1 //===--- CFG.h - Classes for representing and building CFGs------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the CFG and CFGBuilder classes for representing and
11 //  building Control-Flow Graphs (CFGs) from ASTs.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CLANG_ANALYSIS_CFG_H
16 #define LLVM_CLANG_ANALYSIS_CFG_H
17 
18 #include "clang/AST/Stmt.h"
19 #include "clang/Analysis/Support/BumpVector.h"
20 #include "clang/Basic/SourceLocation.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/GraphTraits.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/PointerIntPair.h"
25 #include "llvm/Support/Allocator.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <bitset>
29 #include <cassert>
30 #include <iterator>
31 #include <memory>
32 
33 namespace clang {
34   class CXXDestructorDecl;
35   class Decl;
36   class Stmt;
37   class Expr;
38   class FieldDecl;
39   class VarDecl;
40   class CXXCtorInitializer;
41   class CXXBaseSpecifier;
42   class CXXBindTemporaryExpr;
43   class CFG;
44   class PrinterHelper;
45   class LangOptions;
46   class ASTContext;
47   class CXXRecordDecl;
48   class CXXDeleteExpr;
49   class CXXNewExpr;
50   class BinaryOperator;
51 
52 /// CFGElement - Represents a top-level expression in a basic block.
53 class CFGElement {
54 public:
55   enum Kind {
56     // main kind
57     Statement,
58     Initializer,
59     NewAllocator,
60     // dtor kind
61     AutomaticObjectDtor,
62     DeleteDtor,
63     BaseDtor,
64     MemberDtor,
65     TemporaryDtor,
66     DTOR_BEGIN = AutomaticObjectDtor,
67     DTOR_END = TemporaryDtor
68   };
69 
70 protected:
71   // The int bits are used to mark the kind.
72   llvm::PointerIntPair<void *, 2> Data1;
73   llvm::PointerIntPair<void *, 2> Data2;
74 
75   CFGElement(Kind kind, const void *Ptr1, const void *Ptr2 = nullptr)
76     : Data1(const_cast<void*>(Ptr1), ((unsigned) kind) & 0x3),
77       Data2(const_cast<void*>(Ptr2), (((unsigned) kind) >> 2) & 0x3) {
78     assert(getKind() == kind);
79   }
80 
CFGElement()81   CFGElement() {}
82 public:
83 
84   /// \brief Convert to the specified CFGElement type, asserting that this
85   /// CFGElement is of the desired type.
86   template<typename T>
castAs()87   T castAs() const {
88     assert(T::isKind(*this));
89     T t;
90     CFGElement& e = t;
91     e = *this;
92     return t;
93   }
94 
95   /// \brief Convert to the specified CFGElement type, returning None if this
96   /// CFGElement is not of the desired type.
97   template<typename T>
getAs()98   Optional<T> getAs() const {
99     if (!T::isKind(*this))
100       return None;
101     T t;
102     CFGElement& e = t;
103     e = *this;
104     return t;
105   }
106 
getKind()107   Kind getKind() const {
108     unsigned x = Data2.getInt();
109     x <<= 2;
110     x |= Data1.getInt();
111     return (Kind) x;
112   }
113 };
114 
115 class CFGStmt : public CFGElement {
116 public:
CFGStmt(Stmt * S)117   CFGStmt(Stmt *S) : CFGElement(Statement, S) {}
118 
getStmt()119   const Stmt *getStmt() const {
120     return static_cast<const Stmt *>(Data1.getPointer());
121   }
122 
123 private:
124   friend class CFGElement;
CFGStmt()125   CFGStmt() {}
isKind(const CFGElement & E)126   static bool isKind(const CFGElement &E) {
127     return E.getKind() == Statement;
128   }
129 };
130 
131 /// CFGInitializer - Represents C++ base or member initializer from
132 /// constructor's initialization list.
133 class CFGInitializer : public CFGElement {
134 public:
CFGInitializer(CXXCtorInitializer * initializer)135   CFGInitializer(CXXCtorInitializer *initializer)
136       : CFGElement(Initializer, initializer) {}
137 
getInitializer()138   CXXCtorInitializer* getInitializer() const {
139     return static_cast<CXXCtorInitializer*>(Data1.getPointer());
140   }
141 
142 private:
143   friend class CFGElement;
CFGInitializer()144   CFGInitializer() {}
isKind(const CFGElement & E)145   static bool isKind(const CFGElement &E) {
146     return E.getKind() == Initializer;
147   }
148 };
149 
150 /// CFGNewAllocator - Represents C++ allocator call.
151 class CFGNewAllocator : public CFGElement {
152 public:
CFGNewAllocator(const CXXNewExpr * S)153   explicit CFGNewAllocator(const CXXNewExpr *S)
154     : CFGElement(NewAllocator, S) {}
155 
156   // Get the new expression.
getAllocatorExpr()157   const CXXNewExpr *getAllocatorExpr() const {
158     return static_cast<CXXNewExpr *>(Data1.getPointer());
159   }
160 
161 private:
162   friend class CFGElement;
CFGNewAllocator()163   CFGNewAllocator() {}
isKind(const CFGElement & elem)164   static bool isKind(const CFGElement &elem) {
165     return elem.getKind() == NewAllocator;
166   }
167 };
168 
169 /// CFGImplicitDtor - Represents C++ object destructor implicitly generated
170 /// by compiler on various occasions.
171 class CFGImplicitDtor : public CFGElement {
172 protected:
CFGImplicitDtor()173   CFGImplicitDtor() {}
174   CFGImplicitDtor(Kind kind, const void *data1, const void *data2 = nullptr)
CFGElement(kind,data1,data2)175     : CFGElement(kind, data1, data2) {
176     assert(kind >= DTOR_BEGIN && kind <= DTOR_END);
177   }
178 
179 public:
180   const CXXDestructorDecl *getDestructorDecl(ASTContext &astContext) const;
181   bool isNoReturn(ASTContext &astContext) const;
182 
183 private:
184   friend class CFGElement;
isKind(const CFGElement & E)185   static bool isKind(const CFGElement &E) {
186     Kind kind = E.getKind();
187     return kind >= DTOR_BEGIN && kind <= DTOR_END;
188   }
189 };
190 
191 /// CFGAutomaticObjDtor - Represents C++ object destructor implicitly generated
192 /// for automatic object or temporary bound to const reference at the point
193 /// of leaving its local scope.
194 class CFGAutomaticObjDtor: public CFGImplicitDtor {
195 public:
CFGAutomaticObjDtor(const VarDecl * var,const Stmt * stmt)196   CFGAutomaticObjDtor(const VarDecl *var, const Stmt *stmt)
197       : CFGImplicitDtor(AutomaticObjectDtor, var, stmt) {}
198 
getVarDecl()199   const VarDecl *getVarDecl() const {
200     return static_cast<VarDecl*>(Data1.getPointer());
201   }
202 
203   // Get statement end of which triggered the destructor call.
getTriggerStmt()204   const Stmt *getTriggerStmt() const {
205     return static_cast<Stmt*>(Data2.getPointer());
206   }
207 
208 private:
209   friend class CFGElement;
CFGAutomaticObjDtor()210   CFGAutomaticObjDtor() {}
isKind(const CFGElement & elem)211   static bool isKind(const CFGElement &elem) {
212     return elem.getKind() == AutomaticObjectDtor;
213   }
214 };
215 
216 /// CFGDeleteDtor - Represents C++ object destructor generated
217 /// from a call to delete.
218 class CFGDeleteDtor : public CFGImplicitDtor {
219 public:
CFGDeleteDtor(const CXXRecordDecl * RD,const CXXDeleteExpr * DE)220   CFGDeleteDtor(const CXXRecordDecl *RD, const CXXDeleteExpr *DE)
221       : CFGImplicitDtor(DeleteDtor, RD, DE) {}
222 
getCXXRecordDecl()223   const CXXRecordDecl *getCXXRecordDecl() const {
224     return static_cast<CXXRecordDecl*>(Data1.getPointer());
225   }
226 
227   // Get Delete expression which triggered the destructor call.
getDeleteExpr()228   const CXXDeleteExpr *getDeleteExpr() const {
229     return static_cast<CXXDeleteExpr *>(Data2.getPointer());
230   }
231 
232 
233 private:
234   friend class CFGElement;
CFGDeleteDtor()235   CFGDeleteDtor() {}
isKind(const CFGElement & elem)236   static bool isKind(const CFGElement &elem) {
237     return elem.getKind() == DeleteDtor;
238   }
239 };
240 
241 /// CFGBaseDtor - Represents C++ object destructor implicitly generated for
242 /// base object in destructor.
243 class CFGBaseDtor : public CFGImplicitDtor {
244 public:
CFGBaseDtor(const CXXBaseSpecifier * base)245   CFGBaseDtor(const CXXBaseSpecifier *base)
246       : CFGImplicitDtor(BaseDtor, base) {}
247 
getBaseSpecifier()248   const CXXBaseSpecifier *getBaseSpecifier() const {
249     return static_cast<const CXXBaseSpecifier*>(Data1.getPointer());
250   }
251 
252 private:
253   friend class CFGElement;
CFGBaseDtor()254   CFGBaseDtor() {}
isKind(const CFGElement & E)255   static bool isKind(const CFGElement &E) {
256     return E.getKind() == BaseDtor;
257   }
258 };
259 
260 /// CFGMemberDtor - Represents C++ object destructor implicitly generated for
261 /// member object in destructor.
262 class CFGMemberDtor : public CFGImplicitDtor {
263 public:
CFGMemberDtor(const FieldDecl * field)264   CFGMemberDtor(const FieldDecl *field)
265       : CFGImplicitDtor(MemberDtor, field, nullptr) {}
266 
getFieldDecl()267   const FieldDecl *getFieldDecl() const {
268     return static_cast<const FieldDecl*>(Data1.getPointer());
269   }
270 
271 private:
272   friend class CFGElement;
CFGMemberDtor()273   CFGMemberDtor() {}
isKind(const CFGElement & E)274   static bool isKind(const CFGElement &E) {
275     return E.getKind() == MemberDtor;
276   }
277 };
278 
279 /// CFGTemporaryDtor - Represents C++ object destructor implicitly generated
280 /// at the end of full expression for temporary object.
281 class CFGTemporaryDtor : public CFGImplicitDtor {
282 public:
CFGTemporaryDtor(CXXBindTemporaryExpr * expr)283   CFGTemporaryDtor(CXXBindTemporaryExpr *expr)
284       : CFGImplicitDtor(TemporaryDtor, expr, nullptr) {}
285 
getBindTemporaryExpr()286   const CXXBindTemporaryExpr *getBindTemporaryExpr() const {
287     return static_cast<const CXXBindTemporaryExpr *>(Data1.getPointer());
288   }
289 
290 private:
291   friend class CFGElement;
CFGTemporaryDtor()292   CFGTemporaryDtor() {}
isKind(const CFGElement & E)293   static bool isKind(const CFGElement &E) {
294     return E.getKind() == TemporaryDtor;
295   }
296 };
297 
298 /// CFGTerminator - Represents CFGBlock terminator statement.
299 ///
300 /// TemporaryDtorsBranch bit is set to true if the terminator marks a branch
301 /// in control flow of destructors of temporaries. In this case terminator
302 /// statement is the same statement that branches control flow in evaluation
303 /// of matching full expression.
304 class CFGTerminator {
305   llvm::PointerIntPair<Stmt *, 1> Data;
306 public:
CFGTerminator()307   CFGTerminator() {}
308   CFGTerminator(Stmt *S, bool TemporaryDtorsBranch = false)
Data(S,TemporaryDtorsBranch)309       : Data(S, TemporaryDtorsBranch) {}
310 
getStmt()311   Stmt *getStmt() { return Data.getPointer(); }
getStmt()312   const Stmt *getStmt() const { return Data.getPointer(); }
313 
isTemporaryDtorsBranch()314   bool isTemporaryDtorsBranch() const { return Data.getInt(); }
315 
316   operator Stmt *() { return getStmt(); }
317   operator const Stmt *() const { return getStmt(); }
318 
319   Stmt *operator->() { return getStmt(); }
320   const Stmt *operator->() const { return getStmt(); }
321 
322   Stmt &operator*() { return *getStmt(); }
323   const Stmt &operator*() const { return *getStmt(); }
324 
325   LLVM_EXPLICIT operator bool() const { return getStmt(); }
326 };
327 
328 /// CFGBlock - Represents a single basic block in a source-level CFG.
329 ///  It consists of:
330 ///
331 ///  (1) A set of statements/expressions (which may contain subexpressions).
332 ///  (2) A "terminator" statement (not in the set of statements).
333 ///  (3) A list of successors and predecessors.
334 ///
335 /// Terminator: The terminator represents the type of control-flow that occurs
336 /// at the end of the basic block.  The terminator is a Stmt* referring to an
337 /// AST node that has control-flow: if-statements, breaks, loops, etc.
338 /// If the control-flow is conditional, the condition expression will appear
339 /// within the set of statements in the block (usually the last statement).
340 ///
341 /// Predecessors: the order in the set of predecessors is arbitrary.
342 ///
343 /// Successors: the order in the set of successors is NOT arbitrary.  We
344 ///  currently have the following orderings based on the terminator:
345 ///
346 ///     Terminator       Successor Ordering
347 ///  -----------------------------------------------------
348 ///       if            Then Block;  Else Block
349 ///     ? operator      LHS expression;  RHS expression
350 ///     &&, ||          expression that uses result of && or ||, RHS
351 ///
352 /// But note that any of that may be NULL in case of optimized-out edges.
353 ///
354 class CFGBlock {
355   class ElementList {
356     typedef BumpVector<CFGElement> ImplTy;
357     ImplTy Impl;
358   public:
ElementList(BumpVectorContext & C)359     ElementList(BumpVectorContext &C) : Impl(C, 4) {}
360 
361     typedef std::reverse_iterator<ImplTy::iterator>       iterator;
362     typedef std::reverse_iterator<ImplTy::const_iterator> const_iterator;
363     typedef ImplTy::iterator                              reverse_iterator;
364     typedef ImplTy::const_iterator                       const_reverse_iterator;
365     typedef ImplTy::const_reference                       const_reference;
366 
push_back(CFGElement e,BumpVectorContext & C)367     void push_back(CFGElement e, BumpVectorContext &C) { Impl.push_back(e, C); }
insert(reverse_iterator I,size_t Cnt,CFGElement E,BumpVectorContext & C)368     reverse_iterator insert(reverse_iterator I, size_t Cnt, CFGElement E,
369         BumpVectorContext &C) {
370       return Impl.insert(I, Cnt, E, C);
371     }
372 
front()373     const_reference front() const { return Impl.back(); }
back()374     const_reference back() const { return Impl.front(); }
375 
begin()376     iterator begin() { return Impl.rbegin(); }
end()377     iterator end() { return Impl.rend(); }
begin()378     const_iterator begin() const { return Impl.rbegin(); }
end()379     const_iterator end() const { return Impl.rend(); }
rbegin()380     reverse_iterator rbegin() { return Impl.begin(); }
rend()381     reverse_iterator rend() { return Impl.end(); }
rbegin()382     const_reverse_iterator rbegin() const { return Impl.begin(); }
rend()383     const_reverse_iterator rend() const { return Impl.end(); }
384 
385    CFGElement operator[](size_t i) const  {
386      assert(i < Impl.size());
387      return Impl[Impl.size() - 1 - i];
388    }
389 
size()390     size_t size() const { return Impl.size(); }
empty()391     bool empty() const { return Impl.empty(); }
392   };
393 
394   /// Stmts - The set of statements in the basic block.
395   ElementList Elements;
396 
397   /// Label - An (optional) label that prefixes the executable
398   ///  statements in the block.  When this variable is non-NULL, it is
399   ///  either an instance of LabelStmt, SwitchCase or CXXCatchStmt.
400   Stmt *Label;
401 
402   /// Terminator - The terminator for a basic block that
403   ///  indicates the type of control-flow that occurs between a block
404   ///  and its successors.
405   CFGTerminator Terminator;
406 
407   /// LoopTarget - Some blocks are used to represent the "loop edge" to
408   ///  the start of a loop from within the loop body.  This Stmt* will be
409   ///  refer to the loop statement for such blocks (and be null otherwise).
410   const Stmt *LoopTarget;
411 
412   /// BlockID - A numerical ID assigned to a CFGBlock during construction
413   ///   of the CFG.
414   unsigned BlockID;
415 
416 public:
417   /// This class represents a potential adjacent block in the CFG.  It encodes
418   /// whether or not the block is actually reachable, or can be proved to be
419   /// trivially unreachable.  For some cases it allows one to encode scenarios
420   /// where a block was substituted because the original (now alternate) block
421   /// is unreachable.
422   class AdjacentBlock {
423     enum Kind {
424       AB_Normal,
425       AB_Unreachable,
426       AB_Alternate
427     };
428 
429     CFGBlock *ReachableBlock;
430     llvm::PointerIntPair<CFGBlock*, 2> UnreachableBlock;
431 
432   public:
433     /// Construct an AdjacentBlock with a possibly unreachable block.
434     AdjacentBlock(CFGBlock *B, bool IsReachable);
435 
436     /// Construct an AdjacentBlock with a reachable block and an alternate
437     /// unreachable block.
438     AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock);
439 
440     /// Get the reachable block, if one exists.
getReachableBlock()441     CFGBlock *getReachableBlock() const {
442       return ReachableBlock;
443     }
444 
445     /// Get the potentially unreachable block.
getPossiblyUnreachableBlock()446     CFGBlock *getPossiblyUnreachableBlock() const {
447       return UnreachableBlock.getPointer();
448     }
449 
450     /// Provide an implicit conversion to CFGBlock* so that
451     /// AdjacentBlock can be substituted for CFGBlock*.
452     operator CFGBlock*() const {
453       return getReachableBlock();
454     }
455 
456     CFGBlock& operator *() const {
457       return *getReachableBlock();
458     }
459 
460     CFGBlock* operator ->() const {
461       return getReachableBlock();
462     }
463 
isReachable()464     bool isReachable() const {
465       Kind K = (Kind) UnreachableBlock.getInt();
466       return K == AB_Normal || K == AB_Alternate;
467     }
468   };
469 
470 private:
471   /// Predecessors/Successors - Keep track of the predecessor / successor
472   /// CFG blocks.
473   typedef BumpVector<AdjacentBlock> AdjacentBlocks;
474   AdjacentBlocks Preds;
475   AdjacentBlocks Succs;
476 
477   /// NoReturn - This bit is set when the basic block contains a function call
478   /// or implicit destructor that is attributed as 'noreturn'. In that case,
479   /// control cannot technically ever proceed past this block. All such blocks
480   /// will have a single immediate successor: the exit block. This allows them
481   /// to be easily reached from the exit block and using this bit quickly
482   /// recognized without scanning the contents of the block.
483   ///
484   /// Optimization Note: This bit could be profitably folded with Terminator's
485   /// storage if the memory usage of CFGBlock becomes an issue.
486   unsigned HasNoReturnElement : 1;
487 
488   /// Parent - The parent CFG that owns this CFGBlock.
489   CFG *Parent;
490 
491 public:
CFGBlock(unsigned blockid,BumpVectorContext & C,CFG * parent)492   explicit CFGBlock(unsigned blockid, BumpVectorContext &C, CFG *parent)
493     : Elements(C), Label(nullptr), Terminator(nullptr), LoopTarget(nullptr),
494       BlockID(blockid), Preds(C, 1), Succs(C, 1), HasNoReturnElement(false),
495       Parent(parent) {}
~CFGBlock()496   ~CFGBlock() {}
497 
498   // Statement iterators
499   typedef ElementList::iterator                      iterator;
500   typedef ElementList::const_iterator                const_iterator;
501   typedef ElementList::reverse_iterator              reverse_iterator;
502   typedef ElementList::const_reverse_iterator        const_reverse_iterator;
503 
front()504   CFGElement                 front()       const { return Elements.front();   }
back()505   CFGElement                 back()        const { return Elements.back();    }
506 
begin()507   iterator                   begin()             { return Elements.begin();   }
end()508   iterator                   end()               { return Elements.end();     }
begin()509   const_iterator             begin()       const { return Elements.begin();   }
end()510   const_iterator             end()         const { return Elements.end();     }
511 
rbegin()512   reverse_iterator           rbegin()            { return Elements.rbegin();  }
rend()513   reverse_iterator           rend()              { return Elements.rend();    }
rbegin()514   const_reverse_iterator     rbegin()      const { return Elements.rbegin();  }
rend()515   const_reverse_iterator     rend()        const { return Elements.rend();    }
516 
size()517   unsigned                   size()        const { return Elements.size();    }
empty()518   bool                       empty()       const { return Elements.empty();   }
519 
520   CFGElement operator[](size_t i) const  { return Elements[i]; }
521 
522   // CFG iterators
523   typedef AdjacentBlocks::iterator                              pred_iterator;
524   typedef AdjacentBlocks::const_iterator                  const_pred_iterator;
525   typedef AdjacentBlocks::reverse_iterator              pred_reverse_iterator;
526   typedef AdjacentBlocks::const_reverse_iterator  const_pred_reverse_iterator;
527 
528   typedef AdjacentBlocks::iterator                              succ_iterator;
529   typedef AdjacentBlocks::const_iterator                  const_succ_iterator;
530   typedef AdjacentBlocks::reverse_iterator              succ_reverse_iterator;
531   typedef AdjacentBlocks::const_reverse_iterator  const_succ_reverse_iterator;
532 
pred_begin()533   pred_iterator                pred_begin()        { return Preds.begin();   }
pred_end()534   pred_iterator                pred_end()          { return Preds.end();     }
pred_begin()535   const_pred_iterator          pred_begin()  const { return Preds.begin();   }
pred_end()536   const_pred_iterator          pred_end()    const { return Preds.end();     }
537 
pred_rbegin()538   pred_reverse_iterator        pred_rbegin()       { return Preds.rbegin();  }
pred_rend()539   pred_reverse_iterator        pred_rend()         { return Preds.rend();    }
pred_rbegin()540   const_pred_reverse_iterator  pred_rbegin() const { return Preds.rbegin();  }
pred_rend()541   const_pred_reverse_iterator  pred_rend()   const { return Preds.rend();    }
542 
succ_begin()543   succ_iterator                succ_begin()        { return Succs.begin();   }
succ_end()544   succ_iterator                succ_end()          { return Succs.end();     }
succ_begin()545   const_succ_iterator          succ_begin()  const { return Succs.begin();   }
succ_end()546   const_succ_iterator          succ_end()    const { return Succs.end();     }
547 
succ_rbegin()548   succ_reverse_iterator        succ_rbegin()       { return Succs.rbegin();  }
succ_rend()549   succ_reverse_iterator        succ_rend()         { return Succs.rend();    }
succ_rbegin()550   const_succ_reverse_iterator  succ_rbegin() const { return Succs.rbegin();  }
succ_rend()551   const_succ_reverse_iterator  succ_rend()   const { return Succs.rend();    }
552 
succ_size()553   unsigned                     succ_size()   const { return Succs.size();    }
succ_empty()554   bool                         succ_empty()  const { return Succs.empty();   }
555 
pred_size()556   unsigned                     pred_size()   const { return Preds.size();    }
pred_empty()557   bool                         pred_empty()  const { return Preds.empty();   }
558 
559 
560   class FilterOptions {
561   public:
FilterOptions()562     FilterOptions() {
563       IgnoreNullPredecessors = 1;
564       IgnoreDefaultsWithCoveredEnums = 0;
565     }
566 
567     unsigned IgnoreNullPredecessors : 1;
568     unsigned IgnoreDefaultsWithCoveredEnums : 1;
569   };
570 
571   static bool FilterEdge(const FilterOptions &F, const CFGBlock *Src,
572        const CFGBlock *Dst);
573 
574   template <typename IMPL, bool IsPred>
575   class FilteredCFGBlockIterator {
576   private:
577     IMPL I, E;
578     const FilterOptions F;
579     const CFGBlock *From;
580   public:
FilteredCFGBlockIterator(const IMPL & i,const IMPL & e,const CFGBlock * from,const FilterOptions & f)581     explicit FilteredCFGBlockIterator(const IMPL &i, const IMPL &e,
582                                       const CFGBlock *from,
583                                       const FilterOptions &f)
584         : I(i), E(e), F(f), From(from) {
585       while (hasMore() && Filter(*I))
586         ++I;
587     }
588 
hasMore()589     bool hasMore() const { return I != E; }
590 
591     FilteredCFGBlockIterator &operator++() {
592       do { ++I; } while (hasMore() && Filter(*I));
593       return *this;
594     }
595 
596     const CFGBlock *operator*() const { return *I; }
597   private:
Filter(const CFGBlock * To)598     bool Filter(const CFGBlock *To) {
599       return IsPred ? FilterEdge(F, To, From) : FilterEdge(F, From, To);
600     }
601   };
602 
603   typedef FilteredCFGBlockIterator<const_pred_iterator, true>
604           filtered_pred_iterator;
605 
606   typedef FilteredCFGBlockIterator<const_succ_iterator, false>
607           filtered_succ_iterator;
608 
filtered_pred_start_end(const FilterOptions & f)609   filtered_pred_iterator filtered_pred_start_end(const FilterOptions &f) const {
610     return filtered_pred_iterator(pred_begin(), pred_end(), this, f);
611   }
612 
filtered_succ_start_end(const FilterOptions & f)613   filtered_succ_iterator filtered_succ_start_end(const FilterOptions &f) const {
614     return filtered_succ_iterator(succ_begin(), succ_end(), this, f);
615   }
616 
617   // Manipulation of block contents
618 
setTerminator(CFGTerminator Term)619   void setTerminator(CFGTerminator Term) { Terminator = Term; }
setLabel(Stmt * Statement)620   void setLabel(Stmt *Statement) { Label = Statement; }
setLoopTarget(const Stmt * loopTarget)621   void setLoopTarget(const Stmt *loopTarget) { LoopTarget = loopTarget; }
setHasNoReturnElement()622   void setHasNoReturnElement() { HasNoReturnElement = true; }
623 
getTerminator()624   CFGTerminator getTerminator() { return Terminator; }
getTerminator()625   const CFGTerminator getTerminator() const { return Terminator; }
626 
627   Stmt *getTerminatorCondition(bool StripParens = true);
628 
629   const Stmt *getTerminatorCondition(bool StripParens = true) const {
630     return const_cast<CFGBlock*>(this)->getTerminatorCondition(StripParens);
631   }
632 
getLoopTarget()633   const Stmt *getLoopTarget() const { return LoopTarget; }
634 
getLabel()635   Stmt *getLabel() { return Label; }
getLabel()636   const Stmt *getLabel() const { return Label; }
637 
hasNoReturnElement()638   bool hasNoReturnElement() const { return HasNoReturnElement; }
639 
getBlockID()640   unsigned getBlockID() const { return BlockID; }
641 
getParent()642   CFG *getParent() const { return Parent; }
643 
644   void dump() const;
645 
646   void dump(const CFG *cfg, const LangOptions &LO, bool ShowColors = false) const;
647   void print(raw_ostream &OS, const CFG* cfg, const LangOptions &LO,
648              bool ShowColors) const;
649   void printTerminator(raw_ostream &OS, const LangOptions &LO) const;
printAsOperand(raw_ostream & OS,bool)650   void printAsOperand(raw_ostream &OS, bool /*PrintType*/) {
651     OS << "BB#" << getBlockID();
652   }
653 
654   /// Adds a (potentially unreachable) successor block to the current block.
655   void addSuccessor(AdjacentBlock Succ, BumpVectorContext &C);
656 
appendStmt(Stmt * statement,BumpVectorContext & C)657   void appendStmt(Stmt *statement, BumpVectorContext &C) {
658     Elements.push_back(CFGStmt(statement), C);
659   }
660 
appendInitializer(CXXCtorInitializer * initializer,BumpVectorContext & C)661   void appendInitializer(CXXCtorInitializer *initializer,
662                         BumpVectorContext &C) {
663     Elements.push_back(CFGInitializer(initializer), C);
664   }
665 
appendNewAllocator(CXXNewExpr * NE,BumpVectorContext & C)666   void appendNewAllocator(CXXNewExpr *NE,
667                           BumpVectorContext &C) {
668     Elements.push_back(CFGNewAllocator(NE), C);
669   }
670 
appendBaseDtor(const CXXBaseSpecifier * BS,BumpVectorContext & C)671   void appendBaseDtor(const CXXBaseSpecifier *BS, BumpVectorContext &C) {
672     Elements.push_back(CFGBaseDtor(BS), C);
673   }
674 
appendMemberDtor(FieldDecl * FD,BumpVectorContext & C)675   void appendMemberDtor(FieldDecl *FD, BumpVectorContext &C) {
676     Elements.push_back(CFGMemberDtor(FD), C);
677   }
678 
appendTemporaryDtor(CXXBindTemporaryExpr * E,BumpVectorContext & C)679   void appendTemporaryDtor(CXXBindTemporaryExpr *E, BumpVectorContext &C) {
680     Elements.push_back(CFGTemporaryDtor(E), C);
681   }
682 
appendAutomaticObjDtor(VarDecl * VD,Stmt * S,BumpVectorContext & C)683   void appendAutomaticObjDtor(VarDecl *VD, Stmt *S, BumpVectorContext &C) {
684     Elements.push_back(CFGAutomaticObjDtor(VD, S), C);
685   }
686 
appendDeleteDtor(CXXRecordDecl * RD,CXXDeleteExpr * DE,BumpVectorContext & C)687   void appendDeleteDtor(CXXRecordDecl *RD, CXXDeleteExpr *DE, BumpVectorContext &C) {
688     Elements.push_back(CFGDeleteDtor(RD, DE), C);
689   }
690 
691   // Destructors must be inserted in reversed order. So insertion is in two
692   // steps. First we prepare space for some number of elements, then we insert
693   // the elements beginning at the last position in prepared space.
beginAutomaticObjDtorsInsert(iterator I,size_t Cnt,BumpVectorContext & C)694   iterator beginAutomaticObjDtorsInsert(iterator I, size_t Cnt,
695       BumpVectorContext &C) {
696     return iterator(Elements.insert(I.base(), Cnt,
697                                     CFGAutomaticObjDtor(nullptr, 0), C));
698   }
insertAutomaticObjDtor(iterator I,VarDecl * VD,Stmt * S)699   iterator insertAutomaticObjDtor(iterator I, VarDecl *VD, Stmt *S) {
700     *I = CFGAutomaticObjDtor(VD, S);
701     return ++I;
702   }
703 };
704 
705 /// \brief CFGCallback defines methods that should be called when a logical
706 /// operator error is found when building the CFG.
707 class CFGCallback {
708 public:
CFGCallback()709   CFGCallback() {}
compareAlwaysTrue(const BinaryOperator * B,bool isAlwaysTrue)710   virtual void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) {}
compareBitwiseEquality(const BinaryOperator * B,bool isAlwaysTrue)711   virtual void compareBitwiseEquality(const BinaryOperator *B,
712                                       bool isAlwaysTrue) {}
~CFGCallback()713   virtual ~CFGCallback() {}
714 };
715 
716 /// CFG - Represents a source-level, intra-procedural CFG that represents the
717 ///  control-flow of a Stmt.  The Stmt can represent an entire function body,
718 ///  or a single expression.  A CFG will always contain one empty block that
719 ///  represents the Exit point of the CFG.  A CFG will also contain a designated
720 ///  Entry block.  The CFG solely represents control-flow; it consists of
721 ///  CFGBlocks which are simply containers of Stmt*'s in the AST the CFG
722 ///  was constructed from.
723 class CFG {
724 public:
725   //===--------------------------------------------------------------------===//
726   // CFG Construction & Manipulation.
727   //===--------------------------------------------------------------------===//
728 
729   class BuildOptions {
730     std::bitset<Stmt::lastStmtConstant> alwaysAddMask;
731   public:
732     typedef llvm::DenseMap<const Stmt *, const CFGBlock*> ForcedBlkExprs;
733     ForcedBlkExprs **forcedBlkExprs;
734     CFGCallback *Observer;
735     bool PruneTriviallyFalseEdges;
736     bool AddEHEdges;
737     bool AddInitializers;
738     bool AddImplicitDtors;
739     bool AddTemporaryDtors;
740     bool AddStaticInitBranches;
741     bool AddCXXNewAllocator;
742 
alwaysAdd(const Stmt * stmt)743     bool alwaysAdd(const Stmt *stmt) const {
744       return alwaysAddMask[stmt->getStmtClass()];
745     }
746 
747     BuildOptions &setAlwaysAdd(Stmt::StmtClass stmtClass, bool val = true) {
748       alwaysAddMask[stmtClass] = val;
749       return *this;
750     }
751 
setAllAlwaysAdd()752     BuildOptions &setAllAlwaysAdd() {
753       alwaysAddMask.set();
754       return *this;
755     }
756 
BuildOptions()757     BuildOptions()
758       : forcedBlkExprs(nullptr), Observer(nullptr),
759         PruneTriviallyFalseEdges(true), AddEHEdges(false),
760         AddInitializers(false), AddImplicitDtors(false),
761         AddTemporaryDtors(false), AddStaticInitBranches(false),
762         AddCXXNewAllocator(false) {}
763   };
764 
765   /// \brief Provides a custom implementation of the iterator class to have the
766   /// same interface as Function::iterator - iterator returns CFGBlock
767   /// (not a pointer to CFGBlock).
768   class graph_iterator {
769   public:
770     typedef const CFGBlock                  value_type;
771     typedef value_type&                     reference;
772     typedef value_type*                     pointer;
773     typedef BumpVector<CFGBlock*>::iterator ImplTy;
774 
graph_iterator(const ImplTy & i)775     graph_iterator(const ImplTy &i) : I(i) {}
776 
777     bool operator==(const graph_iterator &X) const { return I == X.I; }
778     bool operator!=(const graph_iterator &X) const { return I != X.I; }
779 
780     reference operator*()    const { return **I; }
781     pointer operator->()     const { return  *I; }
782     operator CFGBlock* ()          { return  *I; }
783 
784     graph_iterator &operator++() { ++I; return *this; }
785     graph_iterator &operator--() { --I; return *this; }
786 
787   private:
788     ImplTy I;
789   };
790 
791   class const_graph_iterator {
792   public:
793     typedef const CFGBlock                  value_type;
794     typedef value_type&                     reference;
795     typedef value_type*                     pointer;
796     typedef BumpVector<CFGBlock*>::const_iterator ImplTy;
797 
const_graph_iterator(const ImplTy & i)798     const_graph_iterator(const ImplTy &i) : I(i) {}
799 
800     bool operator==(const const_graph_iterator &X) const { return I == X.I; }
801     bool operator!=(const const_graph_iterator &X) const { return I != X.I; }
802 
803     reference operator*() const { return **I; }
804     pointer operator->()  const { return  *I; }
805     operator CFGBlock* () const { return  *I; }
806 
807     const_graph_iterator &operator++() { ++I; return *this; }
808     const_graph_iterator &operator--() { --I; return *this; }
809 
810   private:
811     ImplTy I;
812   };
813 
814   /// buildCFG - Builds a CFG from an AST.
815   static std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *AST, ASTContext *C,
816                                        const BuildOptions &BO);
817 
818   /// createBlock - Create a new block in the CFG.  The CFG owns the block;
819   ///  the caller should not directly free it.
820   CFGBlock *createBlock();
821 
822   /// setEntry - Set the entry block of the CFG.  This is typically used
823   ///  only during CFG construction.  Most CFG clients expect that the
824   ///  entry block has no predecessors and contains no statements.
setEntry(CFGBlock * B)825   void setEntry(CFGBlock *B) { Entry = B; }
826 
827   /// setIndirectGotoBlock - Set the block used for indirect goto jumps.
828   ///  This is typically used only during CFG construction.
setIndirectGotoBlock(CFGBlock * B)829   void setIndirectGotoBlock(CFGBlock *B) { IndirectGotoBlock = B; }
830 
831   //===--------------------------------------------------------------------===//
832   // Block Iterators
833   //===--------------------------------------------------------------------===//
834 
835   typedef BumpVector<CFGBlock*>                    CFGBlockListTy;
836   typedef CFGBlockListTy::iterator                 iterator;
837   typedef CFGBlockListTy::const_iterator           const_iterator;
838   typedef std::reverse_iterator<iterator>          reverse_iterator;
839   typedef std::reverse_iterator<const_iterator>    const_reverse_iterator;
840 
front()841   CFGBlock &                front()                { return *Blocks.front(); }
back()842   CFGBlock &                back()                 { return *Blocks.back(); }
843 
begin()844   iterator                  begin()                { return Blocks.begin(); }
end()845   iterator                  end()                  { return Blocks.end(); }
begin()846   const_iterator            begin()       const    { return Blocks.begin(); }
end()847   const_iterator            end()         const    { return Blocks.end(); }
848 
nodes_begin()849   graph_iterator nodes_begin() { return graph_iterator(Blocks.begin()); }
nodes_end()850   graph_iterator nodes_end() { return graph_iterator(Blocks.end()); }
nodes_begin()851   const_graph_iterator nodes_begin() const {
852     return const_graph_iterator(Blocks.begin());
853   }
nodes_end()854   const_graph_iterator nodes_end() const {
855     return const_graph_iterator(Blocks.end());
856   }
857 
rbegin()858   reverse_iterator          rbegin()               { return Blocks.rbegin(); }
rend()859   reverse_iterator          rend()                 { return Blocks.rend(); }
rbegin()860   const_reverse_iterator    rbegin()      const    { return Blocks.rbegin(); }
rend()861   const_reverse_iterator    rend()        const    { return Blocks.rend(); }
862 
getEntry()863   CFGBlock &                getEntry()             { return *Entry; }
getEntry()864   const CFGBlock &          getEntry()    const    { return *Entry; }
getExit()865   CFGBlock &                getExit()              { return *Exit; }
getExit()866   const CFGBlock &          getExit()     const    { return *Exit; }
867 
getIndirectGotoBlock()868   CFGBlock *       getIndirectGotoBlock() { return IndirectGotoBlock; }
getIndirectGotoBlock()869   const CFGBlock * getIndirectGotoBlock() const { return IndirectGotoBlock; }
870 
871   typedef std::vector<const CFGBlock*>::const_iterator try_block_iterator;
try_blocks_begin()872   try_block_iterator try_blocks_begin() const {
873     return TryDispatchBlocks.begin();
874   }
try_blocks_end()875   try_block_iterator try_blocks_end() const {
876     return TryDispatchBlocks.end();
877   }
878 
addTryDispatchBlock(const CFGBlock * block)879   void addTryDispatchBlock(const CFGBlock *block) {
880     TryDispatchBlocks.push_back(block);
881   }
882 
883   /// Records a synthetic DeclStmt and the DeclStmt it was constructed from.
884   ///
885   /// The CFG uses synthetic DeclStmts when a single AST DeclStmt contains
886   /// multiple decls.
addSyntheticDeclStmt(const DeclStmt * Synthetic,const DeclStmt * Source)887   void addSyntheticDeclStmt(const DeclStmt *Synthetic,
888                             const DeclStmt *Source) {
889     assert(Synthetic->isSingleDecl() && "Can handle single declarations only");
890     assert(Synthetic != Source && "Don't include original DeclStmts in map");
891     assert(!SyntheticDeclStmts.count(Synthetic) && "Already in map");
892     SyntheticDeclStmts[Synthetic] = Source;
893   }
894 
895   typedef llvm::DenseMap<const DeclStmt *, const DeclStmt *>::const_iterator
896     synthetic_stmt_iterator;
897 
898   /// Iterates over synthetic DeclStmts in the CFG.
899   ///
900   /// Each element is a (synthetic statement, source statement) pair.
901   ///
902   /// \sa addSyntheticDeclStmt
synthetic_stmt_begin()903   synthetic_stmt_iterator synthetic_stmt_begin() const {
904     return SyntheticDeclStmts.begin();
905   }
906 
907   /// \sa synthetic_stmt_begin
synthetic_stmt_end()908   synthetic_stmt_iterator synthetic_stmt_end() const {
909     return SyntheticDeclStmts.end();
910   }
911 
912   //===--------------------------------------------------------------------===//
913   // Member templates useful for various batch operations over CFGs.
914   //===--------------------------------------------------------------------===//
915 
916   template <typename CALLBACK>
VisitBlockStmts(CALLBACK & O)917   void VisitBlockStmts(CALLBACK& O) const {
918     for (const_iterator I=begin(), E=end(); I != E; ++I)
919       for (CFGBlock::const_iterator BI=(*I)->begin(), BE=(*I)->end();
920            BI != BE; ++BI) {
921         if (Optional<CFGStmt> stmt = BI->getAs<CFGStmt>())
922           O(const_cast<Stmt*>(stmt->getStmt()));
923       }
924   }
925 
926   //===--------------------------------------------------------------------===//
927   // CFG Introspection.
928   //===--------------------------------------------------------------------===//
929 
930   /// getNumBlockIDs - Returns the total number of BlockIDs allocated (which
931   /// start at 0).
getNumBlockIDs()932   unsigned getNumBlockIDs() const { return NumBlockIDs; }
933 
934   /// size - Return the total number of CFGBlocks within the CFG
935   /// This is simply a renaming of the getNumBlockIDs(). This is necessary
936   /// because the dominator implementation needs such an interface.
size()937   unsigned size() const { return NumBlockIDs; }
938 
939   //===--------------------------------------------------------------------===//
940   // CFG Debugging: Pretty-Printing and Visualization.
941   //===--------------------------------------------------------------------===//
942 
943   void viewCFG(const LangOptions &LO) const;
944   void print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const;
945   void dump(const LangOptions &LO, bool ShowColors) const;
946 
947   //===--------------------------------------------------------------------===//
948   // Internal: constructors and data.
949   //===--------------------------------------------------------------------===//
950 
CFG()951   CFG()
952     : Entry(nullptr), Exit(nullptr), IndirectGotoBlock(nullptr), NumBlockIDs(0),
953       Blocks(BlkBVC, 10) {}
954 
getAllocator()955   llvm::BumpPtrAllocator& getAllocator() {
956     return BlkBVC.getAllocator();
957   }
958 
getBumpVectorContext()959   BumpVectorContext &getBumpVectorContext() {
960     return BlkBVC;
961   }
962 
963 private:
964   CFGBlock *Entry;
965   CFGBlock *Exit;
966   CFGBlock* IndirectGotoBlock;  // Special block to contain collective dispatch
967                                 // for indirect gotos
968   unsigned  NumBlockIDs;
969 
970   BumpVectorContext BlkBVC;
971 
972   CFGBlockListTy Blocks;
973 
974   /// C++ 'try' statements are modeled with an indirect dispatch block.
975   /// This is the collection of such blocks present in the CFG.
976   std::vector<const CFGBlock *> TryDispatchBlocks;
977 
978   /// Collects DeclStmts synthesized for this CFG and maps each one back to its
979   /// source DeclStmt.
980   llvm::DenseMap<const DeclStmt *, const DeclStmt *> SyntheticDeclStmts;
981 };
982 } // end namespace clang
983 
984 //===----------------------------------------------------------------------===//
985 // GraphTraits specializations for CFG basic block graphs (source-level CFGs)
986 //===----------------------------------------------------------------------===//
987 
988 namespace llvm {
989 
990 /// Implement simplify_type for CFGTerminator, so that we can dyn_cast from
991 /// CFGTerminator to a specific Stmt class.
992 template <> struct simplify_type< ::clang::CFGTerminator> {
993   typedef ::clang::Stmt *SimpleType;
994   static SimpleType getSimplifiedValue(::clang::CFGTerminator Val) {
995     return Val.getStmt();
996   }
997 };
998 
999 // Traits for: CFGBlock
1000 
1001 template <> struct GraphTraits< ::clang::CFGBlock *> {
1002   typedef ::clang::CFGBlock NodeType;
1003   typedef ::clang::CFGBlock::succ_iterator ChildIteratorType;
1004 
1005   static NodeType* getEntryNode(::clang::CFGBlock *BB)
1006   { return BB; }
1007 
1008   static inline ChildIteratorType child_begin(NodeType* N)
1009   { return N->succ_begin(); }
1010 
1011   static inline ChildIteratorType child_end(NodeType* N)
1012   { return N->succ_end(); }
1013 };
1014 
1015 template <> struct GraphTraits< const ::clang::CFGBlock *> {
1016   typedef const ::clang::CFGBlock NodeType;
1017   typedef ::clang::CFGBlock::const_succ_iterator ChildIteratorType;
1018 
1019   static NodeType* getEntryNode(const clang::CFGBlock *BB)
1020   { return BB; }
1021 
1022   static inline ChildIteratorType child_begin(NodeType* N)
1023   { return N->succ_begin(); }
1024 
1025   static inline ChildIteratorType child_end(NodeType* N)
1026   { return N->succ_end(); }
1027 };
1028 
1029 template <> struct GraphTraits<Inverse< ::clang::CFGBlock*> > {
1030   typedef ::clang::CFGBlock NodeType;
1031   typedef ::clang::CFGBlock::const_pred_iterator ChildIteratorType;
1032 
1033   static NodeType *getEntryNode(Inverse< ::clang::CFGBlock*> G)
1034   { return G.Graph; }
1035 
1036   static inline ChildIteratorType child_begin(NodeType* N)
1037   { return N->pred_begin(); }
1038 
1039   static inline ChildIteratorType child_end(NodeType* N)
1040   { return N->pred_end(); }
1041 };
1042 
1043 template <> struct GraphTraits<Inverse<const ::clang::CFGBlock*> > {
1044   typedef const ::clang::CFGBlock NodeType;
1045   typedef ::clang::CFGBlock::const_pred_iterator ChildIteratorType;
1046 
1047   static NodeType *getEntryNode(Inverse<const ::clang::CFGBlock*> G)
1048   { return G.Graph; }
1049 
1050   static inline ChildIteratorType child_begin(NodeType* N)
1051   { return N->pred_begin(); }
1052 
1053   static inline ChildIteratorType child_end(NodeType* N)
1054   { return N->pred_end(); }
1055 };
1056 
1057 // Traits for: CFG
1058 
1059 template <> struct GraphTraits< ::clang::CFG* >
1060     : public GraphTraits< ::clang::CFGBlock *>  {
1061 
1062   typedef ::clang::CFG::graph_iterator nodes_iterator;
1063 
1064   static NodeType     *getEntryNode(::clang::CFG* F) { return &F->getEntry(); }
1065   static nodes_iterator nodes_begin(::clang::CFG* F) { return F->nodes_begin();}
1066   static nodes_iterator   nodes_end(::clang::CFG* F) { return F->nodes_end(); }
1067   static unsigned              size(::clang::CFG* F) { return F->size(); }
1068 };
1069 
1070 template <> struct GraphTraits<const ::clang::CFG* >
1071     : public GraphTraits<const ::clang::CFGBlock *>  {
1072 
1073   typedef ::clang::CFG::const_graph_iterator nodes_iterator;
1074 
1075   static NodeType *getEntryNode( const ::clang::CFG* F) {
1076     return &F->getEntry();
1077   }
1078   static nodes_iterator nodes_begin( const ::clang::CFG* F) {
1079     return F->nodes_begin();
1080   }
1081   static nodes_iterator nodes_end( const ::clang::CFG* F) {
1082     return F->nodes_end();
1083   }
1084   static unsigned size(const ::clang::CFG* F) {
1085     return F->size();
1086   }
1087 };
1088 
1089 template <> struct GraphTraits<Inverse< ::clang::CFG*> >
1090   : public GraphTraits<Inverse< ::clang::CFGBlock*> > {
1091 
1092   typedef ::clang::CFG::graph_iterator nodes_iterator;
1093 
1094   static NodeType *getEntryNode( ::clang::CFG* F) { return &F->getExit(); }
1095   static nodes_iterator nodes_begin( ::clang::CFG* F) {return F->nodes_begin();}
1096   static nodes_iterator nodes_end( ::clang::CFG* F) { return F->nodes_end(); }
1097 };
1098 
1099 template <> struct GraphTraits<Inverse<const ::clang::CFG*> >
1100   : public GraphTraits<Inverse<const ::clang::CFGBlock*> > {
1101 
1102   typedef ::clang::CFG::const_graph_iterator nodes_iterator;
1103 
1104   static NodeType *getEntryNode(const ::clang::CFG* F) { return &F->getExit(); }
1105   static nodes_iterator nodes_begin(const ::clang::CFG* F) {
1106     return F->nodes_begin();
1107   }
1108   static nodes_iterator nodes_end(const ::clang::CFG* F) {
1109     return F->nodes_end();
1110   }
1111 };
1112 } // end llvm namespace
1113 #endif
1114