1=========================
2Clang Language Extensions
3=========================
4
5.. contents::
6   :local:
7   :depth: 1
8
9.. toctree::
10   :hidden:
11
12   ObjectiveCLiterals
13   BlockLanguageSpec
14   Block-ABI-Apple
15   AutomaticReferenceCounting
16
17Introduction
18============
19
20This document describes the language extensions provided by Clang.  In addition
21to the language extensions listed here, Clang aims to support a broad range of
22GCC extensions.  Please see the `GCC manual
23<http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html>`_ for more information on
24these extensions.
25
26.. _langext-feature_check:
27
28Feature Checking Macros
29=======================
30
31Language extensions can be very useful, but only if you know you can depend on
32them.  In order to allow fine-grain features checks, we support three builtin
33function-like macros.  This allows you to directly test for a feature in your
34code without having to resort to something like autoconf or fragile "compiler
35version checks".
36
37``__has_builtin``
38-----------------
39
40This function-like macro takes a single identifier argument that is the name of
41a builtin function.  It evaluates to 1 if the builtin is supported or 0 if not.
42It can be used like this:
43
44.. code-block:: c++
45
46  #ifndef __has_builtin         // Optional of course.
47    #define __has_builtin(x) 0  // Compatibility with non-clang compilers.
48  #endif
49
50  ...
51  #if __has_builtin(__builtin_trap)
52    __builtin_trap();
53  #else
54    abort();
55  #endif
56  ...
57
58.. _langext-__has_feature-__has_extension:
59
60``__has_feature`` and ``__has_extension``
61-----------------------------------------
62
63These function-like macros take a single identifier argument that is the name
64of a feature.  ``__has_feature`` evaluates to 1 if the feature is both
65supported by Clang and standardized in the current language standard or 0 if
66not (but see :ref:`below <langext-has-feature-back-compat>`), while
67``__has_extension`` evaluates to 1 if the feature is supported by Clang in the
68current language (either as a language extension or a standard language
69feature) or 0 if not.  They can be used like this:
70
71.. code-block:: c++
72
73  #ifndef __has_feature         // Optional of course.
74    #define __has_feature(x) 0  // Compatibility with non-clang compilers.
75  #endif
76  #ifndef __has_extension
77    #define __has_extension __has_feature // Compatibility with pre-3.0 compilers.
78  #endif
79
80  ...
81  #if __has_feature(cxx_rvalue_references)
82  // This code will only be compiled with the -std=c++11 and -std=gnu++11
83  // options, because rvalue references are only standardized in C++11.
84  #endif
85
86  #if __has_extension(cxx_rvalue_references)
87  // This code will be compiled with the -std=c++11, -std=gnu++11, -std=c++98
88  // and -std=gnu++98 options, because rvalue references are supported as a
89  // language extension in C++98.
90  #endif
91
92.. _langext-has-feature-back-compat:
93
94For backwards compatibility reasons, ``__has_feature`` can also be used to test
95for support for non-standardized features, i.e. features not prefixed ``c_``,
96``cxx_`` or ``objc_``.
97
98Another use of ``__has_feature`` is to check for compiler features not related
99to the language standard, such as e.g. :doc:`AddressSanitizer
100<AddressSanitizer>`.
101
102If the ``-pedantic-errors`` option is given, ``__has_extension`` is equivalent
103to ``__has_feature``.
104
105The feature tag is described along with the language feature below.
106
107The feature name or extension name can also be specified with a preceding and
108following ``__`` (double underscore) to avoid interference from a macro with
109the same name.  For instance, ``__cxx_rvalue_references__`` can be used instead
110of ``cxx_rvalue_references``.
111
112``__has_attribute``
113-------------------
114
115This function-like macro takes a single identifier argument that is the name of
116an attribute.  It evaluates to 1 if the attribute is supported or 0 if not.  It
117can be used like this:
118
119.. code-block:: c++
120
121  #ifndef __has_attribute         // Optional of course.
122    #define __has_attribute(x) 0  // Compatibility with non-clang compilers.
123  #endif
124
125  ...
126  #if __has_attribute(always_inline)
127  #define ALWAYS_INLINE __attribute__((always_inline))
128  #else
129  #define ALWAYS_INLINE
130  #endif
131  ...
132
133The attribute name can also be specified with a preceding and following ``__``
134(double underscore) to avoid interference from a macro with the same name.  For
135instance, ``__always_inline__`` can be used instead of ``always_inline``.
136
137Include File Checking Macros
138============================
139
140Not all developments systems have the same include files.  The
141:ref:`langext-__has_include` and :ref:`langext-__has_include_next` macros allow
142you to check for the existence of an include file before doing a possibly
143failing ``#include`` directive.  Include file checking macros must be used
144as expressions in ``#if`` or ``#elif`` preprocessing directives.
145
146.. _langext-__has_include:
147
148``__has_include``
149-----------------
150
151This function-like macro takes a single file name string argument that is the
152name of an include file.  It evaluates to 1 if the file can be found using the
153include paths, or 0 otherwise:
154
155.. code-block:: c++
156
157  // Note the two possible file name string formats.
158  #if __has_include("myinclude.h") && __has_include(<stdint.h>)
159  # include "myinclude.h"
160  #endif
161
162To test for this feature, use ``#if defined(__has_include)``:
163
164.. code-block:: c++
165
166  // To avoid problem with non-clang compilers not having this macro.
167  #if defined(__has_include)
168  #if __has_include("myinclude.h")
169  # include "myinclude.h"
170  #endif
171  #endif
172
173.. _langext-__has_include_next:
174
175``__has_include_next``
176----------------------
177
178This function-like macro takes a single file name string argument that is the
179name of an include file.  It is like ``__has_include`` except that it looks for
180the second instance of the given file found in the include paths.  It evaluates
181to 1 if the second instance of the file can be found using the include paths,
182or 0 otherwise:
183
184.. code-block:: c++
185
186  // Note the two possible file name string formats.
187  #if __has_include_next("myinclude.h") && __has_include_next(<stdint.h>)
188  # include_next "myinclude.h"
189  #endif
190
191  // To avoid problem with non-clang compilers not having this macro.
192  #if defined(__has_include_next)
193  #if __has_include_next("myinclude.h")
194  # include_next "myinclude.h"
195  #endif
196  #endif
197
198Note that ``__has_include_next``, like the GNU extension ``#include_next``
199directive, is intended for use in headers only, and will issue a warning if
200used in the top-level compilation file.  A warning will also be issued if an
201absolute path is used in the file argument.
202
203``__has_warning``
204-----------------
205
206This function-like macro takes a string literal that represents a command line
207option for a warning and returns true if that is a valid warning option.
208
209.. code-block:: c++
210
211  #if __has_warning("-Wformat")
212  ...
213  #endif
214
215Builtin Macros
216==============
217
218``__BASE_FILE__``
219  Defined to a string that contains the name of the main input file passed to
220  Clang.
221
222``__COUNTER__``
223  Defined to an integer value that starts at zero and is incremented each time
224  the ``__COUNTER__`` macro is expanded.
225
226``__INCLUDE_LEVEL__``
227  Defined to an integral value that is the include depth of the file currently
228  being translated.  For the main file, this value is zero.
229
230``__TIMESTAMP__``
231  Defined to the date and time of the last modification of the current source
232  file.
233
234``__clang__``
235  Defined when compiling with Clang
236
237``__clang_major__``
238  Defined to the major marketing version number of Clang (e.g., the 2 in
239  2.0.1).  Note that marketing version numbers should not be used to check for
240  language features, as different vendors use different numbering schemes.
241  Instead, use the :ref:`langext-feature_check`.
242
243``__clang_minor__``
244  Defined to the minor version number of Clang (e.g., the 0 in 2.0.1).  Note
245  that marketing version numbers should not be used to check for language
246  features, as different vendors use different numbering schemes.  Instead, use
247  the :ref:`langext-feature_check`.
248
249``__clang_patchlevel__``
250  Defined to the marketing patch level of Clang (e.g., the 1 in 2.0.1).
251
252``__clang_version__``
253  Defined to a string that captures the Clang marketing version, including the
254  Subversion tag or revision number, e.g., "``1.5 (trunk 102332)``".
255
256.. _langext-vectors:
257
258Vectors and Extended Vectors
259============================
260
261Supports the GCC, OpenCL, AltiVec and NEON vector extensions.
262
263OpenCL vector types are created using ``ext_vector_type`` attribute.  It
264support for ``V.xyzw`` syntax and other tidbits as seen in OpenCL.  An example
265is:
266
267.. code-block:: c++
268
269  typedef float float4 __attribute__((ext_vector_type(4)));
270  typedef float float2 __attribute__((ext_vector_type(2)));
271
272  float4 foo(float2 a, float2 b) {
273    float4 c;
274    c.xz = a;
275    c.yw = b;
276    return c;
277  }
278
279Query for this feature with ``__has_extension(attribute_ext_vector_type)``.
280
281Giving ``-faltivec`` option to clang enables support for AltiVec vector syntax
282and functions.  For example:
283
284.. code-block:: c++
285
286  vector float foo(vector int a) {
287    vector int b;
288    b = vec_add(a, a) + a;
289    return (vector float)b;
290  }
291
292NEON vector types are created using ``neon_vector_type`` and
293``neon_polyvector_type`` attributes.  For example:
294
295.. code-block:: c++
296
297  typedef __attribute__((neon_vector_type(8))) int8_t int8x8_t;
298  typedef __attribute__((neon_polyvector_type(16))) poly8_t poly8x16_t;
299
300  int8x8_t foo(int8x8_t a) {
301    int8x8_t v;
302    v = a;
303    return v;
304  }
305
306Vector Literals
307---------------
308
309Vector literals can be used to create vectors from a set of scalars, or
310vectors.  Either parentheses or braces form can be used.  In the parentheses
311form the number of literal values specified must be one, i.e. referring to a
312scalar value, or must match the size of the vector type being created.  If a
313single scalar literal value is specified, the scalar literal value will be
314replicated to all the components of the vector type.  In the brackets form any
315number of literals can be specified.  For example:
316
317.. code-block:: c++
318
319  typedef int v4si __attribute__((__vector_size__(16)));
320  typedef float float4 __attribute__((ext_vector_type(4)));
321  typedef float float2 __attribute__((ext_vector_type(2)));
322
323  v4si vsi = (v4si){1, 2, 3, 4};
324  float4 vf = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
325  vector int vi1 = (vector int)(1);    // vi1 will be (1, 1, 1, 1).
326  vector int vi2 = (vector int){1};    // vi2 will be (1, 0, 0, 0).
327  vector int vi3 = (vector int)(1, 2); // error
328  vector int vi4 = (vector int){1, 2}; // vi4 will be (1, 2, 0, 0).
329  vector int vi5 = (vector int)(1, 2, 3, 4);
330  float4 vf = (float4)((float2)(1.0f, 2.0f), (float2)(3.0f, 4.0f));
331
332Vector Operations
333-----------------
334
335The table below shows the support for each operation by vector extension.  A
336dash indicates that an operation is not accepted according to a corresponding
337specification.
338
339============================== ====== ======= === ====
340         Opeator               OpenCL AltiVec GCC NEON
341============================== ====== ======= === ====
342[]                              yes     yes   yes  --
343unary operators +, --           yes     yes   yes  --
344++, -- --                       yes     yes   yes  --
345+,--,*,/,%                      yes     yes   yes  --
346bitwise operators &,|,^,~       yes     yes   yes  --
347>>,<<                           yes     yes   yes  --
348!, &&, ||                       no      --    --   --
349==, !=, >, <, >=, <=            yes     yes   --   --
350=                               yes     yes   yes yes
351:?                              yes     --    --   --
352sizeof                          yes     yes   yes yes
353============================== ====== ======= === ====
354
355See also :ref:`langext-__builtin_shufflevector`.
356
357Messages on ``deprecated`` and ``unavailable`` Attributes
358=========================================================
359
360An optional string message can be added to the ``deprecated`` and
361``unavailable`` attributes.  For example:
362
363.. code-block:: c++
364
365  void explode(void) __attribute__((deprecated("extremely unsafe, use 'combust' instead!!!")));
366
367If the deprecated or unavailable declaration is used, the message will be
368incorporated into the appropriate diagnostic:
369
370.. code-block:: c++
371
372  harmless.c:4:3: warning: 'explode' is deprecated: extremely unsafe, use 'combust' instead!!!
373        [-Wdeprecated-declarations]
374    explode();
375    ^
376
377Query for this feature with
378``__has_extension(attribute_deprecated_with_message)`` and
379``__has_extension(attribute_unavailable_with_message)``.
380
381Attributes on Enumerators
382=========================
383
384Clang allows attributes to be written on individual enumerators.  This allows
385enumerators to be deprecated, made unavailable, etc.  The attribute must appear
386after the enumerator name and before any initializer, like so:
387
388.. code-block:: c++
389
390  enum OperationMode {
391    OM_Invalid,
392    OM_Normal,
393    OM_Terrified __attribute__((deprecated)),
394    OM_AbortOnError __attribute__((deprecated)) = 4
395  };
396
397Attributes on the ``enum`` declaration do not apply to individual enumerators.
398
399Query for this feature with ``__has_extension(enumerator_attributes)``.
400
401'User-Specified' System Frameworks
402==================================
403
404Clang provides a mechanism by which frameworks can be built in such a way that
405they will always be treated as being "system frameworks", even if they are not
406present in a system framework directory.  This can be useful to system
407framework developers who want to be able to test building other applications
408with development builds of their framework, including the manner in which the
409compiler changes warning behavior for system headers.
410
411Framework developers can opt-in to this mechanism by creating a
412"``.system_framework``" file at the top-level of their framework.  That is, the
413framework should have contents like:
414
415.. code-block:: none
416
417  .../TestFramework.framework
418  .../TestFramework.framework/.system_framework
419  .../TestFramework.framework/Headers
420  .../TestFramework.framework/Headers/TestFramework.h
421  ...
422
423Clang will treat the presence of this file as an indicator that the framework
424should be treated as a system framework, regardless of how it was found in the
425framework search path.  For consistency, we recommend that such files never be
426included in installed versions of the framework.
427
428Availability attribute
429======================
430
431Clang introduces the ``availability`` attribute, which can be placed on
432declarations to describe the lifecycle of that declaration relative to
433operating system versions.  Consider the function declaration for a
434hypothetical function ``f``:
435
436.. code-block:: c++
437
438  void f(void) __attribute__((availability(macosx,introduced=10.4,deprecated=10.6,obsoleted=10.7)));
439
440The availability attribute states that ``f`` was introduced in Mac OS X 10.4,
441deprecated in Mac OS X 10.6, and obsoleted in Mac OS X 10.7.  This information
442is used by Clang to determine when it is safe to use ``f``: for example, if
443Clang is instructed to compile code for Mac OS X 10.5, a call to ``f()``
444succeeds.  If Clang is instructed to compile code for Mac OS X 10.6, the call
445succeeds but Clang emits a warning specifying that the function is deprecated.
446Finally, if Clang is instructed to compile code for Mac OS X 10.7, the call
447fails because ``f()`` is no longer available.
448
449The availability attribute is a comma-separated list starting with the
450platform name and then including clauses specifying important milestones in the
451declaration's lifetime (in any order) along with additional information.  Those
452clauses can be:
453
454introduced=\ *version*
455  The first version in which this declaration was introduced.
456
457deprecated=\ *version*
458  The first version in which this declaration was deprecated, meaning that
459  users should migrate away from this API.
460
461obsoleted=\ *version*
462  The first version in which this declaration was obsoleted, meaning that it
463  was removed completely and can no longer be used.
464
465unavailable
466  This declaration is never available on this platform.
467
468message=\ *string-literal*
469  Additional message text that Clang will provide when emitting a warning or
470  error about use of a deprecated or obsoleted declaration.  Useful to direct
471  users to replacement APIs.
472
473Multiple availability attributes can be placed on a declaration, which may
474correspond to different platforms.  Only the availability attribute with the
475platform corresponding to the target platform will be used; any others will be
476ignored.  If no availability attribute specifies availability for the current
477target platform, the availability attributes are ignored.  Supported platforms
478are:
479
480``ios``
481  Apple's iOS operating system.  The minimum deployment target is specified by
482  the ``-mios-version-min=*version*`` or ``-miphoneos-version-min=*version*``
483  command-line arguments.
484
485``macosx``
486  Apple's Mac OS X operating system.  The minimum deployment target is
487  specified by the ``-mmacosx-version-min=*version*`` command-line argument.
488
489A declaration can be used even when deploying back to a platform version prior
490to when the declaration was introduced.  When this happens, the declaration is
491`weakly linked
492<https://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPFrameworks/Concepts/WeakLinking.html>`_,
493as if the ``weak_import`` attribute were added to the declaration.  A
494weakly-linked declaration may or may not be present a run-time, and a program
495can determine whether the declaration is present by checking whether the
496address of that declaration is non-NULL.
497
498If there are multiple declarations of the same entity, the availability
499attributes must either match on a per-platform basis or later
500declarations must not have availability attributes for that
501platform. For example:
502
503.. code-block:: c
504
505  void g(void) __attribute__((availability(macosx,introduced=10.4)));
506  void g(void) __attribute__((availability(macosx,introduced=10.4))); // okay, matches
507  void g(void) __attribute__((availability(ios,introduced=4.0))); // okay, adds a new platform
508  void g(void); // okay, inherits both macosx and ios availability from above.
509  void g(void) __attribute__((availability(macosx,introduced=10.5))); // error: mismatch
510
511When one method overrides another, the overriding method can be more widely available than the overridden method, e.g.,:
512
513.. code-block:: objc
514
515  @interface A
516  - (id)method __attribute__((availability(macosx,introduced=10.4)));
517  - (id)method2 __attribute__((availability(macosx,introduced=10.4)));
518  @end
519
520  @interface B : A
521  - (id)method __attribute__((availability(macosx,introduced=10.3))); // okay: method moved into base class later
522  - (id)method __attribute__((availability(macosx,introduced=10.5))); // error: this method was available via the base class in 10.4
523  @end
524
525Checks for Standard Language Features
526=====================================
527
528The ``__has_feature`` macro can be used to query if certain standard language
529features are enabled.  The ``__has_extension`` macro can be used to query if
530language features are available as an extension when compiling for a standard
531which does not provide them.  The features which can be tested are listed here.
532
533C++98
534-----
535
536The features listed below are part of the C++98 standard.  These features are
537enabled by default when compiling C++ code.
538
539C++ exceptions
540^^^^^^^^^^^^^^
541
542Use ``__has_feature(cxx_exceptions)`` to determine if C++ exceptions have been
543enabled.  For example, compiling code with ``-fno-exceptions`` disables C++
544exceptions.
545
546C++ RTTI
547^^^^^^^^
548
549Use ``__has_feature(cxx_rtti)`` to determine if C++ RTTI has been enabled.  For
550example, compiling code with ``-fno-rtti`` disables the use of RTTI.
551
552C++11
553-----
554
555The features listed below are part of the C++11 standard.  As a result, all
556these features are enabled with the ``-std=c++11`` or ``-std=gnu++11`` option
557when compiling C++ code.
558
559C++11 SFINAE includes access control
560^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
561
562Use ``__has_feature(cxx_access_control_sfinae)`` or
563``__has_extension(cxx_access_control_sfinae)`` to determine whether
564access-control errors (e.g., calling a private constructor) are considered to
565be template argument deduction errors (aka SFINAE errors), per `C++ DR1170
566<http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1170>`_.
567
568C++11 alias templates
569^^^^^^^^^^^^^^^^^^^^^
570
571Use ``__has_feature(cxx_alias_templates)`` or
572``__has_extension(cxx_alias_templates)`` to determine if support for C++11's
573alias declarations and alias templates is enabled.
574
575C++11 alignment specifiers
576^^^^^^^^^^^^^^^^^^^^^^^^^^
577
578Use ``__has_feature(cxx_alignas)`` or ``__has_extension(cxx_alignas)`` to
579determine if support for alignment specifiers using ``alignas`` is enabled.
580
581C++11 attributes
582^^^^^^^^^^^^^^^^
583
584Use ``__has_feature(cxx_attributes)`` or ``__has_extension(cxx_attributes)`` to
585determine if support for attribute parsing with C++11's square bracket notation
586is enabled.
587
588C++11 generalized constant expressions
589^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
590
591Use ``__has_feature(cxx_constexpr)`` to determine if support for generalized
592constant expressions (e.g., ``constexpr``) is enabled.
593
594C++11 ``decltype()``
595^^^^^^^^^^^^^^^^^^^^
596
597Use ``__has_feature(cxx_decltype)`` or ``__has_extension(cxx_decltype)`` to
598determine if support for the ``decltype()`` specifier is enabled.  C++11's
599``decltype`` does not require type-completeness of a function call expression.
600Use ``__has_feature(cxx_decltype_incomplete_return_types)`` or
601``__has_extension(cxx_decltype_incomplete_return_types)`` to determine if
602support for this feature is enabled.
603
604C++11 default template arguments in function templates
605^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
606
607Use ``__has_feature(cxx_default_function_template_args)`` or
608``__has_extension(cxx_default_function_template_args)`` to determine if support
609for default template arguments in function templates is enabled.
610
611C++11 ``default``\ ed functions
612^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
613
614Use ``__has_feature(cxx_defaulted_functions)`` or
615``__has_extension(cxx_defaulted_functions)`` to determine if support for
616defaulted function definitions (with ``= default``) is enabled.
617
618C++11 delegating constructors
619^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
620
621Use ``__has_feature(cxx_delegating_constructors)`` to determine if support for
622delegating constructors is enabled.
623
624C++11 ``deleted`` functions
625^^^^^^^^^^^^^^^^^^^^^^^^^^^
626
627Use ``__has_feature(cxx_deleted_functions)`` or
628``__has_extension(cxx_deleted_functions)`` to determine if support for deleted
629function definitions (with ``= delete``) is enabled.
630
631C++11 explicit conversion functions
632^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
633
634Use ``__has_feature(cxx_explicit_conversions)`` to determine if support for
635``explicit`` conversion functions is enabled.
636
637C++11 generalized initializers
638^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
639
640Use ``__has_feature(cxx_generalized_initializers)`` to determine if support for
641generalized initializers (using braced lists and ``std::initializer_list``) is
642enabled.
643
644C++11 implicit move constructors/assignment operators
645^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
646
647Use ``__has_feature(cxx_implicit_moves)`` to determine if Clang will implicitly
648generate move constructors and move assignment operators where needed.
649
650C++11 inheriting constructors
651^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
652
653Use ``__has_feature(cxx_inheriting_constructors)`` to determine if support for
654inheriting constructors is enabled.
655
656C++11 inline namespaces
657^^^^^^^^^^^^^^^^^^^^^^^
658
659Use ``__has_feature(cxx_inline_namespaces)`` or
660``__has_extension(cxx_inline_namespaces)`` to determine if support for inline
661namespaces is enabled.
662
663C++11 lambdas
664^^^^^^^^^^^^^
665
666Use ``__has_feature(cxx_lambdas)`` or ``__has_extension(cxx_lambdas)`` to
667determine if support for lambdas is enabled.
668
669C++11 local and unnamed types as template arguments
670^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
671
672Use ``__has_feature(cxx_local_type_template_args)`` or
673``__has_extension(cxx_local_type_template_args)`` to determine if support for
674local and unnamed types as template arguments is enabled.
675
676C++11 noexcept
677^^^^^^^^^^^^^^
678
679Use ``__has_feature(cxx_noexcept)`` or ``__has_extension(cxx_noexcept)`` to
680determine if support for noexcept exception specifications is enabled.
681
682C++11 in-class non-static data member initialization
683^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
684
685Use ``__has_feature(cxx_nonstatic_member_init)`` to determine whether in-class
686initialization of non-static data members is enabled.
687
688C++11 ``nullptr``
689^^^^^^^^^^^^^^^^^
690
691Use ``__has_feature(cxx_nullptr)`` or ``__has_extension(cxx_nullptr)`` to
692determine if support for ``nullptr`` is enabled.
693
694C++11 ``override control``
695^^^^^^^^^^^^^^^^^^^^^^^^^^
696
697Use ``__has_feature(cxx_override_control)`` or
698``__has_extension(cxx_override_control)`` to determine if support for the
699override control keywords is enabled.
700
701C++11 reference-qualified functions
702^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
703
704Use ``__has_feature(cxx_reference_qualified_functions)`` or
705``__has_extension(cxx_reference_qualified_functions)`` to determine if support
706for reference-qualified functions (e.g., member functions with ``&`` or ``&&``
707applied to ``*this``) is enabled.
708
709C++11 range-based ``for`` loop
710^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
711
712Use ``__has_feature(cxx_range_for)`` or ``__has_extension(cxx_range_for)`` to
713determine if support for the range-based for loop is enabled.
714
715C++11 raw string literals
716^^^^^^^^^^^^^^^^^^^^^^^^^
717
718Use ``__has_feature(cxx_raw_string_literals)`` to determine if support for raw
719string literals (e.g., ``R"x(foo\bar)x"``) is enabled.
720
721C++11 rvalue references
722^^^^^^^^^^^^^^^^^^^^^^^
723
724Use ``__has_feature(cxx_rvalue_references)`` or
725``__has_extension(cxx_rvalue_references)`` to determine if support for rvalue
726references is enabled.
727
728C++11 ``static_assert()``
729^^^^^^^^^^^^^^^^^^^^^^^^^
730
731Use ``__has_feature(cxx_static_assert)`` or
732``__has_extension(cxx_static_assert)`` to determine if support for compile-time
733assertions using ``static_assert`` is enabled.
734
735C++11 ``thread_local``
736^^^^^^^^^^^^^^^^^^^^^^
737
738Use ``__has_feature(cxx_thread_local)`` to determine if support for
739``thread_local`` variables is enabled.
740
741C++11 type inference
742^^^^^^^^^^^^^^^^^^^^
743
744Use ``__has_feature(cxx_auto_type)`` or ``__has_extension(cxx_auto_type)`` to
745determine C++11 type inference is supported using the ``auto`` specifier.  If
746this is disabled, ``auto`` will instead be a storage class specifier, as in C
747or C++98.
748
749C++11 strongly typed enumerations
750^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
751
752Use ``__has_feature(cxx_strong_enums)`` or
753``__has_extension(cxx_strong_enums)`` to determine if support for strongly
754typed, scoped enumerations is enabled.
755
756C++11 trailing return type
757^^^^^^^^^^^^^^^^^^^^^^^^^^
758
759Use ``__has_feature(cxx_trailing_return)`` or
760``__has_extension(cxx_trailing_return)`` to determine if support for the
761alternate function declaration syntax with trailing return type is enabled.
762
763C++11 Unicode string literals
764^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
765
766Use ``__has_feature(cxx_unicode_literals)`` to determine if support for Unicode
767string literals is enabled.
768
769C++11 unrestricted unions
770^^^^^^^^^^^^^^^^^^^^^^^^^
771
772Use ``__has_feature(cxx_unrestricted_unions)`` to determine if support for
773unrestricted unions is enabled.
774
775C++11 user-defined literals
776^^^^^^^^^^^^^^^^^^^^^^^^^^^
777
778Use ``__has_feature(cxx_user_literals)`` to determine if support for
779user-defined literals is enabled.
780
781C++11 variadic templates
782^^^^^^^^^^^^^^^^^^^^^^^^
783
784Use ``__has_feature(cxx_variadic_templates)`` or
785``__has_extension(cxx_variadic_templates)`` to determine if support for
786variadic templates is enabled.
787
788C++1y
789-----
790
791The features listed below are part of the committee draft for the C++1y
792standard.  As a result, all these features are enabled with the ``-std=c++1y``
793or ``-std=gnu++1y`` option when compiling C++ code.
794
795C++1y binary literals
796^^^^^^^^^^^^^^^^^^^^^
797
798Use ``__has_feature(cxx_binary_literals)`` or
799``__has_extension(cxx_binary_literals)`` to determine whether
800binary literals (for instance, ``0b10010``) are recognized. Clang supports this
801feature as an extension in all language modes.
802
803C++1y contextual conversions
804^^^^^^^^^^^^^^^^^^^^^^^^^^^^
805
806Use ``__has_feature(cxx_contextual_conversions)`` or
807``__has_extension(cxx_contextual_conversions)`` to determine if the C++1y rules
808are used when performing an implicit conversion for an array bound in a
809*new-expression*, the operand of a *delete-expression*, an integral constant
810expression, or a condition in a ``switch`` statement.
811
812C++1y decltype(auto)
813^^^^^^^^^^^^^^^^^^^^
814
815Use ``__has_feature(cxx_decltype_auto)`` or
816``__has_extension(cxx_decltype_auto)`` to determine if support
817for the ``decltype(auto)`` placeholder type is enabled.
818
819C++1y default initializers for aggregates
820^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
821
822Use ``__has_feature(cxx_aggregate_nsdmi)`` or
823``__has_extension(cxx_aggregate_nsdmi)`` to determine if support
824for default initializers in aggregate members is enabled.
825
826C++1y generalized lambda capture
827^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
828
829Use ``__has_feature(cxx_init_capture)`` or
830``__has_extension(cxx_init_capture)`` to determine if support for
831lambda captures with explicit initializers is enabled
832(for instance, ``[n(0)] { return ++n; }``).
833Clang does not yet support this feature.
834
835C++1y generic lambdas
836^^^^^^^^^^^^^^^^^^^^^
837
838Use ``__has_feature(cxx_generic_lambda)`` or
839``__has_extension(cxx_generic_lambda)`` to determine if support for generic
840(polymorphic) lambdas is enabled
841(for instance, ``[] (auto x) { return x + 1; }``).
842Clang does not yet support this feature.
843
844C++1y relaxed constexpr
845^^^^^^^^^^^^^^^^^^^^^^^
846
847Use ``__has_feature(cxx_relaxed_constexpr)`` or
848``__has_extension(cxx_relaxed_constexpr)`` to determine if variable
849declarations, local variable modification, and control flow constructs
850are permitted in ``constexpr`` functions.
851
852C++1y return type deduction
853^^^^^^^^^^^^^^^^^^^^^^^^^^^
854
855Use ``__has_feature(cxx_return_type_deduction)`` or
856``__has_extension(cxx_return_type_deduction)`` to determine if support
857for return type deduction for functions (using ``auto`` as a return type)
858is enabled.
859
860C++1y runtime-sized arrays
861^^^^^^^^^^^^^^^^^^^^^^^^^^
862
863Use ``__has_feature(cxx_runtime_array)`` or
864``__has_extension(cxx_runtime_array)`` to determine if support
865for arrays of runtime bound (a restricted form of variable-length arrays)
866is enabled.
867Clang's implementation of this feature is incomplete.
868
869C++1y variable templates
870^^^^^^^^^^^^^^^^^^^^^^^^
871
872Use ``__has_feature(cxx_variable_templates)`` or
873``__has_extension(cxx_variable_templates)`` to determine if support for
874templated variable declarations is enabled.
875Clang does not yet support this feature.
876
877C11
878---
879
880The features listed below are part of the C11 standard.  As a result, all these
881features are enabled with the ``-std=c11`` or ``-std=gnu11`` option when
882compiling C code.  Additionally, because these features are all
883backward-compatible, they are available as extensions in all language modes.
884
885C11 alignment specifiers
886^^^^^^^^^^^^^^^^^^^^^^^^
887
888Use ``__has_feature(c_alignas)`` or ``__has_extension(c_alignas)`` to determine
889if support for alignment specifiers using ``_Alignas`` is enabled.
890
891C11 atomic operations
892^^^^^^^^^^^^^^^^^^^^^
893
894Use ``__has_feature(c_atomic)`` or ``__has_extension(c_atomic)`` to determine
895if support for atomic types using ``_Atomic`` is enabled.  Clang also provides
896:ref:`a set of builtins <langext-__c11_atomic>` which can be used to implement
897the ``<stdatomic.h>`` operations on ``_Atomic`` types.
898
899C11 generic selections
900^^^^^^^^^^^^^^^^^^^^^^
901
902Use ``__has_feature(c_generic_selections)`` or
903``__has_extension(c_generic_selections)`` to determine if support for generic
904selections is enabled.
905
906As an extension, the C11 generic selection expression is available in all
907languages supported by Clang.  The syntax is the same as that given in the C11
908standard.
909
910In C, type compatibility is decided according to the rules given in the
911appropriate standard, but in C++, which lacks the type compatibility rules used
912in C, types are considered compatible only if they are equivalent.
913
914C11 ``_Static_assert()``
915^^^^^^^^^^^^^^^^^^^^^^^^
916
917Use ``__has_feature(c_static_assert)`` or ``__has_extension(c_static_assert)``
918to determine if support for compile-time assertions using ``_Static_assert`` is
919enabled.
920
921C11 ``_Thread_local``
922^^^^^^^^^^^^^^^^^^^^^
923
924Use ``__has_feature(c_thread_local)`` or ``__has_extension(c_thread_local)``
925to determine if support for ``_Thread_local`` variables is enabled.
926
927Checks for Type Traits
928======================
929
930Clang supports the `GNU C++ type traits
931<http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html>`_ and a subset of the
932`Microsoft Visual C++ Type traits
933<http://msdn.microsoft.com/en-us/library/ms177194(v=VS.100).aspx>`_.  For each
934supported type trait ``__X``, ``__has_extension(X)`` indicates the presence of
935the type trait.  For example:
936
937.. code-block:: c++
938
939  #if __has_extension(is_convertible_to)
940  template<typename From, typename To>
941  struct is_convertible_to {
942    static const bool value = __is_convertible_to(From, To);
943  };
944  #else
945  // Emulate type trait
946  #endif
947
948The following type traits are supported by Clang:
949
950* ``__has_nothrow_assign`` (GNU, Microsoft)
951* ``__has_nothrow_copy`` (GNU, Microsoft)
952* ``__has_nothrow_constructor`` (GNU, Microsoft)
953* ``__has_trivial_assign`` (GNU, Microsoft)
954* ``__has_trivial_copy`` (GNU, Microsoft)
955* ``__has_trivial_constructor`` (GNU, Microsoft)
956* ``__has_trivial_destructor`` (GNU, Microsoft)
957* ``__has_virtual_destructor`` (GNU, Microsoft)
958* ``__is_abstract`` (GNU, Microsoft)
959* ``__is_base_of`` (GNU, Microsoft)
960* ``__is_class`` (GNU, Microsoft)
961* ``__is_convertible_to`` (Microsoft)
962* ``__is_empty`` (GNU, Microsoft)
963* ``__is_enum`` (GNU, Microsoft)
964* ``__is_interface_class`` (Microsoft)
965* ``__is_pod`` (GNU, Microsoft)
966* ``__is_polymorphic`` (GNU, Microsoft)
967* ``__is_union`` (GNU, Microsoft)
968* ``__is_literal(type)``: Determines whether the given type is a literal type
969* ``__is_final``: Determines whether the given type is declared with a
970  ``final`` class-virt-specifier.
971* ``__underlying_type(type)``: Retrieves the underlying type for a given
972  ``enum`` type.  This trait is required to implement the C++11 standard
973  library.
974* ``__is_trivially_assignable(totype, fromtype)``: Determines whether a value
975  of type ``totype`` can be assigned to from a value of type ``fromtype`` such
976  that no non-trivial functions are called as part of that assignment.  This
977  trait is required to implement the C++11 standard library.
978* ``__is_trivially_constructible(type, argtypes...)``: Determines whether a
979  value of type ``type`` can be direct-initialized with arguments of types
980  ``argtypes...`` such that no non-trivial functions are called as part of
981  that initialization.  This trait is required to implement the C++11 standard
982  library.
983
984Blocks
985======
986
987The syntax and high level language feature description is in
988:doc:`BlockLanguageSpec<BlockLanguageSpec>`. Implementation and ABI details for
989the clang implementation are in :doc:`Block-ABI-Apple<Block-ABI-Apple>`.
990
991Query for this feature with ``__has_extension(blocks)``.
992
993Objective-C Features
994====================
995
996Related result types
997--------------------
998
999According to Cocoa conventions, Objective-C methods with certain names
1000("``init``", "``alloc``", etc.) always return objects that are an instance of
1001the receiving class's type.  Such methods are said to have a "related result
1002type", meaning that a message send to one of these methods will have the same
1003static type as an instance of the receiver class.  For example, given the
1004following classes:
1005
1006.. code-block:: objc
1007
1008  @interface NSObject
1009  + (id)alloc;
1010  - (id)init;
1011  @end
1012
1013  @interface NSArray : NSObject
1014  @end
1015
1016and this common initialization pattern
1017
1018.. code-block:: objc
1019
1020  NSArray *array = [[NSArray alloc] init];
1021
1022the type of the expression ``[NSArray alloc]`` is ``NSArray*`` because
1023``alloc`` implicitly has a related result type.  Similarly, the type of the
1024expression ``[[NSArray alloc] init]`` is ``NSArray*``, since ``init`` has a
1025related result type and its receiver is known to have the type ``NSArray *``.
1026If neither ``alloc`` nor ``init`` had a related result type, the expressions
1027would have had type ``id``, as declared in the method signature.
1028
1029A method with a related result type can be declared by using the type
1030``instancetype`` as its result type.  ``instancetype`` is a contextual keyword
1031that is only permitted in the result type of an Objective-C method, e.g.
1032
1033.. code-block:: objc
1034
1035  @interface A
1036  + (instancetype)constructAnA;
1037  @end
1038
1039The related result type can also be inferred for some methods.  To determine
1040whether a method has an inferred related result type, the first word in the
1041camel-case selector (e.g., "``init``" in "``initWithObjects``") is considered,
1042and the method will have a related result type if its return type is compatible
1043with the type of its class and if:
1044
1045* the first word is "``alloc``" or "``new``", and the method is a class method,
1046  or
1047
1048* the first word is "``autorelease``", "``init``", "``retain``", or "``self``",
1049  and the method is an instance method.
1050
1051If a method with a related result type is overridden by a subclass method, the
1052subclass method must also return a type that is compatible with the subclass
1053type.  For example:
1054
1055.. code-block:: objc
1056
1057  @interface NSString : NSObject
1058  - (NSUnrelated *)init; // incorrect usage: NSUnrelated is not NSString or a superclass of NSString
1059  @end
1060
1061Related result types only affect the type of a message send or property access
1062via the given method.  In all other respects, a method with a related result
1063type is treated the same way as method that returns ``id``.
1064
1065Use ``__has_feature(objc_instancetype)`` to determine whether the
1066``instancetype`` contextual keyword is available.
1067
1068Automatic reference counting
1069----------------------------
1070
1071Clang provides support for :doc:`automated reference counting
1072<AutomaticReferenceCounting>` in Objective-C, which eliminates the need
1073for manual ``retain``/``release``/``autorelease`` message sends.  There are two
1074feature macros associated with automatic reference counting:
1075``__has_feature(objc_arc)`` indicates the availability of automated reference
1076counting in general, while ``__has_feature(objc_arc_weak)`` indicates that
1077automated reference counting also includes support for ``__weak`` pointers to
1078Objective-C objects.
1079
1080.. _objc-fixed-enum:
1081
1082Enumerations with a fixed underlying type
1083-----------------------------------------
1084
1085Clang provides support for C++11 enumerations with a fixed underlying type
1086within Objective-C.  For example, one can write an enumeration type as:
1087
1088.. code-block:: c++
1089
1090  typedef enum : unsigned char { Red, Green, Blue } Color;
1091
1092This specifies that the underlying type, which is used to store the enumeration
1093value, is ``unsigned char``.
1094
1095Use ``__has_feature(objc_fixed_enum)`` to determine whether support for fixed
1096underlying types is available in Objective-C.
1097
1098Interoperability with C++11 lambdas
1099-----------------------------------
1100
1101Clang provides interoperability between C++11 lambdas and blocks-based APIs, by
1102permitting a lambda to be implicitly converted to a block pointer with the
1103corresponding signature.  For example, consider an API such as ``NSArray``'s
1104array-sorting method:
1105
1106.. code-block:: objc
1107
1108  - (NSArray *)sortedArrayUsingComparator:(NSComparator)cmptr;
1109
1110``NSComparator`` is simply a typedef for the block pointer ``NSComparisonResult
1111(^)(id, id)``, and parameters of this type are generally provided with block
1112literals as arguments.  However, one can also use a C++11 lambda so long as it
1113provides the same signature (in this case, accepting two parameters of type
1114``id`` and returning an ``NSComparisonResult``):
1115
1116.. code-block:: objc
1117
1118  NSArray *array = @[@"string 1", @"string 21", @"string 12", @"String 11",
1119                     @"String 02"];
1120  const NSStringCompareOptions comparisonOptions
1121    = NSCaseInsensitiveSearch | NSNumericSearch |
1122      NSWidthInsensitiveSearch | NSForcedOrderingSearch;
1123  NSLocale *currentLocale = [NSLocale currentLocale];
1124  NSArray *sorted
1125    = [array sortedArrayUsingComparator:[=](id s1, id s2) -> NSComparisonResult {
1126               NSRange string1Range = NSMakeRange(0, [s1 length]);
1127               return [s1 compare:s2 options:comparisonOptions
1128               range:string1Range locale:currentLocale];
1129       }];
1130  NSLog(@"sorted: %@", sorted);
1131
1132This code relies on an implicit conversion from the type of the lambda
1133expression (an unnamed, local class type called the *closure type*) to the
1134corresponding block pointer type.  The conversion itself is expressed by a
1135conversion operator in that closure type that produces a block pointer with the
1136same signature as the lambda itself, e.g.,
1137
1138.. code-block:: objc
1139
1140  operator NSComparisonResult (^)(id, id)() const;
1141
1142This conversion function returns a new block that simply forwards the two
1143parameters to the lambda object (which it captures by copy), then returns the
1144result.  The returned block is first copied (with ``Block_copy``) and then
1145autoreleased.  As an optimization, if a lambda expression is immediately
1146converted to a block pointer (as in the first example, above), then the block
1147is not copied and autoreleased: rather, it is given the same lifetime as a
1148block literal written at that point in the program, which avoids the overhead
1149of copying a block to the heap in the common case.
1150
1151The conversion from a lambda to a block pointer is only available in
1152Objective-C++, and not in C++ with blocks, due to its use of Objective-C memory
1153management (autorelease).
1154
1155Object Literals and Subscripting
1156--------------------------------
1157
1158Clang provides support for :doc:`Object Literals and Subscripting
1159<ObjectiveCLiterals>` in Objective-C, which simplifies common Objective-C
1160programming patterns, makes programs more concise, and improves the safety of
1161container creation.  There are several feature macros associated with object
1162literals and subscripting: ``__has_feature(objc_array_literals)`` tests the
1163availability of array literals; ``__has_feature(objc_dictionary_literals)``
1164tests the availability of dictionary literals;
1165``__has_feature(objc_subscripting)`` tests the availability of object
1166subscripting.
1167
1168Objective-C Autosynthesis of Properties
1169---------------------------------------
1170
1171Clang provides support for autosynthesis of declared properties.  Using this
1172feature, clang provides default synthesis of those properties not declared
1173@dynamic and not having user provided backing getter and setter methods.
1174``__has_feature(objc_default_synthesize_properties)`` checks for availability
1175of this feature in version of clang being used.
1176
1177.. _langext-objc_method_family:
1178
1179
1180Objective-C requiring a call to ``super`` in an override
1181--------------------------------------------------------
1182
1183Some Objective-C classes allow a subclass to override a particular method in a
1184parent class but expect that the overriding method also calls the overridden
1185method in the parent class. For these cases, we provide an attribute to
1186designate that a method requires a "call to ``super``" in the overriding
1187method in the subclass.
1188
1189**Usage**: ``__attribute__((objc_requires_super))``.  This attribute can only
1190be placed at the end of a method declaration:
1191
1192.. code-block:: objc
1193
1194  - (void)foo __attribute__((objc_requires_super));
1195
1196This attribute can only be applied the method declarations within a class, and
1197not a protocol.  Currently this attribute does not enforce any placement of
1198where the call occurs in the overriding method (such as in the case of
1199``-dealloc`` where the call must appear at the end).  It checks only that it
1200exists.
1201
1202Note that on both OS X and iOS that the Foundation framework provides a
1203convenience macro ``NS_REQUIRES_SUPER`` that provides syntactic sugar for this
1204attribute:
1205
1206.. code-block:: objc
1207
1208  - (void)foo NS_REQUIRES_SUPER;
1209
1210This macro is conditionally defined depending on the compiler's support for
1211this attribute.  If the compiler does not support the attribute the macro
1212expands to nothing.
1213
1214Operationally, when a method has this annotation the compiler will warn if the
1215implementation of an override in a subclass does not call super.  For example:
1216
1217.. code-block:: objc
1218
1219   warning: method possibly missing a [super AnnotMeth] call
1220   - (void) AnnotMeth{};
1221                      ^
1222
1223Objective-C Method Families
1224---------------------------
1225
1226Many methods in Objective-C have conventional meanings determined by their
1227selectors. It is sometimes useful to be able to mark a method as having a
1228particular conventional meaning despite not having the right selector, or as
1229not having the conventional meaning that its selector would suggest. For these
1230use cases, we provide an attribute to specifically describe the "method family"
1231that a method belongs to.
1232
1233**Usage**: ``__attribute__((objc_method_family(X)))``, where ``X`` is one of
1234``none``, ``alloc``, ``copy``, ``init``, ``mutableCopy``, or ``new``.  This
1235attribute can only be placed at the end of a method declaration:
1236
1237.. code-block:: objc
1238
1239  - (NSString *)initMyStringValue __attribute__((objc_method_family(none)));
1240
1241Users who do not wish to change the conventional meaning of a method, and who
1242merely want to document its non-standard retain and release semantics, should
1243use the :ref:`retaining behavior attributes <langext-objc-retain-release>`
1244described below.
1245
1246Query for this feature with ``__has_attribute(objc_method_family)``.
1247
1248.. _langext-objc-retain-release:
1249
1250Objective-C retaining behavior attributes
1251-----------------------------------------
1252
1253In Objective-C, functions and methods are generally assumed to follow the
1254`Cocoa Memory Management
1255<http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmRules.html>`_
1256conventions for ownership of object arguments and
1257return values. However, there are exceptions, and so Clang provides attributes
1258to allow these exceptions to be documented. This are used by ARC and the
1259`static analyzer <http://clang-analyzer.llvm.org>`_ Some exceptions may be
1260better described using the :ref:`objc_method_family
1261<langext-objc_method_family>` attribute instead.
1262
1263**Usage**: The ``ns_returns_retained``, ``ns_returns_not_retained``,
1264``ns_returns_autoreleased``, ``cf_returns_retained``, and
1265``cf_returns_not_retained`` attributes can be placed on methods and functions
1266that return Objective-C or CoreFoundation objects. They are commonly placed at
1267the end of a function prototype or method declaration:
1268
1269.. code-block:: objc
1270
1271  id foo() __attribute__((ns_returns_retained));
1272
1273  - (NSString *)bar:(int)x __attribute__((ns_returns_retained));
1274
1275The ``*_returns_retained`` attributes specify that the returned object has a +1
1276retain count.  The ``*_returns_not_retained`` attributes specify that the return
1277object has a +0 retain count, even if the normal convention for its selector
1278would be +1.  ``ns_returns_autoreleased`` specifies that the returned object is
1279+0, but is guaranteed to live at least as long as the next flush of an
1280autorelease pool.
1281
1282**Usage**: The ``ns_consumed`` and ``cf_consumed`` attributes can be placed on
1283an parameter declaration; they specify that the argument is expected to have a
1284+1 retain count, which will be balanced in some way by the function or method.
1285The ``ns_consumes_self`` attribute can only be placed on an Objective-C
1286method; it specifies that the method expects its ``self`` parameter to have a
1287+1 retain count, which it will balance in some way.
1288
1289.. code-block:: objc
1290
1291  void foo(__attribute__((ns_consumed)) NSString *string);
1292
1293  - (void) bar __attribute__((ns_consumes_self));
1294  - (void) baz:(id) __attribute__((ns_consumed)) x;
1295
1296Further examples of these attributes are available in the static analyzer's `list of annotations for analysis
1297<http://clang-analyzer.llvm.org/annotations.html#cocoa_mem>`_.
1298
1299Query for these features with ``__has_attribute(ns_consumed)``,
1300``__has_attribute(ns_returns_retained)``, etc.
1301
1302
1303Objective-C++ ABI: protocol-qualifier mangling of parameters
1304------------------------------------------------------------
1305
1306Starting with LLVM 3.4, Clang produces a new mangling for parameters whose
1307type is a qualified-``id`` (e.g., ``id<Foo>``).  This mangling allows such
1308parameters to be differentiated from those with the regular unqualified ``id``
1309type.
1310
1311This was a non-backward compatible mangling change to the ABI.  This change
1312allows proper overloading, and also prevents mangling conflicts with template
1313parameters of protocol-qualified type.
1314
1315Query the presence of this new mangling with
1316``__has_feature(objc_protocol_qualifier_mangling)``.
1317
1318Function Overloading in C
1319=========================
1320
1321Clang provides support for C++ function overloading in C.  Function overloading
1322in C is introduced using the ``overloadable`` attribute.  For example, one
1323might provide several overloaded versions of a ``tgsin`` function that invokes
1324the appropriate standard function computing the sine of a value with ``float``,
1325``double``, or ``long double`` precision:
1326
1327.. code-block:: c
1328
1329  #include <math.h>
1330  float __attribute__((overloadable)) tgsin(float x) { return sinf(x); }
1331  double __attribute__((overloadable)) tgsin(double x) { return sin(x); }
1332  long double __attribute__((overloadable)) tgsin(long double x) { return sinl(x); }
1333
1334Given these declarations, one can call ``tgsin`` with a ``float`` value to
1335receive a ``float`` result, with a ``double`` to receive a ``double`` result,
1336etc.  Function overloading in C follows the rules of C++ function overloading
1337to pick the best overload given the call arguments, with a few C-specific
1338semantics:
1339
1340* Conversion from ``float`` or ``double`` to ``long double`` is ranked as a
1341  floating-point promotion (per C99) rather than as a floating-point conversion
1342  (as in C++).
1343
1344* A conversion from a pointer of type ``T*`` to a pointer of type ``U*`` is
1345  considered a pointer conversion (with conversion rank) if ``T`` and ``U`` are
1346  compatible types.
1347
1348* A conversion from type ``T`` to a value of type ``U`` is permitted if ``T``
1349  and ``U`` are compatible types.  This conversion is given "conversion" rank.
1350
1351The declaration of ``overloadable`` functions is restricted to function
1352declarations and definitions.  Most importantly, if any function with a given
1353name is given the ``overloadable`` attribute, then all function declarations
1354and definitions with that name (and in that scope) must have the
1355``overloadable`` attribute.  This rule even applies to redeclarations of
1356functions whose original declaration had the ``overloadable`` attribute, e.g.,
1357
1358.. code-block:: c
1359
1360  int f(int) __attribute__((overloadable));
1361  float f(float); // error: declaration of "f" must have the "overloadable" attribute
1362
1363  int g(int) __attribute__((overloadable));
1364  int g(int) { } // error: redeclaration of "g" must also have the "overloadable" attribute
1365
1366Functions marked ``overloadable`` must have prototypes.  Therefore, the
1367following code is ill-formed:
1368
1369.. code-block:: c
1370
1371  int h() __attribute__((overloadable)); // error: h does not have a prototype
1372
1373However, ``overloadable`` functions are allowed to use a ellipsis even if there
1374are no named parameters (as is permitted in C++).  This feature is particularly
1375useful when combined with the ``unavailable`` attribute:
1376
1377.. code-block:: c++
1378
1379  void honeypot(...) __attribute__((overloadable, unavailable)); // calling me is an error
1380
1381Functions declared with the ``overloadable`` attribute have their names mangled
1382according to the same rules as C++ function names.  For example, the three
1383``tgsin`` functions in our motivating example get the mangled names
1384``_Z5tgsinf``, ``_Z5tgsind``, and ``_Z5tgsine``, respectively.  There are two
1385caveats to this use of name mangling:
1386
1387* Future versions of Clang may change the name mangling of functions overloaded
1388  in C, so you should not depend on an specific mangling.  To be completely
1389  safe, we strongly urge the use of ``static inline`` with ``overloadable``
1390  functions.
1391
1392* The ``overloadable`` attribute has almost no meaning when used in C++,
1393  because names will already be mangled and functions are already overloadable.
1394  However, when an ``overloadable`` function occurs within an ``extern "C"``
1395  linkage specification, it's name *will* be mangled in the same way as it
1396  would in C.
1397
1398Query for this feature with ``__has_extension(attribute_overloadable)``.
1399
1400Initializer lists for complex numbers in C
1401==========================================
1402
1403clang supports an extension which allows the following in C:
1404
1405.. code-block:: c++
1406
1407  #include <math.h>
1408  #include <complex.h>
1409  complex float x = { 1.0f, INFINITY }; // Init to (1, Inf)
1410
1411This construct is useful because there is no way to separately initialize the
1412real and imaginary parts of a complex variable in standard C, given that clang
1413does not support ``_Imaginary``.  (Clang also supports the ``__real__`` and
1414``__imag__`` extensions from gcc, which help in some cases, but are not usable
1415in static initializers.)
1416
1417Note that this extension does not allow eliding the braces; the meaning of the
1418following two lines is different:
1419
1420.. code-block:: c++
1421
1422  complex float x[] = { { 1.0f, 1.0f } }; // [0] = (1, 1)
1423  complex float x[] = { 1.0f, 1.0f }; // [0] = (1, 0), [1] = (1, 0)
1424
1425This extension also works in C++ mode, as far as that goes, but does not apply
1426to the C++ ``std::complex``.  (In C++11, list initialization allows the same
1427syntax to be used with ``std::complex`` with the same meaning.)
1428
1429Builtin Functions
1430=================
1431
1432Clang supports a number of builtin library functions with the same syntax as
1433GCC, including things like ``__builtin_nan``, ``__builtin_constant_p``,
1434``__builtin_choose_expr``, ``__builtin_types_compatible_p``,
1435``__sync_fetch_and_add``, etc.  In addition to the GCC builtins, Clang supports
1436a number of builtins that GCC does not, which are listed here.
1437
1438Please note that Clang does not and will not support all of the GCC builtins
1439for vector operations.  Instead of using builtins, you should use the functions
1440defined in target-specific header files like ``<xmmintrin.h>``, which define
1441portable wrappers for these.  Many of the Clang versions of these functions are
1442implemented directly in terms of :ref:`extended vector support
1443<langext-vectors>` instead of builtins, in order to reduce the number of
1444builtins that we need to implement.
1445
1446``__builtin_readcyclecounter``
1447------------------------------
1448
1449``__builtin_readcyclecounter`` is used to access the cycle counter register (or
1450a similar low-latency, high-accuracy clock) on those targets that support it.
1451
1452**Syntax**:
1453
1454.. code-block:: c++
1455
1456  __builtin_readcyclecounter()
1457
1458**Example of Use**:
1459
1460.. code-block:: c++
1461
1462  unsigned long long t0 = __builtin_readcyclecounter();
1463  do_something();
1464  unsigned long long t1 = __builtin_readcyclecounter();
1465  unsigned long long cycles_to_do_something = t1 - t0; // assuming no overflow
1466
1467**Description**:
1468
1469The ``__builtin_readcyclecounter()`` builtin returns the cycle counter value,
1470which may be either global or process/thread-specific depending on the target.
1471As the backing counters often overflow quickly (on the order of seconds) this
1472should only be used for timing small intervals.  When not supported by the
1473target, the return value is always zero.  This builtin takes no arguments and
1474produces an unsigned long long result.
1475
1476Query for this feature with ``__has_builtin(__builtin_readcyclecounter)``. Note
1477that even if present, its use may depend on run-time privilege or other OS
1478controlled state.
1479
1480.. _langext-__builtin_shufflevector:
1481
1482``__builtin_shufflevector``
1483---------------------------
1484
1485``__builtin_shufflevector`` is used to express generic vector
1486permutation/shuffle/swizzle operations.  This builtin is also very important
1487for the implementation of various target-specific header files like
1488``<xmmintrin.h>``.
1489
1490**Syntax**:
1491
1492.. code-block:: c++
1493
1494  __builtin_shufflevector(vec1, vec2, index1, index2, ...)
1495
1496**Examples**:
1497
1498.. code-block:: c++
1499
1500  // identity operation - return 4-element vector v1.
1501  __builtin_shufflevector(v1, v1, 0, 1, 2, 3)
1502
1503  // "Splat" element 0 of V1 into a 4-element result.
1504  __builtin_shufflevector(V1, V1, 0, 0, 0, 0)
1505
1506  // Reverse 4-element vector V1.
1507  __builtin_shufflevector(V1, V1, 3, 2, 1, 0)
1508
1509  // Concatenate every other element of 4-element vectors V1 and V2.
1510  __builtin_shufflevector(V1, V2, 0, 2, 4, 6)
1511
1512  // Concatenate every other element of 8-element vectors V1 and V2.
1513  __builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14)
1514
1515  // Shuffle v1 with some elements being undefined
1516  __builtin_shufflevector(v1, v1, 3, -1, 1, -1)
1517
1518**Description**:
1519
1520The first two arguments to ``__builtin_shufflevector`` are vectors that have
1521the same element type.  The remaining arguments are a list of integers that
1522specify the elements indices of the first two vectors that should be extracted
1523and returned in a new vector.  These element indices are numbered sequentially
1524starting with the first vector, continuing into the second vector.  Thus, if
1525``vec1`` is a 4-element vector, index 5 would refer to the second element of
1526``vec2``. An index of -1 can be used to indicate that the corresponding element
1527in the returned vector is a don't care and can be optimized by the backend.
1528
1529The result of ``__builtin_shufflevector`` is a vector with the same element
1530type as ``vec1``/``vec2`` but that has an element count equal to the number of
1531indices specified.
1532
1533Query for this feature with ``__has_builtin(__builtin_shufflevector)``.
1534
1535``__builtin_convertvector``
1536---------------------------
1537
1538``__builtin_convertvector`` is used to express generic vector
1539type-conversion operations. The input vector and the output vector
1540type must have the same number of elements.
1541
1542**Syntax**:
1543
1544.. code-block:: c++
1545
1546  __builtin_convertvector(src_vec, dst_vec_type)
1547
1548**Examples**:
1549
1550.. code-block:: c++
1551
1552  typedef double vector4double __attribute__((__vector_size__(32)));
1553  typedef float  vector4float  __attribute__((__vector_size__(16)));
1554  typedef short  vector4short  __attribute__((__vector_size__(8)));
1555  vector4float vf; vector4short vs;
1556
1557  // convert from a vector of 4 floats to a vector of 4 doubles.
1558  __builtin_convertvector(vf, vector4double)
1559  // equivalent to:
1560  (vector4double) { (double) vf[0], (double) vf[1], (double) vf[2], (double) vf[3] }
1561
1562  // convert from a vector of 4 shorts to a vector of 4 floats.
1563  __builtin_convertvector(vs, vector4float)
1564  // equivalent to:
1565  (vector4float) { (float) vf[0], (float) vf[1], (float) vf[2], (float) vf[3] }
1566
1567**Description**:
1568
1569The first argument to ``__builtin_convertvector`` is a vector, and the second
1570argument is a vector type with the same number of elements as the first
1571argument.
1572
1573The result of ``__builtin_convertvector`` is a vector with the same element
1574type as the second argument, with a value defined in terms of the action of a
1575C-style cast applied to each element of the first argument.
1576
1577Query for this feature with ``__has_builtin(__builtin_convertvector)``.
1578
1579``__builtin_unreachable``
1580-------------------------
1581
1582``__builtin_unreachable`` is used to indicate that a specific point in the
1583program cannot be reached, even if the compiler might otherwise think it can.
1584This is useful to improve optimization and eliminates certain warnings.  For
1585example, without the ``__builtin_unreachable`` in the example below, the
1586compiler assumes that the inline asm can fall through and prints a "function
1587declared '``noreturn``' should not return" warning.
1588
1589**Syntax**:
1590
1591.. code-block:: c++
1592
1593    __builtin_unreachable()
1594
1595**Example of use**:
1596
1597.. code-block:: c++
1598
1599  void myabort(void) __attribute__((noreturn));
1600  void myabort(void) {
1601    asm("int3");
1602    __builtin_unreachable();
1603  }
1604
1605**Description**:
1606
1607The ``__builtin_unreachable()`` builtin has completely undefined behavior.
1608Since it has undefined behavior, it is a statement that it is never reached and
1609the optimizer can take advantage of this to produce better code.  This builtin
1610takes no arguments and produces a void result.
1611
1612Query for this feature with ``__has_builtin(__builtin_unreachable)``.
1613
1614``__sync_swap``
1615---------------
1616
1617``__sync_swap`` is used to atomically swap integers or pointers in memory.
1618
1619**Syntax**:
1620
1621.. code-block:: c++
1622
1623  type __sync_swap(type *ptr, type value, ...)
1624
1625**Example of Use**:
1626
1627.. code-block:: c++
1628
1629  int old_value = __sync_swap(&value, new_value);
1630
1631**Description**:
1632
1633The ``__sync_swap()`` builtin extends the existing ``__sync_*()`` family of
1634atomic intrinsics to allow code to atomically swap the current value with the
1635new value.  More importantly, it helps developers write more efficient and
1636correct code by avoiding expensive loops around
1637``__sync_bool_compare_and_swap()`` or relying on the platform specific
1638implementation details of ``__sync_lock_test_and_set()``.  The
1639``__sync_swap()`` builtin is a full barrier.
1640
1641``__builtin_addressof``
1642-----------------------
1643
1644``__builtin_addressof`` performs the functionality of the built-in ``&``
1645operator, ignoring any ``operator&`` overload.  This is useful in constant
1646expressions in C++11, where there is no other way to take the address of an
1647object that overloads ``operator&``.
1648
1649**Example of use**:
1650
1651.. code-block:: c++
1652
1653  template<typename T> constexpr T *addressof(T &value) {
1654    return __builtin_addressof(value);
1655  }
1656
1657Multiprecision Arithmetic Builtins
1658----------------------------------
1659
1660Clang provides a set of builtins which expose multiprecision arithmetic in a
1661manner amenable to C. They all have the following form:
1662
1663.. code-block:: c
1664
1665  unsigned x = ..., y = ..., carryin = ..., carryout;
1666  unsigned sum = __builtin_addc(x, y, carryin, &carryout);
1667
1668Thus one can form a multiprecision addition chain in the following manner:
1669
1670.. code-block:: c
1671
1672  unsigned *x, *y, *z, carryin=0, carryout;
1673  z[0] = __builtin_addc(x[0], y[0], carryin, &carryout);
1674  carryin = carryout;
1675  z[1] = __builtin_addc(x[1], y[1], carryin, &carryout);
1676  carryin = carryout;
1677  z[2] = __builtin_addc(x[2], y[2], carryin, &carryout);
1678  carryin = carryout;
1679  z[3] = __builtin_addc(x[3], y[3], carryin, &carryout);
1680
1681The complete list of builtins are:
1682
1683.. code-block:: c
1684
1685  unsigned char      __builtin_addcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
1686  unsigned short     __builtin_addcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
1687  unsigned           __builtin_addc  (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
1688  unsigned long      __builtin_addcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
1689  unsigned long long __builtin_addcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);
1690  unsigned char      __builtin_subcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
1691  unsigned short     __builtin_subcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
1692  unsigned           __builtin_subc  (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
1693  unsigned long      __builtin_subcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
1694  unsigned long long __builtin_subcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);
1695
1696Checked Arithmetic Builtins
1697---------------------------
1698
1699Clang provides a set of builtins that implement checked arithmetic for security
1700critical applications in a manner that is fast and easily expressable in C. As
1701an example of their usage:
1702
1703.. code-block:: c
1704
1705  errorcode_t security_critical_application(...) {
1706    unsigned x, y, result;
1707    ...
1708    if (__builtin_umul_overflow(x, y, &result))
1709      return kErrorCodeHackers;
1710    ...
1711    use_multiply(result);
1712    ...
1713  }
1714
1715A complete enumeration of the builtins are:
1716
1717.. code-block:: c
1718
1719  bool __builtin_uadd_overflow  (unsigned x, unsigned y, unsigned *sum);
1720  bool __builtin_uaddl_overflow (unsigned long x, unsigned long y, unsigned long *sum);
1721  bool __builtin_uaddll_overflow(unsigned long long x, unsigned long long y, unsigned long long *sum);
1722  bool __builtin_usub_overflow  (unsigned x, unsigned y, unsigned *diff);
1723  bool __builtin_usubl_overflow (unsigned long x, unsigned long y, unsigned long *diff);
1724  bool __builtin_usubll_overflow(unsigned long long x, unsigned long long y, unsigned long long *diff);
1725  bool __builtin_umul_overflow  (unsigned x, unsigned y, unsigned *prod);
1726  bool __builtin_umull_overflow (unsigned long x, unsigned long y, unsigned long *prod);
1727  bool __builtin_umulll_overflow(unsigned long long x, unsigned long long y, unsigned long long *prod);
1728  bool __builtin_sadd_overflow  (int x, int y, int *sum);
1729  bool __builtin_saddl_overflow (long x, long y, long *sum);
1730  bool __builtin_saddll_overflow(long long x, long long y, long long *sum);
1731  bool __builtin_ssub_overflow  (int x, int y, int *diff);
1732  bool __builtin_ssubl_overflow (long x, long y, long *diff);
1733  bool __builtin_ssubll_overflow(long long x, long long y, long long *diff);
1734  bool __builtin_smul_overflow  (int x, int y, int *prod);
1735  bool __builtin_smull_overflow (long x, long y, long *prod);
1736  bool __builtin_smulll_overflow(long long x, long long y, long long *prod);
1737
1738
1739.. _langext-__c11_atomic:
1740
1741__c11_atomic builtins
1742---------------------
1743
1744Clang provides a set of builtins which are intended to be used to implement
1745C11's ``<stdatomic.h>`` header.  These builtins provide the semantics of the
1746``_explicit`` form of the corresponding C11 operation, and are named with a
1747``__c11_`` prefix.  The supported operations are:
1748
1749* ``__c11_atomic_init``
1750* ``__c11_atomic_thread_fence``
1751* ``__c11_atomic_signal_fence``
1752* ``__c11_atomic_is_lock_free``
1753* ``__c11_atomic_store``
1754* ``__c11_atomic_load``
1755* ``__c11_atomic_exchange``
1756* ``__c11_atomic_compare_exchange_strong``
1757* ``__c11_atomic_compare_exchange_weak``
1758* ``__c11_atomic_fetch_add``
1759* ``__c11_atomic_fetch_sub``
1760* ``__c11_atomic_fetch_and``
1761* ``__c11_atomic_fetch_or``
1762* ``__c11_atomic_fetch_xor``
1763
1764Low-level ARM exclusive memory builtins
1765---------------------------------------
1766
1767Clang provides overloaded builtins giving direct access to the three key ARM
1768instructions for implementing atomic operations.
1769
1770.. code-block:: c
1771
1772  T __builtin_arm_ldrex(const volatile T *addr);
1773  int __builtin_arm_strex(T val, volatile T *addr);
1774  void __builtin_arm_clrex(void);
1775
1776The types ``T`` currently supported are:
1777* Integer types with width at most 64 bits.
1778* Floating-point types
1779* Pointer types.
1780
1781Note that the compiler does not guarantee it will not insert stores which clear
1782the exclusive monitor in between an ``ldrex`` and its paired ``strex``. In
1783practice this is only usually a risk when the extra store is on the same cache
1784line as the variable being modified and Clang will only insert stack stores on
1785its own, so it is best not to use these operations on variables with automatic
1786storage duration.
1787
1788Also, loads and stores may be implicit in code written between the ``ldrex`` and
1789``strex``. Clang will not necessarily mitigate the effects of these either, so
1790care should be exercised.
1791
1792For these reasons the higher level atomic primitives should be preferred where
1793possible.
1794
1795Non-standard C++11 Attributes
1796=============================
1797
1798Clang's non-standard C++11 attributes live in the ``clang`` attribute
1799namespace.
1800
1801The ``clang::fallthrough`` attribute
1802------------------------------------
1803
1804The ``clang::fallthrough`` attribute is used along with the
1805``-Wimplicit-fallthrough`` argument to annotate intentional fall-through
1806between switch labels.  It can only be applied to a null statement placed at a
1807point of execution between any statement and the next switch label.  It is
1808common to mark these places with a specific comment, but this attribute is
1809meant to replace comments with a more strict annotation, which can be checked
1810by the compiler.  This attribute doesn't change semantics of the code and can
1811be used wherever an intended fall-through occurs.  It is designed to mimic
1812control-flow statements like ``break;``, so it can be placed in most places
1813where ``break;`` can, but only if there are no statements on the execution path
1814between it and the next switch label.
1815
1816Here is an example:
1817
1818.. code-block:: c++
1819
1820  // compile with -Wimplicit-fallthrough
1821  switch (n) {
1822  case 22:
1823  case 33:  // no warning: no statements between case labels
1824    f();
1825  case 44:  // warning: unannotated fall-through
1826    g();
1827    [[clang::fallthrough]];
1828  case 55:  // no warning
1829    if (x) {
1830      h();
1831      break;
1832    }
1833    else {
1834      i();
1835      [[clang::fallthrough]];
1836    }
1837  case 66:  // no warning
1838    p();
1839    [[clang::fallthrough]]; // warning: fallthrough annotation does not
1840                            //          directly precede case label
1841    q();
1842  case 77:  // warning: unannotated fall-through
1843    r();
1844  }
1845
1846``gnu::`` attributes
1847--------------------
1848
1849Clang also supports GCC's ``gnu`` attribute namespace. All GCC attributes which
1850are accepted with the ``__attribute__((foo))`` syntax are also accepted as
1851``[[gnu::foo]]``. This only extends to attributes which are specified by GCC
1852(see the list of `GCC function attributes
1853<http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html>`_, `GCC variable
1854attributes <http://gcc.gnu.org/onlinedocs/gcc/Variable-Attributes.html>`_, and
1855`GCC type attributes
1856<http://gcc.gnu.org/onlinedocs/gcc/Type-Attributes.html>`_). As with the GCC
1857implementation, these attributes must appertain to the *declarator-id* in a
1858declaration, which means they must go either at the start of the declaration or
1859immediately after the name being declared.
1860
1861For example, this applies the GNU ``unused`` attribute to ``a`` and ``f``, and
1862also applies the GNU ``noreturn`` attribute to ``f``.
1863
1864.. code-block:: c++
1865
1866  [[gnu::unused]] int a, f [[gnu::noreturn]] ();
1867
1868Target-Specific Extensions
1869==========================
1870
1871Clang supports some language features conditionally on some targets.
1872
1873X86/X86-64 Language Extensions
1874------------------------------
1875
1876The X86 backend has these language extensions:
1877
1878Memory references off the GS segment
1879^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1880
1881Annotating a pointer with address space #256 causes it to be code generated
1882relative to the X86 GS segment register, and address space #257 causes it to be
1883relative to the X86 FS segment.  Note that this is a very very low-level
1884feature that should only be used if you know what you're doing (for example in
1885an OS kernel).
1886
1887Here is an example:
1888
1889.. code-block:: c++
1890
1891  #define GS_RELATIVE __attribute__((address_space(256)))
1892  int foo(int GS_RELATIVE *P) {
1893    return *P;
1894  }
1895
1896Which compiles to (on X86-32):
1897
1898.. code-block:: gas
1899
1900  _foo:
1901          movl    4(%esp), %eax
1902          movl    %gs:(%eax), %eax
1903          ret
1904
1905ARM Language Extensions
1906-----------------------
1907
1908Interrupt attribute
1909^^^^^^^^^^^^^^^^^^^
1910
1911Clang supports the GNU style ``__attribite__((interrupt("TYPE")))`` attribute on
1912ARM targets. This attribute may be attached to a function definiton and
1913instructs the backend to generate appropriate function entry/exit code so that
1914it can be used directly as an interrupt service routine.
1915
1916 The parameter passed to the interrupt attribute is optional, but if
1917provided it must be a string literal with one of the following values: "IRQ",
1918"FIQ", "SWI", "ABORT", "UNDEF".
1919
1920The semantics are as follows:
1921
1922- If the function is AAPCS, Clang instructs the backend to realign the stack to
1923  8 bytes on entry. This is a general requirement of the AAPCS at public
1924  interfaces, but may not hold when an exception is taken. Doing this allows
1925  other AAPCS functions to be called.
1926- If the CPU is M-class this is all that needs to be done since the architecture
1927  itself is designed in such a way that functions obeying the normal AAPCS ABI
1928  constraints are valid exception handlers.
1929- If the CPU is not M-class, the prologue and epilogue are modified to save all
1930  non-banked registers that are used, so that upon return the user-mode state
1931  will not be corrupted. Note that to avoid unnecessary overhead, only
1932  general-purpose (integer) registers are saved in this way. If VFP operations
1933  are needed, that state must be saved manually.
1934
1935  Specifically, interrupt kinds other than "FIQ" will save all core registers
1936  except "lr" and "sp". "FIQ" interrupts will save r0-r7.
1937- If the CPU is not M-class, the return instruction is changed to one of the
1938  canonical sequences permitted by the architecture for exception return. Where
1939  possible the function itself will make the necessary "lr" adjustments so that
1940  the "preferred return address" is selected.
1941
1942  Unfortunately the compiler is unable to make this guarantee for an "UNDEF"
1943  handler, where the offset from "lr" to the preferred return address depends on
1944  the execution state of the code which generated the exception. In this case
1945  a sequence equivalent to "movs pc, lr" will be used.
1946
1947Extensions for Static Analysis
1948==============================
1949
1950Clang supports additional attributes that are useful for documenting program
1951invariants and rules for static analysis tools, such as the `Clang Static
1952Analyzer <http://clang-analyzer.llvm.org/>`_. These attributes are documented
1953in the analyzer's `list of source-level annotations
1954<http://clang-analyzer.llvm.org/annotations.html>`_.
1955
1956
1957Extensions for Dynamic Analysis
1958===============================
1959
1960.. _langext-address_sanitizer:
1961
1962AddressSanitizer
1963----------------
1964
1965Use ``__has_feature(address_sanitizer)`` to check if the code is being built
1966with :doc:`AddressSanitizer`.
1967
1968Use ``__attribute__((no_sanitize_address))``
1969on a function declaration
1970to specify that address safety instrumentation (e.g. AddressSanitizer) should
1971not be applied to that function.
1972
1973.. _langext-thread_sanitizer:
1974
1975ThreadSanitizer
1976----------------
1977
1978Use ``__has_feature(thread_sanitizer)`` to check if the code is being built
1979with :doc:`ThreadSanitizer`.
1980
1981Use ``__attribute__((no_sanitize_thread))`` on a function declaration
1982to specify that checks for data races on plain (non-atomic) memory accesses
1983should not be inserted by ThreadSanitizer.
1984The function is still instrumented by the tool to avoid false positives and
1985provide meaningful stack traces.
1986
1987.. _langext-memory_sanitizer:
1988
1989MemorySanitizer
1990----------------
1991Use ``__has_feature(memory_sanitizer)`` to check if the code is being built
1992with :doc:`MemorySanitizer`.
1993
1994Use ``__attribute__((no_sanitize_memory))`` on a function declaration
1995to specify that checks for uninitialized memory should not be inserted
1996(e.g. by MemorySanitizer). The function may still be instrumented by the tool
1997to avoid false positives in other places.
1998
1999
2000Thread-Safety Annotation Checking
2001=================================
2002
2003Clang supports additional attributes for checking basic locking policies in
2004multithreaded programs.  Clang currently parses the following list of
2005attributes, although **the implementation for these annotations is currently in
2006development.** For more details, see the `GCC implementation
2007<http://gcc.gnu.org/wiki/ThreadSafetyAnnotation>`_.
2008
2009``no_thread_safety_analysis``
2010-----------------------------
2011
2012Use ``__attribute__((no_thread_safety_analysis))`` on a function declaration to
2013specify that the thread safety analysis should not be run on that function.
2014This attribute provides an escape hatch (e.g. for situations when it is
2015difficult to annotate the locking policy).
2016
2017``lockable``
2018------------
2019
2020Use ``__attribute__((lockable))`` on a class definition to specify that it has
2021a lockable type (e.g. a Mutex class).  This annotation is primarily used to
2022check consistency.
2023
2024``scoped_lockable``
2025-------------------
2026
2027Use ``__attribute__((scoped_lockable))`` on a class definition to specify that
2028it has a "scoped" lockable type.  Objects of this type will acquire the lock
2029upon construction and release it upon going out of scope.  This annotation is
2030primarily used to check consistency.
2031
2032``guarded_var``
2033---------------
2034
2035Use ``__attribute__((guarded_var))`` on a variable declaration to specify that
2036the variable must be accessed while holding some lock.
2037
2038``pt_guarded_var``
2039------------------
2040
2041Use ``__attribute__((pt_guarded_var))`` on a pointer declaration to specify
2042that the pointer must be dereferenced while holding some lock.
2043
2044``guarded_by(l)``
2045-----------------
2046
2047Use ``__attribute__((guarded_by(l)))`` on a variable declaration to specify
2048that the variable must be accessed while holding lock ``l``.
2049
2050``pt_guarded_by(l)``
2051--------------------
2052
2053Use ``__attribute__((pt_guarded_by(l)))`` on a pointer declaration to specify
2054that the pointer must be dereferenced while holding lock ``l``.
2055
2056``acquired_before(...)``
2057------------------------
2058
2059Use ``__attribute__((acquired_before(...)))`` on a declaration of a lockable
2060variable to specify that the lock must be acquired before all attribute
2061arguments.  Arguments must be lockable type, and there must be at least one
2062argument.
2063
2064``acquired_after(...)``
2065-----------------------
2066
2067Use ``__attribute__((acquired_after(...)))`` on a declaration of a lockable
2068variable to specify that the lock must be acquired after all attribute
2069arguments.  Arguments must be lockable type, and there must be at least one
2070argument.
2071
2072``exclusive_lock_function(...)``
2073--------------------------------
2074
2075Use ``__attribute__((exclusive_lock_function(...)))`` on a function declaration
2076to specify that the function acquires all listed locks exclusively.  This
2077attribute takes zero or more arguments: either of lockable type or integers
2078indexing into function parameters of lockable type.  If no arguments are given,
2079the acquired lock is implicitly ``this`` of the enclosing object.
2080
2081``shared_lock_function(...)``
2082-----------------------------
2083
2084Use ``__attribute__((shared_lock_function(...)))`` on a function declaration to
2085specify that the function acquires all listed locks, although the locks may be
2086shared (e.g. read locks).  This attribute takes zero or more arguments: either
2087of lockable type or integers indexing into function parameters of lockable
2088type.  If no arguments are given, the acquired lock is implicitly ``this`` of
2089the enclosing object.
2090
2091``exclusive_trylock_function(...)``
2092-----------------------------------
2093
2094Use ``__attribute__((exclusive_lock_function(...)))`` on a function declaration
2095to specify that the function will try (without blocking) to acquire all listed
2096locks exclusively.  This attribute takes one or more arguments.  The first
2097argument is an integer or boolean value specifying the return value of a
2098successful lock acquisition.  The remaining arugments are either of lockable
2099type or integers indexing into function parameters of lockable type.  If only
2100one argument is given, the acquired lock is implicitly ``this`` of the
2101enclosing object.
2102
2103``shared_trylock_function(...)``
2104--------------------------------
2105
2106Use ``__attribute__((shared_lock_function(...)))`` on a function declaration to
2107specify that the function will try (without blocking) to acquire all listed
2108locks, although the locks may be shared (e.g. read locks).  This attribute
2109takes one or more arguments.  The first argument is an integer or boolean value
2110specifying the return value of a successful lock acquisition.  The remaining
2111arugments are either of lockable type or integers indexing into function
2112parameters of lockable type.  If only one argument is given, the acquired lock
2113is implicitly ``this`` of the enclosing object.
2114
2115``unlock_function(...)``
2116------------------------
2117
2118Use ``__attribute__((unlock_function(...)))`` on a function declaration to
2119specify that the function release all listed locks.  This attribute takes zero
2120or more arguments: either of lockable type or integers indexing into function
2121parameters of lockable type.  If no arguments are given, the acquired lock is
2122implicitly ``this`` of the enclosing object.
2123
2124``lock_returned(l)``
2125--------------------
2126
2127Use ``__attribute__((lock_returned(l)))`` on a function declaration to specify
2128that the function returns lock ``l`` (``l`` must be of lockable type).  This
2129annotation is used to aid in resolving lock expressions.
2130
2131``locks_excluded(...)``
2132-----------------------
2133
2134Use ``__attribute__((locks_excluded(...)))`` on a function declaration to
2135specify that the function must not be called with the listed locks.  Arguments
2136must be lockable type, and there must be at least one argument.
2137
2138``exclusive_locks_required(...)``
2139---------------------------------
2140
2141Use ``__attribute__((exclusive_locks_required(...)))`` on a function
2142declaration to specify that the function must be called while holding the
2143listed exclusive locks.  Arguments must be lockable type, and there must be at
2144least one argument.
2145
2146``shared_locks_required(...)``
2147------------------------------
2148
2149Use ``__attribute__((shared_locks_required(...)))`` on a function declaration
2150to specify that the function must be called while holding the listed shared
2151locks.  Arguments must be lockable type, and there must be at least one
2152argument.
2153
2154Consumed Annotation Checking
2155============================
2156
2157Clang supports additional attributes for checking basic resource management
2158properties, specifically for unique objects that have a single owning reference.
2159The following attributes are currently supported, although **the implementation
2160for these annotations is currently in development and are subject to change.**
2161
2162``consumable``
2163--------------
2164
2165Each class that uses any of the following annotations must first be marked
2166using the consumable attribute.  Failure to do so will result in a warning.
2167
2168``set_typestate(new_state)``
2169----------------------------
2170
2171Annotate methods that transition an object into a new state with
2172``__attribute__((set_typestate(new_state)))``.  The new new state must be
2173unconsumed, consumed, or unknown.
2174
2175``callable_when(...)``
2176----------------------
2177
2178Use ``__attribute__((callable_when(...)))`` to indicate what states a method
2179may be called in.  Valid states are unconsumed, consumed, or unknown.  Each
2180argument to this attribute must be a quoted string.  E.g.:
2181
2182``__attribute__((callable_when("unconsumed", "unknown")))``
2183
2184``tests_typestate(tested_state)``
2185---------------------------------
2186
2187Use ``__attribute__((tests_typestate(tested_state)))`` to indicate that a method
2188returns true if the object is in the specified state..
2189
2190``param_typestate(expected_state)``
2191-----------------------------------
2192
2193This attribute specifies expectations about function parameters.  Calls to an
2194function with annotated parameters will issue a warning if the corresponding
2195argument isn't in the expected state.  The attribute is also used to set the
2196initial state of the parameter when analyzing the function's body.
2197
2198``return_typestate(ret_state)``
2199-------------------------------
2200
2201The ``return_typestate`` attribute can be applied to functions or parameters.
2202When applied to a function the attribute specifies the state of the returned
2203value.  The function's body is checked to ensure that it always returns a value
2204in the specified state.  On the caller side, values returned by the annotated
2205function are initialized to the given state.
2206
2207If the attribute is applied to a function parameter it modifies the state of
2208an argument after a call to the function returns.  The function's body is
2209checked to ensure that the parameter is in the expected state before returning.
2210
2211Type Safety Checking
2212====================
2213
2214Clang supports additional attributes to enable checking type safety properties
2215that can't be enforced by the C type system.  Use cases include:
2216
2217* MPI library implementations, where these attributes enable checking that
2218  the buffer type matches the passed ``MPI_Datatype``;
2219* for HDF5 library there is a similar use case to MPI;
2220* checking types of variadic functions' arguments for functions like
2221  ``fcntl()`` and ``ioctl()``.
2222
2223You can detect support for these attributes with ``__has_attribute()``.  For
2224example:
2225
2226.. code-block:: c++
2227
2228  #if defined(__has_attribute)
2229  #  if __has_attribute(argument_with_type_tag) && \
2230        __has_attribute(pointer_with_type_tag) && \
2231        __has_attribute(type_tag_for_datatype)
2232  #    define ATTR_MPI_PWT(buffer_idx, type_idx) __attribute__((pointer_with_type_tag(mpi,buffer_idx,type_idx)))
2233  /* ... other macros ...  */
2234  #  endif
2235  #endif
2236
2237  #if !defined(ATTR_MPI_PWT)
2238  # define ATTR_MPI_PWT(buffer_idx, type_idx)
2239  #endif
2240
2241  int MPI_Send(void *buf, int count, MPI_Datatype datatype /*, other args omitted */)
2242      ATTR_MPI_PWT(1,3);
2243
2244``argument_with_type_tag(...)``
2245-------------------------------
2246
2247Use ``__attribute__((argument_with_type_tag(arg_kind, arg_idx,
2248type_tag_idx)))`` on a function declaration to specify that the function
2249accepts a type tag that determines the type of some other argument.
2250``arg_kind`` is an identifier that should be used when annotating all
2251applicable type tags.
2252
2253This attribute is primarily useful for checking arguments of variadic functions
2254(``pointer_with_type_tag`` can be used in most non-variadic cases).
2255
2256For example:
2257
2258.. code-block:: c++
2259
2260  int fcntl(int fd, int cmd, ...)
2261      __attribute__(( argument_with_type_tag(fcntl,3,2) ));
2262
2263``pointer_with_type_tag(...)``
2264------------------------------
2265
2266Use ``__attribute__((pointer_with_type_tag(ptr_kind, ptr_idx, type_tag_idx)))``
2267on a function declaration to specify that the function accepts a type tag that
2268determines the pointee type of some other pointer argument.
2269
2270For example:
2271
2272.. code-block:: c++
2273
2274  int MPI_Send(void *buf, int count, MPI_Datatype datatype /*, other args omitted */)
2275      __attribute__(( pointer_with_type_tag(mpi,1,3) ));
2276
2277``type_tag_for_datatype(...)``
2278------------------------------
2279
2280Clang supports annotating type tags of two forms.
2281
2282* **Type tag that is an expression containing a reference to some declared
2283  identifier.** Use ``__attribute__((type_tag_for_datatype(kind, type)))`` on a
2284  declaration with that identifier:
2285
2286  .. code-block:: c++
2287
2288    extern struct mpi_datatype mpi_datatype_int
2289        __attribute__(( type_tag_for_datatype(mpi,int) ));
2290    #define MPI_INT ((MPI_Datatype) &mpi_datatype_int)
2291
2292* **Type tag that is an integral literal.** Introduce a ``static const``
2293  variable with a corresponding initializer value and attach
2294  ``__attribute__((type_tag_for_datatype(kind, type)))`` on that declaration,
2295  for example:
2296
2297  .. code-block:: c++
2298
2299    #define MPI_INT ((MPI_Datatype) 42)
2300    static const MPI_Datatype mpi_datatype_int
2301        __attribute__(( type_tag_for_datatype(mpi,int) )) = 42
2302
2303The attribute also accepts an optional third argument that determines how the
2304expression is compared to the type tag.  There are two supported flags:
2305
2306* ``layout_compatible`` will cause types to be compared according to
2307  layout-compatibility rules (C++11 [class.mem] p 17, 18).  This is
2308  implemented to support annotating types like ``MPI_DOUBLE_INT``.
2309
2310  For example:
2311
2312  .. code-block:: c++
2313
2314    /* In mpi.h */
2315    struct internal_mpi_double_int { double d; int i; };
2316    extern struct mpi_datatype mpi_datatype_double_int
2317        __attribute__(( type_tag_for_datatype(mpi, struct internal_mpi_double_int, layout_compatible) ));
2318
2319    #define MPI_DOUBLE_INT ((MPI_Datatype) &mpi_datatype_double_int)
2320
2321    /* In user code */
2322    struct my_pair { double a; int b; };
2323    struct my_pair *buffer;
2324    MPI_Send(buffer, 1, MPI_DOUBLE_INT /*, ...  */); // no warning
2325
2326    struct my_int_pair { int a; int b; }
2327    struct my_int_pair *buffer2;
2328    MPI_Send(buffer2, 1, MPI_DOUBLE_INT /*, ...  */); // warning: actual buffer element
2329                                                      // type 'struct my_int_pair'
2330                                                      // doesn't match specified MPI_Datatype
2331
2332* ``must_be_null`` specifies that the expression should be a null pointer
2333  constant, for example:
2334
2335  .. code-block:: c++
2336
2337    /* In mpi.h */
2338    extern struct mpi_datatype mpi_datatype_null
2339        __attribute__(( type_tag_for_datatype(mpi, void, must_be_null) ));
2340
2341    #define MPI_DATATYPE_NULL ((MPI_Datatype) &mpi_datatype_null)
2342
2343    /* In user code */
2344    MPI_Send(buffer, 1, MPI_DATATYPE_NULL /*, ...  */); // warning: MPI_DATATYPE_NULL
2345                                                        // was specified but buffer
2346                                                        // is not a null pointer
2347
2348Format String Checking
2349======================
2350
2351Clang supports the ``format`` attribute, which indicates that the function
2352accepts a ``printf`` or ``scanf``-like format string and corresponding
2353arguments or a ``va_list`` that contains these arguments.
2354
2355Please see `GCC documentation about format attribute
2356<http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html>`_ to find details
2357about attribute syntax.
2358
2359Clang implements two kinds of checks with this attribute.
2360
2361#. Clang checks that the function with the ``format`` attribute is called with
2362   a format string that uses format specifiers that are allowed, and that
2363   arguments match the format string.  This is the ``-Wformat`` warning, it is
2364   on by default.
2365
2366#. Clang checks that the format string argument is a literal string.  This is
2367   the ``-Wformat-nonliteral`` warning, it is off by default.
2368
2369   Clang implements this mostly the same way as GCC, but there is a difference
2370   for functions that accept a ``va_list`` argument (for example, ``vprintf``).
2371   GCC does not emit ``-Wformat-nonliteral`` warning for calls to such
2372   fuctions.  Clang does not warn if the format string comes from a function
2373   parameter, where the function is annotated with a compatible attribute,
2374   otherwise it warns.  For example:
2375
2376   .. code-block:: c
2377
2378     __attribute__((__format__ (__scanf__, 1, 3)))
2379     void foo(const char* s, char *buf, ...) {
2380       va_list ap;
2381       va_start(ap, buf);
2382
2383       vprintf(s, ap); // warning: format string is not a string literal
2384     }
2385
2386   In this case we warn because ``s`` contains a format string for a
2387   ``scanf``-like function, but it is passed to a ``printf``-like function.
2388
2389   If the attribute is removed, clang still warns, because the format string is
2390   not a string literal.
2391
2392   Another example:
2393
2394   .. code-block:: c
2395
2396     __attribute__((__format__ (__printf__, 1, 3)))
2397     void foo(const char* s, char *buf, ...) {
2398       va_list ap;
2399       va_start(ap, buf);
2400
2401       vprintf(s, ap); // warning
2402     }
2403
2404   In this case Clang does not warn because the format string ``s`` and
2405   the corresponding arguments are annotated.  If the arguments are
2406   incorrect, the caller of ``foo`` will receive a warning.
2407