xref: /minix/external/bsd/llvm/dist/clang/lib/AST/Decl.cpp (revision 4684ddb6)
1 //===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Decl subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/PrettyPrinter.h"
24 #include "clang/AST/Stmt.h"
25 #include "clang/AST/TypeLoc.h"
26 #include "clang/Basic/Builtins.h"
27 #include "clang/Basic/IdentifierTable.h"
28 #include "clang/Basic/Module.h"
29 #include "clang/Basic/Specifiers.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/type_traits.h"
33 #include <algorithm>
34 
35 using namespace clang;
36 
37 Decl *clang::getPrimaryMergedDecl(Decl *D) {
38   return D->getASTContext().getPrimaryMergedDecl(D);
39 }
40 
41 //===----------------------------------------------------------------------===//
42 // NamedDecl Implementation
43 //===----------------------------------------------------------------------===//
44 
45 // Visibility rules aren't rigorously externally specified, but here
46 // are the basic principles behind what we implement:
47 //
48 // 1. An explicit visibility attribute is generally a direct expression
49 // of the user's intent and should be honored.  Only the innermost
50 // visibility attribute applies.  If no visibility attribute applies,
51 // global visibility settings are considered.
52 //
53 // 2. There is one caveat to the above: on or in a template pattern,
54 // an explicit visibility attribute is just a default rule, and
55 // visibility can be decreased by the visibility of template
56 // arguments.  But this, too, has an exception: an attribute on an
57 // explicit specialization or instantiation causes all the visibility
58 // restrictions of the template arguments to be ignored.
59 //
60 // 3. A variable that does not otherwise have explicit visibility can
61 // be restricted by the visibility of its type.
62 //
63 // 4. A visibility restriction is explicit if it comes from an
64 // attribute (or something like it), not a global visibility setting.
65 // When emitting a reference to an external symbol, visibility
66 // restrictions are ignored unless they are explicit.
67 //
68 // 5. When computing the visibility of a non-type, including a
69 // non-type member of a class, only non-type visibility restrictions
70 // are considered: the 'visibility' attribute, global value-visibility
71 // settings, and a few special cases like __private_extern.
72 //
73 // 6. When computing the visibility of a type, including a type member
74 // of a class, only type visibility restrictions are considered:
75 // the 'type_visibility' attribute and global type-visibility settings.
76 // However, a 'visibility' attribute counts as a 'type_visibility'
77 // attribute on any declaration that only has the former.
78 //
79 // The visibility of a "secondary" entity, like a template argument,
80 // is computed using the kind of that entity, not the kind of the
81 // primary entity for which we are computing visibility.  For example,
82 // the visibility of a specialization of either of these templates:
83 //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
84 //   template <class T, bool (&compare)(T, X)> class matcher;
85 // is restricted according to the type visibility of the argument 'T',
86 // the type visibility of 'bool(&)(T,X)', and the value visibility of
87 // the argument function 'compare'.  That 'has_match' is a value
88 // and 'matcher' is a type only matters when looking for attributes
89 // and settings from the immediate context.
90 
91 const unsigned IgnoreExplicitVisibilityBit = 2;
92 const unsigned IgnoreAllVisibilityBit = 4;
93 
94 /// Kinds of LV computation.  The linkage side of the computation is
95 /// always the same, but different things can change how visibility is
96 /// computed.
97 enum LVComputationKind {
98   /// Do an LV computation for, ultimately, a type.
99   /// Visibility may be restricted by type visibility settings and
100   /// the visibility of template arguments.
101   LVForType = NamedDecl::VisibilityForType,
102 
103   /// Do an LV computation for, ultimately, a non-type declaration.
104   /// Visibility may be restricted by value visibility settings and
105   /// the visibility of template arguments.
106   LVForValue = NamedDecl::VisibilityForValue,
107 
108   /// Do an LV computation for, ultimately, a type that already has
109   /// some sort of explicit visibility.  Visibility may only be
110   /// restricted by the visibility of template arguments.
111   LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit),
112 
113   /// Do an LV computation for, ultimately, a non-type declaration
114   /// that already has some sort of explicit visibility.  Visibility
115   /// may only be restricted by the visibility of template arguments.
116   LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit),
117 
118   /// Do an LV computation when we only care about the linkage.
119   LVForLinkageOnly =
120       LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit
121 };
122 
123 /// Does this computation kind permit us to consider additional
124 /// visibility settings from attributes and the like?
125 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
126   return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0);
127 }
128 
129 /// Given an LVComputationKind, return one of the same type/value sort
130 /// that records that it already has explicit visibility.
131 static LVComputationKind
132 withExplicitVisibilityAlready(LVComputationKind oldKind) {
133   LVComputationKind newKind =
134     static_cast<LVComputationKind>(unsigned(oldKind) |
135                                    IgnoreExplicitVisibilityBit);
136   assert(oldKind != LVForType          || newKind == LVForExplicitType);
137   assert(oldKind != LVForValue         || newKind == LVForExplicitValue);
138   assert(oldKind != LVForExplicitType  || newKind == LVForExplicitType);
139   assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue);
140   return newKind;
141 }
142 
143 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
144                                                   LVComputationKind kind) {
145   assert(!hasExplicitVisibilityAlready(kind) &&
146          "asking for explicit visibility when we shouldn't be");
147   return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind);
148 }
149 
150 /// Is the given declaration a "type" or a "value" for the purposes of
151 /// visibility computation?
152 static bool usesTypeVisibility(const NamedDecl *D) {
153   return isa<TypeDecl>(D) ||
154          isa<ClassTemplateDecl>(D) ||
155          isa<ObjCInterfaceDecl>(D);
156 }
157 
158 /// Does the given declaration have member specialization information,
159 /// and if so, is it an explicit specialization?
160 template <class T> static typename
161 llvm::enable_if_c<!llvm::is_base_of<RedeclarableTemplateDecl, T>::value,
162                   bool>::type
163 isExplicitMemberSpecialization(const T *D) {
164   if (const MemberSpecializationInfo *member =
165         D->getMemberSpecializationInfo()) {
166     return member->isExplicitSpecialization();
167   }
168   return false;
169 }
170 
171 /// For templates, this question is easier: a member template can't be
172 /// explicitly instantiated, so there's a single bit indicating whether
173 /// or not this is an explicit member specialization.
174 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
175   return D->isMemberSpecialization();
176 }
177 
178 /// Given a visibility attribute, return the explicit visibility
179 /// associated with it.
180 template <class T>
181 static Visibility getVisibilityFromAttr(const T *attr) {
182   switch (attr->getVisibility()) {
183   case T::Default:
184     return DefaultVisibility;
185   case T::Hidden:
186     return HiddenVisibility;
187   case T::Protected:
188     return ProtectedVisibility;
189   }
190   llvm_unreachable("bad visibility kind");
191 }
192 
193 /// Return the explicit visibility of the given declaration.
194 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
195                                     NamedDecl::ExplicitVisibilityKind kind) {
196   // If we're ultimately computing the visibility of a type, look for
197   // a 'type_visibility' attribute before looking for 'visibility'.
198   if (kind == NamedDecl::VisibilityForType) {
199     if (const TypeVisibilityAttr *A = D->getAttr<TypeVisibilityAttr>()) {
200       return getVisibilityFromAttr(A);
201     }
202   }
203 
204   // If this declaration has an explicit visibility attribute, use it.
205   if (const VisibilityAttr *A = D->getAttr<VisibilityAttr>()) {
206     return getVisibilityFromAttr(A);
207   }
208 
209   // If we're on Mac OS X, an 'availability' for Mac OS X attribute
210   // implies visibility(default).
211   if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) {
212     for (specific_attr_iterator<AvailabilityAttr>
213               A = D->specific_attr_begin<AvailabilityAttr>(),
214            AEnd = D->specific_attr_end<AvailabilityAttr>();
215          A != AEnd; ++A)
216       if ((*A)->getPlatform()->getName().equals("macosx"))
217         return DefaultVisibility;
218   }
219 
220   return None;
221 }
222 
223 static LinkageInfo
224 getLVForType(const Type &T, LVComputationKind computation) {
225   if (computation == LVForLinkageOnly)
226     return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
227   return T.getLinkageAndVisibility();
228 }
229 
230 /// \brief Get the most restrictive linkage for the types in the given
231 /// template parameter list.  For visibility purposes, template
232 /// parameters are part of the signature of a template.
233 static LinkageInfo
234 getLVForTemplateParameterList(const TemplateParameterList *params,
235                               LVComputationKind computation) {
236   LinkageInfo LV;
237   for (TemplateParameterList::const_iterator P = params->begin(),
238                                           PEnd = params->end();
239        P != PEnd; ++P) {
240 
241     // Template type parameters are the most common and never
242     // contribute to visibility, pack or not.
243     if (isa<TemplateTypeParmDecl>(*P))
244       continue;
245 
246     // Non-type template parameters can be restricted by the value type, e.g.
247     //   template <enum X> class A { ... };
248     // We have to be careful here, though, because we can be dealing with
249     // dependent types.
250     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
251       // Handle the non-pack case first.
252       if (!NTTP->isExpandedParameterPack()) {
253         if (!NTTP->getType()->isDependentType()) {
254           LV.merge(getLVForType(*NTTP->getType(), computation));
255         }
256         continue;
257       }
258 
259       // Look at all the types in an expanded pack.
260       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
261         QualType type = NTTP->getExpansionType(i);
262         if (!type->isDependentType())
263           LV.merge(type->getLinkageAndVisibility());
264       }
265       continue;
266     }
267 
268     // Template template parameters can be restricted by their
269     // template parameters, recursively.
270     TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
271 
272     // Handle the non-pack case first.
273     if (!TTP->isExpandedParameterPack()) {
274       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
275                                              computation));
276       continue;
277     }
278 
279     // Look at all expansions in an expanded pack.
280     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
281            i != n; ++i) {
282       LV.merge(getLVForTemplateParameterList(
283           TTP->getExpansionTemplateParameters(i), computation));
284     }
285   }
286 
287   return LV;
288 }
289 
290 /// getLVForDecl - Get the linkage and visibility for the given declaration.
291 static LinkageInfo getLVForDecl(const NamedDecl *D,
292                                 LVComputationKind computation);
293 
294 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
295   const Decl *Ret = NULL;
296   const DeclContext *DC = D->getDeclContext();
297   while (DC->getDeclKind() != Decl::TranslationUnit) {
298     if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
299       Ret = cast<Decl>(DC);
300     DC = DC->getParent();
301   }
302   return Ret;
303 }
304 
305 /// \brief Get the most restrictive linkage for the types and
306 /// declarations in the given template argument list.
307 ///
308 /// Note that we don't take an LVComputationKind because we always
309 /// want to honor the visibility of template arguments in the same way.
310 static LinkageInfo
311 getLVForTemplateArgumentList(ArrayRef<TemplateArgument> args,
312                              LVComputationKind computation) {
313   LinkageInfo LV;
314 
315   for (unsigned i = 0, e = args.size(); i != e; ++i) {
316     const TemplateArgument &arg = args[i];
317     switch (arg.getKind()) {
318     case TemplateArgument::Null:
319     case TemplateArgument::Integral:
320     case TemplateArgument::Expression:
321       continue;
322 
323     case TemplateArgument::Type:
324       LV.merge(getLVForType(*arg.getAsType(), computation));
325       continue;
326 
327     case TemplateArgument::Declaration:
328       if (NamedDecl *ND = dyn_cast<NamedDecl>(arg.getAsDecl())) {
329         assert(!usesTypeVisibility(ND));
330         LV.merge(getLVForDecl(ND, computation));
331       }
332       continue;
333 
334     case TemplateArgument::NullPtr:
335       LV.merge(arg.getNullPtrType()->getLinkageAndVisibility());
336       continue;
337 
338     case TemplateArgument::Template:
339     case TemplateArgument::TemplateExpansion:
340       if (TemplateDecl *Template
341                 = arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
342         LV.merge(getLVForDecl(Template, computation));
343       continue;
344 
345     case TemplateArgument::Pack:
346       LV.merge(getLVForTemplateArgumentList(arg.getPackAsArray(), computation));
347       continue;
348     }
349     llvm_unreachable("bad template argument kind");
350   }
351 
352   return LV;
353 }
354 
355 static LinkageInfo
356 getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
357                              LVComputationKind computation) {
358   return getLVForTemplateArgumentList(TArgs.asArray(), computation);
359 }
360 
361 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
362                         const FunctionTemplateSpecializationInfo *specInfo) {
363   // Include visibility from the template parameters and arguments
364   // only if this is not an explicit instantiation or specialization
365   // with direct explicit visibility.  (Implicit instantiations won't
366   // have a direct attribute.)
367   if (!specInfo->isExplicitInstantiationOrSpecialization())
368     return true;
369 
370   return !fn->hasAttr<VisibilityAttr>();
371 }
372 
373 /// Merge in template-related linkage and visibility for the given
374 /// function template specialization.
375 ///
376 /// We don't need a computation kind here because we can assume
377 /// LVForValue.
378 ///
379 /// \param[out] LV the computation to use for the parent
380 static void
381 mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn,
382                 const FunctionTemplateSpecializationInfo *specInfo,
383                 LVComputationKind computation) {
384   bool considerVisibility =
385     shouldConsiderTemplateVisibility(fn, specInfo);
386 
387   // Merge information from the template parameters.
388   FunctionTemplateDecl *temp = specInfo->getTemplate();
389   LinkageInfo tempLV =
390     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
391   LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
392 
393   // Merge information from the template arguments.
394   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
395   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
396   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
397 }
398 
399 /// Does the given declaration have a direct visibility attribute
400 /// that would match the given rules?
401 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
402                                          LVComputationKind computation) {
403   switch (computation) {
404   case LVForType:
405   case LVForExplicitType:
406     if (D->hasAttr<TypeVisibilityAttr>())
407       return true;
408     // fallthrough
409   case LVForValue:
410   case LVForExplicitValue:
411     if (D->hasAttr<VisibilityAttr>())
412       return true;
413     return false;
414   case LVForLinkageOnly:
415     return false;
416   }
417   llvm_unreachable("bad visibility computation kind");
418 }
419 
420 /// Should we consider visibility associated with the template
421 /// arguments and parameters of the given class template specialization?
422 static bool shouldConsiderTemplateVisibility(
423                                  const ClassTemplateSpecializationDecl *spec,
424                                  LVComputationKind computation) {
425   // Include visibility from the template parameters and arguments
426   // only if this is not an explicit instantiation or specialization
427   // with direct explicit visibility (and note that implicit
428   // instantiations won't have a direct attribute).
429   //
430   // Furthermore, we want to ignore template parameters and arguments
431   // for an explicit specialization when computing the visibility of a
432   // member thereof with explicit visibility.
433   //
434   // This is a bit complex; let's unpack it.
435   //
436   // An explicit class specialization is an independent, top-level
437   // declaration.  As such, if it or any of its members has an
438   // explicit visibility attribute, that must directly express the
439   // user's intent, and we should honor it.  The same logic applies to
440   // an explicit instantiation of a member of such a thing.
441 
442   // Fast path: if this is not an explicit instantiation or
443   // specialization, we always want to consider template-related
444   // visibility restrictions.
445   if (!spec->isExplicitInstantiationOrSpecialization())
446     return true;
447 
448   // This is the 'member thereof' check.
449   if (spec->isExplicitSpecialization() &&
450       hasExplicitVisibilityAlready(computation))
451     return false;
452 
453   return !hasDirectVisibilityAttribute(spec, computation);
454 }
455 
456 /// Merge in template-related linkage and visibility for the given
457 /// class template specialization.
458 static void mergeTemplateLV(LinkageInfo &LV,
459                             const ClassTemplateSpecializationDecl *spec,
460                             LVComputationKind computation) {
461   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
462 
463   // Merge information from the template parameters, but ignore
464   // visibility if we're only considering template arguments.
465 
466   ClassTemplateDecl *temp = spec->getSpecializedTemplate();
467   LinkageInfo tempLV =
468     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
469   LV.mergeMaybeWithVisibility(tempLV,
470            considerVisibility && !hasExplicitVisibilityAlready(computation));
471 
472   // Merge information from the template arguments.  We ignore
473   // template-argument visibility if we've got an explicit
474   // instantiation with a visibility attribute.
475   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
476   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
477   if (considerVisibility)
478     LV.mergeVisibility(argsLV);
479   LV.mergeExternalVisibility(argsLV);
480 }
481 
482 static bool useInlineVisibilityHidden(const NamedDecl *D) {
483   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
484   const LangOptions &Opts = D->getASTContext().getLangOpts();
485   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
486     return false;
487 
488   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
489   if (!FD)
490     return false;
491 
492   TemplateSpecializationKind TSK = TSK_Undeclared;
493   if (FunctionTemplateSpecializationInfo *spec
494       = FD->getTemplateSpecializationInfo()) {
495     TSK = spec->getTemplateSpecializationKind();
496   } else if (MemberSpecializationInfo *MSI =
497              FD->getMemberSpecializationInfo()) {
498     TSK = MSI->getTemplateSpecializationKind();
499   }
500 
501   const FunctionDecl *Def = 0;
502   // InlineVisibilityHidden only applies to definitions, and
503   // isInlined() only gives meaningful answers on definitions
504   // anyway.
505   return TSK != TSK_ExplicitInstantiationDeclaration &&
506     TSK != TSK_ExplicitInstantiationDefinition &&
507     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
508 }
509 
510 template <typename T> static bool isFirstInExternCContext(T *D) {
511   const T *First = D->getFirstDecl();
512   return First->isInExternCContext();
513 }
514 
515 static bool isSingleLineExternC(const Decl &D) {
516   if (const LinkageSpecDecl *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
517     if (SD->getLanguage() == LinkageSpecDecl::lang_c && !SD->hasBraces())
518       return true;
519   return false;
520 }
521 
522 static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D,
523                                               LVComputationKind computation) {
524   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
525          "Not a name having namespace scope");
526   ASTContext &Context = D->getASTContext();
527 
528   // C++ [basic.link]p3:
529   //   A name having namespace scope (3.3.6) has internal linkage if it
530   //   is the name of
531   //     - an object, reference, function or function template that is
532   //       explicitly declared static; or,
533   // (This bullet corresponds to C99 6.2.2p3.)
534   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
535     // Explicitly declared static.
536     if (Var->getStorageClass() == SC_Static)
537       return LinkageInfo::internal();
538 
539     // - a non-volatile object or reference that is explicitly declared const
540     //   or constexpr and neither explicitly declared extern nor previously
541     //   declared to have external linkage; or (there is no equivalent in C99)
542     if (Context.getLangOpts().CPlusPlus &&
543         Var->getType().isConstQualified() &&
544         !Var->getType().isVolatileQualified()) {
545       const VarDecl *PrevVar = Var->getPreviousDecl();
546       if (PrevVar)
547         return getLVForDecl(PrevVar, computation);
548 
549       if (Var->getStorageClass() != SC_Extern &&
550           Var->getStorageClass() != SC_PrivateExtern &&
551           !isSingleLineExternC(*Var))
552         return LinkageInfo::internal();
553     }
554 
555     for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
556          PrevVar = PrevVar->getPreviousDecl()) {
557       if (PrevVar->getStorageClass() == SC_PrivateExtern &&
558           Var->getStorageClass() == SC_None)
559         return PrevVar->getLinkageAndVisibility();
560       // Explicitly declared static.
561       if (PrevVar->getStorageClass() == SC_Static)
562         return LinkageInfo::internal();
563     }
564   } else if (isa<FunctionDecl>(D) || isa<FunctionTemplateDecl>(D)) {
565     // C++ [temp]p4:
566     //   A non-member function template can have internal linkage; any
567     //   other template name shall have external linkage.
568     const FunctionDecl *Function = 0;
569     if (const FunctionTemplateDecl *FunTmpl
570                                         = dyn_cast<FunctionTemplateDecl>(D))
571       Function = FunTmpl->getTemplatedDecl();
572     else
573       Function = cast<FunctionDecl>(D);
574 
575     // Explicitly declared static.
576     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
577       return LinkageInfo(InternalLinkage, DefaultVisibility, false);
578   }
579   //   - a data member of an anonymous union.
580   assert(!isa<IndirectFieldDecl>(D) && "Didn't expect an IndirectFieldDecl!");
581   assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
582 
583   if (D->isInAnonymousNamespace()) {
584     const VarDecl *Var = dyn_cast<VarDecl>(D);
585     const FunctionDecl *Func = dyn_cast<FunctionDecl>(D);
586     if ((!Var || !isFirstInExternCContext(Var)) &&
587         (!Func || !isFirstInExternCContext(Func)))
588       return LinkageInfo::uniqueExternal();
589   }
590 
591   // Set up the defaults.
592 
593   // C99 6.2.2p5:
594   //   If the declaration of an identifier for an object has file
595   //   scope and no storage-class specifier, its linkage is
596   //   external.
597   LinkageInfo LV;
598 
599   if (!hasExplicitVisibilityAlready(computation)) {
600     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
601       LV.mergeVisibility(*Vis, true);
602     } else {
603       // If we're declared in a namespace with a visibility attribute,
604       // use that namespace's visibility, and it still counts as explicit.
605       for (const DeclContext *DC = D->getDeclContext();
606            !isa<TranslationUnitDecl>(DC);
607            DC = DC->getParent()) {
608         const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
609         if (!ND) continue;
610         if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
611           LV.mergeVisibility(*Vis, true);
612           break;
613         }
614       }
615     }
616 
617     // Add in global settings if the above didn't give us direct visibility.
618     if (!LV.isVisibilityExplicit()) {
619       // Use global type/value visibility as appropriate.
620       Visibility globalVisibility;
621       if (computation == LVForValue) {
622         globalVisibility = Context.getLangOpts().getValueVisibilityMode();
623       } else {
624         assert(computation == LVForType);
625         globalVisibility = Context.getLangOpts().getTypeVisibilityMode();
626       }
627       LV.mergeVisibility(globalVisibility, /*explicit*/ false);
628 
629       // If we're paying attention to global visibility, apply
630       // -finline-visibility-hidden if this is an inline method.
631       if (useInlineVisibilityHidden(D))
632         LV.mergeVisibility(HiddenVisibility, true);
633     }
634   }
635 
636   // C++ [basic.link]p4:
637 
638   //   A name having namespace scope has external linkage if it is the
639   //   name of
640   //
641   //     - an object or reference, unless it has internal linkage; or
642   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
643     // GCC applies the following optimization to variables and static
644     // data members, but not to functions:
645     //
646     // Modify the variable's LV by the LV of its type unless this is
647     // C or extern "C".  This follows from [basic.link]p9:
648     //   A type without linkage shall not be used as the type of a
649     //   variable or function with external linkage unless
650     //    - the entity has C language linkage, or
651     //    - the entity is declared within an unnamed namespace, or
652     //    - the entity is not used or is defined in the same
653     //      translation unit.
654     // and [basic.link]p10:
655     //   ...the types specified by all declarations referring to a
656     //   given variable or function shall be identical...
657     // C does not have an equivalent rule.
658     //
659     // Ignore this if we've got an explicit attribute;  the user
660     // probably knows what they're doing.
661     //
662     // Note that we don't want to make the variable non-external
663     // because of this, but unique-external linkage suits us.
664     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) {
665       LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
666       if (TypeLV.getLinkage() != ExternalLinkage)
667         return LinkageInfo::uniqueExternal();
668       if (!LV.isVisibilityExplicit())
669         LV.mergeVisibility(TypeLV);
670     }
671 
672     if (Var->getStorageClass() == SC_PrivateExtern)
673       LV.mergeVisibility(HiddenVisibility, true);
674 
675     // Note that Sema::MergeVarDecl already takes care of implementing
676     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
677     // to do it here.
678 
679   //     - a function, unless it has internal linkage; or
680   } else if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
681     // In theory, we can modify the function's LV by the LV of its
682     // type unless it has C linkage (see comment above about variables
683     // for justification).  In practice, GCC doesn't do this, so it's
684     // just too painful to make work.
685 
686     if (Function->getStorageClass() == SC_PrivateExtern)
687       LV.mergeVisibility(HiddenVisibility, true);
688 
689     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
690     // merging storage classes and visibility attributes, so we don't have to
691     // look at previous decls in here.
692 
693     // In C++, then if the type of the function uses a type with
694     // unique-external linkage, it's not legally usable from outside
695     // this translation unit.  However, we should use the C linkage
696     // rules instead for extern "C" declarations.
697     if (Context.getLangOpts().CPlusPlus &&
698         !Function->isInExternCContext()) {
699       // Only look at the type-as-written. If this function has an auto-deduced
700       // return type, we can't compute the linkage of that type because it could
701       // require looking at the linkage of this function, and we don't need this
702       // for correctness because the type is not part of the function's
703       // signature.
704       // FIXME: This is a hack. We should be able to solve this circularity and
705       // the one in getLVForClassMember for Functions some other way.
706       QualType TypeAsWritten = Function->getType();
707       if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
708         TypeAsWritten = TSI->getType();
709       if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
710         return LinkageInfo::uniqueExternal();
711     }
712 
713     // Consider LV from the template and the template arguments.
714     // We're at file scope, so we do not need to worry about nested
715     // specializations.
716     if (FunctionTemplateSpecializationInfo *specInfo
717                                = Function->getTemplateSpecializationInfo()) {
718       mergeTemplateLV(LV, Function, specInfo, computation);
719     }
720 
721   //     - a named class (Clause 9), or an unnamed class defined in a
722   //       typedef declaration in which the class has the typedef name
723   //       for linkage purposes (7.1.3); or
724   //     - a named enumeration (7.2), or an unnamed enumeration
725   //       defined in a typedef declaration in which the enumeration
726   //       has the typedef name for linkage purposes (7.1.3); or
727   } else if (const TagDecl *Tag = dyn_cast<TagDecl>(D)) {
728     // Unnamed tags have no linkage.
729     if (!Tag->hasNameForLinkage())
730       return LinkageInfo::none();
731 
732     // If this is a class template specialization, consider the
733     // linkage of the template and template arguments.  We're at file
734     // scope, so we do not need to worry about nested specializations.
735     if (const ClassTemplateSpecializationDecl *spec
736           = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
737       mergeTemplateLV(LV, spec, computation);
738     }
739 
740   //     - an enumerator belonging to an enumeration with external linkage;
741   } else if (isa<EnumConstantDecl>(D)) {
742     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
743                                       computation);
744     if (!isExternalFormalLinkage(EnumLV.getLinkage()))
745       return LinkageInfo::none();
746     LV.merge(EnumLV);
747 
748   //     - a template, unless it is a function template that has
749   //       internal linkage (Clause 14);
750   } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
751     bool considerVisibility = !hasExplicitVisibilityAlready(computation);
752     LinkageInfo tempLV =
753       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
754     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
755 
756   //     - a namespace (7.3), unless it is declared within an unnamed
757   //       namespace.
758   } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) {
759     return LV;
760 
761   // By extension, we assign external linkage to Objective-C
762   // interfaces.
763   } else if (isa<ObjCInterfaceDecl>(D)) {
764     // fallout
765 
766   // Everything not covered here has no linkage.
767   } else {
768     return LinkageInfo::none();
769   }
770 
771   // If we ended up with non-external linkage, visibility should
772   // always be default.
773   if (LV.getLinkage() != ExternalLinkage)
774     return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
775 
776   return LV;
777 }
778 
779 static LinkageInfo getLVForClassMember(const NamedDecl *D,
780                                        LVComputationKind computation) {
781   // Only certain class members have linkage.  Note that fields don't
782   // really have linkage, but it's convenient to say they do for the
783   // purposes of calculating linkage of pointer-to-data-member
784   // template arguments.
785   if (!(isa<CXXMethodDecl>(D) ||
786         isa<VarDecl>(D) ||
787         isa<FieldDecl>(D) ||
788         isa<IndirectFieldDecl>(D) ||
789         isa<TagDecl>(D)))
790     return LinkageInfo::none();
791 
792   LinkageInfo LV;
793 
794   // If we have an explicit visibility attribute, merge that in.
795   if (!hasExplicitVisibilityAlready(computation)) {
796     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
797       LV.mergeVisibility(*Vis, true);
798     // If we're paying attention to global visibility, apply
799     // -finline-visibility-hidden if this is an inline method.
800     //
801     // Note that we do this before merging information about
802     // the class visibility.
803     if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
804       LV.mergeVisibility(HiddenVisibility, true);
805   }
806 
807   // If this class member has an explicit visibility attribute, the only
808   // thing that can change its visibility is the template arguments, so
809   // only look for them when processing the class.
810   LVComputationKind classComputation = computation;
811   if (LV.isVisibilityExplicit())
812     classComputation = withExplicitVisibilityAlready(computation);
813 
814   LinkageInfo classLV =
815     getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
816   // If the class already has unique-external linkage, we can't improve.
817   if (classLV.getLinkage() == UniqueExternalLinkage)
818     return LinkageInfo::uniqueExternal();
819 
820   if (!isExternallyVisible(classLV.getLinkage()))
821     return LinkageInfo::none();
822 
823 
824   // Otherwise, don't merge in classLV yet, because in certain cases
825   // we need to completely ignore the visibility from it.
826 
827   // Specifically, if this decl exists and has an explicit attribute.
828   const NamedDecl *explicitSpecSuppressor = 0;
829 
830   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
831     // If the type of the function uses a type with unique-external
832     // linkage, it's not legally usable from outside this translation unit.
833     // But only look at the type-as-written. If this function has an auto-deduced
834     // return type, we can't compute the linkage of that type because it could
835     // require looking at the linkage of this function, and we don't need this
836     // for correctness because the type is not part of the function's
837     // signature.
838     // FIXME: This is a hack. We should be able to solve this circularity and the
839     // one in getLVForNamespaceScopeDecl for Functions some other way.
840     {
841       QualType TypeAsWritten = MD->getType();
842       if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
843         TypeAsWritten = TSI->getType();
844       if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
845         return LinkageInfo::uniqueExternal();
846     }
847     // If this is a method template specialization, use the linkage for
848     // the template parameters and arguments.
849     if (FunctionTemplateSpecializationInfo *spec
850            = MD->getTemplateSpecializationInfo()) {
851       mergeTemplateLV(LV, MD, spec, computation);
852       if (spec->isExplicitSpecialization()) {
853         explicitSpecSuppressor = MD;
854       } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
855         explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
856       }
857     } else if (isExplicitMemberSpecialization(MD)) {
858       explicitSpecSuppressor = MD;
859     }
860 
861   } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
862     if (const ClassTemplateSpecializationDecl *spec
863         = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
864       mergeTemplateLV(LV, spec, computation);
865       if (spec->isExplicitSpecialization()) {
866         explicitSpecSuppressor = spec;
867       } else {
868         const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
869         if (isExplicitMemberSpecialization(temp)) {
870           explicitSpecSuppressor = temp->getTemplatedDecl();
871         }
872       }
873     } else if (isExplicitMemberSpecialization(RD)) {
874       explicitSpecSuppressor = RD;
875     }
876 
877   // Static data members.
878   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
879     // Modify the variable's linkage by its type, but ignore the
880     // type's visibility unless it's a definition.
881     LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
882     if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
883       LV.mergeVisibility(typeLV);
884     LV.mergeExternalVisibility(typeLV);
885 
886     if (isExplicitMemberSpecialization(VD)) {
887       explicitSpecSuppressor = VD;
888     }
889 
890   // Template members.
891   } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
892     bool considerVisibility =
893       (!LV.isVisibilityExplicit() &&
894        !classLV.isVisibilityExplicit() &&
895        !hasExplicitVisibilityAlready(computation));
896     LinkageInfo tempLV =
897       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
898     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
899 
900     if (const RedeclarableTemplateDecl *redeclTemp =
901           dyn_cast<RedeclarableTemplateDecl>(temp)) {
902       if (isExplicitMemberSpecialization(redeclTemp)) {
903         explicitSpecSuppressor = temp->getTemplatedDecl();
904       }
905     }
906   }
907 
908   // We should never be looking for an attribute directly on a template.
909   assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
910 
911   // If this member is an explicit member specialization, and it has
912   // an explicit attribute, ignore visibility from the parent.
913   bool considerClassVisibility = true;
914   if (explicitSpecSuppressor &&
915       // optimization: hasDVA() is true only with explicit visibility.
916       LV.isVisibilityExplicit() &&
917       classLV.getVisibility() != DefaultVisibility &&
918       hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
919     considerClassVisibility = false;
920   }
921 
922   // Finally, merge in information from the class.
923   LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
924   return LV;
925 }
926 
927 void NamedDecl::anchor() { }
928 
929 static LinkageInfo computeLVForDecl(const NamedDecl *D,
930                                     LVComputationKind computation);
931 
932 bool NamedDecl::isLinkageValid() const {
933   if (!hasCachedLinkage())
934     return true;
935 
936   return computeLVForDecl(this, LVForLinkageOnly).getLinkage() ==
937          getCachedLinkage();
938 }
939 
940 Linkage NamedDecl::getLinkageInternal() const {
941   // We don't care about visibility here, so ask for the cheapest
942   // possible visibility analysis.
943   return getLVForDecl(this, LVForLinkageOnly).getLinkage();
944 }
945 
946 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
947   LVComputationKind computation =
948     (usesTypeVisibility(this) ? LVForType : LVForValue);
949   return getLVForDecl(this, computation);
950 }
951 
952 Optional<Visibility>
953 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
954   // Check the declaration itself first.
955   if (Optional<Visibility> V = getVisibilityOf(this, kind))
956     return V;
957 
958   // If this is a member class of a specialization of a class template
959   // and the corresponding decl has explicit visibility, use that.
960   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(this)) {
961     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
962     if (InstantiatedFrom)
963       return getVisibilityOf(InstantiatedFrom, kind);
964   }
965 
966   // If there wasn't explicit visibility there, and this is a
967   // specialization of a class template, check for visibility
968   // on the pattern.
969   if (const ClassTemplateSpecializationDecl *spec
970         = dyn_cast<ClassTemplateSpecializationDecl>(this))
971     return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(),
972                            kind);
973 
974   // Use the most recent declaration.
975   const NamedDecl *MostRecent = getMostRecentDecl();
976   if (MostRecent != this)
977     return MostRecent->getExplicitVisibility(kind);
978 
979   if (const VarDecl *Var = dyn_cast<VarDecl>(this)) {
980     if (Var->isStaticDataMember()) {
981       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
982       if (InstantiatedFrom)
983         return getVisibilityOf(InstantiatedFrom, kind);
984     }
985 
986     return None;
987   }
988   // Also handle function template specializations.
989   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(this)) {
990     // If the function is a specialization of a template with an
991     // explicit visibility attribute, use that.
992     if (FunctionTemplateSpecializationInfo *templateInfo
993           = fn->getTemplateSpecializationInfo())
994       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
995                              kind);
996 
997     // If the function is a member of a specialization of a class template
998     // and the corresponding decl has explicit visibility, use that.
999     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1000     if (InstantiatedFrom)
1001       return getVisibilityOf(InstantiatedFrom, kind);
1002 
1003     return None;
1004   }
1005 
1006   // The visibility of a template is stored in the templated decl.
1007   if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(this))
1008     return getVisibilityOf(TD->getTemplatedDecl(), kind);
1009 
1010   return None;
1011 }
1012 
1013 static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl,
1014                                    LVComputationKind computation) {
1015   // This lambda has its linkage/visibility determined by its owner.
1016   if (ContextDecl) {
1017     if (isa<ParmVarDecl>(ContextDecl))
1018       DC = ContextDecl->getDeclContext()->getRedeclContext();
1019     else
1020       return getLVForDecl(cast<NamedDecl>(ContextDecl), computation);
1021   }
1022 
1023   if (const NamedDecl *ND = dyn_cast<NamedDecl>(DC))
1024     return getLVForDecl(ND, computation);
1025 
1026   return LinkageInfo::external();
1027 }
1028 
1029 static LinkageInfo getLVForLocalDecl(const NamedDecl *D,
1030                                      LVComputationKind computation) {
1031   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1032     if (Function->isInAnonymousNamespace() &&
1033         !Function->isInExternCContext())
1034       return LinkageInfo::uniqueExternal();
1035 
1036     // This is a "void f();" which got merged with a file static.
1037     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1038       return LinkageInfo::internal();
1039 
1040     LinkageInfo LV;
1041     if (!hasExplicitVisibilityAlready(computation)) {
1042       if (Optional<Visibility> Vis =
1043               getExplicitVisibility(Function, computation))
1044         LV.mergeVisibility(*Vis, true);
1045     }
1046 
1047     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1048     // merging storage classes and visibility attributes, so we don't have to
1049     // look at previous decls in here.
1050 
1051     return LV;
1052   }
1053 
1054   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
1055     if (Var->hasExternalStorage()) {
1056       if (Var->isInAnonymousNamespace() && !Var->isInExternCContext())
1057         return LinkageInfo::uniqueExternal();
1058 
1059       LinkageInfo LV;
1060       if (Var->getStorageClass() == SC_PrivateExtern)
1061         LV.mergeVisibility(HiddenVisibility, true);
1062       else if (!hasExplicitVisibilityAlready(computation)) {
1063         if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1064           LV.mergeVisibility(*Vis, true);
1065       }
1066 
1067       if (const VarDecl *Prev = Var->getPreviousDecl()) {
1068         LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1069         if (PrevLV.getLinkage())
1070           LV.setLinkage(PrevLV.getLinkage());
1071         LV.mergeVisibility(PrevLV);
1072       }
1073 
1074       return LV;
1075     }
1076 
1077     if (!Var->isStaticLocal())
1078       return LinkageInfo::none();
1079   }
1080 
1081   ASTContext &Context = D->getASTContext();
1082   if (!Context.getLangOpts().CPlusPlus)
1083     return LinkageInfo::none();
1084 
1085   const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1086   if (!OuterD)
1087     return LinkageInfo::none();
1088 
1089   LinkageInfo LV;
1090   if (const BlockDecl *BD = dyn_cast<BlockDecl>(OuterD)) {
1091     if (!BD->getBlockManglingNumber())
1092       return LinkageInfo::none();
1093 
1094     LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1095                          BD->getBlockManglingContextDecl(), computation);
1096   } else {
1097     const FunctionDecl *FD = cast<FunctionDecl>(OuterD);
1098     if (!FD->isInlined() &&
1099         FD->getTemplateSpecializationKind() == TSK_Undeclared)
1100       return LinkageInfo::none();
1101 
1102     LV = getLVForDecl(FD, computation);
1103   }
1104   if (!isExternallyVisible(LV.getLinkage()))
1105     return LinkageInfo::none();
1106   return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1107                      LV.isVisibilityExplicit());
1108 }
1109 
1110 static inline const CXXRecordDecl*
1111 getOutermostEnclosingLambda(const CXXRecordDecl *Record) {
1112   const CXXRecordDecl *Ret = Record;
1113   while (Record && Record->isLambda()) {
1114     Ret = Record;
1115     if (!Record->getParent()) break;
1116     // Get the Containing Class of this Lambda Class
1117     Record = dyn_cast_or_null<CXXRecordDecl>(
1118       Record->getParent()->getParent());
1119   }
1120   return Ret;
1121 }
1122 
1123 static LinkageInfo computeLVForDecl(const NamedDecl *D,
1124                                     LVComputationKind computation) {
1125   // Objective-C: treat all Objective-C declarations as having external
1126   // linkage.
1127   switch (D->getKind()) {
1128     default:
1129       break;
1130     case Decl::ParmVar:
1131       return LinkageInfo::none();
1132     case Decl::TemplateTemplateParm: // count these as external
1133     case Decl::NonTypeTemplateParm:
1134     case Decl::ObjCAtDefsField:
1135     case Decl::ObjCCategory:
1136     case Decl::ObjCCategoryImpl:
1137     case Decl::ObjCCompatibleAlias:
1138     case Decl::ObjCImplementation:
1139     case Decl::ObjCMethod:
1140     case Decl::ObjCProperty:
1141     case Decl::ObjCPropertyImpl:
1142     case Decl::ObjCProtocol:
1143       return LinkageInfo::external();
1144 
1145     case Decl::CXXRecord: {
1146       const CXXRecordDecl *Record = cast<CXXRecordDecl>(D);
1147       if (Record->isLambda()) {
1148         if (!Record->getLambdaManglingNumber()) {
1149           // This lambda has no mangling number, so it's internal.
1150           return LinkageInfo::internal();
1151         }
1152 
1153         // This lambda has its linkage/visibility determined:
1154         //  - either by the outermost lambda if that lambda has no mangling
1155         //    number.
1156         //  - or by the parent of the outer most lambda
1157         // This prevents infinite recursion in settings such as nested lambdas
1158         // used in NSDMI's, for e.g.
1159         //  struct L {
1160         //    int t{};
1161         //    int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
1162         //  };
1163         const CXXRecordDecl *OuterMostLambda =
1164             getOutermostEnclosingLambda(Record);
1165         if (!OuterMostLambda->getLambdaManglingNumber())
1166           return LinkageInfo::internal();
1167 
1168         return getLVForClosure(
1169                   OuterMostLambda->getDeclContext()->getRedeclContext(),
1170                   OuterMostLambda->getLambdaContextDecl(), computation);
1171       }
1172 
1173       break;
1174     }
1175   }
1176 
1177   // Handle linkage for namespace-scope names.
1178   if (D->getDeclContext()->getRedeclContext()->isFileContext())
1179     return getLVForNamespaceScopeDecl(D, computation);
1180 
1181   // C++ [basic.link]p5:
1182   //   In addition, a member function, static data member, a named
1183   //   class or enumeration of class scope, or an unnamed class or
1184   //   enumeration defined in a class-scope typedef declaration such
1185   //   that the class or enumeration has the typedef name for linkage
1186   //   purposes (7.1.3), has external linkage if the name of the class
1187   //   has external linkage.
1188   if (D->getDeclContext()->isRecord())
1189     return getLVForClassMember(D, computation);
1190 
1191   // C++ [basic.link]p6:
1192   //   The name of a function declared in block scope and the name of
1193   //   an object declared by a block scope extern declaration have
1194   //   linkage. If there is a visible declaration of an entity with
1195   //   linkage having the same name and type, ignoring entities
1196   //   declared outside the innermost enclosing namespace scope, the
1197   //   block scope declaration declares that same entity and receives
1198   //   the linkage of the previous declaration. If there is more than
1199   //   one such matching entity, the program is ill-formed. Otherwise,
1200   //   if no matching entity is found, the block scope entity receives
1201   //   external linkage.
1202   if (D->getDeclContext()->isFunctionOrMethod())
1203     return getLVForLocalDecl(D, computation);
1204 
1205   // C++ [basic.link]p6:
1206   //   Names not covered by these rules have no linkage.
1207   return LinkageInfo::none();
1208 }
1209 
1210 namespace clang {
1211 class LinkageComputer {
1212 public:
1213   static LinkageInfo getLVForDecl(const NamedDecl *D,
1214                                   LVComputationKind computation) {
1215     if (computation == LVForLinkageOnly && D->hasCachedLinkage())
1216       return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1217 
1218     LinkageInfo LV = computeLVForDecl(D, computation);
1219     if (D->hasCachedLinkage())
1220       assert(D->getCachedLinkage() == LV.getLinkage());
1221 
1222     D->setCachedLinkage(LV.getLinkage());
1223 
1224 #ifndef NDEBUG
1225     // In C (because of gnu inline) and in c++ with microsoft extensions an
1226     // static can follow an extern, so we can have two decls with different
1227     // linkages.
1228     const LangOptions &Opts = D->getASTContext().getLangOpts();
1229     if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1230       return LV;
1231 
1232     // We have just computed the linkage for this decl. By induction we know
1233     // that all other computed linkages match, check that the one we just
1234     // computed
1235     // also does.
1236     NamedDecl *Old = NULL;
1237     for (NamedDecl::redecl_iterator I = D->redecls_begin(),
1238                                     E = D->redecls_end();
1239          I != E; ++I) {
1240       NamedDecl *T = cast<NamedDecl>(*I);
1241       if (T == D)
1242         continue;
1243       if (T->hasCachedLinkage()) {
1244         Old = T;
1245         break;
1246       }
1247     }
1248     assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1249 #endif
1250 
1251     return LV;
1252   }
1253 };
1254 }
1255 
1256 static LinkageInfo getLVForDecl(const NamedDecl *D,
1257                                 LVComputationKind computation) {
1258   return clang::LinkageComputer::getLVForDecl(D, computation);
1259 }
1260 
1261 std::string NamedDecl::getQualifiedNameAsString() const {
1262   return getQualifiedNameAsString(getASTContext().getPrintingPolicy());
1263 }
1264 
1265 std::string NamedDecl::getQualifiedNameAsString(const PrintingPolicy &P) const {
1266   std::string QualName;
1267   llvm::raw_string_ostream OS(QualName);
1268   printQualifiedName(OS, P);
1269   return OS.str();
1270 }
1271 
1272 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1273   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1274 }
1275 
1276 void NamedDecl::printQualifiedName(raw_ostream &OS,
1277                                    const PrintingPolicy &P) const {
1278   const DeclContext *Ctx = getDeclContext();
1279 
1280   if (Ctx->isFunctionOrMethod()) {
1281     printName(OS);
1282     return;
1283   }
1284 
1285   typedef SmallVector<const DeclContext *, 8> ContextsTy;
1286   ContextsTy Contexts;
1287 
1288   // Collect contexts.
1289   while (Ctx && isa<NamedDecl>(Ctx)) {
1290     Contexts.push_back(Ctx);
1291     Ctx = Ctx->getParent();
1292   }
1293 
1294   for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend();
1295        I != E; ++I) {
1296     if (const ClassTemplateSpecializationDecl *Spec
1297           = dyn_cast<ClassTemplateSpecializationDecl>(*I)) {
1298       OS << Spec->getName();
1299       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1300       TemplateSpecializationType::PrintTemplateArgumentList(OS,
1301                                                             TemplateArgs.data(),
1302                                                             TemplateArgs.size(),
1303                                                             P);
1304     } else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(*I)) {
1305       if (ND->isAnonymousNamespace())
1306         OS << "<anonymous namespace>";
1307       else
1308         OS << *ND;
1309     } else if (const RecordDecl *RD = dyn_cast<RecordDecl>(*I)) {
1310       if (!RD->getIdentifier())
1311         OS << "<anonymous " << RD->getKindName() << '>';
1312       else
1313         OS << *RD;
1314     } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
1315       const FunctionProtoType *FT = 0;
1316       if (FD->hasWrittenPrototype())
1317         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1318 
1319       OS << *FD << '(';
1320       if (FT) {
1321         unsigned NumParams = FD->getNumParams();
1322         for (unsigned i = 0; i < NumParams; ++i) {
1323           if (i)
1324             OS << ", ";
1325           OS << FD->getParamDecl(i)->getType().stream(P);
1326         }
1327 
1328         if (FT->isVariadic()) {
1329           if (NumParams > 0)
1330             OS << ", ";
1331           OS << "...";
1332         }
1333       }
1334       OS << ')';
1335     } else {
1336       OS << *cast<NamedDecl>(*I);
1337     }
1338     OS << "::";
1339   }
1340 
1341   if (getDeclName())
1342     OS << *this;
1343   else
1344     OS << "<anonymous>";
1345 }
1346 
1347 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1348                                      const PrintingPolicy &Policy,
1349                                      bool Qualified) const {
1350   if (Qualified)
1351     printQualifiedName(OS, Policy);
1352   else
1353     printName(OS);
1354 }
1355 
1356 bool NamedDecl::declarationReplaces(NamedDecl *OldD) const {
1357   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1358 
1359   // UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
1360   // We want to keep it, unless it nominates same namespace.
1361   if (getKind() == Decl::UsingDirective) {
1362     return cast<UsingDirectiveDecl>(this)->getNominatedNamespace()
1363              ->getOriginalNamespace() ==
1364            cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace()
1365              ->getOriginalNamespace();
1366   }
1367 
1368   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this))
1369     // For function declarations, we keep track of redeclarations.
1370     return FD->getPreviousDecl() == OldD;
1371 
1372   // For function templates, the underlying function declarations are linked.
1373   if (const FunctionTemplateDecl *FunctionTemplate
1374         = dyn_cast<FunctionTemplateDecl>(this))
1375     if (const FunctionTemplateDecl *OldFunctionTemplate
1376           = dyn_cast<FunctionTemplateDecl>(OldD))
1377       return FunctionTemplate->getTemplatedDecl()
1378                ->declarationReplaces(OldFunctionTemplate->getTemplatedDecl());
1379 
1380   // For method declarations, we keep track of redeclarations.
1381   if (isa<ObjCMethodDecl>(this))
1382     return false;
1383 
1384   if (isa<ObjCInterfaceDecl>(this) && isa<ObjCCompatibleAliasDecl>(OldD))
1385     return true;
1386 
1387   if (isa<UsingShadowDecl>(this) && isa<UsingShadowDecl>(OldD))
1388     return cast<UsingShadowDecl>(this)->getTargetDecl() ==
1389            cast<UsingShadowDecl>(OldD)->getTargetDecl();
1390 
1391   if (isa<UsingDecl>(this) && isa<UsingDecl>(OldD)) {
1392     ASTContext &Context = getASTContext();
1393     return Context.getCanonicalNestedNameSpecifier(
1394                                      cast<UsingDecl>(this)->getQualifier()) ==
1395            Context.getCanonicalNestedNameSpecifier(
1396                                         cast<UsingDecl>(OldD)->getQualifier());
1397   }
1398 
1399   if (isa<UnresolvedUsingValueDecl>(this) &&
1400       isa<UnresolvedUsingValueDecl>(OldD)) {
1401     ASTContext &Context = getASTContext();
1402     return Context.getCanonicalNestedNameSpecifier(
1403                       cast<UnresolvedUsingValueDecl>(this)->getQualifier()) ==
1404            Context.getCanonicalNestedNameSpecifier(
1405                         cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1406   }
1407 
1408   // A typedef of an Objective-C class type can replace an Objective-C class
1409   // declaration or definition, and vice versa.
1410   if ((isa<TypedefNameDecl>(this) && isa<ObjCInterfaceDecl>(OldD)) ||
1411       (isa<ObjCInterfaceDecl>(this) && isa<TypedefNameDecl>(OldD)))
1412     return true;
1413 
1414   // For non-function declarations, if the declarations are of the
1415   // same kind then this must be a redeclaration, or semantic analysis
1416   // would not have given us the new declaration.
1417   return this->getKind() == OldD->getKind();
1418 }
1419 
1420 bool NamedDecl::hasLinkage() const {
1421   return getFormalLinkage() != NoLinkage;
1422 }
1423 
1424 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1425   NamedDecl *ND = this;
1426   while (UsingShadowDecl *UD = dyn_cast<UsingShadowDecl>(ND))
1427     ND = UD->getTargetDecl();
1428 
1429   if (ObjCCompatibleAliasDecl *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1430     return AD->getClassInterface();
1431 
1432   return ND;
1433 }
1434 
1435 bool NamedDecl::isCXXInstanceMember() const {
1436   if (!isCXXClassMember())
1437     return false;
1438 
1439   const NamedDecl *D = this;
1440   if (isa<UsingShadowDecl>(D))
1441     D = cast<UsingShadowDecl>(D)->getTargetDecl();
1442 
1443   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1444     return true;
1445   if (isa<CXXMethodDecl>(D))
1446     return cast<CXXMethodDecl>(D)->isInstance();
1447   if (isa<FunctionTemplateDecl>(D))
1448     return cast<CXXMethodDecl>(cast<FunctionTemplateDecl>(D)
1449                                  ->getTemplatedDecl())->isInstance();
1450   return false;
1451 }
1452 
1453 //===----------------------------------------------------------------------===//
1454 // DeclaratorDecl Implementation
1455 //===----------------------------------------------------------------------===//
1456 
1457 template <typename DeclT>
1458 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1459   if (decl->getNumTemplateParameterLists() > 0)
1460     return decl->getTemplateParameterList(0)->getTemplateLoc();
1461   else
1462     return decl->getInnerLocStart();
1463 }
1464 
1465 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1466   TypeSourceInfo *TSI = getTypeSourceInfo();
1467   if (TSI) return TSI->getTypeLoc().getBeginLoc();
1468   return SourceLocation();
1469 }
1470 
1471 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1472   if (QualifierLoc) {
1473     // Make sure the extended decl info is allocated.
1474     if (!hasExtInfo()) {
1475       // Save (non-extended) type source info pointer.
1476       TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1477       // Allocate external info struct.
1478       DeclInfo = new (getASTContext()) ExtInfo;
1479       // Restore savedTInfo into (extended) decl info.
1480       getExtInfo()->TInfo = savedTInfo;
1481     }
1482     // Set qualifier info.
1483     getExtInfo()->QualifierLoc = QualifierLoc;
1484   } else {
1485     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1486     if (hasExtInfo()) {
1487       if (getExtInfo()->NumTemplParamLists == 0) {
1488         // Save type source info pointer.
1489         TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
1490         // Deallocate the extended decl info.
1491         getASTContext().Deallocate(getExtInfo());
1492         // Restore savedTInfo into (non-extended) decl info.
1493         DeclInfo = savedTInfo;
1494       }
1495       else
1496         getExtInfo()->QualifierLoc = QualifierLoc;
1497     }
1498   }
1499 }
1500 
1501 void
1502 DeclaratorDecl::setTemplateParameterListsInfo(ASTContext &Context,
1503                                               unsigned NumTPLists,
1504                                               TemplateParameterList **TPLists) {
1505   assert(NumTPLists > 0);
1506   // Make sure the extended decl info is allocated.
1507   if (!hasExtInfo()) {
1508     // Save (non-extended) type source info pointer.
1509     TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1510     // Allocate external info struct.
1511     DeclInfo = new (getASTContext()) ExtInfo;
1512     // Restore savedTInfo into (extended) decl info.
1513     getExtInfo()->TInfo = savedTInfo;
1514   }
1515   // Set the template parameter lists info.
1516   getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
1517 }
1518 
1519 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1520   return getTemplateOrInnerLocStart(this);
1521 }
1522 
1523 namespace {
1524 
1525 // Helper function: returns true if QT is or contains a type
1526 // having a postfix component.
1527 bool typeIsPostfix(clang::QualType QT) {
1528   while (true) {
1529     const Type* T = QT.getTypePtr();
1530     switch (T->getTypeClass()) {
1531     default:
1532       return false;
1533     case Type::Pointer:
1534       QT = cast<PointerType>(T)->getPointeeType();
1535       break;
1536     case Type::BlockPointer:
1537       QT = cast<BlockPointerType>(T)->getPointeeType();
1538       break;
1539     case Type::MemberPointer:
1540       QT = cast<MemberPointerType>(T)->getPointeeType();
1541       break;
1542     case Type::LValueReference:
1543     case Type::RValueReference:
1544       QT = cast<ReferenceType>(T)->getPointeeType();
1545       break;
1546     case Type::PackExpansion:
1547       QT = cast<PackExpansionType>(T)->getPattern();
1548       break;
1549     case Type::Paren:
1550     case Type::ConstantArray:
1551     case Type::DependentSizedArray:
1552     case Type::IncompleteArray:
1553     case Type::VariableArray:
1554     case Type::FunctionProto:
1555     case Type::FunctionNoProto:
1556       return true;
1557     }
1558   }
1559 }
1560 
1561 } // namespace
1562 
1563 SourceRange DeclaratorDecl::getSourceRange() const {
1564   SourceLocation RangeEnd = getLocation();
1565   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1566     if (typeIsPostfix(TInfo->getType()))
1567       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1568   }
1569   return SourceRange(getOuterLocStart(), RangeEnd);
1570 }
1571 
1572 void
1573 QualifierInfo::setTemplateParameterListsInfo(ASTContext &Context,
1574                                              unsigned NumTPLists,
1575                                              TemplateParameterList **TPLists) {
1576   assert((NumTPLists == 0 || TPLists != 0) &&
1577          "Empty array of template parameters with positive size!");
1578 
1579   // Free previous template parameters (if any).
1580   if (NumTemplParamLists > 0) {
1581     Context.Deallocate(TemplParamLists);
1582     TemplParamLists = 0;
1583     NumTemplParamLists = 0;
1584   }
1585   // Set info on matched template parameter lists (if any).
1586   if (NumTPLists > 0) {
1587     TemplParamLists = new (Context) TemplateParameterList*[NumTPLists];
1588     NumTemplParamLists = NumTPLists;
1589     for (unsigned i = NumTPLists; i-- > 0; )
1590       TemplParamLists[i] = TPLists[i];
1591   }
1592 }
1593 
1594 //===----------------------------------------------------------------------===//
1595 // VarDecl Implementation
1596 //===----------------------------------------------------------------------===//
1597 
1598 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1599   switch (SC) {
1600   case SC_None:                 break;
1601   case SC_Auto:                 return "auto";
1602   case SC_Extern:               return "extern";
1603   case SC_OpenCLWorkGroupLocal: return "<<work-group-local>>";
1604   case SC_PrivateExtern:        return "__private_extern__";
1605   case SC_Register:             return "register";
1606   case SC_Static:               return "static";
1607   }
1608 
1609   llvm_unreachable("Invalid storage class");
1610 }
1611 
1612 VarDecl::VarDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
1613                  SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
1614                  TypeSourceInfo *TInfo, StorageClass SC)
1615     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), Init() {
1616   assert(sizeof(VarDeclBitfields) <= sizeof(unsigned));
1617   assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned));
1618   AllBits = 0;
1619   VarDeclBits.SClass = SC;
1620   // Everything else is implicitly initialized to false.
1621 }
1622 
1623 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1624                          SourceLocation StartL, SourceLocation IdL,
1625                          IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1626                          StorageClass S) {
1627   return new (C) VarDecl(Var, DC, StartL, IdL, Id, T, TInfo, S);
1628 }
1629 
1630 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1631   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(VarDecl));
1632   return new (Mem) VarDecl(Var, 0, SourceLocation(), SourceLocation(), 0,
1633                            QualType(), 0, SC_None);
1634 }
1635 
1636 void VarDecl::setStorageClass(StorageClass SC) {
1637   assert(isLegalForVariable(SC));
1638   VarDeclBits.SClass = SC;
1639 }
1640 
1641 SourceRange VarDecl::getSourceRange() const {
1642   if (const Expr *Init = getInit()) {
1643     SourceLocation InitEnd = Init->getLocEnd();
1644     // If Init is implicit, ignore its source range and fallback on
1645     // DeclaratorDecl::getSourceRange() to handle postfix elements.
1646     if (InitEnd.isValid() && InitEnd != getLocation())
1647       return SourceRange(getOuterLocStart(), InitEnd);
1648   }
1649   return DeclaratorDecl::getSourceRange();
1650 }
1651 
1652 template<typename T>
1653 static LanguageLinkage getLanguageLinkageTemplate(const T &D) {
1654   // C++ [dcl.link]p1: All function types, function names with external linkage,
1655   // and variable names with external linkage have a language linkage.
1656   if (!D.hasExternalFormalLinkage())
1657     return NoLanguageLinkage;
1658 
1659   // Language linkage is a C++ concept, but saying that everything else in C has
1660   // C language linkage fits the implementation nicely.
1661   ASTContext &Context = D.getASTContext();
1662   if (!Context.getLangOpts().CPlusPlus)
1663     return CLanguageLinkage;
1664 
1665   // C++ [dcl.link]p4: A C language linkage is ignored in determining the
1666   // language linkage of the names of class members and the function type of
1667   // class member functions.
1668   const DeclContext *DC = D.getDeclContext();
1669   if (DC->isRecord())
1670     return CXXLanguageLinkage;
1671 
1672   // If the first decl is in an extern "C" context, any other redeclaration
1673   // will have C language linkage. If the first one is not in an extern "C"
1674   // context, we would have reported an error for any other decl being in one.
1675   if (isFirstInExternCContext(&D))
1676     return CLanguageLinkage;
1677   return CXXLanguageLinkage;
1678 }
1679 
1680 template<typename T>
1681 static bool isExternCTemplate(const T &D) {
1682   // Since the context is ignored for class members, they can only have C++
1683   // language linkage or no language linkage.
1684   const DeclContext *DC = D.getDeclContext();
1685   if (DC->isRecord()) {
1686     assert(D.getASTContext().getLangOpts().CPlusPlus);
1687     return false;
1688   }
1689 
1690   return D.getLanguageLinkage() == CLanguageLinkage;
1691 }
1692 
1693 LanguageLinkage VarDecl::getLanguageLinkage() const {
1694   return getLanguageLinkageTemplate(*this);
1695 }
1696 
1697 bool VarDecl::isExternC() const {
1698   return isExternCTemplate(*this);
1699 }
1700 
1701 bool VarDecl::isInExternCContext() const {
1702   return getLexicalDeclContext()->isExternCContext();
1703 }
1704 
1705 bool VarDecl::isInExternCXXContext() const {
1706   return getLexicalDeclContext()->isExternCXXContext();
1707 }
1708 
1709 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
1710 
1711 VarDecl::DefinitionKind VarDecl::isThisDeclarationADefinition(
1712   ASTContext &C) const
1713 {
1714   // C++ [basic.def]p2:
1715   //   A declaration is a definition unless [...] it contains the 'extern'
1716   //   specifier or a linkage-specification and neither an initializer [...],
1717   //   it declares a static data member in a class declaration [...].
1718   // C++1y [temp.expl.spec]p15:
1719   //   An explicit specialization of a static data member or an explicit
1720   //   specialization of a static data member template is a definition if the
1721   //   declaration includes an initializer; otherwise, it is a declaration.
1722   //
1723   // FIXME: How do you declare (but not define) a partial specialization of
1724   // a static data member template outside the containing class?
1725   if (isStaticDataMember()) {
1726     if (isOutOfLine() &&
1727         (hasInit() ||
1728          // If the first declaration is out-of-line, this may be an
1729          // instantiation of an out-of-line partial specialization of a variable
1730          // template for which we have not yet instantiated the initializer.
1731          (getFirstDecl()->isOutOfLine()
1732               ? getTemplateSpecializationKind() == TSK_Undeclared
1733               : getTemplateSpecializationKind() !=
1734                     TSK_ExplicitSpecialization) ||
1735          isa<VarTemplatePartialSpecializationDecl>(this)))
1736       return Definition;
1737     else
1738       return DeclarationOnly;
1739   }
1740   // C99 6.7p5:
1741   //   A definition of an identifier is a declaration for that identifier that
1742   //   [...] causes storage to be reserved for that object.
1743   // Note: that applies for all non-file-scope objects.
1744   // C99 6.9.2p1:
1745   //   If the declaration of an identifier for an object has file scope and an
1746   //   initializer, the declaration is an external definition for the identifier
1747   if (hasInit())
1748     return Definition;
1749 
1750   if (hasAttr<AliasAttr>())
1751     return Definition;
1752 
1753   // A variable template specialization (other than a static data member
1754   // template or an explicit specialization) is a declaration until we
1755   // instantiate its initializer.
1756   if (isa<VarTemplateSpecializationDecl>(this) &&
1757       getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
1758     return DeclarationOnly;
1759 
1760   if (hasExternalStorage())
1761     return DeclarationOnly;
1762 
1763   // [dcl.link] p7:
1764   //   A declaration directly contained in a linkage-specification is treated
1765   //   as if it contains the extern specifier for the purpose of determining
1766   //   the linkage of the declared name and whether it is a definition.
1767   if (isSingleLineExternC(*this))
1768     return DeclarationOnly;
1769 
1770   // C99 6.9.2p2:
1771   //   A declaration of an object that has file scope without an initializer,
1772   //   and without a storage class specifier or the scs 'static', constitutes
1773   //   a tentative definition.
1774   // No such thing in C++.
1775   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
1776     return TentativeDefinition;
1777 
1778   // What's left is (in C, block-scope) declarations without initializers or
1779   // external storage. These are definitions.
1780   return Definition;
1781 }
1782 
1783 VarDecl *VarDecl::getActingDefinition() {
1784   DefinitionKind Kind = isThisDeclarationADefinition();
1785   if (Kind != TentativeDefinition)
1786     return 0;
1787 
1788   VarDecl *LastTentative = 0;
1789   VarDecl *First = getFirstDecl();
1790   for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
1791        I != E; ++I) {
1792     Kind = (*I)->isThisDeclarationADefinition();
1793     if (Kind == Definition)
1794       return 0;
1795     else if (Kind == TentativeDefinition)
1796       LastTentative = *I;
1797   }
1798   return LastTentative;
1799 }
1800 
1801 VarDecl *VarDecl::getDefinition(ASTContext &C) {
1802   VarDecl *First = getFirstDecl();
1803   for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
1804        I != E; ++I) {
1805     if ((*I)->isThisDeclarationADefinition(C) == Definition)
1806       return *I;
1807   }
1808   return 0;
1809 }
1810 
1811 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
1812   DefinitionKind Kind = DeclarationOnly;
1813 
1814   const VarDecl *First = getFirstDecl();
1815   for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
1816        I != E; ++I) {
1817     Kind = std::max(Kind, (*I)->isThisDeclarationADefinition(C));
1818     if (Kind == Definition)
1819       break;
1820   }
1821 
1822   return Kind;
1823 }
1824 
1825 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
1826   redecl_iterator I = redecls_begin(), E = redecls_end();
1827   while (I != E && !I->getInit())
1828     ++I;
1829 
1830   if (I != E) {
1831     D = *I;
1832     return I->getInit();
1833   }
1834   return 0;
1835 }
1836 
1837 bool VarDecl::isOutOfLine() const {
1838   if (Decl::isOutOfLine())
1839     return true;
1840 
1841   if (!isStaticDataMember())
1842     return false;
1843 
1844   // If this static data member was instantiated from a static data member of
1845   // a class template, check whether that static data member was defined
1846   // out-of-line.
1847   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
1848     return VD->isOutOfLine();
1849 
1850   return false;
1851 }
1852 
1853 VarDecl *VarDecl::getOutOfLineDefinition() {
1854   if (!isStaticDataMember())
1855     return 0;
1856 
1857   for (VarDecl::redecl_iterator RD = redecls_begin(), RDEnd = redecls_end();
1858        RD != RDEnd; ++RD) {
1859     if (RD->getLexicalDeclContext()->isFileContext())
1860       return *RD;
1861   }
1862 
1863   return 0;
1864 }
1865 
1866 void VarDecl::setInit(Expr *I) {
1867   if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
1868     Eval->~EvaluatedStmt();
1869     getASTContext().Deallocate(Eval);
1870   }
1871 
1872   Init = I;
1873 }
1874 
1875 bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const {
1876   const LangOptions &Lang = C.getLangOpts();
1877 
1878   if (!Lang.CPlusPlus)
1879     return false;
1880 
1881   // In C++11, any variable of reference type can be used in a constant
1882   // expression if it is initialized by a constant expression.
1883   if (Lang.CPlusPlus11 && getType()->isReferenceType())
1884     return true;
1885 
1886   // Only const objects can be used in constant expressions in C++. C++98 does
1887   // not require the variable to be non-volatile, but we consider this to be a
1888   // defect.
1889   if (!getType().isConstQualified() || getType().isVolatileQualified())
1890     return false;
1891 
1892   // In C++, const, non-volatile variables of integral or enumeration types
1893   // can be used in constant expressions.
1894   if (getType()->isIntegralOrEnumerationType())
1895     return true;
1896 
1897   // Additionally, in C++11, non-volatile constexpr variables can be used in
1898   // constant expressions.
1899   return Lang.CPlusPlus11 && isConstexpr();
1900 }
1901 
1902 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
1903 /// form, which contains extra information on the evaluated value of the
1904 /// initializer.
1905 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
1906   EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>();
1907   if (!Eval) {
1908     Stmt *S = Init.get<Stmt *>();
1909     // Note: EvaluatedStmt contains an APValue, which usually holds
1910     // resources not allocated from the ASTContext.  We need to do some
1911     // work to avoid leaking those, but we do so in VarDecl::evaluateValue
1912     // where we can detect whether there's anything to clean up or not.
1913     Eval = new (getASTContext()) EvaluatedStmt;
1914     Eval->Value = S;
1915     Init = Eval;
1916   }
1917   return Eval;
1918 }
1919 
1920 APValue *VarDecl::evaluateValue() const {
1921   SmallVector<PartialDiagnosticAt, 8> Notes;
1922   return evaluateValue(Notes);
1923 }
1924 
1925 namespace {
1926 // Destroy an APValue that was allocated in an ASTContext.
1927 void DestroyAPValue(void* UntypedValue) {
1928   static_cast<APValue*>(UntypedValue)->~APValue();
1929 }
1930 } // namespace
1931 
1932 APValue *VarDecl::evaluateValue(
1933     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
1934   EvaluatedStmt *Eval = ensureEvaluatedStmt();
1935 
1936   // We only produce notes indicating why an initializer is non-constant the
1937   // first time it is evaluated. FIXME: The notes won't always be emitted the
1938   // first time we try evaluation, so might not be produced at all.
1939   if (Eval->WasEvaluated)
1940     return Eval->Evaluated.isUninit() ? 0 : &Eval->Evaluated;
1941 
1942   const Expr *Init = cast<Expr>(Eval->Value);
1943   assert(!Init->isValueDependent());
1944 
1945   if (Eval->IsEvaluating) {
1946     // FIXME: Produce a diagnostic for self-initialization.
1947     Eval->CheckedICE = true;
1948     Eval->IsICE = false;
1949     return 0;
1950   }
1951 
1952   Eval->IsEvaluating = true;
1953 
1954   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
1955                                             this, Notes);
1956 
1957   // Ensure the computed APValue is cleaned up later if evaluation succeeded,
1958   // or that it's empty (so that there's nothing to clean up) if evaluation
1959   // failed.
1960   if (!Result)
1961     Eval->Evaluated = APValue();
1962   else if (Eval->Evaluated.needsCleanup())
1963     getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated);
1964 
1965   Eval->IsEvaluating = false;
1966   Eval->WasEvaluated = true;
1967 
1968   // In C++11, we have determined whether the initializer was a constant
1969   // expression as a side-effect.
1970   if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
1971     Eval->CheckedICE = true;
1972     Eval->IsICE = Result && Notes.empty();
1973   }
1974 
1975   return Result ? &Eval->Evaluated : 0;
1976 }
1977 
1978 bool VarDecl::checkInitIsICE() const {
1979   // Initializers of weak variables are never ICEs.
1980   if (isWeak())
1981     return false;
1982 
1983   EvaluatedStmt *Eval = ensureEvaluatedStmt();
1984   if (Eval->CheckedICE)
1985     // We have already checked whether this subexpression is an
1986     // integral constant expression.
1987     return Eval->IsICE;
1988 
1989   const Expr *Init = cast<Expr>(Eval->Value);
1990   assert(!Init->isValueDependent());
1991 
1992   // In C++11, evaluate the initializer to check whether it's a constant
1993   // expression.
1994   if (getASTContext().getLangOpts().CPlusPlus11) {
1995     SmallVector<PartialDiagnosticAt, 8> Notes;
1996     evaluateValue(Notes);
1997     return Eval->IsICE;
1998   }
1999 
2000   // It's an ICE whether or not the definition we found is
2001   // out-of-line.  See DR 721 and the discussion in Clang PR
2002   // 6206 for details.
2003 
2004   if (Eval->CheckingICE)
2005     return false;
2006   Eval->CheckingICE = true;
2007 
2008   Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
2009   Eval->CheckingICE = false;
2010   Eval->CheckedICE = true;
2011   return Eval->IsICE;
2012 }
2013 
2014 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2015   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2016     return cast<VarDecl>(MSI->getInstantiatedFrom());
2017 
2018   return 0;
2019 }
2020 
2021 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2022   if (const VarTemplateSpecializationDecl *Spec =
2023           dyn_cast<VarTemplateSpecializationDecl>(this))
2024     return Spec->getSpecializationKind();
2025 
2026   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2027     return MSI->getTemplateSpecializationKind();
2028 
2029   return TSK_Undeclared;
2030 }
2031 
2032 SourceLocation VarDecl::getPointOfInstantiation() const {
2033   if (const VarTemplateSpecializationDecl *Spec =
2034           dyn_cast<VarTemplateSpecializationDecl>(this))
2035     return Spec->getPointOfInstantiation();
2036 
2037   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2038     return MSI->getPointOfInstantiation();
2039 
2040   return SourceLocation();
2041 }
2042 
2043 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2044   return getASTContext().getTemplateOrSpecializationInfo(this)
2045       .dyn_cast<VarTemplateDecl *>();
2046 }
2047 
2048 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2049   getASTContext().setTemplateOrSpecializationInfo(this, Template);
2050 }
2051 
2052 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2053   if (isStaticDataMember())
2054     // FIXME: Remove ?
2055     // return getASTContext().getInstantiatedFromStaticDataMember(this);
2056     return getASTContext().getTemplateOrSpecializationInfo(this)
2057         .dyn_cast<MemberSpecializationInfo *>();
2058   return 0;
2059 }
2060 
2061 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2062                                          SourceLocation PointOfInstantiation) {
2063   assert((isa<VarTemplateSpecializationDecl>(this) ||
2064           getMemberSpecializationInfo()) &&
2065          "not a variable or static data member template specialization");
2066 
2067   if (VarTemplateSpecializationDecl *Spec =
2068           dyn_cast<VarTemplateSpecializationDecl>(this)) {
2069     Spec->setSpecializationKind(TSK);
2070     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2071         Spec->getPointOfInstantiation().isInvalid())
2072       Spec->setPointOfInstantiation(PointOfInstantiation);
2073   }
2074 
2075   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2076     MSI->setTemplateSpecializationKind(TSK);
2077     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2078         MSI->getPointOfInstantiation().isInvalid())
2079       MSI->setPointOfInstantiation(PointOfInstantiation);
2080   }
2081 }
2082 
2083 void
2084 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2085                                             TemplateSpecializationKind TSK) {
2086   assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2087          "Previous template or instantiation?");
2088   getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2089 }
2090 
2091 //===----------------------------------------------------------------------===//
2092 // ParmVarDecl Implementation
2093 //===----------------------------------------------------------------------===//
2094 
2095 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2096                                  SourceLocation StartLoc,
2097                                  SourceLocation IdLoc, IdentifierInfo *Id,
2098                                  QualType T, TypeSourceInfo *TInfo,
2099                                  StorageClass S, Expr *DefArg) {
2100   return new (C) ParmVarDecl(ParmVar, DC, StartLoc, IdLoc, Id, T, TInfo,
2101                              S, DefArg);
2102 }
2103 
2104 QualType ParmVarDecl::getOriginalType() const {
2105   TypeSourceInfo *TSI = getTypeSourceInfo();
2106   QualType T = TSI ? TSI->getType() : getType();
2107   if (const DecayedType *DT = dyn_cast<DecayedType>(T))
2108     return DT->getOriginalType();
2109   return T;
2110 }
2111 
2112 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2113   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(ParmVarDecl));
2114   return new (Mem) ParmVarDecl(ParmVar, 0, SourceLocation(), SourceLocation(),
2115                                0, QualType(), 0, SC_None, 0);
2116 }
2117 
2118 SourceRange ParmVarDecl::getSourceRange() const {
2119   if (!hasInheritedDefaultArg()) {
2120     SourceRange ArgRange = getDefaultArgRange();
2121     if (ArgRange.isValid())
2122       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2123   }
2124 
2125   // DeclaratorDecl considers the range of postfix types as overlapping with the
2126   // declaration name, but this is not the case with parameters in ObjC methods.
2127   if (isa<ObjCMethodDecl>(getDeclContext()))
2128     return SourceRange(DeclaratorDecl::getLocStart(), getLocation());
2129 
2130   return DeclaratorDecl::getSourceRange();
2131 }
2132 
2133 Expr *ParmVarDecl::getDefaultArg() {
2134   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2135   assert(!hasUninstantiatedDefaultArg() &&
2136          "Default argument is not yet instantiated!");
2137 
2138   Expr *Arg = getInit();
2139   if (ExprWithCleanups *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
2140     return E->getSubExpr();
2141 
2142   return Arg;
2143 }
2144 
2145 SourceRange ParmVarDecl::getDefaultArgRange() const {
2146   if (const Expr *E = getInit())
2147     return E->getSourceRange();
2148 
2149   if (hasUninstantiatedDefaultArg())
2150     return getUninstantiatedDefaultArg()->getSourceRange();
2151 
2152   return SourceRange();
2153 }
2154 
2155 bool ParmVarDecl::isParameterPack() const {
2156   return isa<PackExpansionType>(getType());
2157 }
2158 
2159 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2160   getASTContext().setParameterIndex(this, parameterIndex);
2161   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2162 }
2163 
2164 unsigned ParmVarDecl::getParameterIndexLarge() const {
2165   return getASTContext().getParameterIndex(this);
2166 }
2167 
2168 //===----------------------------------------------------------------------===//
2169 // FunctionDecl Implementation
2170 //===----------------------------------------------------------------------===//
2171 
2172 void FunctionDecl::getNameForDiagnostic(
2173     raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2174   NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2175   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2176   if (TemplateArgs)
2177     TemplateSpecializationType::PrintTemplateArgumentList(
2178         OS, TemplateArgs->data(), TemplateArgs->size(), Policy);
2179 }
2180 
2181 bool FunctionDecl::isVariadic() const {
2182   if (const FunctionProtoType *FT = getType()->getAs<FunctionProtoType>())
2183     return FT->isVariadic();
2184   return false;
2185 }
2186 
2187 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2188   for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
2189     if (I->Body || I->IsLateTemplateParsed) {
2190       Definition = *I;
2191       return true;
2192     }
2193   }
2194 
2195   return false;
2196 }
2197 
2198 bool FunctionDecl::hasTrivialBody() const
2199 {
2200   Stmt *S = getBody();
2201   if (!S) {
2202     // Since we don't have a body for this function, we don't know if it's
2203     // trivial or not.
2204     return false;
2205   }
2206 
2207   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2208     return true;
2209   return false;
2210 }
2211 
2212 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2213   for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
2214     if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed ||
2215         I->hasAttr<AliasAttr>()) {
2216       Definition = I->IsDeleted ? I->getCanonicalDecl() : *I;
2217       return true;
2218     }
2219   }
2220 
2221   return false;
2222 }
2223 
2224 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2225   if (!hasBody(Definition))
2226     return 0;
2227 
2228   if (Definition->Body)
2229     return Definition->Body.get(getASTContext().getExternalSource());
2230 
2231   return 0;
2232 }
2233 
2234 void FunctionDecl::setBody(Stmt *B) {
2235   Body = B;
2236   if (B)
2237     EndRangeLoc = B->getLocEnd();
2238 }
2239 
2240 void FunctionDecl::setPure(bool P) {
2241   IsPure = P;
2242   if (P)
2243     if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2244       Parent->markedVirtualFunctionPure();
2245 }
2246 
2247 template<std::size_t Len>
2248 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2249   IdentifierInfo *II = ND->getIdentifier();
2250   return II && II->isStr(Str);
2251 }
2252 
2253 bool FunctionDecl::isMain() const {
2254   const TranslationUnitDecl *tunit =
2255     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2256   return tunit &&
2257          !tunit->getASTContext().getLangOpts().Freestanding &&
2258          isNamed(this, "main");
2259 }
2260 
2261 bool FunctionDecl::isMSVCRTEntryPoint() const {
2262   const TranslationUnitDecl *TUnit =
2263       dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2264   if (!TUnit)
2265     return false;
2266 
2267   // Even though we aren't really targeting MSVCRT if we are freestanding,
2268   // semantic analysis for these functions remains the same.
2269 
2270   // MSVCRT entry points only exist on MSVCRT targets.
2271   if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
2272     return false;
2273 
2274   // Nameless functions like constructors cannot be entry points.
2275   if (!getIdentifier())
2276     return false;
2277 
2278   return llvm::StringSwitch<bool>(getName())
2279       .Cases("main",     // an ANSI console app
2280              "wmain",    // a Unicode console App
2281              "WinMain",  // an ANSI GUI app
2282              "wWinMain", // a Unicode GUI app
2283              "DllMain",  // a DLL
2284              true)
2285       .Default(false);
2286 }
2287 
2288 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
2289   assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2290   assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2291          getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2292          getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2293          getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2294 
2295   if (isa<CXXRecordDecl>(getDeclContext())) return false;
2296   assert(getDeclContext()->getRedeclContext()->isTranslationUnit());
2297 
2298   const FunctionProtoType *proto = getType()->castAs<FunctionProtoType>();
2299   if (proto->getNumArgs() != 2 || proto->isVariadic()) return false;
2300 
2301   ASTContext &Context =
2302     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2303       ->getASTContext();
2304 
2305   // The result type and first argument type are constant across all
2306   // these operators.  The second argument must be exactly void*.
2307   return (proto->getArgType(1).getCanonicalType() == Context.VoidPtrTy);
2308 }
2309 
2310 static bool isNamespaceStd(const DeclContext *DC) {
2311   const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC->getRedeclContext());
2312   return ND && isNamed(ND, "std") &&
2313          ND->getParent()->getRedeclContext()->isTranslationUnit();
2314 }
2315 
2316 bool FunctionDecl::isReplaceableGlobalAllocationFunction() const {
2317   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2318     return false;
2319   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2320       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2321       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2322       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2323     return false;
2324 
2325   if (isa<CXXRecordDecl>(getDeclContext()))
2326     return false;
2327   assert(getDeclContext()->getRedeclContext()->isTranslationUnit());
2328 
2329   const FunctionProtoType *FPT = getType()->castAs<FunctionProtoType>();
2330   if (FPT->getNumArgs() > 2 || FPT->isVariadic())
2331     return false;
2332 
2333   // If this is a single-parameter function, it must be a replaceable global
2334   // allocation or deallocation function.
2335   if (FPT->getNumArgs() == 1)
2336     return true;
2337 
2338   // Otherwise, we're looking for a second parameter whose type is
2339   // 'const std::nothrow_t &', or, in C++1y, 'std::size_t'.
2340   QualType Ty = FPT->getArgType(1);
2341   ASTContext &Ctx = getASTContext();
2342   if (Ctx.getLangOpts().SizedDeallocation &&
2343       Ctx.hasSameType(Ty, Ctx.getSizeType()))
2344     return true;
2345   if (!Ty->isReferenceType())
2346     return false;
2347   Ty = Ty->getPointeeType();
2348   if (Ty.getCVRQualifiers() != Qualifiers::Const)
2349     return false;
2350   // FIXME: Recognise nothrow_t in an inline namespace inside std?
2351   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
2352   return RD && isNamed(RD, "nothrow_t") && isNamespaceStd(RD->getDeclContext());
2353 }
2354 
2355 FunctionDecl *
2356 FunctionDecl::getCorrespondingUnsizedGlobalDeallocationFunction() const {
2357   ASTContext &Ctx = getASTContext();
2358   if (!Ctx.getLangOpts().SizedDeallocation)
2359     return 0;
2360 
2361   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2362     return 0;
2363   if (getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2364       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2365     return 0;
2366   if (isa<CXXRecordDecl>(getDeclContext()))
2367     return 0;
2368   assert(getDeclContext()->getRedeclContext()->isTranslationUnit());
2369 
2370   if (getNumParams() != 2 || isVariadic() ||
2371       !Ctx.hasSameType(getType()->castAs<FunctionProtoType>()->getArgType(1),
2372                        Ctx.getSizeType()))
2373     return 0;
2374 
2375   // This is a sized deallocation function. Find the corresponding unsized
2376   // deallocation function.
2377   lookup_const_result R = getDeclContext()->lookup(getDeclName());
2378   for (lookup_const_result::iterator RI = R.begin(), RE = R.end(); RI != RE;
2379        ++RI)
2380     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*RI))
2381       if (FD->getNumParams() == 1 && !FD->isVariadic())
2382         return FD;
2383   return 0;
2384 }
2385 
2386 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
2387   return getLanguageLinkageTemplate(*this);
2388 }
2389 
2390 bool FunctionDecl::isExternC() const {
2391   return isExternCTemplate(*this);
2392 }
2393 
2394 bool FunctionDecl::isInExternCContext() const {
2395   return getLexicalDeclContext()->isExternCContext();
2396 }
2397 
2398 bool FunctionDecl::isInExternCXXContext() const {
2399   return getLexicalDeclContext()->isExternCXXContext();
2400 }
2401 
2402 bool FunctionDecl::isGlobal() const {
2403   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this))
2404     return Method->isStatic();
2405 
2406   if (getCanonicalDecl()->getStorageClass() == SC_Static)
2407     return false;
2408 
2409   for (const DeclContext *DC = getDeclContext();
2410        DC->isNamespace();
2411        DC = DC->getParent()) {
2412     if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) {
2413       if (!Namespace->getDeclName())
2414         return false;
2415       break;
2416     }
2417   }
2418 
2419   return true;
2420 }
2421 
2422 bool FunctionDecl::isNoReturn() const {
2423   return hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
2424          hasAttr<C11NoReturnAttr>() ||
2425          getType()->getAs<FunctionType>()->getNoReturnAttr();
2426 }
2427 
2428 void
2429 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
2430   redeclarable_base::setPreviousDecl(PrevDecl);
2431 
2432   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
2433     FunctionTemplateDecl *PrevFunTmpl
2434       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : 0;
2435     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
2436     FunTmpl->setPreviousDecl(PrevFunTmpl);
2437   }
2438 
2439   if (PrevDecl && PrevDecl->IsInline)
2440     IsInline = true;
2441 }
2442 
2443 const FunctionDecl *FunctionDecl::getCanonicalDecl() const {
2444   return getFirstDecl();
2445 }
2446 
2447 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
2448 
2449 /// \brief Returns a value indicating whether this function
2450 /// corresponds to a builtin function.
2451 ///
2452 /// The function corresponds to a built-in function if it is
2453 /// declared at translation scope or within an extern "C" block and
2454 /// its name matches with the name of a builtin. The returned value
2455 /// will be 0 for functions that do not correspond to a builtin, a
2456 /// value of type \c Builtin::ID if in the target-independent range
2457 /// \c [1,Builtin::First), or a target-specific builtin value.
2458 unsigned FunctionDecl::getBuiltinID() const {
2459   if (!getIdentifier())
2460     return 0;
2461 
2462   unsigned BuiltinID = getIdentifier()->getBuiltinID();
2463   if (!BuiltinID)
2464     return 0;
2465 
2466   ASTContext &Context = getASTContext();
2467   if (Context.getLangOpts().CPlusPlus) {
2468     const LinkageSpecDecl *LinkageDecl = dyn_cast<LinkageSpecDecl>(
2469         getFirstDecl()->getDeclContext());
2470     // In C++, the first declaration of a builtin is always inside an implicit
2471     // extern "C".
2472     // FIXME: A recognised library function may not be directly in an extern "C"
2473     // declaration, for instance "extern "C" { namespace std { decl } }".
2474     if (!LinkageDecl || LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
2475       return 0;
2476   }
2477 
2478   // If the function is marked "overloadable", it has a different mangled name
2479   // and is not the C library function.
2480   if (getAttr<OverloadableAttr>())
2481     return 0;
2482 
2483   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
2484     return BuiltinID;
2485 
2486   // This function has the name of a known C library
2487   // function. Determine whether it actually refers to the C library
2488   // function or whether it just has the same name.
2489 
2490   // If this is a static function, it's not a builtin.
2491   if (getStorageClass() == SC_Static)
2492     return 0;
2493 
2494   return BuiltinID;
2495 }
2496 
2497 
2498 /// getNumParams - Return the number of parameters this function must have
2499 /// based on its FunctionType.  This is the length of the ParamInfo array
2500 /// after it has been created.
2501 unsigned FunctionDecl::getNumParams() const {
2502   const FunctionType *FT = getType()->castAs<FunctionType>();
2503   if (isa<FunctionNoProtoType>(FT))
2504     return 0;
2505   return cast<FunctionProtoType>(FT)->getNumArgs();
2506 
2507 }
2508 
2509 void FunctionDecl::setParams(ASTContext &C,
2510                              ArrayRef<ParmVarDecl *> NewParamInfo) {
2511   assert(ParamInfo == 0 && "Already has param info!");
2512   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
2513 
2514   // Zero params -> null pointer.
2515   if (!NewParamInfo.empty()) {
2516     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
2517     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
2518   }
2519 }
2520 
2521 void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) {
2522   assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!");
2523 
2524   if (!NewDecls.empty()) {
2525     NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()];
2526     std::copy(NewDecls.begin(), NewDecls.end(), A);
2527     DeclsInPrototypeScope = ArrayRef<NamedDecl *>(A, NewDecls.size());
2528   }
2529 }
2530 
2531 /// getMinRequiredArguments - Returns the minimum number of arguments
2532 /// needed to call this function. This may be fewer than the number of
2533 /// function parameters, if some of the parameters have default
2534 /// arguments (in C++) or the last parameter is a parameter pack.
2535 unsigned FunctionDecl::getMinRequiredArguments() const {
2536   if (!getASTContext().getLangOpts().CPlusPlus)
2537     return getNumParams();
2538 
2539   unsigned NumRequiredArgs = getNumParams();
2540 
2541   // If the last parameter is a parameter pack, we don't need an argument for
2542   // it.
2543   if (NumRequiredArgs > 0 &&
2544       getParamDecl(NumRequiredArgs - 1)->isParameterPack())
2545     --NumRequiredArgs;
2546 
2547   // If this parameter has a default argument, we don't need an argument for
2548   // it.
2549   while (NumRequiredArgs > 0 &&
2550          getParamDecl(NumRequiredArgs-1)->hasDefaultArg())
2551     --NumRequiredArgs;
2552 
2553   // We might have parameter packs before the end. These can't be deduced,
2554   // but they can still handle multiple arguments.
2555   unsigned ArgIdx = NumRequiredArgs;
2556   while (ArgIdx > 0) {
2557     if (getParamDecl(ArgIdx - 1)->isParameterPack())
2558       NumRequiredArgs = ArgIdx;
2559 
2560     --ArgIdx;
2561   }
2562 
2563   return NumRequiredArgs;
2564 }
2565 
2566 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
2567   // Only consider file-scope declarations in this test.
2568   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
2569     return false;
2570 
2571   // Only consider explicit declarations; the presence of a builtin for a
2572   // libcall shouldn't affect whether a definition is externally visible.
2573   if (Redecl->isImplicit())
2574     return false;
2575 
2576   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
2577     return true; // Not an inline definition
2578 
2579   return false;
2580 }
2581 
2582 /// \brief For a function declaration in C or C++, determine whether this
2583 /// declaration causes the definition to be externally visible.
2584 ///
2585 /// Specifically, this determines if adding the current declaration to the set
2586 /// of redeclarations of the given functions causes
2587 /// isInlineDefinitionExternallyVisible to change from false to true.
2588 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
2589   assert(!doesThisDeclarationHaveABody() &&
2590          "Must have a declaration without a body.");
2591 
2592   ASTContext &Context = getASTContext();
2593 
2594   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2595     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
2596     // an externally visible definition.
2597     //
2598     // FIXME: What happens if gnu_inline gets added on after the first
2599     // declaration?
2600     if (!isInlineSpecified() || getStorageClass() == SC_Extern)
2601       return false;
2602 
2603     const FunctionDecl *Prev = this;
2604     bool FoundBody = false;
2605     while ((Prev = Prev->getPreviousDecl())) {
2606       FoundBody |= Prev->Body.isValid();
2607 
2608       if (Prev->Body) {
2609         // If it's not the case that both 'inline' and 'extern' are
2610         // specified on the definition, then it is always externally visible.
2611         if (!Prev->isInlineSpecified() ||
2612             Prev->getStorageClass() != SC_Extern)
2613           return false;
2614       } else if (Prev->isInlineSpecified() &&
2615                  Prev->getStorageClass() != SC_Extern) {
2616         return false;
2617       }
2618     }
2619     return FoundBody;
2620   }
2621 
2622   if (Context.getLangOpts().CPlusPlus)
2623     return false;
2624 
2625   // C99 6.7.4p6:
2626   //   [...] If all of the file scope declarations for a function in a
2627   //   translation unit include the inline function specifier without extern,
2628   //   then the definition in that translation unit is an inline definition.
2629   if (isInlineSpecified() && getStorageClass() != SC_Extern)
2630     return false;
2631   const FunctionDecl *Prev = this;
2632   bool FoundBody = false;
2633   while ((Prev = Prev->getPreviousDecl())) {
2634     FoundBody |= Prev->Body.isValid();
2635     if (RedeclForcesDefC99(Prev))
2636       return false;
2637   }
2638   return FoundBody;
2639 }
2640 
2641 /// \brief For an inline function definition in C, or for a gnu_inline function
2642 /// in C++, determine whether the definition will be externally visible.
2643 ///
2644 /// Inline function definitions are always available for inlining optimizations.
2645 /// However, depending on the language dialect, declaration specifiers, and
2646 /// attributes, the definition of an inline function may or may not be
2647 /// "externally" visible to other translation units in the program.
2648 ///
2649 /// In C99, inline definitions are not externally visible by default. However,
2650 /// if even one of the global-scope declarations is marked "extern inline", the
2651 /// inline definition becomes externally visible (C99 6.7.4p6).
2652 ///
2653 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
2654 /// definition, we use the GNU semantics for inline, which are nearly the
2655 /// opposite of C99 semantics. In particular, "inline" by itself will create
2656 /// an externally visible symbol, but "extern inline" will not create an
2657 /// externally visible symbol.
2658 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
2659   assert(doesThisDeclarationHaveABody() && "Must have the function definition");
2660   assert(isInlined() && "Function must be inline");
2661   ASTContext &Context = getASTContext();
2662 
2663   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2664     // Note: If you change the logic here, please change
2665     // doesDeclarationForceExternallyVisibleDefinition as well.
2666     //
2667     // If it's not the case that both 'inline' and 'extern' are
2668     // specified on the definition, then this inline definition is
2669     // externally visible.
2670     if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
2671       return true;
2672 
2673     // If any declaration is 'inline' but not 'extern', then this definition
2674     // is externally visible.
2675     for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end();
2676          Redecl != RedeclEnd;
2677          ++Redecl) {
2678       if (Redecl->isInlineSpecified() &&
2679           Redecl->getStorageClass() != SC_Extern)
2680         return true;
2681     }
2682 
2683     return false;
2684   }
2685 
2686   // The rest of this function is C-only.
2687   assert(!Context.getLangOpts().CPlusPlus &&
2688          "should not use C inline rules in C++");
2689 
2690   // C99 6.7.4p6:
2691   //   [...] If all of the file scope declarations for a function in a
2692   //   translation unit include the inline function specifier without extern,
2693   //   then the definition in that translation unit is an inline definition.
2694   for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end();
2695        Redecl != RedeclEnd;
2696        ++Redecl) {
2697     if (RedeclForcesDefC99(*Redecl))
2698       return true;
2699   }
2700 
2701   // C99 6.7.4p6:
2702   //   An inline definition does not provide an external definition for the
2703   //   function, and does not forbid an external definition in another
2704   //   translation unit.
2705   return false;
2706 }
2707 
2708 /// getOverloadedOperator - Which C++ overloaded operator this
2709 /// function represents, if any.
2710 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
2711   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
2712     return getDeclName().getCXXOverloadedOperator();
2713   else
2714     return OO_None;
2715 }
2716 
2717 /// getLiteralIdentifier - The literal suffix identifier this function
2718 /// represents, if any.
2719 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
2720   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
2721     return getDeclName().getCXXLiteralIdentifier();
2722   else
2723     return 0;
2724 }
2725 
2726 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
2727   if (TemplateOrSpecialization.isNull())
2728     return TK_NonTemplate;
2729   if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
2730     return TK_FunctionTemplate;
2731   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
2732     return TK_MemberSpecialization;
2733   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
2734     return TK_FunctionTemplateSpecialization;
2735   if (TemplateOrSpecialization.is
2736                                <DependentFunctionTemplateSpecializationInfo*>())
2737     return TK_DependentFunctionTemplateSpecialization;
2738 
2739   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
2740 }
2741 
2742 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
2743   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
2744     return cast<FunctionDecl>(Info->getInstantiatedFrom());
2745 
2746   return 0;
2747 }
2748 
2749 void
2750 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
2751                                                FunctionDecl *FD,
2752                                                TemplateSpecializationKind TSK) {
2753   assert(TemplateOrSpecialization.isNull() &&
2754          "Member function is already a specialization");
2755   MemberSpecializationInfo *Info
2756     = new (C) MemberSpecializationInfo(FD, TSK);
2757   TemplateOrSpecialization = Info;
2758 }
2759 
2760 bool FunctionDecl::isImplicitlyInstantiable() const {
2761   // If the function is invalid, it can't be implicitly instantiated.
2762   if (isInvalidDecl())
2763     return false;
2764 
2765   switch (getTemplateSpecializationKind()) {
2766   case TSK_Undeclared:
2767   case TSK_ExplicitInstantiationDefinition:
2768     return false;
2769 
2770   case TSK_ImplicitInstantiation:
2771     return true;
2772 
2773   // It is possible to instantiate TSK_ExplicitSpecialization kind
2774   // if the FunctionDecl has a class scope specialization pattern.
2775   case TSK_ExplicitSpecialization:
2776     return getClassScopeSpecializationPattern() != 0;
2777 
2778   case TSK_ExplicitInstantiationDeclaration:
2779     // Handled below.
2780     break;
2781   }
2782 
2783   // Find the actual template from which we will instantiate.
2784   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
2785   bool HasPattern = false;
2786   if (PatternDecl)
2787     HasPattern = PatternDecl->hasBody(PatternDecl);
2788 
2789   // C++0x [temp.explicit]p9:
2790   //   Except for inline functions, other explicit instantiation declarations
2791   //   have the effect of suppressing the implicit instantiation of the entity
2792   //   to which they refer.
2793   if (!HasPattern || !PatternDecl)
2794     return true;
2795 
2796   return PatternDecl->isInlined();
2797 }
2798 
2799 bool FunctionDecl::isTemplateInstantiation() const {
2800   switch (getTemplateSpecializationKind()) {
2801     case TSK_Undeclared:
2802     case TSK_ExplicitSpecialization:
2803       return false;
2804     case TSK_ImplicitInstantiation:
2805     case TSK_ExplicitInstantiationDeclaration:
2806     case TSK_ExplicitInstantiationDefinition:
2807       return true;
2808   }
2809   llvm_unreachable("All TSK values handled.");
2810 }
2811 
2812 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
2813   // Handle class scope explicit specialization special case.
2814   if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
2815     return getClassScopeSpecializationPattern();
2816 
2817   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
2818     while (Primary->getInstantiatedFromMemberTemplate()) {
2819       // If we have hit a point where the user provided a specialization of
2820       // this template, we're done looking.
2821       if (Primary->isMemberSpecialization())
2822         break;
2823 
2824       Primary = Primary->getInstantiatedFromMemberTemplate();
2825     }
2826 
2827     return Primary->getTemplatedDecl();
2828   }
2829 
2830   return getInstantiatedFromMemberFunction();
2831 }
2832 
2833 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
2834   if (FunctionTemplateSpecializationInfo *Info
2835         = TemplateOrSpecialization
2836             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
2837     return Info->Template.getPointer();
2838   }
2839   return 0;
2840 }
2841 
2842 FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const {
2843     return getASTContext().getClassScopeSpecializationPattern(this);
2844 }
2845 
2846 const TemplateArgumentList *
2847 FunctionDecl::getTemplateSpecializationArgs() const {
2848   if (FunctionTemplateSpecializationInfo *Info
2849         = TemplateOrSpecialization
2850             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
2851     return Info->TemplateArguments;
2852   }
2853   return 0;
2854 }
2855 
2856 const ASTTemplateArgumentListInfo *
2857 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
2858   if (FunctionTemplateSpecializationInfo *Info
2859         = TemplateOrSpecialization
2860             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
2861     return Info->TemplateArgumentsAsWritten;
2862   }
2863   return 0;
2864 }
2865 
2866 void
2867 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
2868                                                 FunctionTemplateDecl *Template,
2869                                      const TemplateArgumentList *TemplateArgs,
2870                                                 void *InsertPos,
2871                                                 TemplateSpecializationKind TSK,
2872                         const TemplateArgumentListInfo *TemplateArgsAsWritten,
2873                                           SourceLocation PointOfInstantiation) {
2874   assert(TSK != TSK_Undeclared &&
2875          "Must specify the type of function template specialization");
2876   FunctionTemplateSpecializationInfo *Info
2877     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
2878   if (!Info)
2879     Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
2880                                                       TemplateArgs,
2881                                                       TemplateArgsAsWritten,
2882                                                       PointOfInstantiation);
2883   TemplateOrSpecialization = Info;
2884   Template->addSpecialization(Info, InsertPos);
2885 }
2886 
2887 void
2888 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
2889                                     const UnresolvedSetImpl &Templates,
2890                              const TemplateArgumentListInfo &TemplateArgs) {
2891   assert(TemplateOrSpecialization.isNull());
2892   size_t Size = sizeof(DependentFunctionTemplateSpecializationInfo);
2893   Size += Templates.size() * sizeof(FunctionTemplateDecl*);
2894   Size += TemplateArgs.size() * sizeof(TemplateArgumentLoc);
2895   void *Buffer = Context.Allocate(Size);
2896   DependentFunctionTemplateSpecializationInfo *Info =
2897     new (Buffer) DependentFunctionTemplateSpecializationInfo(Templates,
2898                                                              TemplateArgs);
2899   TemplateOrSpecialization = Info;
2900 }
2901 
2902 DependentFunctionTemplateSpecializationInfo::
2903 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
2904                                       const TemplateArgumentListInfo &TArgs)
2905   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
2906 
2907   d.NumTemplates = Ts.size();
2908   d.NumArgs = TArgs.size();
2909 
2910   FunctionTemplateDecl **TsArray =
2911     const_cast<FunctionTemplateDecl**>(getTemplates());
2912   for (unsigned I = 0, E = Ts.size(); I != E; ++I)
2913     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
2914 
2915   TemplateArgumentLoc *ArgsArray =
2916     const_cast<TemplateArgumentLoc*>(getTemplateArgs());
2917   for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
2918     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
2919 }
2920 
2921 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
2922   // For a function template specialization, query the specialization
2923   // information object.
2924   FunctionTemplateSpecializationInfo *FTSInfo
2925     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
2926   if (FTSInfo)
2927     return FTSInfo->getTemplateSpecializationKind();
2928 
2929   MemberSpecializationInfo *MSInfo
2930     = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
2931   if (MSInfo)
2932     return MSInfo->getTemplateSpecializationKind();
2933 
2934   return TSK_Undeclared;
2935 }
2936 
2937 void
2938 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2939                                           SourceLocation PointOfInstantiation) {
2940   if (FunctionTemplateSpecializationInfo *FTSInfo
2941         = TemplateOrSpecialization.dyn_cast<
2942                                     FunctionTemplateSpecializationInfo*>()) {
2943     FTSInfo->setTemplateSpecializationKind(TSK);
2944     if (TSK != TSK_ExplicitSpecialization &&
2945         PointOfInstantiation.isValid() &&
2946         FTSInfo->getPointOfInstantiation().isInvalid())
2947       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
2948   } else if (MemberSpecializationInfo *MSInfo
2949              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
2950     MSInfo->setTemplateSpecializationKind(TSK);
2951     if (TSK != TSK_ExplicitSpecialization &&
2952         PointOfInstantiation.isValid() &&
2953         MSInfo->getPointOfInstantiation().isInvalid())
2954       MSInfo->setPointOfInstantiation(PointOfInstantiation);
2955   } else
2956     llvm_unreachable("Function cannot have a template specialization kind");
2957 }
2958 
2959 SourceLocation FunctionDecl::getPointOfInstantiation() const {
2960   if (FunctionTemplateSpecializationInfo *FTSInfo
2961         = TemplateOrSpecialization.dyn_cast<
2962                                         FunctionTemplateSpecializationInfo*>())
2963     return FTSInfo->getPointOfInstantiation();
2964   else if (MemberSpecializationInfo *MSInfo
2965              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
2966     return MSInfo->getPointOfInstantiation();
2967 
2968   return SourceLocation();
2969 }
2970 
2971 bool FunctionDecl::isOutOfLine() const {
2972   if (Decl::isOutOfLine())
2973     return true;
2974 
2975   // If this function was instantiated from a member function of a
2976   // class template, check whether that member function was defined out-of-line.
2977   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
2978     const FunctionDecl *Definition;
2979     if (FD->hasBody(Definition))
2980       return Definition->isOutOfLine();
2981   }
2982 
2983   // If this function was instantiated from a function template,
2984   // check whether that function template was defined out-of-line.
2985   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
2986     const FunctionDecl *Definition;
2987     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
2988       return Definition->isOutOfLine();
2989   }
2990 
2991   return false;
2992 }
2993 
2994 SourceRange FunctionDecl::getSourceRange() const {
2995   return SourceRange(getOuterLocStart(), EndRangeLoc);
2996 }
2997 
2998 unsigned FunctionDecl::getMemoryFunctionKind() const {
2999   IdentifierInfo *FnInfo = getIdentifier();
3000 
3001   if (!FnInfo)
3002     return 0;
3003 
3004   // Builtin handling.
3005   switch (getBuiltinID()) {
3006   case Builtin::BI__builtin_memset:
3007   case Builtin::BI__builtin___memset_chk:
3008   case Builtin::BImemset:
3009     return Builtin::BImemset;
3010 
3011   case Builtin::BI__builtin_memcpy:
3012   case Builtin::BI__builtin___memcpy_chk:
3013   case Builtin::BImemcpy:
3014     return Builtin::BImemcpy;
3015 
3016   case Builtin::BI__builtin_memmove:
3017   case Builtin::BI__builtin___memmove_chk:
3018   case Builtin::BImemmove:
3019     return Builtin::BImemmove;
3020 
3021   case Builtin::BIstrlcpy:
3022     return Builtin::BIstrlcpy;
3023   case Builtin::BIstrlcat:
3024     return Builtin::BIstrlcat;
3025 
3026   case Builtin::BI__builtin_memcmp:
3027   case Builtin::BImemcmp:
3028     return Builtin::BImemcmp;
3029 
3030   case Builtin::BI__builtin_strncpy:
3031   case Builtin::BI__builtin___strncpy_chk:
3032   case Builtin::BIstrncpy:
3033     return Builtin::BIstrncpy;
3034 
3035   case Builtin::BI__builtin_strncmp:
3036   case Builtin::BIstrncmp:
3037     return Builtin::BIstrncmp;
3038 
3039   case Builtin::BI__builtin_strncasecmp:
3040   case Builtin::BIstrncasecmp:
3041     return Builtin::BIstrncasecmp;
3042 
3043   case Builtin::BI__builtin_strncat:
3044   case Builtin::BI__builtin___strncat_chk:
3045   case Builtin::BIstrncat:
3046     return Builtin::BIstrncat;
3047 
3048   case Builtin::BI__builtin_strndup:
3049   case Builtin::BIstrndup:
3050     return Builtin::BIstrndup;
3051 
3052   case Builtin::BI__builtin_strlen:
3053   case Builtin::BIstrlen:
3054     return Builtin::BIstrlen;
3055 
3056   default:
3057     if (isExternC()) {
3058       if (FnInfo->isStr("memset"))
3059         return Builtin::BImemset;
3060       else if (FnInfo->isStr("memcpy"))
3061         return Builtin::BImemcpy;
3062       else if (FnInfo->isStr("memmove"))
3063         return Builtin::BImemmove;
3064       else if (FnInfo->isStr("memcmp"))
3065         return Builtin::BImemcmp;
3066       else if (FnInfo->isStr("strncpy"))
3067         return Builtin::BIstrncpy;
3068       else if (FnInfo->isStr("strncmp"))
3069         return Builtin::BIstrncmp;
3070       else if (FnInfo->isStr("strncasecmp"))
3071         return Builtin::BIstrncasecmp;
3072       else if (FnInfo->isStr("strncat"))
3073         return Builtin::BIstrncat;
3074       else if (FnInfo->isStr("strndup"))
3075         return Builtin::BIstrndup;
3076       else if (FnInfo->isStr("strlen"))
3077         return Builtin::BIstrlen;
3078     }
3079     break;
3080   }
3081   return 0;
3082 }
3083 
3084 //===----------------------------------------------------------------------===//
3085 // FieldDecl Implementation
3086 //===----------------------------------------------------------------------===//
3087 
3088 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
3089                              SourceLocation StartLoc, SourceLocation IdLoc,
3090                              IdentifierInfo *Id, QualType T,
3091                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
3092                              InClassInitStyle InitStyle) {
3093   return new (C) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
3094                            BW, Mutable, InitStyle);
3095 }
3096 
3097 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3098   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FieldDecl));
3099   return new (Mem) FieldDecl(Field, 0, SourceLocation(), SourceLocation(),
3100                              0, QualType(), 0, 0, false, ICIS_NoInit);
3101 }
3102 
3103 bool FieldDecl::isAnonymousStructOrUnion() const {
3104   if (!isImplicit() || getDeclName())
3105     return false;
3106 
3107   if (const RecordType *Record = getType()->getAs<RecordType>())
3108     return Record->getDecl()->isAnonymousStructOrUnion();
3109 
3110   return false;
3111 }
3112 
3113 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
3114   assert(isBitField() && "not a bitfield");
3115   Expr *BitWidth = InitializerOrBitWidth.getPointer();
3116   return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue();
3117 }
3118 
3119 unsigned FieldDecl::getFieldIndex() const {
3120   const FieldDecl *Canonical = getCanonicalDecl();
3121   if (Canonical != this)
3122     return Canonical->getFieldIndex();
3123 
3124   if (CachedFieldIndex) return CachedFieldIndex - 1;
3125 
3126   unsigned Index = 0;
3127   const RecordDecl *RD = getParent();
3128 
3129   for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
3130        I != E; ++I, ++Index)
3131     I->getCanonicalDecl()->CachedFieldIndex = Index + 1;
3132 
3133   assert(CachedFieldIndex && "failed to find field in parent");
3134   return CachedFieldIndex - 1;
3135 }
3136 
3137 SourceRange FieldDecl::getSourceRange() const {
3138   if (const Expr *E = InitializerOrBitWidth.getPointer())
3139     return SourceRange(getInnerLocStart(), E->getLocEnd());
3140   return DeclaratorDecl::getSourceRange();
3141 }
3142 
3143 void FieldDecl::setBitWidth(Expr *Width) {
3144   assert(!InitializerOrBitWidth.getPointer() && !hasInClassInitializer() &&
3145          "bit width or initializer already set");
3146   InitializerOrBitWidth.setPointer(Width);
3147 }
3148 
3149 void FieldDecl::setInClassInitializer(Expr *Init) {
3150   assert(!InitializerOrBitWidth.getPointer() && hasInClassInitializer() &&
3151          "bit width or initializer already set");
3152   InitializerOrBitWidth.setPointer(Init);
3153 }
3154 
3155 //===----------------------------------------------------------------------===//
3156 // TagDecl Implementation
3157 //===----------------------------------------------------------------------===//
3158 
3159 SourceLocation TagDecl::getOuterLocStart() const {
3160   return getTemplateOrInnerLocStart(this);
3161 }
3162 
3163 SourceRange TagDecl::getSourceRange() const {
3164   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
3165   return SourceRange(getOuterLocStart(), E);
3166 }
3167 
3168 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
3169 
3170 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
3171   NamedDeclOrQualifier = TDD;
3172   if (TypeForDecl)
3173     assert(TypeForDecl->isLinkageValid());
3174   assert(isLinkageValid());
3175 }
3176 
3177 void TagDecl::startDefinition() {
3178   IsBeingDefined = true;
3179 
3180   if (CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(this)) {
3181     struct CXXRecordDecl::DefinitionData *Data =
3182       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
3183     for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I)
3184       cast<CXXRecordDecl>(*I)->DefinitionData = Data;
3185   }
3186 }
3187 
3188 void TagDecl::completeDefinition() {
3189   assert((!isa<CXXRecordDecl>(this) ||
3190           cast<CXXRecordDecl>(this)->hasDefinition()) &&
3191          "definition completed but not started");
3192 
3193   IsCompleteDefinition = true;
3194   IsBeingDefined = false;
3195 
3196   if (ASTMutationListener *L = getASTMutationListener())
3197     L->CompletedTagDefinition(this);
3198 }
3199 
3200 TagDecl *TagDecl::getDefinition() const {
3201   if (isCompleteDefinition())
3202     return const_cast<TagDecl *>(this);
3203 
3204   // If it's possible for us to have an out-of-date definition, check now.
3205   if (MayHaveOutOfDateDef) {
3206     if (IdentifierInfo *II = getIdentifier()) {
3207       if (II->isOutOfDate()) {
3208         updateOutOfDate(*II);
3209       }
3210     }
3211   }
3212 
3213   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this))
3214     return CXXRD->getDefinition();
3215 
3216   for (redecl_iterator R = redecls_begin(), REnd = redecls_end();
3217        R != REnd; ++R)
3218     if (R->isCompleteDefinition())
3219       return *R;
3220 
3221   return 0;
3222 }
3223 
3224 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
3225   if (QualifierLoc) {
3226     // Make sure the extended qualifier info is allocated.
3227     if (!hasExtInfo())
3228       NamedDeclOrQualifier = new (getASTContext()) ExtInfo;
3229     // Set qualifier info.
3230     getExtInfo()->QualifierLoc = QualifierLoc;
3231   } else {
3232     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
3233     if (hasExtInfo()) {
3234       if (getExtInfo()->NumTemplParamLists == 0) {
3235         getASTContext().Deallocate(getExtInfo());
3236         NamedDeclOrQualifier = (TypedefNameDecl*) 0;
3237       }
3238       else
3239         getExtInfo()->QualifierLoc = QualifierLoc;
3240     }
3241   }
3242 }
3243 
3244 void TagDecl::setTemplateParameterListsInfo(ASTContext &Context,
3245                                             unsigned NumTPLists,
3246                                             TemplateParameterList **TPLists) {
3247   assert(NumTPLists > 0);
3248   // Make sure the extended decl info is allocated.
3249   if (!hasExtInfo())
3250     // Allocate external info struct.
3251     NamedDeclOrQualifier = new (getASTContext()) ExtInfo;
3252   // Set the template parameter lists info.
3253   getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
3254 }
3255 
3256 //===----------------------------------------------------------------------===//
3257 // EnumDecl Implementation
3258 //===----------------------------------------------------------------------===//
3259 
3260 void EnumDecl::anchor() { }
3261 
3262 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
3263                            SourceLocation StartLoc, SourceLocation IdLoc,
3264                            IdentifierInfo *Id,
3265                            EnumDecl *PrevDecl, bool IsScoped,
3266                            bool IsScopedUsingClassTag, bool IsFixed) {
3267   EnumDecl *Enum = new (C) EnumDecl(DC, StartLoc, IdLoc, Id, PrevDecl,
3268                                     IsScoped, IsScopedUsingClassTag, IsFixed);
3269   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3270   C.getTypeDeclType(Enum, PrevDecl);
3271   return Enum;
3272 }
3273 
3274 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3275   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EnumDecl));
3276   EnumDecl *Enum = new (Mem) EnumDecl(0, SourceLocation(), SourceLocation(),
3277                                       0, 0, false, false, false);
3278   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3279   return Enum;
3280 }
3281 
3282 void EnumDecl::completeDefinition(QualType NewType,
3283                                   QualType NewPromotionType,
3284                                   unsigned NumPositiveBits,
3285                                   unsigned NumNegativeBits) {
3286   assert(!isCompleteDefinition() && "Cannot redefine enums!");
3287   if (!IntegerType)
3288     IntegerType = NewType.getTypePtr();
3289   PromotionType = NewPromotionType;
3290   setNumPositiveBits(NumPositiveBits);
3291   setNumNegativeBits(NumNegativeBits);
3292   TagDecl::completeDefinition();
3293 }
3294 
3295 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
3296   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
3297     return MSI->getTemplateSpecializationKind();
3298 
3299   return TSK_Undeclared;
3300 }
3301 
3302 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3303                                          SourceLocation PointOfInstantiation) {
3304   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
3305   assert(MSI && "Not an instantiated member enumeration?");
3306   MSI->setTemplateSpecializationKind(TSK);
3307   if (TSK != TSK_ExplicitSpecialization &&
3308       PointOfInstantiation.isValid() &&
3309       MSI->getPointOfInstantiation().isInvalid())
3310     MSI->setPointOfInstantiation(PointOfInstantiation);
3311 }
3312 
3313 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
3314   if (SpecializationInfo)
3315     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
3316 
3317   return 0;
3318 }
3319 
3320 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3321                                             TemplateSpecializationKind TSK) {
3322   assert(!SpecializationInfo && "Member enum is already a specialization");
3323   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
3324 }
3325 
3326 //===----------------------------------------------------------------------===//
3327 // RecordDecl Implementation
3328 //===----------------------------------------------------------------------===//
3329 
3330 RecordDecl::RecordDecl(Kind DK, TagKind TK, DeclContext *DC,
3331                        SourceLocation StartLoc, SourceLocation IdLoc,
3332                        IdentifierInfo *Id, RecordDecl *PrevDecl)
3333   : TagDecl(DK, TK, DC, IdLoc, Id, PrevDecl, StartLoc) {
3334   HasFlexibleArrayMember = false;
3335   AnonymousStructOrUnion = false;
3336   HasObjectMember = false;
3337   HasVolatileMember = false;
3338   LoadedFieldsFromExternalStorage = false;
3339   assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
3340 }
3341 
3342 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
3343                                SourceLocation StartLoc, SourceLocation IdLoc,
3344                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
3345   RecordDecl* R = new (C) RecordDecl(Record, TK, DC, StartLoc, IdLoc, Id,
3346                                      PrevDecl);
3347   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3348 
3349   C.getTypeDeclType(R, PrevDecl);
3350   return R;
3351 }
3352 
3353 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
3354   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(RecordDecl));
3355   RecordDecl *R = new (Mem) RecordDecl(Record, TTK_Struct, 0, SourceLocation(),
3356                                        SourceLocation(), 0, 0);
3357   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3358   return R;
3359 }
3360 
3361 bool RecordDecl::isInjectedClassName() const {
3362   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
3363     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
3364 }
3365 
3366 RecordDecl::field_iterator RecordDecl::field_begin() const {
3367   if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
3368     LoadFieldsFromExternalStorage();
3369 
3370   return field_iterator(decl_iterator(FirstDecl));
3371 }
3372 
3373 /// completeDefinition - Notes that the definition of this type is now
3374 /// complete.
3375 void RecordDecl::completeDefinition() {
3376   assert(!isCompleteDefinition() && "Cannot redefine record!");
3377   TagDecl::completeDefinition();
3378 }
3379 
3380 /// isMsStruct - Get whether or not this record uses ms_struct layout.
3381 /// This which can be turned on with an attribute, pragma, or the
3382 /// -mms-bitfields command-line option.
3383 bool RecordDecl::isMsStruct(const ASTContext &C) const {
3384   return hasAttr<MsStructAttr>() || C.getLangOpts().MSBitfields == 1;
3385 }
3386 
3387 static bool isFieldOrIndirectField(Decl::Kind K) {
3388   return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
3389 }
3390 
3391 void RecordDecl::LoadFieldsFromExternalStorage() const {
3392   ExternalASTSource *Source = getASTContext().getExternalSource();
3393   assert(hasExternalLexicalStorage() && Source && "No external storage?");
3394 
3395   // Notify that we have a RecordDecl doing some initialization.
3396   ExternalASTSource::Deserializing TheFields(Source);
3397 
3398   SmallVector<Decl*, 64> Decls;
3399   LoadedFieldsFromExternalStorage = true;
3400   switch (Source->FindExternalLexicalDecls(this, isFieldOrIndirectField,
3401                                            Decls)) {
3402   case ELR_Success:
3403     break;
3404 
3405   case ELR_AlreadyLoaded:
3406   case ELR_Failure:
3407     return;
3408   }
3409 
3410 #ifndef NDEBUG
3411   // Check that all decls we got were FieldDecls.
3412   for (unsigned i=0, e=Decls.size(); i != e; ++i)
3413     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
3414 #endif
3415 
3416   if (Decls.empty())
3417     return;
3418 
3419   llvm::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
3420                                                  /*FieldsAlreadyLoaded=*/false);
3421 }
3422 
3423 //===----------------------------------------------------------------------===//
3424 // BlockDecl Implementation
3425 //===----------------------------------------------------------------------===//
3426 
3427 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
3428   assert(ParamInfo == 0 && "Already has param info!");
3429 
3430   // Zero params -> null pointer.
3431   if (!NewParamInfo.empty()) {
3432     NumParams = NewParamInfo.size();
3433     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
3434     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3435   }
3436 }
3437 
3438 void BlockDecl::setCaptures(ASTContext &Context,
3439                             const Capture *begin,
3440                             const Capture *end,
3441                             bool capturesCXXThis) {
3442   CapturesCXXThis = capturesCXXThis;
3443 
3444   if (begin == end) {
3445     NumCaptures = 0;
3446     Captures = 0;
3447     return;
3448   }
3449 
3450   NumCaptures = end - begin;
3451 
3452   // Avoid new Capture[] because we don't want to provide a default
3453   // constructor.
3454   size_t allocationSize = NumCaptures * sizeof(Capture);
3455   void *buffer = Context.Allocate(allocationSize, /*alignment*/sizeof(void*));
3456   memcpy(buffer, begin, allocationSize);
3457   Captures = static_cast<Capture*>(buffer);
3458 }
3459 
3460 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
3461   for (capture_const_iterator
3462          i = capture_begin(), e = capture_end(); i != e; ++i)
3463     // Only auto vars can be captured, so no redeclaration worries.
3464     if (i->getVariable() == variable)
3465       return true;
3466 
3467   return false;
3468 }
3469 
3470 SourceRange BlockDecl::getSourceRange() const {
3471   return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
3472 }
3473 
3474 //===----------------------------------------------------------------------===//
3475 // Other Decl Allocation/Deallocation Method Implementations
3476 //===----------------------------------------------------------------------===//
3477 
3478 void TranslationUnitDecl::anchor() { }
3479 
3480 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
3481   return new (C) TranslationUnitDecl(C);
3482 }
3483 
3484 void LabelDecl::anchor() { }
3485 
3486 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3487                              SourceLocation IdentL, IdentifierInfo *II) {
3488   return new (C) LabelDecl(DC, IdentL, II, 0, IdentL);
3489 }
3490 
3491 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3492                              SourceLocation IdentL, IdentifierInfo *II,
3493                              SourceLocation GnuLabelL) {
3494   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
3495   return new (C) LabelDecl(DC, IdentL, II, 0, GnuLabelL);
3496 }
3497 
3498 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3499   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(LabelDecl));
3500   return new (Mem) LabelDecl(0, SourceLocation(), 0, 0, SourceLocation());
3501 }
3502 
3503 void ValueDecl::anchor() { }
3504 
3505 bool ValueDecl::isWeak() const {
3506   for (attr_iterator I = attr_begin(), E = attr_end(); I != E; ++I)
3507     if (isa<WeakAttr>(*I) || isa<WeakRefAttr>(*I))
3508       return true;
3509 
3510   return isWeakImported();
3511 }
3512 
3513 void ImplicitParamDecl::anchor() { }
3514 
3515 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
3516                                              SourceLocation IdLoc,
3517                                              IdentifierInfo *Id,
3518                                              QualType Type) {
3519   return new (C) ImplicitParamDecl(DC, IdLoc, Id, Type);
3520 }
3521 
3522 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
3523                                                          unsigned ID) {
3524   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(ImplicitParamDecl));
3525   return new (Mem) ImplicitParamDecl(0, SourceLocation(), 0, QualType());
3526 }
3527 
3528 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
3529                                    SourceLocation StartLoc,
3530                                    const DeclarationNameInfo &NameInfo,
3531                                    QualType T, TypeSourceInfo *TInfo,
3532                                    StorageClass SC,
3533                                    bool isInlineSpecified,
3534                                    bool hasWrittenPrototype,
3535                                    bool isConstexprSpecified) {
3536   FunctionDecl *New = new (C) FunctionDecl(Function, DC, StartLoc, NameInfo,
3537                                            T, TInfo, SC,
3538                                            isInlineSpecified,
3539                                            isConstexprSpecified);
3540   New->HasWrittenPrototype = hasWrittenPrototype;
3541   return New;
3542 }
3543 
3544 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3545   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FunctionDecl));
3546   return new (Mem) FunctionDecl(Function, 0, SourceLocation(),
3547                                 DeclarationNameInfo(), QualType(), 0,
3548                                 SC_None, false, false);
3549 }
3550 
3551 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
3552   return new (C) BlockDecl(DC, L);
3553 }
3554 
3555 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3556   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(BlockDecl));
3557   return new (Mem) BlockDecl(0, SourceLocation());
3558 }
3559 
3560 MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C,
3561                                                    unsigned ID) {
3562   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(MSPropertyDecl));
3563   return new (Mem) MSPropertyDecl(0, SourceLocation(), DeclarationName(),
3564                                   QualType(), 0, SourceLocation(),
3565                                   0, 0);
3566 }
3567 
3568 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
3569                                    unsigned NumParams) {
3570   unsigned Size = sizeof(CapturedDecl) + NumParams * sizeof(ImplicitParamDecl*);
3571   return new (C.Allocate(Size)) CapturedDecl(DC, NumParams);
3572 }
3573 
3574 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3575                                    unsigned NumParams) {
3576   unsigned Size = sizeof(CapturedDecl) + NumParams * sizeof(ImplicitParamDecl*);
3577   void *Mem = AllocateDeserializedDecl(C, ID, Size);
3578   return new (Mem) CapturedDecl(0, NumParams);
3579 }
3580 
3581 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
3582                                            SourceLocation L,
3583                                            IdentifierInfo *Id, QualType T,
3584                                            Expr *E, const llvm::APSInt &V) {
3585   return new (C) EnumConstantDecl(CD, L, Id, T, E, V);
3586 }
3587 
3588 EnumConstantDecl *
3589 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3590   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EnumConstantDecl));
3591   return new (Mem) EnumConstantDecl(0, SourceLocation(), 0, QualType(), 0,
3592                                     llvm::APSInt());
3593 }
3594 
3595 void IndirectFieldDecl::anchor() { }
3596 
3597 IndirectFieldDecl *
3598 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
3599                           IdentifierInfo *Id, QualType T, NamedDecl **CH,
3600                           unsigned CHS) {
3601   return new (C) IndirectFieldDecl(DC, L, Id, T, CH, CHS);
3602 }
3603 
3604 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
3605                                                          unsigned ID) {
3606   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(IndirectFieldDecl));
3607   return new (Mem) IndirectFieldDecl(0, SourceLocation(), DeclarationName(),
3608                                      QualType(), 0, 0);
3609 }
3610 
3611 SourceRange EnumConstantDecl::getSourceRange() const {
3612   SourceLocation End = getLocation();
3613   if (Init)
3614     End = Init->getLocEnd();
3615   return SourceRange(getLocation(), End);
3616 }
3617 
3618 void TypeDecl::anchor() { }
3619 
3620 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
3621                                  SourceLocation StartLoc, SourceLocation IdLoc,
3622                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
3623   return new (C) TypedefDecl(DC, StartLoc, IdLoc, Id, TInfo);
3624 }
3625 
3626 void TypedefNameDecl::anchor() { }
3627 
3628 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3629   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(TypedefDecl));
3630   return new (Mem) TypedefDecl(0, SourceLocation(), SourceLocation(), 0, 0);
3631 }
3632 
3633 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
3634                                      SourceLocation StartLoc,
3635                                      SourceLocation IdLoc, IdentifierInfo *Id,
3636                                      TypeSourceInfo *TInfo) {
3637   return new (C) TypeAliasDecl(DC, StartLoc, IdLoc, Id, TInfo);
3638 }
3639 
3640 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3641   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(TypeAliasDecl));
3642   return new (Mem) TypeAliasDecl(0, SourceLocation(), SourceLocation(), 0, 0);
3643 }
3644 
3645 SourceRange TypedefDecl::getSourceRange() const {
3646   SourceLocation RangeEnd = getLocation();
3647   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
3648     if (typeIsPostfix(TInfo->getType()))
3649       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
3650   }
3651   return SourceRange(getLocStart(), RangeEnd);
3652 }
3653 
3654 SourceRange TypeAliasDecl::getSourceRange() const {
3655   SourceLocation RangeEnd = getLocStart();
3656   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
3657     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
3658   return SourceRange(getLocStart(), RangeEnd);
3659 }
3660 
3661 void FileScopeAsmDecl::anchor() { }
3662 
3663 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
3664                                            StringLiteral *Str,
3665                                            SourceLocation AsmLoc,
3666                                            SourceLocation RParenLoc) {
3667   return new (C) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
3668 }
3669 
3670 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
3671                                                        unsigned ID) {
3672   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FileScopeAsmDecl));
3673   return new (Mem) FileScopeAsmDecl(0, 0, SourceLocation(), SourceLocation());
3674 }
3675 
3676 void EmptyDecl::anchor() {}
3677 
3678 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
3679   return new (C) EmptyDecl(DC, L);
3680 }
3681 
3682 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3683   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EmptyDecl));
3684   return new (Mem) EmptyDecl(0, SourceLocation());
3685 }
3686 
3687 //===----------------------------------------------------------------------===//
3688 // ImportDecl Implementation
3689 //===----------------------------------------------------------------------===//
3690 
3691 /// \brief Retrieve the number of module identifiers needed to name the given
3692 /// module.
3693 static unsigned getNumModuleIdentifiers(Module *Mod) {
3694   unsigned Result = 1;
3695   while (Mod->Parent) {
3696     Mod = Mod->Parent;
3697     ++Result;
3698   }
3699   return Result;
3700 }
3701 
3702 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
3703                        Module *Imported,
3704                        ArrayRef<SourceLocation> IdentifierLocs)
3705   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true),
3706     NextLocalImport()
3707 {
3708   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
3709   SourceLocation *StoredLocs = reinterpret_cast<SourceLocation *>(this + 1);
3710   memcpy(StoredLocs, IdentifierLocs.data(),
3711          IdentifierLocs.size() * sizeof(SourceLocation));
3712 }
3713 
3714 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
3715                        Module *Imported, SourceLocation EndLoc)
3716   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false),
3717     NextLocalImport()
3718 {
3719   *reinterpret_cast<SourceLocation *>(this + 1) = EndLoc;
3720 }
3721 
3722 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
3723                                SourceLocation StartLoc, Module *Imported,
3724                                ArrayRef<SourceLocation> IdentifierLocs) {
3725   void *Mem = C.Allocate(sizeof(ImportDecl) +
3726                          IdentifierLocs.size() * sizeof(SourceLocation));
3727   return new (Mem) ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
3728 }
3729 
3730 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
3731                                        SourceLocation StartLoc,
3732                                        Module *Imported,
3733                                        SourceLocation EndLoc) {
3734   void *Mem = C.Allocate(sizeof(ImportDecl) + sizeof(SourceLocation));
3735   ImportDecl *Import = new (Mem) ImportDecl(DC, StartLoc, Imported, EndLoc);
3736   Import->setImplicit();
3737   return Import;
3738 }
3739 
3740 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3741                                            unsigned NumLocations) {
3742   void *Mem = AllocateDeserializedDecl(C, ID,
3743                                        (sizeof(ImportDecl) +
3744                                         NumLocations * sizeof(SourceLocation)));
3745   return new (Mem) ImportDecl(EmptyShell());
3746 }
3747 
3748 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
3749   if (!ImportedAndComplete.getInt())
3750     return None;
3751 
3752   const SourceLocation *StoredLocs
3753     = reinterpret_cast<const SourceLocation *>(this + 1);
3754   return ArrayRef<SourceLocation>(StoredLocs,
3755                                   getNumModuleIdentifiers(getImportedModule()));
3756 }
3757 
3758 SourceRange ImportDecl::getSourceRange() const {
3759   if (!ImportedAndComplete.getInt())
3760     return SourceRange(getLocation(),
3761                        *reinterpret_cast<const SourceLocation *>(this + 1));
3762 
3763   return SourceRange(getLocation(), getIdentifierLocs().back());
3764 }
3765