;
1678 	}
1679 
1680 static void *nistp256_pre_comp_dup(void *src_)
1681 	{
1682 	NISTP256_PRE_COMP *src = src_;
1683 
1684 	/* no need to actually copy, these objects never change! */
1685 	CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
1686 
1687 	return src_;
1688 	}
1689 
1690 static void nistp256_pre_comp_free(void *pre_)
1691 	{
1692 	int i;
1693 	NISTP256_PRE_COMP *pre = pre_;
1694 
1695 	if (!pre)
1696 		return;
1697 
1698 	i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
1699 	if (i > 0)
1700 		return;
1701 
1702 	OPENSSL_free(pre);
1703 	}
1704 
1705 static void nistp256_pre_comp_clear_free(void *pre_)
1706 	{
1707 	int i;
1708 	NISTP256_PRE_COMP *pre = pre_;
1709 
1710 	if (!pre)
1711 		return;
1712 
1713 	i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
1714 	if (i > 0)
1715 		return;
1716 
1717 	OPENSSL_cleanse(pre, sizeof *pre);
1718 	OPENSSL_free(pre);
1719 	}
1720 
1721 /******************************************************************************/
1722 /*			   OPENSSL EC_METHOD FUNCTIONS
1723  */
1724 
1725 int ec_GFp_nistp256_group_init(EC_GROUP *group)
1726 	{
1727 	int ret;
1728 	ret = ec_GFp_simple_group_init(group);
1729 	group->a_is_minus3 = 1;
1730 	return ret;
1731 	}
1732 
1733 int ec_GFp_nistp256_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1734 	const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
1735 	{
1736 	int ret = 0;
1737 	BN_CTX *new_ctx = NULL;
1738 	BIGNUM *curve_p, *curve_a, *curve_b;
1739 
1740 	if (ctx == NULL)
1741 		if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
1742 	BN_CTX_start(ctx);
1743 	if (((curve_p = BN_CTX_get(ctx)) == NULL) ||
1744 		((curve_a = BN_CTX_get(ctx)) == NULL) ||
1745 		((curve_b = BN_CTX_get(ctx)) == NULL)) goto err;
1746 	BN_bin2bn(nistp256_curve_params[0], sizeof(felem_bytearray), curve_p);
1747 	BN_bin2bn(nistp256_curve_params[1], sizeof(felem_bytearray), curve_a);
1748 	BN_bin2bn(nistp256_curve_params[2], sizeof(felem_bytearray), curve_b);
1749 	if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) ||
1750 		(BN_cmp(curve_b, b)))
1751 		{
1752 		ECerr(EC_F_EC_GFP_NISTP256_GROUP_SET_CURVE,
1753 			EC_R_WRONG_CURVE_PARAMETERS);
1754 		goto err;
1755 		}
1756 	group->field_mod_func = BN_nist_mod_256;
1757 	ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1758 err:
1759 	BN_CTX_end(ctx);
1760 	if (new_ctx != NULL)
1761 		BN_CTX_free(new_ctx);
1762 	return ret;
1763 	}
1764 
1765 /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns
1766  * (X', Y') = (X/Z^2, Y/Z^3) */
1767 int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group,
1768 	const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
1769 	{
1770 	felem z1, z2, x_in, y_in;
1771 	smallfelem x_out, y_out;
1772 	longfelem tmp;
1773 
1774 	if (EC_POINT_is_at_infinity(group, point))
1775 		{
1776 		ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
1777 			EC_R_POINT_AT_INFINITY);
1778 		return 0;
1779 		}
1780 	if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) ||
1781 		(!BN_to_felem(z1, &point->Z))) return 0;
1782 	felem_inv(z2, z1);
1783 	felem_square(tmp, z2); felem_reduce(z1, tmp);
1784 	felem_mul(tmp, x_in, z1); felem_reduce(x_in, tmp);
1785 	felem_contract(x_out, x_in);
1786 	if (x != NULL)
1787 		{
1788 		if (!smallfelem_to_BN(x, x_out)) {
1789 		ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
1790 			ERR_R_BN_LIB);
1791 		return 0;
1792 		}
1793 		}
1794 	felem_mul(tmp, z1, z2); felem_reduce(z1, tmp);
1795 	felem_mul(tmp, y_in, z1); felem_reduce(y_in, tmp);
1796 	felem_contract(y_out, y_in);
1797 	if (y != NULL)
1798 		{
1799 		if (!smallfelem_to_BN(y, y_out))
1800 			{
1801 			ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
1802 				ERR_R_BN_LIB);
1803 			return 0;
1804 			}
1805 		}
1806 	return 1;
1807 	}
1808 
1809 static void make_points_affine(size_t num, smallfelem points[/* num */][3], smallfelem tmp_smallfelems[/* num+1 */])
1810 	{
1811 	/* Runs in constant time, unless an input is the point at infinity
1812 	 * (which normally shouldn't happen). */
1813 	ec_GFp_nistp_points_make_affine_internal(
1814 		num,
1815 		points,
1816 		sizeof(smallfelem),
1817 		tmp_smallfelems,
1818 		(void (*)(void *)) smallfelem_one,
1819 		(int (*)(const void *)) smallfelem_is_zero_int,
1820 		(void (*)(void *, const void *)) smallfelem_assign,
1821 		(void (*)(void *, const void *)) smallfelem_square_contract,
1822 		(void (*)(void *, const void *, const void *)) smallfelem_mul_contract,
1823 		(void (*)(void *, const void *)) smallfelem_inv_contract,
1824 		(void (*)(void *, const void *)) smallfelem_assign /* nothing to contract */);
1825 	}
1826 
1827 /* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values
1828  * Result is stored in r (r can equal one of the inputs). */
1829 int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r,
1830 	const BIGNUM *scalar, size_t num, const EC_POINT *points[],
1831 	const BIGNUM *scalars[], BN_CTX *ctx)
1832 	{
1833 	int ret = 0;
1834 	int j;
1835 	int mixed = 0;
1836 	BN_CTX *new_ctx = NULL;
1837 	BIGNUM *x, *y, *z, *tmp_scalar;
1838 	felem_bytearray g_secret;
1839 	felem_bytearray *secrets = NULL;
1840 	smallfelem (*pre_comp)[17][3] = NULL;
1841 	smallfelem *tmp_smallfelems = NULL;
1842 	felem_bytearray tmp;
1843 	unsigned i, num_bytes;
1844 	int have_pre_comp = 0;
1845 	size_t num_points = num;
1846 	smallfelem x_in, y_in, z_in;
1847 	felem x_out, y_out, z_out;
1848 	NISTP256_PRE_COMP *pre = NULL;
1849 	const smallfelem (*g_pre_comp)[16][3] = NULL;
1850 	EC_POINT *generator = NULL;
1851 	const EC_POINT *p = NULL;
1852 	const BIGNUM *p_scalar = NULL;
1853 
1854 	if (ctx == NULL)
1855 		if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
1856 	BN_CTX_start(ctx);
1857 	if (((x = BN_CTX_get(ctx)) == NULL) ||
1858 		((y = BN_CTX_get(ctx)) == NULL) ||
1859 		((z = BN_CTX_get(ctx)) == NULL) ||
1860 		((tmp_scalar = BN_CTX_get(ctx)) == NULL))
1861 		goto err;
1862 
1863 	if (scalar != NULL)
1864 		{
1865 		pre = EC_EX_DATA_get_data(group->extra_data,
1866 			nistp256_pre_comp_dup, nistp256_pre_comp_free,
1867 			nistp256_pre_comp_clear_free);
1868 		if (pre)
1869 			/* we have precomputation, try to use it */
1870 			g_pre_comp = (const smallfelem (*)[16][3]) pre->g_pre_comp;
1871 		else
1872 			/* try to use the standard precomputation */
1873 			g_pre_comp = &gmul[0];
1874 		generator = EC_POINT_new(group);
1875 		if (generator == NULL)
1876 			goto err;
1877 		/* get the generator from precomputation */
1878 		if (!smallfelem_to_BN(x, g_pre_comp[0][1][0]) ||
1879 			!smallfelem_to_BN(y, g_pre_comp[0][1][1]) ||
1880 			!smallfelem_to_BN(z, g_pre_comp[0][1][2]))
1881 			{
1882 			ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
1883 			goto err;
1884 			}
1885 		if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
1886 				generator, x, y, z, ctx))
1887 			goto err;
1888 		if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1889 			/* precomputation matches generator */
1890 			have_pre_comp = 1;
1891 		else
1892 			/* we don't have valid precomputation:
1893 			 * treat the generator as a random point */
1894 			num_points++;
1895 		}
1896 	if (num_points > 0)
1897 		{
1898 		if (num_points >= 3)
1899 			{
1900 			/* unless we precompute multiples for just one or two points,
1901 			 * converting those into affine form is time well spent  */
1902 			mixed = 1;
1903 			}
1904 		secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray));
1905 		pre_comp = OPENSSL_malloc(num_points * 17 * 3 * sizeof(smallfelem));
1906 		if (mixed)
1907 			tmp_smallfelems = OPENSSL_malloc((num_points * 17 + 1) * sizeof(smallfelem));
1908 		if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_smallfelems == NULL)))
1909 			{
1910 			ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1911 			goto err;
1912 			}
1913 
1914 		/* we treat NULL scalars as 0, and NULL points as points at infinity,
1915 		 * i.e., they contribute nothing to the linear combination */
1916 		memset(secrets, 0, num_points * sizeof(felem_bytearray));
1917 		memset(pre_comp, 0, num_points * 17 * 3 * sizeof(smallfelem));
1918 		for (i = 0; i < num_points; ++i)
1919 			{
1920 			if (i == num)
1921 				/* we didn't have a valid precomputation, so we pick
1922 				 * the generator */
1923 				{
1924 				p = EC_GROUP_get0_generator(group);
1925 				p_scalar = scalar;
1926 				}
1927 			else
1928 				/* the i^th point */
1929 				{
1930 				p = points[i];
1931 				p_scalar = scalars[i];
1932 				}
1933 			if ((p_scalar != NULL) && (p != NULL))
1934 				{
1935 				/* reduce scalar to 0 <= scalar < 2^256 */
1936 				if ((BN_num_bits(p_scalar) > 256) || (BN_is_negative(p_scalar)))
1937 					{
1938 					/* this is an unusual input, and we don't guarantee
1939 					 * constant-timeness */
1940 					if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx))
1941 						{
1942 						ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
1943 						goto err;
1944 						}
1945 					num_bytes = BN_bn2bin(tmp_scalar, tmp);
1946 					}
1947 				else
1948 					num_bytes = BN_bn2bin(p_scalar, tmp);
1949 				flip_endian(secrets[i], tmp, num_bytes);
1950 				/* precompute multiples */
1951 				if ((!BN_to_felem(x_out, &p->X)) ||
1952 					(!BN_to_felem(y_out, &p->Y)) ||
1953 					(!BN_to_felem(z_out, &p->Z))) goto err;
1954 				felem_shrink(pre_comp[i][1][0], x_out);
1955 				felem_shrink(pre_comp[i][1][1], y_out);
1956 				felem_shrink(pre_comp[i][1][2], z_out);
1957 				for (j = 2; j <= 16; ++j)
1958 					{
1959 					if (j & 1)
1960 						{
1961 						point_add_small(
1962 							pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
1963 							pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2],
1964 							pre_comp[i][j-1][0], pre_comp[i][j-1][1], pre_comp[i][j-1][2]);
1965 						}
1966 					else
1967 						{
1968 						point_double_small(
1969 							pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
1970 							pre_comp[i][j/2][0], pre_comp[i][j/2][1], pre_comp[i][j/2][2]);
1971 						}
1972 					}
1973 				}
1974 			}
1975 		if (mixed)
1976 			make_points_affine(num_points * 17, pre_comp[0], tmp_smallfelems);
1977 		}
1978 
1979 	/* the scalar for the generator */
1980 	if ((scalar != NULL) && (have_pre_comp))
1981 		{
1982 		memset(g_secret, 0, sizeof(g_secret));
1983 		/* reduce scalar to 0 <= scalar < 2^256 */
1984 		if ((BN_num_bits(scalar) > 256) || (BN_is_negative(scalar)))
1985 			{
1986 			/* this is an unusual input, and we don't guarantee
1987 			 * constant-timeness */
1988 			if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx))
1989 				{
1990 				ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
1991 				goto err;
1992 				}
1993 			num_bytes = BN_bn2bin(tmp_scalar, tmp);
1994 			}
1995 		else
1996 			num_bytes = BN_bn2bin(scalar, tmp);
1997 		flip_endian(g_secret, tmp, num_bytes);
1998 		/* do the multiplication with generator precomputation*/
1999 		batch_mul(x_out, y_out, z_out,
2000 			(const felem_bytearray (*)) secrets, num_points,
2001 			g_secret,
2002 			mixed, (const smallfelem (*)[17][3]) pre_comp,
2003 			g_pre_comp);
2004 		}
2005 	else
2006 		/* do the multiplication without generator precomputation */
2007 		batch_mul(x_out, y_out, z_out,
2008 			(const felem_bytearray (*)) secrets, num_points,
2009 			NULL, mixed, (const smallfelem (*)[17][3]) pre_comp, NULL);
2010 	/* reduce the output to its unique minimal representation */
2011 	felem_contract(x_in, x_out);
2012 	felem_contract(y_in, y_out);
2013 	felem_contract(z_in, z_out);
2014 	if ((!smallfelem_to_BN(x, x_in)) || (!smallfelem_to_BN(y, y_in)) ||
2015 		(!smallfelem_to_BN(z, z_in)))
2016 		{
2017 		ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
2018 		goto err;
2019 		}
2020 	ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
2021 
2022 err:
2023 	BN_CTX_end(ctx);
2024 	if (generator != NULL)
2025 		EC_POINT_free(generator);
2026 	if (new_ctx != NULL)
2027 		BN_CTX_free(new_ctx);
2028 	if (secrets != NULL)
2029 		OPENSSL_free(secrets);
2030 	if (pre_comp != NULL)
2031 		OPENSSL_free(pre_comp);
2032 	if (tmp_smallfelems != NULL)
2033 		OPENSSL_free(tmp_smallfelems);
2034 	return ret;
2035 	}
2036 
2037 int ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2038 	{
2039 	int ret = 0;
2040 	NISTP256_PRE_COMP *pre = NULL;
2041 	int i, j;
2042 	BN_CTX *new_ctx = NULL;
2043 	BIGNUM *x, *y;
2044 	EC_POINT *generator = NULL;
2045 	smallfelem tmp_smallfelems[32];
2046 	felem x_tmp, y_tmp, z_tmp;
2047 
2048 	/* throw away old precomputation */
2049 	EC_EX_DATA_free_data(&group->extra_data, nistp256_pre_comp_dup,
2050 		nistp256_pre_comp_free, nistp256_pre_comp_clear_free);
2051 	if (ctx == NULL)
2052 		if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
2053 	BN_CTX_start(ctx);
2054 	if (((x = BN_CTX_get(ctx)) == NULL) ||
2055 		((y = BN_CTX_get(ctx)) == NULL))
2056 		goto err;
2057 	/* get the generator */
2058 	if (group->generator == NULL) goto err;
2059 	generator = EC_POINT_new(group);
2060 	if (generator == NULL)
2061 		goto err;
2062 	BN_bin2bn(nistp256_curve_params[3], sizeof (felem_bytearray), x);
2063 	BN_bin2bn(nistp256_curve_params[4], sizeof (felem_bytearray), y);
2064 	if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx))
2065 		goto err;
2066 	if ((pre = nistp256_pre_comp_new()) == NULL)
2067 		goto err;
2068 	/* if the generator is the standard one, use built-in precomputation */
2069 	if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
2070 		{
2071 		memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2072 		ret = 1;
2073 		goto err;
2074 		}
2075 	if ((!BN_to_felem(x_tmp, &group->generator->X)) ||
2076 		(!BN_to_felem(y_tmp, &group->generator->Y)) ||
2077 		(!BN_to_felem(z_tmp, &group->generator->Z)))
2078 		goto err;
2079 	felem_shrink(pre->g_pre_comp[0][1][0], x_tmp);
2080 	felem_shrink(pre->g_pre_comp[0][1][1], y_tmp);
2081 	felem_shrink(pre->g_pre_comp[0][1][2], z_tmp);
2082 	/* compute 2^64*G, 2^128*G, 2^192*G for the first table,
2083 	 * 2^32*G, 2^96*G, 2^160*G, 2^224*G for the second one
2084 	 */
2085 	for (i = 1; i <= 8; i <<= 1)
2086 		{
2087 		point_double_small(
2088 			pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2],
2089 			pre->g_pre_comp[0][i][0], pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
2090 		for (j = 0; j < 31; ++j)
2091 			{
2092 			point_double_small(
2093 				pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2],
2094 				pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
2095 			}
2096 		if (i == 8)
2097 			break;
2098 		point_double_small(
2099 			pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2],
2100 			pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
2101 		for (j = 0; j < 31; ++j)
2102 			{
2103 			point_double_small(
2104 				pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2],
2105 				pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2]);
2106 			}
2107 		}
2108 	for (i = 0; i < 2; i++)
2109 		{
2110 		/* g_pre_comp[i][0] is the point at infinity */
2111 		memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
2112 		/* the remaining multiples */
2113 		/* 2^64*G + 2^128*G resp. 2^96*G + 2^160*G */
2114 		point_add_small(
2115 			pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1], pre->g_pre_comp[i][6][2],
2116 			pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
2117 			pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]);
2118 		/* 2^64*G + 2^192*G resp. 2^96*G + 2^224*G */
2119 		point_add_small(
2120 			pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1], pre->g_pre_comp[i][10][2],
2121 			pre->g_pre_comp[i][8][0], pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
2122 			pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]);
2123 		/* 2^128*G + 2^192*G resp. 2^160*G + 2^224*G */
2124 		point_add_small(
2125 			pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
2126 			pre->g_pre_comp[i][8][0], pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
2127 			pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2]);
2128 		/* 2^64*G + 2^128*G + 2^192*G resp. 2^96*G + 2^160*G + 2^224*G */
2129 		point_add_small(
2130 			pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1], pre->g_pre_comp[i][14][2],
2131 			pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
2132 			pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]);
2133 		for (j = 1; j < 8; ++j)
2134 			{
2135 			/* odd multiples: add G resp. 2^32*G */
2136 			point_add_small(
2137 				pre->g_pre_comp[i][2*j+1][0], pre->g_pre_comp[i][2*j+1][1], pre->g_pre_comp[i][2*j+1][2],
2138 				pre->g_pre_comp[i][2*j][0], pre->g_pre_comp[i][2*j][1], pre->g_pre_comp[i][2*j][2],
2139 				pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1], pre->g_pre_comp[i][1][2]);
2140 			}
2141 		}
2142 	make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_smallfelems);
2143 
2144 	if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp256_pre_comp_dup,
2145 			nistp256_pre_comp_free, nistp256_pre_comp_clear_free))
2146 		goto err;
2147 	ret = 1;
2148 	pre = NULL;
2149  err:
2150 	BN_CTX_end(ctx);
2151 	if (generator != NULL)
2152 		EC_POINT_free(generator);
2153 	if (new_ctx != NULL)
2154 		BN_CTX_free(new_ctx);
2155 	if (pre)
2156 		nistp256_pre_comp_free(pre);
2157 	return ret;
2158 	}
2159 
2160 int ec_GFp_nistp256_have_precompute_mult(const EC_GROUP *group)
2161 	{
2162 	if (EC_EX_DATA_get_data(group->extra_data, nistp256_pre_comp_dup,
2163 			nistp256_pre_comp_free, nistp256_pre_comp_clear_free)
2164 		!= NULL)
2165 		return 1;
2166 	else
2167 		return 0;
2168 	}
2169 #else
2170 static void *dummy=&dummy;
2171 #endif
2172