xref: /minix/external/bsd/flex/dist/dfa.c (revision 84d9c625)
1 /*	$NetBSD: dfa.c,v 1.1.1.2 2013/04/06 14:05:42 christos Exp $	*/
2 
3 /* dfa - DFA construction routines */
4 
5 /*  Copyright (c) 1990 The Regents of the University of California. */
6 /*  All rights reserved. */
7 
8 /*  This code is derived from software contributed to Berkeley by */
9 /*  Vern Paxson. */
10 
11 /*  The United States Government has rights in this work pursuant */
12 /*  to contract no. DE-AC03-76SF00098 between the United States */
13 /*  Department of Energy and the University of California. */
14 
15 /*  Redistribution and use in source and binary forms, with or without */
16 /*  modification, are permitted provided that the following conditions */
17 /*  are met: */
18 
19 /*  1. Redistributions of source code must retain the above copyright */
20 /*     notice, this list of conditions and the following disclaimer. */
21 /*  2. Redistributions in binary form must reproduce the above copyright */
22 /*     notice, this list of conditions and the following disclaimer in the */
23 /*     documentation and/or other materials provided with the distribution. */
24 
25 /*  Neither the name of the University nor the names of its contributors */
26 /*  may be used to endorse or promote products derived from this software */
27 /*  without specific prior written permission. */
28 
29 /*  THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */
30 /*  IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */
31 /*  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */
32 /*  PURPOSE. */
33 
34 #include "flexdef.h"
35 #include "tables.h"
36 
37 /* declare functions that have forward references */
38 
39 void dump_associated_rules PROTO ((FILE *, int));
40 void dump_transitions PROTO ((FILE *, int[]));
41 void sympartition PROTO ((int[], int, int[], int[]));
42 int symfollowset PROTO ((int[], int, int, int[]));
43 
44 
45 /* check_for_backing_up - check a DFA state for backing up
46  *
47  * synopsis
48  *     void check_for_backing_up( int ds, int state[numecs] );
49  *
50  * ds is the number of the state to check and state[] is its out-transitions,
51  * indexed by equivalence class.
52  */
53 
54 void check_for_backing_up (ds, state)
55      int ds;
56      int state[];
57 {
58 	if ((reject && !dfaacc[ds].dfaacc_set) || (!reject && !dfaacc[ds].dfaacc_state)) {	/* state is non-accepting */
59 		++num_backing_up;
60 
61 		if (backing_up_report) {
62 			fprintf (backing_up_file,
63 				 _("State #%d is non-accepting -\n"), ds);
64 
65 			/* identify the state */
66 			dump_associated_rules (backing_up_file, ds);
67 
68 			/* Now identify it further using the out- and
69 			 * jam-transitions.
70 			 */
71 			dump_transitions (backing_up_file, state);
72 
73 			putc ('\n', backing_up_file);
74 		}
75 	}
76 }
77 
78 
79 /* check_trailing_context - check to see if NFA state set constitutes
80  *                          "dangerous" trailing context
81  *
82  * synopsis
83  *    void check_trailing_context( int nfa_states[num_states+1], int num_states,
84  *				int accset[nacc+1], int nacc );
85  *
86  * NOTES
87  *  Trailing context is "dangerous" if both the head and the trailing
88  *  part are of variable size \and/ there's a DFA state which contains
89  *  both an accepting state for the head part of the rule and NFA states
90  *  which occur after the beginning of the trailing context.
91  *
92  *  When such a rule is matched, it's impossible to tell if having been
93  *  in the DFA state indicates the beginning of the trailing context or
94  *  further-along scanning of the pattern.  In these cases, a warning
95  *  message is issued.
96  *
97  *    nfa_states[1 .. num_states] is the list of NFA states in the DFA.
98  *    accset[1 .. nacc] is the list of accepting numbers for the DFA state.
99  */
100 
101 void check_trailing_context (nfa_states, num_states, accset, nacc)
102      int    *nfa_states, num_states;
103      int    *accset;
104      int nacc;
105 {
106 	register int i, j;
107 
108 	for (i = 1; i <= num_states; ++i) {
109 		int     ns = nfa_states[i];
110 		register int type = state_type[ns];
111 		register int ar = assoc_rule[ns];
112 
113 		if (type == STATE_NORMAL || rule_type[ar] != RULE_VARIABLE) {	/* do nothing */
114 		}
115 
116 		else if (type == STATE_TRAILING_CONTEXT) {
117 			/* Potential trouble.  Scan set of accepting numbers
118 			 * for the one marking the end of the "head".  We
119 			 * assume that this looping will be fairly cheap
120 			 * since it's rare that an accepting number set
121 			 * is large.
122 			 */
123 			for (j = 1; j <= nacc; ++j)
124 				if (accset[j] & YY_TRAILING_HEAD_MASK) {
125 					line_warning (_
126 						      ("dangerous trailing context"),
127 						      rule_linenum[ar]);
128 					return;
129 				}
130 		}
131 	}
132 }
133 
134 
135 /* dump_associated_rules - list the rules associated with a DFA state
136  *
137  * Goes through the set of NFA states associated with the DFA and
138  * extracts the first MAX_ASSOC_RULES unique rules, sorts them,
139  * and writes a report to the given file.
140  */
141 
142 void dump_associated_rules (file, ds)
143      FILE   *file;
144      int ds;
145 {
146 	register int i, j;
147 	register int num_associated_rules = 0;
148 	int     rule_set[MAX_ASSOC_RULES + 1];
149 	int    *dset = dss[ds];
150 	int     size = dfasiz[ds];
151 
152 	for (i = 1; i <= size; ++i) {
153 		register int rule_num = rule_linenum[assoc_rule[dset[i]]];
154 
155 		for (j = 1; j <= num_associated_rules; ++j)
156 			if (rule_num == rule_set[j])
157 				break;
158 
159 		if (j > num_associated_rules) {	/* new rule */
160 			if (num_associated_rules < MAX_ASSOC_RULES)
161 				rule_set[++num_associated_rules] =
162 					rule_num;
163 		}
164 	}
165 
166 	qsort (&rule_set [1], num_associated_rules, sizeof (rule_set [1]), intcmp);
167 
168 	fprintf (file, _(" associated rule line numbers:"));
169 
170 	for (i = 1; i <= num_associated_rules; ++i) {
171 		if (i % 8 == 1)
172 			putc ('\n', file);
173 
174 		fprintf (file, "\t%d", rule_set[i]);
175 	}
176 
177 	putc ('\n', file);
178 }
179 
180 
181 /* dump_transitions - list the transitions associated with a DFA state
182  *
183  * synopsis
184  *     dump_transitions( FILE *file, int state[numecs] );
185  *
186  * Goes through the set of out-transitions and lists them in human-readable
187  * form (i.e., not as equivalence classes); also lists jam transitions
188  * (i.e., all those which are not out-transitions, plus EOF).  The dump
189  * is done to the given file.
190  */
191 
192 void dump_transitions (file, state)
193      FILE   *file;
194      int state[];
195 {
196 	register int i, ec;
197 	int     out_char_set[CSIZE];
198 
199 	for (i = 0; i < csize; ++i) {
200 		ec = ABS (ecgroup[i]);
201 		out_char_set[i] = state[ec];
202 	}
203 
204 	fprintf (file, _(" out-transitions: "));
205 
206 	list_character_set (file, out_char_set);
207 
208 	/* now invert the members of the set to get the jam transitions */
209 	for (i = 0; i < csize; ++i)
210 		out_char_set[i] = !out_char_set[i];
211 
212 	fprintf (file, _("\n jam-transitions: EOF "));
213 
214 	list_character_set (file, out_char_set);
215 
216 	putc ('\n', file);
217 }
218 
219 
220 /* epsclosure - construct the epsilon closure of a set of ndfa states
221  *
222  * synopsis
223  *    int *epsclosure( int t[num_states], int *numstates_addr,
224  *			int accset[num_rules+1], int *nacc_addr,
225  *			int *hashval_addr );
226  *
227  * NOTES
228  *  The epsilon closure is the set of all states reachable by an arbitrary
229  *  number of epsilon transitions, which themselves do not have epsilon
230  *  transitions going out, unioned with the set of states which have non-null
231  *  accepting numbers.  t is an array of size numstates of nfa state numbers.
232  *  Upon return, t holds the epsilon closure and *numstates_addr is updated.
233  *  accset holds a list of the accepting numbers, and the size of accset is
234  *  given by *nacc_addr.  t may be subjected to reallocation if it is not
235  *  large enough to hold the epsilon closure.
236  *
237  *  hashval is the hash value for the dfa corresponding to the state set.
238  */
239 
240 int    *epsclosure (t, ns_addr, accset, nacc_addr, hv_addr)
241      int    *t, *ns_addr, accset[], *nacc_addr, *hv_addr;
242 {
243 	register int stkpos, ns, tsp;
244 	int     numstates = *ns_addr, nacc, hashval, transsym, nfaccnum;
245 	int     stkend, nstate;
246 	static int did_stk_init = false, *stk;
247 
248 #define MARK_STATE(state) \
249 do{ trans1[state] = trans1[state] - MARKER_DIFFERENCE;} while(0)
250 
251 #define IS_MARKED(state) (trans1[state] < 0)
252 
253 #define UNMARK_STATE(state) \
254 do{ trans1[state] = trans1[state] + MARKER_DIFFERENCE;} while(0)
255 
256 #define CHECK_ACCEPT(state) \
257 do{ \
258 nfaccnum = accptnum[state]; \
259 if ( nfaccnum != NIL ) \
260 accset[++nacc] = nfaccnum; \
261 }while(0)
262 
263 #define DO_REALLOCATION() \
264 do { \
265 current_max_dfa_size += MAX_DFA_SIZE_INCREMENT; \
266 ++num_reallocs; \
267 t = reallocate_integer_array( t, current_max_dfa_size ); \
268 stk = reallocate_integer_array( stk, current_max_dfa_size ); \
269 }while(0) \
270 
271 #define PUT_ON_STACK(state) \
272 do { \
273 if ( ++stkend >= current_max_dfa_size ) \
274 DO_REALLOCATION(); \
275 stk[stkend] = state; \
276 MARK_STATE(state); \
277 }while(0)
278 
279 #define ADD_STATE(state) \
280 do { \
281 if ( ++numstates >= current_max_dfa_size ) \
282 DO_REALLOCATION(); \
283 t[numstates] = state; \
284 hashval += state; \
285 }while(0)
286 
287 #define STACK_STATE(state) \
288 do { \
289 PUT_ON_STACK(state); \
290 CHECK_ACCEPT(state); \
291 if ( nfaccnum != NIL || transchar[state] != SYM_EPSILON ) \
292 ADD_STATE(state); \
293 }while(0)
294 
295 
296 	if (!did_stk_init) {
297 		stk = allocate_integer_array (current_max_dfa_size);
298 		did_stk_init = true;
299 	}
300 
301 	nacc = stkend = hashval = 0;
302 
303 	for (nstate = 1; nstate <= numstates; ++nstate) {
304 		ns = t[nstate];
305 
306 		/* The state could be marked if we've already pushed it onto
307 		 * the stack.
308 		 */
309 		if (!IS_MARKED (ns)) {
310 			PUT_ON_STACK (ns);
311 			CHECK_ACCEPT (ns);
312 			hashval += ns;
313 		}
314 	}
315 
316 	for (stkpos = 1; stkpos <= stkend; ++stkpos) {
317 		ns = stk[stkpos];
318 		transsym = transchar[ns];
319 
320 		if (transsym == SYM_EPSILON) {
321 			tsp = trans1[ns] + MARKER_DIFFERENCE;
322 
323 			if (tsp != NO_TRANSITION) {
324 				if (!IS_MARKED (tsp))
325 					STACK_STATE (tsp);
326 
327 				tsp = trans2[ns];
328 
329 				if (tsp != NO_TRANSITION
330 				    && !IS_MARKED (tsp))
331 					STACK_STATE (tsp);
332 			}
333 		}
334 	}
335 
336 	/* Clear out "visit" markers. */
337 
338 	for (stkpos = 1; stkpos <= stkend; ++stkpos) {
339 		if (IS_MARKED (stk[stkpos]))
340 			UNMARK_STATE (stk[stkpos]);
341 		else
342 			flexfatal (_
343 				   ("consistency check failed in epsclosure()"));
344 	}
345 
346 	*ns_addr = numstates;
347 	*hv_addr = hashval;
348 	*nacc_addr = nacc;
349 
350 	return t;
351 }
352 
353 
354 /* increase_max_dfas - increase the maximum number of DFAs */
355 
356 void increase_max_dfas ()
357 {
358 	current_max_dfas += MAX_DFAS_INCREMENT;
359 
360 	++num_reallocs;
361 
362 	base = reallocate_integer_array (base, current_max_dfas);
363 	def = reallocate_integer_array (def, current_max_dfas);
364 	dfasiz = reallocate_integer_array (dfasiz, current_max_dfas);
365 	accsiz = reallocate_integer_array (accsiz, current_max_dfas);
366 	dhash = reallocate_integer_array (dhash, current_max_dfas);
367 	dss = reallocate_int_ptr_array (dss, current_max_dfas);
368 	dfaacc = reallocate_dfaacc_union (dfaacc, current_max_dfas);
369 
370 	if (nultrans)
371 		nultrans =
372 			reallocate_integer_array (nultrans,
373 						  current_max_dfas);
374 }
375 
376 
377 /* ntod - convert an ndfa to a dfa
378  *
379  * Creates the dfa corresponding to the ndfa we've constructed.  The
380  * dfa starts out in state #1.
381  */
382 
383 void ntod ()
384 {
385 	int    *accset, ds, nacc, newds;
386 	int     sym, hashval, numstates, dsize;
387 	int     num_full_table_rows=0;	/* used only for -f */
388 	int    *nset, *dset;
389 	int     targptr, totaltrans, i, comstate, comfreq, targ;
390 	int     symlist[CSIZE + 1];
391 	int     num_start_states;
392 	int     todo_head, todo_next;
393 
394 	struct yytbl_data *yynxt_tbl = 0;
395 	flex_int32_t *yynxt_data = 0, yynxt_curr = 0;
396 
397 	/* Note that the following are indexed by *equivalence classes*
398 	 * and not by characters.  Since equivalence classes are indexed
399 	 * beginning with 1, even if the scanner accepts NUL's, this
400 	 * means that (since every character is potentially in its own
401 	 * equivalence class) these arrays must have room for indices
402 	 * from 1 to CSIZE, so their size must be CSIZE + 1.
403 	 */
404 	int     duplist[CSIZE + 1], state[CSIZE + 1];
405 	int     targfreq[CSIZE + 1], targstate[CSIZE + 1];
406 
407 	/* accset needs to be large enough to hold all of the rules present
408 	 * in the input, *plus* their YY_TRAILING_HEAD_MASK variants.
409 	 */
410 	accset = allocate_integer_array ((num_rules + 1) * 2);
411 	nset = allocate_integer_array (current_max_dfa_size);
412 
413 	/* The "todo" queue is represented by the head, which is the DFA
414 	 * state currently being processed, and the "next", which is the
415 	 * next DFA state number available (not in use).  We depend on the
416 	 * fact that snstods() returns DFA's \in increasing order/, and thus
417 	 * need only know the bounds of the dfas to be processed.
418 	 */
419 	todo_head = todo_next = 0;
420 
421 	for (i = 0; i <= csize; ++i) {
422 		duplist[i] = NIL;
423 		symlist[i] = false;
424 	}
425 
426 	for (i = 0; i <= num_rules; ++i)
427 		accset[i] = NIL;
428 
429 	if (trace) {
430 		dumpnfa (scset[1]);
431 		fputs (_("\n\nDFA Dump:\n\n"), stderr);
432 	}
433 
434 	inittbl ();
435 
436 	/* Check to see whether we should build a separate table for
437 	 * transitions on NUL characters.  We don't do this for full-speed
438 	 * (-F) scanners, since for them we don't have a simple state
439 	 * number lying around with which to index the table.  We also
440 	 * don't bother doing it for scanners unless (1) NUL is in its own
441 	 * equivalence class (indicated by a positive value of
442 	 * ecgroup[NUL]), (2) NUL's equivalence class is the last
443 	 * equivalence class, and (3) the number of equivalence classes is
444 	 * the same as the number of characters.  This latter case comes
445 	 * about when useecs is false or when it's true but every character
446 	 * still manages to land in its own class (unlikely, but it's
447 	 * cheap to check for).  If all these things are true then the
448 	 * character code needed to represent NUL's equivalence class for
449 	 * indexing the tables is going to take one more bit than the
450 	 * number of characters, and therefore we won't be assured of
451 	 * being able to fit it into a YY_CHAR variable.  This rules out
452 	 * storing the transitions in a compressed table, since the code
453 	 * for interpreting them uses a YY_CHAR variable (perhaps it
454 	 * should just use an integer, though; this is worth pondering ...
455 	 * ###).
456 	 *
457 	 * Finally, for full tables, we want the number of entries in the
458 	 * table to be a power of two so the array references go fast (it
459 	 * will just take a shift to compute the major index).  If
460 	 * encoding NUL's transitions in the table will spoil this, we
461 	 * give it its own table (note that this will be the case if we're
462 	 * not using equivalence classes).
463 	 */
464 
465 	/* Note that the test for ecgroup[0] == numecs below accomplishes
466 	 * both (1) and (2) above
467 	 */
468 	if (!fullspd && ecgroup[0] == numecs) {
469 		/* NUL is alone in its equivalence class, which is the
470 		 * last one.
471 		 */
472 		int     use_NUL_table = (numecs == csize);
473 
474 		if (fulltbl && !use_NUL_table) {
475 			/* We still may want to use the table if numecs
476 			 * is a power of 2.
477 			 */
478 			int     power_of_two;
479 
480 			for (power_of_two = 1; power_of_two <= csize;
481 			     power_of_two *= 2)
482 				if (numecs == power_of_two) {
483 					use_NUL_table = true;
484 					break;
485 				}
486 		}
487 
488 		if (use_NUL_table)
489 			nultrans =
490 				allocate_integer_array (current_max_dfas);
491 
492 		/* From now on, nultrans != nil indicates that we're
493 		 * saving null transitions for later, separate encoding.
494 		 */
495 	}
496 
497 
498 	if (fullspd) {
499 		for (i = 0; i <= numecs; ++i)
500 			state[i] = 0;
501 
502 		place_state (state, 0, 0);
503 		dfaacc[0].dfaacc_state = 0;
504 	}
505 
506 	else if (fulltbl) {
507 		if (nultrans)
508 			/* We won't be including NUL's transitions in the
509 			 * table, so build it for entries from 0 .. numecs - 1.
510 			 */
511 			num_full_table_rows = numecs;
512 
513 		else
514 			/* Take into account the fact that we'll be including
515 			 * the NUL entries in the transition table.  Build it
516 			 * from 0 .. numecs.
517 			 */
518 			num_full_table_rows = numecs + 1;
519 
520 		/* Begin generating yy_nxt[][]
521 		 * This spans the entire LONG function.
522 		 * This table is tricky because we don't know how big it will be.
523 		 * So we'll have to realloc() on the way...
524 		 * we'll wait until we can calculate yynxt_tbl->td_hilen.
525 		 */
526 		yynxt_tbl =
527 			(struct yytbl_data *) calloc (1,
528 						      sizeof (struct
529 							      yytbl_data));
530 		yytbl_data_init (yynxt_tbl, YYTD_ID_NXT);
531 		yynxt_tbl->td_hilen = 1;
532 		yynxt_tbl->td_lolen = num_full_table_rows;
533 		yynxt_tbl->td_data = yynxt_data =
534 			(flex_int32_t *) calloc (yynxt_tbl->td_lolen *
535 					    yynxt_tbl->td_hilen,
536 					    sizeof (flex_int32_t));
537 		yynxt_curr = 0;
538 
539 		buf_prints (&yydmap_buf,
540 			    "\t{YYTD_ID_NXT, (void**)&yy_nxt, sizeof(%s)},\n",
541 			    long_align ? "flex_int32_t" : "flex_int16_t");
542 
543 		/* Unless -Ca, declare it "short" because it's a real
544 		 * long-shot that that won't be large enough.
545 		 */
546 		if (gentables)
547 			out_str_dec
548 				("static yyconst %s yy_nxt[][%d] =\n    {\n",
549 				 long_align ? "flex_int32_t" : "flex_int16_t",
550 				 num_full_table_rows);
551 		else {
552 			out_dec ("#undef YY_NXT_LOLEN\n#define YY_NXT_LOLEN (%d)\n", num_full_table_rows);
553 			out_str ("static yyconst %s *yy_nxt =0;\n",
554 				 long_align ? "flex_int32_t" : "flex_int16_t");
555 		}
556 
557 
558 		if (gentables)
559 			outn ("    {");
560 
561 		/* Generate 0 entries for state #0. */
562 		for (i = 0; i < num_full_table_rows; ++i) {
563 			mk2data (0);
564 			yynxt_data[yynxt_curr++] = 0;
565 		}
566 
567 		dataflush ();
568 		if (gentables)
569 			outn ("    },\n");
570 	}
571 
572 	/* Create the first states. */
573 
574 	num_start_states = lastsc * 2;
575 
576 	for (i = 1; i <= num_start_states; ++i) {
577 		numstates = 1;
578 
579 		/* For each start condition, make one state for the case when
580 		 * we're at the beginning of the line (the '^' operator) and
581 		 * one for the case when we're not.
582 		 */
583 		if (i % 2 == 1)
584 			nset[numstates] = scset[(i / 2) + 1];
585 		else
586 			nset[numstates] =
587 				mkbranch (scbol[i / 2], scset[i / 2]);
588 
589 		nset = epsclosure (nset, &numstates, accset, &nacc,
590 				   &hashval);
591 
592 		if (snstods (nset, numstates, accset, nacc, hashval, &ds)) {
593 			numas += nacc;
594 			totnst += numstates;
595 			++todo_next;
596 
597 			if (variable_trailing_context_rules && nacc > 0)
598 				check_trailing_context (nset, numstates,
599 							accset, nacc);
600 		}
601 	}
602 
603 	if (!fullspd) {
604 		if (!snstods (nset, 0, accset, 0, 0, &end_of_buffer_state))
605 			flexfatal (_
606 				   ("could not create unique end-of-buffer state"));
607 
608 		++numas;
609 		++num_start_states;
610 		++todo_next;
611 	}
612 
613 
614 	while (todo_head < todo_next) {
615 		targptr = 0;
616 		totaltrans = 0;
617 
618 		for (i = 1; i <= numecs; ++i)
619 			state[i] = 0;
620 
621 		ds = ++todo_head;
622 
623 		dset = dss[ds];
624 		dsize = dfasiz[ds];
625 
626 		if (trace)
627 			fprintf (stderr, _("state # %d:\n"), ds);
628 
629 		sympartition (dset, dsize, symlist, duplist);
630 
631 		for (sym = 1; sym <= numecs; ++sym) {
632 			if (symlist[sym]) {
633 				symlist[sym] = 0;
634 
635 				if (duplist[sym] == NIL) {
636 					/* Symbol has unique out-transitions. */
637 					numstates =
638 						symfollowset (dset, dsize,
639 							      sym, nset);
640 					nset = epsclosure (nset,
641 							   &numstates,
642 							   accset, &nacc,
643 							   &hashval);
644 
645 					if (snstods
646 					    (nset, numstates, accset, nacc,
647 					     hashval, &newds)) {
648 						totnst = totnst +
649 							numstates;
650 						++todo_next;
651 						numas += nacc;
652 
653 						if (variable_trailing_context_rules && nacc > 0)
654 							check_trailing_context
655 								(nset,
656 								 numstates,
657 								 accset,
658 								 nacc);
659 					}
660 
661 					state[sym] = newds;
662 
663 					if (trace)
664 						fprintf (stderr,
665 							 "\t%d\t%d\n", sym,
666 							 newds);
667 
668 					targfreq[++targptr] = 1;
669 					targstate[targptr] = newds;
670 					++numuniq;
671 				}
672 
673 				else {
674 					/* sym's equivalence class has the same
675 					 * transitions as duplist(sym)'s
676 					 * equivalence class.
677 					 */
678 					targ = state[duplist[sym]];
679 					state[sym] = targ;
680 
681 					if (trace)
682 						fprintf (stderr,
683 							 "\t%d\t%d\n", sym,
684 							 targ);
685 
686 					/* Update frequency count for
687 					 * destination state.
688 					 */
689 
690 					i = 0;
691 					while (targstate[++i] != targ) ;
692 
693 					++targfreq[i];
694 					++numdup;
695 				}
696 
697 				++totaltrans;
698 				duplist[sym] = NIL;
699 			}
700 		}
701 
702 
703 		numsnpairs += totaltrans;
704 
705 		if (ds > num_start_states)
706 			check_for_backing_up (ds, state);
707 
708 		if (nultrans) {
709 			nultrans[ds] = state[NUL_ec];
710 			state[NUL_ec] = 0;	/* remove transition */
711 		}
712 
713 		if (fulltbl) {
714 
715 			/* Each time we hit here, it's another td_hilen, so we realloc. */
716 			yynxt_tbl->td_hilen++;
717 			yynxt_tbl->td_data = yynxt_data =
718 				(flex_int32_t *) realloc (yynxt_data,
719 						     yynxt_tbl->td_hilen *
720 						     yynxt_tbl->td_lolen *
721 						     sizeof (flex_int32_t));
722 
723 
724 			if (gentables)
725 				outn ("    {");
726 
727 			/* Supply array's 0-element. */
728 			if (ds == end_of_buffer_state) {
729 				mk2data (-end_of_buffer_state);
730 				yynxt_data[yynxt_curr++] =
731 					-end_of_buffer_state;
732 			}
733 			else {
734 				mk2data (end_of_buffer_state);
735 				yynxt_data[yynxt_curr++] =
736 					end_of_buffer_state;
737 			}
738 
739 			for (i = 1; i < num_full_table_rows; ++i) {
740 				/* Jams are marked by negative of state
741 				 * number.
742 				 */
743 				mk2data (state[i] ? state[i] : -ds);
744 				yynxt_data[yynxt_curr++] =
745 					state[i] ? state[i] : -ds;
746 			}
747 
748 			dataflush ();
749 			if (gentables)
750 				outn ("    },\n");
751 		}
752 
753 		else if (fullspd)
754 			place_state (state, ds, totaltrans);
755 
756 		else if (ds == end_of_buffer_state)
757 			/* Special case this state to make sure it does what
758 			 * it's supposed to, i.e., jam on end-of-buffer.
759 			 */
760 			stack1 (ds, 0, 0, JAMSTATE);
761 
762 		else {		/* normal, compressed state */
763 
764 			/* Determine which destination state is the most
765 			 * common, and how many transitions to it there are.
766 			 */
767 
768 			comfreq = 0;
769 			comstate = 0;
770 
771 			for (i = 1; i <= targptr; ++i)
772 				if (targfreq[i] > comfreq) {
773 					comfreq = targfreq[i];
774 					comstate = targstate[i];
775 				}
776 
777 			bldtbl (state, ds, totaltrans, comstate, comfreq);
778 		}
779 	}
780 
781 	if (fulltbl) {
782 		dataend ();
783 		if (tablesext) {
784 			yytbl_data_compress (yynxt_tbl);
785 			if (yytbl_data_fwrite (&tableswr, yynxt_tbl) < 0)
786 				flexerror (_
787 					   ("Could not write yynxt_tbl[][]"));
788 		}
789 		if (yynxt_tbl) {
790 			yytbl_data_destroy (yynxt_tbl);
791 			yynxt_tbl = 0;
792 		}
793 	}
794 
795 	else if (!fullspd) {
796 		cmptmps ();	/* create compressed template entries */
797 
798 		/* Create tables for all the states with only one
799 		 * out-transition.
800 		 */
801 		while (onesp > 0) {
802 			mk1tbl (onestate[onesp], onesym[onesp],
803 				onenext[onesp], onedef[onesp]);
804 			--onesp;
805 		}
806 
807 		mkdeftbl ();
808 	}
809 
810 	flex_free ((void *) accset);
811 	flex_free ((void *) nset);
812 }
813 
814 
815 /* snstods - converts a set of ndfa states into a dfa state
816  *
817  * synopsis
818  *    is_new_state = snstods( int sns[numstates], int numstates,
819  *				int accset[num_rules+1], int nacc,
820  *				int hashval, int *newds_addr );
821  *
822  * On return, the dfa state number is in newds.
823  */
824 
825 int snstods (sns, numstates, accset, nacc, hashval, newds_addr)
826      int sns[], numstates, accset[], nacc, hashval, *newds_addr;
827 {
828 	int     didsort = 0;
829 	register int i, j;
830 	int     newds, *oldsns;
831 
832 	for (i = 1; i <= lastdfa; ++i)
833 		if (hashval == dhash[i]) {
834 			if (numstates == dfasiz[i]) {
835 				oldsns = dss[i];
836 
837 				if (!didsort) {
838 					/* We sort the states in sns so we
839 					 * can compare it to oldsns quickly.
840 					 */
841 					qsort (&sns [1], numstates, sizeof (sns [1]), intcmp);
842 					didsort = 1;
843 				}
844 
845 				for (j = 1; j <= numstates; ++j)
846 					if (sns[j] != oldsns[j])
847 						break;
848 
849 				if (j > numstates) {
850 					++dfaeql;
851 					*newds_addr = i;
852 					return 0;
853 				}
854 
855 				++hshcol;
856 			}
857 
858 			else
859 				++hshsave;
860 		}
861 
862 	/* Make a new dfa. */
863 
864 	if (++lastdfa >= current_max_dfas)
865 		increase_max_dfas ();
866 
867 	newds = lastdfa;
868 
869 	dss[newds] = allocate_integer_array (numstates + 1);
870 
871 	/* If we haven't already sorted the states in sns, we do so now,
872 	 * so that future comparisons with it can be made quickly.
873 	 */
874 
875 	if (!didsort)
876 		qsort (&sns [1], numstates, sizeof (sns [1]), intcmp);
877 
878 	for (i = 1; i <= numstates; ++i)
879 		dss[newds][i] = sns[i];
880 
881 	dfasiz[newds] = numstates;
882 	dhash[newds] = hashval;
883 
884 	if (nacc == 0) {
885 		if (reject)
886 			dfaacc[newds].dfaacc_set = (int *) 0;
887 		else
888 			dfaacc[newds].dfaacc_state = 0;
889 
890 		accsiz[newds] = 0;
891 	}
892 
893 	else if (reject) {
894 		/* We sort the accepting set in increasing order so the
895 		 * disambiguating rule that the first rule listed is considered
896 		 * match in the event of ties will work.
897 		 */
898 
899 		qsort (&accset [1], nacc, sizeof (accset [1]), intcmp);
900 
901 		dfaacc[newds].dfaacc_set =
902 			allocate_integer_array (nacc + 1);
903 
904 		/* Save the accepting set for later */
905 		for (i = 1; i <= nacc; ++i) {
906 			dfaacc[newds].dfaacc_set[i] = accset[i];
907 
908 			if (accset[i] <= num_rules)
909 				/* Who knows, perhaps a REJECT can yield
910 				 * this rule.
911 				 */
912 				rule_useful[accset[i]] = true;
913 		}
914 
915 		accsiz[newds] = nacc;
916 	}
917 
918 	else {
919 		/* Find lowest numbered rule so the disambiguating rule
920 		 * will work.
921 		 */
922 		j = num_rules + 1;
923 
924 		for (i = 1; i <= nacc; ++i)
925 			if (accset[i] < j)
926 				j = accset[i];
927 
928 		dfaacc[newds].dfaacc_state = j;
929 
930 		if (j <= num_rules)
931 			rule_useful[j] = true;
932 	}
933 
934 	*newds_addr = newds;
935 
936 	return 1;
937 }
938 
939 
940 /* symfollowset - follow the symbol transitions one step
941  *
942  * synopsis
943  *    numstates = symfollowset( int ds[current_max_dfa_size], int dsize,
944  *				int transsym, int nset[current_max_dfa_size] );
945  */
946 
947 int symfollowset (ds, dsize, transsym, nset)
948      int ds[], dsize, transsym, nset[];
949 {
950 	int     ns, tsp, sym, i, j, lenccl, ch, numstates, ccllist;
951 
952 	numstates = 0;
953 
954 	for (i = 1; i <= dsize; ++i) {	/* for each nfa state ns in the state set of ds */
955 		ns = ds[i];
956 		sym = transchar[ns];
957 		tsp = trans1[ns];
958 
959 		if (sym < 0) {	/* it's a character class */
960 			sym = -sym;
961 			ccllist = cclmap[sym];
962 			lenccl = ccllen[sym];
963 
964 			if (cclng[sym]) {
965 				for (j = 0; j < lenccl; ++j) {
966 					/* Loop through negated character
967 					 * class.
968 					 */
969 					ch = ccltbl[ccllist + j];
970 
971 					if (ch == 0)
972 						ch = NUL_ec;
973 
974 					if (ch > transsym)
975 						/* Transsym isn't in negated
976 						 * ccl.
977 						 */
978 						break;
979 
980 					else if (ch == transsym)
981 						/* next 2 */
982 						goto bottom;
983 				}
984 
985 				/* Didn't find transsym in ccl. */
986 				nset[++numstates] = tsp;
987 			}
988 
989 			else
990 				for (j = 0; j < lenccl; ++j) {
991 					ch = ccltbl[ccllist + j];
992 
993 					if (ch == 0)
994 						ch = NUL_ec;
995 
996 					if (ch > transsym)
997 						break;
998 					else if (ch == transsym) {
999 						nset[++numstates] = tsp;
1000 						break;
1001 					}
1002 				}
1003 		}
1004 
1005 		else if (sym == SYM_EPSILON) {	/* do nothing */
1006 		}
1007 
1008 		else if (ABS (ecgroup[sym]) == transsym)
1009 			nset[++numstates] = tsp;
1010 
1011 	      bottom:;
1012 	}
1013 
1014 	return numstates;
1015 }
1016 
1017 
1018 /* sympartition - partition characters with same out-transitions
1019  *
1020  * synopsis
1021  *    sympartition( int ds[current_max_dfa_size], int numstates,
1022  *			int symlist[numecs], int duplist[numecs] );
1023  */
1024 
1025 void sympartition (ds, numstates, symlist, duplist)
1026      int ds[], numstates;
1027      int symlist[], duplist[];
1028 {
1029 	int     tch, i, j, k, ns, dupfwd[CSIZE + 1], lenccl, cclp, ich;
1030 
1031 	/* Partitioning is done by creating equivalence classes for those
1032 	 * characters which have out-transitions from the given state.  Thus
1033 	 * we are really creating equivalence classes of equivalence classes.
1034 	 */
1035 
1036 	for (i = 1; i <= numecs; ++i) {	/* initialize equivalence class list */
1037 		duplist[i] = i - 1;
1038 		dupfwd[i] = i + 1;
1039 	}
1040 
1041 	duplist[1] = NIL;
1042 	dupfwd[numecs] = NIL;
1043 
1044 	for (i = 1; i <= numstates; ++i) {
1045 		ns = ds[i];
1046 		tch = transchar[ns];
1047 
1048 		if (tch != SYM_EPSILON) {
1049 			if (tch < -lastccl || tch >= csize) {
1050 				flexfatal (_
1051 					   ("bad transition character detected in sympartition()"));
1052 			}
1053 
1054 			if (tch >= 0) {	/* character transition */
1055 				int     ec = ecgroup[tch];
1056 
1057 				mkechar (ec, dupfwd, duplist);
1058 				symlist[ec] = 1;
1059 			}
1060 
1061 			else {	/* character class */
1062 				tch = -tch;
1063 
1064 				lenccl = ccllen[tch];
1065 				cclp = cclmap[tch];
1066 				mkeccl (ccltbl + cclp, lenccl, dupfwd,
1067 					duplist, numecs, NUL_ec);
1068 
1069 				if (cclng[tch]) {
1070 					j = 0;
1071 
1072 					for (k = 0; k < lenccl; ++k) {
1073 						ich = ccltbl[cclp + k];
1074 
1075 						if (ich == 0)
1076 							ich = NUL_ec;
1077 
1078 						for (++j; j < ich; ++j)
1079 							symlist[j] = 1;
1080 					}
1081 
1082 					for (++j; j <= numecs; ++j)
1083 						symlist[j] = 1;
1084 				}
1085 
1086 				else
1087 					for (k = 0; k < lenccl; ++k) {
1088 						ich = ccltbl[cclp + k];
1089 
1090 						if (ich == 0)
1091 							ich = NUL_ec;
1092 
1093 						symlist[ich] = 1;
1094 					}
1095 			}
1096 		}
1097 	}
1098 }
1099