1 //===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements the ASTContext interface.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTContext.h"
15 #include "CXXABI.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Comment.h"
20 #include "clang/AST/CommentCommandTraits.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExternalASTSource.h"
27 #include "clang/AST/Mangle.h"
28 #include "clang/AST/MangleNumberingContext.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/AST/RecursiveASTVisitor.h"
31 #include "clang/AST/TypeLoc.h"
32 #include "clang/AST/VTableBuilder.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/SourceManager.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "llvm/ADT/SmallString.h"
37 #include "llvm/ADT/StringExtras.h"
38 #include "llvm/ADT/Triple.h"
39 #include "llvm/Support/Capacity.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <map>
43 
44 using namespace clang;
45 
46 unsigned ASTContext::NumImplicitDefaultConstructors;
47 unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
48 unsigned ASTContext::NumImplicitCopyConstructors;
49 unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
50 unsigned ASTContext::NumImplicitMoveConstructors;
51 unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
52 unsigned ASTContext::NumImplicitCopyAssignmentOperators;
53 unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
54 unsigned ASTContext::NumImplicitMoveAssignmentOperators;
55 unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
56 unsigned ASTContext::NumImplicitDestructors;
57 unsigned ASTContext::NumImplicitDestructorsDeclared;
58 
59 enum FloatingRank {
60   HalfRank, FloatRank, DoubleRank, LongDoubleRank
61 };
62 
getRawCommentForDeclNoCache(const Decl * D) const63 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
64   if (!CommentsLoaded && ExternalSource) {
65     ExternalSource->ReadComments();
66 
67 #ifndef NDEBUG
68     ArrayRef<RawComment *> RawComments = Comments.getComments();
69     assert(std::is_sorted(RawComments.begin(), RawComments.end(),
70                           BeforeThanCompare<RawComment>(SourceMgr)));
71 #endif
72 
73     CommentsLoaded = true;
74   }
75 
76   assert(D);
77 
78   // User can not attach documentation to implicit declarations.
79   if (D->isImplicit())
80     return nullptr;
81 
82   // User can not attach documentation to implicit instantiations.
83   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
84     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85       return nullptr;
86   }
87 
88   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
89     if (VD->isStaticDataMember() &&
90         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
91       return nullptr;
92   }
93 
94   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
95     if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
96       return nullptr;
97   }
98 
99   if (const ClassTemplateSpecializationDecl *CTSD =
100           dyn_cast<ClassTemplateSpecializationDecl>(D)) {
101     TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
102     if (TSK == TSK_ImplicitInstantiation ||
103         TSK == TSK_Undeclared)
104       return nullptr;
105   }
106 
107   if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
108     if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
109       return nullptr;
110   }
111   if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
112     // When tag declaration (but not definition!) is part of the
113     // decl-specifier-seq of some other declaration, it doesn't get comment
114     if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
115       return nullptr;
116   }
117   // TODO: handle comments for function parameters properly.
118   if (isa<ParmVarDecl>(D))
119     return nullptr;
120 
121   // TODO: we could look up template parameter documentation in the template
122   // documentation.
123   if (isa<TemplateTypeParmDecl>(D) ||
124       isa<NonTypeTemplateParmDecl>(D) ||
125       isa<TemplateTemplateParmDecl>(D))
126     return nullptr;
127 
128   ArrayRef<RawComment *> RawComments = Comments.getComments();
129 
130   // If there are no comments anywhere, we won't find anything.
131   if (RawComments.empty())
132     return nullptr;
133 
134   // Find declaration location.
135   // For Objective-C declarations we generally don't expect to have multiple
136   // declarators, thus use declaration starting location as the "declaration
137   // location".
138   // For all other declarations multiple declarators are used quite frequently,
139   // so we use the location of the identifier as the "declaration location".
140   SourceLocation DeclLoc;
141   if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
142       isa<ObjCPropertyDecl>(D) ||
143       isa<RedeclarableTemplateDecl>(D) ||
144       isa<ClassTemplateSpecializationDecl>(D))
145     DeclLoc = D->getLocStart();
146   else {
147     DeclLoc = D->getLocation();
148     if (DeclLoc.isMacroID()) {
149       if (isa<TypedefDecl>(D)) {
150         // If location of the typedef name is in a macro, it is because being
151         // declared via a macro. Try using declaration's starting location as
152         // the "declaration location".
153         DeclLoc = D->getLocStart();
154       } else if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
155         // If location of the tag decl is inside a macro, but the spelling of
156         // the tag name comes from a macro argument, it looks like a special
157         // macro like NS_ENUM is being used to define the tag decl.  In that
158         // case, adjust the source location to the expansion loc so that we can
159         // attach the comment to the tag decl.
160         if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
161             TD->isCompleteDefinition())
162           DeclLoc = SourceMgr.getExpansionLoc(DeclLoc);
163       }
164     }
165   }
166 
167   // If the declaration doesn't map directly to a location in a file, we
168   // can't find the comment.
169   if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
170     return nullptr;
171 
172   // Find the comment that occurs just after this declaration.
173   ArrayRef<RawComment *>::iterator Comment;
174   {
175     // When searching for comments during parsing, the comment we are looking
176     // for is usually among the last two comments we parsed -- check them
177     // first.
178     RawComment CommentAtDeclLoc(
179         SourceMgr, SourceRange(DeclLoc), false,
180         LangOpts.CommentOpts.ParseAllComments);
181     BeforeThanCompare<RawComment> Compare(SourceMgr);
182     ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
183     bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
184     if (!Found && RawComments.size() >= 2) {
185       MaybeBeforeDecl--;
186       Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
187     }
188 
189     if (Found) {
190       Comment = MaybeBeforeDecl + 1;
191       assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
192                                          &CommentAtDeclLoc, Compare));
193     } else {
194       // Slow path.
195       Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
196                                  &CommentAtDeclLoc, Compare);
197     }
198   }
199 
200   // Decompose the location for the declaration and find the beginning of the
201   // file buffer.
202   std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
203 
204   // First check whether we have a trailing comment.
205   if (Comment != RawComments.end() &&
206       (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
207       (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
208        isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
209     std::pair<FileID, unsigned> CommentBeginDecomp
210       = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
211     // Check that Doxygen trailing comment comes after the declaration, starts
212     // on the same line and in the same file as the declaration.
213     if (DeclLocDecomp.first == CommentBeginDecomp.first &&
214         SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
215           == SourceMgr.getLineNumber(CommentBeginDecomp.first,
216                                      CommentBeginDecomp.second)) {
217       return *Comment;
218     }
219   }
220 
221   // The comment just after the declaration was not a trailing comment.
222   // Let's look at the previous comment.
223   if (Comment == RawComments.begin())
224     return nullptr;
225   --Comment;
226 
227   // Check that we actually have a non-member Doxygen comment.
228   if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
229     return nullptr;
230 
231   // Decompose the end of the comment.
232   std::pair<FileID, unsigned> CommentEndDecomp
233     = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
234 
235   // If the comment and the declaration aren't in the same file, then they
236   // aren't related.
237   if (DeclLocDecomp.first != CommentEndDecomp.first)
238     return nullptr;
239 
240   // Get the corresponding buffer.
241   bool Invalid = false;
242   const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
243                                                &Invalid).data();
244   if (Invalid)
245     return nullptr;
246 
247   // Extract text between the comment and declaration.
248   StringRef Text(Buffer + CommentEndDecomp.second,
249                  DeclLocDecomp.second - CommentEndDecomp.second);
250 
251   // There should be no other declarations or preprocessor directives between
252   // comment and declaration.
253   if (Text.find_first_of(";{}#@") != StringRef::npos)
254     return nullptr;
255 
256   return *Comment;
257 }
258 
259 namespace {
260 /// If we have a 'templated' declaration for a template, adjust 'D' to
261 /// refer to the actual template.
262 /// If we have an implicit instantiation, adjust 'D' to refer to template.
adjustDeclToTemplate(const Decl * D)263 const Decl *adjustDeclToTemplate(const Decl *D) {
264   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
265     // Is this function declaration part of a function template?
266     if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
267       return FTD;
268 
269     // Nothing to do if function is not an implicit instantiation.
270     if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
271       return D;
272 
273     // Function is an implicit instantiation of a function template?
274     if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
275       return FTD;
276 
277     // Function is instantiated from a member definition of a class template?
278     if (const FunctionDecl *MemberDecl =
279             FD->getInstantiatedFromMemberFunction())
280       return MemberDecl;
281 
282     return D;
283   }
284   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
285     // Static data member is instantiated from a member definition of a class
286     // template?
287     if (VD->isStaticDataMember())
288       if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
289         return MemberDecl;
290 
291     return D;
292   }
293   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
294     // Is this class declaration part of a class template?
295     if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
296       return CTD;
297 
298     // Class is an implicit instantiation of a class template or partial
299     // specialization?
300     if (const ClassTemplateSpecializationDecl *CTSD =
301             dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
302       if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
303         return D;
304       llvm::PointerUnion<ClassTemplateDecl *,
305                          ClassTemplatePartialSpecializationDecl *>
306           PU = CTSD->getSpecializedTemplateOrPartial();
307       return PU.is<ClassTemplateDecl*>() ?
308           static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
309           static_cast<const Decl*>(
310               PU.get<ClassTemplatePartialSpecializationDecl *>());
311     }
312 
313     // Class is instantiated from a member definition of a class template?
314     if (const MemberSpecializationInfo *Info =
315                    CRD->getMemberSpecializationInfo())
316       return Info->getInstantiatedFrom();
317 
318     return D;
319   }
320   if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
321     // Enum is instantiated from a member definition of a class template?
322     if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
323       return MemberDecl;
324 
325     return D;
326   }
327   // FIXME: Adjust alias templates?
328   return D;
329 }
330 } // unnamed namespace
331 
getRawCommentForAnyRedecl(const Decl * D,const Decl ** OriginalDecl) const332 const RawComment *ASTContext::getRawCommentForAnyRedecl(
333                                                 const Decl *D,
334                                                 const Decl **OriginalDecl) const {
335   D = adjustDeclToTemplate(D);
336 
337   // Check whether we have cached a comment for this declaration already.
338   {
339     llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
340         RedeclComments.find(D);
341     if (Pos != RedeclComments.end()) {
342       const RawCommentAndCacheFlags &Raw = Pos->second;
343       if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
344         if (OriginalDecl)
345           *OriginalDecl = Raw.getOriginalDecl();
346         return Raw.getRaw();
347       }
348     }
349   }
350 
351   // Search for comments attached to declarations in the redeclaration chain.
352   const RawComment *RC = nullptr;
353   const Decl *OriginalDeclForRC = nullptr;
354   for (auto I : D->redecls()) {
355     llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
356         RedeclComments.find(I);
357     if (Pos != RedeclComments.end()) {
358       const RawCommentAndCacheFlags &Raw = Pos->second;
359       if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
360         RC = Raw.getRaw();
361         OriginalDeclForRC = Raw.getOriginalDecl();
362         break;
363       }
364     } else {
365       RC = getRawCommentForDeclNoCache(I);
366       OriginalDeclForRC = I;
367       RawCommentAndCacheFlags Raw;
368       if (RC) {
369         Raw.setRaw(RC);
370         Raw.setKind(RawCommentAndCacheFlags::FromDecl);
371       } else
372         Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
373       Raw.setOriginalDecl(I);
374       RedeclComments[I] = Raw;
375       if (RC)
376         break;
377     }
378   }
379 
380   // If we found a comment, it should be a documentation comment.
381   assert(!RC || RC->isDocumentation());
382 
383   if (OriginalDecl)
384     *OriginalDecl = OriginalDeclForRC;
385 
386   // Update cache for every declaration in the redeclaration chain.
387   RawCommentAndCacheFlags Raw;
388   Raw.setRaw(RC);
389   Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
390   Raw.setOriginalDecl(OriginalDeclForRC);
391 
392   for (auto I : D->redecls()) {
393     RawCommentAndCacheFlags &R = RedeclComments[I];
394     if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
395       R = Raw;
396   }
397 
398   return RC;
399 }
400 
addRedeclaredMethods(const ObjCMethodDecl * ObjCMethod,SmallVectorImpl<const NamedDecl * > & Redeclared)401 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
402                    SmallVectorImpl<const NamedDecl *> &Redeclared) {
403   const DeclContext *DC = ObjCMethod->getDeclContext();
404   if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
405     const ObjCInterfaceDecl *ID = IMD->getClassInterface();
406     if (!ID)
407       return;
408     // Add redeclared method here.
409     for (const auto *Ext : ID->known_extensions()) {
410       if (ObjCMethodDecl *RedeclaredMethod =
411             Ext->getMethod(ObjCMethod->getSelector(),
412                                   ObjCMethod->isInstanceMethod()))
413         Redeclared.push_back(RedeclaredMethod);
414     }
415   }
416 }
417 
cloneFullComment(comments::FullComment * FC,const Decl * D) const418 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
419                                                     const Decl *D) const {
420   comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
421   ThisDeclInfo->CommentDecl = D;
422   ThisDeclInfo->IsFilled = false;
423   ThisDeclInfo->fill();
424   ThisDeclInfo->CommentDecl = FC->getDecl();
425   if (!ThisDeclInfo->TemplateParameters)
426     ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
427   comments::FullComment *CFC =
428     new (*this) comments::FullComment(FC->getBlocks(),
429                                       ThisDeclInfo);
430   return CFC;
431 
432 }
433 
getLocalCommentForDeclUncached(const Decl * D) const434 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
435   const RawComment *RC = getRawCommentForDeclNoCache(D);
436   return RC ? RC->parse(*this, nullptr, D) : nullptr;
437 }
438 
getCommentForDecl(const Decl * D,const Preprocessor * PP) const439 comments::FullComment *ASTContext::getCommentForDecl(
440                                               const Decl *D,
441                                               const Preprocessor *PP) const {
442   if (D->isInvalidDecl())
443     return nullptr;
444   D = adjustDeclToTemplate(D);
445 
446   const Decl *Canonical = D->getCanonicalDecl();
447   llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
448       ParsedComments.find(Canonical);
449 
450   if (Pos != ParsedComments.end()) {
451     if (Canonical != D) {
452       comments::FullComment *FC = Pos->second;
453       comments::FullComment *CFC = cloneFullComment(FC, D);
454       return CFC;
455     }
456     return Pos->second;
457   }
458 
459   const Decl *OriginalDecl;
460 
461   const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
462   if (!RC) {
463     if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
464       SmallVector<const NamedDecl*, 8> Overridden;
465       const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
466       if (OMD && OMD->isPropertyAccessor())
467         if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
468           if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
469             return cloneFullComment(FC, D);
470       if (OMD)
471         addRedeclaredMethods(OMD, Overridden);
472       getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
473       for (unsigned i = 0, e = Overridden.size(); i < e; i++)
474         if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
475           return cloneFullComment(FC, D);
476     }
477     else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
478       // Attach any tag type's documentation to its typedef if latter
479       // does not have one of its own.
480       QualType QT = TD->getUnderlyingType();
481       if (const TagType *TT = QT->getAs<TagType>())
482         if (const Decl *TD = TT->getDecl())
483           if (comments::FullComment *FC = getCommentForDecl(TD, PP))
484             return cloneFullComment(FC, D);
485     }
486     else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
487       while (IC->getSuperClass()) {
488         IC = IC->getSuperClass();
489         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
490           return cloneFullComment(FC, D);
491       }
492     }
493     else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) {
494       if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
495         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
496           return cloneFullComment(FC, D);
497     }
498     else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
499       if (!(RD = RD->getDefinition()))
500         return nullptr;
501       // Check non-virtual bases.
502       for (const auto &I : RD->bases()) {
503         if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
504           continue;
505         QualType Ty = I.getType();
506         if (Ty.isNull())
507           continue;
508         if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
509           if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
510             continue;
511 
512           if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
513             return cloneFullComment(FC, D);
514         }
515       }
516       // Check virtual bases.
517       for (const auto &I : RD->vbases()) {
518         if (I.getAccessSpecifier() != AS_public)
519           continue;
520         QualType Ty = I.getType();
521         if (Ty.isNull())
522           continue;
523         if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
524           if (!(VirtualBase= VirtualBase->getDefinition()))
525             continue;
526           if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
527             return cloneFullComment(FC, D);
528         }
529       }
530     }
531     return nullptr;
532   }
533 
534   // If the RawComment was attached to other redeclaration of this Decl, we
535   // should parse the comment in context of that other Decl.  This is important
536   // because comments can contain references to parameter names which can be
537   // different across redeclarations.
538   if (D != OriginalDecl)
539     return getCommentForDecl(OriginalDecl, PP);
540 
541   comments::FullComment *FC = RC->parse(*this, PP, D);
542   ParsedComments[Canonical] = FC;
543   return FC;
544 }
545 
546 void
Profile(llvm::FoldingSetNodeID & ID,TemplateTemplateParmDecl * Parm)547 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
548                                                TemplateTemplateParmDecl *Parm) {
549   ID.AddInteger(Parm->getDepth());
550   ID.AddInteger(Parm->getPosition());
551   ID.AddBoolean(Parm->isParameterPack());
552 
553   TemplateParameterList *Params = Parm->getTemplateParameters();
554   ID.AddInteger(Params->size());
555   for (TemplateParameterList::const_iterator P = Params->begin(),
556                                           PEnd = Params->end();
557        P != PEnd; ++P) {
558     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
559       ID.AddInteger(0);
560       ID.AddBoolean(TTP->isParameterPack());
561       continue;
562     }
563 
564     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
565       ID.AddInteger(1);
566       ID.AddBoolean(NTTP->isParameterPack());
567       ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
568       if (NTTP->isExpandedParameterPack()) {
569         ID.AddBoolean(true);
570         ID.AddInteger(NTTP->getNumExpansionTypes());
571         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
572           QualType T = NTTP->getExpansionType(I);
573           ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
574         }
575       } else
576         ID.AddBoolean(false);
577       continue;
578     }
579 
580     TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
581     ID.AddInteger(2);
582     Profile(ID, TTP);
583   }
584 }
585 
586 TemplateTemplateParmDecl *
getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl * TTP) const587 ASTContext::getCanonicalTemplateTemplateParmDecl(
588                                           TemplateTemplateParmDecl *TTP) const {
589   // Check if we already have a canonical template template parameter.
590   llvm::FoldingSetNodeID ID;
591   CanonicalTemplateTemplateParm::Profile(ID, TTP);
592   void *InsertPos = nullptr;
593   CanonicalTemplateTemplateParm *Canonical
594     = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
595   if (Canonical)
596     return Canonical->getParam();
597 
598   // Build a canonical template parameter list.
599   TemplateParameterList *Params = TTP->getTemplateParameters();
600   SmallVector<NamedDecl *, 4> CanonParams;
601   CanonParams.reserve(Params->size());
602   for (TemplateParameterList::const_iterator P = Params->begin(),
603                                           PEnd = Params->end();
604        P != PEnd; ++P) {
605     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
606       CanonParams.push_back(
607                   TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
608                                                SourceLocation(),
609                                                SourceLocation(),
610                                                TTP->getDepth(),
611                                                TTP->getIndex(), nullptr, false,
612                                                TTP->isParameterPack()));
613     else if (NonTypeTemplateParmDecl *NTTP
614              = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
615       QualType T = getCanonicalType(NTTP->getType());
616       TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
617       NonTypeTemplateParmDecl *Param;
618       if (NTTP->isExpandedParameterPack()) {
619         SmallVector<QualType, 2> ExpandedTypes;
620         SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
621         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
622           ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
623           ExpandedTInfos.push_back(
624                                 getTrivialTypeSourceInfo(ExpandedTypes.back()));
625         }
626 
627         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
628                                                 SourceLocation(),
629                                                 SourceLocation(),
630                                                 NTTP->getDepth(),
631                                                 NTTP->getPosition(), nullptr,
632                                                 T,
633                                                 TInfo,
634                                                 ExpandedTypes.data(),
635                                                 ExpandedTypes.size(),
636                                                 ExpandedTInfos.data());
637       } else {
638         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
639                                                 SourceLocation(),
640                                                 SourceLocation(),
641                                                 NTTP->getDepth(),
642                                                 NTTP->getPosition(), nullptr,
643                                                 T,
644                                                 NTTP->isParameterPack(),
645                                                 TInfo);
646       }
647       CanonParams.push_back(Param);
648 
649     } else
650       CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
651                                            cast<TemplateTemplateParmDecl>(*P)));
652   }
653 
654   TemplateTemplateParmDecl *CanonTTP
655     = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
656                                        SourceLocation(), TTP->getDepth(),
657                                        TTP->getPosition(),
658                                        TTP->isParameterPack(),
659                                        nullptr,
660                          TemplateParameterList::Create(*this, SourceLocation(),
661                                                        SourceLocation(),
662                                                        CanonParams.data(),
663                                                        CanonParams.size(),
664                                                        SourceLocation()));
665 
666   // Get the new insert position for the node we care about.
667   Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
668   assert(!Canonical && "Shouldn't be in the map!");
669   (void)Canonical;
670 
671   // Create the canonical template template parameter entry.
672   Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
673   CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
674   return CanonTTP;
675 }
676 
createCXXABI(const TargetInfo & T)677 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
678   if (!LangOpts.CPlusPlus) return nullptr;
679 
680   switch (T.getCXXABI().getKind()) {
681   case TargetCXXABI::GenericARM: // Same as Itanium at this level
682   case TargetCXXABI::iOS:
683   case TargetCXXABI::iOS64:
684   case TargetCXXABI::GenericAArch64:
685   case TargetCXXABI::GenericMIPS:
686   case TargetCXXABI::GenericItanium:
687     return CreateItaniumCXXABI(*this);
688   case TargetCXXABI::Microsoft:
689     return CreateMicrosoftCXXABI(*this);
690   }
691   llvm_unreachable("Invalid CXXABI type!");
692 }
693 
getAddressSpaceMap(const TargetInfo & T,const LangOptions & LOpts)694 static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
695                                              const LangOptions &LOpts) {
696   if (LOpts.FakeAddressSpaceMap) {
697     // The fake address space map must have a distinct entry for each
698     // language-specific address space.
699     static const unsigned FakeAddrSpaceMap[] = {
700       1, // opencl_global
701       2, // opencl_local
702       3, // opencl_constant
703       4, // opencl_generic
704       5, // cuda_device
705       6, // cuda_constant
706       7  // cuda_shared
707     };
708     return &FakeAddrSpaceMap;
709   } else {
710     return &T.getAddressSpaceMap();
711   }
712 }
713 
isAddrSpaceMapManglingEnabled(const TargetInfo & TI,const LangOptions & LangOpts)714 static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
715                                           const LangOptions &LangOpts) {
716   switch (LangOpts.getAddressSpaceMapMangling()) {
717   case LangOptions::ASMM_Target:
718     return TI.useAddressSpaceMapMangling();
719   case LangOptions::ASMM_On:
720     return true;
721   case LangOptions::ASMM_Off:
722     return false;
723   }
724   llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
725 }
726 
ASTContext(LangOptions & LOpts,SourceManager & SM,IdentifierTable & idents,SelectorTable & sels,Builtin::Context & builtins)727 ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
728                        IdentifierTable &idents, SelectorTable &sels,
729                        Builtin::Context &builtins)
730     : FunctionProtoTypes(this_()), TemplateSpecializationTypes(this_()),
731       DependentTemplateSpecializationTypes(this_()),
732       SubstTemplateTemplateParmPacks(this_()),
733       GlobalNestedNameSpecifier(nullptr), Int128Decl(nullptr),
734       UInt128Decl(nullptr), Float128StubDecl(nullptr),
735       BuiltinVaListDecl(nullptr), ObjCIdDecl(nullptr), ObjCSelDecl(nullptr),
736       ObjCClassDecl(nullptr), ObjCProtocolClassDecl(nullptr), BOOLDecl(nullptr),
737       CFConstantStringTypeDecl(nullptr), ObjCInstanceTypeDecl(nullptr),
738       FILEDecl(nullptr), jmp_bufDecl(nullptr), sigjmp_bufDecl(nullptr),
739       ucontext_tDecl(nullptr), BlockDescriptorType(nullptr),
740       BlockDescriptorExtendedType(nullptr), cudaConfigureCallDecl(nullptr),
741       FirstLocalImport(), LastLocalImport(),
742       SourceMgr(SM), LangOpts(LOpts),
743       SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFile, SM)),
744       AddrSpaceMap(nullptr), Target(nullptr), PrintingPolicy(LOpts),
745       Idents(idents), Selectors(sels), BuiltinInfo(builtins),
746       DeclarationNames(*this), ExternalSource(nullptr), Listener(nullptr),
747       Comments(SM), CommentsLoaded(false),
748       CommentCommandTraits(BumpAlloc, LOpts.CommentOpts), LastSDM(nullptr, 0) {
749   TUDecl = TranslationUnitDecl::Create(*this);
750 }
751 
~ASTContext()752 ASTContext::~ASTContext() {
753   ReleaseParentMapEntries();
754 
755   // Release the DenseMaps associated with DeclContext objects.
756   // FIXME: Is this the ideal solution?
757   ReleaseDeclContextMaps();
758 
759   // Call all of the deallocation functions on all of their targets.
760   for (DeallocationMap::const_iterator I = Deallocations.begin(),
761            E = Deallocations.end(); I != E; ++I)
762     for (unsigned J = 0, N = I->second.size(); J != N; ++J)
763       (I->first)((I->second)[J]);
764 
765   // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
766   // because they can contain DenseMaps.
767   for (llvm::DenseMap<const ObjCContainerDecl*,
768        const ASTRecordLayout*>::iterator
769        I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
770     // Increment in loop to prevent using deallocated memory.
771     if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
772       R->Destroy(*this);
773 
774   for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
775        I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
776     // Increment in loop to prevent using deallocated memory.
777     if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
778       R->Destroy(*this);
779   }
780 
781   for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
782                                                     AEnd = DeclAttrs.end();
783        A != AEnd; ++A)
784     A->second->~AttrVec();
785 
786   llvm::DeleteContainerSeconds(MangleNumberingContexts);
787 }
788 
ReleaseParentMapEntries()789 void ASTContext::ReleaseParentMapEntries() {
790   if (!AllParents) return;
791   for (const auto &Entry : *AllParents) {
792     if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
793       delete Entry.second.get<ast_type_traits::DynTypedNode *>();
794     } else {
795       assert(Entry.second.is<ParentVector *>());
796       delete Entry.second.get<ParentVector *>();
797     }
798   }
799 }
800 
AddDeallocation(void (* Callback)(void *),void * Data)801 void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
802   Deallocations[Callback].push_back(Data);
803 }
804 
805 void
setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source)806 ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
807   ExternalSource = Source;
808 }
809 
PrintStats() const810 void ASTContext::PrintStats() const {
811   llvm::errs() << "\n*** AST Context Stats:\n";
812   llvm::errs() << "  " << Types.size() << " types total.\n";
813 
814   unsigned counts[] = {
815 #define TYPE(Name, Parent) 0,
816 #define ABSTRACT_TYPE(Name, Parent)
817 #include "clang/AST/TypeNodes.def"
818     0 // Extra
819   };
820 
821   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
822     Type *T = Types[i];
823     counts[(unsigned)T->getTypeClass()]++;
824   }
825 
826   unsigned Idx = 0;
827   unsigned TotalBytes = 0;
828 #define TYPE(Name, Parent)                                              \
829   if (counts[Idx])                                                      \
830     llvm::errs() << "    " << counts[Idx] << " " << #Name               \
831                  << " types\n";                                         \
832   TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
833   ++Idx;
834 #define ABSTRACT_TYPE(Name, Parent)
835 #include "clang/AST/TypeNodes.def"
836 
837   llvm::errs() << "Total bytes = " << TotalBytes << "\n";
838 
839   // Implicit special member functions.
840   llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
841                << NumImplicitDefaultConstructors
842                << " implicit default constructors created\n";
843   llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
844                << NumImplicitCopyConstructors
845                << " implicit copy constructors created\n";
846   if (getLangOpts().CPlusPlus)
847     llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
848                  << NumImplicitMoveConstructors
849                  << " implicit move constructors created\n";
850   llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
851                << NumImplicitCopyAssignmentOperators
852                << " implicit copy assignment operators created\n";
853   if (getLangOpts().CPlusPlus)
854     llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
855                  << NumImplicitMoveAssignmentOperators
856                  << " implicit move assignment operators created\n";
857   llvm::errs() << NumImplicitDestructorsDeclared << "/"
858                << NumImplicitDestructors
859                << " implicit destructors created\n";
860 
861   if (ExternalSource) {
862     llvm::errs() << "\n";
863     ExternalSource->PrintStats();
864   }
865 
866   BumpAlloc.PrintStats();
867 }
868 
buildImplicitRecord(StringRef Name,RecordDecl::TagKind TK) const869 RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
870                                             RecordDecl::TagKind TK) const {
871   SourceLocation Loc;
872   RecordDecl *NewDecl;
873   if (getLangOpts().CPlusPlus)
874     NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
875                                     Loc, &Idents.get(Name));
876   else
877     NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
878                                  &Idents.get(Name));
879   NewDecl->setImplicit();
880   return NewDecl;
881 }
882 
buildImplicitTypedef(QualType T,StringRef Name) const883 TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
884                                               StringRef Name) const {
885   TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
886   TypedefDecl *NewDecl = TypedefDecl::Create(
887       const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
888       SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
889   NewDecl->setImplicit();
890   return NewDecl;
891 }
892 
getInt128Decl() const893 TypedefDecl *ASTContext::getInt128Decl() const {
894   if (!Int128Decl)
895     Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
896   return Int128Decl;
897 }
898 
getUInt128Decl() const899 TypedefDecl *ASTContext::getUInt128Decl() const {
900   if (!UInt128Decl)
901     UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
902   return UInt128Decl;
903 }
904 
getFloat128StubType() const905 TypeDecl *ASTContext::getFloat128StubType() const {
906   assert(LangOpts.CPlusPlus && "should only be called for c++");
907   if (!Float128StubDecl)
908     Float128StubDecl = buildImplicitRecord("__float128");
909 
910   return Float128StubDecl;
911 }
912 
InitBuiltinType(CanQualType & R,BuiltinType::Kind K)913 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
914   BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
915   R = CanQualType::CreateUnsafe(QualType(Ty, 0));
916   Types.push_back(Ty);
917 }
918 
InitBuiltinTypes(const TargetInfo & Target)919 void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
920   assert((!this->Target || this->Target == &Target) &&
921          "Incorrect target reinitialization");
922   assert(VoidTy.isNull() && "Context reinitialized?");
923 
924   this->Target = &Target;
925 
926   ABI.reset(createCXXABI(Target));
927   AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
928   AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
929 
930   // C99 6.2.5p19.
931   InitBuiltinType(VoidTy,              BuiltinType::Void);
932 
933   // C99 6.2.5p2.
934   InitBuiltinType(BoolTy,              BuiltinType::Bool);
935   // C99 6.2.5p3.
936   if (LangOpts.CharIsSigned)
937     InitBuiltinType(CharTy,            BuiltinType::Char_S);
938   else
939     InitBuiltinType(CharTy,            BuiltinType::Char_U);
940   // C99 6.2.5p4.
941   InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
942   InitBuiltinType(ShortTy,             BuiltinType::Short);
943   InitBuiltinType(IntTy,               BuiltinType::Int);
944   InitBuiltinType(LongTy,              BuiltinType::Long);
945   InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
946 
947   // C99 6.2.5p6.
948   InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
949   InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
950   InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
951   InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
952   InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
953 
954   // C99 6.2.5p10.
955   InitBuiltinType(FloatTy,             BuiltinType::Float);
956   InitBuiltinType(DoubleTy,            BuiltinType::Double);
957   InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
958 
959   // GNU extension, 128-bit integers.
960   InitBuiltinType(Int128Ty,            BuiltinType::Int128);
961   InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
962 
963   // C++ 3.9.1p5
964   if (TargetInfo::isTypeSigned(Target.getWCharType()))
965     InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
966   else  // -fshort-wchar makes wchar_t be unsigned.
967     InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
968   if (LangOpts.CPlusPlus && LangOpts.WChar)
969     WideCharTy = WCharTy;
970   else {
971     // C99 (or C++ using -fno-wchar).
972     WideCharTy = getFromTargetType(Target.getWCharType());
973   }
974 
975   WIntTy = getFromTargetType(Target.getWIntType());
976 
977   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
978     InitBuiltinType(Char16Ty,           BuiltinType::Char16);
979   else // C99
980     Char16Ty = getFromTargetType(Target.getChar16Type());
981 
982   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
983     InitBuiltinType(Char32Ty,           BuiltinType::Char32);
984   else // C99
985     Char32Ty = getFromTargetType(Target.getChar32Type());
986 
987   // Placeholder type for type-dependent expressions whose type is
988   // completely unknown. No code should ever check a type against
989   // DependentTy and users should never see it; however, it is here to
990   // help diagnose failures to properly check for type-dependent
991   // expressions.
992   InitBuiltinType(DependentTy,         BuiltinType::Dependent);
993 
994   // Placeholder type for functions.
995   InitBuiltinType(OverloadTy,          BuiltinType::Overload);
996 
997   // Placeholder type for bound members.
998   InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
999 
1000   // Placeholder type for pseudo-objects.
1001   InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
1002 
1003   // "any" type; useful for debugger-like clients.
1004   InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
1005 
1006   // Placeholder type for unbridged ARC casts.
1007   InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
1008 
1009   // Placeholder type for builtin functions.
1010   InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
1011 
1012   // C99 6.2.5p11.
1013   FloatComplexTy      = getComplexType(FloatTy);
1014   DoubleComplexTy     = getComplexType(DoubleTy);
1015   LongDoubleComplexTy = getComplexType(LongDoubleTy);
1016 
1017   // Builtin types for 'id', 'Class', and 'SEL'.
1018   InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1019   InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1020   InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1021 
1022   if (LangOpts.OpenCL) {
1023     InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
1024     InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
1025     InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
1026     InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
1027     InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
1028     InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
1029 
1030     InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1031     InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1032   }
1033 
1034   // Builtin type for __objc_yes and __objc_no
1035   ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1036                        SignedCharTy : BoolTy);
1037 
1038   ObjCConstantStringType = QualType();
1039 
1040   ObjCSuperType = QualType();
1041 
1042   // void * type
1043   VoidPtrTy = getPointerType(VoidTy);
1044 
1045   // nullptr type (C++0x 2.14.7)
1046   InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
1047 
1048   // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1049   InitBuiltinType(HalfTy, BuiltinType::Half);
1050 
1051   // Builtin type used to help define __builtin_va_list.
1052   VaListTagTy = QualType();
1053 }
1054 
getDiagnostics() const1055 DiagnosticsEngine &ASTContext::getDiagnostics() const {
1056   return SourceMgr.getDiagnostics();
1057 }
1058 
getDeclAttrs(const Decl * D)1059 AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1060   AttrVec *&Result = DeclAttrs[D];
1061   if (!Result) {
1062     void *Mem = Allocate(sizeof(AttrVec));
1063     Result = new (Mem) AttrVec;
1064   }
1065 
1066   return *Result;
1067 }
1068 
1069 /// \brief Erase the attributes corresponding to the given declaration.
eraseDeclAttrs(const Decl * D)1070 void ASTContext::eraseDeclAttrs(const Decl *D) {
1071   llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1072   if (Pos != DeclAttrs.end()) {
1073     Pos->second->~AttrVec();
1074     DeclAttrs.erase(Pos);
1075   }
1076 }
1077 
1078 // FIXME: Remove ?
1079 MemberSpecializationInfo *
getInstantiatedFromStaticDataMember(const VarDecl * Var)1080 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1081   assert(Var->isStaticDataMember() && "Not a static data member");
1082   return getTemplateOrSpecializationInfo(Var)
1083       .dyn_cast<MemberSpecializationInfo *>();
1084 }
1085 
1086 ASTContext::TemplateOrSpecializationInfo
getTemplateOrSpecializationInfo(const VarDecl * Var)1087 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1088   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1089       TemplateOrInstantiation.find(Var);
1090   if (Pos == TemplateOrInstantiation.end())
1091     return TemplateOrSpecializationInfo();
1092 
1093   return Pos->second;
1094 }
1095 
1096 void
setInstantiatedFromStaticDataMember(VarDecl * Inst,VarDecl * Tmpl,TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)1097 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1098                                                 TemplateSpecializationKind TSK,
1099                                           SourceLocation PointOfInstantiation) {
1100   assert(Inst->isStaticDataMember() && "Not a static data member");
1101   assert(Tmpl->isStaticDataMember() && "Not a static data member");
1102   setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1103                                             Tmpl, TSK, PointOfInstantiation));
1104 }
1105 
1106 void
setTemplateOrSpecializationInfo(VarDecl * Inst,TemplateOrSpecializationInfo TSI)1107 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1108                                             TemplateOrSpecializationInfo TSI) {
1109   assert(!TemplateOrInstantiation[Inst] &&
1110          "Already noted what the variable was instantiated from");
1111   TemplateOrInstantiation[Inst] = TSI;
1112 }
1113 
getClassScopeSpecializationPattern(const FunctionDecl * FD)1114 FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
1115                                                      const FunctionDecl *FD){
1116   assert(FD && "Specialization is 0");
1117   llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
1118     = ClassScopeSpecializationPattern.find(FD);
1119   if (Pos == ClassScopeSpecializationPattern.end())
1120     return nullptr;
1121 
1122   return Pos->second;
1123 }
1124 
setClassScopeSpecializationPattern(FunctionDecl * FD,FunctionDecl * Pattern)1125 void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
1126                                         FunctionDecl *Pattern) {
1127   assert(FD && "Specialization is 0");
1128   assert(Pattern && "Class scope specialization pattern is 0");
1129   ClassScopeSpecializationPattern[FD] = Pattern;
1130 }
1131 
1132 NamedDecl *
getInstantiatedFromUsingDecl(UsingDecl * UUD)1133 ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
1134   llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
1135     = InstantiatedFromUsingDecl.find(UUD);
1136   if (Pos == InstantiatedFromUsingDecl.end())
1137     return nullptr;
1138 
1139   return Pos->second;
1140 }
1141 
1142 void
setInstantiatedFromUsingDecl(UsingDecl * Inst,NamedDecl * Pattern)1143 ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
1144   assert((isa<UsingDecl>(Pattern) ||
1145           isa<UnresolvedUsingValueDecl>(Pattern) ||
1146           isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1147          "pattern decl is not a using decl");
1148   assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1149   InstantiatedFromUsingDecl[Inst] = Pattern;
1150 }
1151 
1152 UsingShadowDecl *
getInstantiatedFromUsingShadowDecl(UsingShadowDecl * Inst)1153 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1154   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1155     = InstantiatedFromUsingShadowDecl.find(Inst);
1156   if (Pos == InstantiatedFromUsingShadowDecl.end())
1157     return nullptr;
1158 
1159   return Pos->second;
1160 }
1161 
1162 void
setInstantiatedFromUsingShadowDecl(UsingShadowDecl * Inst,UsingShadowDecl * Pattern)1163 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1164                                                UsingShadowDecl *Pattern) {
1165   assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1166   InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1167 }
1168 
getInstantiatedFromUnnamedFieldDecl(FieldDecl * Field)1169 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1170   llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1171     = InstantiatedFromUnnamedFieldDecl.find(Field);
1172   if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1173     return nullptr;
1174 
1175   return Pos->second;
1176 }
1177 
setInstantiatedFromUnnamedFieldDecl(FieldDecl * Inst,FieldDecl * Tmpl)1178 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1179                                                      FieldDecl *Tmpl) {
1180   assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1181   assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1182   assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1183          "Already noted what unnamed field was instantiated from");
1184 
1185   InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1186 }
1187 
1188 ASTContext::overridden_cxx_method_iterator
overridden_methods_begin(const CXXMethodDecl * Method) const1189 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1190   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1191     = OverriddenMethods.find(Method->getCanonicalDecl());
1192   if (Pos == OverriddenMethods.end())
1193     return nullptr;
1194 
1195   return Pos->second.begin();
1196 }
1197 
1198 ASTContext::overridden_cxx_method_iterator
overridden_methods_end(const CXXMethodDecl * Method) const1199 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1200   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1201     = OverriddenMethods.find(Method->getCanonicalDecl());
1202   if (Pos == OverriddenMethods.end())
1203     return nullptr;
1204 
1205   return Pos->second.end();
1206 }
1207 
1208 unsigned
overridden_methods_size(const CXXMethodDecl * Method) const1209 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1210   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1211     = OverriddenMethods.find(Method->getCanonicalDecl());
1212   if (Pos == OverriddenMethods.end())
1213     return 0;
1214 
1215   return Pos->second.size();
1216 }
1217 
addOverriddenMethod(const CXXMethodDecl * Method,const CXXMethodDecl * Overridden)1218 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1219                                      const CXXMethodDecl *Overridden) {
1220   assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1221   OverriddenMethods[Method].push_back(Overridden);
1222 }
1223 
getOverriddenMethods(const NamedDecl * D,SmallVectorImpl<const NamedDecl * > & Overridden) const1224 void ASTContext::getOverriddenMethods(
1225                       const NamedDecl *D,
1226                       SmallVectorImpl<const NamedDecl *> &Overridden) const {
1227   assert(D);
1228 
1229   if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1230     Overridden.append(overridden_methods_begin(CXXMethod),
1231                       overridden_methods_end(CXXMethod));
1232     return;
1233   }
1234 
1235   const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1236   if (!Method)
1237     return;
1238 
1239   SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1240   Method->getOverriddenMethods(OverDecls);
1241   Overridden.append(OverDecls.begin(), OverDecls.end());
1242 }
1243 
addedLocalImportDecl(ImportDecl * Import)1244 void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1245   assert(!Import->NextLocalImport && "Import declaration already in the chain");
1246   assert(!Import->isFromASTFile() && "Non-local import declaration");
1247   if (!FirstLocalImport) {
1248     FirstLocalImport = Import;
1249     LastLocalImport = Import;
1250     return;
1251   }
1252 
1253   LastLocalImport->NextLocalImport = Import;
1254   LastLocalImport = Import;
1255 }
1256 
1257 //===----------------------------------------------------------------------===//
1258 //                         Type Sizing and Analysis
1259 //===----------------------------------------------------------------------===//
1260 
1261 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1262 /// scalar floating point type.
getFloatTypeSemantics(QualType T) const1263 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1264   const BuiltinType *BT = T->getAs<BuiltinType>();
1265   assert(BT && "Not a floating point type!");
1266   switch (BT->getKind()) {
1267   default: llvm_unreachable("Not a floating point type!");
1268   case BuiltinType::Half:       return Target->getHalfFormat();
1269   case BuiltinType::Float:      return Target->getFloatFormat();
1270   case BuiltinType::Double:     return Target->getDoubleFormat();
1271   case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1272   }
1273 }
1274 
getDeclAlign(const Decl * D,bool ForAlignof) const1275 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1276   unsigned Align = Target->getCharWidth();
1277 
1278   bool UseAlignAttrOnly = false;
1279   if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1280     Align = AlignFromAttr;
1281 
1282     // __attribute__((aligned)) can increase or decrease alignment
1283     // *except* on a struct or struct member, where it only increases
1284     // alignment unless 'packed' is also specified.
1285     //
1286     // It is an error for alignas to decrease alignment, so we can
1287     // ignore that possibility;  Sema should diagnose it.
1288     if (isa<FieldDecl>(D)) {
1289       UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1290         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1291     } else {
1292       UseAlignAttrOnly = true;
1293     }
1294   }
1295   else if (isa<FieldDecl>(D))
1296       UseAlignAttrOnly =
1297         D->hasAttr<PackedAttr>() ||
1298         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1299 
1300   // If we're using the align attribute only, just ignore everything
1301   // else about the declaration and its type.
1302   if (UseAlignAttrOnly) {
1303     // do nothing
1304 
1305   } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1306     QualType T = VD->getType();
1307     if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
1308       if (ForAlignof)
1309         T = RT->getPointeeType();
1310       else
1311         T = getPointerType(RT->getPointeeType());
1312     }
1313     QualType BaseT = getBaseElementType(T);
1314     if (!BaseT->isIncompleteType() && !T->isFunctionType()) {
1315       // Adjust alignments of declarations with array type by the
1316       // large-array alignment on the target.
1317       if (const ArrayType *arrayType = getAsArrayType(T)) {
1318         unsigned MinWidth = Target->getLargeArrayMinWidth();
1319         if (!ForAlignof && MinWidth) {
1320           if (isa<VariableArrayType>(arrayType))
1321             Align = std::max(Align, Target->getLargeArrayAlign());
1322           else if (isa<ConstantArrayType>(arrayType) &&
1323                    MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1324             Align = std::max(Align, Target->getLargeArrayAlign());
1325         }
1326       }
1327       Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1328       if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1329         if (VD->hasGlobalStorage())
1330           Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
1331       }
1332     }
1333 
1334     // Fields can be subject to extra alignment constraints, like if
1335     // the field is packed, the struct is packed, or the struct has a
1336     // a max-field-alignment constraint (#pragma pack).  So calculate
1337     // the actual alignment of the field within the struct, and then
1338     // (as we're expected to) constrain that by the alignment of the type.
1339     if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
1340       const RecordDecl *Parent = Field->getParent();
1341       // We can only produce a sensible answer if the record is valid.
1342       if (!Parent->isInvalidDecl()) {
1343         const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1344 
1345         // Start with the record's overall alignment.
1346         unsigned FieldAlign = toBits(Layout.getAlignment());
1347 
1348         // Use the GCD of that and the offset within the record.
1349         uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1350         if (Offset > 0) {
1351           // Alignment is always a power of 2, so the GCD will be a power of 2,
1352           // which means we get to do this crazy thing instead of Euclid's.
1353           uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1354           if (LowBitOfOffset < FieldAlign)
1355             FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1356         }
1357 
1358         Align = std::min(Align, FieldAlign);
1359       }
1360     }
1361   }
1362 
1363   return toCharUnitsFromBits(Align);
1364 }
1365 
1366 // getTypeInfoDataSizeInChars - Return the size of a type, in
1367 // chars. If the type is a record, its data size is returned.  This is
1368 // the size of the memcpy that's performed when assigning this type
1369 // using a trivial copy/move assignment operator.
1370 std::pair<CharUnits, CharUnits>
getTypeInfoDataSizeInChars(QualType T) const1371 ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1372   std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1373 
1374   // In C++, objects can sometimes be allocated into the tail padding
1375   // of a base-class subobject.  We decide whether that's possible
1376   // during class layout, so here we can just trust the layout results.
1377   if (getLangOpts().CPlusPlus) {
1378     if (const RecordType *RT = T->getAs<RecordType>()) {
1379       const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1380       sizeAndAlign.first = layout.getDataSize();
1381     }
1382   }
1383 
1384   return sizeAndAlign;
1385 }
1386 
1387 /// getConstantArrayInfoInChars - Performing the computation in CharUnits
1388 /// instead of in bits prevents overflowing the uint64_t for some large arrays.
1389 std::pair<CharUnits, CharUnits>
getConstantArrayInfoInChars(const ASTContext & Context,const ConstantArrayType * CAT)1390 static getConstantArrayInfoInChars(const ASTContext &Context,
1391                                    const ConstantArrayType *CAT) {
1392   std::pair<CharUnits, CharUnits> EltInfo =
1393       Context.getTypeInfoInChars(CAT->getElementType());
1394   uint64_t Size = CAT->getSize().getZExtValue();
1395   assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
1396               (uint64_t)(-1)/Size) &&
1397          "Overflow in array type char size evaluation");
1398   uint64_t Width = EltInfo.first.getQuantity() * Size;
1399   unsigned Align = EltInfo.second.getQuantity();
1400   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1401       Context.getTargetInfo().getPointerWidth(0) == 64)
1402     Width = llvm::RoundUpToAlignment(Width, Align);
1403   return std::make_pair(CharUnits::fromQuantity(Width),
1404                         CharUnits::fromQuantity(Align));
1405 }
1406 
1407 std::pair<CharUnits, CharUnits>
getTypeInfoInChars(const Type * T) const1408 ASTContext::getTypeInfoInChars(const Type *T) const {
1409   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T))
1410     return getConstantArrayInfoInChars(*this, CAT);
1411   TypeInfo Info = getTypeInfo(T);
1412   return std::make_pair(toCharUnitsFromBits(Info.Width),
1413                         toCharUnitsFromBits(Info.Align));
1414 }
1415 
1416 std::pair<CharUnits, CharUnits>
getTypeInfoInChars(QualType T) const1417 ASTContext::getTypeInfoInChars(QualType T) const {
1418   return getTypeInfoInChars(T.getTypePtr());
1419 }
1420 
isAlignmentRequired(const Type * T) const1421 bool ASTContext::isAlignmentRequired(const Type *T) const {
1422   return getTypeInfo(T).AlignIsRequired;
1423 }
1424 
isAlignmentRequired(QualType T) const1425 bool ASTContext::isAlignmentRequired(QualType T) const {
1426   return isAlignmentRequired(T.getTypePtr());
1427 }
1428 
getTypeInfo(const Type * T) const1429 TypeInfo ASTContext::getTypeInfo(const Type *T) const {
1430   TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1431   if (I != MemoizedTypeInfo.end())
1432     return I->second;
1433 
1434   // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1435   TypeInfo TI = getTypeInfoImpl(T);
1436   MemoizedTypeInfo[T] = TI;
1437   return TI;
1438 }
1439 
1440 /// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1441 /// method does not work on incomplete types.
1442 ///
1443 /// FIXME: Pointers into different addr spaces could have different sizes and
1444 /// alignment requirements: getPointerInfo should take an AddrSpace, this
1445 /// should take a QualType, &c.
getTypeInfoImpl(const Type * T) const1446 TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1447   uint64_t Width = 0;
1448   unsigned Align = 8;
1449   bool AlignIsRequired = false;
1450   switch (T->getTypeClass()) {
1451 #define TYPE(Class, Base)
1452 #define ABSTRACT_TYPE(Class, Base)
1453 #define NON_CANONICAL_TYPE(Class, Base)
1454 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1455 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \
1456   case Type::Class:                                                            \
1457   assert(!T->isDependentType() && "should not see dependent types here");      \
1458   return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1459 #include "clang/AST/TypeNodes.def"
1460     llvm_unreachable("Should not see dependent types");
1461 
1462   case Type::FunctionNoProto:
1463   case Type::FunctionProto:
1464     // GCC extension: alignof(function) = 32 bits
1465     Width = 0;
1466     Align = 32;
1467     break;
1468 
1469   case Type::IncompleteArray:
1470   case Type::VariableArray:
1471     Width = 0;
1472     Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1473     break;
1474 
1475   case Type::ConstantArray: {
1476     const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1477 
1478     TypeInfo EltInfo = getTypeInfo(CAT->getElementType());
1479     uint64_t Size = CAT->getSize().getZExtValue();
1480     assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
1481            "Overflow in array type bit size evaluation");
1482     Width = EltInfo.Width * Size;
1483     Align = EltInfo.Align;
1484     if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1485         getTargetInfo().getPointerWidth(0) == 64)
1486       Width = llvm::RoundUpToAlignment(Width, Align);
1487     break;
1488   }
1489   case Type::ExtVector:
1490   case Type::Vector: {
1491     const VectorType *VT = cast<VectorType>(T);
1492     TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1493     Width = EltInfo.Width * VT->getNumElements();
1494     Align = Width;
1495     // If the alignment is not a power of 2, round up to the next power of 2.
1496     // This happens for non-power-of-2 length vectors.
1497     if (Align & (Align-1)) {
1498       Align = llvm::NextPowerOf2(Align);
1499       Width = llvm::RoundUpToAlignment(Width, Align);
1500     }
1501     // Adjust the alignment based on the target max.
1502     uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1503     if (TargetVectorAlign && TargetVectorAlign < Align)
1504       Align = TargetVectorAlign;
1505     break;
1506   }
1507 
1508   case Type::Builtin:
1509     switch (cast<BuiltinType>(T)->getKind()) {
1510     default: llvm_unreachable("Unknown builtin type!");
1511     case BuiltinType::Void:
1512       // GCC extension: alignof(void) = 8 bits.
1513       Width = 0;
1514       Align = 8;
1515       break;
1516 
1517     case BuiltinType::Bool:
1518       Width = Target->getBoolWidth();
1519       Align = Target->getBoolAlign();
1520       break;
1521     case BuiltinType::Char_S:
1522     case BuiltinType::Char_U:
1523     case BuiltinType::UChar:
1524     case BuiltinType::SChar:
1525       Width = Target->getCharWidth();
1526       Align = Target->getCharAlign();
1527       break;
1528     case BuiltinType::WChar_S:
1529     case BuiltinType::WChar_U:
1530       Width = Target->getWCharWidth();
1531       Align = Target->getWCharAlign();
1532       break;
1533     case BuiltinType::Char16:
1534       Width = Target->getChar16Width();
1535       Align = Target->getChar16Align();
1536       break;
1537     case BuiltinType::Char32:
1538       Width = Target->getChar32Width();
1539       Align = Target->getChar32Align();
1540       break;
1541     case BuiltinType::UShort:
1542     case BuiltinType::Short:
1543       Width = Target->getShortWidth();
1544       Align = Target->getShortAlign();
1545       break;
1546     case BuiltinType::UInt:
1547     case BuiltinType::Int:
1548       Width = Target->getIntWidth();
1549       Align = Target->getIntAlign();
1550       break;
1551     case BuiltinType::ULong:
1552     case BuiltinType::Long:
1553       Width = Target->getLongWidth();
1554       Align = Target->getLongAlign();
1555       break;
1556     case BuiltinType::ULongLong:
1557     case BuiltinType::LongLong:
1558       Width = Target->getLongLongWidth();
1559       Align = Target->getLongLongAlign();
1560       break;
1561     case BuiltinType::Int128:
1562     case BuiltinType::UInt128:
1563       Width = 128;
1564       Align = 128; // int128_t is 128-bit aligned on all targets.
1565       break;
1566     case BuiltinType::Half:
1567       Width = Target->getHalfWidth();
1568       Align = Target->getHalfAlign();
1569       break;
1570     case BuiltinType::Float:
1571       Width = Target->getFloatWidth();
1572       Align = Target->getFloatAlign();
1573       break;
1574     case BuiltinType::Double:
1575       Width = Target->getDoubleWidth();
1576       Align = Target->getDoubleAlign();
1577       break;
1578     case BuiltinType::LongDouble:
1579       Width = Target->getLongDoubleWidth();
1580       Align = Target->getLongDoubleAlign();
1581       break;
1582     case BuiltinType::NullPtr:
1583       Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1584       Align = Target->getPointerAlign(0); //   == sizeof(void*)
1585       break;
1586     case BuiltinType::ObjCId:
1587     case BuiltinType::ObjCClass:
1588     case BuiltinType::ObjCSel:
1589       Width = Target->getPointerWidth(0);
1590       Align = Target->getPointerAlign(0);
1591       break;
1592     case BuiltinType::OCLSampler:
1593       // Samplers are modeled as integers.
1594       Width = Target->getIntWidth();
1595       Align = Target->getIntAlign();
1596       break;
1597     case BuiltinType::OCLEvent:
1598     case BuiltinType::OCLImage1d:
1599     case BuiltinType::OCLImage1dArray:
1600     case BuiltinType::OCLImage1dBuffer:
1601     case BuiltinType::OCLImage2d:
1602     case BuiltinType::OCLImage2dArray:
1603     case BuiltinType::OCLImage3d:
1604       // Currently these types are pointers to opaque types.
1605       Width = Target->getPointerWidth(0);
1606       Align = Target->getPointerAlign(0);
1607       break;
1608     }
1609     break;
1610   case Type::ObjCObjectPointer:
1611     Width = Target->getPointerWidth(0);
1612     Align = Target->getPointerAlign(0);
1613     break;
1614   case Type::BlockPointer: {
1615     unsigned AS = getTargetAddressSpace(
1616         cast<BlockPointerType>(T)->getPointeeType());
1617     Width = Target->getPointerWidth(AS);
1618     Align = Target->getPointerAlign(AS);
1619     break;
1620   }
1621   case Type::LValueReference:
1622   case Type::RValueReference: {
1623     // alignof and sizeof should never enter this code path here, so we go
1624     // the pointer route.
1625     unsigned AS = getTargetAddressSpace(
1626         cast<ReferenceType>(T)->getPointeeType());
1627     Width = Target->getPointerWidth(AS);
1628     Align = Target->getPointerAlign(AS);
1629     break;
1630   }
1631   case Type::Pointer: {
1632     unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1633     Width = Target->getPointerWidth(AS);
1634     Align = Target->getPointerAlign(AS);
1635     break;
1636   }
1637   case Type::MemberPointer: {
1638     const MemberPointerType *MPT = cast<MemberPointerType>(T);
1639     std::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT);
1640     break;
1641   }
1642   case Type::Complex: {
1643     // Complex types have the same alignment as their elements, but twice the
1644     // size.
1645     TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
1646     Width = EltInfo.Width * 2;
1647     Align = EltInfo.Align;
1648     break;
1649   }
1650   case Type::ObjCObject:
1651     return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1652   case Type::Adjusted:
1653   case Type::Decayed:
1654     return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
1655   case Type::ObjCInterface: {
1656     const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1657     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1658     Width = toBits(Layout.getSize());
1659     Align = toBits(Layout.getAlignment());
1660     break;
1661   }
1662   case Type::Record:
1663   case Type::Enum: {
1664     const TagType *TT = cast<TagType>(T);
1665 
1666     if (TT->getDecl()->isInvalidDecl()) {
1667       Width = 8;
1668       Align = 8;
1669       break;
1670     }
1671 
1672     if (const EnumType *ET = dyn_cast<EnumType>(TT))
1673       return getTypeInfo(ET->getDecl()->getIntegerType());
1674 
1675     const RecordType *RT = cast<RecordType>(TT);
1676     const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1677     Width = toBits(Layout.getSize());
1678     Align = toBits(Layout.getAlignment());
1679     break;
1680   }
1681 
1682   case Type::SubstTemplateTypeParm:
1683     return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1684                        getReplacementType().getTypePtr());
1685 
1686   case Type::Auto: {
1687     const AutoType *A = cast<AutoType>(T);
1688     assert(!A->getDeducedType().isNull() &&
1689            "cannot request the size of an undeduced or dependent auto type");
1690     return getTypeInfo(A->getDeducedType().getTypePtr());
1691   }
1692 
1693   case Type::Paren:
1694     return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1695 
1696   case Type::Typedef: {
1697     const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1698     TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1699     // If the typedef has an aligned attribute on it, it overrides any computed
1700     // alignment we have.  This violates the GCC documentation (which says that
1701     // attribute(aligned) can only round up) but matches its implementation.
1702     if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
1703       Align = AttrAlign;
1704       AlignIsRequired = true;
1705     } else {
1706       Align = Info.Align;
1707       AlignIsRequired = Info.AlignIsRequired;
1708     }
1709     Width = Info.Width;
1710     break;
1711   }
1712 
1713   case Type::Elaborated:
1714     return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1715 
1716   case Type::Attributed:
1717     return getTypeInfo(
1718                   cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1719 
1720   case Type::Atomic: {
1721     // Start with the base type information.
1722     TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
1723     Width = Info.Width;
1724     Align = Info.Align;
1725 
1726     // If the size of the type doesn't exceed the platform's max
1727     // atomic promotion width, make the size and alignment more
1728     // favorable to atomic operations:
1729     if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
1730       // Round the size up to a power of 2.
1731       if (!llvm::isPowerOf2_64(Width))
1732         Width = llvm::NextPowerOf2(Width);
1733 
1734       // Set the alignment equal to the size.
1735       Align = static_cast<unsigned>(Width);
1736     }
1737   }
1738 
1739   }
1740 
1741   assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1742   return TypeInfo(Width, Align, AlignIsRequired);
1743 }
1744 
1745 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
toCharUnitsFromBits(int64_t BitSize) const1746 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1747   return CharUnits::fromQuantity(BitSize / getCharWidth());
1748 }
1749 
1750 /// toBits - Convert a size in characters to a size in characters.
toBits(CharUnits CharSize) const1751 int64_t ASTContext::toBits(CharUnits CharSize) const {
1752   return CharSize.getQuantity() * getCharWidth();
1753 }
1754 
1755 /// getTypeSizeInChars - Return the size of the specified type, in characters.
1756 /// This method does not work on incomplete types.
getTypeSizeInChars(QualType T) const1757 CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1758   return getTypeInfoInChars(T).first;
1759 }
getTypeSizeInChars(const Type * T) const1760 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1761   return getTypeInfoInChars(T).first;
1762 }
1763 
1764 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1765 /// characters. This method does not work on incomplete types.
getTypeAlignInChars(QualType T) const1766 CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1767   return toCharUnitsFromBits(getTypeAlign(T));
1768 }
getTypeAlignInChars(const Type * T) const1769 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1770   return toCharUnitsFromBits(getTypeAlign(T));
1771 }
1772 
1773 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1774 /// type for the current target in bits.  This can be different than the ABI
1775 /// alignment in cases where it is beneficial for performance to overalign
1776 /// a data type.
getPreferredTypeAlign(const Type * T) const1777 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1778   TypeInfo TI = getTypeInfo(T);
1779   unsigned ABIAlign = TI.Align;
1780 
1781   if (Target->getTriple().getArch() == llvm::Triple::xcore)
1782     return ABIAlign;  // Never overalign on XCore.
1783 
1784   // Double and long long should be naturally aligned if possible.
1785   T = T->getBaseElementTypeUnsafe();
1786   if (const ComplexType *CT = T->getAs<ComplexType>())
1787     T = CT->getElementType().getTypePtr();
1788   if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1789       T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1790       T->isSpecificBuiltinType(BuiltinType::ULongLong))
1791     // Don't increase the alignment if an alignment attribute was specified on a
1792     // typedef declaration.
1793     if (!TI.AlignIsRequired)
1794       return std::max(ABIAlign, (unsigned)getTypeSize(T));
1795 
1796   return ABIAlign;
1797 }
1798 
1799 /// getAlignOfGlobalVar - Return the alignment in bits that should be given
1800 /// to a global variable of the specified type.
getAlignOfGlobalVar(QualType T) const1801 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
1802   return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
1803 }
1804 
1805 /// getAlignOfGlobalVarInChars - Return the alignment in characters that
1806 /// should be given to a global variable of the specified type.
getAlignOfGlobalVarInChars(QualType T) const1807 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
1808   return toCharUnitsFromBits(getAlignOfGlobalVar(T));
1809 }
1810 
1811 /// DeepCollectObjCIvars -
1812 /// This routine first collects all declared, but not synthesized, ivars in
1813 /// super class and then collects all ivars, including those synthesized for
1814 /// current class. This routine is used for implementation of current class
1815 /// when all ivars, declared and synthesized are known.
1816 ///
DeepCollectObjCIvars(const ObjCInterfaceDecl * OI,bool leafClass,SmallVectorImpl<const ObjCIvarDecl * > & Ivars) const1817 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1818                                       bool leafClass,
1819                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1820   if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1821     DeepCollectObjCIvars(SuperClass, false, Ivars);
1822   if (!leafClass) {
1823     for (const auto *I : OI->ivars())
1824       Ivars.push_back(I);
1825   } else {
1826     ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1827     for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1828          Iv= Iv->getNextIvar())
1829       Ivars.push_back(Iv);
1830   }
1831 }
1832 
1833 /// CollectInheritedProtocols - Collect all protocols in current class and
1834 /// those inherited by it.
CollectInheritedProtocols(const Decl * CDecl,llvm::SmallPtrSet<ObjCProtocolDecl *,8> & Protocols)1835 void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1836                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1837   if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1838     // We can use protocol_iterator here instead of
1839     // all_referenced_protocol_iterator since we are walking all categories.
1840     for (auto *Proto : OI->all_referenced_protocols()) {
1841       Protocols.insert(Proto->getCanonicalDecl());
1842       for (auto *P : Proto->protocols()) {
1843         Protocols.insert(P->getCanonicalDecl());
1844         CollectInheritedProtocols(P, Protocols);
1845       }
1846     }
1847 
1848     // Categories of this Interface.
1849     for (const auto *Cat : OI->visible_categories())
1850       CollectInheritedProtocols(Cat, Protocols);
1851 
1852     if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1853       while (SD) {
1854         CollectInheritedProtocols(SD, Protocols);
1855         SD = SD->getSuperClass();
1856       }
1857   } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1858     for (auto *Proto : OC->protocols()) {
1859       Protocols.insert(Proto->getCanonicalDecl());
1860       for (const auto *P : Proto->protocols())
1861         CollectInheritedProtocols(P, Protocols);
1862     }
1863   } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1864     for (auto *Proto : OP->protocols()) {
1865       Protocols.insert(Proto->getCanonicalDecl());
1866       for (const auto *P : Proto->protocols())
1867         CollectInheritedProtocols(P, Protocols);
1868     }
1869   }
1870 }
1871 
CountNonClassIvars(const ObjCInterfaceDecl * OI) const1872 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1873   unsigned count = 0;
1874   // Count ivars declared in class extension.
1875   for (const auto *Ext : OI->known_extensions())
1876     count += Ext->ivar_size();
1877 
1878   // Count ivar defined in this class's implementation.  This
1879   // includes synthesized ivars.
1880   if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1881     count += ImplDecl->ivar_size();
1882 
1883   return count;
1884 }
1885 
isSentinelNullExpr(const Expr * E)1886 bool ASTContext::isSentinelNullExpr(const Expr *E) {
1887   if (!E)
1888     return false;
1889 
1890   // nullptr_t is always treated as null.
1891   if (E->getType()->isNullPtrType()) return true;
1892 
1893   if (E->getType()->isAnyPointerType() &&
1894       E->IgnoreParenCasts()->isNullPointerConstant(*this,
1895                                                 Expr::NPC_ValueDependentIsNull))
1896     return true;
1897 
1898   // Unfortunately, __null has type 'int'.
1899   if (isa<GNUNullExpr>(E)) return true;
1900 
1901   return false;
1902 }
1903 
1904 /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
getObjCImplementation(ObjCInterfaceDecl * D)1905 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1906   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1907     I = ObjCImpls.find(D);
1908   if (I != ObjCImpls.end())
1909     return cast<ObjCImplementationDecl>(I->second);
1910   return nullptr;
1911 }
1912 /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
getObjCImplementation(ObjCCategoryDecl * D)1913 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1914   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1915     I = ObjCImpls.find(D);
1916   if (I != ObjCImpls.end())
1917     return cast<ObjCCategoryImplDecl>(I->second);
1918   return nullptr;
1919 }
1920 
1921 /// \brief Set the implementation of ObjCInterfaceDecl.
setObjCImplementation(ObjCInterfaceDecl * IFaceD,ObjCImplementationDecl * ImplD)1922 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1923                            ObjCImplementationDecl *ImplD) {
1924   assert(IFaceD && ImplD && "Passed null params");
1925   ObjCImpls[IFaceD] = ImplD;
1926 }
1927 /// \brief Set the implementation of ObjCCategoryDecl.
setObjCImplementation(ObjCCategoryDecl * CatD,ObjCCategoryImplDecl * ImplD)1928 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1929                            ObjCCategoryImplDecl *ImplD) {
1930   assert(CatD && ImplD && "Passed null params");
1931   ObjCImpls[CatD] = ImplD;
1932 }
1933 
getObjContainingInterface(const NamedDecl * ND) const1934 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
1935                                               const NamedDecl *ND) const {
1936   if (const ObjCInterfaceDecl *ID =
1937           dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1938     return ID;
1939   if (const ObjCCategoryDecl *CD =
1940           dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1941     return CD->getClassInterface();
1942   if (const ObjCImplDecl *IMD =
1943           dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1944     return IMD->getClassInterface();
1945 
1946   return nullptr;
1947 }
1948 
1949 /// \brief Get the copy initialization expression of VarDecl,or NULL if
1950 /// none exists.
getBlockVarCopyInits(const VarDecl * VD)1951 Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1952   assert(VD && "Passed null params");
1953   assert(VD->hasAttr<BlocksAttr>() &&
1954          "getBlockVarCopyInits - not __block var");
1955   llvm::DenseMap<const VarDecl*, Expr*>::iterator
1956     I = BlockVarCopyInits.find(VD);
1957   return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : nullptr;
1958 }
1959 
1960 /// \brief Set the copy inialization expression of a block var decl.
setBlockVarCopyInits(VarDecl * VD,Expr * Init)1961 void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1962   assert(VD && Init && "Passed null params");
1963   assert(VD->hasAttr<BlocksAttr>() &&
1964          "setBlockVarCopyInits - not __block var");
1965   BlockVarCopyInits[VD] = Init;
1966 }
1967 
CreateTypeSourceInfo(QualType T,unsigned DataSize) const1968 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1969                                                  unsigned DataSize) const {
1970   if (!DataSize)
1971     DataSize = TypeLoc::getFullDataSizeForType(T);
1972   else
1973     assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1974            "incorrect data size provided to CreateTypeSourceInfo!");
1975 
1976   TypeSourceInfo *TInfo =
1977     (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1978   new (TInfo) TypeSourceInfo(T);
1979   return TInfo;
1980 }
1981 
getTrivialTypeSourceInfo(QualType T,SourceLocation L) const1982 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1983                                                      SourceLocation L) const {
1984   TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1985   DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1986   return DI;
1987 }
1988 
1989 const ASTRecordLayout &
getASTObjCInterfaceLayout(const ObjCInterfaceDecl * D) const1990 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1991   return getObjCLayout(D, nullptr);
1992 }
1993 
1994 const ASTRecordLayout &
getASTObjCImplementationLayout(const ObjCImplementationDecl * D) const1995 ASTContext::getASTObjCImplementationLayout(
1996                                         const ObjCImplementationDecl *D) const {
1997   return getObjCLayout(D->getClassInterface(), D);
1998 }
1999 
2000 //===----------------------------------------------------------------------===//
2001 //                   Type creation/memoization methods
2002 //===----------------------------------------------------------------------===//
2003 
2004 QualType
getExtQualType(const Type * baseType,Qualifiers quals) const2005 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
2006   unsigned fastQuals = quals.getFastQualifiers();
2007   quals.removeFastQualifiers();
2008 
2009   // Check if we've already instantiated this type.
2010   llvm::FoldingSetNodeID ID;
2011   ExtQuals::Profile(ID, baseType, quals);
2012   void *insertPos = nullptr;
2013   if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
2014     assert(eq->getQualifiers() == quals);
2015     return QualType(eq, fastQuals);
2016   }
2017 
2018   // If the base type is not canonical, make the appropriate canonical type.
2019   QualType canon;
2020   if (!baseType->isCanonicalUnqualified()) {
2021     SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
2022     canonSplit.Quals.addConsistentQualifiers(quals);
2023     canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
2024 
2025     // Re-find the insert position.
2026     (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
2027   }
2028 
2029   ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
2030   ExtQualNodes.InsertNode(eq, insertPos);
2031   return QualType(eq, fastQuals);
2032 }
2033 
2034 QualType
getAddrSpaceQualType(QualType T,unsigned AddressSpace) const2035 ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
2036   QualType CanT = getCanonicalType(T);
2037   if (CanT.getAddressSpace() == AddressSpace)
2038     return T;
2039 
2040   // If we are composing extended qualifiers together, merge together
2041   // into one ExtQuals node.
2042   QualifierCollector Quals;
2043   const Type *TypeNode = Quals.strip(T);
2044 
2045   // If this type already has an address space specified, it cannot get
2046   // another one.
2047   assert(!Quals.hasAddressSpace() &&
2048          "Type cannot be in multiple addr spaces!");
2049   Quals.addAddressSpace(AddressSpace);
2050 
2051   return getExtQualType(TypeNode, Quals);
2052 }
2053 
getObjCGCQualType(QualType T,Qualifiers::GC GCAttr) const2054 QualType ASTContext::getObjCGCQualType(QualType T,
2055                                        Qualifiers::GC GCAttr) const {
2056   QualType CanT = getCanonicalType(T);
2057   if (CanT.getObjCGCAttr() == GCAttr)
2058     return T;
2059 
2060   if (const PointerType *ptr = T->getAs<PointerType>()) {
2061     QualType Pointee = ptr->getPointeeType();
2062     if (Pointee->isAnyPointerType()) {
2063       QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2064       return getPointerType(ResultType);
2065     }
2066   }
2067 
2068   // If we are composing extended qualifiers together, merge together
2069   // into one ExtQuals node.
2070   QualifierCollector Quals;
2071   const Type *TypeNode = Quals.strip(T);
2072 
2073   // If this type already has an ObjCGC specified, it cannot get
2074   // another one.
2075   assert(!Quals.hasObjCGCAttr() &&
2076          "Type cannot have multiple ObjCGCs!");
2077   Quals.addObjCGCAttr(GCAttr);
2078 
2079   return getExtQualType(TypeNode, Quals);
2080 }
2081 
adjustFunctionType(const FunctionType * T,FunctionType::ExtInfo Info)2082 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
2083                                                    FunctionType::ExtInfo Info) {
2084   if (T->getExtInfo() == Info)
2085     return T;
2086 
2087   QualType Result;
2088   if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2089     Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
2090   } else {
2091     const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2092     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2093     EPI.ExtInfo = Info;
2094     Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
2095   }
2096 
2097   return cast<FunctionType>(Result.getTypePtr());
2098 }
2099 
adjustDeducedFunctionResultType(FunctionDecl * FD,QualType ResultType)2100 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
2101                                                  QualType ResultType) {
2102   FD = FD->getMostRecentDecl();
2103   while (true) {
2104     const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
2105     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2106     FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
2107     if (FunctionDecl *Next = FD->getPreviousDecl())
2108       FD = Next;
2109     else
2110       break;
2111   }
2112   if (ASTMutationListener *L = getASTMutationListener())
2113     L->DeducedReturnType(FD, ResultType);
2114 }
2115 
2116 /// Get a function type and produce the equivalent function type with the
2117 /// specified exception specification. Type sugar that can be present on a
2118 /// declaration of a function with an exception specification is permitted
2119 /// and preserved. Other type sugar (for instance, typedefs) is not.
getFunctionTypeWithExceptionSpec(ASTContext & Context,QualType Orig,const FunctionProtoType::ExceptionSpecInfo & ESI)2120 static QualType getFunctionTypeWithExceptionSpec(
2121     ASTContext &Context, QualType Orig,
2122     const FunctionProtoType::ExceptionSpecInfo &ESI) {
2123   // Might have some parens.
2124   if (auto *PT = dyn_cast<ParenType>(Orig))
2125     return Context.getParenType(
2126         getFunctionTypeWithExceptionSpec(Context, PT->getInnerType(), ESI));
2127 
2128   // Might have a calling-convention attribute.
2129   if (auto *AT = dyn_cast<AttributedType>(Orig))
2130     return Context.getAttributedType(
2131         AT->getAttrKind(),
2132         getFunctionTypeWithExceptionSpec(Context, AT->getModifiedType(), ESI),
2133         getFunctionTypeWithExceptionSpec(Context, AT->getEquivalentType(),
2134                                          ESI));
2135 
2136   // Anything else must be a function type. Rebuild it with the new exception
2137   // specification.
2138   const FunctionProtoType *Proto = cast<FunctionProtoType>(Orig);
2139   return Context.getFunctionType(
2140       Proto->getReturnType(), Proto->getParamTypes(),
2141       Proto->getExtProtoInfo().withExceptionSpec(ESI));
2142 }
2143 
adjustExceptionSpec(FunctionDecl * FD,const FunctionProtoType::ExceptionSpecInfo & ESI,bool AsWritten)2144 void ASTContext::adjustExceptionSpec(
2145     FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
2146     bool AsWritten) {
2147   // Update the type.
2148   QualType Updated =
2149       getFunctionTypeWithExceptionSpec(*this, FD->getType(), ESI);
2150   FD->setType(Updated);
2151 
2152   if (!AsWritten)
2153     return;
2154 
2155   // Update the type in the type source information too.
2156   if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
2157     // If the type and the type-as-written differ, we may need to update
2158     // the type-as-written too.
2159     if (TSInfo->getType() != FD->getType())
2160       Updated = getFunctionTypeWithExceptionSpec(*this, TSInfo->getType(), ESI);
2161 
2162     // FIXME: When we get proper type location information for exceptions,
2163     // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
2164     // up the TypeSourceInfo;
2165     assert(TypeLoc::getFullDataSizeForType(Updated) ==
2166                TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
2167            "TypeLoc size mismatch from updating exception specification");
2168     TSInfo->overrideType(Updated);
2169   }
2170 }
2171 
2172 /// getComplexType - Return the uniqued reference to the type for a complex
2173 /// number with the specified element type.
getComplexType(QualType T) const2174 QualType ASTContext::getComplexType(QualType T) const {
2175   // Unique pointers, to guarantee there is only one pointer of a particular
2176   // structure.
2177   llvm::FoldingSetNodeID ID;
2178   ComplexType::Profile(ID, T);
2179 
2180   void *InsertPos = nullptr;
2181   if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
2182     return QualType(CT, 0);
2183 
2184   // If the pointee type isn't canonical, this won't be a canonical type either,
2185   // so fill in the canonical type field.
2186   QualType Canonical;
2187   if (!T.isCanonical()) {
2188     Canonical = getComplexType(getCanonicalType(T));
2189 
2190     // Get the new insert position for the node we care about.
2191     ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2192     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2193   }
2194   ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2195   Types.push_back(New);
2196   ComplexTypes.InsertNode(New, InsertPos);
2197   return QualType(New, 0);
2198 }
2199 
2200 /// getPointerType - Return the uniqued reference to the type for a pointer to
2201 /// the specified type.
getPointerType(QualType T) const2202 QualType ASTContext::getPointerType(QualType T) const {
2203   // Unique pointers, to guarantee there is only one pointer of a particular
2204   // structure.
2205   llvm::FoldingSetNodeID ID;
2206   PointerType::Profile(ID, T);
2207 
2208   void *InsertPos = nullptr;
2209   if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2210     return QualType(PT, 0);
2211 
2212   // If the pointee type isn't canonical, this won't be a canonical type either,
2213   // so fill in the canonical type field.
2214   QualType Canonical;
2215   if (!T.isCanonical()) {
2216     Canonical = getPointerType(getCanonicalType(T));
2217 
2218     // Get the new insert position for the node we care about.
2219     PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2220     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2221   }
2222   PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2223   Types.push_back(New);
2224   PointerTypes.InsertNode(New, InsertPos);
2225   return QualType(New, 0);
2226 }
2227 
getAdjustedType(QualType Orig,QualType New) const2228 QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
2229   llvm::FoldingSetNodeID ID;
2230   AdjustedType::Profile(ID, Orig, New);
2231   void *InsertPos = nullptr;
2232   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2233   if (AT)
2234     return QualType(AT, 0);
2235 
2236   QualType Canonical = getCanonicalType(New);
2237 
2238   // Get the new insert position for the node we care about.
2239   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2240   assert(!AT && "Shouldn't be in the map!");
2241 
2242   AT = new (*this, TypeAlignment)
2243       AdjustedType(Type::Adjusted, Orig, New, Canonical);
2244   Types.push_back(AT);
2245   AdjustedTypes.InsertNode(AT, InsertPos);
2246   return QualType(AT, 0);
2247 }
2248 
getDecayedType(QualType T) const2249 QualType ASTContext::getDecayedType(QualType T) const {
2250   assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
2251 
2252   QualType Decayed;
2253 
2254   // C99 6.7.5.3p7:
2255   //   A declaration of a parameter as "array of type" shall be
2256   //   adjusted to "qualified pointer to type", where the type
2257   //   qualifiers (if any) are those specified within the [ and ] of
2258   //   the array type derivation.
2259   if (T->isArrayType())
2260     Decayed = getArrayDecayedType(T);
2261 
2262   // C99 6.7.5.3p8:
2263   //   A declaration of a parameter as "function returning type"
2264   //   shall be adjusted to "pointer to function returning type", as
2265   //   in 6.3.2.1.
2266   if (T->isFunctionType())
2267     Decayed = getPointerType(T);
2268 
2269   llvm::FoldingSetNodeID ID;
2270   AdjustedType::Profile(ID, T, Decayed);
2271   void *InsertPos = nullptr;
2272   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2273   if (AT)
2274     return QualType(AT, 0);
2275 
2276   QualType Canonical = getCanonicalType(Decayed);
2277 
2278   // Get the new insert position for the node we care about.
2279   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2280   assert(!AT && "Shouldn't be in the map!");
2281 
2282   AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
2283   Types.push_back(AT);
2284   AdjustedTypes.InsertNode(AT, InsertPos);
2285   return QualType(AT, 0);
2286 }
2287 
2288 /// getBlockPointerType - Return the uniqued reference to the type for
2289 /// a pointer to the specified block.
getBlockPointerType(QualType T) const2290 QualType ASTContext::getBlockPointerType(QualType T) const {
2291   assert(T->isFunctionType() && "block of function types only");
2292   // Unique pointers, to guarantee there is only one block of a particular
2293   // structure.
2294   llvm::FoldingSetNodeID ID;
2295   BlockPointerType::Profile(ID, T);
2296 
2297   void *InsertPos = nullptr;
2298   if (BlockPointerType *PT =
2299         BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2300     return QualType(PT, 0);
2301 
2302   // If the block pointee type isn't canonical, this won't be a canonical
2303   // type either so fill in the canonical type field.
2304   QualType Canonical;
2305   if (!T.isCanonical()) {
2306     Canonical = getBlockPointerType(getCanonicalType(T));
2307 
2308     // Get the new insert position for the node we care about.
2309     BlockPointerType *NewIP =
2310       BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2311     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2312   }
2313   BlockPointerType *New
2314     = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2315   Types.push_back(New);
2316   BlockPointerTypes.InsertNode(New, InsertPos);
2317   return QualType(New, 0);
2318 }
2319 
2320 /// getLValueReferenceType - Return the uniqued reference to the type for an
2321 /// lvalue reference to the specified type.
2322 QualType
getLValueReferenceType(QualType T,bool SpelledAsLValue) const2323 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2324   assert(getCanonicalType(T) != OverloadTy &&
2325          "Unresolved overloaded function type");
2326 
2327   // Unique pointers, to guarantee there is only one pointer of a particular
2328   // structure.
2329   llvm::FoldingSetNodeID ID;
2330   ReferenceType::Profile(ID, T, SpelledAsLValue);
2331 
2332   void *InsertPos = nullptr;
2333   if (LValueReferenceType *RT =
2334         LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2335     return QualType(RT, 0);
2336 
2337   const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2338 
2339   // If the referencee type isn't canonical, this won't be a canonical type
2340   // either, so fill in the canonical type field.
2341   QualType Canonical;
2342   if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2343     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2344     Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2345 
2346     // Get the new insert position for the node we care about.
2347     LValueReferenceType *NewIP =
2348       LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2349     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2350   }
2351 
2352   LValueReferenceType *New
2353     = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2354                                                      SpelledAsLValue);
2355   Types.push_back(New);
2356   LValueReferenceTypes.InsertNode(New, InsertPos);
2357 
2358   return QualType(New, 0);
2359 }
2360 
2361 /// getRValueReferenceType - Return the uniqued reference to the type for an
2362 /// rvalue reference to the specified type.
getRValueReferenceType(QualType T) const2363 QualType ASTContext::getRValueReferenceType(QualType T) const {
2364   // Unique pointers, to guarantee there is only one pointer of a particular
2365   // structure.
2366   llvm::FoldingSetNodeID ID;
2367   ReferenceType::Profile(ID, T, false);
2368 
2369   void *InsertPos = nullptr;
2370   if (RValueReferenceType *RT =
2371         RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2372     return QualType(RT, 0);
2373 
2374   const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2375 
2376   // If the referencee type isn't canonical, this won't be a canonical type
2377   // either, so fill in the canonical type field.
2378   QualType Canonical;
2379   if (InnerRef || !T.isCanonical()) {
2380     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2381     Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2382 
2383     // Get the new insert position for the node we care about.
2384     RValueReferenceType *NewIP =
2385       RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2386     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2387   }
2388 
2389   RValueReferenceType *New
2390     = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2391   Types.push_back(New);
2392   RValueReferenceTypes.InsertNode(New, InsertPos);
2393   return QualType(New, 0);
2394 }
2395 
2396 /// getMemberPointerType - Return the uniqued reference to the type for a
2397 /// member pointer to the specified type, in the specified class.
getMemberPointerType(QualType T,const Type * Cls) const2398 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2399   // Unique pointers, to guarantee there is only one pointer of a particular
2400   // structure.
2401   llvm::FoldingSetNodeID ID;
2402   MemberPointerType::Profile(ID, T, Cls);
2403 
2404   void *InsertPos = nullptr;
2405   if (MemberPointerType *PT =
2406       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2407     return QualType(PT, 0);
2408 
2409   // If the pointee or class type isn't canonical, this won't be a canonical
2410   // type either, so fill in the canonical type field.
2411   QualType Canonical;
2412   if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2413     Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2414 
2415     // Get the new insert position for the node we care about.
2416     MemberPointerType *NewIP =
2417       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2418     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2419   }
2420   MemberPointerType *New
2421     = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2422   Types.push_back(New);
2423   MemberPointerTypes.InsertNode(New, InsertPos);
2424   return QualType(New, 0);
2425 }
2426 
2427 /// getConstantArrayType - Return the unique reference to the type for an
2428 /// array of the specified element type.
getConstantArrayType(QualType EltTy,const llvm::APInt & ArySizeIn,ArrayType::ArraySizeModifier ASM,unsigned IndexTypeQuals) const2429 QualType ASTContext::getConstantArrayType(QualType EltTy,
2430                                           const llvm::APInt &ArySizeIn,
2431                                           ArrayType::ArraySizeModifier ASM,
2432                                           unsigned IndexTypeQuals) const {
2433   assert((EltTy->isDependentType() ||
2434           EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2435          "Constant array of VLAs is illegal!");
2436 
2437   // Convert the array size into a canonical width matching the pointer size for
2438   // the target.
2439   llvm::APInt ArySize(ArySizeIn);
2440   ArySize =
2441     ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2442 
2443   llvm::FoldingSetNodeID ID;
2444   ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2445 
2446   void *InsertPos = nullptr;
2447   if (ConstantArrayType *ATP =
2448       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2449     return QualType(ATP, 0);
2450 
2451   // If the element type isn't canonical or has qualifiers, this won't
2452   // be a canonical type either, so fill in the canonical type field.
2453   QualType Canon;
2454   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2455     SplitQualType canonSplit = getCanonicalType(EltTy).split();
2456     Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2457                                  ASM, IndexTypeQuals);
2458     Canon = getQualifiedType(Canon, canonSplit.Quals);
2459 
2460     // Get the new insert position for the node we care about.
2461     ConstantArrayType *NewIP =
2462       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2463     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2464   }
2465 
2466   ConstantArrayType *New = new(*this,TypeAlignment)
2467     ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2468   ConstantArrayTypes.InsertNode(New, InsertPos);
2469   Types.push_back(New);
2470   return QualType(New, 0);
2471 }
2472 
2473 /// getVariableArrayDecayedType - Turns the given type, which may be
2474 /// variably-modified, into the corresponding type with all the known
2475 /// sizes replaced with [*].
getVariableArrayDecayedType(QualType type) const2476 QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2477   // Vastly most common case.
2478   if (!type->isVariablyModifiedType()) return type;
2479 
2480   QualType result;
2481 
2482   SplitQualType split = type.getSplitDesugaredType();
2483   const Type *ty = split.Ty;
2484   switch (ty->getTypeClass()) {
2485 #define TYPE(Class, Base)
2486 #define ABSTRACT_TYPE(Class, Base)
2487 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2488 #include "clang/AST/TypeNodes.def"
2489     llvm_unreachable("didn't desugar past all non-canonical types?");
2490 
2491   // These types should never be variably-modified.
2492   case Type::Builtin:
2493   case Type::Complex:
2494   case Type::Vector:
2495   case Type::ExtVector:
2496   case Type::DependentSizedExtVector:
2497   case Type::ObjCObject:
2498   case Type::ObjCInterface:
2499   case Type::ObjCObjectPointer:
2500   case Type::Record:
2501   case Type::Enum:
2502   case Type::UnresolvedUsing:
2503   case Type::TypeOfExpr:
2504   case Type::TypeOf:
2505   case Type::Decltype:
2506   case Type::UnaryTransform:
2507   case Type::DependentName:
2508   case Type::InjectedClassName:
2509   case Type::TemplateSpecialization:
2510   case Type::DependentTemplateSpecialization:
2511   case Type::TemplateTypeParm:
2512   case Type::SubstTemplateTypeParmPack:
2513   case Type::Auto:
2514   case Type::PackExpansion:
2515     llvm_unreachable("type should never be variably-modified");
2516 
2517   // These types can be variably-modified but should never need to
2518   // further decay.
2519   case Type::FunctionNoProto:
2520   case Type::FunctionProto:
2521   case Type::BlockPointer:
2522   case Type::MemberPointer:
2523     return type;
2524 
2525   // These types can be variably-modified.  All these modifications
2526   // preserve structure except as noted by comments.
2527   // TODO: if we ever care about optimizing VLAs, there are no-op
2528   // optimizations available here.
2529   case Type::Pointer:
2530     result = getPointerType(getVariableArrayDecayedType(
2531                               cast<PointerType>(ty)->getPointeeType()));
2532     break;
2533 
2534   case Type::LValueReference: {
2535     const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2536     result = getLValueReferenceType(
2537                  getVariableArrayDecayedType(lv->getPointeeType()),
2538                                     lv->isSpelledAsLValue());
2539     break;
2540   }
2541 
2542   case Type::RValueReference: {
2543     const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2544     result = getRValueReferenceType(
2545                  getVariableArrayDecayedType(lv->getPointeeType()));
2546     break;
2547   }
2548 
2549   case Type::Atomic: {
2550     const AtomicType *at = cast<AtomicType>(ty);
2551     result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2552     break;
2553   }
2554 
2555   case Type::ConstantArray: {
2556     const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2557     result = getConstantArrayType(
2558                  getVariableArrayDecayedType(cat->getElementType()),
2559                                   cat->getSize(),
2560                                   cat->getSizeModifier(),
2561                                   cat->getIndexTypeCVRQualifiers());
2562     break;
2563   }
2564 
2565   case Type::DependentSizedArray: {
2566     const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2567     result = getDependentSizedArrayType(
2568                  getVariableArrayDecayedType(dat->getElementType()),
2569                                         dat->getSizeExpr(),
2570                                         dat->getSizeModifier(),
2571                                         dat->getIndexTypeCVRQualifiers(),
2572                                         dat->getBracketsRange());
2573     break;
2574   }
2575 
2576   // Turn incomplete types into [*] types.
2577   case Type::IncompleteArray: {
2578     const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2579     result = getVariableArrayType(
2580                  getVariableArrayDecayedType(iat->getElementType()),
2581                                   /*size*/ nullptr,
2582                                   ArrayType::Normal,
2583                                   iat->getIndexTypeCVRQualifiers(),
2584                                   SourceRange());
2585     break;
2586   }
2587 
2588   // Turn VLA types into [*] types.
2589   case Type::VariableArray: {
2590     const VariableArrayType *vat = cast<VariableArrayType>(ty);
2591     result = getVariableArrayType(
2592                  getVariableArrayDecayedType(vat->getElementType()),
2593                                   /*size*/ nullptr,
2594                                   ArrayType::Star,
2595                                   vat->getIndexTypeCVRQualifiers(),
2596                                   vat->getBracketsRange());
2597     break;
2598   }
2599   }
2600 
2601   // Apply the top-level qualifiers from the original.
2602   return getQualifiedType(result, split.Quals);
2603 }
2604 
2605 /// getVariableArrayType - Returns a non-unique reference to the type for a
2606 /// variable array of the specified element type.
getVariableArrayType(QualType EltTy,Expr * NumElts,ArrayType::ArraySizeModifier ASM,unsigned IndexTypeQuals,SourceRange Brackets) const2607 QualType ASTContext::getVariableArrayType(QualType EltTy,
2608                                           Expr *NumElts,
2609                                           ArrayType::ArraySizeModifier ASM,
2610                                           unsigned IndexTypeQuals,
2611                                           SourceRange Brackets) const {
2612   // Since we don't unique expressions, it isn't possible to unique VLA's
2613   // that have an expression provided for their size.
2614   QualType Canon;
2615 
2616   // Be sure to pull qualifiers off the element type.
2617   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2618     SplitQualType canonSplit = getCanonicalType(EltTy).split();
2619     Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2620                                  IndexTypeQuals, Brackets);
2621     Canon = getQualifiedType(Canon, canonSplit.Quals);
2622   }
2623 
2624   VariableArrayType *New = new(*this, TypeAlignment)
2625     VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2626 
2627   VariableArrayTypes.push_back(New);
2628   Types.push_back(New);
2629   return QualType(New, 0);
2630 }
2631 
2632 /// getDependentSizedArrayType - Returns a non-unique reference to
2633 /// the type for a dependently-sized array of the specified element
2634 /// type.
getDependentSizedArrayType(QualType elementType,Expr * numElements,ArrayType::ArraySizeModifier ASM,unsigned elementTypeQuals,SourceRange brackets) const2635 QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2636                                                 Expr *numElements,
2637                                                 ArrayType::ArraySizeModifier ASM,
2638                                                 unsigned elementTypeQuals,
2639                                                 SourceRange brackets) const {
2640   assert((!numElements || numElements->isTypeDependent() ||
2641           numElements->isValueDependent()) &&
2642          "Size must be type- or value-dependent!");
2643 
2644   // Dependently-sized array types that do not have a specified number
2645   // of elements will have their sizes deduced from a dependent
2646   // initializer.  We do no canonicalization here at all, which is okay
2647   // because they can't be used in most locations.
2648   if (!numElements) {
2649     DependentSizedArrayType *newType
2650       = new (*this, TypeAlignment)
2651           DependentSizedArrayType(*this, elementType, QualType(),
2652                                   numElements, ASM, elementTypeQuals,
2653                                   brackets);
2654     Types.push_back(newType);
2655     return QualType(newType, 0);
2656   }
2657 
2658   // Otherwise, we actually build a new type every time, but we
2659   // also build a canonical type.
2660 
2661   SplitQualType canonElementType = getCanonicalType(elementType).split();
2662 
2663   void *insertPos = nullptr;
2664   llvm::FoldingSetNodeID ID;
2665   DependentSizedArrayType::Profile(ID, *this,
2666                                    QualType(canonElementType.Ty, 0),
2667                                    ASM, elementTypeQuals, numElements);
2668 
2669   // Look for an existing type with these properties.
2670   DependentSizedArrayType *canonTy =
2671     DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2672 
2673   // If we don't have one, build one.
2674   if (!canonTy) {
2675     canonTy = new (*this, TypeAlignment)
2676       DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2677                               QualType(), numElements, ASM, elementTypeQuals,
2678                               brackets);
2679     DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2680     Types.push_back(canonTy);
2681   }
2682 
2683   // Apply qualifiers from the element type to the array.
2684   QualType canon = getQualifiedType(QualType(canonTy,0),
2685                                     canonElementType.Quals);
2686 
2687   // If we didn't need extra canonicalization for the element type,
2688   // then just use that as our result.
2689   if (QualType(canonElementType.Ty, 0) == elementType)
2690     return canon;
2691 
2692   // Otherwise, we need to build a type which follows the spelling
2693   // of the element type.
2694   DependentSizedArrayType *sugaredType
2695     = new (*this, TypeAlignment)
2696         DependentSizedArrayType(*this, elementType, canon, numElements,
2697                                 ASM, elementTypeQuals, brackets);
2698   Types.push_back(sugaredType);
2699   return QualType(sugaredType, 0);
2700 }
2701 
getIncompleteArrayType(QualType elementType,ArrayType::ArraySizeModifier ASM,unsigned elementTypeQuals) const2702 QualType ASTContext::getIncompleteArrayType(QualType elementType,
2703                                             ArrayType::ArraySizeModifier ASM,
2704                                             unsigned elementTypeQuals) const {
2705   llvm::FoldingSetNodeID ID;
2706   IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2707 
2708   void *insertPos = nullptr;
2709   if (IncompleteArrayType *iat =
2710        IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2711     return QualType(iat, 0);
2712 
2713   // If the element type isn't canonical, this won't be a canonical type
2714   // either, so fill in the canonical type field.  We also have to pull
2715   // qualifiers off the element type.
2716   QualType canon;
2717 
2718   if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2719     SplitQualType canonSplit = getCanonicalType(elementType).split();
2720     canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2721                                    ASM, elementTypeQuals);
2722     canon = getQualifiedType(canon, canonSplit.Quals);
2723 
2724     // Get the new insert position for the node we care about.
2725     IncompleteArrayType *existing =
2726       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2727     assert(!existing && "Shouldn't be in the map!"); (void) existing;
2728   }
2729 
2730   IncompleteArrayType *newType = new (*this, TypeAlignment)
2731     IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2732 
2733   IncompleteArrayTypes.InsertNode(newType, insertPos);
2734   Types.push_back(newType);
2735   return QualType(newType, 0);
2736 }
2737 
2738 /// getVectorType - Return the unique reference to a vector type of
2739 /// the specified element type and size. VectorType must be a built-in type.
getVectorType(QualType vecType,unsigned NumElts,VectorType::VectorKind VecKind) const2740 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2741                                    VectorType::VectorKind VecKind) const {
2742   assert(vecType->isBuiltinType());
2743 
2744   // Check if we've already instantiated a vector of this type.
2745   llvm::FoldingSetNodeID ID;
2746   VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2747 
2748   void *InsertPos = nullptr;
2749   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2750     return QualType(VTP, 0);
2751 
2752   // If the element type isn't canonical, this won't be a canonical type either,
2753   // so fill in the canonical type field.
2754   QualType Canonical;
2755   if (!vecType.isCanonical()) {
2756     Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2757 
2758     // Get the new insert position for the node we care about.
2759     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2760     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2761   }
2762   VectorType *New = new (*this, TypeAlignment)
2763     VectorType(vecType, NumElts, Canonical, VecKind);
2764   VectorTypes.InsertNode(New, InsertPos);
2765   Types.push_back(New);
2766   return QualType(New, 0);
2767 }
2768 
2769 /// getExtVectorType - Return the unique reference to an extended vector type of
2770 /// the specified element type and size. VectorType must be a built-in type.
2771 QualType
getExtVectorType(QualType vecType,unsigned NumElts) const2772 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2773   assert(vecType->isBuiltinType() || vecType->isDependentType());
2774 
2775   // Check if we've already instantiated a vector of this type.
2776   llvm::FoldingSetNodeID ID;
2777   VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2778                       VectorType::GenericVector);
2779   void *InsertPos = nullptr;
2780   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2781     return QualType(VTP, 0);
2782 
2783   // If the element type isn't canonical, this won't be a canonical type either,
2784   // so fill in the canonical type field.
2785   QualType Canonical;
2786   if (!vecType.isCanonical()) {
2787     Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2788 
2789     // Get the new insert position for the node we care about.
2790     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2791     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2792   }
2793   ExtVectorType *New = new (*this, TypeAlignment)
2794     ExtVectorType(vecType, NumElts, Canonical);
2795   VectorTypes.InsertNode(New, InsertPos);
2796   Types.push_back(New);
2797   return QualType(New, 0);
2798 }
2799 
2800 QualType
getDependentSizedExtVectorType(QualType vecType,Expr * SizeExpr,SourceLocation AttrLoc) const2801 ASTContext::getDependentSizedExtVectorType(QualType vecType,
2802                                            Expr *SizeExpr,
2803                                            SourceLocation AttrLoc) const {
2804   llvm::FoldingSetNodeID ID;
2805   DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2806                                        SizeExpr);
2807 
2808   void *InsertPos = nullptr;
2809   DependentSizedExtVectorType *Canon
2810     = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2811   DependentSizedExtVectorType *New;
2812   if (Canon) {
2813     // We already have a canonical version of this array type; use it as
2814     // the canonical type for a newly-built type.
2815     New = new (*this, TypeAlignment)
2816       DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2817                                   SizeExpr, AttrLoc);
2818   } else {
2819     QualType CanonVecTy = getCanonicalType(vecType);
2820     if (CanonVecTy == vecType) {
2821       New = new (*this, TypeAlignment)
2822         DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2823                                     AttrLoc);
2824 
2825       DependentSizedExtVectorType *CanonCheck
2826         = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2827       assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2828       (void)CanonCheck;
2829       DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2830     } else {
2831       QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2832                                                       SourceLocation());
2833       New = new (*this, TypeAlignment)
2834         DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2835     }
2836   }
2837 
2838   Types.push_back(New);
2839   return QualType(New, 0);
2840 }
2841 
2842 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2843 ///
2844 QualType
getFunctionNoProtoType(QualType ResultTy,const FunctionType::ExtInfo & Info) const2845 ASTContext::getFunctionNoProtoType(QualType ResultTy,
2846                                    const FunctionType::ExtInfo &Info) const {
2847   const CallingConv CallConv = Info.getCC();
2848 
2849   // Unique functions, to guarantee there is only one function of a particular
2850   // structure.
2851   llvm::FoldingSetNodeID ID;
2852   FunctionNoProtoType::Profile(ID, ResultTy, Info);
2853 
2854   void *InsertPos = nullptr;
2855   if (FunctionNoProtoType *FT =
2856         FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2857     return QualType(FT, 0);
2858 
2859   QualType Canonical;
2860   if (!ResultTy.isCanonical()) {
2861     Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), Info);
2862 
2863     // Get the new insert position for the node we care about.
2864     FunctionNoProtoType *NewIP =
2865       FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2866     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2867   }
2868 
2869   FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2870   FunctionNoProtoType *New = new (*this, TypeAlignment)
2871     FunctionNoProtoType(ResultTy, Canonical, newInfo);
2872   Types.push_back(New);
2873   FunctionNoProtoTypes.InsertNode(New, InsertPos);
2874   return QualType(New, 0);
2875 }
2876 
2877 /// \brief Determine whether \p T is canonical as the result type of a function.
isCanonicalResultType(QualType T)2878 static bool isCanonicalResultType(QualType T) {
2879   return T.isCanonical() &&
2880          (T.getObjCLifetime() == Qualifiers::OCL_None ||
2881           T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
2882 }
2883 
2884 QualType
getFunctionType(QualType ResultTy,ArrayRef<QualType> ArgArray,const FunctionProtoType::ExtProtoInfo & EPI) const2885 ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
2886                             const FunctionProtoType::ExtProtoInfo &EPI) const {
2887   size_t NumArgs = ArgArray.size();
2888 
2889   // Unique functions, to guarantee there is only one function of a particular
2890   // structure.
2891   llvm::FoldingSetNodeID ID;
2892   FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
2893                              *this);
2894 
2895   void *InsertPos = nullptr;
2896   if (FunctionProtoType *FTP =
2897         FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2898     return QualType(FTP, 0);
2899 
2900   // Determine whether the type being created is already canonical or not.
2901   bool isCanonical =
2902     EPI.ExceptionSpec.Type == EST_None && isCanonicalResultType(ResultTy) &&
2903     !EPI.HasTrailingReturn;
2904   for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2905     if (!ArgArray[i].isCanonicalAsParam())
2906       isCanonical = false;
2907 
2908   // If this type isn't canonical, get the canonical version of it.
2909   // The exception spec is not part of the canonical type.
2910   QualType Canonical;
2911   if (!isCanonical) {
2912     SmallVector<QualType, 16> CanonicalArgs;
2913     CanonicalArgs.reserve(NumArgs);
2914     for (unsigned i = 0; i != NumArgs; ++i)
2915       CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2916 
2917     FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2918     CanonicalEPI.HasTrailingReturn = false;
2919     CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
2920 
2921     // Result types do not have ARC lifetime qualifiers.
2922     QualType CanResultTy = getCanonicalType(ResultTy);
2923     if (ResultTy.getQualifiers().hasObjCLifetime()) {
2924       Qualifiers Qs = CanResultTy.getQualifiers();
2925       Qs.removeObjCLifetime();
2926       CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
2927     }
2928 
2929     Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
2930 
2931     // Get the new insert position for the node we care about.
2932     FunctionProtoType *NewIP =
2933       FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2934     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2935   }
2936 
2937   // FunctionProtoType objects are allocated with extra bytes after
2938   // them for three variable size arrays at the end:
2939   //  - parameter types
2940   //  - exception types
2941   //  - consumed-arguments flags
2942   // Instead of the exception types, there could be a noexcept
2943   // expression, or information used to resolve the exception
2944   // specification.
2945   size_t Size = sizeof(FunctionProtoType) +
2946                 NumArgs * sizeof(QualType);
2947   if (EPI.ExceptionSpec.Type == EST_Dynamic) {
2948     Size += EPI.ExceptionSpec.Exceptions.size() * sizeof(QualType);
2949   } else if (EPI.ExceptionSpec.Type == EST_ComputedNoexcept) {
2950     Size += sizeof(Expr*);
2951   } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) {
2952     Size += 2 * sizeof(FunctionDecl*);
2953   } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) {
2954     Size += sizeof(FunctionDecl*);
2955   }
2956   if (EPI.ConsumedParameters)
2957     Size += NumArgs * sizeof(bool);
2958 
2959   FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2960   FunctionProtoType::ExtProtoInfo newEPI = EPI;
2961   new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
2962   Types.push_back(FTP);
2963   FunctionProtoTypes.InsertNode(FTP, InsertPos);
2964   return QualType(FTP, 0);
2965 }
2966 
2967 #ifndef NDEBUG
NeedsInjectedClassNameType(const RecordDecl * D)2968 static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2969   if (!isa<CXXRecordDecl>(D)) return false;
2970   const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2971   if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2972     return true;
2973   if (RD->getDescribedClassTemplate() &&
2974       !isa<ClassTemplateSpecializationDecl>(RD))
2975     return true;
2976   return false;
2977 }
2978 #endif
2979 
2980 /// getInjectedClassNameType - Return the unique reference to the
2981 /// injected class name type for the specified templated declaration.
getInjectedClassNameType(CXXRecordDecl * Decl,QualType TST) const2982 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2983                                               QualType TST) const {
2984   assert(NeedsInjectedClassNameType(Decl));
2985   if (Decl->TypeForDecl) {
2986     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2987   } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2988     assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2989     Decl->TypeForDecl = PrevDecl->TypeForDecl;
2990     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2991   } else {
2992     Type *newType =
2993       new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2994     Decl->TypeForDecl = newType;
2995     Types.push_back(newType);
2996   }
2997   return QualType(Decl->TypeForDecl, 0);
2998 }
2999 
3000 /// getTypeDeclType - Return the unique reference to the type for the
3001 /// specified type declaration.
getTypeDeclTypeSlow(const TypeDecl * Decl) const3002 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
3003   assert(Decl && "Passed null for Decl param");
3004   assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
3005 
3006   if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
3007     return getTypedefType(Typedef);
3008 
3009   assert(!isa<TemplateTypeParmDecl>(Decl) &&
3010          "Template type parameter types are always available.");
3011 
3012   if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
3013     assert(Record->isFirstDecl() && "struct/union has previous declaration");
3014     assert(!NeedsInjectedClassNameType(Record));
3015     return getRecordType(Record);
3016   } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
3017     assert(Enum->isFirstDecl() && "enum has previous declaration");
3018     return getEnumType(Enum);
3019   } else if (const UnresolvedUsingTypenameDecl *Using =
3020                dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
3021     Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
3022     Decl->TypeForDecl = newType;
3023     Types.push_back(newType);
3024   } else
3025     llvm_unreachable("TypeDecl without a type?");
3026 
3027   return QualType(Decl->TypeForDecl, 0);
3028 }
3029 
3030 /// getTypedefType - Return the unique reference to the type for the
3031 /// specified typedef name decl.
3032 QualType
getTypedefType(const TypedefNameDecl * Decl,QualType Canonical) const3033 ASTContext::getTypedefType(const TypedefNameDecl *Decl,
3034                            QualType Canonical) const {
3035   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3036 
3037   if (Canonical.isNull())
3038     Canonical = getCanonicalType(Decl->getUnderlyingType());
3039   TypedefType *newType = new(*this, TypeAlignment)
3040     TypedefType(Type::Typedef, Decl, Canonical);
3041   Decl->TypeForDecl = newType;
3042   Types.push_back(newType);
3043   return QualType(newType, 0);
3044 }
3045 
getRecordType(const RecordDecl * Decl) const3046 QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
3047   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3048 
3049   if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
3050     if (PrevDecl->TypeForDecl)
3051       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
3052 
3053   RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
3054   Decl->TypeForDecl = newType;
3055   Types.push_back(newType);
3056   return QualType(newType, 0);
3057 }
3058 
getEnumType(const EnumDecl * Decl) const3059 QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
3060   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3061 
3062   if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
3063     if (PrevDecl->TypeForDecl)
3064       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
3065 
3066   EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
3067   Decl->TypeForDecl = newType;
3068   Types.push_back(newType);
3069   return QualType(newType, 0);
3070 }
3071 
getAttributedType(AttributedType::Kind attrKind,QualType modifiedType,QualType equivalentType)3072 QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
3073                                        QualType modifiedType,
3074                                        QualType equivalentType) {
3075   llvm::FoldingSetNodeID id;
3076   AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
3077 
3078   void *insertPos = nullptr;
3079   AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
3080   if (type) return QualType(type, 0);
3081 
3082   QualType canon = getCanonicalType(equivalentType);
3083   type = new (*this, TypeAlignment)
3084            AttributedType(canon, attrKind, modifiedType, equivalentType);
3085 
3086   Types.push_back(type);
3087   AttributedTypes.InsertNode(type, insertPos);
3088 
3089   return QualType(type, 0);
3090 }
3091 
3092 
3093 /// \brief Retrieve a substitution-result type.
3094 QualType
getSubstTemplateTypeParmType(const TemplateTypeParmType * Parm,QualType Replacement) const3095 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
3096                                          QualType Replacement) const {
3097   assert(Replacement.isCanonical()
3098          && "replacement types must always be canonical");
3099 
3100   llvm::FoldingSetNodeID ID;
3101   SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
3102   void *InsertPos = nullptr;
3103   SubstTemplateTypeParmType *SubstParm
3104     = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3105 
3106   if (!SubstParm) {
3107     SubstParm = new (*this, TypeAlignment)
3108       SubstTemplateTypeParmType(Parm, Replacement);
3109     Types.push_back(SubstParm);
3110     SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3111   }
3112 
3113   return QualType(SubstParm, 0);
3114 }
3115 
3116 /// \brief Retrieve a
getSubstTemplateTypeParmPackType(const TemplateTypeParmType * Parm,const TemplateArgument & ArgPack)3117 QualType ASTContext::getSubstTemplateTypeParmPackType(
3118                                           const TemplateTypeParmType *Parm,
3119                                               const TemplateArgument &ArgPack) {
3120 #ifndef NDEBUG
3121   for (const auto &P : ArgPack.pack_elements()) {
3122     assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
3123     assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
3124   }
3125 #endif
3126 
3127   llvm::FoldingSetNodeID ID;
3128   SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
3129   void *InsertPos = nullptr;
3130   if (SubstTemplateTypeParmPackType *SubstParm
3131         = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
3132     return QualType(SubstParm, 0);
3133 
3134   QualType Canon;
3135   if (!Parm->isCanonicalUnqualified()) {
3136     Canon = getCanonicalType(QualType(Parm, 0));
3137     Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
3138                                              ArgPack);
3139     SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
3140   }
3141 
3142   SubstTemplateTypeParmPackType *SubstParm
3143     = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
3144                                                                ArgPack);
3145   Types.push_back(SubstParm);
3146   SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3147   return QualType(SubstParm, 0);
3148 }
3149 
3150 /// \brief Retrieve the template type parameter type for a template
3151 /// parameter or parameter pack with the given depth, index, and (optionally)
3152 /// name.
getTemplateTypeParmType(unsigned Depth,unsigned Index,bool ParameterPack,TemplateTypeParmDecl * TTPDecl) const3153 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
3154                                              bool ParameterPack,
3155                                              TemplateTypeParmDecl *TTPDecl) const {
3156   llvm::FoldingSetNodeID ID;
3157   TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
3158   void *InsertPos = nullptr;
3159   TemplateTypeParmType *TypeParm
3160     = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3161 
3162   if (TypeParm)
3163     return QualType(TypeParm, 0);
3164 
3165   if (TTPDecl) {
3166     QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
3167     TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
3168 
3169     TemplateTypeParmType *TypeCheck
3170       = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3171     assert(!TypeCheck && "Template type parameter canonical type broken");
3172     (void)TypeCheck;
3173   } else
3174     TypeParm = new (*this, TypeAlignment)
3175       TemplateTypeParmType(Depth, Index, ParameterPack);
3176 
3177   Types.push_back(TypeParm);
3178   TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
3179 
3180   return QualType(TypeParm, 0);
3181 }
3182 
3183 TypeSourceInfo *
getTemplateSpecializationTypeInfo(TemplateName Name,SourceLocation NameLoc,const TemplateArgumentListInfo & Args,QualType Underlying) const3184 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
3185                                               SourceLocation NameLoc,
3186                                         const TemplateArgumentListInfo &Args,
3187                                               QualType Underlying) const {
3188   assert(!Name.getAsDependentTemplateName() &&
3189          "No dependent template names here!");
3190   QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
3191 
3192   TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
3193   TemplateSpecializationTypeLoc TL =
3194       DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
3195   TL.setTemplateKeywordLoc(SourceLocation());
3196   TL.setTemplateNameLoc(NameLoc);
3197   TL.setLAngleLoc(Args.getLAngleLoc());
3198   TL.setRAngleLoc(Args.getRAngleLoc());
3199   for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
3200     TL.setArgLocInfo(i, Args[i].getLocInfo());
3201   return DI;
3202 }
3203 
3204 QualType
getTemplateSpecializationType(TemplateName Template,const TemplateArgumentListInfo & Args,QualType Underlying) const3205 ASTContext::getTemplateSpecializationType(TemplateName Template,
3206                                           const TemplateArgumentListInfo &Args,
3207                                           QualType Underlying) const {
3208   assert(!Template.getAsDependentTemplateName() &&
3209          "No dependent template names here!");
3210 
3211   unsigned NumArgs = Args.size();
3212 
3213   SmallVector<TemplateArgument, 4> ArgVec;
3214   ArgVec.reserve(NumArgs);
3215   for (unsigned i = 0; i != NumArgs; ++i)
3216     ArgVec.push_back(Args[i].getArgument());
3217 
3218   return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
3219                                        Underlying);
3220 }
3221 
3222 #ifndef NDEBUG
hasAnyPackExpansions(const TemplateArgument * Args,unsigned NumArgs)3223 static bool hasAnyPackExpansions(const TemplateArgument *Args,
3224                                  unsigned NumArgs) {
3225   for (unsigned I = 0; I != NumArgs; ++I)
3226     if (Args[I].isPackExpansion())
3227       return true;
3228 
3229   return true;
3230 }
3231 #endif
3232 
3233 QualType
getTemplateSpecializationType(TemplateName Template,const TemplateArgument * Args,unsigned NumArgs,QualType Underlying) const3234 ASTContext::getTemplateSpecializationType(TemplateName Template,
3235                                           const TemplateArgument *Args,
3236                                           unsigned NumArgs,
3237                                           QualType Underlying) const {
3238   assert(!Template.getAsDependentTemplateName() &&
3239          "No dependent template names here!");
3240   // Look through qualified template names.
3241   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3242     Template = TemplateName(QTN->getTemplateDecl());
3243 
3244   bool IsTypeAlias =
3245     Template.getAsTemplateDecl() &&
3246     isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
3247   QualType CanonType;
3248   if (!Underlying.isNull())
3249     CanonType = getCanonicalType(Underlying);
3250   else {
3251     // We can get here with an alias template when the specialization contains
3252     // a pack expansion that does not match up with a parameter pack.
3253     assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
3254            "Caller must compute aliased type");
3255     IsTypeAlias = false;
3256     CanonType = getCanonicalTemplateSpecializationType(Template, Args,
3257                                                        NumArgs);
3258   }
3259 
3260   // Allocate the (non-canonical) template specialization type, but don't
3261   // try to unique it: these types typically have location information that
3262   // we don't unique and don't want to lose.
3263   void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3264                        sizeof(TemplateArgument) * NumArgs +
3265                        (IsTypeAlias? sizeof(QualType) : 0),
3266                        TypeAlignment);
3267   TemplateSpecializationType *Spec
3268     = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
3269                                          IsTypeAlias ? Underlying : QualType());
3270 
3271   Types.push_back(Spec);
3272   return QualType(Spec, 0);
3273 }
3274 
3275 QualType
getCanonicalTemplateSpecializationType(TemplateName Template,const TemplateArgument * Args,unsigned NumArgs) const3276 ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3277                                                    const TemplateArgument *Args,
3278                                                    unsigned NumArgs) const {
3279   assert(!Template.getAsDependentTemplateName() &&
3280          "No dependent template names here!");
3281 
3282   // Look through qualified template names.
3283   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3284     Template = TemplateName(QTN->getTemplateDecl());
3285 
3286   // Build the canonical template specialization type.
3287   TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3288   SmallVector<TemplateArgument, 4> CanonArgs;
3289   CanonArgs.reserve(NumArgs);
3290   for (unsigned I = 0; I != NumArgs; ++I)
3291     CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3292 
3293   // Determine whether this canonical template specialization type already
3294   // exists.
3295   llvm::FoldingSetNodeID ID;
3296   TemplateSpecializationType::Profile(ID, CanonTemplate,
3297                                       CanonArgs.data(), NumArgs, *this);
3298 
3299   void *InsertPos = nullptr;
3300   TemplateSpecializationType *Spec
3301     = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3302 
3303   if (!Spec) {
3304     // Allocate a new canonical template specialization type.
3305     void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3306                           sizeof(TemplateArgument) * NumArgs),
3307                          TypeAlignment);
3308     Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3309                                                 CanonArgs.data(), NumArgs,
3310                                                 QualType(), QualType());
3311     Types.push_back(Spec);
3312     TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3313   }
3314 
3315   assert(Spec->isDependentType() &&
3316          "Non-dependent template-id type must have a canonical type");
3317   return QualType(Spec, 0);
3318 }
3319 
3320 QualType
getElaboratedType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,QualType NamedType) const3321 ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3322                               NestedNameSpecifier *NNS,
3323                               QualType NamedType) const {
3324   llvm::FoldingSetNodeID ID;
3325   ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3326 
3327   void *InsertPos = nullptr;
3328   ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3329   if (T)
3330     return QualType(T, 0);
3331 
3332   QualType Canon = NamedType;
3333   if (!Canon.isCanonical()) {
3334     Canon = getCanonicalType(NamedType);
3335     ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3336     assert(!CheckT && "Elaborated canonical type broken");
3337     (void)CheckT;
3338   }
3339 
3340   T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
3341   Types.push_back(T);
3342   ElaboratedTypes.InsertNode(T, InsertPos);
3343   return QualType(T, 0);
3344 }
3345 
3346 QualType
getParenType(QualType InnerType) const3347 ASTContext::getParenType(QualType InnerType) const {
3348   llvm::FoldingSetNodeID ID;
3349   ParenType::Profile(ID, InnerType);
3350 
3351   void *InsertPos = nullptr;
3352   ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3353   if (T)
3354     return QualType(T, 0);
3355 
3356   QualType Canon = InnerType;
3357   if (!Canon.isCanonical()) {
3358     Canon = getCanonicalType(InnerType);
3359     ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3360     assert(!CheckT && "Paren canonical type broken");
3361     (void)CheckT;
3362   }
3363 
3364   T = new (*this) ParenType(InnerType, Canon);
3365   Types.push_back(T);
3366   ParenTypes.InsertNode(T, InsertPos);
3367   return QualType(T, 0);
3368 }
3369 
getDependentNameType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,QualType Canon) const3370 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3371                                           NestedNameSpecifier *NNS,
3372                                           const IdentifierInfo *Name,
3373                                           QualType Canon) const {
3374   if (Canon.isNull()) {
3375     NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3376     ElaboratedTypeKeyword CanonKeyword = Keyword;
3377     if (Keyword == ETK_None)
3378       CanonKeyword = ETK_Typename;
3379 
3380     if (CanonNNS != NNS || CanonKeyword != Keyword)
3381       Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3382   }
3383 
3384   llvm::FoldingSetNodeID ID;
3385   DependentNameType::Profile(ID, Keyword, NNS, Name);
3386 
3387   void *InsertPos = nullptr;
3388   DependentNameType *T
3389     = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3390   if (T)
3391     return QualType(T, 0);
3392 
3393   T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3394   Types.push_back(T);
3395   DependentNameTypes.InsertNode(T, InsertPos);
3396   return QualType(T, 0);
3397 }
3398 
3399 QualType
getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,const TemplateArgumentListInfo & Args) const3400 ASTContext::getDependentTemplateSpecializationType(
3401                                  ElaboratedTypeKeyword Keyword,
3402                                  NestedNameSpecifier *NNS,
3403                                  const IdentifierInfo *Name,
3404                                  const TemplateArgumentListInfo &Args) const {
3405   // TODO: avoid this copy
3406   SmallVector<TemplateArgument, 16> ArgCopy;
3407   for (unsigned I = 0, E = Args.size(); I != E; ++I)
3408     ArgCopy.push_back(Args[I].getArgument());
3409   return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3410                                                 ArgCopy.size(),
3411                                                 ArgCopy.data());
3412 }
3413 
3414 QualType
getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,unsigned NumArgs,const TemplateArgument * Args) const3415 ASTContext::getDependentTemplateSpecializationType(
3416                                  ElaboratedTypeKeyword Keyword,
3417                                  NestedNameSpecifier *NNS,
3418                                  const IdentifierInfo *Name,
3419                                  unsigned NumArgs,
3420                                  const TemplateArgument *Args) const {
3421   assert((!NNS || NNS->isDependent()) &&
3422          "nested-name-specifier must be dependent");
3423 
3424   llvm::FoldingSetNodeID ID;
3425   DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3426                                                Name, NumArgs, Args);
3427 
3428   void *InsertPos = nullptr;
3429   DependentTemplateSpecializationType *T
3430     = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3431   if (T)
3432     return QualType(T, 0);
3433 
3434   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3435 
3436   ElaboratedTypeKeyword CanonKeyword = Keyword;
3437   if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3438 
3439   bool AnyNonCanonArgs = false;
3440   SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3441   for (unsigned I = 0; I != NumArgs; ++I) {
3442     CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3443     if (!CanonArgs[I].structurallyEquals(Args[I]))
3444       AnyNonCanonArgs = true;
3445   }
3446 
3447   QualType Canon;
3448   if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3449     Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3450                                                    Name, NumArgs,
3451                                                    CanonArgs.data());
3452 
3453     // Find the insert position again.
3454     DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3455   }
3456 
3457   void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3458                         sizeof(TemplateArgument) * NumArgs),
3459                        TypeAlignment);
3460   T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3461                                                     Name, NumArgs, Args, Canon);
3462   Types.push_back(T);
3463   DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3464   return QualType(T, 0);
3465 }
3466 
getPackExpansionType(QualType Pattern,Optional<unsigned> NumExpansions)3467 QualType ASTContext::getPackExpansionType(QualType Pattern,
3468                                           Optional<unsigned> NumExpansions) {
3469   llvm::FoldingSetNodeID ID;
3470   PackExpansionType::Profile(ID, Pattern, NumExpansions);
3471 
3472   assert(Pattern->containsUnexpandedParameterPack() &&
3473          "Pack expansions must expand one or more parameter packs");
3474   void *InsertPos = nullptr;
3475   PackExpansionType *T
3476     = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3477   if (T)
3478     return QualType(T, 0);
3479 
3480   QualType Canon;
3481   if (!Pattern.isCanonical()) {
3482     Canon = getCanonicalType(Pattern);
3483     // The canonical type might not contain an unexpanded parameter pack, if it
3484     // contains an alias template specialization which ignores one of its
3485     // parameters.
3486     if (Canon->containsUnexpandedParameterPack()) {
3487       Canon = getPackExpansionType(Canon, NumExpansions);
3488 
3489       // Find the insert position again, in case we inserted an element into
3490       // PackExpansionTypes and invalidated our insert position.
3491       PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3492     }
3493   }
3494 
3495   T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3496   Types.push_back(T);
3497   PackExpansionTypes.InsertNode(T, InsertPos);
3498   return QualType(T, 0);
3499 }
3500 
3501 /// CmpProtocolNames - Comparison predicate for sorting protocols
3502 /// alphabetically.
CmpProtocolNames(const ObjCProtocolDecl * LHS,const ObjCProtocolDecl * RHS)3503 static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3504                             const ObjCProtocolDecl *RHS) {
3505   return LHS->getDeclName() < RHS->getDeclName();
3506 }
3507 
areSortedAndUniqued(ObjCProtocolDecl * const * Protocols,unsigned NumProtocols)3508 static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3509                                 unsigned NumProtocols) {
3510   if (NumProtocols == 0) return true;
3511 
3512   if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3513     return false;
3514 
3515   for (unsigned i = 1; i != NumProtocols; ++i)
3516     if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3517         Protocols[i]->getCanonicalDecl() != Protocols[i])
3518       return false;
3519   return true;
3520 }
3521 
SortAndUniqueProtocols(ObjCProtocolDecl ** Protocols,unsigned & NumProtocols)3522 static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3523                                    unsigned &NumProtocols) {
3524   ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3525 
3526   // Sort protocols, keyed by name.
3527   std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3528 
3529   // Canonicalize.
3530   for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3531     Protocols[I] = Protocols[I]->getCanonicalDecl();
3532 
3533   // Remove duplicates.
3534   ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3535   NumProtocols = ProtocolsEnd-Protocols;
3536 }
3537 
getObjCObjectType(QualType BaseType,ObjCProtocolDecl * const * Protocols,unsigned NumProtocols) const3538 QualType ASTContext::getObjCObjectType(QualType BaseType,
3539                                        ObjCProtocolDecl * const *Protocols,
3540                                        unsigned NumProtocols) const {
3541   // If the base type is an interface and there aren't any protocols
3542   // to add, then the interface type will do just fine.
3543   if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3544     return BaseType;
3545 
3546   // Look in the folding set for an existing type.
3547   llvm::FoldingSetNodeID ID;
3548   ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3549   void *InsertPos = nullptr;
3550   if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3551     return QualType(QT, 0);
3552 
3553   // Build the canonical type, which has the canonical base type and
3554   // a sorted-and-uniqued list of protocols.
3555   QualType Canonical;
3556   bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3557   if (!ProtocolsSorted || !BaseType.isCanonical()) {
3558     if (!ProtocolsSorted) {
3559       SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3560                                                      Protocols + NumProtocols);
3561       unsigned UniqueCount = NumProtocols;
3562 
3563       SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3564       Canonical = getObjCObjectType(getCanonicalType(BaseType),
3565                                     &Sorted[0], UniqueCount);
3566     } else {
3567       Canonical = getObjCObjectType(getCanonicalType(BaseType),
3568                                     Protocols, NumProtocols);
3569     }
3570 
3571     // Regenerate InsertPos.
3572     ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3573   }
3574 
3575   unsigned Size = sizeof(ObjCObjectTypeImpl);
3576   Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3577   void *Mem = Allocate(Size, TypeAlignment);
3578   ObjCObjectTypeImpl *T =
3579     new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3580 
3581   Types.push_back(T);
3582   ObjCObjectTypes.InsertNode(T, InsertPos);
3583   return QualType(T, 0);
3584 }
3585 
3586 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
3587 /// protocol list adopt all protocols in QT's qualified-id protocol
3588 /// list.
ObjCObjectAdoptsQTypeProtocols(QualType QT,ObjCInterfaceDecl * IC)3589 bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
3590                                                 ObjCInterfaceDecl *IC) {
3591   if (!QT->isObjCQualifiedIdType())
3592     return false;
3593 
3594   if (const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>()) {
3595     // If both the right and left sides have qualifiers.
3596     for (auto *Proto : OPT->quals()) {
3597       if (!IC->ClassImplementsProtocol(Proto, false))
3598         return false;
3599     }
3600     return true;
3601   }
3602   return false;
3603 }
3604 
3605 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
3606 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
3607 /// of protocols.
QIdProtocolsAdoptObjCObjectProtocols(QualType QT,ObjCInterfaceDecl * IDecl)3608 bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
3609                                                 ObjCInterfaceDecl *IDecl) {
3610   if (!QT->isObjCQualifiedIdType())
3611     return false;
3612   const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>();
3613   if (!OPT)
3614     return false;
3615   if (!IDecl->hasDefinition())
3616     return false;
3617   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
3618   CollectInheritedProtocols(IDecl, InheritedProtocols);
3619   if (InheritedProtocols.empty())
3620     return false;
3621   // Check that if every protocol in list of id<plist> conforms to a protcol
3622   // of IDecl's, then bridge casting is ok.
3623   bool Conforms = false;
3624   for (auto *Proto : OPT->quals()) {
3625     Conforms = false;
3626     for (auto *PI : InheritedProtocols) {
3627       if (ProtocolCompatibleWithProtocol(Proto, PI)) {
3628         Conforms = true;
3629         break;
3630       }
3631     }
3632     if (!Conforms)
3633       break;
3634   }
3635   if (Conforms)
3636     return true;
3637 
3638   for (auto *PI : InheritedProtocols) {
3639     // If both the right and left sides have qualifiers.
3640     bool Adopts = false;
3641     for (auto *Proto : OPT->quals()) {
3642       // return 'true' if 'PI' is in the inheritance hierarchy of Proto
3643       if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
3644         break;
3645     }
3646     if (!Adopts)
3647       return false;
3648   }
3649   return true;
3650 }
3651 
3652 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3653 /// the given object type.
getObjCObjectPointerType(QualType ObjectT) const3654 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3655   llvm::FoldingSetNodeID ID;
3656   ObjCObjectPointerType::Profile(ID, ObjectT);
3657 
3658   void *InsertPos = nullptr;
3659   if (ObjCObjectPointerType *QT =
3660               ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3661     return QualType(QT, 0);
3662 
3663   // Find the canonical object type.
3664   QualType Canonical;
3665   if (!ObjectT.isCanonical()) {
3666     Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3667 
3668     // Regenerate InsertPos.
3669     ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3670   }
3671 
3672   // No match.
3673   void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3674   ObjCObjectPointerType *QType =
3675     new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3676 
3677   Types.push_back(QType);
3678   ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3679   return QualType(QType, 0);
3680 }
3681 
3682 /// getObjCInterfaceType - Return the unique reference to the type for the
3683 /// specified ObjC interface decl. The list of protocols is optional.
getObjCInterfaceType(const ObjCInterfaceDecl * Decl,ObjCInterfaceDecl * PrevDecl) const3684 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3685                                           ObjCInterfaceDecl *PrevDecl) const {
3686   if (Decl->TypeForDecl)
3687     return QualType(Decl->TypeForDecl, 0);
3688 
3689   if (PrevDecl) {
3690     assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3691     Decl->TypeForDecl = PrevDecl->TypeForDecl;
3692     return QualType(PrevDecl->TypeForDecl, 0);
3693   }
3694 
3695   // Prefer the definition, if there is one.
3696   if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3697     Decl = Def;
3698 
3699   void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3700   ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3701   Decl->TypeForDecl = T;
3702   Types.push_back(T);
3703   return QualType(T, 0);
3704 }
3705 
3706 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3707 /// TypeOfExprType AST's (since expression's are never shared). For example,
3708 /// multiple declarations that refer to "typeof(x)" all contain different
3709 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
3710 /// on canonical type's (which are always unique).
getTypeOfExprType(Expr * tofExpr) const3711 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3712   TypeOfExprType *toe;
3713   if (tofExpr->isTypeDependent()) {
3714     llvm::FoldingSetNodeID ID;
3715     DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3716 
3717     void *InsertPos = nullptr;
3718     DependentTypeOfExprType *Canon
3719       = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3720     if (Canon) {
3721       // We already have a "canonical" version of an identical, dependent
3722       // typeof(expr) type. Use that as our canonical type.
3723       toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3724                                           QualType((TypeOfExprType*)Canon, 0));
3725     } else {
3726       // Build a new, canonical typeof(expr) type.
3727       Canon
3728         = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3729       DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3730       toe = Canon;
3731     }
3732   } else {
3733     QualType Canonical = getCanonicalType(tofExpr->getType());
3734     toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3735   }
3736   Types.push_back(toe);
3737   return QualType(toe, 0);
3738 }
3739 
3740 /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3741 /// TypeOfType nodes. The only motivation to unique these nodes would be
3742 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3743 /// an issue. This doesn't affect the type checker, since it operates
3744 /// on canonical types (which are always unique).
getTypeOfType(QualType tofType) const3745 QualType ASTContext::getTypeOfType(QualType tofType) const {
3746   QualType Canonical = getCanonicalType(tofType);
3747   TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3748   Types.push_back(tot);
3749   return QualType(tot, 0);
3750 }
3751 
3752 
3753 /// \brief Unlike many "get<Type>" functions, we don't unique DecltypeType
3754 /// nodes. This would never be helpful, since each such type has its own
3755 /// expression, and would not give a significant memory saving, since there
3756 /// is an Expr tree under each such type.
getDecltypeType(Expr * e,QualType UnderlyingType) const3757 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3758   DecltypeType *dt;
3759 
3760   // C++11 [temp.type]p2:
3761   //   If an expression e involves a template parameter, decltype(e) denotes a
3762   //   unique dependent type. Two such decltype-specifiers refer to the same
3763   //   type only if their expressions are equivalent (14.5.6.1).
3764   if (e->isInstantiationDependent()) {
3765     llvm::FoldingSetNodeID ID;
3766     DependentDecltypeType::Profile(ID, *this, e);
3767 
3768     void *InsertPos = nullptr;
3769     DependentDecltypeType *Canon
3770       = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3771     if (!Canon) {
3772       // Build a new, canonical typeof(expr) type.
3773       Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3774       DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3775     }
3776     dt = new (*this, TypeAlignment)
3777         DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
3778   } else {
3779     dt = new (*this, TypeAlignment)
3780         DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
3781   }
3782   Types.push_back(dt);
3783   return QualType(dt, 0);
3784 }
3785 
3786 /// getUnaryTransformationType - We don't unique these, since the memory
3787 /// savings are minimal and these are rare.
getUnaryTransformType(QualType BaseType,QualType UnderlyingType,UnaryTransformType::UTTKind Kind) const3788 QualType ASTContext::getUnaryTransformType(QualType BaseType,
3789                                            QualType UnderlyingType,
3790                                            UnaryTransformType::UTTKind Kind)
3791     const {
3792   UnaryTransformType *Ty =
3793     new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3794                                                    Kind,
3795                                  UnderlyingType->isDependentType() ?
3796                                  QualType() : getCanonicalType(UnderlyingType));
3797   Types.push_back(Ty);
3798   return QualType(Ty, 0);
3799 }
3800 
3801 /// getAutoType - Return the uniqued reference to the 'auto' type which has been
3802 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the
3803 /// canonical deduced-but-dependent 'auto' type.
getAutoType(QualType DeducedType,bool IsDecltypeAuto,bool IsDependent) const3804 QualType ASTContext::getAutoType(QualType DeducedType, bool IsDecltypeAuto,
3805                                  bool IsDependent) const {
3806   if (DeducedType.isNull() && !IsDecltypeAuto && !IsDependent)
3807     return getAutoDeductType();
3808 
3809   // Look in the folding set for an existing type.
3810   void *InsertPos = nullptr;
3811   llvm::FoldingSetNodeID ID;
3812   AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent);
3813   if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3814     return QualType(AT, 0);
3815 
3816   AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType,
3817                                                      IsDecltypeAuto,
3818                                                      IsDependent);
3819   Types.push_back(AT);
3820   if (InsertPos)
3821     AutoTypes.InsertNode(AT, InsertPos);
3822   return QualType(AT, 0);
3823 }
3824 
3825 /// getAtomicType - Return the uniqued reference to the atomic type for
3826 /// the given value type.
getAtomicType(QualType T) const3827 QualType ASTContext::getAtomicType(QualType T) const {
3828   // Unique pointers, to guarantee there is only one pointer of a particular
3829   // structure.
3830   llvm::FoldingSetNodeID ID;
3831   AtomicType::Profile(ID, T);
3832 
3833   void *InsertPos = nullptr;
3834   if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3835     return QualType(AT, 0);
3836 
3837   // If the atomic value type isn't canonical, this won't be a canonical type
3838   // either, so fill in the canonical type field.
3839   QualType Canonical;
3840   if (!T.isCanonical()) {
3841     Canonical = getAtomicType(getCanonicalType(T));
3842 
3843     // Get the new insert position for the node we care about.
3844     AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3845     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3846   }
3847   AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3848   Types.push_back(New);
3849   AtomicTypes.InsertNode(New, InsertPos);
3850   return QualType(New, 0);
3851 }
3852 
3853 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
getAutoDeductType() const3854 QualType ASTContext::getAutoDeductType() const {
3855   if (AutoDeductTy.isNull())
3856     AutoDeductTy = QualType(
3857       new (*this, TypeAlignment) AutoType(QualType(), /*decltype(auto)*/false,
3858                                           /*dependent*/false),
3859       0);
3860   return AutoDeductTy;
3861 }
3862 
3863 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
getAutoRRefDeductType() const3864 QualType ASTContext::getAutoRRefDeductType() const {
3865   if (AutoRRefDeductTy.isNull())
3866     AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3867   assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3868   return AutoRRefDeductTy;
3869 }
3870 
3871 /// getTagDeclType - Return the unique reference to the type for the
3872 /// specified TagDecl (struct/union/class/enum) decl.
getTagDeclType(const TagDecl * Decl) const3873 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3874   assert (Decl);
3875   // FIXME: What is the design on getTagDeclType when it requires casting
3876   // away const?  mutable?
3877   return getTypeDeclType(const_cast<TagDecl*>(Decl));
3878 }
3879 
3880 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3881 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3882 /// needs to agree with the definition in <stddef.h>.
getSizeType() const3883 CanQualType ASTContext::getSizeType() const {
3884   return getFromTargetType(Target->getSizeType());
3885 }
3886 
3887 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
getIntMaxType() const3888 CanQualType ASTContext::getIntMaxType() const {
3889   return getFromTargetType(Target->getIntMaxType());
3890 }
3891 
3892 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
getUIntMaxType() const3893 CanQualType ASTContext::getUIntMaxType() const {
3894   return getFromTargetType(Target->getUIntMaxType());
3895 }
3896 
3897 /// getSignedWCharType - Return the type of "signed wchar_t".
3898 /// Used when in C++, as a GCC extension.
getSignedWCharType() const3899 QualType ASTContext::getSignedWCharType() const {
3900   // FIXME: derive from "Target" ?
3901   return WCharTy;
3902 }
3903 
3904 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3905 /// Used when in C++, as a GCC extension.
getUnsignedWCharType() const3906 QualType ASTContext::getUnsignedWCharType() const {
3907   // FIXME: derive from "Target" ?
3908   return UnsignedIntTy;
3909 }
3910 
getIntPtrType() const3911 QualType ASTContext::getIntPtrType() const {
3912   return getFromTargetType(Target->getIntPtrType());
3913 }
3914 
getUIntPtrType() const3915 QualType ASTContext::getUIntPtrType() const {
3916   return getCorrespondingUnsignedType(getIntPtrType());
3917 }
3918 
3919 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3920 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
getPointerDiffType() const3921 QualType ASTContext::getPointerDiffType() const {
3922   return getFromTargetType(Target->getPtrDiffType(0));
3923 }
3924 
3925 /// \brief Return the unique type for "pid_t" defined in
3926 /// <sys/types.h>. We need this to compute the correct type for vfork().
getProcessIDType() const3927 QualType ASTContext::getProcessIDType() const {
3928   return getFromTargetType(Target->getProcessIDType());
3929 }
3930 
3931 //===----------------------------------------------------------------------===//
3932 //                              Type Operators
3933 //===----------------------------------------------------------------------===//
3934 
getCanonicalParamType(QualType T) const3935 CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3936   // Push qualifiers into arrays, and then discard any remaining
3937   // qualifiers.
3938   T = getCanonicalType(T);
3939   T = getVariableArrayDecayedType(T);
3940   const Type *Ty = T.getTypePtr();
3941   QualType Result;
3942   if (isa<ArrayType>(Ty)) {
3943     Result = getArrayDecayedType(QualType(Ty,0));
3944   } else if (isa<FunctionType>(Ty)) {
3945     Result = getPointerType(QualType(Ty, 0));
3946   } else {
3947     Result = QualType(Ty, 0);
3948   }
3949 
3950   return CanQualType::CreateUnsafe(Result);
3951 }
3952 
getUnqualifiedArrayType(QualType type,Qualifiers & quals)3953 QualType ASTContext::getUnqualifiedArrayType(QualType type,
3954                                              Qualifiers &quals) {
3955   SplitQualType splitType = type.getSplitUnqualifiedType();
3956 
3957   // FIXME: getSplitUnqualifiedType() actually walks all the way to
3958   // the unqualified desugared type and then drops it on the floor.
3959   // We then have to strip that sugar back off with
3960   // getUnqualifiedDesugaredType(), which is silly.
3961   const ArrayType *AT =
3962     dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3963 
3964   // If we don't have an array, just use the results in splitType.
3965   if (!AT) {
3966     quals = splitType.Quals;
3967     return QualType(splitType.Ty, 0);
3968   }
3969 
3970   // Otherwise, recurse on the array's element type.
3971   QualType elementType = AT->getElementType();
3972   QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3973 
3974   // If that didn't change the element type, AT has no qualifiers, so we
3975   // can just use the results in splitType.
3976   if (elementType == unqualElementType) {
3977     assert(quals.empty()); // from the recursive call
3978     quals = splitType.Quals;
3979     return QualType(splitType.Ty, 0);
3980   }
3981 
3982   // Otherwise, add in the qualifiers from the outermost type, then
3983   // build the type back up.
3984   quals.addConsistentQualifiers(splitType.Quals);
3985 
3986   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3987     return getConstantArrayType(unqualElementType, CAT->getSize(),
3988                                 CAT->getSizeModifier(), 0);
3989   }
3990 
3991   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3992     return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3993   }
3994 
3995   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3996     return getVariableArrayType(unqualElementType,
3997                                 VAT->getSizeExpr(),
3998                                 VAT->getSizeModifier(),
3999                                 VAT->getIndexTypeCVRQualifiers(),
4000                                 VAT->getBracketsRange());
4001   }
4002 
4003   const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
4004   return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
4005                                     DSAT->getSizeModifier(), 0,
4006                                     SourceRange());
4007 }
4008 
4009 /// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
4010 /// may be similar (C++ 4.4), replaces T1 and T2 with the type that
4011 /// they point to and return true. If T1 and T2 aren't pointer types
4012 /// or pointer-to-member types, or if they are not similar at this
4013 /// level, returns false and leaves T1 and T2 unchanged. Top-level
4014 /// qualifiers on T1 and T2 are ignored. This function will typically
4015 /// be called in a loop that successively "unwraps" pointer and
4016 /// pointer-to-member types to compare them at each level.
UnwrapSimilarPointerTypes(QualType & T1,QualType & T2)4017 bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
4018   const PointerType *T1PtrType = T1->getAs<PointerType>(),
4019                     *T2PtrType = T2->getAs<PointerType>();
4020   if (T1PtrType && T2PtrType) {
4021     T1 = T1PtrType->getPointeeType();
4022     T2 = T2PtrType->getPointeeType();
4023     return true;
4024   }
4025 
4026   const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
4027                           *T2MPType = T2->getAs<MemberPointerType>();
4028   if (T1MPType && T2MPType &&
4029       hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
4030                              QualType(T2MPType->getClass(), 0))) {
4031     T1 = T1MPType->getPointeeType();
4032     T2 = T2MPType->getPointeeType();
4033     return true;
4034   }
4035 
4036   if (getLangOpts().ObjC1) {
4037     const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
4038                                 *T2OPType = T2->getAs<ObjCObjectPointerType>();
4039     if (T1OPType && T2OPType) {
4040       T1 = T1OPType->getPointeeType();
4041       T2 = T2OPType->getPointeeType();
4042       return true;
4043     }
4044   }
4045 
4046   // FIXME: Block pointers, too?
4047 
4048   return false;
4049 }
4050 
4051 DeclarationNameInfo
getNameForTemplate(TemplateName Name,SourceLocation NameLoc) const4052 ASTContext::getNameForTemplate(TemplateName Name,
4053                                SourceLocation NameLoc) const {
4054   switch (Name.getKind()) {
4055   case TemplateName::QualifiedTemplate:
4056   case TemplateName::Template:
4057     // DNInfo work in progress: CHECKME: what about DNLoc?
4058     return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
4059                                NameLoc);
4060 
4061   case TemplateName::OverloadedTemplate: {
4062     OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
4063     // DNInfo work in progress: CHECKME: what about DNLoc?
4064     return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
4065   }
4066 
4067   case TemplateName::DependentTemplate: {
4068     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
4069     DeclarationName DName;
4070     if (DTN->isIdentifier()) {
4071       DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
4072       return DeclarationNameInfo(DName, NameLoc);
4073     } else {
4074       DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
4075       // DNInfo work in progress: FIXME: source locations?
4076       DeclarationNameLoc DNLoc;
4077       DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
4078       DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
4079       return DeclarationNameInfo(DName, NameLoc, DNLoc);
4080     }
4081   }
4082 
4083   case TemplateName::SubstTemplateTemplateParm: {
4084     SubstTemplateTemplateParmStorage *subst
4085       = Name.getAsSubstTemplateTemplateParm();
4086     return DeclarationNameInfo(subst->getParameter()->getDeclName(),
4087                                NameLoc);
4088   }
4089 
4090   case TemplateName::SubstTemplateTemplateParmPack: {
4091     SubstTemplateTemplateParmPackStorage *subst
4092       = Name.getAsSubstTemplateTemplateParmPack();
4093     return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
4094                                NameLoc);
4095   }
4096   }
4097 
4098   llvm_unreachable("bad template name kind!");
4099 }
4100 
getCanonicalTemplateName(TemplateName Name) const4101 TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
4102   switch (Name.getKind()) {
4103   case TemplateName::QualifiedTemplate:
4104   case TemplateName::Template: {
4105     TemplateDecl *Template = Name.getAsTemplateDecl();
4106     if (TemplateTemplateParmDecl *TTP
4107           = dyn_cast<TemplateTemplateParmDecl>(Template))
4108       Template = getCanonicalTemplateTemplateParmDecl(TTP);
4109 
4110     // The canonical template name is the canonical template declaration.
4111     return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
4112   }
4113 
4114   case TemplateName::OverloadedTemplate:
4115     llvm_unreachable("cannot canonicalize overloaded template");
4116 
4117   case TemplateName::DependentTemplate: {
4118     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
4119     assert(DTN && "Non-dependent template names must refer to template decls.");
4120     return DTN->CanonicalTemplateName;
4121   }
4122 
4123   case TemplateName::SubstTemplateTemplateParm: {
4124     SubstTemplateTemplateParmStorage *subst
4125       = Name.getAsSubstTemplateTemplateParm();
4126     return getCanonicalTemplateName(subst->getReplacement());
4127   }
4128 
4129   case TemplateName::SubstTemplateTemplateParmPack: {
4130     SubstTemplateTemplateParmPackStorage *subst
4131                                   = Name.getAsSubstTemplateTemplateParmPack();
4132     TemplateTemplateParmDecl *canonParameter
4133       = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
4134     TemplateArgument canonArgPack
4135       = getCanonicalTemplateArgument(subst->getArgumentPack());
4136     return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
4137   }
4138   }
4139 
4140   llvm_unreachable("bad template name!");
4141 }
4142 
hasSameTemplateName(TemplateName X,TemplateName Y)4143 bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
4144   X = getCanonicalTemplateName(X);
4145   Y = getCanonicalTemplateName(Y);
4146   return X.getAsVoidPointer() == Y.getAsVoidPointer();
4147 }
4148 
4149 TemplateArgument
getCanonicalTemplateArgument(const TemplateArgument & Arg) const4150 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
4151   switch (Arg.getKind()) {
4152     case TemplateArgument::Null:
4153       return Arg;
4154 
4155     case TemplateArgument::Expression:
4156       return Arg;
4157 
4158     case TemplateArgument::Declaration: {
4159       ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
4160       return TemplateArgument(D, Arg.getParamTypeForDecl());
4161     }
4162 
4163     case TemplateArgument::NullPtr:
4164       return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
4165                               /*isNullPtr*/true);
4166 
4167     case TemplateArgument::Template:
4168       return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
4169 
4170     case TemplateArgument::TemplateExpansion:
4171       return TemplateArgument(getCanonicalTemplateName(
4172                                          Arg.getAsTemplateOrTemplatePattern()),
4173                               Arg.getNumTemplateExpansions());
4174 
4175     case TemplateArgument::Integral:
4176       return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
4177 
4178     case TemplateArgument::Type:
4179       return TemplateArgument(getCanonicalType(Arg.getAsType()));
4180 
4181     case TemplateArgument::Pack: {
4182       if (Arg.pack_size() == 0)
4183         return Arg;
4184 
4185       TemplateArgument *CanonArgs
4186         = new (*this) TemplateArgument[Arg.pack_size()];
4187       unsigned Idx = 0;
4188       for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
4189                                         AEnd = Arg.pack_end();
4190            A != AEnd; (void)++A, ++Idx)
4191         CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
4192 
4193       return TemplateArgument(CanonArgs, Arg.pack_size());
4194     }
4195   }
4196 
4197   // Silence GCC warning
4198   llvm_unreachable("Unhandled template argument kind");
4199 }
4200 
4201 NestedNameSpecifier *
getCanonicalNestedNameSpecifier(NestedNameSpecifier * NNS) const4202 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
4203   if (!NNS)
4204     return nullptr;
4205 
4206   switch (NNS->getKind()) {
4207   case NestedNameSpecifier::Identifier:
4208     // Canonicalize the prefix but keep the identifier the same.
4209     return NestedNameSpecifier::Create(*this,
4210                          getCanonicalNestedNameSpecifier(NNS->getPrefix()),
4211                                        NNS->getAsIdentifier());
4212 
4213   case NestedNameSpecifier::Namespace:
4214     // A namespace is canonical; build a nested-name-specifier with
4215     // this namespace and no prefix.
4216     return NestedNameSpecifier::Create(*this, nullptr,
4217                                  NNS->getAsNamespace()->getOriginalNamespace());
4218 
4219   case NestedNameSpecifier::NamespaceAlias:
4220     // A namespace is canonical; build a nested-name-specifier with
4221     // this namespace and no prefix.
4222     return NestedNameSpecifier::Create(*this, nullptr,
4223                                     NNS->getAsNamespaceAlias()->getNamespace()
4224                                                       ->getOriginalNamespace());
4225 
4226   case NestedNameSpecifier::TypeSpec:
4227   case NestedNameSpecifier::TypeSpecWithTemplate: {
4228     QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
4229 
4230     // If we have some kind of dependent-named type (e.g., "typename T::type"),
4231     // break it apart into its prefix and identifier, then reconsititute those
4232     // as the canonical nested-name-specifier. This is required to canonicalize
4233     // a dependent nested-name-specifier involving typedefs of dependent-name
4234     // types, e.g.,
4235     //   typedef typename T::type T1;
4236     //   typedef typename T1::type T2;
4237     if (const DependentNameType *DNT = T->getAs<DependentNameType>())
4238       return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
4239                            const_cast<IdentifierInfo *>(DNT->getIdentifier()));
4240 
4241     // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
4242     // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
4243     // first place?
4244     return NestedNameSpecifier::Create(*this, nullptr, false,
4245                                        const_cast<Type *>(T.getTypePtr()));
4246   }
4247 
4248   case NestedNameSpecifier::Global:
4249   case NestedNameSpecifier::Super:
4250     // The global specifier and __super specifer are canonical and unique.
4251     return NNS;
4252   }
4253 
4254   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4255 }
4256 
4257 
getAsArrayType(QualType T) const4258 const ArrayType *ASTContext::getAsArrayType(QualType T) const {
4259   // Handle the non-qualified case efficiently.
4260   if (!T.hasLocalQualifiers()) {
4261     // Handle the common positive case fast.
4262     if (const ArrayType *AT = dyn_cast<ArrayType>(T))
4263       return AT;
4264   }
4265 
4266   // Handle the common negative case fast.
4267   if (!isa<ArrayType>(T.getCanonicalType()))
4268     return nullptr;
4269 
4270   // Apply any qualifiers from the array type to the element type.  This
4271   // implements C99 6.7.3p8: "If the specification of an array type includes
4272   // any type qualifiers, the element type is so qualified, not the array type."
4273 
4274   // If we get here, we either have type qualifiers on the type, or we have
4275   // sugar such as a typedef in the way.  If we have type qualifiers on the type
4276   // we must propagate them down into the element type.
4277 
4278   SplitQualType split = T.getSplitDesugaredType();
4279   Qualifiers qs = split.Quals;
4280 
4281   // If we have a simple case, just return now.
4282   const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
4283   if (!ATy || qs.empty())
4284     return ATy;
4285 
4286   // Otherwise, we have an array and we have qualifiers on it.  Push the
4287   // qualifiers into the array element type and return a new array type.
4288   QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
4289 
4290   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
4291     return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
4292                                                 CAT->getSizeModifier(),
4293                                            CAT->getIndexTypeCVRQualifiers()));
4294   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
4295     return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
4296                                                   IAT->getSizeModifier(),
4297                                            IAT->getIndexTypeCVRQualifiers()));
4298 
4299   if (const DependentSizedArrayType *DSAT
4300         = dyn_cast<DependentSizedArrayType>(ATy))
4301     return cast<ArrayType>(
4302                      getDependentSizedArrayType(NewEltTy,
4303                                                 DSAT->getSizeExpr(),
4304                                                 DSAT->getSizeModifier(),
4305                                               DSAT->getIndexTypeCVRQualifiers(),
4306                                                 DSAT->getBracketsRange()));
4307 
4308   const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
4309   return cast<ArrayType>(getVariableArrayType(NewEltTy,
4310                                               VAT->getSizeExpr(),
4311                                               VAT->getSizeModifier(),
4312                                               VAT->getIndexTypeCVRQualifiers(),
4313                                               VAT->getBracketsRange()));
4314 }
4315 
getAdjustedParameterType(QualType T) const4316 QualType ASTContext::getAdjustedParameterType(QualType T) const {
4317   if (T->isArrayType() || T->isFunctionType())
4318     return getDecayedType(T);
4319   return T;
4320 }
4321 
getSignatureParameterType(QualType T) const4322 QualType ASTContext::getSignatureParameterType(QualType T) const {
4323   T = getVariableArrayDecayedType(T);
4324   T = getAdjustedParameterType(T);
4325   return T.getUnqualifiedType();
4326 }
4327 
4328 /// getArrayDecayedType - Return the properly qualified result of decaying the
4329 /// specified array type to a pointer.  This operation is non-trivial when
4330 /// handling typedefs etc.  The canonical type of "T" must be an array type,
4331 /// this returns a pointer to a properly qualified element of the array.
4332 ///
4333 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
getArrayDecayedType(QualType Ty) const4334 QualType ASTContext::getArrayDecayedType(QualType Ty) const {
4335   // Get the element type with 'getAsArrayType' so that we don't lose any
4336   // typedefs in the element type of the array.  This also handles propagation
4337   // of type qualifiers from the array type into the element type if present
4338   // (C99 6.7.3p8).
4339   const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4340   assert(PrettyArrayType && "Not an array type!");
4341 
4342   QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4343 
4344   // int x[restrict 4] ->  int *restrict
4345   return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4346 }
4347 
getBaseElementType(const ArrayType * array) const4348 QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4349   return getBaseElementType(array->getElementType());
4350 }
4351 
getBaseElementType(QualType type) const4352 QualType ASTContext::getBaseElementType(QualType type) const {
4353   Qualifiers qs;
4354   while (true) {
4355     SplitQualType split = type.getSplitDesugaredType();
4356     const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4357     if (!array) break;
4358 
4359     type = array->getElementType();
4360     qs.addConsistentQualifiers(split.Quals);
4361   }
4362 
4363   return getQualifiedType(type, qs);
4364 }
4365 
4366 /// getConstantArrayElementCount - Returns number of constant array elements.
4367 uint64_t
getConstantArrayElementCount(const ConstantArrayType * CA) const4368 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
4369   uint64_t ElementCount = 1;
4370   do {
4371     ElementCount *= CA->getSize().getZExtValue();
4372     CA = dyn_cast_or_null<ConstantArrayType>(
4373       CA->getElementType()->getAsArrayTypeUnsafe());
4374   } while (CA);
4375   return ElementCount;
4376 }
4377 
4378 /// getFloatingRank - Return a relative rank for floating point types.
4379 /// This routine will assert if passed a built-in type that isn't a float.
getFloatingRank(QualType T)4380 static FloatingRank getFloatingRank(QualType T) {
4381   if (const ComplexType *CT = T->getAs<ComplexType>())
4382     return getFloatingRank(CT->getElementType());
4383 
4384   assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4385   switch (T->getAs<BuiltinType>()->getKind()) {
4386   default: llvm_unreachable("getFloatingRank(): not a floating type");
4387   case BuiltinType::Half:       return HalfRank;
4388   case BuiltinType::Float:      return FloatRank;
4389   case BuiltinType::Double:     return DoubleRank;
4390   case BuiltinType::LongDouble: return LongDoubleRank;
4391   }
4392 }
4393 
4394 /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4395 /// point or a complex type (based on typeDomain/typeSize).
4396 /// 'typeDomain' is a real floating point or complex type.
4397 /// 'typeSize' is a real floating point or complex type.
getFloatingTypeOfSizeWithinDomain(QualType Size,QualType Domain) const4398 QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4399                                                        QualType Domain) const {
4400   FloatingRank EltRank = getFloatingRank(Size);
4401   if (Domain->isComplexType()) {
4402     switch (EltRank) {
4403     case HalfRank: llvm_unreachable("Complex half is not supported");
4404     case FloatRank:      return FloatComplexTy;
4405     case DoubleRank:     return DoubleComplexTy;
4406     case LongDoubleRank: return LongDoubleComplexTy;
4407     }
4408   }
4409 
4410   assert(Domain->isRealFloatingType() && "Unknown domain!");
4411   switch (EltRank) {
4412   case HalfRank:       return HalfTy;
4413   case FloatRank:      return FloatTy;
4414   case DoubleRank:     return DoubleTy;
4415   case LongDoubleRank: return LongDoubleTy;
4416   }
4417   llvm_unreachable("getFloatingRank(): illegal value for rank");
4418 }
4419 
4420 /// getFloatingTypeOrder - Compare the rank of the two specified floating
4421 /// point types, ignoring the domain of the type (i.e. 'double' ==
4422 /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4423 /// LHS < RHS, return -1.
getFloatingTypeOrder(QualType LHS,QualType RHS) const4424 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4425   FloatingRank LHSR = getFloatingRank(LHS);
4426   FloatingRank RHSR = getFloatingRank(RHS);
4427 
4428   if (LHSR == RHSR)
4429     return 0;
4430   if (LHSR > RHSR)
4431     return 1;
4432   return -1;
4433 }
4434 
4435 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4436 /// routine will assert if passed a built-in type that isn't an integer or enum,
4437 /// or if it is not canonicalized.
getIntegerRank(const Type * T) const4438 unsigned ASTContext::getIntegerRank(const Type *T) const {
4439   assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4440 
4441   switch (cast<BuiltinType>(T)->getKind()) {
4442   default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4443   case BuiltinType::Bool:
4444     return 1 + (getIntWidth(BoolTy) << 3);
4445   case BuiltinType::Char_S:
4446   case BuiltinType::Char_U:
4447   case BuiltinType::SChar:
4448   case BuiltinType::UChar:
4449     return 2 + (getIntWidth(CharTy) << 3);
4450   case BuiltinType::Short:
4451   case BuiltinType::UShort:
4452     return 3 + (getIntWidth(ShortTy) << 3);
4453   case BuiltinType::Int:
4454   case BuiltinType::UInt:
4455     return 4 + (getIntWidth(IntTy) << 3);
4456   case BuiltinType::Long:
4457   case BuiltinType::ULong:
4458     return 5 + (getIntWidth(LongTy) << 3);
4459   case BuiltinType::LongLong:
4460   case BuiltinType::ULongLong:
4461     return 6 + (getIntWidth(LongLongTy) << 3);
4462   case BuiltinType::Int128:
4463   case BuiltinType::UInt128:
4464     return 7 + (getIntWidth(Int128Ty) << 3);
4465   }
4466 }
4467 
4468 /// \brief Whether this is a promotable bitfield reference according
4469 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4470 ///
4471 /// \returns the type this bit-field will promote to, or NULL if no
4472 /// promotion occurs.
isPromotableBitField(Expr * E) const4473 QualType ASTContext::isPromotableBitField(Expr *E) const {
4474   if (E->isTypeDependent() || E->isValueDependent())
4475     return QualType();
4476 
4477   // FIXME: We should not do this unless E->refersToBitField() is true. This
4478   // matters in C where getSourceBitField() will find bit-fields for various
4479   // cases where the source expression is not a bit-field designator.
4480 
4481   FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
4482   if (!Field)
4483     return QualType();
4484 
4485   QualType FT = Field->getType();
4486 
4487   uint64_t BitWidth = Field->getBitWidthValue(*this);
4488   uint64_t IntSize = getTypeSize(IntTy);
4489   // C++ [conv.prom]p5:
4490   //   A prvalue for an integral bit-field can be converted to a prvalue of type
4491   //   int if int can represent all the values of the bit-field; otherwise, it
4492   //   can be converted to unsigned int if unsigned int can represent all the
4493   //   values of the bit-field. If the bit-field is larger yet, no integral
4494   //   promotion applies to it.
4495   // C11 6.3.1.1/2:
4496   //   [For a bit-field of type _Bool, int, signed int, or unsigned int:]
4497   //   If an int can represent all values of the original type (as restricted by
4498   //   the width, for a bit-field), the value is converted to an int; otherwise,
4499   //   it is converted to an unsigned int.
4500   //
4501   // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
4502   //        We perform that promotion here to match GCC and C++.
4503   if (BitWidth < IntSize)
4504     return IntTy;
4505 
4506   if (BitWidth == IntSize)
4507     return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4508 
4509   // Types bigger than int are not subject to promotions, and therefore act
4510   // like the base type. GCC has some weird bugs in this area that we
4511   // deliberately do not follow (GCC follows a pre-standard resolution to
4512   // C's DR315 which treats bit-width as being part of the type, and this leaks
4513   // into their semantics in some cases).
4514   return QualType();
4515 }
4516 
4517 /// getPromotedIntegerType - Returns the type that Promotable will
4518 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4519 /// integer type.
getPromotedIntegerType(QualType Promotable) const4520 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4521   assert(!Promotable.isNull());
4522   assert(Promotable->isPromotableIntegerType());
4523   if (const EnumType *ET = Promotable->getAs<EnumType>())
4524     return ET->getDecl()->getPromotionType();
4525 
4526   if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4527     // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4528     // (3.9.1) can be converted to a prvalue of the first of the following
4529     // types that can represent all the values of its underlying type:
4530     // int, unsigned int, long int, unsigned long int, long long int, or
4531     // unsigned long long int [...]
4532     // FIXME: Is there some better way to compute this?
4533     if (BT->getKind() == BuiltinType::WChar_S ||
4534         BT->getKind() == BuiltinType::WChar_U ||
4535         BT->getKind() == BuiltinType::Char16 ||
4536         BT->getKind() == BuiltinType::Char32) {
4537       bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4538       uint64_t FromSize = getTypeSize(BT);
4539       QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4540                                   LongLongTy, UnsignedLongLongTy };
4541       for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4542         uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4543         if (FromSize < ToSize ||
4544             (FromSize == ToSize &&
4545              FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4546           return PromoteTypes[Idx];
4547       }
4548       llvm_unreachable("char type should fit into long long");
4549     }
4550   }
4551 
4552   // At this point, we should have a signed or unsigned integer type.
4553   if (Promotable->isSignedIntegerType())
4554     return IntTy;
4555   uint64_t PromotableSize = getIntWidth(Promotable);
4556   uint64_t IntSize = getIntWidth(IntTy);
4557   assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4558   return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4559 }
4560 
4561 /// \brief Recurses in pointer/array types until it finds an objc retainable
4562 /// type and returns its ownership.
getInnerObjCOwnership(QualType T) const4563 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4564   while (!T.isNull()) {
4565     if (T.getObjCLifetime() != Qualifiers::OCL_None)
4566       return T.getObjCLifetime();
4567     if (T->isArrayType())
4568       T = getBaseElementType(T);
4569     else if (const PointerType *PT = T->getAs<PointerType>())
4570       T = PT->getPointeeType();
4571     else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4572       T = RT->getPointeeType();
4573     else
4574       break;
4575   }
4576 
4577   return Qualifiers::OCL_None;
4578 }
4579 
getIntegerTypeForEnum(const EnumType * ET)4580 static const Type *getIntegerTypeForEnum(const EnumType *ET) {
4581   // Incomplete enum types are not treated as integer types.
4582   // FIXME: In C++, enum types are never integer types.
4583   if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
4584     return ET->getDecl()->getIntegerType().getTypePtr();
4585   return nullptr;
4586 }
4587 
4588 /// getIntegerTypeOrder - Returns the highest ranked integer type:
4589 /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4590 /// LHS < RHS, return -1.
getIntegerTypeOrder(QualType LHS,QualType RHS) const4591 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4592   const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4593   const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4594 
4595   // Unwrap enums to their underlying type.
4596   if (const EnumType *ET = dyn_cast<EnumType>(LHSC))
4597     LHSC = getIntegerTypeForEnum(ET);
4598   if (const EnumType *ET = dyn_cast<EnumType>(RHSC))
4599     RHSC = getIntegerTypeForEnum(ET);
4600 
4601   if (LHSC == RHSC) return 0;
4602 
4603   bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4604   bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4605 
4606   unsigned LHSRank = getIntegerRank(LHSC);
4607   unsigned RHSRank = getIntegerRank(RHSC);
4608 
4609   if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4610     if (LHSRank == RHSRank) return 0;
4611     return LHSRank > RHSRank ? 1 : -1;
4612   }
4613 
4614   // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4615   if (LHSUnsigned) {
4616     // If the unsigned [LHS] type is larger, return it.
4617     if (LHSRank >= RHSRank)
4618       return 1;
4619 
4620     // If the signed type can represent all values of the unsigned type, it
4621     // wins.  Because we are dealing with 2's complement and types that are
4622     // powers of two larger than each other, this is always safe.
4623     return -1;
4624   }
4625 
4626   // If the unsigned [RHS] type is larger, return it.
4627   if (RHSRank >= LHSRank)
4628     return -1;
4629 
4630   // If the signed type can represent all values of the unsigned type, it
4631   // wins.  Because we are dealing with 2's complement and types that are
4632   // powers of two larger than each other, this is always safe.
4633   return 1;
4634 }
4635 
4636 // getCFConstantStringType - Return the type used for constant CFStrings.
getCFConstantStringType() const4637 QualType ASTContext::getCFConstantStringType() const {
4638   if (!CFConstantStringTypeDecl) {
4639     CFConstantStringTypeDecl = buildImplicitRecord("NSConstantString");
4640     CFConstantStringTypeDecl->startDefinition();
4641 
4642     QualType FieldTypes[4];
4643 
4644     // const int *isa;
4645     FieldTypes[0] = getPointerType(IntTy.withConst());
4646     // int flags;
4647     FieldTypes[1] = IntTy;
4648     // const char *str;
4649     FieldTypes[2] = getPointerType(CharTy.withConst());
4650     // long length;
4651     FieldTypes[3] = LongTy;
4652 
4653     // Create fields
4654     for (unsigned i = 0; i < 4; ++i) {
4655       FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4656                                            SourceLocation(),
4657                                            SourceLocation(), nullptr,
4658                                            FieldTypes[i], /*TInfo=*/nullptr,
4659                                            /*BitWidth=*/nullptr,
4660                                            /*Mutable=*/false,
4661                                            ICIS_NoInit);
4662       Field->setAccess(AS_public);
4663       CFConstantStringTypeDecl->addDecl(Field);
4664     }
4665 
4666     CFConstantStringTypeDecl->completeDefinition();
4667   }
4668 
4669   return getTagDeclType(CFConstantStringTypeDecl);
4670 }
4671 
getObjCSuperType() const4672 QualType ASTContext::getObjCSuperType() const {
4673   if (ObjCSuperType.isNull()) {
4674     RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
4675     TUDecl->addDecl(ObjCSuperTypeDecl);
4676     ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4677   }
4678   return ObjCSuperType;
4679 }
4680 
setCFConstantStringType(QualType T)4681 void ASTContext::setCFConstantStringType(QualType T) {
4682   const RecordType *Rec = T->getAs<RecordType>();
4683   assert(Rec && "Invalid CFConstantStringType");
4684   CFConstantStringTypeDecl = Rec->getDecl();
4685 }
4686 
getBlockDescriptorType() const4687 QualType ASTContext::getBlockDescriptorType() const {
4688   if (BlockDescriptorType)
4689     return getTagDeclType(BlockDescriptorType);
4690 
4691   RecordDecl *RD;
4692   // FIXME: Needs the FlagAppleBlock bit.
4693   RD = buildImplicitRecord("__block_descriptor");
4694   RD->startDefinition();
4695 
4696   QualType FieldTypes[] = {
4697     UnsignedLongTy,
4698     UnsignedLongTy,
4699   };
4700 
4701   static const char *const FieldNames[] = {
4702     "reserved",
4703     "Size"
4704   };
4705 
4706   for (size_t i = 0; i < 2; ++i) {
4707     FieldDecl *Field = FieldDecl::Create(
4708         *this, RD, SourceLocation(), SourceLocation(),
4709         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
4710         /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
4711     Field->setAccess(AS_public);
4712     RD->addDecl(Field);
4713   }
4714 
4715   RD->completeDefinition();
4716 
4717   BlockDescriptorType = RD;
4718 
4719   return getTagDeclType(BlockDescriptorType);
4720 }
4721 
getBlockDescriptorExtendedType() const4722 QualType ASTContext::getBlockDescriptorExtendedType() const {
4723   if (BlockDescriptorExtendedType)
4724     return getTagDeclType(BlockDescriptorExtendedType);
4725 
4726   RecordDecl *RD;
4727   // FIXME: Needs the FlagAppleBlock bit.
4728   RD = buildImplicitRecord("__block_descriptor_withcopydispose");
4729   RD->startDefinition();
4730 
4731   QualType FieldTypes[] = {
4732     UnsignedLongTy,
4733     UnsignedLongTy,
4734     getPointerType(VoidPtrTy),
4735     getPointerType(VoidPtrTy)
4736   };
4737 
4738   static const char *const FieldNames[] = {
4739     "reserved",
4740     "Size",
4741     "CopyFuncPtr",
4742     "DestroyFuncPtr"
4743   };
4744 
4745   for (size_t i = 0; i < 4; ++i) {
4746     FieldDecl *Field = FieldDecl::Create(
4747         *this, RD, SourceLocation(), SourceLocation(),
4748         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
4749         /*BitWidth=*/nullptr,
4750         /*Mutable=*/false, ICIS_NoInit);
4751     Field->setAccess(AS_public);
4752     RD->addDecl(Field);
4753   }
4754 
4755   RD->completeDefinition();
4756 
4757   BlockDescriptorExtendedType = RD;
4758   return getTagDeclType(BlockDescriptorExtendedType);
4759 }
4760 
4761 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4762 /// requires copy/dispose. Note that this must match the logic
4763 /// in buildByrefHelpers.
BlockRequiresCopying(QualType Ty,const VarDecl * D)4764 bool ASTContext::BlockRequiresCopying(QualType Ty,
4765                                       const VarDecl *D) {
4766   if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4767     const Expr *copyExpr = getBlockVarCopyInits(D);
4768     if (!copyExpr && record->hasTrivialDestructor()) return false;
4769 
4770     return true;
4771   }
4772 
4773   if (!Ty->isObjCRetainableType()) return false;
4774 
4775   Qualifiers qs = Ty.getQualifiers();
4776 
4777   // If we have lifetime, that dominates.
4778   if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4779     assert(getLangOpts().ObjCAutoRefCount);
4780 
4781     switch (lifetime) {
4782       case Qualifiers::OCL_None: llvm_unreachable("impossible");
4783 
4784       // These are just bits as far as the runtime is concerned.
4785       case Qualifiers::OCL_ExplicitNone:
4786       case Qualifiers::OCL_Autoreleasing:
4787         return false;
4788 
4789       // Tell the runtime that this is ARC __weak, called by the
4790       // byref routines.
4791       case Qualifiers::OCL_Weak:
4792       // ARC __strong __block variables need to be retained.
4793       case Qualifiers::OCL_Strong:
4794         return true;
4795     }
4796     llvm_unreachable("fell out of lifetime switch!");
4797   }
4798   return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4799           Ty->isObjCObjectPointerType());
4800 }
4801 
getByrefLifetime(QualType Ty,Qualifiers::ObjCLifetime & LifeTime,bool & HasByrefExtendedLayout) const4802 bool ASTContext::getByrefLifetime(QualType Ty,
4803                               Qualifiers::ObjCLifetime &LifeTime,
4804                               bool &HasByrefExtendedLayout) const {
4805 
4806   if (!getLangOpts().ObjC1 ||
4807       getLangOpts().getGC() != LangOptions::NonGC)
4808     return false;
4809 
4810   HasByrefExtendedLayout = false;
4811   if (Ty->isRecordType()) {
4812     HasByrefExtendedLayout = true;
4813     LifeTime = Qualifiers::OCL_None;
4814   }
4815   else if (getLangOpts().ObjCAutoRefCount)
4816     LifeTime = Ty.getObjCLifetime();
4817   // MRR.
4818   else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4819     LifeTime = Qualifiers::OCL_ExplicitNone;
4820   else
4821     LifeTime = Qualifiers::OCL_None;
4822   return true;
4823 }
4824 
getObjCInstanceTypeDecl()4825 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4826   if (!ObjCInstanceTypeDecl)
4827     ObjCInstanceTypeDecl =
4828         buildImplicitTypedef(getObjCIdType(), "instancetype");
4829   return ObjCInstanceTypeDecl;
4830 }
4831 
4832 // This returns true if a type has been typedefed to BOOL:
4833 // typedef <type> BOOL;
isTypeTypedefedAsBOOL(QualType T)4834 static bool isTypeTypedefedAsBOOL(QualType T) {
4835   if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4836     if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4837       return II->isStr("BOOL");
4838 
4839   return false;
4840 }
4841 
4842 /// getObjCEncodingTypeSize returns size of type for objective-c encoding
4843 /// purpose.
getObjCEncodingTypeSize(QualType type) const4844 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4845   if (!type->isIncompleteArrayType() && type->isIncompleteType())
4846     return CharUnits::Zero();
4847 
4848   CharUnits sz = getTypeSizeInChars(type);
4849 
4850   // Make all integer and enum types at least as large as an int
4851   if (sz.isPositive() && type->isIntegralOrEnumerationType())
4852     sz = std::max(sz, getTypeSizeInChars(IntTy));
4853   // Treat arrays as pointers, since that's how they're passed in.
4854   else if (type->isArrayType())
4855     sz = getTypeSizeInChars(VoidPtrTy);
4856   return sz;
4857 }
4858 
isMSStaticDataMemberInlineDefinition(const VarDecl * VD) const4859 bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
4860   return getLangOpts().MSVCCompat && VD->isStaticDataMember() &&
4861          VD->getType()->isIntegralOrEnumerationType() &&
4862          !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
4863 }
4864 
4865 static inline
charUnitsToString(const CharUnits & CU)4866 std::string charUnitsToString(const CharUnits &CU) {
4867   return llvm::itostr(CU.getQuantity());
4868 }
4869 
4870 /// getObjCEncodingForBlock - Return the encoded type for this block
4871 /// declaration.
getObjCEncodingForBlock(const BlockExpr * Expr) const4872 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4873   std::string S;
4874 
4875   const BlockDecl *Decl = Expr->getBlockDecl();
4876   QualType BlockTy =
4877       Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4878   // Encode result type.
4879   if (getLangOpts().EncodeExtendedBlockSig)
4880     getObjCEncodingForMethodParameter(
4881         Decl::OBJC_TQ_None, BlockTy->getAs<FunctionType>()->getReturnType(), S,
4882         true /*Extended*/);
4883   else
4884     getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getReturnType(), S);
4885   // Compute size of all parameters.
4886   // Start with computing size of a pointer in number of bytes.
4887   // FIXME: There might(should) be a better way of doing this computation!
4888   SourceLocation Loc;
4889   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4890   CharUnits ParmOffset = PtrSize;
4891   for (auto PI : Decl->params()) {
4892     QualType PType = PI->getType();
4893     CharUnits sz = getObjCEncodingTypeSize(PType);
4894     if (sz.isZero())
4895       continue;
4896     assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4897     ParmOffset += sz;
4898   }
4899   // Size of the argument frame
4900   S += charUnitsToString(ParmOffset);
4901   // Block pointer and offset.
4902   S += "@?0";
4903 
4904   // Argument types.
4905   ParmOffset = PtrSize;
4906   for (auto PVDecl : Decl->params()) {
4907     QualType PType = PVDecl->getOriginalType();
4908     if (const ArrayType *AT =
4909           dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4910       // Use array's original type only if it has known number of
4911       // elements.
4912       if (!isa<ConstantArrayType>(AT))
4913         PType = PVDecl->getType();
4914     } else if (PType->isFunctionType())
4915       PType = PVDecl->getType();
4916     if (getLangOpts().EncodeExtendedBlockSig)
4917       getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
4918                                       S, true /*Extended*/);
4919     else
4920       getObjCEncodingForType(PType, S);
4921     S += charUnitsToString(ParmOffset);
4922     ParmOffset += getObjCEncodingTypeSize(PType);
4923   }
4924 
4925   return S;
4926 }
4927 
getObjCEncodingForFunctionDecl(const FunctionDecl * Decl,std::string & S)4928 bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4929                                                 std::string& S) {
4930   // Encode result type.
4931   getObjCEncodingForType(Decl->getReturnType(), S);
4932   CharUnits ParmOffset;
4933   // Compute size of all parameters.
4934   for (auto PI : Decl->params()) {
4935     QualType PType = PI->getType();
4936     CharUnits sz = getObjCEncodingTypeSize(PType);
4937     if (sz.isZero())
4938       continue;
4939 
4940     assert (sz.isPositive() &&
4941         "getObjCEncodingForFunctionDecl - Incomplete param type");
4942     ParmOffset += sz;
4943   }
4944   S += charUnitsToString(ParmOffset);
4945   ParmOffset = CharUnits::Zero();
4946 
4947   // Argument types.
4948   for (auto PVDecl : Decl->params()) {
4949     QualType PType = PVDecl->getOriginalType();
4950     if (const ArrayType *AT =
4951           dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4952       // Use array's original type only if it has known number of
4953       // elements.
4954       if (!isa<ConstantArrayType>(AT))
4955         PType = PVDecl->getType();
4956     } else if (PType->isFunctionType())
4957       PType = PVDecl->getType();
4958     getObjCEncodingForType(PType, S);
4959     S += charUnitsToString(ParmOffset);
4960     ParmOffset += getObjCEncodingTypeSize(PType);
4961   }
4962 
4963   return false;
4964 }
4965 
4966 /// getObjCEncodingForMethodParameter - Return the encoded type for a single
4967 /// method parameter or return type. If Extended, include class names and
4968 /// block object types.
getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,QualType T,std::string & S,bool Extended) const4969 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4970                                                    QualType T, std::string& S,
4971                                                    bool Extended) const {
4972   // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4973   getObjCEncodingForTypeQualifier(QT, S);
4974   // Encode parameter type.
4975   getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
4976                              true     /*OutermostType*/,
4977                              false    /*EncodingProperty*/,
4978                              false    /*StructField*/,
4979                              Extended /*EncodeBlockParameters*/,
4980                              Extended /*EncodeClassNames*/);
4981 }
4982 
4983 /// getObjCEncodingForMethodDecl - Return the encoded type for this method
4984 /// declaration.
getObjCEncodingForMethodDecl(const ObjCMethodDecl * Decl,std::string & S,bool Extended) const4985 bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4986                                               std::string& S,
4987                                               bool Extended) const {
4988   // FIXME: This is not very efficient.
4989   // Encode return type.
4990   getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4991                                     Decl->getReturnType(), S, Extended);
4992   // Compute size of all parameters.
4993   // Start with computing size of a pointer in number of bytes.
4994   // FIXME: There might(should) be a better way of doing this computation!
4995   SourceLocation Loc;
4996   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4997   // The first two arguments (self and _cmd) are pointers; account for
4998   // their size.
4999   CharUnits ParmOffset = 2 * PtrSize;
5000   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
5001        E = Decl->sel_param_end(); PI != E; ++PI) {
5002     QualType PType = (*PI)->getType();
5003     CharUnits sz = getObjCEncodingTypeSize(PType);
5004     if (sz.isZero())
5005       continue;
5006 
5007     assert (sz.isPositive() &&
5008         "getObjCEncodingForMethodDecl - Incomplete param type");
5009     ParmOffset += sz;
5010   }
5011   S += charUnitsToString(ParmOffset);
5012   S += "@0:";
5013   S += charUnitsToString(PtrSize);
5014 
5015   // Argument types.
5016   ParmOffset = 2 * PtrSize;
5017   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
5018        E = Decl->sel_param_end(); PI != E; ++PI) {
5019     const ParmVarDecl *PVDecl = *PI;
5020     QualType PType = PVDecl->getOriginalType();
5021     if (const ArrayType *AT =
5022           dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
5023       // Use array's original type only if it has known number of
5024       // elements.
5025       if (!isa<ConstantArrayType>(AT))
5026         PType = PVDecl->getType();
5027     } else if (PType->isFunctionType())
5028       PType = PVDecl->getType();
5029     getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
5030                                       PType, S, Extended);
5031     S += charUnitsToString(ParmOffset);
5032     ParmOffset += getObjCEncodingTypeSize(PType);
5033   }
5034 
5035   return false;
5036 }
5037 
5038 ObjCPropertyImplDecl *
getObjCPropertyImplDeclForPropertyDecl(const ObjCPropertyDecl * PD,const Decl * Container) const5039 ASTContext::getObjCPropertyImplDeclForPropertyDecl(
5040                                       const ObjCPropertyDecl *PD,
5041                                       const Decl *Container) const {
5042   if (!Container)
5043     return nullptr;
5044   if (const ObjCCategoryImplDecl *CID =
5045       dyn_cast<ObjCCategoryImplDecl>(Container)) {
5046     for (auto *PID : CID->property_impls())
5047       if (PID->getPropertyDecl() == PD)
5048         return PID;
5049   } else {
5050     const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
5051     for (auto *PID : OID->property_impls())
5052       if (PID->getPropertyDecl() == PD)
5053         return PID;
5054   }
5055   return nullptr;
5056 }
5057 
5058 /// getObjCEncodingForPropertyDecl - Return the encoded type for this
5059 /// property declaration. If non-NULL, Container must be either an
5060 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
5061 /// NULL when getting encodings for protocol properties.
5062 /// Property attributes are stored as a comma-delimited C string. The simple
5063 /// attributes readonly and bycopy are encoded as single characters. The
5064 /// parametrized attributes, getter=name, setter=name, and ivar=name, are
5065 /// encoded as single characters, followed by an identifier. Property types
5066 /// are also encoded as a parametrized attribute. The characters used to encode
5067 /// these attributes are defined by the following enumeration:
5068 /// @code
5069 /// enum PropertyAttributes {
5070 /// kPropertyReadOnly = 'R',   // property is read-only.
5071 /// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
5072 /// kPropertyByref = '&',  // property is a reference to the value last assigned
5073 /// kPropertyDynamic = 'D',    // property is dynamic
5074 /// kPropertyGetter = 'G',     // followed by getter selector name
5075 /// kPropertySetter = 'S',     // followed by setter selector name
5076 /// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
5077 /// kPropertyType = 'T'              // followed by old-style type encoding.
5078 /// kPropertyWeak = 'W'              // 'weak' property
5079 /// kPropertyStrong = 'P'            // property GC'able
5080 /// kPropertyNonAtomic = 'N'         // property non-atomic
5081 /// };
5082 /// @endcode
getObjCEncodingForPropertyDecl(const ObjCPropertyDecl * PD,const Decl * Container,std::string & S) const5083 void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
5084                                                 const Decl *Container,
5085                                                 std::string& S) const {
5086   // Collect information from the property implementation decl(s).
5087   bool Dynamic = false;
5088   ObjCPropertyImplDecl *SynthesizePID = nullptr;
5089 
5090   if (ObjCPropertyImplDecl *PropertyImpDecl =
5091       getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
5092     if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
5093       Dynamic = true;
5094     else
5095       SynthesizePID = PropertyImpDecl;
5096   }
5097 
5098   // FIXME: This is not very efficient.
5099   S = "T";
5100 
5101   // Encode result type.
5102   // GCC has some special rules regarding encoding of properties which
5103   // closely resembles encoding of ivars.
5104   getObjCEncodingForPropertyType(PD->getType(), S);
5105 
5106   if (PD->isReadOnly()) {
5107     S += ",R";
5108     if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
5109       S += ",C";
5110     if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
5111       S += ",&";
5112     if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)
5113       S += ",W";
5114   } else {
5115     switch (PD->getSetterKind()) {
5116     case ObjCPropertyDecl::Assign: break;
5117     case ObjCPropertyDecl::Copy:   S += ",C"; break;
5118     case ObjCPropertyDecl::Retain: S += ",&"; break;
5119     case ObjCPropertyDecl::Weak:   S += ",W"; break;
5120     }
5121   }
5122 
5123   // It really isn't clear at all what this means, since properties
5124   // are "dynamic by default".
5125   if (Dynamic)
5126     S += ",D";
5127 
5128   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
5129     S += ",N";
5130 
5131   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
5132     S += ",G";
5133     S += PD->getGetterName().getAsString();
5134   }
5135 
5136   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
5137     S += ",S";
5138     S += PD->getSetterName().getAsString();
5139   }
5140 
5141   if (SynthesizePID) {
5142     const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
5143     S += ",V";
5144     S += OID->getNameAsString();
5145   }
5146 
5147   // FIXME: OBJCGC: weak & strong
5148 }
5149 
5150 /// getLegacyIntegralTypeEncoding -
5151 /// Another legacy compatibility encoding: 32-bit longs are encoded as
5152 /// 'l' or 'L' , but not always.  For typedefs, we need to use
5153 /// 'i' or 'I' instead if encoding a struct field, or a pointer!
5154 ///
getLegacyIntegralTypeEncoding(QualType & PointeeTy) const5155 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
5156   if (isa<TypedefType>(PointeeTy.getTypePtr())) {
5157     if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
5158       if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
5159         PointeeTy = UnsignedIntTy;
5160       else
5161         if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
5162           PointeeTy = IntTy;
5163     }
5164   }
5165 }
5166 
getObjCEncodingForType(QualType T,std::string & S,const FieldDecl * Field,QualType * NotEncodedT) const5167 void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
5168                                         const FieldDecl *Field,
5169                                         QualType *NotEncodedT) const {
5170   // We follow the behavior of gcc, expanding structures which are
5171   // directly pointed to, and expanding embedded structures. Note that
5172   // these rules are sufficient to prevent recursive encoding of the
5173   // same type.
5174   getObjCEncodingForTypeImpl(T, S, true, true, Field,
5175                              true /* outermost type */, false, false,
5176                              false, false, false, NotEncodedT);
5177 }
5178 
getObjCEncodingForPropertyType(QualType T,std::string & S) const5179 void ASTContext::getObjCEncodingForPropertyType(QualType T,
5180                                                 std::string& S) const {
5181   // Encode result type.
5182   // GCC has some special rules regarding encoding of properties which
5183   // closely resembles encoding of ivars.
5184   getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
5185                              true /* outermost type */,
5186                              true /* encoding property */);
5187 }
5188 
getObjCEncodingForPrimitiveKind(const ASTContext * C,BuiltinType::Kind kind)5189 static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
5190                                             BuiltinType::Kind kind) {
5191     switch (kind) {
5192     case BuiltinType::Void:       return 'v';
5193     case BuiltinType::Bool:       return 'B';
5194     case BuiltinType::Char_U:
5195     case BuiltinType::UChar:      return 'C';
5196     case BuiltinType::Char16:
5197     case BuiltinType::UShort:     return 'S';
5198     case BuiltinType::Char32:
5199     case BuiltinType::UInt:       return 'I';
5200     case BuiltinType::ULong:
5201         return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
5202     case BuiltinType::UInt128:    return 'T';
5203     case BuiltinType::ULongLong:  return 'Q';
5204     case BuiltinType::Char_S:
5205     case BuiltinType::SChar:      return 'c';
5206     case BuiltinType::Short:      return 's';
5207     case BuiltinType::WChar_S:
5208     case BuiltinType::WChar_U:
5209     case BuiltinType::Int:        return 'i';
5210     case BuiltinType::Long:
5211       return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
5212     case BuiltinType::LongLong:   return 'q';
5213     case BuiltinType::Int128:     return 't';
5214     case BuiltinType::Float:      return 'f';
5215     case BuiltinType::Double:     return 'd';
5216     case BuiltinType::LongDouble: return 'D';
5217     case BuiltinType::NullPtr:    return '*'; // like char*
5218 
5219     case BuiltinType::Half:
5220       // FIXME: potentially need @encodes for these!
5221       return ' ';
5222 
5223     case BuiltinType::ObjCId:
5224     case BuiltinType::ObjCClass:
5225     case BuiltinType::ObjCSel:
5226       llvm_unreachable("@encoding ObjC primitive type");
5227 
5228     // OpenCL and placeholder types don't need @encodings.
5229     case BuiltinType::OCLImage1d:
5230     case BuiltinType::OCLImage1dArray:
5231     case BuiltinType::OCLImage1dBuffer:
5232     case BuiltinType::OCLImage2d:
5233     case BuiltinType::OCLImage2dArray:
5234     case BuiltinType::OCLImage3d:
5235     case BuiltinType::OCLEvent:
5236     case BuiltinType::OCLSampler:
5237     case BuiltinType::Dependent:
5238 #define BUILTIN_TYPE(KIND, ID)
5239 #define PLACEHOLDER_TYPE(KIND, ID) \
5240     case BuiltinType::KIND:
5241 #include "clang/AST/BuiltinTypes.def"
5242       llvm_unreachable("invalid builtin type for @encode");
5243     }
5244     llvm_unreachable("invalid BuiltinType::Kind value");
5245 }
5246 
ObjCEncodingForEnumType(const ASTContext * C,const EnumType * ET)5247 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
5248   EnumDecl *Enum = ET->getDecl();
5249 
5250   // The encoding of an non-fixed enum type is always 'i', regardless of size.
5251   if (!Enum->isFixed())
5252     return 'i';
5253 
5254   // The encoding of a fixed enum type matches its fixed underlying type.
5255   const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
5256   return getObjCEncodingForPrimitiveKind(C, BT->getKind());
5257 }
5258 
EncodeBitField(const ASTContext * Ctx,std::string & S,QualType T,const FieldDecl * FD)5259 static void EncodeBitField(const ASTContext *Ctx, std::string& S,
5260                            QualType T, const FieldDecl *FD) {
5261   assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
5262   S += 'b';
5263   // The NeXT runtime encodes bit fields as b followed by the number of bits.
5264   // The GNU runtime requires more information; bitfields are encoded as b,
5265   // then the offset (in bits) of the first element, then the type of the
5266   // bitfield, then the size in bits.  For example, in this structure:
5267   //
5268   // struct
5269   // {
5270   //    int integer;
5271   //    int flags:2;
5272   // };
5273   // On a 32-bit system, the encoding for flags would be b2 for the NeXT
5274   // runtime, but b32i2 for the GNU runtime.  The reason for this extra
5275   // information is not especially sensible, but we're stuck with it for
5276   // compatibility with GCC, although providing it breaks anything that
5277   // actually uses runtime introspection and wants to work on both runtimes...
5278   if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
5279     const RecordDecl *RD = FD->getParent();
5280     const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
5281     S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
5282     if (const EnumType *ET = T->getAs<EnumType>())
5283       S += ObjCEncodingForEnumType(Ctx, ET);
5284     else {
5285       const BuiltinType *BT = T->castAs<BuiltinType>();
5286       S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
5287     }
5288   }
5289   S += llvm::utostr(FD->getBitWidthValue(*Ctx));
5290 }
5291 
5292 // FIXME: Use SmallString for accumulating string.
getObjCEncodingForTypeImpl(QualType T,std::string & S,bool ExpandPointedToStructures,bool ExpandStructures,const FieldDecl * FD,bool OutermostType,bool EncodingProperty,bool StructField,bool EncodeBlockParameters,bool EncodeClassNames,bool EncodePointerToObjCTypedef,QualType * NotEncodedT) const5293 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
5294                                             bool ExpandPointedToStructures,
5295                                             bool ExpandStructures,
5296                                             const FieldDecl *FD,
5297                                             bool OutermostType,
5298                                             bool EncodingProperty,
5299                                             bool StructField,
5300                                             bool EncodeBlockParameters,
5301                                             bool EncodeClassNames,
5302                                             bool EncodePointerToObjCTypedef,
5303                                             QualType *NotEncodedT) const {
5304   CanQualType CT = getCanonicalType(T);
5305   switch (CT->getTypeClass()) {
5306   case Type::Builtin:
5307   case Type::Enum:
5308     if (FD && FD->isBitField())
5309       return EncodeBitField(this, S, T, FD);
5310     if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
5311       S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
5312     else
5313       S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
5314     return;
5315 
5316   case Type::Complex: {
5317     const ComplexType *CT = T->castAs<ComplexType>();
5318     S += 'j';
5319     getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, nullptr);
5320     return;
5321   }
5322 
5323   case Type::Atomic: {
5324     const AtomicType *AT = T->castAs<AtomicType>();
5325     S += 'A';
5326     getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, nullptr);
5327     return;
5328   }
5329 
5330   // encoding for pointer or reference types.
5331   case Type::Pointer:
5332   case Type::LValueReference:
5333   case Type::RValueReference: {
5334     QualType PointeeTy;
5335     if (isa<PointerType>(CT)) {
5336       const PointerType *PT = T->castAs<PointerType>();
5337       if (PT->isObjCSelType()) {
5338         S += ':';
5339         return;
5340       }
5341       PointeeTy = PT->getPointeeType();
5342     } else {
5343       PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
5344     }
5345 
5346     bool isReadOnly = false;
5347     // For historical/compatibility reasons, the read-only qualifier of the
5348     // pointee gets emitted _before_ the '^'.  The read-only qualifier of
5349     // the pointer itself gets ignored, _unless_ we are looking at a typedef!
5350     // Also, do not emit the 'r' for anything but the outermost type!
5351     if (isa<TypedefType>(T.getTypePtr())) {
5352       if (OutermostType && T.isConstQualified()) {
5353         isReadOnly = true;
5354         S += 'r';
5355       }
5356     } else if (OutermostType) {
5357       QualType P = PointeeTy;
5358       while (P->getAs<PointerType>())
5359         P = P->getAs<PointerType>()->getPointeeType();
5360       if (P.isConstQualified()) {
5361         isReadOnly = true;
5362         S += 'r';
5363       }
5364     }
5365     if (isReadOnly) {
5366       // Another legacy compatibility encoding. Some ObjC qualifier and type
5367       // combinations need to be rearranged.
5368       // Rewrite "in const" from "nr" to "rn"
5369       if (StringRef(S).endswith("nr"))
5370         S.replace(S.end()-2, S.end(), "rn");
5371     }
5372 
5373     if (PointeeTy->isCharType()) {
5374       // char pointer types should be encoded as '*' unless it is a
5375       // type that has been typedef'd to 'BOOL'.
5376       if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5377         S += '*';
5378         return;
5379       }
5380     } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5381       // GCC binary compat: Need to convert "struct objc_class *" to "#".
5382       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5383         S += '#';
5384         return;
5385       }
5386       // GCC binary compat: Need to convert "struct objc_object *" to "@".
5387       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5388         S += '@';
5389         return;
5390       }
5391       // fall through...
5392     }
5393     S += '^';
5394     getLegacyIntegralTypeEncoding(PointeeTy);
5395 
5396     getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5397                                nullptr, false, false, false, false, false, false,
5398                                NotEncodedT);
5399     return;
5400   }
5401 
5402   case Type::ConstantArray:
5403   case Type::IncompleteArray:
5404   case Type::VariableArray: {
5405     const ArrayType *AT = cast<ArrayType>(CT);
5406 
5407     if (isa<IncompleteArrayType>(AT) && !StructField) {
5408       // Incomplete arrays are encoded as a pointer to the array element.
5409       S += '^';
5410 
5411       getObjCEncodingForTypeImpl(AT->getElementType(), S,
5412                                  false, ExpandStructures, FD);
5413     } else {
5414       S += '[';
5415 
5416       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
5417         S += llvm::utostr(CAT->getSize().getZExtValue());
5418       else {
5419         //Variable length arrays are encoded as a regular array with 0 elements.
5420         assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5421                "Unknown array type!");
5422         S += '0';
5423       }
5424 
5425       getObjCEncodingForTypeImpl(AT->getElementType(), S,
5426                                  false, ExpandStructures, FD,
5427                                  false, false, false, false, false, false,
5428                                  NotEncodedT);
5429       S += ']';
5430     }
5431     return;
5432   }
5433 
5434   case Type::FunctionNoProto:
5435   case Type::FunctionProto:
5436     S += '?';
5437     return;
5438 
5439   case Type::Record: {
5440     RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5441     S += RDecl->isUnion() ? '(' : '{';
5442     // Anonymous structures print as '?'
5443     if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5444       S += II->getName();
5445       if (ClassTemplateSpecializationDecl *Spec
5446           = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5447         const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5448         llvm::raw_string_ostream OS(S);
5449         TemplateSpecializationType::PrintTemplateArgumentList(OS,
5450                                             TemplateArgs.data(),
5451                                             TemplateArgs.size(),
5452                                             (*this).getPrintingPolicy());
5453       }
5454     } else {
5455       S += '?';
5456     }
5457     if (ExpandStructures) {
5458       S += '=';
5459       if (!RDecl->isUnion()) {
5460         getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
5461       } else {
5462         for (const auto *Field : RDecl->fields()) {
5463           if (FD) {
5464             S += '"';
5465             S += Field->getNameAsString();
5466             S += '"';
5467           }
5468 
5469           // Special case bit-fields.
5470           if (Field->isBitField()) {
5471             getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5472                                        Field);
5473           } else {
5474             QualType qt = Field->getType();
5475             getLegacyIntegralTypeEncoding(qt);
5476             getObjCEncodingForTypeImpl(qt, S, false, true,
5477                                        FD, /*OutermostType*/false,
5478                                        /*EncodingProperty*/false,
5479                                        /*StructField*/true,
5480                                        false, false, false, NotEncodedT);
5481           }
5482         }
5483       }
5484     }
5485     S += RDecl->isUnion() ? ')' : '}';
5486     return;
5487   }
5488 
5489   case Type::BlockPointer: {
5490     const BlockPointerType *BT = T->castAs<BlockPointerType>();
5491     S += "@?"; // Unlike a pointer-to-function, which is "^?".
5492     if (EncodeBlockParameters) {
5493       const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5494 
5495       S += '<';
5496       // Block return type
5497       getObjCEncodingForTypeImpl(
5498           FT->getReturnType(), S, ExpandPointedToStructures, ExpandStructures,
5499           FD, false /* OutermostType */, EncodingProperty,
5500           false /* StructField */, EncodeBlockParameters, EncodeClassNames, false,
5501                                  NotEncodedT);
5502       // Block self
5503       S += "@?";
5504       // Block parameters
5505       if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5506         for (const auto &I : FPT->param_types())
5507           getObjCEncodingForTypeImpl(
5508               I, S, ExpandPointedToStructures, ExpandStructures, FD,
5509               false /* OutermostType */, EncodingProperty,
5510               false /* StructField */, EncodeBlockParameters, EncodeClassNames,
5511                                      false, NotEncodedT);
5512       }
5513       S += '>';
5514     }
5515     return;
5516   }
5517 
5518   case Type::ObjCObject: {
5519     // hack to match legacy encoding of *id and *Class
5520     QualType Ty = getObjCObjectPointerType(CT);
5521     if (Ty->isObjCIdType()) {
5522       S += "{objc_object=}";
5523       return;
5524     }
5525     else if (Ty->isObjCClassType()) {
5526       S += "{objc_class=}";
5527       return;
5528     }
5529   }
5530 
5531   case Type::ObjCInterface: {
5532     // Ignore protocol qualifiers when mangling at this level.
5533     T = T->castAs<ObjCObjectType>()->getBaseType();
5534 
5535     // The assumption seems to be that this assert will succeed
5536     // because nested levels will have filtered out 'id' and 'Class'.
5537     const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
5538     // @encode(class_name)
5539     ObjCInterfaceDecl *OI = OIT->getDecl();
5540     S += '{';
5541     const IdentifierInfo *II = OI->getIdentifier();
5542     S += II->getName();
5543     S += '=';
5544     SmallVector<const ObjCIvarDecl*, 32> Ivars;
5545     DeepCollectObjCIvars(OI, true, Ivars);
5546     for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5547       const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5548       if (Field->isBitField())
5549         getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5550       else
5551         getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
5552                                    false, false, false, false, false,
5553                                    EncodePointerToObjCTypedef,
5554                                    NotEncodedT);
5555     }
5556     S += '}';
5557     return;
5558   }
5559 
5560   case Type::ObjCObjectPointer: {
5561     const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5562     if (OPT->isObjCIdType()) {
5563       S += '@';
5564       return;
5565     }
5566 
5567     if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5568       // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5569       // Since this is a binary compatibility issue, need to consult with runtime
5570       // folks. Fortunately, this is a *very* obsure construct.
5571       S += '#';
5572       return;
5573     }
5574 
5575     if (OPT->isObjCQualifiedIdType()) {
5576       getObjCEncodingForTypeImpl(getObjCIdType(), S,
5577                                  ExpandPointedToStructures,
5578                                  ExpandStructures, FD);
5579       if (FD || EncodingProperty || EncodeClassNames) {
5580         // Note that we do extended encoding of protocol qualifer list
5581         // Only when doing ivar or property encoding.
5582         S += '"';
5583         for (const auto *I : OPT->quals()) {
5584           S += '<';
5585           S += I->getNameAsString();
5586           S += '>';
5587         }
5588         S += '"';
5589       }
5590       return;
5591     }
5592 
5593     QualType PointeeTy = OPT->getPointeeType();
5594     if (!EncodingProperty &&
5595         isa<TypedefType>(PointeeTy.getTypePtr()) &&
5596         !EncodePointerToObjCTypedef) {
5597       // Another historical/compatibility reason.
5598       // We encode the underlying type which comes out as
5599       // {...};
5600       S += '^';
5601       if (FD && OPT->getInterfaceDecl()) {
5602         // Prevent recursive encoding of fields in some rare cases.
5603         ObjCInterfaceDecl *OI = OPT->getInterfaceDecl();
5604         SmallVector<const ObjCIvarDecl*, 32> Ivars;
5605         DeepCollectObjCIvars(OI, true, Ivars);
5606         for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5607           if (cast<FieldDecl>(Ivars[i]) == FD) {
5608             S += '{';
5609             S += OI->getIdentifier()->getName();
5610             S += '}';
5611             return;
5612           }
5613         }
5614       }
5615       getObjCEncodingForTypeImpl(PointeeTy, S,
5616                                  false, ExpandPointedToStructures,
5617                                  nullptr,
5618                                  false, false, false, false, false,
5619                                  /*EncodePointerToObjCTypedef*/true);
5620       return;
5621     }
5622 
5623     S += '@';
5624     if (OPT->getInterfaceDecl() &&
5625         (FD || EncodingProperty || EncodeClassNames)) {
5626       S += '"';
5627       S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5628       for (const auto *I : OPT->quals()) {
5629         S += '<';
5630         S += I->getNameAsString();
5631         S += '>';
5632       }
5633       S += '"';
5634     }
5635     return;
5636   }
5637 
5638   // gcc just blithely ignores member pointers.
5639   // FIXME: we shoul do better than that.  'M' is available.
5640   case Type::MemberPointer:
5641   // This matches gcc's encoding, even though technically it is insufficient.
5642   //FIXME. We should do a better job than gcc.
5643   case Type::Vector:
5644   case Type::ExtVector:
5645   // Until we have a coherent encoding of these three types, issue warning.
5646     { if (NotEncodedT)
5647         *NotEncodedT = T;
5648       return;
5649     }
5650 
5651   // We could see an undeduced auto type here during error recovery.
5652   // Just ignore it.
5653   case Type::Auto:
5654     return;
5655 
5656 
5657 #define ABSTRACT_TYPE(KIND, BASE)
5658 #define TYPE(KIND, BASE)
5659 #define DEPENDENT_TYPE(KIND, BASE) \
5660   case Type::KIND:
5661 #define NON_CANONICAL_TYPE(KIND, BASE) \
5662   case Type::KIND:
5663 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5664   case Type::KIND:
5665 #include "clang/AST/TypeNodes.def"
5666     llvm_unreachable("@encode for dependent type!");
5667   }
5668   llvm_unreachable("bad type kind!");
5669 }
5670 
getObjCEncodingForStructureImpl(RecordDecl * RDecl,std::string & S,const FieldDecl * FD,bool includeVBases,QualType * NotEncodedT) const5671 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5672                                                  std::string &S,
5673                                                  const FieldDecl *FD,
5674                                                  bool includeVBases,
5675                                                  QualType *NotEncodedT) const {
5676   assert(RDecl && "Expected non-null RecordDecl");
5677   assert(!RDecl->isUnion() && "Should not be called for unions");
5678   if (!RDecl->getDefinition())
5679     return;
5680 
5681   CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5682   std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5683   const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5684 
5685   if (CXXRec) {
5686     for (const auto &BI : CXXRec->bases()) {
5687       if (!BI.isVirtual()) {
5688         CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
5689         if (base->isEmpty())
5690           continue;
5691         uint64_t offs = toBits(layout.getBaseClassOffset(base));
5692         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5693                                   std::make_pair(offs, base));
5694       }
5695     }
5696   }
5697 
5698   unsigned i = 0;
5699   for (auto *Field : RDecl->fields()) {
5700     uint64_t offs = layout.getFieldOffset(i);
5701     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5702                               std::make_pair(offs, Field));
5703     ++i;
5704   }
5705 
5706   if (CXXRec && includeVBases) {
5707     for (const auto &BI : CXXRec->vbases()) {
5708       CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
5709       if (base->isEmpty())
5710         continue;
5711       uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5712       if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
5713           FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5714         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5715                                   std::make_pair(offs, base));
5716     }
5717   }
5718 
5719   CharUnits size;
5720   if (CXXRec) {
5721     size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5722   } else {
5723     size = layout.getSize();
5724   }
5725 
5726 #ifndef NDEBUG
5727   uint64_t CurOffs = 0;
5728 #endif
5729   std::multimap<uint64_t, NamedDecl *>::iterator
5730     CurLayObj = FieldOrBaseOffsets.begin();
5731 
5732   if (CXXRec && CXXRec->isDynamicClass() &&
5733       (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5734     if (FD) {
5735       S += "\"_vptr$";
5736       std::string recname = CXXRec->getNameAsString();
5737       if (recname.empty()) recname = "?";
5738       S += recname;
5739       S += '"';
5740     }
5741     S += "^^?";
5742 #ifndef NDEBUG
5743     CurOffs += getTypeSize(VoidPtrTy);
5744 #endif
5745   }
5746 
5747   if (!RDecl->hasFlexibleArrayMember()) {
5748     // Mark the end of the structure.
5749     uint64_t offs = toBits(size);
5750     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5751                               std::make_pair(offs, nullptr));
5752   }
5753 
5754   for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5755 #ifndef NDEBUG
5756     assert(CurOffs <= CurLayObj->first);
5757     if (CurOffs < CurLayObj->first) {
5758       uint64_t padding = CurLayObj->first - CurOffs;
5759       // FIXME: There doesn't seem to be a way to indicate in the encoding that
5760       // packing/alignment of members is different that normal, in which case
5761       // the encoding will be out-of-sync with the real layout.
5762       // If the runtime switches to just consider the size of types without
5763       // taking into account alignment, we could make padding explicit in the
5764       // encoding (e.g. using arrays of chars). The encoding strings would be
5765       // longer then though.
5766       CurOffs += padding;
5767     }
5768 #endif
5769 
5770     NamedDecl *dcl = CurLayObj->second;
5771     if (!dcl)
5772       break; // reached end of structure.
5773 
5774     if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5775       // We expand the bases without their virtual bases since those are going
5776       // in the initial structure. Note that this differs from gcc which
5777       // expands virtual bases each time one is encountered in the hierarchy,
5778       // making the encoding type bigger than it really is.
5779       getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
5780                                       NotEncodedT);
5781       assert(!base->isEmpty());
5782 #ifndef NDEBUG
5783       CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5784 #endif
5785     } else {
5786       FieldDecl *field = cast<FieldDecl>(dcl);
5787       if (FD) {
5788         S += '"';
5789         S += field->getNameAsString();
5790         S += '"';
5791       }
5792 
5793       if (field->isBitField()) {
5794         EncodeBitField(this, S, field->getType(), field);
5795 #ifndef NDEBUG
5796         CurOffs += field->getBitWidthValue(*this);
5797 #endif
5798       } else {
5799         QualType qt = field->getType();
5800         getLegacyIntegralTypeEncoding(qt);
5801         getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5802                                    /*OutermostType*/false,
5803                                    /*EncodingProperty*/false,
5804                                    /*StructField*/true,
5805                                    false, false, false, NotEncodedT);
5806 #ifndef NDEBUG
5807         CurOffs += getTypeSize(field->getType());
5808 #endif
5809       }
5810     }
5811   }
5812 }
5813 
getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,std::string & S) const5814 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5815                                                  std::string& S) const {
5816   if (QT & Decl::OBJC_TQ_In)
5817     S += 'n';
5818   if (QT & Decl::OBJC_TQ_Inout)
5819     S += 'N';
5820   if (QT & Decl::OBJC_TQ_Out)
5821     S += 'o';
5822   if (QT & Decl::OBJC_TQ_Bycopy)
5823     S += 'O';
5824   if (QT & Decl::OBJC_TQ_Byref)
5825     S += 'R';
5826   if (QT & Decl::OBJC_TQ_Oneway)
5827     S += 'V';
5828 }
5829 
getObjCIdDecl() const5830 TypedefDecl *ASTContext::getObjCIdDecl() const {
5831   if (!ObjCIdDecl) {
5832     QualType T = getObjCObjectType(ObjCBuiltinIdTy, nullptr, 0);
5833     T = getObjCObjectPointerType(T);
5834     ObjCIdDecl = buildImplicitTypedef(T, "id");
5835   }
5836   return ObjCIdDecl;
5837 }
5838 
getObjCSelDecl() const5839 TypedefDecl *ASTContext::getObjCSelDecl() const {
5840   if (!ObjCSelDecl) {
5841     QualType T = getPointerType(ObjCBuiltinSelTy);
5842     ObjCSelDecl = buildImplicitTypedef(T, "SEL");
5843   }
5844   return ObjCSelDecl;
5845 }
5846 
getObjCClassDecl() const5847 TypedefDecl *ASTContext::getObjCClassDecl() const {
5848   if (!ObjCClassDecl) {
5849     QualType T = getObjCObjectType(ObjCBuiltinClassTy, nullptr, 0);
5850     T = getObjCObjectPointerType(T);
5851     ObjCClassDecl = buildImplicitTypedef(T, "Class");
5852   }
5853   return ObjCClassDecl;
5854 }
5855 
getObjCProtocolDecl() const5856 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5857   if (!ObjCProtocolClassDecl) {
5858     ObjCProtocolClassDecl
5859       = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5860                                   SourceLocation(),
5861                                   &Idents.get("Protocol"),
5862                                   /*PrevDecl=*/nullptr,
5863                                   SourceLocation(), true);
5864   }
5865 
5866   return ObjCProtocolClassDecl;
5867 }
5868 
5869 //===----------------------------------------------------------------------===//
5870 // __builtin_va_list Construction Functions
5871 //===----------------------------------------------------------------------===//
5872 
CreateCharPtrBuiltinVaListDecl(const ASTContext * Context)5873 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5874   // typedef char* __builtin_va_list;
5875   QualType T = Context->getPointerType(Context->CharTy);
5876   return Context->buildImplicitTypedef(T, "__builtin_va_list");
5877 }
5878 
CreateVoidPtrBuiltinVaListDecl(const ASTContext * Context)5879 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5880   // typedef void* __builtin_va_list;
5881   QualType T = Context->getPointerType(Context->VoidTy);
5882   return Context->buildImplicitTypedef(T, "__builtin_va_list");
5883 }
5884 
5885 static TypedefDecl *
CreateAArch64ABIBuiltinVaListDecl(const ASTContext * Context)5886 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
5887   // struct __va_list
5888   RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
5889   if (Context->getLangOpts().CPlusPlus) {
5890     // namespace std { struct __va_list {
5891     NamespaceDecl *NS;
5892     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5893                                Context->getTranslationUnitDecl(),
5894                                /*Inline*/ false, SourceLocation(),
5895                                SourceLocation(), &Context->Idents.get("std"),
5896                                /*PrevDecl*/ nullptr);
5897     NS->setImplicit();
5898     VaListTagDecl->setDeclContext(NS);
5899   }
5900 
5901   VaListTagDecl->startDefinition();
5902 
5903   const size_t NumFields = 5;
5904   QualType FieldTypes[NumFields];
5905   const char *FieldNames[NumFields];
5906 
5907   // void *__stack;
5908   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
5909   FieldNames[0] = "__stack";
5910 
5911   // void *__gr_top;
5912   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
5913   FieldNames[1] = "__gr_top";
5914 
5915   // void *__vr_top;
5916   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5917   FieldNames[2] = "__vr_top";
5918 
5919   // int __gr_offs;
5920   FieldTypes[3] = Context->IntTy;
5921   FieldNames[3] = "__gr_offs";
5922 
5923   // int __vr_offs;
5924   FieldTypes[4] = Context->IntTy;
5925   FieldNames[4] = "__vr_offs";
5926 
5927   // Create fields
5928   for (unsigned i = 0; i < NumFields; ++i) {
5929     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5930                                          VaListTagDecl,
5931                                          SourceLocation(),
5932                                          SourceLocation(),
5933                                          &Context->Idents.get(FieldNames[i]),
5934                                          FieldTypes[i], /*TInfo=*/nullptr,
5935                                          /*BitWidth=*/nullptr,
5936                                          /*Mutable=*/false,
5937                                          ICIS_NoInit);
5938     Field->setAccess(AS_public);
5939     VaListTagDecl->addDecl(Field);
5940   }
5941   VaListTagDecl->completeDefinition();
5942   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5943   Context->VaListTagTy = VaListTagType;
5944 
5945   // } __builtin_va_list;
5946   return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
5947 }
5948 
CreatePowerABIBuiltinVaListDecl(const ASTContext * Context)5949 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5950   // typedef struct __va_list_tag {
5951   RecordDecl *VaListTagDecl;
5952 
5953   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
5954   VaListTagDecl->startDefinition();
5955 
5956   const size_t NumFields = 5;
5957   QualType FieldTypes[NumFields];
5958   const char *FieldNames[NumFields];
5959 
5960   //   unsigned char gpr;
5961   FieldTypes[0] = Context->UnsignedCharTy;
5962   FieldNames[0] = "gpr";
5963 
5964   //   unsigned char fpr;
5965   FieldTypes[1] = Context->UnsignedCharTy;
5966   FieldNames[1] = "fpr";
5967 
5968   //   unsigned short reserved;
5969   FieldTypes[2] = Context->UnsignedShortTy;
5970   FieldNames[2] = "reserved";
5971 
5972   //   void* overflow_arg_area;
5973   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5974   FieldNames[3] = "overflow_arg_area";
5975 
5976   //   void* reg_save_area;
5977   FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5978   FieldNames[4] = "reg_save_area";
5979 
5980   // Create fields
5981   for (unsigned i = 0; i < NumFields; ++i) {
5982     FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5983                                          SourceLocation(),
5984                                          SourceLocation(),
5985                                          &Context->Idents.get(FieldNames[i]),
5986                                          FieldTypes[i], /*TInfo=*/nullptr,
5987                                          /*BitWidth=*/nullptr,
5988                                          /*Mutable=*/false,
5989                                          ICIS_NoInit);
5990     Field->setAccess(AS_public);
5991     VaListTagDecl->addDecl(Field);
5992   }
5993   VaListTagDecl->completeDefinition();
5994   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5995   Context->VaListTagTy = VaListTagType;
5996 
5997   // } __va_list_tag;
5998   TypedefDecl *VaListTagTypedefDecl =
5999       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
6000 
6001   QualType VaListTagTypedefType =
6002     Context->getTypedefType(VaListTagTypedefDecl);
6003 
6004   // typedef __va_list_tag __builtin_va_list[1];
6005   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6006   QualType VaListTagArrayType
6007     = Context->getConstantArrayType(VaListTagTypedefType,
6008                                     Size, ArrayType::Normal, 0);
6009   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6010 }
6011 
6012 static TypedefDecl *
CreateX86_64ABIBuiltinVaListDecl(const ASTContext * Context)6013 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
6014   // typedef struct __va_list_tag {
6015   RecordDecl *VaListTagDecl;
6016   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
6017   VaListTagDecl->startDefinition();
6018 
6019   const size_t NumFields = 4;
6020   QualType FieldTypes[NumFields];
6021   const char *FieldNames[NumFields];
6022 
6023   //   unsigned gp_offset;
6024   FieldTypes[0] = Context->UnsignedIntTy;
6025   FieldNames[0] = "gp_offset";
6026 
6027   //   unsigned fp_offset;
6028   FieldTypes[1] = Context->UnsignedIntTy;
6029   FieldNames[1] = "fp_offset";
6030 
6031   //   void* overflow_arg_area;
6032   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6033   FieldNames[2] = "overflow_arg_area";
6034 
6035   //   void* reg_save_area;
6036   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6037   FieldNames[3] = "reg_save_area";
6038 
6039   // Create fields
6040   for (unsigned i = 0; i < NumFields; ++i) {
6041     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6042                                          VaListTagDecl,
6043                                          SourceLocation(),
6044                                          SourceLocation(),
6045                                          &Context->Idents.get(FieldNames[i]),
6046                                          FieldTypes[i], /*TInfo=*/nullptr,
6047                                          /*BitWidth=*/nullptr,
6048                                          /*Mutable=*/false,
6049                                          ICIS_NoInit);
6050     Field->setAccess(AS_public);
6051     VaListTagDecl->addDecl(Field);
6052   }
6053   VaListTagDecl->completeDefinition();
6054   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6055   Context->VaListTagTy = VaListTagType;
6056 
6057   // } __va_list_tag;
6058   TypedefDecl *VaListTagTypedefDecl =
6059       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
6060 
6061   QualType VaListTagTypedefType =
6062     Context->getTypedefType(VaListTagTypedefDecl);
6063 
6064   // typedef __va_list_tag __builtin_va_list[1];
6065   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6066   QualType VaListTagArrayType
6067     = Context->getConstantArrayType(VaListTagTypedefType,
6068                                       Size, ArrayType::Normal,0);
6069   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6070 }
6071 
CreatePNaClABIBuiltinVaListDecl(const ASTContext * Context)6072 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
6073   // typedef int __builtin_va_list[4];
6074   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
6075   QualType IntArrayType
6076     = Context->getConstantArrayType(Context->IntTy,
6077 				    Size, ArrayType::Normal, 0);
6078   return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
6079 }
6080 
6081 static TypedefDecl *
CreateAAPCSABIBuiltinVaListDecl(const ASTContext * Context)6082 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
6083   // struct __va_list
6084   RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
6085   if (Context->getLangOpts().CPlusPlus) {
6086     // namespace std { struct __va_list {
6087     NamespaceDecl *NS;
6088     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
6089                                Context->getTranslationUnitDecl(),
6090                                /*Inline*/false, SourceLocation(),
6091                                SourceLocation(), &Context->Idents.get("std"),
6092                                /*PrevDecl*/ nullptr);
6093     NS->setImplicit();
6094     VaListDecl->setDeclContext(NS);
6095   }
6096 
6097   VaListDecl->startDefinition();
6098 
6099   // void * __ap;
6100   FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6101                                        VaListDecl,
6102                                        SourceLocation(),
6103                                        SourceLocation(),
6104                                        &Context->Idents.get("__ap"),
6105                                        Context->getPointerType(Context->VoidTy),
6106                                        /*TInfo=*/nullptr,
6107                                        /*BitWidth=*/nullptr,
6108                                        /*Mutable=*/false,
6109                                        ICIS_NoInit);
6110   Field->setAccess(AS_public);
6111   VaListDecl->addDecl(Field);
6112 
6113   // };
6114   VaListDecl->completeDefinition();
6115 
6116   // typedef struct __va_list __builtin_va_list;
6117   QualType T = Context->getRecordType(VaListDecl);
6118   return Context->buildImplicitTypedef(T, "__builtin_va_list");
6119 }
6120 
6121 static TypedefDecl *
CreateSystemZBuiltinVaListDecl(const ASTContext * Context)6122 CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
6123   // typedef struct __va_list_tag {
6124   RecordDecl *VaListTagDecl;
6125   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
6126   VaListTagDecl->startDefinition();
6127 
6128   const size_t NumFields = 4;
6129   QualType FieldTypes[NumFields];
6130   const char *FieldNames[NumFields];
6131 
6132   //   long __gpr;
6133   FieldTypes[0] = Context->LongTy;
6134   FieldNames[0] = "__gpr";
6135 
6136   //   long __fpr;
6137   FieldTypes[1] = Context->LongTy;
6138   FieldNames[1] = "__fpr";
6139 
6140   //   void *__overflow_arg_area;
6141   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6142   FieldNames[2] = "__overflow_arg_area";
6143 
6144   //   void *__reg_save_area;
6145   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6146   FieldNames[3] = "__reg_save_area";
6147 
6148   // Create fields
6149   for (unsigned i = 0; i < NumFields; ++i) {
6150     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6151                                          VaListTagDecl,
6152                                          SourceLocation(),
6153                                          SourceLocation(),
6154                                          &Context->Idents.get(FieldNames[i]),
6155                                          FieldTypes[i], /*TInfo=*/nullptr,
6156                                          /*BitWidth=*/nullptr,
6157                                          /*Mutable=*/false,
6158                                          ICIS_NoInit);
6159     Field->setAccess(AS_public);
6160     VaListTagDecl->addDecl(Field);
6161   }
6162   VaListTagDecl->completeDefinition();
6163   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6164   Context->VaListTagTy = VaListTagType;
6165 
6166   // } __va_list_tag;
6167   TypedefDecl *VaListTagTypedefDecl =
6168       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
6169   QualType VaListTagTypedefType =
6170     Context->getTypedefType(VaListTagTypedefDecl);
6171 
6172   // typedef __va_list_tag __builtin_va_list[1];
6173   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6174   QualType VaListTagArrayType
6175     = Context->getConstantArrayType(VaListTagTypedefType,
6176                                       Size, ArrayType::Normal,0);
6177 
6178   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6179 }
6180 
CreateVaListDecl(const ASTContext * Context,TargetInfo::BuiltinVaListKind Kind)6181 static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
6182                                      TargetInfo::BuiltinVaListKind Kind) {
6183   switch (Kind) {
6184   case TargetInfo::CharPtrBuiltinVaList:
6185     return CreateCharPtrBuiltinVaListDecl(Context);
6186   case TargetInfo::VoidPtrBuiltinVaList:
6187     return CreateVoidPtrBuiltinVaListDecl(Context);
6188   case TargetInfo::AArch64ABIBuiltinVaList:
6189     return CreateAArch64ABIBuiltinVaListDecl(Context);
6190   case TargetInfo::PowerABIBuiltinVaList:
6191     return CreatePowerABIBuiltinVaListDecl(Context);
6192   case TargetInfo::X86_64ABIBuiltinVaList:
6193     return CreateX86_64ABIBuiltinVaListDecl(Context);
6194   case TargetInfo::PNaClABIBuiltinVaList:
6195     return CreatePNaClABIBuiltinVaListDecl(Context);
6196   case TargetInfo::AAPCSABIBuiltinVaList:
6197     return CreateAAPCSABIBuiltinVaListDecl(Context);
6198   case TargetInfo::SystemZBuiltinVaList:
6199     return CreateSystemZBuiltinVaListDecl(Context);
6200   }
6201 
6202   llvm_unreachable("Unhandled __builtin_va_list type kind");
6203 }
6204 
getBuiltinVaListDecl() const6205 TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
6206   if (!BuiltinVaListDecl) {
6207     BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
6208     assert(BuiltinVaListDecl->isImplicit());
6209   }
6210 
6211   return BuiltinVaListDecl;
6212 }
6213 
getVaListTagType() const6214 QualType ASTContext::getVaListTagType() const {
6215   // Force the creation of VaListTagTy by building the __builtin_va_list
6216   // declaration.
6217   if (VaListTagTy.isNull())
6218     (void) getBuiltinVaListDecl();
6219 
6220   return VaListTagTy;
6221 }
6222 
setObjCConstantStringInterface(ObjCInterfaceDecl * Decl)6223 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
6224   assert(ObjCConstantStringType.isNull() &&
6225          "'NSConstantString' type already set!");
6226 
6227   ObjCConstantStringType = getObjCInterfaceType(Decl);
6228 }
6229 
6230 /// \brief Retrieve the template name that corresponds to a non-empty
6231 /// lookup.
6232 TemplateName
getOverloadedTemplateName(UnresolvedSetIterator Begin,UnresolvedSetIterator End) const6233 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
6234                                       UnresolvedSetIterator End) const {
6235   unsigned size = End - Begin;
6236   assert(size > 1 && "set is not overloaded!");
6237 
6238   void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
6239                           size * sizeof(FunctionTemplateDecl*));
6240   OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
6241 
6242   NamedDecl **Storage = OT->getStorage();
6243   for (UnresolvedSetIterator I = Begin; I != End; ++I) {
6244     NamedDecl *D = *I;
6245     assert(isa<FunctionTemplateDecl>(D) ||
6246            (isa<UsingShadowDecl>(D) &&
6247             isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
6248     *Storage++ = D;
6249   }
6250 
6251   return TemplateName(OT);
6252 }
6253 
6254 /// \brief Retrieve the template name that represents a qualified
6255 /// template name such as \c std::vector.
6256 TemplateName
getQualifiedTemplateName(NestedNameSpecifier * NNS,bool TemplateKeyword,TemplateDecl * Template) const6257 ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
6258                                      bool TemplateKeyword,
6259                                      TemplateDecl *Template) const {
6260   assert(NNS && "Missing nested-name-specifier in qualified template name");
6261 
6262   // FIXME: Canonicalization?
6263   llvm::FoldingSetNodeID ID;
6264   QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
6265 
6266   void *InsertPos = nullptr;
6267   QualifiedTemplateName *QTN =
6268     QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6269   if (!QTN) {
6270     QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
6271         QualifiedTemplateName(NNS, TemplateKeyword, Template);
6272     QualifiedTemplateNames.InsertNode(QTN, InsertPos);
6273   }
6274 
6275   return TemplateName(QTN);
6276 }
6277 
6278 /// \brief Retrieve the template name that represents a dependent
6279 /// template name such as \c MetaFun::template apply.
6280 TemplateName
getDependentTemplateName(NestedNameSpecifier * NNS,const IdentifierInfo * Name) const6281 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6282                                      const IdentifierInfo *Name) const {
6283   assert((!NNS || NNS->isDependent()) &&
6284          "Nested name specifier must be dependent");
6285 
6286   llvm::FoldingSetNodeID ID;
6287   DependentTemplateName::Profile(ID, NNS, Name);
6288 
6289   void *InsertPos = nullptr;
6290   DependentTemplateName *QTN =
6291     DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6292 
6293   if (QTN)
6294     return TemplateName(QTN);
6295 
6296   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6297   if (CanonNNS == NNS) {
6298     QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6299         DependentTemplateName(NNS, Name);
6300   } else {
6301     TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
6302     QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6303         DependentTemplateName(NNS, Name, Canon);
6304     DependentTemplateName *CheckQTN =
6305       DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6306     assert(!CheckQTN && "Dependent type name canonicalization broken");
6307     (void)CheckQTN;
6308   }
6309 
6310   DependentTemplateNames.InsertNode(QTN, InsertPos);
6311   return TemplateName(QTN);
6312 }
6313 
6314 /// \brief Retrieve the template name that represents a dependent
6315 /// template name such as \c MetaFun::template operator+.
6316 TemplateName
getDependentTemplateName(NestedNameSpecifier * NNS,OverloadedOperatorKind Operator) const6317 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6318                                      OverloadedOperatorKind Operator) const {
6319   assert((!NNS || NNS->isDependent()) &&
6320          "Nested name specifier must be dependent");
6321 
6322   llvm::FoldingSetNodeID ID;
6323   DependentTemplateName::Profile(ID, NNS, Operator);
6324 
6325   void *InsertPos = nullptr;
6326   DependentTemplateName *QTN
6327     = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6328 
6329   if (QTN)
6330     return TemplateName(QTN);
6331 
6332   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6333   if (CanonNNS == NNS) {
6334     QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6335         DependentTemplateName(NNS, Operator);
6336   } else {
6337     TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
6338     QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6339         DependentTemplateName(NNS, Operator, Canon);
6340 
6341     DependentTemplateName *CheckQTN
6342       = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6343     assert(!CheckQTN && "Dependent template name canonicalization broken");
6344     (void)CheckQTN;
6345   }
6346 
6347   DependentTemplateNames.InsertNode(QTN, InsertPos);
6348   return TemplateName(QTN);
6349 }
6350 
6351 TemplateName
getSubstTemplateTemplateParm(TemplateTemplateParmDecl * param,TemplateName replacement) const6352 ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
6353                                          TemplateName replacement) const {
6354   llvm::FoldingSetNodeID ID;
6355   SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
6356 
6357   void *insertPos = nullptr;
6358   SubstTemplateTemplateParmStorage *subst
6359     = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
6360 
6361   if (!subst) {
6362     subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
6363     SubstTemplateTemplateParms.InsertNode(subst, insertPos);
6364   }
6365 
6366   return TemplateName(subst);
6367 }
6368 
6369 TemplateName
getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl * Param,const TemplateArgument & ArgPack) const6370 ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
6371                                        const TemplateArgument &ArgPack) const {
6372   ASTContext &Self = const_cast<ASTContext &>(*this);
6373   llvm::FoldingSetNodeID ID;
6374   SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
6375 
6376   void *InsertPos = nullptr;
6377   SubstTemplateTemplateParmPackStorage *Subst
6378     = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
6379 
6380   if (!Subst) {
6381     Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
6382                                                            ArgPack.pack_size(),
6383                                                          ArgPack.pack_begin());
6384     SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
6385   }
6386 
6387   return TemplateName(Subst);
6388 }
6389 
6390 /// getFromTargetType - Given one of the integer types provided by
6391 /// TargetInfo, produce the corresponding type. The unsigned @p Type
6392 /// is actually a value of type @c TargetInfo::IntType.
getFromTargetType(unsigned Type) const6393 CanQualType ASTContext::getFromTargetType(unsigned Type) const {
6394   switch (Type) {
6395   case TargetInfo::NoInt: return CanQualType();
6396   case TargetInfo::SignedChar: return SignedCharTy;
6397   case TargetInfo::UnsignedChar: return UnsignedCharTy;
6398   case TargetInfo::SignedShort: return ShortTy;
6399   case TargetInfo::UnsignedShort: return UnsignedShortTy;
6400   case TargetInfo::SignedInt: return IntTy;
6401   case TargetInfo::UnsignedInt: return UnsignedIntTy;
6402   case TargetInfo::SignedLong: return LongTy;
6403   case TargetInfo::UnsignedLong: return UnsignedLongTy;
6404   case TargetInfo::SignedLongLong: return LongLongTy;
6405   case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
6406   }
6407 
6408   llvm_unreachable("Unhandled TargetInfo::IntType value");
6409 }
6410 
6411 //===----------------------------------------------------------------------===//
6412 //                        Type Predicates.
6413 //===----------------------------------------------------------------------===//
6414 
6415 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
6416 /// garbage collection attribute.
6417 ///
getObjCGCAttrKind(QualType Ty) const6418 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
6419   if (getLangOpts().getGC() == LangOptions::NonGC)
6420     return Qualifiers::GCNone;
6421 
6422   assert(getLangOpts().ObjC1);
6423   Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
6424 
6425   // Default behaviour under objective-C's gc is for ObjC pointers
6426   // (or pointers to them) be treated as though they were declared
6427   // as __strong.
6428   if (GCAttrs == Qualifiers::GCNone) {
6429     if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
6430       return Qualifiers::Strong;
6431     else if (Ty->isPointerType())
6432       return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
6433   } else {
6434     // It's not valid to set GC attributes on anything that isn't a
6435     // pointer.
6436 #ifndef NDEBUG
6437     QualType CT = Ty->getCanonicalTypeInternal();
6438     while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6439       CT = AT->getElementType();
6440     assert(CT->isAnyPointerType() || CT->isBlockPointerType());
6441 #endif
6442   }
6443   return GCAttrs;
6444 }
6445 
6446 //===----------------------------------------------------------------------===//
6447 //                        Type Compatibility Testing
6448 //===----------------------------------------------------------------------===//
6449 
6450 /// areCompatVectorTypes - Return true if the two specified vector types are
6451 /// compatible.
areCompatVectorTypes(const VectorType * LHS,const VectorType * RHS)6452 static bool areCompatVectorTypes(const VectorType *LHS,
6453                                  const VectorType *RHS) {
6454   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6455   return LHS->getElementType() == RHS->getElementType() &&
6456          LHS->getNumElements() == RHS->getNumElements();
6457 }
6458 
areCompatibleVectorTypes(QualType FirstVec,QualType SecondVec)6459 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6460                                           QualType SecondVec) {
6461   assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6462   assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6463 
6464   if (hasSameUnqualifiedType(FirstVec, SecondVec))
6465     return true;
6466 
6467   // Treat Neon vector types and most AltiVec vector types as if they are the
6468   // equivalent GCC vector types.
6469   const VectorType *First = FirstVec->getAs<VectorType>();
6470   const VectorType *Second = SecondVec->getAs<VectorType>();
6471   if (First->getNumElements() == Second->getNumElements() &&
6472       hasSameType(First->getElementType(), Second->getElementType()) &&
6473       First->getVectorKind() != VectorType::AltiVecPixel &&
6474       First->getVectorKind() != VectorType::AltiVecBool &&
6475       Second->getVectorKind() != VectorType::AltiVecPixel &&
6476       Second->getVectorKind() != VectorType::AltiVecBool)
6477     return true;
6478 
6479   return false;
6480 }
6481 
6482 //===----------------------------------------------------------------------===//
6483 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6484 //===----------------------------------------------------------------------===//
6485 
6486 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6487 /// inheritance hierarchy of 'rProto'.
6488 bool
ProtocolCompatibleWithProtocol(ObjCProtocolDecl * lProto,ObjCProtocolDecl * rProto) const6489 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6490                                            ObjCProtocolDecl *rProto) const {
6491   if (declaresSameEntity(lProto, rProto))
6492     return true;
6493   for (auto *PI : rProto->protocols())
6494     if (ProtocolCompatibleWithProtocol(lProto, PI))
6495       return true;
6496   return false;
6497 }
6498 
6499 /// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
6500 /// Class<pr1, ...>.
ObjCQualifiedClassTypesAreCompatible(QualType lhs,QualType rhs)6501 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6502                                                       QualType rhs) {
6503   const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6504   const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6505   assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6506 
6507   for (auto *lhsProto : lhsQID->quals()) {
6508     bool match = false;
6509     for (auto *rhsProto : rhsOPT->quals()) {
6510       if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6511         match = true;
6512         break;
6513       }
6514     }
6515     if (!match)
6516       return false;
6517   }
6518   return true;
6519 }
6520 
6521 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6522 /// ObjCQualifiedIDType.
ObjCQualifiedIdTypesAreCompatible(QualType lhs,QualType rhs,bool compare)6523 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6524                                                    bool compare) {
6525   // Allow id<P..> and an 'id' or void* type in all cases.
6526   if (lhs->isVoidPointerType() ||
6527       lhs->isObjCIdType() || lhs->isObjCClassType())
6528     return true;
6529   else if (rhs->isVoidPointerType() ||
6530            rhs->isObjCIdType() || rhs->isObjCClassType())
6531     return true;
6532 
6533   if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6534     const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6535 
6536     if (!rhsOPT) return false;
6537 
6538     if (rhsOPT->qual_empty()) {
6539       // If the RHS is a unqualified interface pointer "NSString*",
6540       // make sure we check the class hierarchy.
6541       if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6542         for (auto *I : lhsQID->quals()) {
6543           // when comparing an id<P> on lhs with a static type on rhs,
6544           // see if static class implements all of id's protocols, directly or
6545           // through its super class and categories.
6546           if (!rhsID->ClassImplementsProtocol(I, true))
6547             return false;
6548         }
6549       }
6550       // If there are no qualifiers and no interface, we have an 'id'.
6551       return true;
6552     }
6553     // Both the right and left sides have qualifiers.
6554     for (auto *lhsProto : lhsQID->quals()) {
6555       bool match = false;
6556 
6557       // when comparing an id<P> on lhs with a static type on rhs,
6558       // see if static class implements all of id's protocols, directly or
6559       // through its super class and categories.
6560       for (auto *rhsProto : rhsOPT->quals()) {
6561         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6562             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6563           match = true;
6564           break;
6565         }
6566       }
6567       // If the RHS is a qualified interface pointer "NSString<P>*",
6568       // make sure we check the class hierarchy.
6569       if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6570         for (auto *I : lhsQID->quals()) {
6571           // when comparing an id<P> on lhs with a static type on rhs,
6572           // see if static class implements all of id's protocols, directly or
6573           // through its super class and categories.
6574           if (rhsID->ClassImplementsProtocol(I, true)) {
6575             match = true;
6576             break;
6577           }
6578         }
6579       }
6580       if (!match)
6581         return false;
6582     }
6583 
6584     return true;
6585   }
6586 
6587   const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6588   assert(rhsQID && "One of the LHS/RHS should be id<x>");
6589 
6590   if (const ObjCObjectPointerType *lhsOPT =
6591         lhs->getAsObjCInterfacePointerType()) {
6592     // If both the right and left sides have qualifiers.
6593     for (auto *lhsProto : lhsOPT->quals()) {
6594       bool match = false;
6595 
6596       // when comparing an id<P> on rhs with a static type on lhs,
6597       // see if static class implements all of id's protocols, directly or
6598       // through its super class and categories.
6599       // First, lhs protocols in the qualifier list must be found, direct
6600       // or indirect in rhs's qualifier list or it is a mismatch.
6601       for (auto *rhsProto : rhsQID->quals()) {
6602         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6603             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6604           match = true;
6605           break;
6606         }
6607       }
6608       if (!match)
6609         return false;
6610     }
6611 
6612     // Static class's protocols, or its super class or category protocols
6613     // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6614     if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6615       llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6616       CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6617       // This is rather dubious but matches gcc's behavior. If lhs has
6618       // no type qualifier and its class has no static protocol(s)
6619       // assume that it is mismatch.
6620       if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6621         return false;
6622       for (auto *lhsProto : LHSInheritedProtocols) {
6623         bool match = false;
6624         for (auto *rhsProto : rhsQID->quals()) {
6625           if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6626               (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6627             match = true;
6628             break;
6629           }
6630         }
6631         if (!match)
6632           return false;
6633       }
6634     }
6635     return true;
6636   }
6637   return false;
6638 }
6639 
6640 /// canAssignObjCInterfaces - Return true if the two interface types are
6641 /// compatible for assignment from RHS to LHS.  This handles validation of any
6642 /// protocol qualifiers on the LHS or RHS.
6643 ///
canAssignObjCInterfaces(const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT)6644 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6645                                          const ObjCObjectPointerType *RHSOPT) {
6646   const ObjCObjectType* LHS = LHSOPT->getObjectType();
6647   const ObjCObjectType* RHS = RHSOPT->getObjectType();
6648 
6649   // If either type represents the built-in 'id' or 'Class' types, return true.
6650   if (LHS->isObjCUnqualifiedIdOrClass() ||
6651       RHS->isObjCUnqualifiedIdOrClass())
6652     return true;
6653 
6654   if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6655     return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6656                                              QualType(RHSOPT,0),
6657                                              false);
6658 
6659   if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6660     return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6661                                                 QualType(RHSOPT,0));
6662 
6663   // If we have 2 user-defined types, fall into that path.
6664   if (LHS->getInterface() && RHS->getInterface())
6665     return canAssignObjCInterfaces(LHS, RHS);
6666 
6667   return false;
6668 }
6669 
6670 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6671 /// for providing type-safety for objective-c pointers used to pass/return
6672 /// arguments in block literals. When passed as arguments, passing 'A*' where
6673 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6674 /// not OK. For the return type, the opposite is not OK.
canAssignObjCInterfacesInBlockPointer(const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT,bool BlockReturnType)6675 bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6676                                          const ObjCObjectPointerType *LHSOPT,
6677                                          const ObjCObjectPointerType *RHSOPT,
6678                                          bool BlockReturnType) {
6679   if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6680     return true;
6681 
6682   if (LHSOPT->isObjCBuiltinType()) {
6683     return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6684   }
6685 
6686   if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6687     return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6688                                              QualType(RHSOPT,0),
6689                                              false);
6690 
6691   const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6692   const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6693   if (LHS && RHS)  { // We have 2 user-defined types.
6694     if (LHS != RHS) {
6695       if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6696         return BlockReturnType;
6697       if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6698         return !BlockReturnType;
6699     }
6700     else
6701       return true;
6702   }
6703   return false;
6704 }
6705 
6706 /// getIntersectionOfProtocols - This routine finds the intersection of set
6707 /// of protocols inherited from two distinct objective-c pointer objects.
6708 /// It is used to build composite qualifier list of the composite type of
6709 /// the conditional expression involving two objective-c pointer objects.
6710 static
getIntersectionOfProtocols(ASTContext & Context,const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT,SmallVectorImpl<ObjCProtocolDecl * > & IntersectionOfProtocols)6711 void getIntersectionOfProtocols(ASTContext &Context,
6712                                 const ObjCObjectPointerType *LHSOPT,
6713                                 const ObjCObjectPointerType *RHSOPT,
6714       SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6715 
6716   const ObjCObjectType* LHS = LHSOPT->getObjectType();
6717   const ObjCObjectType* RHS = RHSOPT->getObjectType();
6718   assert(LHS->getInterface() && "LHS must have an interface base");
6719   assert(RHS->getInterface() && "RHS must have an interface base");
6720 
6721   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6722   unsigned LHSNumProtocols = LHS->getNumProtocols();
6723   if (LHSNumProtocols > 0)
6724     InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6725   else {
6726     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6727     Context.CollectInheritedProtocols(LHS->getInterface(),
6728                                       LHSInheritedProtocols);
6729     InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6730                                 LHSInheritedProtocols.end());
6731   }
6732 
6733   unsigned RHSNumProtocols = RHS->getNumProtocols();
6734   if (RHSNumProtocols > 0) {
6735     ObjCProtocolDecl **RHSProtocols =
6736       const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6737     for (unsigned i = 0; i < RHSNumProtocols; ++i)
6738       if (InheritedProtocolSet.count(RHSProtocols[i]))
6739         IntersectionOfProtocols.push_back(RHSProtocols[i]);
6740   } else {
6741     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6742     Context.CollectInheritedProtocols(RHS->getInterface(),
6743                                       RHSInheritedProtocols);
6744     for (ObjCProtocolDecl *ProtDecl : RHSInheritedProtocols)
6745       if (InheritedProtocolSet.count(ProtDecl))
6746         IntersectionOfProtocols.push_back(ProtDecl);
6747   }
6748 }
6749 
6750 /// areCommonBaseCompatible - Returns common base class of the two classes if
6751 /// one found. Note that this is O'2 algorithm. But it will be called as the
6752 /// last type comparison in a ?-exp of ObjC pointer types before a
6753 /// warning is issued. So, its invokation is extremely rare.
areCommonBaseCompatible(const ObjCObjectPointerType * Lptr,const ObjCObjectPointerType * Rptr)6754 QualType ASTContext::areCommonBaseCompatible(
6755                                           const ObjCObjectPointerType *Lptr,
6756                                           const ObjCObjectPointerType *Rptr) {
6757   const ObjCObjectType *LHS = Lptr->getObjectType();
6758   const ObjCObjectType *RHS = Rptr->getObjectType();
6759   const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6760   const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6761   if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6762     return QualType();
6763 
6764   do {
6765     LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6766     if (canAssignObjCInterfaces(LHS, RHS)) {
6767       SmallVector<ObjCProtocolDecl *, 8> Protocols;
6768       getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6769 
6770       QualType Result = QualType(LHS, 0);
6771       if (!Protocols.empty())
6772         Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6773       Result = getObjCObjectPointerType(Result);
6774       return Result;
6775     }
6776   } while ((LDecl = LDecl->getSuperClass()));
6777 
6778   return QualType();
6779 }
6780 
canAssignObjCInterfaces(const ObjCObjectType * LHS,const ObjCObjectType * RHS)6781 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6782                                          const ObjCObjectType *RHS) {
6783   assert(LHS->getInterface() && "LHS is not an interface type");
6784   assert(RHS->getInterface() && "RHS is not an interface type");
6785 
6786   // Verify that the base decls are compatible: the RHS must be a subclass of
6787   // the LHS.
6788   if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6789     return false;
6790 
6791   // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6792   // protocol qualified at all, then we are good.
6793   if (LHS->getNumProtocols() == 0)
6794     return true;
6795 
6796   // Okay, we know the LHS has protocol qualifiers. But RHS may or may not.
6797   // More detailed analysis is required.
6798   // OK, if LHS is same or a superclass of RHS *and*
6799   // this LHS, or as RHS's super class is assignment compatible with LHS.
6800   bool IsSuperClass =
6801     LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6802   if (IsSuperClass) {
6803     // OK if conversion of LHS to SuperClass results in narrowing of types
6804     // ; i.e., SuperClass may implement at least one of the protocols
6805     // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6806     // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6807     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6808     CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6809     // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
6810     // qualifiers.
6811     for (auto *RHSPI : RHS->quals())
6812       SuperClassInheritedProtocols.insert(RHSPI->getCanonicalDecl());
6813     // If there is no protocols associated with RHS, it is not a match.
6814     if (SuperClassInheritedProtocols.empty())
6815       return false;
6816 
6817     for (const auto *LHSProto : LHS->quals()) {
6818       bool SuperImplementsProtocol = false;
6819       for (auto *SuperClassProto : SuperClassInheritedProtocols)
6820         if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6821           SuperImplementsProtocol = true;
6822           break;
6823         }
6824       if (!SuperImplementsProtocol)
6825         return false;
6826     }
6827     return true;
6828   }
6829   return false;
6830 }
6831 
areComparableObjCPointerTypes(QualType LHS,QualType RHS)6832 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6833   // get the "pointed to" types
6834   const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6835   const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6836 
6837   if (!LHSOPT || !RHSOPT)
6838     return false;
6839 
6840   return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6841          canAssignObjCInterfaces(RHSOPT, LHSOPT);
6842 }
6843 
canBindObjCObjectType(QualType To,QualType From)6844 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6845   return canAssignObjCInterfaces(
6846                 getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6847                 getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6848 }
6849 
6850 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6851 /// both shall have the identically qualified version of a compatible type.
6852 /// C99 6.2.7p1: Two types have compatible types if their types are the
6853 /// same. See 6.7.[2,3,5] for additional rules.
typesAreCompatible(QualType LHS,QualType RHS,bool CompareUnqualified)6854 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6855                                     bool CompareUnqualified) {
6856   if (getLangOpts().CPlusPlus)
6857     return hasSameType(LHS, RHS);
6858 
6859   return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6860 }
6861 
propertyTypesAreCompatible(QualType LHS,QualType RHS)6862 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6863   return typesAreCompatible(LHS, RHS);
6864 }
6865 
typesAreBlockPointerCompatible(QualType LHS,QualType RHS)6866 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6867   return !mergeTypes(LHS, RHS, true).isNull();
6868 }
6869 
6870 /// mergeTransparentUnionType - if T is a transparent union type and a member
6871 /// of T is compatible with SubType, return the merged type, else return
6872 /// QualType()
mergeTransparentUnionType(QualType T,QualType SubType,bool OfBlockPointer,bool Unqualified)6873 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6874                                                bool OfBlockPointer,
6875                                                bool Unqualified) {
6876   if (const RecordType *UT = T->getAsUnionType()) {
6877     RecordDecl *UD = UT->getDecl();
6878     if (UD->hasAttr<TransparentUnionAttr>()) {
6879       for (const auto *I : UD->fields()) {
6880         QualType ET = I->getType().getUnqualifiedType();
6881         QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6882         if (!MT.isNull())
6883           return MT;
6884       }
6885     }
6886   }
6887 
6888   return QualType();
6889 }
6890 
6891 /// mergeFunctionParameterTypes - merge two types which appear as function
6892 /// parameter types
mergeFunctionParameterTypes(QualType lhs,QualType rhs,bool OfBlockPointer,bool Unqualified)6893 QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
6894                                                  bool OfBlockPointer,
6895                                                  bool Unqualified) {
6896   // GNU extension: two types are compatible if they appear as a function
6897   // argument, one of the types is a transparent union type and the other
6898   // type is compatible with a union member
6899   QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6900                                               Unqualified);
6901   if (!lmerge.isNull())
6902     return lmerge;
6903 
6904   QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6905                                               Unqualified);
6906   if (!rmerge.isNull())
6907     return rmerge;
6908 
6909   return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6910 }
6911 
mergeFunctionTypes(QualType lhs,QualType rhs,bool OfBlockPointer,bool Unqualified)6912 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6913                                         bool OfBlockPointer,
6914                                         bool Unqualified) {
6915   const FunctionType *lbase = lhs->getAs<FunctionType>();
6916   const FunctionType *rbase = rhs->getAs<FunctionType>();
6917   const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6918   const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6919   bool allLTypes = true;
6920   bool allRTypes = true;
6921 
6922   // Check return type
6923   QualType retType;
6924   if (OfBlockPointer) {
6925     QualType RHS = rbase->getReturnType();
6926     QualType LHS = lbase->getReturnType();
6927     bool UnqualifiedResult = Unqualified;
6928     if (!UnqualifiedResult)
6929       UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6930     retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6931   }
6932   else
6933     retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
6934                          Unqualified);
6935   if (retType.isNull()) return QualType();
6936 
6937   if (Unqualified)
6938     retType = retType.getUnqualifiedType();
6939 
6940   CanQualType LRetType = getCanonicalType(lbase->getReturnType());
6941   CanQualType RRetType = getCanonicalType(rbase->getReturnType());
6942   if (Unqualified) {
6943     LRetType = LRetType.getUnqualifiedType();
6944     RRetType = RRetType.getUnqualifiedType();
6945   }
6946 
6947   if (getCanonicalType(retType) != LRetType)
6948     allLTypes = false;
6949   if (getCanonicalType(retType) != RRetType)
6950     allRTypes = false;
6951 
6952   // FIXME: double check this
6953   // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6954   //                           rbase->getRegParmAttr() != 0 &&
6955   //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6956   FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6957   FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6958 
6959   // Compatible functions must have compatible calling conventions
6960   if (lbaseInfo.getCC() != rbaseInfo.getCC())
6961     return QualType();
6962 
6963   // Regparm is part of the calling convention.
6964   if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6965     return QualType();
6966   if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6967     return QualType();
6968 
6969   if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6970     return QualType();
6971 
6972   // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6973   bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6974 
6975   if (lbaseInfo.getNoReturn() != NoReturn)
6976     allLTypes = false;
6977   if (rbaseInfo.getNoReturn() != NoReturn)
6978     allRTypes = false;
6979 
6980   FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6981 
6982   if (lproto && rproto) { // two C99 style function prototypes
6983     assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6984            "C++ shouldn't be here");
6985     // Compatible functions must have the same number of parameters
6986     if (lproto->getNumParams() != rproto->getNumParams())
6987       return QualType();
6988 
6989     // Variadic and non-variadic functions aren't compatible
6990     if (lproto->isVariadic() != rproto->isVariadic())
6991       return QualType();
6992 
6993     if (lproto->getTypeQuals() != rproto->getTypeQuals())
6994       return QualType();
6995 
6996     if (LangOpts.ObjCAutoRefCount &&
6997         !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6998       return QualType();
6999 
7000     // Check parameter type compatibility
7001     SmallVector<QualType, 10> types;
7002     for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
7003       QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
7004       QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
7005       QualType paramType = mergeFunctionParameterTypes(
7006           lParamType, rParamType, OfBlockPointer, Unqualified);
7007       if (paramType.isNull())
7008         return QualType();
7009 
7010       if (Unqualified)
7011         paramType = paramType.getUnqualifiedType();
7012 
7013       types.push_back(paramType);
7014       if (Unqualified) {
7015         lParamType = lParamType.getUnqualifiedType();
7016         rParamType = rParamType.getUnqualifiedType();
7017       }
7018 
7019       if (getCanonicalType(paramType) != getCanonicalType(lParamType))
7020         allLTypes = false;
7021       if (getCanonicalType(paramType) != getCanonicalType(rParamType))
7022         allRTypes = false;
7023     }
7024 
7025     if (allLTypes) return lhs;
7026     if (allRTypes) return rhs;
7027 
7028     FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
7029     EPI.ExtInfo = einfo;
7030     return getFunctionType(retType, types, EPI);
7031   }
7032 
7033   if (lproto) allRTypes = false;
7034   if (rproto) allLTypes = false;
7035 
7036   const FunctionProtoType *proto = lproto ? lproto : rproto;
7037   if (proto) {
7038     assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
7039     if (proto->isVariadic()) return QualType();
7040     // Check that the types are compatible with the types that
7041     // would result from default argument promotions (C99 6.7.5.3p15).
7042     // The only types actually affected are promotable integer
7043     // types and floats, which would be passed as a different
7044     // type depending on whether the prototype is visible.
7045     for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
7046       QualType paramTy = proto->getParamType(i);
7047 
7048       // Look at the converted type of enum types, since that is the type used
7049       // to pass enum values.
7050       if (const EnumType *Enum = paramTy->getAs<EnumType>()) {
7051         paramTy = Enum->getDecl()->getIntegerType();
7052         if (paramTy.isNull())
7053           return QualType();
7054       }
7055 
7056       if (paramTy->isPromotableIntegerType() ||
7057           getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
7058         return QualType();
7059     }
7060 
7061     if (allLTypes) return lhs;
7062     if (allRTypes) return rhs;
7063 
7064     FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
7065     EPI.ExtInfo = einfo;
7066     return getFunctionType(retType, proto->getParamTypes(), EPI);
7067   }
7068 
7069   if (allLTypes) return lhs;
7070   if (allRTypes) return rhs;
7071   return getFunctionNoProtoType(retType, einfo);
7072 }
7073 
7074 /// Given that we have an enum type and a non-enum type, try to merge them.
mergeEnumWithInteger(ASTContext & Context,const EnumType * ET,QualType other,bool isBlockReturnType)7075 static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
7076                                      QualType other, bool isBlockReturnType) {
7077   // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
7078   // a signed integer type, or an unsigned integer type.
7079   // Compatibility is based on the underlying type, not the promotion
7080   // type.
7081   QualType underlyingType = ET->getDecl()->getIntegerType();
7082   if (underlyingType.isNull()) return QualType();
7083   if (Context.hasSameType(underlyingType, other))
7084     return other;
7085 
7086   // In block return types, we're more permissive and accept any
7087   // integral type of the same size.
7088   if (isBlockReturnType && other->isIntegerType() &&
7089       Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
7090     return other;
7091 
7092   return QualType();
7093 }
7094 
mergeTypes(QualType LHS,QualType RHS,bool OfBlockPointer,bool Unqualified,bool BlockReturnType)7095 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
7096                                 bool OfBlockPointer,
7097                                 bool Unqualified, bool BlockReturnType) {
7098   // C++ [expr]: If an expression initially has the type "reference to T", the
7099   // type is adjusted to "T" prior to any further analysis, the expression
7100   // designates the object or function denoted by the reference, and the
7101   // expression is an lvalue unless the reference is an rvalue reference and
7102   // the expression is a function call (possibly inside parentheses).
7103   assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
7104   assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
7105 
7106   if (Unqualified) {
7107     LHS = LHS.getUnqualifiedType();
7108     RHS = RHS.getUnqualifiedType();
7109   }
7110 
7111   QualType LHSCan = getCanonicalType(LHS),
7112            RHSCan = getCanonicalType(RHS);
7113 
7114   // If two types are identical, they are compatible.
7115   if (LHSCan == RHSCan)
7116     return LHS;
7117 
7118   // If the qualifiers are different, the types aren't compatible... mostly.
7119   Qualifiers LQuals = LHSCan.getLocalQualifiers();
7120   Qualifiers RQuals = RHSCan.getLocalQualifiers();
7121   if (LQuals != RQuals) {
7122     // If any of these qualifiers are different, we have a type
7123     // mismatch.
7124     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7125         LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
7126         LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
7127       return QualType();
7128 
7129     // Exactly one GC qualifier difference is allowed: __strong is
7130     // okay if the other type has no GC qualifier but is an Objective
7131     // C object pointer (i.e. implicitly strong by default).  We fix
7132     // this by pretending that the unqualified type was actually
7133     // qualified __strong.
7134     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7135     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7136     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7137 
7138     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7139       return QualType();
7140 
7141     if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
7142       return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
7143     }
7144     if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
7145       return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
7146     }
7147     return QualType();
7148   }
7149 
7150   // Okay, qualifiers are equal.
7151 
7152   Type::TypeClass LHSClass = LHSCan->getTypeClass();
7153   Type::TypeClass RHSClass = RHSCan->getTypeClass();
7154 
7155   // We want to consider the two function types to be the same for these
7156   // comparisons, just force one to the other.
7157   if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
7158   if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
7159 
7160   // Same as above for arrays
7161   if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
7162     LHSClass = Type::ConstantArray;
7163   if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
7164     RHSClass = Type::ConstantArray;
7165 
7166   // ObjCInterfaces are just specialized ObjCObjects.
7167   if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
7168   if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
7169 
7170   // Canonicalize ExtVector -> Vector.
7171   if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
7172   if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
7173 
7174   // If the canonical type classes don't match.
7175   if (LHSClass != RHSClass) {
7176     // Note that we only have special rules for turning block enum
7177     // returns into block int returns, not vice-versa.
7178     if (const EnumType* ETy = LHS->getAs<EnumType>()) {
7179       return mergeEnumWithInteger(*this, ETy, RHS, false);
7180     }
7181     if (const EnumType* ETy = RHS->getAs<EnumType>()) {
7182       return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
7183     }
7184     // allow block pointer type to match an 'id' type.
7185     if (OfBlockPointer && !BlockReturnType) {
7186        if (LHS->isObjCIdType() && RHS->isBlockPointerType())
7187          return LHS;
7188       if (RHS->isObjCIdType() && LHS->isBlockPointerType())
7189         return RHS;
7190     }
7191 
7192     return QualType();
7193   }
7194 
7195   // The canonical type classes match.
7196   switch (LHSClass) {
7197 #define TYPE(Class, Base)
7198 #define ABSTRACT_TYPE(Class, Base)
7199 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
7200 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
7201 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
7202 #include "clang/AST/TypeNodes.def"
7203     llvm_unreachable("Non-canonical and dependent types shouldn't get here");
7204 
7205   case Type::Auto:
7206   case Type::LValueReference:
7207   case Type::RValueReference:
7208   case Type::MemberPointer:
7209     llvm_unreachable("C++ should never be in mergeTypes");
7210 
7211   case Type::ObjCInterface:
7212   case Type::IncompleteArray:
7213   case Type::VariableArray:
7214   case Type::FunctionProto:
7215   case Type::ExtVector:
7216     llvm_unreachable("Types are eliminated above");
7217 
7218   case Type::Pointer:
7219   {
7220     // Merge two pointer types, while trying to preserve typedef info
7221     QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
7222     QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
7223     if (Unqualified) {
7224       LHSPointee = LHSPointee.getUnqualifiedType();
7225       RHSPointee = RHSPointee.getUnqualifiedType();
7226     }
7227     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
7228                                      Unqualified);
7229     if (ResultType.isNull()) return QualType();
7230     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7231       return LHS;
7232     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7233       return RHS;
7234     return getPointerType(ResultType);
7235   }
7236   case Type::BlockPointer:
7237   {
7238     // Merge two block pointer types, while trying to preserve typedef info
7239     QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
7240     QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
7241     if (Unqualified) {
7242       LHSPointee = LHSPointee.getUnqualifiedType();
7243       RHSPointee = RHSPointee.getUnqualifiedType();
7244     }
7245     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
7246                                      Unqualified);
7247     if (ResultType.isNull()) return QualType();
7248     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7249       return LHS;
7250     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7251       return RHS;
7252     return getBlockPointerType(ResultType);
7253   }
7254   case Type::Atomic:
7255   {
7256     // Merge two pointer types, while trying to preserve typedef info
7257     QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
7258     QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
7259     if (Unqualified) {
7260       LHSValue = LHSValue.getUnqualifiedType();
7261       RHSValue = RHSValue.getUnqualifiedType();
7262     }
7263     QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
7264                                      Unqualified);
7265     if (ResultType.isNull()) return QualType();
7266     if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
7267       return LHS;
7268     if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
7269       return RHS;
7270     return getAtomicType(ResultType);
7271   }
7272   case Type::ConstantArray:
7273   {
7274     const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
7275     const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
7276     if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
7277       return QualType();
7278 
7279     QualType LHSElem = getAsArrayType(LHS)->getElementType();
7280     QualType RHSElem = getAsArrayType(RHS)->getElementType();
7281     if (Unqualified) {
7282       LHSElem = LHSElem.getUnqualifiedType();
7283       RHSElem = RHSElem.getUnqualifiedType();
7284     }
7285 
7286     QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
7287     if (ResultType.isNull()) return QualType();
7288     if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7289       return LHS;
7290     if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7291       return RHS;
7292     if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
7293                                           ArrayType::ArraySizeModifier(), 0);
7294     if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
7295                                           ArrayType::ArraySizeModifier(), 0);
7296     const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
7297     const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
7298     if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7299       return LHS;
7300     if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7301       return RHS;
7302     if (LVAT) {
7303       // FIXME: This isn't correct! But tricky to implement because
7304       // the array's size has to be the size of LHS, but the type
7305       // has to be different.
7306       return LHS;
7307     }
7308     if (RVAT) {
7309       // FIXME: This isn't correct! But tricky to implement because
7310       // the array's size has to be the size of RHS, but the type
7311       // has to be different.
7312       return RHS;
7313     }
7314     if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
7315     if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
7316     return getIncompleteArrayType(ResultType,
7317                                   ArrayType::ArraySizeModifier(), 0);
7318   }
7319   case Type::FunctionNoProto:
7320     return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
7321   case Type::Record:
7322   case Type::Enum:
7323     return QualType();
7324   case Type::Builtin:
7325     // Only exactly equal builtin types are compatible, which is tested above.
7326     return QualType();
7327   case Type::Complex:
7328     // Distinct complex types are incompatible.
7329     return QualType();
7330   case Type::Vector:
7331     // FIXME: The merged type should be an ExtVector!
7332     if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
7333                              RHSCan->getAs<VectorType>()))
7334       return LHS;
7335     return QualType();
7336   case Type::ObjCObject: {
7337     // Check if the types are assignment compatible.
7338     // FIXME: This should be type compatibility, e.g. whether
7339     // "LHS x; RHS x;" at global scope is legal.
7340     const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
7341     const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
7342     if (canAssignObjCInterfaces(LHSIface, RHSIface))
7343       return LHS;
7344 
7345     return QualType();
7346   }
7347   case Type::ObjCObjectPointer: {
7348     if (OfBlockPointer) {
7349       if (canAssignObjCInterfacesInBlockPointer(
7350                                           LHS->getAs<ObjCObjectPointerType>(),
7351                                           RHS->getAs<ObjCObjectPointerType>(),
7352                                           BlockReturnType))
7353         return LHS;
7354       return QualType();
7355     }
7356     if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
7357                                 RHS->getAs<ObjCObjectPointerType>()))
7358       return LHS;
7359 
7360     return QualType();
7361   }
7362   }
7363 
7364   llvm_unreachable("Invalid Type::Class!");
7365 }
7366 
FunctionTypesMatchOnNSConsumedAttrs(const FunctionProtoType * FromFunctionType,const FunctionProtoType * ToFunctionType)7367 bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
7368                    const FunctionProtoType *FromFunctionType,
7369                    const FunctionProtoType *ToFunctionType) {
7370   if (FromFunctionType->hasAnyConsumedParams() !=
7371       ToFunctionType->hasAnyConsumedParams())
7372     return false;
7373   FunctionProtoType::ExtProtoInfo FromEPI =
7374     FromFunctionType->getExtProtoInfo();
7375   FunctionProtoType::ExtProtoInfo ToEPI =
7376     ToFunctionType->getExtProtoInfo();
7377   if (FromEPI.ConsumedParameters && ToEPI.ConsumedParameters)
7378     for (unsigned i = 0, n = FromFunctionType->getNumParams(); i != n; ++i) {
7379       if (FromEPI.ConsumedParameters[i] != ToEPI.ConsumedParameters[i])
7380         return false;
7381     }
7382   return true;
7383 }
7384 
7385 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7386 /// 'RHS' attributes and returns the merged version; including for function
7387 /// return types.
mergeObjCGCQualifiers(QualType LHS,QualType RHS)7388 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7389   QualType LHSCan = getCanonicalType(LHS),
7390   RHSCan = getCanonicalType(RHS);
7391   // If two types are identical, they are compatible.
7392   if (LHSCan == RHSCan)
7393     return LHS;
7394   if (RHSCan->isFunctionType()) {
7395     if (!LHSCan->isFunctionType())
7396       return QualType();
7397     QualType OldReturnType =
7398         cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
7399     QualType NewReturnType =
7400         cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
7401     QualType ResReturnType =
7402       mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7403     if (ResReturnType.isNull())
7404       return QualType();
7405     if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7406       // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7407       // In either case, use OldReturnType to build the new function type.
7408       const FunctionType *F = LHS->getAs<FunctionType>();
7409       if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7410         FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7411         EPI.ExtInfo = getFunctionExtInfo(LHS);
7412         QualType ResultType =
7413             getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
7414         return ResultType;
7415       }
7416     }
7417     return QualType();
7418   }
7419 
7420   // If the qualifiers are different, the types can still be merged.
7421   Qualifiers LQuals = LHSCan.getLocalQualifiers();
7422   Qualifiers RQuals = RHSCan.getLocalQualifiers();
7423   if (LQuals != RQuals) {
7424     // If any of these qualifiers are different, we have a type mismatch.
7425     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7426         LQuals.getAddressSpace() != RQuals.getAddressSpace())
7427       return QualType();
7428 
7429     // Exactly one GC qualifier difference is allowed: __strong is
7430     // okay if the other type has no GC qualifier but is an Objective
7431     // C object pointer (i.e. implicitly strong by default).  We fix
7432     // this by pretending that the unqualified type was actually
7433     // qualified __strong.
7434     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7435     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7436     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7437 
7438     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7439       return QualType();
7440 
7441     if (GC_L == Qualifiers::Strong)
7442       return LHS;
7443     if (GC_R == Qualifiers::Strong)
7444       return RHS;
7445     return QualType();
7446   }
7447 
7448   if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7449     QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7450     QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7451     QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7452     if (ResQT == LHSBaseQT)
7453       return LHS;
7454     if (ResQT == RHSBaseQT)
7455       return RHS;
7456   }
7457   return QualType();
7458 }
7459 
7460 //===----------------------------------------------------------------------===//
7461 //                         Integer Predicates
7462 //===----------------------------------------------------------------------===//
7463 
getIntWidth(QualType T) const7464 unsigned ASTContext::getIntWidth(QualType T) const {
7465   if (const EnumType *ET = T->getAs<EnumType>())
7466     T = ET->getDecl()->getIntegerType();
7467   if (T->isBooleanType())
7468     return 1;
7469   // For builtin types, just use the standard type sizing method
7470   return (unsigned)getTypeSize(T);
7471 }
7472 
getCorrespondingUnsignedType(QualType T) const7473 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7474   assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7475 
7476   // Turn <4 x signed int> -> <4 x unsigned int>
7477   if (const VectorType *VTy = T->getAs<VectorType>())
7478     return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7479                          VTy->getNumElements(), VTy->getVectorKind());
7480 
7481   // For enums, we return the unsigned version of the base type.
7482   if (const EnumType *ETy = T->getAs<EnumType>())
7483     T = ETy->getDecl()->getIntegerType();
7484 
7485   const BuiltinType *BTy = T->getAs<BuiltinType>();
7486   assert(BTy && "Unexpected signed integer type");
7487   switch (BTy->getKind()) {
7488   case BuiltinType::Char_S:
7489   case BuiltinType::SChar:
7490     return UnsignedCharTy;
7491   case BuiltinType::Short:
7492     return UnsignedShortTy;
7493   case BuiltinType::Int:
7494     return UnsignedIntTy;
7495   case BuiltinType::Long:
7496     return UnsignedLongTy;
7497   case BuiltinType::LongLong:
7498     return UnsignedLongLongTy;
7499   case BuiltinType::Int128:
7500     return UnsignedInt128Ty;
7501   default:
7502     llvm_unreachable("Unexpected signed integer type");
7503   }
7504 }
7505 
~ASTMutationListener()7506 ASTMutationListener::~ASTMutationListener() { }
7507 
DeducedReturnType(const FunctionDecl * FD,QualType ReturnType)7508 void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
7509                                             QualType ReturnType) {}
7510 
7511 //===----------------------------------------------------------------------===//
7512 //                          Builtin Type Computation
7513 //===----------------------------------------------------------------------===//
7514 
7515 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7516 /// pointer over the consumed characters.  This returns the resultant type.  If
7517 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7518 /// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
7519 /// a vector of "i*".
7520 ///
7521 /// RequiresICE is filled in on return to indicate whether the value is required
7522 /// to be an Integer Constant Expression.
DecodeTypeFromStr(const char * & Str,const ASTContext & Context,ASTContext::GetBuiltinTypeError & Error,bool & RequiresICE,bool AllowTypeModifiers)7523 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7524                                   ASTContext::GetBuiltinTypeError &Error,
7525                                   bool &RequiresICE,
7526                                   bool AllowTypeModifiers) {
7527   // Modifiers.
7528   int HowLong = 0;
7529   bool Signed = false, Unsigned = false;
7530   RequiresICE = false;
7531 
7532   // Read the prefixed modifiers first.
7533   bool Done = false;
7534   while (!Done) {
7535     switch (*Str++) {
7536     default: Done = true; --Str; break;
7537     case 'I':
7538       RequiresICE = true;
7539       break;
7540     case 'S':
7541       assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7542       assert(!Signed && "Can't use 'S' modifier multiple times!");
7543       Signed = true;
7544       break;
7545     case 'U':
7546       assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7547       assert(!Unsigned && "Can't use 'S' modifier multiple times!");
7548       Unsigned = true;
7549       break;
7550     case 'L':
7551       assert(HowLong <= 2 && "Can't have LLLL modifier");
7552       ++HowLong;
7553       break;
7554     case 'W':
7555       // This modifier represents int64 type.
7556       assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
7557       switch (Context.getTargetInfo().getInt64Type()) {
7558       default:
7559         llvm_unreachable("Unexpected integer type");
7560       case TargetInfo::SignedLong:
7561         HowLong = 1;
7562         break;
7563       case TargetInfo::SignedLongLong:
7564         HowLong = 2;
7565         break;
7566       }
7567     }
7568   }
7569 
7570   QualType Type;
7571 
7572   // Read the base type.
7573   switch (*Str++) {
7574   default: llvm_unreachable("Unknown builtin type letter!");
7575   case 'v':
7576     assert(HowLong == 0 && !Signed && !Unsigned &&
7577            "Bad modifiers used with 'v'!");
7578     Type = Context.VoidTy;
7579     break;
7580   case 'h':
7581     assert(HowLong == 0 && !Signed && !Unsigned &&
7582            "Bad modifiers used with 'f'!");
7583     Type = Context.HalfTy;
7584     break;
7585   case 'f':
7586     assert(HowLong == 0 && !Signed && !Unsigned &&
7587            "Bad modifiers used with 'f'!");
7588     Type = Context.FloatTy;
7589     break;
7590   case 'd':
7591     assert(HowLong < 2 && !Signed && !Unsigned &&
7592            "Bad modifiers used with 'd'!");
7593     if (HowLong)
7594       Type = Context.LongDoubleTy;
7595     else
7596       Type = Context.DoubleTy;
7597     break;
7598   case 's':
7599     assert(HowLong == 0 && "Bad modifiers used with 's'!");
7600     if (Unsigned)
7601       Type = Context.UnsignedShortTy;
7602     else
7603       Type = Context.ShortTy;
7604     break;
7605   case 'i':
7606     if (HowLong == 3)
7607       Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7608     else if (HowLong == 2)
7609       Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7610     else if (HowLong == 1)
7611       Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7612     else
7613       Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7614     break;
7615   case 'c':
7616     assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7617     if (Signed)
7618       Type = Context.SignedCharTy;
7619     else if (Unsigned)
7620       Type = Context.UnsignedCharTy;
7621     else
7622       Type = Context.CharTy;
7623     break;
7624   case 'b': // boolean
7625     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7626     Type = Context.BoolTy;
7627     break;
7628   case 'z':  // size_t.
7629     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7630     Type = Context.getSizeType();
7631     break;
7632   case 'F':
7633     Type = Context.getCFConstantStringType();
7634     break;
7635   case 'G':
7636     Type = Context.getObjCIdType();
7637     break;
7638   case 'H':
7639     Type = Context.getObjCSelType();
7640     break;
7641   case 'M':
7642     Type = Context.getObjCSuperType();
7643     break;
7644   case 'a':
7645     Type = Context.getBuiltinVaListType();
7646     assert(!Type.isNull() && "builtin va list type not initialized!");
7647     break;
7648   case 'A':
7649     // This is a "reference" to a va_list; however, what exactly
7650     // this means depends on how va_list is defined. There are two
7651     // different kinds of va_list: ones passed by value, and ones
7652     // passed by reference.  An example of a by-value va_list is
7653     // x86, where va_list is a char*. An example of by-ref va_list
7654     // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7655     // we want this argument to be a char*&; for x86-64, we want
7656     // it to be a __va_list_tag*.
7657     Type = Context.getBuiltinVaListType();
7658     assert(!Type.isNull() && "builtin va list type not initialized!");
7659     if (Type->isArrayType())
7660       Type = Context.getArrayDecayedType(Type);
7661     else
7662       Type = Context.getLValueReferenceType(Type);
7663     break;
7664   case 'V': {
7665     char *End;
7666     unsigned NumElements = strtoul(Str, &End, 10);
7667     assert(End != Str && "Missing vector size");
7668     Str = End;
7669 
7670     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7671                                              RequiresICE, false);
7672     assert(!RequiresICE && "Can't require vector ICE");
7673 
7674     // TODO: No way to make AltiVec vectors in builtins yet.
7675     Type = Context.getVectorType(ElementType, NumElements,
7676                                  VectorType::GenericVector);
7677     break;
7678   }
7679   case 'E': {
7680     char *End;
7681 
7682     unsigned NumElements = strtoul(Str, &End, 10);
7683     assert(End != Str && "Missing vector size");
7684 
7685     Str = End;
7686 
7687     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7688                                              false);
7689     Type = Context.getExtVectorType(ElementType, NumElements);
7690     break;
7691   }
7692   case 'X': {
7693     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7694                                              false);
7695     assert(!RequiresICE && "Can't require complex ICE");
7696     Type = Context.getComplexType(ElementType);
7697     break;
7698   }
7699   case 'Y' : {
7700     Type = Context.getPointerDiffType();
7701     break;
7702   }
7703   case 'P':
7704     Type = Context.getFILEType();
7705     if (Type.isNull()) {
7706       Error = ASTContext::GE_Missing_stdio;
7707       return QualType();
7708     }
7709     break;
7710   case 'J':
7711     if (Signed)
7712       Type = Context.getsigjmp_bufType();
7713     else
7714       Type = Context.getjmp_bufType();
7715 
7716     if (Type.isNull()) {
7717       Error = ASTContext::GE_Missing_setjmp;
7718       return QualType();
7719     }
7720     break;
7721   case 'K':
7722     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7723     Type = Context.getucontext_tType();
7724 
7725     if (Type.isNull()) {
7726       Error = ASTContext::GE_Missing_ucontext;
7727       return QualType();
7728     }
7729     break;
7730   case 'p':
7731     Type = Context.getProcessIDType();
7732     break;
7733   }
7734 
7735   // If there are modifiers and if we're allowed to parse them, go for it.
7736   Done = !AllowTypeModifiers;
7737   while (!Done) {
7738     switch (char c = *Str++) {
7739     default: Done = true; --Str; break;
7740     case '*':
7741     case '&': {
7742       // Both pointers and references can have their pointee types
7743       // qualified with an address space.
7744       char *End;
7745       unsigned AddrSpace = strtoul(Str, &End, 10);
7746       if (End != Str && AddrSpace != 0) {
7747         Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7748         Str = End;
7749       }
7750       if (c == '*')
7751         Type = Context.getPointerType(Type);
7752       else
7753         Type = Context.getLValueReferenceType(Type);
7754       break;
7755     }
7756     // FIXME: There's no way to have a built-in with an rvalue ref arg.
7757     case 'C':
7758       Type = Type.withConst();
7759       break;
7760     case 'D':
7761       Type = Context.getVolatileType(Type);
7762       break;
7763     case 'R':
7764       Type = Type.withRestrict();
7765       break;
7766     }
7767   }
7768 
7769   assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7770          "Integer constant 'I' type must be an integer");
7771 
7772   return Type;
7773 }
7774 
7775 /// GetBuiltinType - Return the type for the specified builtin.
GetBuiltinType(unsigned Id,GetBuiltinTypeError & Error,unsigned * IntegerConstantArgs) const7776 QualType ASTContext::GetBuiltinType(unsigned Id,
7777                                     GetBuiltinTypeError &Error,
7778                                     unsigned *IntegerConstantArgs) const {
7779   const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7780 
7781   SmallVector<QualType, 8> ArgTypes;
7782 
7783   bool RequiresICE = false;
7784   Error = GE_None;
7785   QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7786                                        RequiresICE, true);
7787   if (Error != GE_None)
7788     return QualType();
7789 
7790   assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7791 
7792   while (TypeStr[0] && TypeStr[0] != '.') {
7793     QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7794     if (Error != GE_None)
7795       return QualType();
7796 
7797     // If this argument is required to be an IntegerConstantExpression and the
7798     // caller cares, fill in the bitmask we return.
7799     if (RequiresICE && IntegerConstantArgs)
7800       *IntegerConstantArgs |= 1 << ArgTypes.size();
7801 
7802     // Do array -> pointer decay.  The builtin should use the decayed type.
7803     if (Ty->isArrayType())
7804       Ty = getArrayDecayedType(Ty);
7805 
7806     ArgTypes.push_back(Ty);
7807   }
7808 
7809   assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7810          "'.' should only occur at end of builtin type list!");
7811 
7812   FunctionType::ExtInfo EI(CC_C);
7813   if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7814 
7815   bool Variadic = (TypeStr[0] == '.');
7816 
7817   // We really shouldn't be making a no-proto type here, especially in C++.
7818   if (ArgTypes.empty() && Variadic)
7819     return getFunctionNoProtoType(ResType, EI);
7820 
7821   FunctionProtoType::ExtProtoInfo EPI;
7822   EPI.ExtInfo = EI;
7823   EPI.Variadic = Variadic;
7824 
7825   return getFunctionType(ResType, ArgTypes, EPI);
7826 }
7827 
basicGVALinkageForFunction(const ASTContext & Context,const FunctionDecl * FD)7828 static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
7829                                              const FunctionDecl *FD) {
7830   if (!FD->isExternallyVisible())
7831     return GVA_Internal;
7832 
7833   GVALinkage External = GVA_StrongExternal;
7834   switch (FD->getTemplateSpecializationKind()) {
7835   case TSK_Undeclared:
7836   case TSK_ExplicitSpecialization:
7837     External = GVA_StrongExternal;
7838     break;
7839 
7840   case TSK_ExplicitInstantiationDefinition:
7841     return GVA_StrongODR;
7842 
7843   // C++11 [temp.explicit]p10:
7844   //   [ Note: The intent is that an inline function that is the subject of
7845   //   an explicit instantiation declaration will still be implicitly
7846   //   instantiated when used so that the body can be considered for
7847   //   inlining, but that no out-of-line copy of the inline function would be
7848   //   generated in the translation unit. -- end note ]
7849   case TSK_ExplicitInstantiationDeclaration:
7850     return GVA_AvailableExternally;
7851 
7852   case TSK_ImplicitInstantiation:
7853     External = GVA_DiscardableODR;
7854     break;
7855   }
7856 
7857   if (!FD->isInlined())
7858     return External;
7859 
7860   if ((!Context.getLangOpts().CPlusPlus && !Context.getLangOpts().MSVCCompat &&
7861        !FD->hasAttr<DLLExportAttr>()) ||
7862       FD->hasAttr<GNUInlineAttr>()) {
7863     // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
7864 
7865     // GNU or C99 inline semantics. Determine whether this symbol should be
7866     // externally visible.
7867     if (FD->isInlineDefinitionExternallyVisible())
7868       return External;
7869 
7870     // C99 inline semantics, where the symbol is not externally visible.
7871     return GVA_AvailableExternally;
7872   }
7873 
7874   // Functions specified with extern and inline in -fms-compatibility mode
7875   // forcibly get emitted.  While the body of the function cannot be later
7876   // replaced, the function definition cannot be discarded.
7877   if (FD->isMSExternInline())
7878     return GVA_StrongODR;
7879 
7880   return GVA_DiscardableODR;
7881 }
7882 
adjustGVALinkageForDLLAttribute(GVALinkage L,const Decl * D)7883 static GVALinkage adjustGVALinkageForDLLAttribute(GVALinkage L, const Decl *D) {
7884   // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
7885   // dllexport/dllimport on inline functions.
7886   if (D->hasAttr<DLLImportAttr>()) {
7887     if (L == GVA_DiscardableODR || L == GVA_StrongODR)
7888       return GVA_AvailableExternally;
7889   } else if (D->hasAttr<DLLExportAttr>()) {
7890     if (L == GVA_DiscardableODR)
7891       return GVA_StrongODR;
7892   }
7893   return L;
7894 }
7895 
GetGVALinkageForFunction(const FunctionDecl * FD) const7896 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
7897   return adjustGVALinkageForDLLAttribute(basicGVALinkageForFunction(*this, FD),
7898                                          FD);
7899 }
7900 
basicGVALinkageForVariable(const ASTContext & Context,const VarDecl * VD)7901 static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
7902                                              const VarDecl *VD) {
7903   if (!VD->isExternallyVisible())
7904     return GVA_Internal;
7905 
7906   if (VD->isStaticLocal()) {
7907     GVALinkage StaticLocalLinkage = GVA_DiscardableODR;
7908     const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
7909     while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
7910       LexicalContext = LexicalContext->getLexicalParent();
7911 
7912     // Let the static local variable inherit it's linkage from the nearest
7913     // enclosing function.
7914     if (LexicalContext)
7915       StaticLocalLinkage =
7916           Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
7917 
7918     // GVA_StrongODR function linkage is stronger than what we need,
7919     // downgrade to GVA_DiscardableODR.
7920     // This allows us to discard the variable if we never end up needing it.
7921     return StaticLocalLinkage == GVA_StrongODR ? GVA_DiscardableODR
7922                                                : StaticLocalLinkage;
7923   }
7924 
7925   // MSVC treats in-class initialized static data members as definitions.
7926   // By giving them non-strong linkage, out-of-line definitions won't
7927   // cause link errors.
7928   if (Context.isMSStaticDataMemberInlineDefinition(VD))
7929     return GVA_DiscardableODR;
7930 
7931   switch (VD->getTemplateSpecializationKind()) {
7932   case TSK_Undeclared:
7933   case TSK_ExplicitSpecialization:
7934     return GVA_StrongExternal;
7935 
7936   case TSK_ExplicitInstantiationDefinition:
7937     return GVA_StrongODR;
7938 
7939   case TSK_ExplicitInstantiationDeclaration:
7940     return GVA_AvailableExternally;
7941 
7942   case TSK_ImplicitInstantiation:
7943     return GVA_DiscardableODR;
7944   }
7945 
7946   llvm_unreachable("Invalid Linkage!");
7947 }
7948 
GetGVALinkageForVariable(const VarDecl * VD)7949 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7950   return adjustGVALinkageForDLLAttribute(basicGVALinkageForVariable(*this, VD),
7951                                          VD);
7952 }
7953 
DeclMustBeEmitted(const Decl * D)7954 bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7955   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7956     if (!VD->isFileVarDecl())
7957       return false;
7958     // Global named register variables (GNU extension) are never emitted.
7959     if (VD->getStorageClass() == SC_Register)
7960       return false;
7961   } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7962     // We never need to emit an uninstantiated function template.
7963     if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
7964       return false;
7965   } else if (isa<OMPThreadPrivateDecl>(D))
7966     return true;
7967   else
7968     return false;
7969 
7970   // If this is a member of a class template, we do not need to emit it.
7971   if (D->getDeclContext()->isDependentContext())
7972     return false;
7973 
7974   // Weak references don't produce any output by themselves.
7975   if (D->hasAttr<WeakRefAttr>())
7976     return false;
7977 
7978   // Aliases and used decls are required.
7979   if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7980     return true;
7981 
7982   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7983     // Forward declarations aren't required.
7984     if (!FD->doesThisDeclarationHaveABody())
7985       return FD->doesDeclarationForceExternallyVisibleDefinition();
7986 
7987     // Constructors and destructors are required.
7988     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7989       return true;
7990 
7991     // The key function for a class is required.  This rule only comes
7992     // into play when inline functions can be key functions, though.
7993     if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7994       if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7995         const CXXRecordDecl *RD = MD->getParent();
7996         if (MD->isOutOfLine() && RD->isDynamicClass()) {
7997           const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
7998           if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7999             return true;
8000         }
8001       }
8002     }
8003 
8004     GVALinkage Linkage = GetGVALinkageForFunction(FD);
8005 
8006     // static, static inline, always_inline, and extern inline functions can
8007     // always be deferred.  Normal inline functions can be deferred in C99/C++.
8008     // Implicit template instantiations can also be deferred in C++.
8009     if (Linkage == GVA_Internal || Linkage == GVA_AvailableExternally ||
8010         Linkage == GVA_DiscardableODR)
8011       return false;
8012     return true;
8013   }
8014 
8015   const VarDecl *VD = cast<VarDecl>(D);
8016   assert(VD->isFileVarDecl() && "Expected file scoped var");
8017 
8018   if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
8019       !isMSStaticDataMemberInlineDefinition(VD))
8020     return false;
8021 
8022   // Variables that can be needed in other TUs are required.
8023   GVALinkage L = GetGVALinkageForVariable(VD);
8024   if (L != GVA_Internal && L != GVA_AvailableExternally &&
8025       L != GVA_DiscardableODR)
8026     return true;
8027 
8028   // Variables that have destruction with side-effects are required.
8029   if (VD->getType().isDestructedType())
8030     return true;
8031 
8032   // Variables that have initialization with side-effects are required.
8033   if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
8034     return true;
8035 
8036   return false;
8037 }
8038 
getDefaultCallingConvention(bool IsVariadic,bool IsCXXMethod) const8039 CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
8040                                                     bool IsCXXMethod) const {
8041   // Pass through to the C++ ABI object
8042   if (IsCXXMethod)
8043     return ABI->getDefaultMethodCallConv(IsVariadic);
8044 
8045   return (LangOpts.MRTD && !IsVariadic) ? CC_X86StdCall : CC_C;
8046 }
8047 
isNearlyEmpty(const CXXRecordDecl * RD) const8048 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
8049   // Pass through to the C++ ABI object
8050   return ABI->isNearlyEmpty(RD);
8051 }
8052 
getVTableContext()8053 VTableContextBase *ASTContext::getVTableContext() {
8054   if (!VTContext.get()) {
8055     if (Target->getCXXABI().isMicrosoft())
8056       VTContext.reset(new MicrosoftVTableContext(*this));
8057     else
8058       VTContext.reset(new ItaniumVTableContext(*this));
8059   }
8060   return VTContext.get();
8061 }
8062 
createMangleContext()8063 MangleContext *ASTContext::createMangleContext() {
8064   switch (Target->getCXXABI().getKind()) {
8065   case TargetCXXABI::GenericAArch64:
8066   case TargetCXXABI::GenericItanium:
8067   case TargetCXXABI::GenericARM:
8068   case TargetCXXABI::GenericMIPS:
8069   case TargetCXXABI::iOS:
8070   case TargetCXXABI::iOS64:
8071     return ItaniumMangleContext::create(*this, getDiagnostics());
8072   case TargetCXXABI::Microsoft:
8073     return MicrosoftMangleContext::create(*this, getDiagnostics());
8074   }
8075   llvm_unreachable("Unsupported ABI");
8076 }
8077 
~CXXABI()8078 CXXABI::~CXXABI() {}
8079 
getSideTableAllocatedMemory() const8080 size_t ASTContext::getSideTableAllocatedMemory() const {
8081   return ASTRecordLayouts.getMemorySize() +
8082          llvm::capacity_in_bytes(ObjCLayouts) +
8083          llvm::capacity_in_bytes(KeyFunctions) +
8084          llvm::capacity_in_bytes(ObjCImpls) +
8085          llvm::capacity_in_bytes(BlockVarCopyInits) +
8086          llvm::capacity_in_bytes(DeclAttrs) +
8087          llvm::capacity_in_bytes(TemplateOrInstantiation) +
8088          llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
8089          llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
8090          llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
8091          llvm::capacity_in_bytes(OverriddenMethods) +
8092          llvm::capacity_in_bytes(Types) +
8093          llvm::capacity_in_bytes(VariableArrayTypes) +
8094          llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
8095 }
8096 
8097 /// getIntTypeForBitwidth -
8098 /// sets integer QualTy according to specified details:
8099 /// bitwidth, signed/unsigned.
8100 /// Returns empty type if there is no appropriate target types.
getIntTypeForBitwidth(unsigned DestWidth,unsigned Signed) const8101 QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
8102                                            unsigned Signed) const {
8103   TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
8104   CanQualType QualTy = getFromTargetType(Ty);
8105   if (!QualTy && DestWidth == 128)
8106     return Signed ? Int128Ty : UnsignedInt128Ty;
8107   return QualTy;
8108 }
8109 
8110 /// getRealTypeForBitwidth -
8111 /// sets floating point QualTy according to specified bitwidth.
8112 /// Returns empty type if there is no appropriate target types.
getRealTypeForBitwidth(unsigned DestWidth) const8113 QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth) const {
8114   TargetInfo::RealType Ty = getTargetInfo().getRealTypeByWidth(DestWidth);
8115   switch (Ty) {
8116   case TargetInfo::Float:
8117     return FloatTy;
8118   case TargetInfo::Double:
8119     return DoubleTy;
8120   case TargetInfo::LongDouble:
8121     return LongDoubleTy;
8122   case TargetInfo::NoFloat:
8123     return QualType();
8124   }
8125 
8126   llvm_unreachable("Unhandled TargetInfo::RealType value");
8127 }
8128 
setManglingNumber(const NamedDecl * ND,unsigned Number)8129 void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
8130   if (Number > 1)
8131     MangleNumbers[ND] = Number;
8132 }
8133 
getManglingNumber(const NamedDecl * ND) const8134 unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
8135   llvm::DenseMap<const NamedDecl *, unsigned>::const_iterator I =
8136     MangleNumbers.find(ND);
8137   return I != MangleNumbers.end() ? I->second : 1;
8138 }
8139 
setStaticLocalNumber(const VarDecl * VD,unsigned Number)8140 void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
8141   if (Number > 1)
8142     StaticLocalNumbers[VD] = Number;
8143 }
8144 
getStaticLocalNumber(const VarDecl * VD) const8145 unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
8146   llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I =
8147       StaticLocalNumbers.find(VD);
8148   return I != StaticLocalNumbers.end() ? I->second : 1;
8149 }
8150 
8151 MangleNumberingContext &
getManglingNumberContext(const DeclContext * DC)8152 ASTContext::getManglingNumberContext(const DeclContext *DC) {
8153   assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C.
8154   MangleNumberingContext *&MCtx = MangleNumberingContexts[DC];
8155   if (!MCtx)
8156     MCtx = createMangleNumberingContext();
8157   return *MCtx;
8158 }
8159 
createMangleNumberingContext() const8160 MangleNumberingContext *ASTContext::createMangleNumberingContext() const {
8161   return ABI->createMangleNumberingContext();
8162 }
8163 
setParameterIndex(const ParmVarDecl * D,unsigned int index)8164 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
8165   ParamIndices[D] = index;
8166 }
8167 
getParameterIndex(const ParmVarDecl * D) const8168 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
8169   ParameterIndexTable::const_iterator I = ParamIndices.find(D);
8170   assert(I != ParamIndices.end() &&
8171          "ParmIndices lacks entry set by ParmVarDecl");
8172   return I->second;
8173 }
8174 
8175 APValue *
getMaterializedTemporaryValue(const MaterializeTemporaryExpr * E,bool MayCreate)8176 ASTContext::getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
8177                                           bool MayCreate) {
8178   assert(E && E->getStorageDuration() == SD_Static &&
8179          "don't need to cache the computed value for this temporary");
8180   if (MayCreate)
8181     return &MaterializedTemporaryValues[E];
8182 
8183   llvm::DenseMap<const MaterializeTemporaryExpr *, APValue>::iterator I =
8184       MaterializedTemporaryValues.find(E);
8185   return I == MaterializedTemporaryValues.end() ? nullptr : &I->second;
8186 }
8187 
AtomicUsesUnsupportedLibcall(const AtomicExpr * E) const8188 bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
8189   const llvm::Triple &T = getTargetInfo().getTriple();
8190   if (!T.isOSDarwin())
8191     return false;
8192 
8193   if (!(T.isiOS() && T.isOSVersionLT(7)) &&
8194       !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
8195     return false;
8196 
8197   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
8198   CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
8199   uint64_t Size = sizeChars.getQuantity();
8200   CharUnits alignChars = getTypeAlignInChars(AtomicTy);
8201   unsigned Align = alignChars.getQuantity();
8202   unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
8203   return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
8204 }
8205 
8206 namespace {
8207 
8208   /// \brief A \c RecursiveASTVisitor that builds a map from nodes to their
8209   /// parents as defined by the \c RecursiveASTVisitor.
8210   ///
8211   /// Note that the relationship described here is purely in terms of AST
8212   /// traversal - there are other relationships (for example declaration context)
8213   /// in the AST that are better modeled by special matchers.
8214   ///
8215   /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes.
8216   class ParentMapASTVisitor : public RecursiveASTVisitor<ParentMapASTVisitor> {
8217 
8218   public:
8219     /// \brief Builds and returns the translation unit's parent map.
8220     ///
8221     ///  The caller takes ownership of the returned \c ParentMap.
buildMap(TranslationUnitDecl & TU)8222     static ASTContext::ParentMap *buildMap(TranslationUnitDecl &TU) {
8223       ParentMapASTVisitor Visitor(new ASTContext::ParentMap);
8224       Visitor.TraverseDecl(&TU);
8225       return Visitor.Parents;
8226     }
8227 
8228   private:
8229     typedef RecursiveASTVisitor<ParentMapASTVisitor> VisitorBase;
8230 
ParentMapASTVisitor(ASTContext::ParentMap * Parents)8231     ParentMapASTVisitor(ASTContext::ParentMap *Parents) : Parents(Parents) {
8232     }
8233 
shouldVisitTemplateInstantiations() const8234     bool shouldVisitTemplateInstantiations() const {
8235       return true;
8236     }
shouldVisitImplicitCode() const8237     bool shouldVisitImplicitCode() const {
8238       return true;
8239     }
8240     // Disables data recursion. We intercept Traverse* methods in the RAV, which
8241     // are not triggered during data recursion.
shouldUseDataRecursionFor(clang::Stmt * S) const8242     bool shouldUseDataRecursionFor(clang::Stmt *S) const {
8243       return false;
8244     }
8245 
8246     template <typename T>
TraverseNode(T * Node,bool (VisitorBase::* traverse)(T *))8247     bool TraverseNode(T *Node, bool(VisitorBase:: *traverse) (T *)) {
8248       if (!Node)
8249         return true;
8250       if (ParentStack.size() > 0) {
8251         // FIXME: Currently we add the same parent multiple times, but only
8252         // when no memoization data is available for the type.
8253         // For example when we visit all subexpressions of template
8254         // instantiations; this is suboptimal, but benign: the only way to
8255         // visit those is with hasAncestor / hasParent, and those do not create
8256         // new matches.
8257         // The plan is to enable DynTypedNode to be storable in a map or hash
8258         // map. The main problem there is to implement hash functions /
8259         // comparison operators for all types that DynTypedNode supports that
8260         // do not have pointer identity.
8261         auto &NodeOrVector = (*Parents)[Node];
8262         if (NodeOrVector.isNull()) {
8263           NodeOrVector = new ast_type_traits::DynTypedNode(ParentStack.back());
8264         } else {
8265           if (NodeOrVector.template is<ast_type_traits::DynTypedNode *>()) {
8266             auto *Node =
8267                 NodeOrVector.template get<ast_type_traits::DynTypedNode *>();
8268             auto *Vector = new ASTContext::ParentVector(1, *Node);
8269             NodeOrVector = Vector;
8270             delete Node;
8271           }
8272           assert(NodeOrVector.template is<ASTContext::ParentVector *>());
8273 
8274           auto *Vector =
8275               NodeOrVector.template get<ASTContext::ParentVector *>();
8276           // Skip duplicates for types that have memoization data.
8277           // We must check that the type has memoization data before calling
8278           // std::find() because DynTypedNode::operator== can't compare all
8279           // types.
8280           bool Found = ParentStack.back().getMemoizationData() &&
8281                        std::find(Vector->begin(), Vector->end(),
8282                                  ParentStack.back()) != Vector->end();
8283           if (!Found)
8284             Vector->push_back(ParentStack.back());
8285         }
8286       }
8287       ParentStack.push_back(ast_type_traits::DynTypedNode::create(*Node));
8288       bool Result = (this ->* traverse) (Node);
8289       ParentStack.pop_back();
8290       return Result;
8291     }
8292 
TraverseDecl(Decl * DeclNode)8293     bool TraverseDecl(Decl *DeclNode) {
8294       return TraverseNode(DeclNode, &VisitorBase::TraverseDecl);
8295     }
8296 
TraverseStmt(Stmt * StmtNode)8297     bool TraverseStmt(Stmt *StmtNode) {
8298       return TraverseNode(StmtNode, &VisitorBase::TraverseStmt);
8299     }
8300 
8301     ASTContext::ParentMap *Parents;
8302     llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack;
8303 
8304     friend class RecursiveASTVisitor<ParentMapASTVisitor>;
8305   };
8306 
8307 } // end namespace
8308 
8309 ArrayRef<ast_type_traits::DynTypedNode>
getParents(const ast_type_traits::DynTypedNode & Node)8310 ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) {
8311   assert(Node.getMemoizationData() &&
8312          "Invariant broken: only nodes that support memoization may be "
8313          "used in the parent map.");
8314   if (!AllParents) {
8315     // We always need to run over the whole translation unit, as
8316     // hasAncestor can escape any subtree.
8317     AllParents.reset(
8318         ParentMapASTVisitor::buildMap(*getTranslationUnitDecl()));
8319   }
8320   ParentMap::const_iterator I = AllParents->find(Node.getMemoizationData());
8321   if (I == AllParents->end()) {
8322     return None;
8323   }
8324   if (auto *N = I->second.dyn_cast<ast_type_traits::DynTypedNode *>()) {
8325     return llvm::makeArrayRef(N, 1);
8326   }
8327   return *I->second.get<ParentVector *>();
8328 }
8329 
8330 bool
ObjCMethodsAreEqual(const ObjCMethodDecl * MethodDecl,const ObjCMethodDecl * MethodImpl)8331 ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
8332                                 const ObjCMethodDecl *MethodImpl) {
8333   // No point trying to match an unavailable/deprecated mothod.
8334   if (MethodDecl->hasAttr<UnavailableAttr>()
8335       || MethodDecl->hasAttr<DeprecatedAttr>())
8336     return false;
8337   if (MethodDecl->getObjCDeclQualifier() !=
8338       MethodImpl->getObjCDeclQualifier())
8339     return false;
8340   if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
8341     return false;
8342 
8343   if (MethodDecl->param_size() != MethodImpl->param_size())
8344     return false;
8345 
8346   for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
8347        IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
8348        EF = MethodDecl->param_end();
8349        IM != EM && IF != EF; ++IM, ++IF) {
8350     const ParmVarDecl *DeclVar = (*IF);
8351     const ParmVarDecl *ImplVar = (*IM);
8352     if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
8353       return false;
8354     if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
8355       return false;
8356   }
8357   return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
8358 
8359 }
8360 
8361 // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
8362 // doesn't include ASTContext.h
8363 template
8364 clang::LazyGenerationalUpdatePtr<
8365     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
8366 clang::LazyGenerationalUpdatePtr<
8367     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
8368         const clang::ASTContext &Ctx, Decl *Value);
8369