1=pod
2
3=head1 NAME
4
5DES_random_key, DES_set_key, DES_key_sched, DES_set_key_checked,
6DES_set_key_unchecked, DES_set_odd_parity, DES_is_weak_key,
7DES_ecb_encrypt, DES_ecb2_encrypt, DES_ecb3_encrypt, DES_ncbc_encrypt,
8DES_cfb_encrypt, DES_ofb_encrypt, DES_pcbc_encrypt, DES_cfb64_encrypt,
9DES_ofb64_encrypt, DES_xcbc_encrypt, DES_ede2_cbc_encrypt,
10DES_ede2_cfb64_encrypt, DES_ede2_ofb64_encrypt, DES_ede3_cbc_encrypt,
11DES_ede3_cbcm_encrypt, DES_ede3_cfb64_encrypt, DES_ede3_ofb64_encrypt,
12DES_cbc_cksum, DES_quad_cksum, DES_string_to_key, DES_string_to_2keys,
13DES_fcrypt, DES_crypt, DES_enc_read, DES_enc_write - DES encryption
14
15=head1 SYNOPSIS
16
17 #include <openssl/des.h>
18
19 void DES_random_key(DES_cblock *ret);
20
21 int DES_set_key(const_DES_cblock *key, DES_key_schedule *schedule);
22 int DES_key_sched(const_DES_cblock *key, DES_key_schedule *schedule);
23 int DES_set_key_checked(const_DES_cblock *key,
24        DES_key_schedule *schedule);
25 void DES_set_key_unchecked(const_DES_cblock *key,
26        DES_key_schedule *schedule);
27
28 void DES_set_odd_parity(DES_cblock *key);
29 int DES_is_weak_key(const_DES_cblock *key);
30
31 void DES_ecb_encrypt(const_DES_cblock *input, DES_cblock *output,
32        DES_key_schedule *ks, int enc);
33 void DES_ecb2_encrypt(const_DES_cblock *input, DES_cblock *output,
34        DES_key_schedule *ks1, DES_key_schedule *ks2, int enc);
35 void DES_ecb3_encrypt(const_DES_cblock *input, DES_cblock *output,
36        DES_key_schedule *ks1, DES_key_schedule *ks2,
37        DES_key_schedule *ks3, int enc);
38
39 void DES_ncbc_encrypt(const unsigned char *input, unsigned char *output,
40        long length, DES_key_schedule *schedule, DES_cblock *ivec,
41        int enc);
42 void DES_cfb_encrypt(const unsigned char *in, unsigned char *out,
43        int numbits, long length, DES_key_schedule *schedule,
44        DES_cblock *ivec, int enc);
45 void DES_ofb_encrypt(const unsigned char *in, unsigned char *out,
46        int numbits, long length, DES_key_schedule *schedule,
47        DES_cblock *ivec);
48 void DES_pcbc_encrypt(const unsigned char *input, unsigned char *output,
49        long length, DES_key_schedule *schedule, DES_cblock *ivec,
50        int enc);
51 void DES_cfb64_encrypt(const unsigned char *in, unsigned char *out,
52        long length, DES_key_schedule *schedule, DES_cblock *ivec,
53        int *num, int enc);
54 void DES_ofb64_encrypt(const unsigned char *in, unsigned char *out,
55        long length, DES_key_schedule *schedule, DES_cblock *ivec,
56        int *num);
57
58 void DES_xcbc_encrypt(const unsigned char *input, unsigned char *output,
59        long length, DES_key_schedule *schedule, DES_cblock *ivec,
60        const_DES_cblock *inw, const_DES_cblock *outw, int enc);
61
62 void DES_ede2_cbc_encrypt(const unsigned char *input,
63        unsigned char *output, long length, DES_key_schedule *ks1,
64        DES_key_schedule *ks2, DES_cblock *ivec, int enc);
65 void DES_ede2_cfb64_encrypt(const unsigned char *in,
66        unsigned char *out, long length, DES_key_schedule *ks1,
67        DES_key_schedule *ks2, DES_cblock *ivec, int *num, int enc);
68 void DES_ede2_ofb64_encrypt(const unsigned char *in,
69        unsigned char *out, long length, DES_key_schedule *ks1,
70        DES_key_schedule *ks2, DES_cblock *ivec, int *num);
71
72 void DES_ede3_cbc_encrypt(const unsigned char *input,
73        unsigned char *output, long length, DES_key_schedule *ks1,
74        DES_key_schedule *ks2, DES_key_schedule *ks3, DES_cblock *ivec,
75        int enc);
76 void DES_ede3_cbcm_encrypt(const unsigned char *in, unsigned char *out,
77        long length, DES_key_schedule *ks1, DES_key_schedule *ks2,
78        DES_key_schedule *ks3, DES_cblock *ivec1, DES_cblock *ivec2,
79        int enc);
80 void DES_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out,
81        long length, DES_key_schedule *ks1, DES_key_schedule *ks2,
82        DES_key_schedule *ks3, DES_cblock *ivec, int *num, int enc);
83 void DES_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out,
84        long length, DES_key_schedule *ks1,
85        DES_key_schedule *ks2, DES_key_schedule *ks3,
86        DES_cblock *ivec, int *num);
87
88 DES_LONG DES_cbc_cksum(const unsigned char *input, DES_cblock *output,
89        long length, DES_key_schedule *schedule,
90        const_DES_cblock *ivec);
91 DES_LONG DES_quad_cksum(const unsigned char *input, DES_cblock output[],
92        long length, int out_count, DES_cblock *seed);
93 void DES_string_to_key(const char *str, DES_cblock *key);
94 void DES_string_to_2keys(const char *str, DES_cblock *key1,
95        DES_cblock *key2);
96
97 char *DES_fcrypt(const char *buf, const char *salt, char *ret);
98 char *DES_crypt(const char *buf, const char *salt);
99
100 int DES_enc_read(int fd, void *buf, int len, DES_key_schedule *sched,
101        DES_cblock *iv);
102 int DES_enc_write(int fd, const void *buf, int len,
103        DES_key_schedule *sched, DES_cblock *iv);
104
105=head1 DESCRIPTION
106
107This library contains a fast implementation of the DES encryption
108algorithm.
109
110There are two phases to the use of DES encryption.  The first is the
111generation of a I<DES_key_schedule> from a key, the second is the
112actual encryption.  A DES key is of type I<DES_cblock>. This type is
113consists of 8 bytes with odd parity.  The least significant bit in
114each byte is the parity bit.  The key schedule is an expanded form of
115the key; it is used to speed the encryption process.
116
117DES_random_key() generates a random key.  The PRNG must be seeded
118prior to using this function (see L<rand(3)|rand(3)>).  If the PRNG
119could not generate a secure key, 0 is returned.
120
121Before a DES key can be used, it must be converted into the
122architecture dependent I<DES_key_schedule> via the
123DES_set_key_checked() or DES_set_key_unchecked() function.
124
125DES_set_key_checked() will check that the key passed is of odd parity
126and is not a week or semi-weak key.  If the parity is wrong, then -1
127is returned.  If the key is a weak key, then -2 is returned.  If an
128error is returned, the key schedule is not generated.
129
130DES_set_key() works like
131DES_set_key_checked() if the I<DES_check_key> flag is non-zero,
132otherwise like DES_set_key_unchecked().  These functions are available
133for compatibility; it is recommended to use a function that does not
134depend on a global variable.
135
136DES_set_odd_parity() sets the parity of the passed I<key> to odd.
137
138DES_is_weak_key() returns 1 is the passed key is a weak key, 0 if it
139is ok.  The probability that a randomly generated key is weak is
1401/2^52, so it is not really worth checking for them.
141
142The following routines mostly operate on an input and output stream of
143I<DES_cblock>s.
144
145DES_ecb_encrypt() is the basic DES encryption routine that encrypts or
146decrypts a single 8-byte I<DES_cblock> in I<electronic code book>
147(ECB) mode.  It always transforms the input data, pointed to by
148I<input>, into the output data, pointed to by the I<output> argument.
149If the I<encrypt> argument is non-zero (DES_ENCRYPT), the I<input>
150(cleartext) is encrypted in to the I<output> (ciphertext) using the
151key_schedule specified by the I<schedule> argument, previously set via
152I<DES_set_key>. If I<encrypt> is zero (DES_DECRYPT), the I<input> (now
153ciphertext) is decrypted into the I<output> (now cleartext).  Input
154and output may overlap.  DES_ecb_encrypt() does not return a value.
155
156DES_ecb3_encrypt() encrypts/decrypts the I<input> block by using
157three-key Triple-DES encryption in ECB mode.  This involves encrypting
158the input with I<ks1>, decrypting with the key schedule I<ks2>, and
159then encrypting with I<ks3>.  This routine greatly reduces the chances
160of brute force breaking of DES and has the advantage of if I<ks1>,
161I<ks2> and I<ks3> are the same, it is equivalent to just encryption
162using ECB mode and I<ks1> as the key.
163
164The macro DES_ecb2_encrypt() is provided to perform two-key Triple-DES
165encryption by using I<ks1> for the final encryption.
166
167DES_ncbc_encrypt() encrypts/decrypts using the I<cipher-block-chaining>
168(CBC) mode of DES.  If the I<encrypt> argument is non-zero, the
169routine cipher-block-chain encrypts the cleartext data pointed to by
170the I<input> argument into the ciphertext pointed to by the I<output>
171argument, using the key schedule provided by the I<schedule> argument,
172and initialization vector provided by the I<ivec> argument.  If the
173I<length> argument is not an integral multiple of eight bytes, the
174last block is copied to a temporary area and zero filled.  The output
175is always an integral multiple of eight bytes.
176
177DES_xcbc_encrypt() is RSA's DESX mode of DES.  It uses I<inw> and
178I<outw> to 'whiten' the encryption.  I<inw> and I<outw> are secret
179(unlike the iv) and are as such, part of the key.  So the key is sort
180of 24 bytes.  This is much better than CBC DES.
181
182DES_ede3_cbc_encrypt() implements outer triple CBC DES encryption with
183three keys. This means that each DES operation inside the CBC mode is
184really an C<C=E(ks3,D(ks2,E(ks1,M)))>.  This mode is used by SSL.
185
186The DES_ede2_cbc_encrypt() macro implements two-key Triple-DES by
187reusing I<ks1> for the final encryption.  C<C=E(ks1,D(ks2,E(ks1,M)))>.
188This form of Triple-DES is used by the RSAREF library.
189
190DES_pcbc_encrypt() encrypt/decrypts using the propagating cipher block
191chaining mode used by Kerberos v4. Its parameters are the same as
192DES_ncbc_encrypt().
193
194DES_cfb_encrypt() encrypt/decrypts using cipher feedback mode.  This
195method takes an array of characters as input and outputs and array of
196characters.  It does not require any padding to 8 character groups.
197Note: the I<ivec> variable is changed and the new changed value needs to
198be passed to the next call to this function.  Since this function runs
199a complete DES ECB encryption per I<numbits>, this function is only
200suggested for use when sending small numbers of characters.
201
202DES_cfb64_encrypt()
203implements CFB mode of DES with 64bit feedback.  Why is this
204useful you ask?  Because this routine will allow you to encrypt an
205arbitrary number of bytes, no 8 byte padding.  Each call to this
206routine will encrypt the input bytes to output and then update ivec
207and num.  num contains 'how far' we are though ivec.  If this does
208not make much sense, read more about cfb mode of DES :-).
209
210DES_ede3_cfb64_encrypt() and DES_ede2_cfb64_encrypt() is the same as
211DES_cfb64_encrypt() except that Triple-DES is used.
212
213DES_ofb_encrypt() encrypts using output feedback mode.  This method
214takes an array of characters as input and outputs and array of
215characters.  It does not require any padding to 8 character groups.
216Note: the I<ivec> variable is changed and the new changed value needs to
217be passed to the next call to this function.  Since this function runs
218a complete DES ECB encryption per numbits, this function is only
219suggested for use when sending small numbers of characters.
220
221DES_ofb64_encrypt() is the same as DES_cfb64_encrypt() using Output
222Feed Back mode.
223
224DES_ede3_ofb64_encrypt() and DES_ede2_ofb64_encrypt() is the same as
225DES_ofb64_encrypt(), using Triple-DES.
226
227The following functions are included in the DES library for
228compatibility with the MIT Kerberos library.
229
230DES_cbc_cksum() produces an 8 byte checksum based on the input stream
231(via CBC encryption).  The last 4 bytes of the checksum are returned
232and the complete 8 bytes are placed in I<output>. This function is
233used by Kerberos v4.  Other applications should use
234L<EVP_DigestInit(3)|EVP_DigestInit(3)> etc. instead.
235
236DES_quad_cksum() is a Kerberos v4 function.  It returns a 4 byte
237checksum from the input bytes.  The algorithm can be iterated over the
238input, depending on I<out_count>, 1, 2, 3 or 4 times.  If I<output> is
239non-NULL, the 8 bytes generated by each pass are written into
240I<output>.
241
242The following are DES-based transformations:
243
244DES_fcrypt() is a fast version of the Unix crypt(3) function.  This
245version takes only a small amount of space relative to other fast
246crypt() implementations.  This is different to the normal crypt in
247that the third parameter is the buffer that the return value is
248written into.  It needs to be at least 14 bytes long.  This function
249is thread safe, unlike the normal crypt.
250
251DES_crypt() is a faster replacement for the normal system crypt().
252This function calls DES_fcrypt() with a static array passed as the
253third parameter.  This emulates the normal non-thread safe semantics
254of crypt(3).
255
256DES_enc_write() writes I<len> bytes to file descriptor I<fd> from
257buffer I<buf>. The data is encrypted via I<pcbc_encrypt> (default)
258using I<sched> for the key and I<iv> as a starting vector.  The actual
259data send down I<fd> consists of 4 bytes (in network byte order)
260containing the length of the following encrypted data.  The encrypted
261data then follows, padded with random data out to a multiple of 8
262bytes.
263
264DES_enc_read() is used to read I<len> bytes from file descriptor
265I<fd> into buffer I<buf>. The data being read from I<fd> is assumed to
266have come from DES_enc_write() and is decrypted using I<sched> for
267the key schedule and I<iv> for the initial vector.
268
269B<Warning:> The data format used by DES_enc_write() and DES_enc_read()
270has a cryptographic weakness: When asked to write more than MAXWRITE
271bytes, DES_enc_write() will split the data into several chunks that
272are all encrypted using the same IV.  So don't use these functions
273unless you are sure you know what you do (in which case you might not
274want to use them anyway).  They cannot handle non-blocking sockets.
275DES_enc_read() uses an internal state and thus cannot be used on
276multiple files.
277
278I<DES_rw_mode> is used to specify the encryption mode to use with
279DES_enc_read() and DES_end_write().  If set to I<DES_PCBC_MODE> (the
280default), DES_pcbc_encrypt is used.  If set to I<DES_CBC_MODE>
281DES_cbc_encrypt is used.
282
283=head1 NOTES
284
285Single-key DES is insecure due to its short key size.  ECB mode is
286not suitable for most applications; see L<des_modes(7)|des_modes(7)>.
287
288The L<evp(3)|evp(3)> library provides higher-level encryption functions.
289
290=head1 BUGS
291
292DES_3cbc_encrypt() is flawed and must not be used in applications.
293
294DES_cbc_encrypt() does not modify B<ivec>; use DES_ncbc_encrypt()
295instead.
296
297DES_cfb_encrypt() and DES_ofb_encrypt() operates on input of 8 bits.
298What this means is that if you set numbits to 12, and length to 2, the
299first 12 bits will come from the 1st input byte and the low half of
300the second input byte.  The second 12 bits will have the low 8 bits
301taken from the 3rd input byte and the top 4 bits taken from the 4th
302input byte.  The same holds for output.  This function has been
303implemented this way because most people will be using a multiple of 8
304and because once you get into pulling bytes input bytes apart things
305get ugly!
306
307DES_string_to_key() is available for backward compatibility with the
308MIT library.  New applications should use a cryptographic hash function.
309The same applies for DES_string_to_2key().
310
311=head1 CONFORMING TO
312
313ANSI X3.106
314
315The B<des> library was written to be source code compatible with
316the MIT Kerberos library.
317
318=head1 SEE ALSO
319
320crypt(3), L<des_modes(7)|des_modes(7)>, L<evp(3)|evp(3)>, L<rand(3)|rand(3)>
321
322=head1 HISTORY
323
324In OpenSSL 0.9.7, all des_ functions were renamed to DES_ to avoid
325clashes with older versions of libdes.  Compatibility des_ functions
326are provided for a short while, as well as crypt().
327Declarations for these are in <openssl/des_old.h>. There is no DES_
328variant for des_random_seed().
329This will happen to other functions
330as well if they are deemed redundant (des_random_seed() just calls
331RAND_seed() and is present for backward compatibility only), buggy or
332already scheduled for removal.
333
334des_cbc_cksum(), des_cbc_encrypt(), des_ecb_encrypt(),
335des_is_weak_key(), des_key_sched(), des_pcbc_encrypt(),
336des_quad_cksum(), des_random_key() and des_string_to_key()
337are available in the MIT Kerberos library;
338des_check_key_parity(), des_fixup_key_parity() and des_is_weak_key()
339are available in newer versions of that library.
340
341des_set_key_checked() and des_set_key_unchecked() were added in
342OpenSSL 0.9.5.
343
344des_generate_random_block(), des_init_random_number_generator(),
345des_new_random_key(), des_set_random_generator_seed() and
346des_set_sequence_number() and des_rand_data() are used in newer
347versions of Kerberos but are not implemented here.
348
349des_random_key() generated cryptographically weak random data in
350SSLeay and in OpenSSL prior version 0.9.5, as well as in the original
351MIT library.
352
353=head1 AUTHOR
354
355Eric Young (eay@cryptsoft.com). Modified for the OpenSSL project
356(http://www.openssl.org).
357
358=cut
359