1 /* ====================================================================
2  * Copyright (c) 2011-2013 The OpenSSL Project.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in
13  *    the documentation and/or other materials provided with the
14  *    distribution.
15  *
16  * 3. All advertising materials mentioning features or use of this
17  *    software must display the following acknowledgment:
18  *    "This product includes software developed by the OpenSSL Project
19  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20  *
21  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22  *    endorse or promote products derived from this software without
23  *    prior written permission. For written permission, please contact
24  *    licensing@OpenSSL.org.
25  *
26  * 5. Products derived from this software may not be called "OpenSSL"
27  *    nor may "OpenSSL" appear in their names without prior written
28  *    permission of the OpenSSL Project.
29  *
30  * 6. Redistributions of any form whatsoever must retain the following
31  *    acknowledgment:
32  *    "This product includes software developed by the OpenSSL Project
33  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
39  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46  * OF THE POSSIBILITY OF SUCH DAMAGE.
47  * ====================================================================
48  */
49 
50 #include <openssl/opensslconf.h>
51 
52 #include <stdio.h>
53 #include <string.h>
54 
55 #if !defined(OPENSSL_NO_AES) && !defined(OPENSSL_NO_SHA1)
56 
57 #include <openssl/evp.h>
58 #include <openssl/objects.h>
59 #include <openssl/aes.h>
60 #include <openssl/sha.h>
61 #include "evp_locl.h"
62 
63 #ifndef EVP_CIPH_FLAG_AEAD_CIPHER
64 #define EVP_CIPH_FLAG_AEAD_CIPHER	0x200000
65 #define EVP_CTRL_AEAD_TLS1_AAD		0x16
66 #define EVP_CTRL_AEAD_SET_MAC_KEY	0x17
67 #endif
68 
69 #if !defined(EVP_CIPH_FLAG_DEFAULT_ASN1)
70 #define EVP_CIPH_FLAG_DEFAULT_ASN1 0
71 #endif
72 
73 #define TLS1_1_VERSION 0x0302
74 
75 typedef struct
76     {
77     AES_KEY		ks;
78     SHA_CTX		head,tail,md;
79     size_t		payload_length;	/* AAD length in decrypt case */
80     union {
81 	unsigned int	tls_ver;
82     	unsigned char	tls_aad[16];	/* 13 used */
83     } aux;
84     } EVP_AES_HMAC_SHA1;
85 
86 #define NO_PAYLOAD_LENGTH	((size_t)-1)
87 
88 #if	defined(AES_ASM) &&	( \
89 	defined(__x86_64)	|| defined(__x86_64__)	|| \
90 	defined(_M_AMD64)	|| defined(_M_X64)	|| \
91 	defined(__INTEL__)	)
92 
93 #if defined(__GNUC__) && __GNUC__>=2 && !defined(PEDANTIC)
94 # define BSWAP(x) ({ unsigned int r=(x); asm ("bswapl %0":"=r"(r):"0"(r)); r; })
95 #endif
96 
97 extern unsigned int OPENSSL_ia32cap_P[2];
98 #define AESNI_CAPABLE   (1<<(57-32))
99 
100 int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
101 			      AES_KEY *key);
102 int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
103 			      AES_KEY *key);
104 
105 void aesni_cbc_encrypt(const unsigned char *in,
106 			   unsigned char *out,
107 			   size_t length,
108 			   const AES_KEY *key,
109 			   unsigned char *ivec, int enc);
110 
111 void aesni_cbc_sha1_enc (const void *inp, void *out, size_t blocks,
112 		const AES_KEY *key, unsigned char iv[16],
113 		SHA_CTX *ctx,const void *in0);
114 
115 #define data(ctx) ((EVP_AES_HMAC_SHA1 *)(ctx)->cipher_data)
116 
117 static int aesni_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
118 			const unsigned char *inkey,
119 			const unsigned char *iv, int enc)
120 	{
121 	EVP_AES_HMAC_SHA1 *key = data(ctx);
122 	int ret;
123 
124 	if (enc)
125 		ret=aesni_set_encrypt_key(inkey,ctx->key_len*8,&key->ks);
126 	else
127 		ret=aesni_set_decrypt_key(inkey,ctx->key_len*8,&key->ks);
128 
129 	SHA1_Init(&key->head);	/* handy when benchmarking */
130 	key->tail = key->head;
131 	key->md   = key->head;
132 
133 	key->payload_length = NO_PAYLOAD_LENGTH;
134 
135 	return ret<0?0:1;
136 	}
137 
138 #define	STITCHED_CALL
139 
140 #if !defined(STITCHED_CALL)
141 #define	aes_off 0
142 #endif
143 
144 void sha1_block_data_order (void *c,const void *p,size_t len);
145 
146 static void sha1_update(SHA_CTX *c,const void *data,size_t len)
147 {	const unsigned char *ptr = data;
148 	size_t res;
149 
150 	if ((res = c->num)) {
151 		res = SHA_CBLOCK-res;
152 		if (len<res) res=len;
153 		SHA1_Update (c,ptr,res);
154 		ptr += res;
155 		len -= res;
156 	}
157 
158 	res = len % SHA_CBLOCK;
159 	len -= res;
160 
161 	if (len) {
162 		sha1_block_data_order(c,ptr,len/SHA_CBLOCK);
163 
164 		ptr += len;
165 		c->Nh += len>>29;
166 		c->Nl += len<<=3;
167 		if (c->Nl<(unsigned int)len) c->Nh++;
168 	}
169 
170 	if (res)
171 		SHA1_Update(c,ptr,res);
172 }
173 
174 #ifdef SHA1_Update
175 #undef SHA1_Update
176 #endif
177 #define SHA1_Update sha1_update
178 
179 static int aesni_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
180 		      const unsigned char *in, size_t len)
181 	{
182 	EVP_AES_HMAC_SHA1 *key = data(ctx);
183 	unsigned int l;
184 	size_t	plen = key->payload_length,
185 		iv = 0,		/* explicit IV in TLS 1.1 and later */
186 		sha_off = 0;
187 #if defined(STITCHED_CALL)
188 	size_t	aes_off = 0,
189 		blocks;
190 
191 	sha_off = SHA_CBLOCK-key->md.num;
192 #endif
193 
194 	key->payload_length = NO_PAYLOAD_LENGTH;
195 
196 	if (len%AES_BLOCK_SIZE) return 0;
197 
198 	if (ctx->encrypt) {
199 		if (plen==NO_PAYLOAD_LENGTH)
200 			plen = len;
201 		else if (len!=((plen+SHA_DIGEST_LENGTH+AES_BLOCK_SIZE)&-AES_BLOCK_SIZE))
202 			return 0;
203 		else if (key->aux.tls_ver >= TLS1_1_VERSION)
204 			iv = AES_BLOCK_SIZE;
205 
206 #if defined(STITCHED_CALL)
207 		if (plen>(sha_off+iv) && (blocks=(plen-(sha_off+iv))/SHA_CBLOCK)) {
208 			SHA1_Update(&key->md,in+iv,sha_off);
209 
210 			aesni_cbc_sha1_enc(in,out,blocks,&key->ks,
211 				ctx->iv,&key->md,in+iv+sha_off);
212 			blocks *= SHA_CBLOCK;
213 			aes_off += blocks;
214 			sha_off += blocks;
215 			key->md.Nh += blocks>>29;
216 			key->md.Nl += blocks<<=3;
217 			if (key->md.Nl<(unsigned int)blocks) key->md.Nh++;
218 		} else {
219 			sha_off = 0;
220 		}
221 #endif
222 		sha_off += iv;
223 		SHA1_Update(&key->md,in+sha_off,plen-sha_off);
224 
225 		if (plen!=len)	{	/* "TLS" mode of operation */
226 			if (in!=out)
227 				memcpy(out+aes_off,in+aes_off,plen-aes_off);
228 
229 			/* calculate HMAC and append it to payload */
230 			SHA1_Final(out+plen,&key->md);
231 			key->md = key->tail;
232 			SHA1_Update(&key->md,out+plen,SHA_DIGEST_LENGTH);
233 			SHA1_Final(out+plen,&key->md);
234 
235 			/* pad the payload|hmac */
236 			plen += SHA_DIGEST_LENGTH;
237 			for (l=len-plen-1;plen<len;plen++) out[plen]=l;
238 			/* encrypt HMAC|padding at once */
239 			aesni_cbc_encrypt(out+aes_off,out+aes_off,len-aes_off,
240 					&key->ks,ctx->iv,1);
241 		} else {
242 			aesni_cbc_encrypt(in+aes_off,out+aes_off,len-aes_off,
243 					&key->ks,ctx->iv,1);
244 		}
245 	} else {
246 		union { unsigned int  u[SHA_DIGEST_LENGTH/sizeof(unsigned int)];
247 			unsigned char c[32+SHA_DIGEST_LENGTH]; } mac, *pmac;
248 
249 		/* arrange cache line alignment */
250 		pmac = (void *)(((size_t)mac.c+31)&((size_t)0-32));
251 
252 		/* decrypt HMAC|padding at once */
253 		aesni_cbc_encrypt(in,out,len,
254 				&key->ks,ctx->iv,0);
255 
256 		if (plen) {	/* "TLS" mode of operation */
257 			size_t inp_len, mask, j, i;
258 			unsigned int res, maxpad, pad, bitlen;
259 			int ret = 1;
260 			union {	unsigned int  u[SHA_LBLOCK];
261 				unsigned char c[SHA_CBLOCK]; }
262 				*data = (void *)key->md.data;
263 
264 			if ((key->aux.tls_aad[plen-4]<<8|key->aux.tls_aad[plen-3])
265 			    >= TLS1_1_VERSION)
266 				iv = AES_BLOCK_SIZE;
267 
268 			if (len<(iv+SHA_DIGEST_LENGTH+1))
269 				return 0;
270 
271 			/* omit explicit iv */
272 			out += iv;
273 			len -= iv;
274 
275 			/* figure out payload length */
276 			pad = out[len-1];
277 			maxpad = len-(SHA_DIGEST_LENGTH+1);
278 			maxpad |= (255-maxpad)>>(sizeof(maxpad)*8-8);
279 			maxpad &= 255;
280 
281 			inp_len = len - (SHA_DIGEST_LENGTH+pad+1);
282 			mask = (0-((inp_len-len)>>(sizeof(inp_len)*8-1)));
283 			inp_len &= mask;
284 			ret &= (int)mask;
285 
286 			key->aux.tls_aad[plen-2] = inp_len>>8;
287 			key->aux.tls_aad[plen-1] = inp_len;
288 
289 			/* calculate HMAC */
290 			key->md = key->head;
291 			SHA1_Update(&key->md,key->aux.tls_aad,plen);
292 
293 #if 1
294 			len -= SHA_DIGEST_LENGTH;		/* amend mac */
295 			if (len>=(256+SHA_CBLOCK)) {
296 				j = (len-(256+SHA_CBLOCK))&(0-SHA_CBLOCK);
297 				j += SHA_CBLOCK-key->md.num;
298 				SHA1_Update(&key->md,out,j);
299 				out += j;
300 				len -= j;
301 				inp_len -= j;
302 			}
303 
304 			/* but pretend as if we hashed padded payload */
305 			bitlen = key->md.Nl+(inp_len<<3);	/* at most 18 bits */
306 #ifdef BSWAP
307 			bitlen = BSWAP(bitlen);
308 #else
309 			mac.c[0] = 0;
310 			mac.c[1] = (unsigned char)(bitlen>>16);
311 			mac.c[2] = (unsigned char)(bitlen>>8);
312 			mac.c[3] = (unsigned char)bitlen;
313 			bitlen = mac.u[0];
314 #endif
315 
316 			pmac->u[0]=0;
317 			pmac->u[1]=0;
318 			pmac->u[2]=0;
319 			pmac->u[3]=0;
320 			pmac->u[4]=0;
321 
322 			for (res=key->md.num, j=0;j<len;j++) {
323 				size_t c = out[j];
324 				mask = (j-inp_len)>>(sizeof(j)*8-8);
325 				c &= mask;
326 				c |= 0x80&~mask&~((inp_len-j)>>(sizeof(j)*8-8));
327 				data->c[res++]=(unsigned char)c;
328 
329 				if (res!=SHA_CBLOCK) continue;
330 
331 				mask = 0-((inp_len+8-j)>>(sizeof(j)*8-1));
332 				data->u[SHA_LBLOCK-1] |= bitlen&mask;
333 				sha1_block_data_order(&key->md,data,1);
334 				mask &= 0-((j-inp_len-73)>>(sizeof(j)*8-1));
335 				pmac->u[0] |= key->md.h0 & mask;
336 				pmac->u[1] |= key->md.h1 & mask;
337 				pmac->u[2] |= key->md.h2 & mask;
338 				pmac->u[3] |= key->md.h3 & mask;
339 				pmac->u[4] |= key->md.h4 & mask;
340 				res=0;
341 			}
342 
343 			for(i=res;i<SHA_CBLOCK;i++,j++) data->c[i]=0;
344 
345 			if (res>SHA_CBLOCK-8) {
346 				mask = 0-((inp_len+8-j)>>(sizeof(j)*8-1));
347 				data->u[SHA_LBLOCK-1] |= bitlen&mask;
348 				sha1_block_data_order(&key->md,data,1);
349 				mask &= 0-((j-inp_len-73)>>(sizeof(j)*8-1));
350 				pmac->u[0] |= key->md.h0 & mask;
351 				pmac->u[1] |= key->md.h1 & mask;
352 				pmac->u[2] |= key->md.h2 & mask;
353 				pmac->u[3] |= key->md.h3 & mask;
354 				pmac->u[4] |= key->md.h4 & mask;
355 
356 				memset(data,0,SHA_CBLOCK);
357 				j+=64;
358 			}
359 			data->u[SHA_LBLOCK-1] = bitlen;
360 			sha1_block_data_order(&key->md,data,1);
361 			mask = 0-((j-inp_len-73)>>(sizeof(j)*8-1));
362 			pmac->u[0] |= key->md.h0 & mask;
363 			pmac->u[1] |= key->md.h1 & mask;
364 			pmac->u[2] |= key->md.h2 & mask;
365 			pmac->u[3] |= key->md.h3 & mask;
366 			pmac->u[4] |= key->md.h4 & mask;
367 
368 #ifdef BSWAP
369 			pmac->u[0] = BSWAP(pmac->u[0]);
370 			pmac->u[1] = BSWAP(pmac->u[1]);
371 			pmac->u[2] = BSWAP(pmac->u[2]);
372 			pmac->u[3] = BSWAP(pmac->u[3]);
373 			pmac->u[4] = BSWAP(pmac->u[4]);
374 #else
375 			for (i=0;i<5;i++) {
376 				res = pmac->u[i];
377 				pmac->c[4*i+0]=(unsigned char)(res>>24);
378 				pmac->c[4*i+1]=(unsigned char)(res>>16);
379 				pmac->c[4*i+2]=(unsigned char)(res>>8);
380 				pmac->c[4*i+3]=(unsigned char)res;
381 			}
382 #endif
383 			len += SHA_DIGEST_LENGTH;
384 #else
385 			SHA1_Update(&key->md,out,inp_len);
386 			res = key->md.num;
387 			SHA1_Final(pmac->c,&key->md);
388 
389 			{
390 			unsigned int inp_blocks, pad_blocks;
391 
392 			/* but pretend as if we hashed padded payload */
393 			inp_blocks = 1+((SHA_CBLOCK-9-res)>>(sizeof(res)*8-1));
394 			res += (unsigned int)(len-inp_len);
395 			pad_blocks = res / SHA_CBLOCK;
396 			res %= SHA_CBLOCK;
397 			pad_blocks += 1+((SHA_CBLOCK-9-res)>>(sizeof(res)*8-1));
398 			for (;inp_blocks<pad_blocks;inp_blocks++)
399 				sha1_block_data_order(&key->md,data,1);
400 			}
401 #endif
402 			key->md = key->tail;
403 			SHA1_Update(&key->md,pmac->c,SHA_DIGEST_LENGTH);
404 			SHA1_Final(pmac->c,&key->md);
405 
406 			/* verify HMAC */
407 			out += inp_len;
408 			len -= inp_len;
409 #if 1
410 			{
411 			unsigned char *p = out+len-1-maxpad-SHA_DIGEST_LENGTH;
412 			size_t off = out-p;
413 			unsigned int c, cmask;
414 
415 			maxpad += SHA_DIGEST_LENGTH;
416 			for (res=0,i=0,j=0;j<maxpad;j++) {
417 				c = p[j];
418 				cmask = ((int)(j-off-SHA_DIGEST_LENGTH))>>(sizeof(int)*8-1);
419 				res |= (c^pad)&~cmask;	/* ... and padding */
420 				cmask &= ((int)(off-1-j))>>(sizeof(int)*8-1);
421 				res |= (c^pmac->c[i])&cmask;
422 				i += 1&cmask;
423 			}
424 			maxpad -= SHA_DIGEST_LENGTH;
425 
426 			res = 0-((0-res)>>(sizeof(res)*8-1));
427 			ret &= (int)~res;
428 			}
429 #else
430 			for (res=0,i=0;i<SHA_DIGEST_LENGTH;i++)
431 				res |= out[i]^pmac->c[i];
432 			res = 0-((0-res)>>(sizeof(res)*8-1));
433 			ret &= (int)~res;
434 
435 			/* verify padding */
436 			pad = (pad&~res) | (maxpad&res);
437 			out = out+len-1-pad;
438 			for (res=0,i=0;i<pad;i++)
439 				res |= out[i]^pad;
440 
441 			res = (0-res)>>(sizeof(res)*8-1);
442 			ret &= (int)~res;
443 #endif
444 			return ret;
445 		} else {
446 			SHA1_Update(&key->md,out,len);
447 		}
448 	}
449 
450 	return 1;
451 	}
452 
453 static int aesni_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr)
454 	{
455 	EVP_AES_HMAC_SHA1 *key = data(ctx);
456 
457 	switch (type)
458 		{
459 	case EVP_CTRL_AEAD_SET_MAC_KEY:
460 		{
461 		unsigned int  i;
462 		unsigned char hmac_key[64];
463 
464 		memset (hmac_key,0,sizeof(hmac_key));
465 
466 		if (arg > (int)sizeof(hmac_key)) {
467 			SHA1_Init(&key->head);
468 			SHA1_Update(&key->head,ptr,arg);
469 			SHA1_Final(hmac_key,&key->head);
470 		} else {
471 			memcpy(hmac_key,ptr,arg);
472 		}
473 
474 		for (i=0;i<sizeof(hmac_key);i++)
475 			hmac_key[i] ^= 0x36;		/* ipad */
476 		SHA1_Init(&key->head);
477 		SHA1_Update(&key->head,hmac_key,sizeof(hmac_key));
478 
479 		for (i=0;i<sizeof(hmac_key);i++)
480 			hmac_key[i] ^= 0x36^0x5c;	/* opad */
481 		SHA1_Init(&key->tail);
482 		SHA1_Update(&key->tail,hmac_key,sizeof(hmac_key));
483 
484 		OPENSSL_cleanse(hmac_key,sizeof(hmac_key));
485 
486 		return 1;
487 		}
488 	case EVP_CTRL_AEAD_TLS1_AAD:
489 		{
490 		unsigned char *p=ptr;
491 		unsigned int   len=p[arg-2]<<8|p[arg-1];
492 
493 		if (ctx->encrypt)
494 			{
495 			key->payload_length = len;
496 			if ((key->aux.tls_ver=p[arg-4]<<8|p[arg-3]) >= TLS1_1_VERSION) {
497 				len -= AES_BLOCK_SIZE;
498 				p[arg-2] = len>>8;
499 				p[arg-1] = len;
500 			}
501 			key->md = key->head;
502 			SHA1_Update(&key->md,p,arg);
503 
504 			return (int)(((len+SHA_DIGEST_LENGTH+AES_BLOCK_SIZE)&-AES_BLOCK_SIZE)
505 				- len);
506 			}
507 		else
508 			{
509 			if (arg>13) arg = 13;
510 			memcpy(key->aux.tls_aad,ptr,arg);
511 			key->payload_length = arg;
512 
513 			return SHA_DIGEST_LENGTH;
514 			}
515 		}
516 	default:
517 		return -1;
518 		}
519 	}
520 
521 static EVP_CIPHER aesni_128_cbc_hmac_sha1_cipher =
522 	{
523 #ifdef NID_aes_128_cbc_hmac_sha1
524 	NID_aes_128_cbc_hmac_sha1,
525 #else
526 	NID_undef,
527 #endif
528 	16,16,16,
529 	EVP_CIPH_CBC_MODE|EVP_CIPH_FLAG_DEFAULT_ASN1|EVP_CIPH_FLAG_AEAD_CIPHER,
530 	aesni_cbc_hmac_sha1_init_key,
531 	aesni_cbc_hmac_sha1_cipher,
532 	NULL,
533 	sizeof(EVP_AES_HMAC_SHA1),
534 	EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_set_asn1_iv,
535 	EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_get_asn1_iv,
536 	aesni_cbc_hmac_sha1_ctrl,
537 	NULL
538 	};
539 
540 static EVP_CIPHER aesni_256_cbc_hmac_sha1_cipher =
541 	{
542 #ifdef NID_aes_256_cbc_hmac_sha1
543 	NID_aes_256_cbc_hmac_sha1,
544 #else
545 	NID_undef,
546 #endif
547 	16,32,16,
548 	EVP_CIPH_CBC_MODE|EVP_CIPH_FLAG_DEFAULT_ASN1|EVP_CIPH_FLAG_AEAD_CIPHER,
549 	aesni_cbc_hmac_sha1_init_key,
550 	aesni_cbc_hmac_sha1_cipher,
551 	NULL,
552 	sizeof(EVP_AES_HMAC_SHA1),
553 	EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_set_asn1_iv,
554 	EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_get_asn1_iv,
555 	aesni_cbc_hmac_sha1_ctrl,
556 	NULL
557 	};
558 
559 const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
560 	{
561 	return(OPENSSL_ia32cap_P[1]&AESNI_CAPABLE?
562 		&aesni_128_cbc_hmac_sha1_cipher:NULL);
563 	}
564 
565 const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
566 	{
567 	return(OPENSSL_ia32cap_P[1]&AESNI_CAPABLE?
568 		&aesni_256_cbc_hmac_sha1_cipher:NULL);
569 	}
570 #else
571 const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
572 	{
573 	return NULL;
574 	}
575 const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
576 	{
577 	return NULL;
578 	}
579 #endif
580 #endif
581