1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr constant evaluator.
11 //
12 // Constant expression evaluation produces four main results:
13 //
14 //  * A success/failure flag indicating whether constant folding was successful.
15 //    This is the 'bool' return value used by most of the code in this file. A
16 //    'false' return value indicates that constant folding has failed, and any
17 //    appropriate diagnostic has already been produced.
18 //
19 //  * An evaluated result, valid only if constant folding has not failed.
20 //
21 //  * A flag indicating if evaluation encountered (unevaluated) side-effects.
22 //    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
23 //    where it is possible to determine the evaluated result regardless.
24 //
25 //  * A set of notes indicating why the evaluation was not a constant expression
26 //    (under the C++11 / C++1y rules only, at the moment), or, if folding failed
27 //    too, why the expression could not be folded.
28 //
29 // If we are checking for a potential constant expression, failure to constant
30 // fold a potential constant sub-expression will be indicated by a 'false'
31 // return value (the expression could not be folded) and no diagnostic (the
32 // expression is not necessarily non-constant).
33 //
34 //===----------------------------------------------------------------------===//
35 
36 #include "clang/AST/APValue.h"
37 #include "clang/AST/ASTContext.h"
38 #include "clang/AST/ASTDiagnostic.h"
39 #include "clang/AST/CharUnits.h"
40 #include "clang/AST/Expr.h"
41 #include "clang/AST/RecordLayout.h"
42 #include "clang/AST/StmtVisitor.h"
43 #include "clang/AST/TypeLoc.h"
44 #include "clang/Basic/Builtins.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "llvm/ADT/SmallString.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <cstring>
49 #include <functional>
50 
51 using namespace clang;
52 using llvm::APSInt;
53 using llvm::APFloat;
54 
55 static bool IsGlobalLValue(APValue::LValueBase B);
56 
57 namespace {
58   struct LValue;
59   struct CallStackFrame;
60   struct EvalInfo;
61 
getType(APValue::LValueBase B)62   static QualType getType(APValue::LValueBase B) {
63     if (!B) return QualType();
64     if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
65       return D->getType();
66 
67     const Expr *Base = B.get<const Expr*>();
68 
69     // For a materialized temporary, the type of the temporary we materialized
70     // may not be the type of the expression.
71     if (const MaterializeTemporaryExpr *MTE =
72             dyn_cast<MaterializeTemporaryExpr>(Base)) {
73       SmallVector<const Expr *, 2> CommaLHSs;
74       SmallVector<SubobjectAdjustment, 2> Adjustments;
75       const Expr *Temp = MTE->GetTemporaryExpr();
76       const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
77                                                                Adjustments);
78       // Keep any cv-qualifiers from the reference if we generated a temporary
79       // for it.
80       if (Inner != Temp)
81         return Inner->getType();
82     }
83 
84     return Base->getType();
85   }
86 
87   /// Get an LValue path entry, which is known to not be an array index, as a
88   /// field or base class.
89   static
getAsBaseOrMember(APValue::LValuePathEntry E)90   APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
91     APValue::BaseOrMemberType Value;
92     Value.setFromOpaqueValue(E.BaseOrMember);
93     return Value;
94   }
95 
96   /// Get an LValue path entry, which is known to not be an array index, as a
97   /// field declaration.
getAsField(APValue::LValuePathEntry E)98   static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
99     return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
100   }
101   /// Get an LValue path entry, which is known to not be an array index, as a
102   /// base class declaration.
getAsBaseClass(APValue::LValuePathEntry E)103   static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
104     return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
105   }
106   /// Determine whether this LValue path entry for a base class names a virtual
107   /// base class.
isVirtualBaseClass(APValue::LValuePathEntry E)108   static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
109     return getAsBaseOrMember(E).getInt();
110   }
111 
112   /// Find the path length and type of the most-derived subobject in the given
113   /// path, and find the size of the containing array, if any.
114   static
findMostDerivedSubobject(ASTContext & Ctx,QualType Base,ArrayRef<APValue::LValuePathEntry> Path,uint64_t & ArraySize,QualType & Type)115   unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
116                                     ArrayRef<APValue::LValuePathEntry> Path,
117                                     uint64_t &ArraySize, QualType &Type) {
118     unsigned MostDerivedLength = 0;
119     Type = Base;
120     for (unsigned I = 0, N = Path.size(); I != N; ++I) {
121       if (Type->isArrayType()) {
122         const ConstantArrayType *CAT =
123           cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
124         Type = CAT->getElementType();
125         ArraySize = CAT->getSize().getZExtValue();
126         MostDerivedLength = I + 1;
127       } else if (Type->isAnyComplexType()) {
128         const ComplexType *CT = Type->castAs<ComplexType>();
129         Type = CT->getElementType();
130         ArraySize = 2;
131         MostDerivedLength = I + 1;
132       } else if (const FieldDecl *FD = getAsField(Path[I])) {
133         Type = FD->getType();
134         ArraySize = 0;
135         MostDerivedLength = I + 1;
136       } else {
137         // Path[I] describes a base class.
138         ArraySize = 0;
139       }
140     }
141     return MostDerivedLength;
142   }
143 
144   // The order of this enum is important for diagnostics.
145   enum CheckSubobjectKind {
146     CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
147     CSK_This, CSK_Real, CSK_Imag
148   };
149 
150   /// A path from a glvalue to a subobject of that glvalue.
151   struct SubobjectDesignator {
152     /// True if the subobject was named in a manner not supported by C++11. Such
153     /// lvalues can still be folded, but they are not core constant expressions
154     /// and we cannot perform lvalue-to-rvalue conversions on them.
155     bool Invalid : 1;
156 
157     /// Is this a pointer one past the end of an object?
158     bool IsOnePastTheEnd : 1;
159 
160     /// The length of the path to the most-derived object of which this is a
161     /// subobject.
162     unsigned MostDerivedPathLength : 30;
163 
164     /// The size of the array of which the most-derived object is an element, or
165     /// 0 if the most-derived object is not an array element.
166     uint64_t MostDerivedArraySize;
167 
168     /// The type of the most derived object referred to by this address.
169     QualType MostDerivedType;
170 
171     typedef APValue::LValuePathEntry PathEntry;
172 
173     /// The entries on the path from the glvalue to the designated subobject.
174     SmallVector<PathEntry, 8> Entries;
175 
SubobjectDesignator__anon0751fa450111::SubobjectDesignator176     SubobjectDesignator() : Invalid(true) {}
177 
SubobjectDesignator__anon0751fa450111::SubobjectDesignator178     explicit SubobjectDesignator(QualType T)
179       : Invalid(false), IsOnePastTheEnd(false), MostDerivedPathLength(0),
180         MostDerivedArraySize(0), MostDerivedType(T) {}
181 
SubobjectDesignator__anon0751fa450111::SubobjectDesignator182     SubobjectDesignator(ASTContext &Ctx, const APValue &V)
183       : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
184         MostDerivedPathLength(0), MostDerivedArraySize(0) {
185       if (!Invalid) {
186         IsOnePastTheEnd = V.isLValueOnePastTheEnd();
187         ArrayRef<PathEntry> VEntries = V.getLValuePath();
188         Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
189         if (V.getLValueBase())
190           MostDerivedPathLength =
191               findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
192                                        V.getLValuePath(), MostDerivedArraySize,
193                                        MostDerivedType);
194       }
195     }
196 
setInvalid__anon0751fa450111::SubobjectDesignator197     void setInvalid() {
198       Invalid = true;
199       Entries.clear();
200     }
201 
202     /// Determine whether this is a one-past-the-end pointer.
isOnePastTheEnd__anon0751fa450111::SubobjectDesignator203     bool isOnePastTheEnd() const {
204       assert(!Invalid);
205       if (IsOnePastTheEnd)
206         return true;
207       if (MostDerivedArraySize &&
208           Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
209         return true;
210       return false;
211     }
212 
213     /// Check that this refers to a valid subobject.
isValidSubobject__anon0751fa450111::SubobjectDesignator214     bool isValidSubobject() const {
215       if (Invalid)
216         return false;
217       return !isOnePastTheEnd();
218     }
219     /// Check that this refers to a valid subobject, and if not, produce a
220     /// relevant diagnostic and set the designator as invalid.
221     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
222 
223     /// Update this designator to refer to the first element within this array.
addArrayUnchecked__anon0751fa450111::SubobjectDesignator224     void addArrayUnchecked(const ConstantArrayType *CAT) {
225       PathEntry Entry;
226       Entry.ArrayIndex = 0;
227       Entries.push_back(Entry);
228 
229       // This is a most-derived object.
230       MostDerivedType = CAT->getElementType();
231       MostDerivedArraySize = CAT->getSize().getZExtValue();
232       MostDerivedPathLength = Entries.size();
233     }
234     /// Update this designator to refer to the given base or member of this
235     /// object.
addDeclUnchecked__anon0751fa450111::SubobjectDesignator236     void addDeclUnchecked(const Decl *D, bool Virtual = false) {
237       PathEntry Entry;
238       APValue::BaseOrMemberType Value(D, Virtual);
239       Entry.BaseOrMember = Value.getOpaqueValue();
240       Entries.push_back(Entry);
241 
242       // If this isn't a base class, it's a new most-derived object.
243       if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
244         MostDerivedType = FD->getType();
245         MostDerivedArraySize = 0;
246         MostDerivedPathLength = Entries.size();
247       }
248     }
249     /// Update this designator to refer to the given complex component.
addComplexUnchecked__anon0751fa450111::SubobjectDesignator250     void addComplexUnchecked(QualType EltTy, bool Imag) {
251       PathEntry Entry;
252       Entry.ArrayIndex = Imag;
253       Entries.push_back(Entry);
254 
255       // This is technically a most-derived object, though in practice this
256       // is unlikely to matter.
257       MostDerivedType = EltTy;
258       MostDerivedArraySize = 2;
259       MostDerivedPathLength = Entries.size();
260     }
261     void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
262     /// Add N to the address of this subobject.
adjustIndex__anon0751fa450111::SubobjectDesignator263     void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
264       if (Invalid) return;
265       if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize) {
266         Entries.back().ArrayIndex += N;
267         if (Entries.back().ArrayIndex > MostDerivedArraySize) {
268           diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
269           setInvalid();
270         }
271         return;
272       }
273       // [expr.add]p4: For the purposes of these operators, a pointer to a
274       // nonarray object behaves the same as a pointer to the first element of
275       // an array of length one with the type of the object as its element type.
276       if (IsOnePastTheEnd && N == (uint64_t)-1)
277         IsOnePastTheEnd = false;
278       else if (!IsOnePastTheEnd && N == 1)
279         IsOnePastTheEnd = true;
280       else if (N != 0) {
281         diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
282         setInvalid();
283       }
284     }
285   };
286 
287   /// A stack frame in the constexpr call stack.
288   struct CallStackFrame {
289     EvalInfo &Info;
290 
291     /// Parent - The caller of this stack frame.
292     CallStackFrame *Caller;
293 
294     /// CallLoc - The location of the call expression for this call.
295     SourceLocation CallLoc;
296 
297     /// Callee - The function which was called.
298     const FunctionDecl *Callee;
299 
300     /// Index - The call index of this call.
301     unsigned Index;
302 
303     /// This - The binding for the this pointer in this call, if any.
304     const LValue *This;
305 
306     /// Arguments - Parameter bindings for this function call, indexed by
307     /// parameters' function scope indices.
308     APValue *Arguments;
309 
310     // Note that we intentionally use std::map here so that references to
311     // values are stable.
312     typedef std::map<const void*, APValue> MapTy;
313     typedef MapTy::const_iterator temp_iterator;
314     /// Temporaries - Temporary lvalues materialized within this stack frame.
315     MapTy Temporaries;
316 
317     CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
318                    const FunctionDecl *Callee, const LValue *This,
319                    APValue *Arguments);
320     ~CallStackFrame();
321 
getTemporary__anon0751fa450111::CallStackFrame322     APValue *getTemporary(const void *Key) {
323       MapTy::iterator I = Temporaries.find(Key);
324       return I == Temporaries.end() ? nullptr : &I->second;
325     }
326     APValue &createTemporary(const void *Key, bool IsLifetimeExtended);
327   };
328 
329   /// Temporarily override 'this'.
330   class ThisOverrideRAII {
331   public:
ThisOverrideRAII(CallStackFrame & Frame,const LValue * NewThis,bool Enable)332     ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
333         : Frame(Frame), OldThis(Frame.This) {
334       if (Enable)
335         Frame.This = NewThis;
336     }
~ThisOverrideRAII()337     ~ThisOverrideRAII() {
338       Frame.This = OldThis;
339     }
340   private:
341     CallStackFrame &Frame;
342     const LValue *OldThis;
343   };
344 
345   /// A partial diagnostic which we might know in advance that we are not going
346   /// to emit.
347   class OptionalDiagnostic {
348     PartialDiagnostic *Diag;
349 
350   public:
OptionalDiagnostic(PartialDiagnostic * Diag=nullptr)351     explicit OptionalDiagnostic(PartialDiagnostic *Diag = nullptr)
352       : Diag(Diag) {}
353 
354     template<typename T>
operator <<(const T & v)355     OptionalDiagnostic &operator<<(const T &v) {
356       if (Diag)
357         *Diag << v;
358       return *this;
359     }
360 
operator <<(const APSInt & I)361     OptionalDiagnostic &operator<<(const APSInt &I) {
362       if (Diag) {
363         SmallVector<char, 32> Buffer;
364         I.toString(Buffer);
365         *Diag << StringRef(Buffer.data(), Buffer.size());
366       }
367       return *this;
368     }
369 
operator <<(const APFloat & F)370     OptionalDiagnostic &operator<<(const APFloat &F) {
371       if (Diag) {
372         // FIXME: Force the precision of the source value down so we don't
373         // print digits which are usually useless (we don't really care here if
374         // we truncate a digit by accident in edge cases).  Ideally,
375         // APFloat::toString would automatically print the shortest
376         // representation which rounds to the correct value, but it's a bit
377         // tricky to implement.
378         unsigned precision =
379             llvm::APFloat::semanticsPrecision(F.getSemantics());
380         precision = (precision * 59 + 195) / 196;
381         SmallVector<char, 32> Buffer;
382         F.toString(Buffer, precision);
383         *Diag << StringRef(Buffer.data(), Buffer.size());
384       }
385       return *this;
386     }
387   };
388 
389   /// A cleanup, and a flag indicating whether it is lifetime-extended.
390   class Cleanup {
391     llvm::PointerIntPair<APValue*, 1, bool> Value;
392 
393   public:
Cleanup(APValue * Val,bool IsLifetimeExtended)394     Cleanup(APValue *Val, bool IsLifetimeExtended)
395         : Value(Val, IsLifetimeExtended) {}
396 
isLifetimeExtended() const397     bool isLifetimeExtended() const { return Value.getInt(); }
endLifetime()398     void endLifetime() {
399       *Value.getPointer() = APValue();
400     }
401   };
402 
403   /// EvalInfo - This is a private struct used by the evaluator to capture
404   /// information about a subexpression as it is folded.  It retains information
405   /// about the AST context, but also maintains information about the folded
406   /// expression.
407   ///
408   /// If an expression could be evaluated, it is still possible it is not a C
409   /// "integer constant expression" or constant expression.  If not, this struct
410   /// captures information about how and why not.
411   ///
412   /// One bit of information passed *into* the request for constant folding
413   /// indicates whether the subexpression is "evaluated" or not according to C
414   /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
415   /// evaluate the expression regardless of what the RHS is, but C only allows
416   /// certain things in certain situations.
417   struct EvalInfo {
418     ASTContext &Ctx;
419 
420     /// EvalStatus - Contains information about the evaluation.
421     Expr::EvalStatus &EvalStatus;
422 
423     /// CurrentCall - The top of the constexpr call stack.
424     CallStackFrame *CurrentCall;
425 
426     /// CallStackDepth - The number of calls in the call stack right now.
427     unsigned CallStackDepth;
428 
429     /// NextCallIndex - The next call index to assign.
430     unsigned NextCallIndex;
431 
432     /// StepsLeft - The remaining number of evaluation steps we're permitted
433     /// to perform. This is essentially a limit for the number of statements
434     /// we will evaluate.
435     unsigned StepsLeft;
436 
437     /// BottomFrame - The frame in which evaluation started. This must be
438     /// initialized after CurrentCall and CallStackDepth.
439     CallStackFrame BottomFrame;
440 
441     /// A stack of values whose lifetimes end at the end of some surrounding
442     /// evaluation frame.
443     llvm::SmallVector<Cleanup, 16> CleanupStack;
444 
445     /// EvaluatingDecl - This is the declaration whose initializer is being
446     /// evaluated, if any.
447     APValue::LValueBase EvaluatingDecl;
448 
449     /// EvaluatingDeclValue - This is the value being constructed for the
450     /// declaration whose initializer is being evaluated, if any.
451     APValue *EvaluatingDeclValue;
452 
453     /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
454     /// notes attached to it will also be stored, otherwise they will not be.
455     bool HasActiveDiagnostic;
456 
457     enum EvaluationMode {
458       /// Evaluate as a constant expression. Stop if we find that the expression
459       /// is not a constant expression.
460       EM_ConstantExpression,
461 
462       /// Evaluate as a potential constant expression. Keep going if we hit a
463       /// construct that we can't evaluate yet (because we don't yet know the
464       /// value of something) but stop if we hit something that could never be
465       /// a constant expression.
466       EM_PotentialConstantExpression,
467 
468       /// Fold the expression to a constant. Stop if we hit a side-effect that
469       /// we can't model.
470       EM_ConstantFold,
471 
472       /// Evaluate the expression looking for integer overflow and similar
473       /// issues. Don't worry about side-effects, and try to visit all
474       /// subexpressions.
475       EM_EvaluateForOverflow,
476 
477       /// Evaluate in any way we know how. Don't worry about side-effects that
478       /// can't be modeled.
479       EM_IgnoreSideEffects,
480 
481       /// Evaluate as a constant expression. Stop if we find that the expression
482       /// is not a constant expression. Some expressions can be retried in the
483       /// optimizer if we don't constant fold them here, but in an unevaluated
484       /// context we try to fold them immediately since the optimizer never
485       /// gets a chance to look at it.
486       EM_ConstantExpressionUnevaluated,
487 
488       /// Evaluate as a potential constant expression. Keep going if we hit a
489       /// construct that we can't evaluate yet (because we don't yet know the
490       /// value of something) but stop if we hit something that could never be
491       /// a constant expression. Some expressions can be retried in the
492       /// optimizer if we don't constant fold them here, but in an unevaluated
493       /// context we try to fold them immediately since the optimizer never
494       /// gets a chance to look at it.
495       EM_PotentialConstantExpressionUnevaluated
496     } EvalMode;
497 
498     /// Are we checking whether the expression is a potential constant
499     /// expression?
checkingPotentialConstantExpression__anon0751fa450111::EvalInfo500     bool checkingPotentialConstantExpression() const {
501       return EvalMode == EM_PotentialConstantExpression ||
502              EvalMode == EM_PotentialConstantExpressionUnevaluated;
503     }
504 
505     /// Are we checking an expression for overflow?
506     // FIXME: We should check for any kind of undefined or suspicious behavior
507     // in such constructs, not just overflow.
checkingForOverflow__anon0751fa450111::EvalInfo508     bool checkingForOverflow() { return EvalMode == EM_EvaluateForOverflow; }
509 
EvalInfo__anon0751fa450111::EvalInfo510     EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
511       : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
512         CallStackDepth(0), NextCallIndex(1),
513         StepsLeft(getLangOpts().ConstexprStepLimit),
514         BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr),
515         EvaluatingDecl((const ValueDecl *)nullptr),
516         EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
517         EvalMode(Mode) {}
518 
setEvaluatingDecl__anon0751fa450111::EvalInfo519     void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value) {
520       EvaluatingDecl = Base;
521       EvaluatingDeclValue = &Value;
522     }
523 
getLangOpts__anon0751fa450111::EvalInfo524     const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
525 
CheckCallLimit__anon0751fa450111::EvalInfo526     bool CheckCallLimit(SourceLocation Loc) {
527       // Don't perform any constexpr calls (other than the call we're checking)
528       // when checking a potential constant expression.
529       if (checkingPotentialConstantExpression() && CallStackDepth > 1)
530         return false;
531       if (NextCallIndex == 0) {
532         // NextCallIndex has wrapped around.
533         Diag(Loc, diag::note_constexpr_call_limit_exceeded);
534         return false;
535       }
536       if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
537         return true;
538       Diag(Loc, diag::note_constexpr_depth_limit_exceeded)
539         << getLangOpts().ConstexprCallDepth;
540       return false;
541     }
542 
getCallFrame__anon0751fa450111::EvalInfo543     CallStackFrame *getCallFrame(unsigned CallIndex) {
544       assert(CallIndex && "no call index in getCallFrame");
545       // We will eventually hit BottomFrame, which has Index 1, so Frame can't
546       // be null in this loop.
547       CallStackFrame *Frame = CurrentCall;
548       while (Frame->Index > CallIndex)
549         Frame = Frame->Caller;
550       return (Frame->Index == CallIndex) ? Frame : nullptr;
551     }
552 
nextStep__anon0751fa450111::EvalInfo553     bool nextStep(const Stmt *S) {
554       if (!StepsLeft) {
555         Diag(S->getLocStart(), diag::note_constexpr_step_limit_exceeded);
556         return false;
557       }
558       --StepsLeft;
559       return true;
560     }
561 
562   private:
563     /// Add a diagnostic to the diagnostics list.
addDiag__anon0751fa450111::EvalInfo564     PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
565       PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
566       EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
567       return EvalStatus.Diag->back().second;
568     }
569 
570     /// Add notes containing a call stack to the current point of evaluation.
571     void addCallStack(unsigned Limit);
572 
573   public:
574     /// Diagnose that the evaluation cannot be folded.
Diag__anon0751fa450111::EvalInfo575     OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId
576                               = diag::note_invalid_subexpr_in_const_expr,
577                             unsigned ExtraNotes = 0) {
578       if (EvalStatus.Diag) {
579         // If we have a prior diagnostic, it will be noting that the expression
580         // isn't a constant expression. This diagnostic is more important,
581         // unless we require this evaluation to produce a constant expression.
582         //
583         // FIXME: We might want to show both diagnostics to the user in
584         // EM_ConstantFold mode.
585         if (!EvalStatus.Diag->empty()) {
586           switch (EvalMode) {
587           case EM_ConstantFold:
588           case EM_IgnoreSideEffects:
589           case EM_EvaluateForOverflow:
590             if (!EvalStatus.HasSideEffects)
591               break;
592             // We've had side-effects; we want the diagnostic from them, not
593             // some later problem.
594           case EM_ConstantExpression:
595           case EM_PotentialConstantExpression:
596           case EM_ConstantExpressionUnevaluated:
597           case EM_PotentialConstantExpressionUnevaluated:
598             HasActiveDiagnostic = false;
599             return OptionalDiagnostic();
600           }
601         }
602 
603         unsigned CallStackNotes = CallStackDepth - 1;
604         unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
605         if (Limit)
606           CallStackNotes = std::min(CallStackNotes, Limit + 1);
607         if (checkingPotentialConstantExpression())
608           CallStackNotes = 0;
609 
610         HasActiveDiagnostic = true;
611         EvalStatus.Diag->clear();
612         EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
613         addDiag(Loc, DiagId);
614         if (!checkingPotentialConstantExpression())
615           addCallStack(Limit);
616         return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
617       }
618       HasActiveDiagnostic = false;
619       return OptionalDiagnostic();
620     }
621 
Diag__anon0751fa450111::EvalInfo622     OptionalDiagnostic Diag(const Expr *E, diag::kind DiagId
623                               = diag::note_invalid_subexpr_in_const_expr,
624                             unsigned ExtraNotes = 0) {
625       if (EvalStatus.Diag)
626         return Diag(E->getExprLoc(), DiagId, ExtraNotes);
627       HasActiveDiagnostic = false;
628       return OptionalDiagnostic();
629     }
630 
631     /// Diagnose that the evaluation does not produce a C++11 core constant
632     /// expression.
633     ///
634     /// FIXME: Stop evaluating if we're in EM_ConstantExpression or
635     /// EM_PotentialConstantExpression mode and we produce one of these.
636     template<typename LocArg>
CCEDiag__anon0751fa450111::EvalInfo637     OptionalDiagnostic CCEDiag(LocArg Loc, diag::kind DiagId
638                                  = diag::note_invalid_subexpr_in_const_expr,
639                                unsigned ExtraNotes = 0) {
640       // Don't override a previous diagnostic. Don't bother collecting
641       // diagnostics if we're evaluating for overflow.
642       if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
643         HasActiveDiagnostic = false;
644         return OptionalDiagnostic();
645       }
646       return Diag(Loc, DiagId, ExtraNotes);
647     }
648 
649     /// Add a note to a prior diagnostic.
Note__anon0751fa450111::EvalInfo650     OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
651       if (!HasActiveDiagnostic)
652         return OptionalDiagnostic();
653       return OptionalDiagnostic(&addDiag(Loc, DiagId));
654     }
655 
656     /// Add a stack of notes to a prior diagnostic.
addNotes__anon0751fa450111::EvalInfo657     void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
658       if (HasActiveDiagnostic) {
659         EvalStatus.Diag->insert(EvalStatus.Diag->end(),
660                                 Diags.begin(), Diags.end());
661       }
662     }
663 
664     /// Should we continue evaluation after encountering a side-effect that we
665     /// couldn't model?
keepEvaluatingAfterSideEffect__anon0751fa450111::EvalInfo666     bool keepEvaluatingAfterSideEffect() {
667       switch (EvalMode) {
668       case EM_PotentialConstantExpression:
669       case EM_PotentialConstantExpressionUnevaluated:
670       case EM_EvaluateForOverflow:
671       case EM_IgnoreSideEffects:
672         return true;
673 
674       case EM_ConstantExpression:
675       case EM_ConstantExpressionUnevaluated:
676       case EM_ConstantFold:
677         return false;
678       }
679       llvm_unreachable("Missed EvalMode case");
680     }
681 
682     /// Note that we have had a side-effect, and determine whether we should
683     /// keep evaluating.
noteSideEffect__anon0751fa450111::EvalInfo684     bool noteSideEffect() {
685       EvalStatus.HasSideEffects = true;
686       return keepEvaluatingAfterSideEffect();
687     }
688 
689     /// Should we continue evaluation as much as possible after encountering a
690     /// construct which can't be reduced to a value?
keepEvaluatingAfterFailure__anon0751fa450111::EvalInfo691     bool keepEvaluatingAfterFailure() {
692       if (!StepsLeft)
693         return false;
694 
695       switch (EvalMode) {
696       case EM_PotentialConstantExpression:
697       case EM_PotentialConstantExpressionUnevaluated:
698       case EM_EvaluateForOverflow:
699         return true;
700 
701       case EM_ConstantExpression:
702       case EM_ConstantExpressionUnevaluated:
703       case EM_ConstantFold:
704       case EM_IgnoreSideEffects:
705         return false;
706       }
707       llvm_unreachable("Missed EvalMode case");
708     }
709   };
710 
711   /// Object used to treat all foldable expressions as constant expressions.
712   struct FoldConstant {
713     EvalInfo &Info;
714     bool Enabled;
715     bool HadNoPriorDiags;
716     EvalInfo::EvaluationMode OldMode;
717 
FoldConstant__anon0751fa450111::FoldConstant718     explicit FoldConstant(EvalInfo &Info, bool Enabled)
719       : Info(Info),
720         Enabled(Enabled),
721         HadNoPriorDiags(Info.EvalStatus.Diag &&
722                         Info.EvalStatus.Diag->empty() &&
723                         !Info.EvalStatus.HasSideEffects),
724         OldMode(Info.EvalMode) {
725       if (Enabled &&
726           (Info.EvalMode == EvalInfo::EM_ConstantExpression ||
727            Info.EvalMode == EvalInfo::EM_ConstantExpressionUnevaluated))
728         Info.EvalMode = EvalInfo::EM_ConstantFold;
729     }
keepDiagnostics__anon0751fa450111::FoldConstant730     void keepDiagnostics() { Enabled = false; }
~FoldConstant__anon0751fa450111::FoldConstant731     ~FoldConstant() {
732       if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
733           !Info.EvalStatus.HasSideEffects)
734         Info.EvalStatus.Diag->clear();
735       Info.EvalMode = OldMode;
736     }
737   };
738 
739   /// RAII object used to suppress diagnostics and side-effects from a
740   /// speculative evaluation.
741   class SpeculativeEvaluationRAII {
742     EvalInfo &Info;
743     Expr::EvalStatus Old;
744 
745   public:
SpeculativeEvaluationRAII(EvalInfo & Info,SmallVectorImpl<PartialDiagnosticAt> * NewDiag=nullptr)746     SpeculativeEvaluationRAII(EvalInfo &Info,
747                         SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
748       : Info(Info), Old(Info.EvalStatus) {
749       Info.EvalStatus.Diag = NewDiag;
750       // If we're speculatively evaluating, we may have skipped over some
751       // evaluations and missed out a side effect.
752       Info.EvalStatus.HasSideEffects = true;
753     }
~SpeculativeEvaluationRAII()754     ~SpeculativeEvaluationRAII() {
755       Info.EvalStatus = Old;
756     }
757   };
758 
759   /// RAII object wrapping a full-expression or block scope, and handling
760   /// the ending of the lifetime of temporaries created within it.
761   template<bool IsFullExpression>
762   class ScopeRAII {
763     EvalInfo &Info;
764     unsigned OldStackSize;
765   public:
ScopeRAII(EvalInfo & Info)766     ScopeRAII(EvalInfo &Info)
767         : Info(Info), OldStackSize(Info.CleanupStack.size()) {}
~ScopeRAII()768     ~ScopeRAII() {
769       // Body moved to a static method to encourage the compiler to inline away
770       // instances of this class.
771       cleanup(Info, OldStackSize);
772     }
773   private:
cleanup(EvalInfo & Info,unsigned OldStackSize)774     static void cleanup(EvalInfo &Info, unsigned OldStackSize) {
775       unsigned NewEnd = OldStackSize;
776       for (unsigned I = OldStackSize, N = Info.CleanupStack.size();
777            I != N; ++I) {
778         if (IsFullExpression && Info.CleanupStack[I].isLifetimeExtended()) {
779           // Full-expression cleanup of a lifetime-extended temporary: nothing
780           // to do, just move this cleanup to the right place in the stack.
781           std::swap(Info.CleanupStack[I], Info.CleanupStack[NewEnd]);
782           ++NewEnd;
783         } else {
784           // End the lifetime of the object.
785           Info.CleanupStack[I].endLifetime();
786         }
787       }
788       Info.CleanupStack.erase(Info.CleanupStack.begin() + NewEnd,
789                               Info.CleanupStack.end());
790     }
791   };
792   typedef ScopeRAII<false> BlockScopeRAII;
793   typedef ScopeRAII<true> FullExpressionRAII;
794 }
795 
checkSubobject(EvalInfo & Info,const Expr * E,CheckSubobjectKind CSK)796 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
797                                          CheckSubobjectKind CSK) {
798   if (Invalid)
799     return false;
800   if (isOnePastTheEnd()) {
801     Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
802       << CSK;
803     setInvalid();
804     return false;
805   }
806   return true;
807 }
808 
diagnosePointerArithmetic(EvalInfo & Info,const Expr * E,uint64_t N)809 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
810                                                     const Expr *E, uint64_t N) {
811   if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize)
812     Info.CCEDiag(E, diag::note_constexpr_array_index)
813       << static_cast<int>(N) << /*array*/ 0
814       << static_cast<unsigned>(MostDerivedArraySize);
815   else
816     Info.CCEDiag(E, diag::note_constexpr_array_index)
817       << static_cast<int>(N) << /*non-array*/ 1;
818   setInvalid();
819 }
820 
CallStackFrame(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,APValue * Arguments)821 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
822                                const FunctionDecl *Callee, const LValue *This,
823                                APValue *Arguments)
824     : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
825       Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
826   Info.CurrentCall = this;
827   ++Info.CallStackDepth;
828 }
829 
~CallStackFrame()830 CallStackFrame::~CallStackFrame() {
831   assert(Info.CurrentCall == this && "calls retired out of order");
832   --Info.CallStackDepth;
833   Info.CurrentCall = Caller;
834 }
835 
createTemporary(const void * Key,bool IsLifetimeExtended)836 APValue &CallStackFrame::createTemporary(const void *Key,
837                                          bool IsLifetimeExtended) {
838   APValue &Result = Temporaries[Key];
839   assert(Result.isUninit() && "temporary created multiple times");
840   Info.CleanupStack.push_back(Cleanup(&Result, IsLifetimeExtended));
841   return Result;
842 }
843 
844 static void describeCall(CallStackFrame *Frame, raw_ostream &Out);
845 
addCallStack(unsigned Limit)846 void EvalInfo::addCallStack(unsigned Limit) {
847   // Determine which calls to skip, if any.
848   unsigned ActiveCalls = CallStackDepth - 1;
849   unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
850   if (Limit && Limit < ActiveCalls) {
851     SkipStart = Limit / 2 + Limit % 2;
852     SkipEnd = ActiveCalls - Limit / 2;
853   }
854 
855   // Walk the call stack and add the diagnostics.
856   unsigned CallIdx = 0;
857   for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
858        Frame = Frame->Caller, ++CallIdx) {
859     // Skip this call?
860     if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
861       if (CallIdx == SkipStart) {
862         // Note that we're skipping calls.
863         addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
864           << unsigned(ActiveCalls - Limit);
865       }
866       continue;
867     }
868 
869     SmallVector<char, 128> Buffer;
870     llvm::raw_svector_ostream Out(Buffer);
871     describeCall(Frame, Out);
872     addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
873   }
874 }
875 
876 namespace {
877   struct ComplexValue {
878   private:
879     bool IsInt;
880 
881   public:
882     APSInt IntReal, IntImag;
883     APFloat FloatReal, FloatImag;
884 
ComplexValue__anon0751fa450211::ComplexValue885     ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
886 
makeComplexFloat__anon0751fa450211::ComplexValue887     void makeComplexFloat() { IsInt = false; }
isComplexFloat__anon0751fa450211::ComplexValue888     bool isComplexFloat() const { return !IsInt; }
getComplexFloatReal__anon0751fa450211::ComplexValue889     APFloat &getComplexFloatReal() { return FloatReal; }
getComplexFloatImag__anon0751fa450211::ComplexValue890     APFloat &getComplexFloatImag() { return FloatImag; }
891 
makeComplexInt__anon0751fa450211::ComplexValue892     void makeComplexInt() { IsInt = true; }
isComplexInt__anon0751fa450211::ComplexValue893     bool isComplexInt() const { return IsInt; }
getComplexIntReal__anon0751fa450211::ComplexValue894     APSInt &getComplexIntReal() { return IntReal; }
getComplexIntImag__anon0751fa450211::ComplexValue895     APSInt &getComplexIntImag() { return IntImag; }
896 
moveInto__anon0751fa450211::ComplexValue897     void moveInto(APValue &v) const {
898       if (isComplexFloat())
899         v = APValue(FloatReal, FloatImag);
900       else
901         v = APValue(IntReal, IntImag);
902     }
setFrom__anon0751fa450211::ComplexValue903     void setFrom(const APValue &v) {
904       assert(v.isComplexFloat() || v.isComplexInt());
905       if (v.isComplexFloat()) {
906         makeComplexFloat();
907         FloatReal = v.getComplexFloatReal();
908         FloatImag = v.getComplexFloatImag();
909       } else {
910         makeComplexInt();
911         IntReal = v.getComplexIntReal();
912         IntImag = v.getComplexIntImag();
913       }
914     }
915   };
916 
917   struct LValue {
918     APValue::LValueBase Base;
919     CharUnits Offset;
920     unsigned CallIndex;
921     SubobjectDesignator Designator;
922 
getLValueBase__anon0751fa450211::LValue923     const APValue::LValueBase getLValueBase() const { return Base; }
getLValueOffset__anon0751fa450211::LValue924     CharUnits &getLValueOffset() { return Offset; }
getLValueOffset__anon0751fa450211::LValue925     const CharUnits &getLValueOffset() const { return Offset; }
getLValueCallIndex__anon0751fa450211::LValue926     unsigned getLValueCallIndex() const { return CallIndex; }
getLValueDesignator__anon0751fa450211::LValue927     SubobjectDesignator &getLValueDesignator() { return Designator; }
getLValueDesignator__anon0751fa450211::LValue928     const SubobjectDesignator &getLValueDesignator() const { return Designator;}
929 
moveInto__anon0751fa450211::LValue930     void moveInto(APValue &V) const {
931       if (Designator.Invalid)
932         V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
933       else
934         V = APValue(Base, Offset, Designator.Entries,
935                     Designator.IsOnePastTheEnd, CallIndex);
936     }
setFrom__anon0751fa450211::LValue937     void setFrom(ASTContext &Ctx, const APValue &V) {
938       assert(V.isLValue());
939       Base = V.getLValueBase();
940       Offset = V.getLValueOffset();
941       CallIndex = V.getLValueCallIndex();
942       Designator = SubobjectDesignator(Ctx, V);
943     }
944 
set__anon0751fa450211::LValue945     void set(APValue::LValueBase B, unsigned I = 0) {
946       Base = B;
947       Offset = CharUnits::Zero();
948       CallIndex = I;
949       Designator = SubobjectDesignator(getType(B));
950     }
951 
952     // Check that this LValue is not based on a null pointer. If it is, produce
953     // a diagnostic and mark the designator as invalid.
checkNullPointer__anon0751fa450211::LValue954     bool checkNullPointer(EvalInfo &Info, const Expr *E,
955                           CheckSubobjectKind CSK) {
956       if (Designator.Invalid)
957         return false;
958       if (!Base) {
959         Info.CCEDiag(E, diag::note_constexpr_null_subobject)
960           << CSK;
961         Designator.setInvalid();
962         return false;
963       }
964       return true;
965     }
966 
967     // Check this LValue refers to an object. If not, set the designator to be
968     // invalid and emit a diagnostic.
checkSubobject__anon0751fa450211::LValue969     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
970       // Outside C++11, do not build a designator referring to a subobject of
971       // any object: we won't use such a designator for anything.
972       if (!Info.getLangOpts().CPlusPlus11)
973         Designator.setInvalid();
974       return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
975              Designator.checkSubobject(Info, E, CSK);
976     }
977 
addDecl__anon0751fa450211::LValue978     void addDecl(EvalInfo &Info, const Expr *E,
979                  const Decl *D, bool Virtual = false) {
980       if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
981         Designator.addDeclUnchecked(D, Virtual);
982     }
addArray__anon0751fa450211::LValue983     void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
984       if (checkSubobject(Info, E, CSK_ArrayToPointer))
985         Designator.addArrayUnchecked(CAT);
986     }
addComplex__anon0751fa450211::LValue987     void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
988       if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
989         Designator.addComplexUnchecked(EltTy, Imag);
990     }
adjustIndex__anon0751fa450211::LValue991     void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
992       if (N && checkNullPointer(Info, E, CSK_ArrayIndex))
993         Designator.adjustIndex(Info, E, N);
994     }
995   };
996 
997   struct MemberPtr {
MemberPtr__anon0751fa450211::MemberPtr998     MemberPtr() {}
MemberPtr__anon0751fa450211::MemberPtr999     explicit MemberPtr(const ValueDecl *Decl) :
1000       DeclAndIsDerivedMember(Decl, false), Path() {}
1001 
1002     /// The member or (direct or indirect) field referred to by this member
1003     /// pointer, or 0 if this is a null member pointer.
getDecl__anon0751fa450211::MemberPtr1004     const ValueDecl *getDecl() const {
1005       return DeclAndIsDerivedMember.getPointer();
1006     }
1007     /// Is this actually a member of some type derived from the relevant class?
isDerivedMember__anon0751fa450211::MemberPtr1008     bool isDerivedMember() const {
1009       return DeclAndIsDerivedMember.getInt();
1010     }
1011     /// Get the class which the declaration actually lives in.
getContainingRecord__anon0751fa450211::MemberPtr1012     const CXXRecordDecl *getContainingRecord() const {
1013       return cast<CXXRecordDecl>(
1014           DeclAndIsDerivedMember.getPointer()->getDeclContext());
1015     }
1016 
moveInto__anon0751fa450211::MemberPtr1017     void moveInto(APValue &V) const {
1018       V = APValue(getDecl(), isDerivedMember(), Path);
1019     }
setFrom__anon0751fa450211::MemberPtr1020     void setFrom(const APValue &V) {
1021       assert(V.isMemberPointer());
1022       DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1023       DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1024       Path.clear();
1025       ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1026       Path.insert(Path.end(), P.begin(), P.end());
1027     }
1028 
1029     /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1030     /// whether the member is a member of some class derived from the class type
1031     /// of the member pointer.
1032     llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1033     /// Path - The path of base/derived classes from the member declaration's
1034     /// class (exclusive) to the class type of the member pointer (inclusive).
1035     SmallVector<const CXXRecordDecl*, 4> Path;
1036 
1037     /// Perform a cast towards the class of the Decl (either up or down the
1038     /// hierarchy).
castBack__anon0751fa450211::MemberPtr1039     bool castBack(const CXXRecordDecl *Class) {
1040       assert(!Path.empty());
1041       const CXXRecordDecl *Expected;
1042       if (Path.size() >= 2)
1043         Expected = Path[Path.size() - 2];
1044       else
1045         Expected = getContainingRecord();
1046       if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1047         // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1048         // if B does not contain the original member and is not a base or
1049         // derived class of the class containing the original member, the result
1050         // of the cast is undefined.
1051         // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1052         // (D::*). We consider that to be a language defect.
1053         return false;
1054       }
1055       Path.pop_back();
1056       return true;
1057     }
1058     /// Perform a base-to-derived member pointer cast.
castToDerived__anon0751fa450211::MemberPtr1059     bool castToDerived(const CXXRecordDecl *Derived) {
1060       if (!getDecl())
1061         return true;
1062       if (!isDerivedMember()) {
1063         Path.push_back(Derived);
1064         return true;
1065       }
1066       if (!castBack(Derived))
1067         return false;
1068       if (Path.empty())
1069         DeclAndIsDerivedMember.setInt(false);
1070       return true;
1071     }
1072     /// Perform a derived-to-base member pointer cast.
castToBase__anon0751fa450211::MemberPtr1073     bool castToBase(const CXXRecordDecl *Base) {
1074       if (!getDecl())
1075         return true;
1076       if (Path.empty())
1077         DeclAndIsDerivedMember.setInt(true);
1078       if (isDerivedMember()) {
1079         Path.push_back(Base);
1080         return true;
1081       }
1082       return castBack(Base);
1083     }
1084   };
1085 
1086   /// Compare two member pointers, which are assumed to be of the same type.
operator ==(const MemberPtr & LHS,const MemberPtr & RHS)1087   static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1088     if (!LHS.getDecl() || !RHS.getDecl())
1089       return !LHS.getDecl() && !RHS.getDecl();
1090     if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1091       return false;
1092     return LHS.Path == RHS.Path;
1093   }
1094 }
1095 
1096 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1097 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1098                             const LValue &This, const Expr *E,
1099                             bool AllowNonLiteralTypes = false);
1100 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
1101 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
1102 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1103                                   EvalInfo &Info);
1104 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1105 static bool EvaluateInteger(const Expr *E, APSInt  &Result, EvalInfo &Info);
1106 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1107                                     EvalInfo &Info);
1108 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1109 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1110 static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info);
1111 
1112 //===----------------------------------------------------------------------===//
1113 // Misc utilities
1114 //===----------------------------------------------------------------------===//
1115 
1116 /// Produce a string describing the given constexpr call.
describeCall(CallStackFrame * Frame,raw_ostream & Out)1117 static void describeCall(CallStackFrame *Frame, raw_ostream &Out) {
1118   unsigned ArgIndex = 0;
1119   bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
1120                       !isa<CXXConstructorDecl>(Frame->Callee) &&
1121                       cast<CXXMethodDecl>(Frame->Callee)->isInstance();
1122 
1123   if (!IsMemberCall)
1124     Out << *Frame->Callee << '(';
1125 
1126   if (Frame->This && IsMemberCall) {
1127     APValue Val;
1128     Frame->This->moveInto(Val);
1129     Val.printPretty(Out, Frame->Info.Ctx,
1130                     Frame->This->Designator.MostDerivedType);
1131     // FIXME: Add parens around Val if needed.
1132     Out << "->" << *Frame->Callee << '(';
1133     IsMemberCall = false;
1134   }
1135 
1136   for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
1137        E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
1138     if (ArgIndex > (unsigned)IsMemberCall)
1139       Out << ", ";
1140 
1141     const ParmVarDecl *Param = *I;
1142     const APValue &Arg = Frame->Arguments[ArgIndex];
1143     Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
1144 
1145     if (ArgIndex == 0 && IsMemberCall)
1146       Out << "->" << *Frame->Callee << '(';
1147   }
1148 
1149   Out << ')';
1150 }
1151 
1152 /// Evaluate an expression to see if it had side-effects, and discard its
1153 /// result.
1154 /// \return \c true if the caller should keep evaluating.
EvaluateIgnoredValue(EvalInfo & Info,const Expr * E)1155 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1156   APValue Scratch;
1157   if (!Evaluate(Scratch, Info, E))
1158     // We don't need the value, but we might have skipped a side effect here.
1159     return Info.noteSideEffect();
1160   return true;
1161 }
1162 
1163 /// Sign- or zero-extend a value to 64 bits. If it's already 64 bits, just
1164 /// return its existing value.
getExtValue(const APSInt & Value)1165 static int64_t getExtValue(const APSInt &Value) {
1166   return Value.isSigned() ? Value.getSExtValue()
1167                           : static_cast<int64_t>(Value.getZExtValue());
1168 }
1169 
1170 /// Should this call expression be treated as a string literal?
IsStringLiteralCall(const CallExpr * E)1171 static bool IsStringLiteralCall(const CallExpr *E) {
1172   unsigned Builtin = E->getBuiltinCallee();
1173   return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1174           Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
1175 }
1176 
IsGlobalLValue(APValue::LValueBase B)1177 static bool IsGlobalLValue(APValue::LValueBase B) {
1178   // C++11 [expr.const]p3 An address constant expression is a prvalue core
1179   // constant expression of pointer type that evaluates to...
1180 
1181   // ... a null pointer value, or a prvalue core constant expression of type
1182   // std::nullptr_t.
1183   if (!B) return true;
1184 
1185   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
1186     // ... the address of an object with static storage duration,
1187     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1188       return VD->hasGlobalStorage();
1189     // ... the address of a function,
1190     return isa<FunctionDecl>(D);
1191   }
1192 
1193   const Expr *E = B.get<const Expr*>();
1194   switch (E->getStmtClass()) {
1195   default:
1196     return false;
1197   case Expr::CompoundLiteralExprClass: {
1198     const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1199     return CLE->isFileScope() && CLE->isLValue();
1200   }
1201   case Expr::MaterializeTemporaryExprClass:
1202     // A materialized temporary might have been lifetime-extended to static
1203     // storage duration.
1204     return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
1205   // A string literal has static storage duration.
1206   case Expr::StringLiteralClass:
1207   case Expr::PredefinedExprClass:
1208   case Expr::ObjCStringLiteralClass:
1209   case Expr::ObjCEncodeExprClass:
1210   case Expr::CXXTypeidExprClass:
1211   case Expr::CXXUuidofExprClass:
1212     return true;
1213   case Expr::CallExprClass:
1214     return IsStringLiteralCall(cast<CallExpr>(E));
1215   // For GCC compatibility, &&label has static storage duration.
1216   case Expr::AddrLabelExprClass:
1217     return true;
1218   // A Block literal expression may be used as the initialization value for
1219   // Block variables at global or local static scope.
1220   case Expr::BlockExprClass:
1221     return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
1222   case Expr::ImplicitValueInitExprClass:
1223     // FIXME:
1224     // We can never form an lvalue with an implicit value initialization as its
1225     // base through expression evaluation, so these only appear in one case: the
1226     // implicit variable declaration we invent when checking whether a constexpr
1227     // constructor can produce a constant expression. We must assume that such
1228     // an expression might be a global lvalue.
1229     return true;
1230   }
1231 }
1232 
NoteLValueLocation(EvalInfo & Info,APValue::LValueBase Base)1233 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
1234   assert(Base && "no location for a null lvalue");
1235   const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1236   if (VD)
1237     Info.Note(VD->getLocation(), diag::note_declared_at);
1238   else
1239     Info.Note(Base.get<const Expr*>()->getExprLoc(),
1240               diag::note_constexpr_temporary_here);
1241 }
1242 
1243 /// Check that this reference or pointer core constant expression is a valid
1244 /// value for an address or reference constant expression. Return true if we
1245 /// can fold this expression, whether or not it's a constant expression.
CheckLValueConstantExpression(EvalInfo & Info,SourceLocation Loc,QualType Type,const LValue & LVal)1246 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
1247                                           QualType Type, const LValue &LVal) {
1248   bool IsReferenceType = Type->isReferenceType();
1249 
1250   APValue::LValueBase Base = LVal.getLValueBase();
1251   const SubobjectDesignator &Designator = LVal.getLValueDesignator();
1252 
1253   // Check that the object is a global. Note that the fake 'this' object we
1254   // manufacture when checking potential constant expressions is conservatively
1255   // assumed to be global here.
1256   if (!IsGlobalLValue(Base)) {
1257     if (Info.getLangOpts().CPlusPlus11) {
1258       const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1259       Info.Diag(Loc, diag::note_constexpr_non_global, 1)
1260         << IsReferenceType << !Designator.Entries.empty()
1261         << !!VD << VD;
1262       NoteLValueLocation(Info, Base);
1263     } else {
1264       Info.Diag(Loc);
1265     }
1266     // Don't allow references to temporaries to escape.
1267     return false;
1268   }
1269   assert((Info.checkingPotentialConstantExpression() ||
1270           LVal.getLValueCallIndex() == 0) &&
1271          "have call index for global lvalue");
1272 
1273   if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
1274     if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
1275       // Check if this is a thread-local variable.
1276       if (Var->getTLSKind())
1277         return false;
1278 
1279       // A dllimport variable never acts like a constant.
1280       if (Var->hasAttr<DLLImportAttr>())
1281         return false;
1282     }
1283     if (const auto *FD = dyn_cast<const FunctionDecl>(VD)) {
1284       // __declspec(dllimport) must be handled very carefully:
1285       // We must never initialize an expression with the thunk in C++.
1286       // Doing otherwise would allow the same id-expression to yield
1287       // different addresses for the same function in different translation
1288       // units.  However, this means that we must dynamically initialize the
1289       // expression with the contents of the import address table at runtime.
1290       //
1291       // The C language has no notion of ODR; furthermore, it has no notion of
1292       // dynamic initialization.  This means that we are permitted to
1293       // perform initialization with the address of the thunk.
1294       if (Info.getLangOpts().CPlusPlus && FD->hasAttr<DLLImportAttr>())
1295         return false;
1296     }
1297   }
1298 
1299   // Allow address constant expressions to be past-the-end pointers. This is
1300   // an extension: the standard requires them to point to an object.
1301   if (!IsReferenceType)
1302     return true;
1303 
1304   // A reference constant expression must refer to an object.
1305   if (!Base) {
1306     // FIXME: diagnostic
1307     Info.CCEDiag(Loc);
1308     return true;
1309   }
1310 
1311   // Does this refer one past the end of some object?
1312   if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
1313     const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1314     Info.Diag(Loc, diag::note_constexpr_past_end, 1)
1315       << !Designator.Entries.empty() << !!VD << VD;
1316     NoteLValueLocation(Info, Base);
1317   }
1318 
1319   return true;
1320 }
1321 
1322 /// Check that this core constant expression is of literal type, and if not,
1323 /// produce an appropriate diagnostic.
CheckLiteralType(EvalInfo & Info,const Expr * E,const LValue * This=nullptr)1324 static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
1325                              const LValue *This = nullptr) {
1326   if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
1327     return true;
1328 
1329   // C++1y: A constant initializer for an object o [...] may also invoke
1330   // constexpr constructors for o and its subobjects even if those objects
1331   // are of non-literal class types.
1332   if (Info.getLangOpts().CPlusPlus14 && This &&
1333       Info.EvaluatingDecl == This->getLValueBase())
1334     return true;
1335 
1336   // Prvalue constant expressions must be of literal types.
1337   if (Info.getLangOpts().CPlusPlus11)
1338     Info.Diag(E, diag::note_constexpr_nonliteral)
1339       << E->getType();
1340   else
1341     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1342   return false;
1343 }
1344 
1345 /// Check that this core constant expression value is a valid value for a
1346 /// constant expression. If not, report an appropriate diagnostic. Does not
1347 /// check that the expression is of literal type.
CheckConstantExpression(EvalInfo & Info,SourceLocation DiagLoc,QualType Type,const APValue & Value)1348 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
1349                                     QualType Type, const APValue &Value) {
1350   if (Value.isUninit()) {
1351     Info.Diag(DiagLoc, diag::note_constexpr_uninitialized)
1352       << true << Type;
1353     return false;
1354   }
1355 
1356   // We allow _Atomic(T) to be initialized from anything that T can be
1357   // initialized from.
1358   if (const AtomicType *AT = Type->getAs<AtomicType>())
1359     Type = AT->getValueType();
1360 
1361   // Core issue 1454: For a literal constant expression of array or class type,
1362   // each subobject of its value shall have been initialized by a constant
1363   // expression.
1364   if (Value.isArray()) {
1365     QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
1366     for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
1367       if (!CheckConstantExpression(Info, DiagLoc, EltTy,
1368                                    Value.getArrayInitializedElt(I)))
1369         return false;
1370     }
1371     if (!Value.hasArrayFiller())
1372       return true;
1373     return CheckConstantExpression(Info, DiagLoc, EltTy,
1374                                    Value.getArrayFiller());
1375   }
1376   if (Value.isUnion() && Value.getUnionField()) {
1377     return CheckConstantExpression(Info, DiagLoc,
1378                                    Value.getUnionField()->getType(),
1379                                    Value.getUnionValue());
1380   }
1381   if (Value.isStruct()) {
1382     RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
1383     if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
1384       unsigned BaseIndex = 0;
1385       for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
1386              End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
1387         if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1388                                      Value.getStructBase(BaseIndex)))
1389           return false;
1390       }
1391     }
1392     for (const auto *I : RD->fields()) {
1393       if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1394                                    Value.getStructField(I->getFieldIndex())))
1395         return false;
1396     }
1397   }
1398 
1399   if (Value.isLValue()) {
1400     LValue LVal;
1401     LVal.setFrom(Info.Ctx, Value);
1402     return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
1403   }
1404 
1405   // Everything else is fine.
1406   return true;
1407 }
1408 
GetLValueBaseDecl(const LValue & LVal)1409 const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
1410   return LVal.Base.dyn_cast<const ValueDecl*>();
1411 }
1412 
IsLiteralLValue(const LValue & Value)1413 static bool IsLiteralLValue(const LValue &Value) {
1414   if (Value.CallIndex)
1415     return false;
1416   const Expr *E = Value.Base.dyn_cast<const Expr*>();
1417   return E && !isa<MaterializeTemporaryExpr>(E);
1418 }
1419 
IsWeakLValue(const LValue & Value)1420 static bool IsWeakLValue(const LValue &Value) {
1421   const ValueDecl *Decl = GetLValueBaseDecl(Value);
1422   return Decl && Decl->isWeak();
1423 }
1424 
isZeroSized(const LValue & Value)1425 static bool isZeroSized(const LValue &Value) {
1426   const ValueDecl *Decl = GetLValueBaseDecl(Value);
1427   if (Decl && isa<VarDecl>(Decl)) {
1428     QualType Ty = Decl->getType();
1429     if (Ty->isArrayType())
1430       return Ty->isIncompleteType() ||
1431              Decl->getASTContext().getTypeSize(Ty) == 0;
1432   }
1433   return false;
1434 }
1435 
EvalPointerValueAsBool(const APValue & Value,bool & Result)1436 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
1437   // A null base expression indicates a null pointer.  These are always
1438   // evaluatable, and they are false unless the offset is zero.
1439   if (!Value.getLValueBase()) {
1440     Result = !Value.getLValueOffset().isZero();
1441     return true;
1442   }
1443 
1444   // We have a non-null base.  These are generally known to be true, but if it's
1445   // a weak declaration it can be null at runtime.
1446   Result = true;
1447   const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
1448   return !Decl || !Decl->isWeak();
1449 }
1450 
HandleConversionToBool(const APValue & Val,bool & Result)1451 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
1452   switch (Val.getKind()) {
1453   case APValue::Uninitialized:
1454     return false;
1455   case APValue::Int:
1456     Result = Val.getInt().getBoolValue();
1457     return true;
1458   case APValue::Float:
1459     Result = !Val.getFloat().isZero();
1460     return true;
1461   case APValue::ComplexInt:
1462     Result = Val.getComplexIntReal().getBoolValue() ||
1463              Val.getComplexIntImag().getBoolValue();
1464     return true;
1465   case APValue::ComplexFloat:
1466     Result = !Val.getComplexFloatReal().isZero() ||
1467              !Val.getComplexFloatImag().isZero();
1468     return true;
1469   case APValue::LValue:
1470     return EvalPointerValueAsBool(Val, Result);
1471   case APValue::MemberPointer:
1472     Result = Val.getMemberPointerDecl();
1473     return true;
1474   case APValue::Vector:
1475   case APValue::Array:
1476   case APValue::Struct:
1477   case APValue::Union:
1478   case APValue::AddrLabelDiff:
1479     return false;
1480   }
1481 
1482   llvm_unreachable("unknown APValue kind");
1483 }
1484 
EvaluateAsBooleanCondition(const Expr * E,bool & Result,EvalInfo & Info)1485 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
1486                                        EvalInfo &Info) {
1487   assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
1488   APValue Val;
1489   if (!Evaluate(Val, Info, E))
1490     return false;
1491   return HandleConversionToBool(Val, Result);
1492 }
1493 
1494 template<typename T>
HandleOverflow(EvalInfo & Info,const Expr * E,const T & SrcValue,QualType DestType)1495 static void HandleOverflow(EvalInfo &Info, const Expr *E,
1496                            const T &SrcValue, QualType DestType) {
1497   Info.CCEDiag(E, diag::note_constexpr_overflow)
1498     << SrcValue << DestType;
1499 }
1500 
HandleFloatToIntCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APFloat & Value,QualType DestType,APSInt & Result)1501 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
1502                                  QualType SrcType, const APFloat &Value,
1503                                  QualType DestType, APSInt &Result) {
1504   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1505   // Determine whether we are converting to unsigned or signed.
1506   bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
1507 
1508   Result = APSInt(DestWidth, !DestSigned);
1509   bool ignored;
1510   if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
1511       & APFloat::opInvalidOp)
1512     HandleOverflow(Info, E, Value, DestType);
1513   return true;
1514 }
1515 
HandleFloatToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,QualType DestType,APFloat & Result)1516 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
1517                                    QualType SrcType, QualType DestType,
1518                                    APFloat &Result) {
1519   APFloat Value = Result;
1520   bool ignored;
1521   if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
1522                      APFloat::rmNearestTiesToEven, &ignored)
1523       & APFloat::opOverflow)
1524     HandleOverflow(Info, E, Value, DestType);
1525   return true;
1526 }
1527 
HandleIntToIntCast(EvalInfo & Info,const Expr * E,QualType DestType,QualType SrcType,APSInt & Value)1528 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
1529                                  QualType DestType, QualType SrcType,
1530                                  APSInt &Value) {
1531   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1532   APSInt Result = Value;
1533   // Figure out if this is a truncate, extend or noop cast.
1534   // If the input is signed, do a sign extend, noop, or truncate.
1535   Result = Result.extOrTrunc(DestWidth);
1536   Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
1537   return Result;
1538 }
1539 
HandleIntToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APSInt & Value,QualType DestType,APFloat & Result)1540 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
1541                                  QualType SrcType, const APSInt &Value,
1542                                  QualType DestType, APFloat &Result) {
1543   Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
1544   if (Result.convertFromAPInt(Value, Value.isSigned(),
1545                               APFloat::rmNearestTiesToEven)
1546       & APFloat::opOverflow)
1547     HandleOverflow(Info, E, Value, DestType);
1548   return true;
1549 }
1550 
truncateBitfieldValue(EvalInfo & Info,const Expr * E,APValue & Value,const FieldDecl * FD)1551 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
1552                                   APValue &Value, const FieldDecl *FD) {
1553   assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
1554 
1555   if (!Value.isInt()) {
1556     // Trying to store a pointer-cast-to-integer into a bitfield.
1557     // FIXME: In this case, we should provide the diagnostic for casting
1558     // a pointer to an integer.
1559     assert(Value.isLValue() && "integral value neither int nor lvalue?");
1560     Info.Diag(E);
1561     return false;
1562   }
1563 
1564   APSInt &Int = Value.getInt();
1565   unsigned OldBitWidth = Int.getBitWidth();
1566   unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
1567   if (NewBitWidth < OldBitWidth)
1568     Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
1569   return true;
1570 }
1571 
EvalAndBitcastToAPInt(EvalInfo & Info,const Expr * E,llvm::APInt & Res)1572 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
1573                                   llvm::APInt &Res) {
1574   APValue SVal;
1575   if (!Evaluate(SVal, Info, E))
1576     return false;
1577   if (SVal.isInt()) {
1578     Res = SVal.getInt();
1579     return true;
1580   }
1581   if (SVal.isFloat()) {
1582     Res = SVal.getFloat().bitcastToAPInt();
1583     return true;
1584   }
1585   if (SVal.isVector()) {
1586     QualType VecTy = E->getType();
1587     unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
1588     QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
1589     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
1590     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
1591     Res = llvm::APInt::getNullValue(VecSize);
1592     for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
1593       APValue &Elt = SVal.getVectorElt(i);
1594       llvm::APInt EltAsInt;
1595       if (Elt.isInt()) {
1596         EltAsInt = Elt.getInt();
1597       } else if (Elt.isFloat()) {
1598         EltAsInt = Elt.getFloat().bitcastToAPInt();
1599       } else {
1600         // Don't try to handle vectors of anything other than int or float
1601         // (not sure if it's possible to hit this case).
1602         Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1603         return false;
1604       }
1605       unsigned BaseEltSize = EltAsInt.getBitWidth();
1606       if (BigEndian)
1607         Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
1608       else
1609         Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
1610     }
1611     return true;
1612   }
1613   // Give up if the input isn't an int, float, or vector.  For example, we
1614   // reject "(v4i16)(intptr_t)&a".
1615   Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1616   return false;
1617 }
1618 
1619 /// Perform the given integer operation, which is known to need at most BitWidth
1620 /// bits, and check for overflow in the original type (if that type was not an
1621 /// unsigned type).
1622 template<typename Operation>
CheckedIntArithmetic(EvalInfo & Info,const Expr * E,const APSInt & LHS,const APSInt & RHS,unsigned BitWidth,Operation Op)1623 static APSInt CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
1624                                    const APSInt &LHS, const APSInt &RHS,
1625                                    unsigned BitWidth, Operation Op) {
1626   if (LHS.isUnsigned())
1627     return Op(LHS, RHS);
1628 
1629   APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
1630   APSInt Result = Value.trunc(LHS.getBitWidth());
1631   if (Result.extend(BitWidth) != Value) {
1632     if (Info.checkingForOverflow())
1633       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
1634         diag::warn_integer_constant_overflow)
1635           << Result.toString(10) << E->getType();
1636     else
1637       HandleOverflow(Info, E, Value, E->getType());
1638   }
1639   return Result;
1640 }
1641 
1642 /// Perform the given binary integer operation.
handleIntIntBinOp(EvalInfo & Info,const Expr * E,const APSInt & LHS,BinaryOperatorKind Opcode,APSInt RHS,APSInt & Result)1643 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
1644                               BinaryOperatorKind Opcode, APSInt RHS,
1645                               APSInt &Result) {
1646   switch (Opcode) {
1647   default:
1648     Info.Diag(E);
1649     return false;
1650   case BO_Mul:
1651     Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
1652                                   std::multiplies<APSInt>());
1653     return true;
1654   case BO_Add:
1655     Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
1656                                   std::plus<APSInt>());
1657     return true;
1658   case BO_Sub:
1659     Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
1660                                   std::minus<APSInt>());
1661     return true;
1662   case BO_And: Result = LHS & RHS; return true;
1663   case BO_Xor: Result = LHS ^ RHS; return true;
1664   case BO_Or:  Result = LHS | RHS; return true;
1665   case BO_Div:
1666   case BO_Rem:
1667     if (RHS == 0) {
1668       Info.Diag(E, diag::note_expr_divide_by_zero);
1669       return false;
1670     }
1671     // Check for overflow case: INT_MIN / -1 or INT_MIN % -1.
1672     if (RHS.isNegative() && RHS.isAllOnesValue() &&
1673         LHS.isSigned() && LHS.isMinSignedValue())
1674       HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
1675     Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
1676     return true;
1677   case BO_Shl: {
1678     if (Info.getLangOpts().OpenCL)
1679       // OpenCL 6.3j: shift values are effectively % word size of LHS.
1680       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
1681                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
1682                     RHS.isUnsigned());
1683     else if (RHS.isSigned() && RHS.isNegative()) {
1684       // During constant-folding, a negative shift is an opposite shift. Such
1685       // a shift is not a constant expression.
1686       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
1687       RHS = -RHS;
1688       goto shift_right;
1689     }
1690   shift_left:
1691     // C++11 [expr.shift]p1: Shift width must be less than the bit width of
1692     // the shifted type.
1693     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
1694     if (SA != RHS) {
1695       Info.CCEDiag(E, diag::note_constexpr_large_shift)
1696         << RHS << E->getType() << LHS.getBitWidth();
1697     } else if (LHS.isSigned()) {
1698       // C++11 [expr.shift]p2: A signed left shift must have a non-negative
1699       // operand, and must not overflow the corresponding unsigned type.
1700       if (LHS.isNegative())
1701         Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
1702       else if (LHS.countLeadingZeros() < SA)
1703         Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
1704     }
1705     Result = LHS << SA;
1706     return true;
1707   }
1708   case BO_Shr: {
1709     if (Info.getLangOpts().OpenCL)
1710       // OpenCL 6.3j: shift values are effectively % word size of LHS.
1711       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
1712                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
1713                     RHS.isUnsigned());
1714     else if (RHS.isSigned() && RHS.isNegative()) {
1715       // During constant-folding, a negative shift is an opposite shift. Such a
1716       // shift is not a constant expression.
1717       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
1718       RHS = -RHS;
1719       goto shift_left;
1720     }
1721   shift_right:
1722     // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
1723     // shifted type.
1724     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
1725     if (SA != RHS)
1726       Info.CCEDiag(E, diag::note_constexpr_large_shift)
1727         << RHS << E->getType() << LHS.getBitWidth();
1728     Result = LHS >> SA;
1729     return true;
1730   }
1731 
1732   case BO_LT: Result = LHS < RHS; return true;
1733   case BO_GT: Result = LHS > RHS; return true;
1734   case BO_LE: Result = LHS <= RHS; return true;
1735   case BO_GE: Result = LHS >= RHS; return true;
1736   case BO_EQ: Result = LHS == RHS; return true;
1737   case BO_NE: Result = LHS != RHS; return true;
1738   }
1739 }
1740 
1741 /// Perform the given binary floating-point operation, in-place, on LHS.
handleFloatFloatBinOp(EvalInfo & Info,const Expr * E,APFloat & LHS,BinaryOperatorKind Opcode,const APFloat & RHS)1742 static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
1743                                   APFloat &LHS, BinaryOperatorKind Opcode,
1744                                   const APFloat &RHS) {
1745   switch (Opcode) {
1746   default:
1747     Info.Diag(E);
1748     return false;
1749   case BO_Mul:
1750     LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
1751     break;
1752   case BO_Add:
1753     LHS.add(RHS, APFloat::rmNearestTiesToEven);
1754     break;
1755   case BO_Sub:
1756     LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
1757     break;
1758   case BO_Div:
1759     LHS.divide(RHS, APFloat::rmNearestTiesToEven);
1760     break;
1761   }
1762 
1763   if (LHS.isInfinity() || LHS.isNaN())
1764     Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
1765   return true;
1766 }
1767 
1768 /// Cast an lvalue referring to a base subobject to a derived class, by
1769 /// truncating the lvalue's path to the given length.
CastToDerivedClass(EvalInfo & Info,const Expr * E,LValue & Result,const RecordDecl * TruncatedType,unsigned TruncatedElements)1770 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
1771                                const RecordDecl *TruncatedType,
1772                                unsigned TruncatedElements) {
1773   SubobjectDesignator &D = Result.Designator;
1774 
1775   // Check we actually point to a derived class object.
1776   if (TruncatedElements == D.Entries.size())
1777     return true;
1778   assert(TruncatedElements >= D.MostDerivedPathLength &&
1779          "not casting to a derived class");
1780   if (!Result.checkSubobject(Info, E, CSK_Derived))
1781     return false;
1782 
1783   // Truncate the path to the subobject, and remove any derived-to-base offsets.
1784   const RecordDecl *RD = TruncatedType;
1785   for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
1786     if (RD->isInvalidDecl()) return false;
1787     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
1788     const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
1789     if (isVirtualBaseClass(D.Entries[I]))
1790       Result.Offset -= Layout.getVBaseClassOffset(Base);
1791     else
1792       Result.Offset -= Layout.getBaseClassOffset(Base);
1793     RD = Base;
1794   }
1795   D.Entries.resize(TruncatedElements);
1796   return true;
1797 }
1798 
HandleLValueDirectBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * Derived,const CXXRecordDecl * Base,const ASTRecordLayout * RL=nullptr)1799 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1800                                    const CXXRecordDecl *Derived,
1801                                    const CXXRecordDecl *Base,
1802                                    const ASTRecordLayout *RL = nullptr) {
1803   if (!RL) {
1804     if (Derived->isInvalidDecl()) return false;
1805     RL = &Info.Ctx.getASTRecordLayout(Derived);
1806   }
1807 
1808   Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
1809   Obj.addDecl(Info, E, Base, /*Virtual*/ false);
1810   return true;
1811 }
1812 
HandleLValueBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * DerivedDecl,const CXXBaseSpecifier * Base)1813 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1814                              const CXXRecordDecl *DerivedDecl,
1815                              const CXXBaseSpecifier *Base) {
1816   const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
1817 
1818   if (!Base->isVirtual())
1819     return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
1820 
1821   SubobjectDesignator &D = Obj.Designator;
1822   if (D.Invalid)
1823     return false;
1824 
1825   // Extract most-derived object and corresponding type.
1826   DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
1827   if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
1828     return false;
1829 
1830   // Find the virtual base class.
1831   if (DerivedDecl->isInvalidDecl()) return false;
1832   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
1833   Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
1834   Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
1835   return true;
1836 }
1837 
HandleLValueBasePath(EvalInfo & Info,const CastExpr * E,QualType Type,LValue & Result)1838 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
1839                                  QualType Type, LValue &Result) {
1840   for (CastExpr::path_const_iterator PathI = E->path_begin(),
1841                                      PathE = E->path_end();
1842        PathI != PathE; ++PathI) {
1843     if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
1844                           *PathI))
1845       return false;
1846     Type = (*PathI)->getType();
1847   }
1848   return true;
1849 }
1850 
1851 /// Update LVal to refer to the given field, which must be a member of the type
1852 /// currently described by LVal.
HandleLValueMember(EvalInfo & Info,const Expr * E,LValue & LVal,const FieldDecl * FD,const ASTRecordLayout * RL=nullptr)1853 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
1854                                const FieldDecl *FD,
1855                                const ASTRecordLayout *RL = nullptr) {
1856   if (!RL) {
1857     if (FD->getParent()->isInvalidDecl()) return false;
1858     RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
1859   }
1860 
1861   unsigned I = FD->getFieldIndex();
1862   LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
1863   LVal.addDecl(Info, E, FD);
1864   return true;
1865 }
1866 
1867 /// Update LVal to refer to the given indirect field.
HandleLValueIndirectMember(EvalInfo & Info,const Expr * E,LValue & LVal,const IndirectFieldDecl * IFD)1868 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
1869                                        LValue &LVal,
1870                                        const IndirectFieldDecl *IFD) {
1871   for (const auto *C : IFD->chain())
1872     if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
1873       return false;
1874   return true;
1875 }
1876 
1877 /// Get the size of the given type in char units.
HandleSizeof(EvalInfo & Info,SourceLocation Loc,QualType Type,CharUnits & Size)1878 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
1879                          QualType Type, CharUnits &Size) {
1880   // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
1881   // extension.
1882   if (Type->isVoidType() || Type->isFunctionType()) {
1883     Size = CharUnits::One();
1884     return true;
1885   }
1886 
1887   if (!Type->isConstantSizeType()) {
1888     // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
1889     // FIXME: Better diagnostic.
1890     Info.Diag(Loc);
1891     return false;
1892   }
1893 
1894   Size = Info.Ctx.getTypeSizeInChars(Type);
1895   return true;
1896 }
1897 
1898 /// Update a pointer value to model pointer arithmetic.
1899 /// \param Info - Information about the ongoing evaluation.
1900 /// \param E - The expression being evaluated, for diagnostic purposes.
1901 /// \param LVal - The pointer value to be updated.
1902 /// \param EltTy - The pointee type represented by LVal.
1903 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
HandleLValueArrayAdjustment(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,int64_t Adjustment)1904 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
1905                                         LValue &LVal, QualType EltTy,
1906                                         int64_t Adjustment) {
1907   CharUnits SizeOfPointee;
1908   if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
1909     return false;
1910 
1911   // Compute the new offset in the appropriate width.
1912   LVal.Offset += Adjustment * SizeOfPointee;
1913   LVal.adjustIndex(Info, E, Adjustment);
1914   return true;
1915 }
1916 
1917 /// Update an lvalue to refer to a component of a complex number.
1918 /// \param Info - Information about the ongoing evaluation.
1919 /// \param LVal - The lvalue to be updated.
1920 /// \param EltTy - The complex number's component type.
1921 /// \param Imag - False for the real component, true for the imaginary.
HandleLValueComplexElement(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,bool Imag)1922 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
1923                                        LValue &LVal, QualType EltTy,
1924                                        bool Imag) {
1925   if (Imag) {
1926     CharUnits SizeOfComponent;
1927     if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
1928       return false;
1929     LVal.Offset += SizeOfComponent;
1930   }
1931   LVal.addComplex(Info, E, EltTy, Imag);
1932   return true;
1933 }
1934 
1935 /// Try to evaluate the initializer for a variable declaration.
1936 ///
1937 /// \param Info   Information about the ongoing evaluation.
1938 /// \param E      An expression to be used when printing diagnostics.
1939 /// \param VD     The variable whose initializer should be obtained.
1940 /// \param Frame  The frame in which the variable was created. Must be null
1941 ///               if this variable is not local to the evaluation.
1942 /// \param Result Filled in with a pointer to the value of the variable.
evaluateVarDeclInit(EvalInfo & Info,const Expr * E,const VarDecl * VD,CallStackFrame * Frame,APValue * & Result)1943 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
1944                                 const VarDecl *VD, CallStackFrame *Frame,
1945                                 APValue *&Result) {
1946   // If this is a parameter to an active constexpr function call, perform
1947   // argument substitution.
1948   if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
1949     // Assume arguments of a potential constant expression are unknown
1950     // constant expressions.
1951     if (Info.checkingPotentialConstantExpression())
1952       return false;
1953     if (!Frame || !Frame->Arguments) {
1954       Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1955       return false;
1956     }
1957     Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
1958     return true;
1959   }
1960 
1961   // If this is a local variable, dig out its value.
1962   if (Frame) {
1963     Result = Frame->getTemporary(VD);
1964     assert(Result && "missing value for local variable");
1965     return true;
1966   }
1967 
1968   // Dig out the initializer, and use the declaration which it's attached to.
1969   const Expr *Init = VD->getAnyInitializer(VD);
1970   if (!Init || Init->isValueDependent()) {
1971     // If we're checking a potential constant expression, the variable could be
1972     // initialized later.
1973     if (!Info.checkingPotentialConstantExpression())
1974       Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1975     return false;
1976   }
1977 
1978   // If we're currently evaluating the initializer of this declaration, use that
1979   // in-flight value.
1980   if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
1981     Result = Info.EvaluatingDeclValue;
1982     return true;
1983   }
1984 
1985   // Never evaluate the initializer of a weak variable. We can't be sure that
1986   // this is the definition which will be used.
1987   if (VD->isWeak()) {
1988     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1989     return false;
1990   }
1991 
1992   // Check that we can fold the initializer. In C++, we will have already done
1993   // this in the cases where it matters for conformance.
1994   SmallVector<PartialDiagnosticAt, 8> Notes;
1995   if (!VD->evaluateValue(Notes)) {
1996     Info.Diag(E, diag::note_constexpr_var_init_non_constant,
1997               Notes.size() + 1) << VD;
1998     Info.Note(VD->getLocation(), diag::note_declared_at);
1999     Info.addNotes(Notes);
2000     return false;
2001   } else if (!VD->checkInitIsICE()) {
2002     Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
2003                  Notes.size() + 1) << VD;
2004     Info.Note(VD->getLocation(), diag::note_declared_at);
2005     Info.addNotes(Notes);
2006   }
2007 
2008   Result = VD->getEvaluatedValue();
2009   return true;
2010 }
2011 
IsConstNonVolatile(QualType T)2012 static bool IsConstNonVolatile(QualType T) {
2013   Qualifiers Quals = T.getQualifiers();
2014   return Quals.hasConst() && !Quals.hasVolatile();
2015 }
2016 
2017 /// Get the base index of the given base class within an APValue representing
2018 /// the given derived class.
getBaseIndex(const CXXRecordDecl * Derived,const CXXRecordDecl * Base)2019 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
2020                              const CXXRecordDecl *Base) {
2021   Base = Base->getCanonicalDecl();
2022   unsigned Index = 0;
2023   for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
2024          E = Derived->bases_end(); I != E; ++I, ++Index) {
2025     if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
2026       return Index;
2027   }
2028 
2029   llvm_unreachable("base class missing from derived class's bases list");
2030 }
2031 
2032 /// Extract the value of a character from a string literal.
extractStringLiteralCharacter(EvalInfo & Info,const Expr * Lit,uint64_t Index)2033 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
2034                                             uint64_t Index) {
2035   // FIXME: Support ObjCEncodeExpr, MakeStringConstant
2036   if (auto PE = dyn_cast<PredefinedExpr>(Lit))
2037     Lit = PE->getFunctionName();
2038   const StringLiteral *S = cast<StringLiteral>(Lit);
2039   const ConstantArrayType *CAT =
2040       Info.Ctx.getAsConstantArrayType(S->getType());
2041   assert(CAT && "string literal isn't an array");
2042   QualType CharType = CAT->getElementType();
2043   assert(CharType->isIntegerType() && "unexpected character type");
2044 
2045   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2046                CharType->isUnsignedIntegerType());
2047   if (Index < S->getLength())
2048     Value = S->getCodeUnit(Index);
2049   return Value;
2050 }
2051 
2052 // Expand a string literal into an array of characters.
expandStringLiteral(EvalInfo & Info,const Expr * Lit,APValue & Result)2053 static void expandStringLiteral(EvalInfo &Info, const Expr *Lit,
2054                                 APValue &Result) {
2055   const StringLiteral *S = cast<StringLiteral>(Lit);
2056   const ConstantArrayType *CAT =
2057       Info.Ctx.getAsConstantArrayType(S->getType());
2058   assert(CAT && "string literal isn't an array");
2059   QualType CharType = CAT->getElementType();
2060   assert(CharType->isIntegerType() && "unexpected character type");
2061 
2062   unsigned Elts = CAT->getSize().getZExtValue();
2063   Result = APValue(APValue::UninitArray(),
2064                    std::min(S->getLength(), Elts), Elts);
2065   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2066                CharType->isUnsignedIntegerType());
2067   if (Result.hasArrayFiller())
2068     Result.getArrayFiller() = APValue(Value);
2069   for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
2070     Value = S->getCodeUnit(I);
2071     Result.getArrayInitializedElt(I) = APValue(Value);
2072   }
2073 }
2074 
2075 // Expand an array so that it has more than Index filled elements.
expandArray(APValue & Array,unsigned Index)2076 static void expandArray(APValue &Array, unsigned Index) {
2077   unsigned Size = Array.getArraySize();
2078   assert(Index < Size);
2079 
2080   // Always at least double the number of elements for which we store a value.
2081   unsigned OldElts = Array.getArrayInitializedElts();
2082   unsigned NewElts = std::max(Index+1, OldElts * 2);
2083   NewElts = std::min(Size, std::max(NewElts, 8u));
2084 
2085   // Copy the data across.
2086   APValue NewValue(APValue::UninitArray(), NewElts, Size);
2087   for (unsigned I = 0; I != OldElts; ++I)
2088     NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
2089   for (unsigned I = OldElts; I != NewElts; ++I)
2090     NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
2091   if (NewValue.hasArrayFiller())
2092     NewValue.getArrayFiller() = Array.getArrayFiller();
2093   Array.swap(NewValue);
2094 }
2095 
2096 /// Determine whether a type would actually be read by an lvalue-to-rvalue
2097 /// conversion. If it's of class type, we may assume that the copy operation
2098 /// is trivial. Note that this is never true for a union type with fields
2099 /// (because the copy always "reads" the active member) and always true for
2100 /// a non-class type.
isReadByLvalueToRvalueConversion(QualType T)2101 static bool isReadByLvalueToRvalueConversion(QualType T) {
2102   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2103   if (!RD || (RD->isUnion() && !RD->field_empty()))
2104     return true;
2105   if (RD->isEmpty())
2106     return false;
2107 
2108   for (auto *Field : RD->fields())
2109     if (isReadByLvalueToRvalueConversion(Field->getType()))
2110       return true;
2111 
2112   for (auto &BaseSpec : RD->bases())
2113     if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
2114       return true;
2115 
2116   return false;
2117 }
2118 
2119 /// Diagnose an attempt to read from any unreadable field within the specified
2120 /// type, which might be a class type.
diagnoseUnreadableFields(EvalInfo & Info,const Expr * E,QualType T)2121 static bool diagnoseUnreadableFields(EvalInfo &Info, const Expr *E,
2122                                      QualType T) {
2123   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2124   if (!RD)
2125     return false;
2126 
2127   if (!RD->hasMutableFields())
2128     return false;
2129 
2130   for (auto *Field : RD->fields()) {
2131     // If we're actually going to read this field in some way, then it can't
2132     // be mutable. If we're in a union, then assigning to a mutable field
2133     // (even an empty one) can change the active member, so that's not OK.
2134     // FIXME: Add core issue number for the union case.
2135     if (Field->isMutable() &&
2136         (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
2137       Info.Diag(E, diag::note_constexpr_ltor_mutable, 1) << Field;
2138       Info.Note(Field->getLocation(), diag::note_declared_at);
2139       return true;
2140     }
2141 
2142     if (diagnoseUnreadableFields(Info, E, Field->getType()))
2143       return true;
2144   }
2145 
2146   for (auto &BaseSpec : RD->bases())
2147     if (diagnoseUnreadableFields(Info, E, BaseSpec.getType()))
2148       return true;
2149 
2150   // All mutable fields were empty, and thus not actually read.
2151   return false;
2152 }
2153 
2154 /// Kinds of access we can perform on an object, for diagnostics.
2155 enum AccessKinds {
2156   AK_Read,
2157   AK_Assign,
2158   AK_Increment,
2159   AK_Decrement
2160 };
2161 
2162 /// A handle to a complete object (an object that is not a subobject of
2163 /// another object).
2164 struct CompleteObject {
2165   /// The value of the complete object.
2166   APValue *Value;
2167   /// The type of the complete object.
2168   QualType Type;
2169 
CompleteObjectCompleteObject2170   CompleteObject() : Value(nullptr) {}
CompleteObjectCompleteObject2171   CompleteObject(APValue *Value, QualType Type)
2172       : Value(Value), Type(Type) {
2173     assert(Value && "missing value for complete object");
2174   }
2175 
operator boolCompleteObject2176   LLVM_EXPLICIT operator bool() const { return Value; }
2177 };
2178 
2179 /// Find the designated sub-object of an rvalue.
2180 template<typename SubobjectHandler>
2181 typename SubobjectHandler::result_type
findSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,SubobjectHandler & handler)2182 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
2183               const SubobjectDesignator &Sub, SubobjectHandler &handler) {
2184   if (Sub.Invalid)
2185     // A diagnostic will have already been produced.
2186     return handler.failed();
2187   if (Sub.isOnePastTheEnd()) {
2188     if (Info.getLangOpts().CPlusPlus11)
2189       Info.Diag(E, diag::note_constexpr_access_past_end)
2190         << handler.AccessKind;
2191     else
2192       Info.Diag(E);
2193     return handler.failed();
2194   }
2195 
2196   APValue *O = Obj.Value;
2197   QualType ObjType = Obj.Type;
2198   const FieldDecl *LastField = nullptr;
2199 
2200   // Walk the designator's path to find the subobject.
2201   for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
2202     if (O->isUninit()) {
2203       if (!Info.checkingPotentialConstantExpression())
2204         Info.Diag(E, diag::note_constexpr_access_uninit) << handler.AccessKind;
2205       return handler.failed();
2206     }
2207 
2208     if (I == N) {
2209       // If we are reading an object of class type, there may still be more
2210       // things we need to check: if there are any mutable subobjects, we
2211       // cannot perform this read. (This only happens when performing a trivial
2212       // copy or assignment.)
2213       if (ObjType->isRecordType() && handler.AccessKind == AK_Read &&
2214           diagnoseUnreadableFields(Info, E, ObjType))
2215         return handler.failed();
2216 
2217       if (!handler.found(*O, ObjType))
2218         return false;
2219 
2220       // If we modified a bit-field, truncate it to the right width.
2221       if (handler.AccessKind != AK_Read &&
2222           LastField && LastField->isBitField() &&
2223           !truncateBitfieldValue(Info, E, *O, LastField))
2224         return false;
2225 
2226       return true;
2227     }
2228 
2229     LastField = nullptr;
2230     if (ObjType->isArrayType()) {
2231       // Next subobject is an array element.
2232       const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
2233       assert(CAT && "vla in literal type?");
2234       uint64_t Index = Sub.Entries[I].ArrayIndex;
2235       if (CAT->getSize().ule(Index)) {
2236         // Note, it should not be possible to form a pointer with a valid
2237         // designator which points more than one past the end of the array.
2238         if (Info.getLangOpts().CPlusPlus11)
2239           Info.Diag(E, diag::note_constexpr_access_past_end)
2240             << handler.AccessKind;
2241         else
2242           Info.Diag(E);
2243         return handler.failed();
2244       }
2245 
2246       ObjType = CAT->getElementType();
2247 
2248       // An array object is represented as either an Array APValue or as an
2249       // LValue which refers to a string literal.
2250       if (O->isLValue()) {
2251         assert(I == N - 1 && "extracting subobject of character?");
2252         assert(!O->hasLValuePath() || O->getLValuePath().empty());
2253         if (handler.AccessKind != AK_Read)
2254           expandStringLiteral(Info, O->getLValueBase().get<const Expr *>(),
2255                               *O);
2256         else
2257           return handler.foundString(*O, ObjType, Index);
2258       }
2259 
2260       if (O->getArrayInitializedElts() > Index)
2261         O = &O->getArrayInitializedElt(Index);
2262       else if (handler.AccessKind != AK_Read) {
2263         expandArray(*O, Index);
2264         O = &O->getArrayInitializedElt(Index);
2265       } else
2266         O = &O->getArrayFiller();
2267     } else if (ObjType->isAnyComplexType()) {
2268       // Next subobject is a complex number.
2269       uint64_t Index = Sub.Entries[I].ArrayIndex;
2270       if (Index > 1) {
2271         if (Info.getLangOpts().CPlusPlus11)
2272           Info.Diag(E, diag::note_constexpr_access_past_end)
2273             << handler.AccessKind;
2274         else
2275           Info.Diag(E);
2276         return handler.failed();
2277       }
2278 
2279       bool WasConstQualified = ObjType.isConstQualified();
2280       ObjType = ObjType->castAs<ComplexType>()->getElementType();
2281       if (WasConstQualified)
2282         ObjType.addConst();
2283 
2284       assert(I == N - 1 && "extracting subobject of scalar?");
2285       if (O->isComplexInt()) {
2286         return handler.found(Index ? O->getComplexIntImag()
2287                                    : O->getComplexIntReal(), ObjType);
2288       } else {
2289         assert(O->isComplexFloat());
2290         return handler.found(Index ? O->getComplexFloatImag()
2291                                    : O->getComplexFloatReal(), ObjType);
2292       }
2293     } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
2294       if (Field->isMutable() && handler.AccessKind == AK_Read) {
2295         Info.Diag(E, diag::note_constexpr_ltor_mutable, 1)
2296           << Field;
2297         Info.Note(Field->getLocation(), diag::note_declared_at);
2298         return handler.failed();
2299       }
2300 
2301       // Next subobject is a class, struct or union field.
2302       RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
2303       if (RD->isUnion()) {
2304         const FieldDecl *UnionField = O->getUnionField();
2305         if (!UnionField ||
2306             UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
2307           Info.Diag(E, diag::note_constexpr_access_inactive_union_member)
2308             << handler.AccessKind << Field << !UnionField << UnionField;
2309           return handler.failed();
2310         }
2311         O = &O->getUnionValue();
2312       } else
2313         O = &O->getStructField(Field->getFieldIndex());
2314 
2315       bool WasConstQualified = ObjType.isConstQualified();
2316       ObjType = Field->getType();
2317       if (WasConstQualified && !Field->isMutable())
2318         ObjType.addConst();
2319 
2320       if (ObjType.isVolatileQualified()) {
2321         if (Info.getLangOpts().CPlusPlus) {
2322           // FIXME: Include a description of the path to the volatile subobject.
2323           Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2324             << handler.AccessKind << 2 << Field;
2325           Info.Note(Field->getLocation(), diag::note_declared_at);
2326         } else {
2327           Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
2328         }
2329         return handler.failed();
2330       }
2331 
2332       LastField = Field;
2333     } else {
2334       // Next subobject is a base class.
2335       const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
2336       const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
2337       O = &O->getStructBase(getBaseIndex(Derived, Base));
2338 
2339       bool WasConstQualified = ObjType.isConstQualified();
2340       ObjType = Info.Ctx.getRecordType(Base);
2341       if (WasConstQualified)
2342         ObjType.addConst();
2343     }
2344   }
2345 }
2346 
2347 namespace {
2348 struct ExtractSubobjectHandler {
2349   EvalInfo &Info;
2350   APValue &Result;
2351 
2352   static const AccessKinds AccessKind = AK_Read;
2353 
2354   typedef bool result_type;
failed__anon0751fa450311::ExtractSubobjectHandler2355   bool failed() { return false; }
found__anon0751fa450311::ExtractSubobjectHandler2356   bool found(APValue &Subobj, QualType SubobjType) {
2357     Result = Subobj;
2358     return true;
2359   }
found__anon0751fa450311::ExtractSubobjectHandler2360   bool found(APSInt &Value, QualType SubobjType) {
2361     Result = APValue(Value);
2362     return true;
2363   }
found__anon0751fa450311::ExtractSubobjectHandler2364   bool found(APFloat &Value, QualType SubobjType) {
2365     Result = APValue(Value);
2366     return true;
2367   }
foundString__anon0751fa450311::ExtractSubobjectHandler2368   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2369     Result = APValue(extractStringLiteralCharacter(
2370         Info, Subobj.getLValueBase().get<const Expr *>(), Character));
2371     return true;
2372   }
2373 };
2374 } // end anonymous namespace
2375 
2376 const AccessKinds ExtractSubobjectHandler::AccessKind;
2377 
2378 /// Extract the designated sub-object of an rvalue.
extractSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & Result)2379 static bool extractSubobject(EvalInfo &Info, const Expr *E,
2380                              const CompleteObject &Obj,
2381                              const SubobjectDesignator &Sub,
2382                              APValue &Result) {
2383   ExtractSubobjectHandler Handler = { Info, Result };
2384   return findSubobject(Info, E, Obj, Sub, Handler);
2385 }
2386 
2387 namespace {
2388 struct ModifySubobjectHandler {
2389   EvalInfo &Info;
2390   APValue &NewVal;
2391   const Expr *E;
2392 
2393   typedef bool result_type;
2394   static const AccessKinds AccessKind = AK_Assign;
2395 
checkConst__anon0751fa450411::ModifySubobjectHandler2396   bool checkConst(QualType QT) {
2397     // Assigning to a const object has undefined behavior.
2398     if (QT.isConstQualified()) {
2399       Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2400       return false;
2401     }
2402     return true;
2403   }
2404 
failed__anon0751fa450411::ModifySubobjectHandler2405   bool failed() { return false; }
found__anon0751fa450411::ModifySubobjectHandler2406   bool found(APValue &Subobj, QualType SubobjType) {
2407     if (!checkConst(SubobjType))
2408       return false;
2409     // We've been given ownership of NewVal, so just swap it in.
2410     Subobj.swap(NewVal);
2411     return true;
2412   }
found__anon0751fa450411::ModifySubobjectHandler2413   bool found(APSInt &Value, QualType SubobjType) {
2414     if (!checkConst(SubobjType))
2415       return false;
2416     if (!NewVal.isInt()) {
2417       // Maybe trying to write a cast pointer value into a complex?
2418       Info.Diag(E);
2419       return false;
2420     }
2421     Value = NewVal.getInt();
2422     return true;
2423   }
found__anon0751fa450411::ModifySubobjectHandler2424   bool found(APFloat &Value, QualType SubobjType) {
2425     if (!checkConst(SubobjType))
2426       return false;
2427     Value = NewVal.getFloat();
2428     return true;
2429   }
foundString__anon0751fa450411::ModifySubobjectHandler2430   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2431     llvm_unreachable("shouldn't encounter string elements with ExpandArrays");
2432   }
2433 };
2434 } // end anonymous namespace
2435 
2436 const AccessKinds ModifySubobjectHandler::AccessKind;
2437 
2438 /// Update the designated sub-object of an rvalue to the given value.
modifySubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & NewVal)2439 static bool modifySubobject(EvalInfo &Info, const Expr *E,
2440                             const CompleteObject &Obj,
2441                             const SubobjectDesignator &Sub,
2442                             APValue &NewVal) {
2443   ModifySubobjectHandler Handler = { Info, NewVal, E };
2444   return findSubobject(Info, E, Obj, Sub, Handler);
2445 }
2446 
2447 /// Find the position where two subobject designators diverge, or equivalently
2448 /// the length of the common initial subsequence.
FindDesignatorMismatch(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B,bool & WasArrayIndex)2449 static unsigned FindDesignatorMismatch(QualType ObjType,
2450                                        const SubobjectDesignator &A,
2451                                        const SubobjectDesignator &B,
2452                                        bool &WasArrayIndex) {
2453   unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
2454   for (/**/; I != N; ++I) {
2455     if (!ObjType.isNull() &&
2456         (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
2457       // Next subobject is an array element.
2458       if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
2459         WasArrayIndex = true;
2460         return I;
2461       }
2462       if (ObjType->isAnyComplexType())
2463         ObjType = ObjType->castAs<ComplexType>()->getElementType();
2464       else
2465         ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
2466     } else {
2467       if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
2468         WasArrayIndex = false;
2469         return I;
2470       }
2471       if (const FieldDecl *FD = getAsField(A.Entries[I]))
2472         // Next subobject is a field.
2473         ObjType = FD->getType();
2474       else
2475         // Next subobject is a base class.
2476         ObjType = QualType();
2477     }
2478   }
2479   WasArrayIndex = false;
2480   return I;
2481 }
2482 
2483 /// Determine whether the given subobject designators refer to elements of the
2484 /// same array object.
AreElementsOfSameArray(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B)2485 static bool AreElementsOfSameArray(QualType ObjType,
2486                                    const SubobjectDesignator &A,
2487                                    const SubobjectDesignator &B) {
2488   if (A.Entries.size() != B.Entries.size())
2489     return false;
2490 
2491   bool IsArray = A.MostDerivedArraySize != 0;
2492   if (IsArray && A.MostDerivedPathLength != A.Entries.size())
2493     // A is a subobject of the array element.
2494     return false;
2495 
2496   // If A (and B) designates an array element, the last entry will be the array
2497   // index. That doesn't have to match. Otherwise, we're in the 'implicit array
2498   // of length 1' case, and the entire path must match.
2499   bool WasArrayIndex;
2500   unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
2501   return CommonLength >= A.Entries.size() - IsArray;
2502 }
2503 
2504 /// Find the complete object to which an LValue refers.
findCompleteObject(EvalInfo & Info,const Expr * E,AccessKinds AK,const LValue & LVal,QualType LValType)2505 CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E, AccessKinds AK,
2506                                   const LValue &LVal, QualType LValType) {
2507   if (!LVal.Base) {
2508     Info.Diag(E, diag::note_constexpr_access_null) << AK;
2509     return CompleteObject();
2510   }
2511 
2512   CallStackFrame *Frame = nullptr;
2513   if (LVal.CallIndex) {
2514     Frame = Info.getCallFrame(LVal.CallIndex);
2515     if (!Frame) {
2516       Info.Diag(E, diag::note_constexpr_lifetime_ended, 1)
2517         << AK << LVal.Base.is<const ValueDecl*>();
2518       NoteLValueLocation(Info, LVal.Base);
2519       return CompleteObject();
2520     }
2521   }
2522 
2523   // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
2524   // is not a constant expression (even if the object is non-volatile). We also
2525   // apply this rule to C++98, in order to conform to the expected 'volatile'
2526   // semantics.
2527   if (LValType.isVolatileQualified()) {
2528     if (Info.getLangOpts().CPlusPlus)
2529       Info.Diag(E, diag::note_constexpr_access_volatile_type)
2530         << AK << LValType;
2531     else
2532       Info.Diag(E);
2533     return CompleteObject();
2534   }
2535 
2536   // Compute value storage location and type of base object.
2537   APValue *BaseVal = nullptr;
2538   QualType BaseType = getType(LVal.Base);
2539 
2540   if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
2541     // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
2542     // In C++11, constexpr, non-volatile variables initialized with constant
2543     // expressions are constant expressions too. Inside constexpr functions,
2544     // parameters are constant expressions even if they're non-const.
2545     // In C++1y, objects local to a constant expression (those with a Frame) are
2546     // both readable and writable inside constant expressions.
2547     // In C, such things can also be folded, although they are not ICEs.
2548     const VarDecl *VD = dyn_cast<VarDecl>(D);
2549     if (VD) {
2550       if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
2551         VD = VDef;
2552     }
2553     if (!VD || VD->isInvalidDecl()) {
2554       Info.Diag(E);
2555       return CompleteObject();
2556     }
2557 
2558     // Accesses of volatile-qualified objects are not allowed.
2559     if (BaseType.isVolatileQualified()) {
2560       if (Info.getLangOpts().CPlusPlus) {
2561         Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2562           << AK << 1 << VD;
2563         Info.Note(VD->getLocation(), diag::note_declared_at);
2564       } else {
2565         Info.Diag(E);
2566       }
2567       return CompleteObject();
2568     }
2569 
2570     // Unless we're looking at a local variable or argument in a constexpr call,
2571     // the variable we're reading must be const.
2572     if (!Frame) {
2573       if (Info.getLangOpts().CPlusPlus14 &&
2574           VD == Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()) {
2575         // OK, we can read and modify an object if we're in the process of
2576         // evaluating its initializer, because its lifetime began in this
2577         // evaluation.
2578       } else if (AK != AK_Read) {
2579         // All the remaining cases only permit reading.
2580         Info.Diag(E, diag::note_constexpr_modify_global);
2581         return CompleteObject();
2582       } else if (VD->isConstexpr()) {
2583         // OK, we can read this variable.
2584       } else if (BaseType->isIntegralOrEnumerationType()) {
2585         if (!BaseType.isConstQualified()) {
2586           if (Info.getLangOpts().CPlusPlus) {
2587             Info.Diag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
2588             Info.Note(VD->getLocation(), diag::note_declared_at);
2589           } else {
2590             Info.Diag(E);
2591           }
2592           return CompleteObject();
2593         }
2594       } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
2595         // We support folding of const floating-point types, in order to make
2596         // static const data members of such types (supported as an extension)
2597         // more useful.
2598         if (Info.getLangOpts().CPlusPlus11) {
2599           Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
2600           Info.Note(VD->getLocation(), diag::note_declared_at);
2601         } else {
2602           Info.CCEDiag(E);
2603         }
2604       } else {
2605         // FIXME: Allow folding of values of any literal type in all languages.
2606         if (Info.getLangOpts().CPlusPlus11) {
2607           Info.Diag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
2608           Info.Note(VD->getLocation(), diag::note_declared_at);
2609         } else {
2610           Info.Diag(E);
2611         }
2612         return CompleteObject();
2613       }
2614     }
2615 
2616     if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal))
2617       return CompleteObject();
2618   } else {
2619     const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
2620 
2621     if (!Frame) {
2622       if (const MaterializeTemporaryExpr *MTE =
2623               dyn_cast<MaterializeTemporaryExpr>(Base)) {
2624         assert(MTE->getStorageDuration() == SD_Static &&
2625                "should have a frame for a non-global materialized temporary");
2626 
2627         // Per C++1y [expr.const]p2:
2628         //  an lvalue-to-rvalue conversion [is not allowed unless it applies to]
2629         //   - a [...] glvalue of integral or enumeration type that refers to
2630         //     a non-volatile const object [...]
2631         //   [...]
2632         //   - a [...] glvalue of literal type that refers to a non-volatile
2633         //     object whose lifetime began within the evaluation of e.
2634         //
2635         // C++11 misses the 'began within the evaluation of e' check and
2636         // instead allows all temporaries, including things like:
2637         //   int &&r = 1;
2638         //   int x = ++r;
2639         //   constexpr int k = r;
2640         // Therefore we use the C++1y rules in C++11 too.
2641         const ValueDecl *VD = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
2642         const ValueDecl *ED = MTE->getExtendingDecl();
2643         if (!(BaseType.isConstQualified() &&
2644               BaseType->isIntegralOrEnumerationType()) &&
2645             !(VD && VD->getCanonicalDecl() == ED->getCanonicalDecl())) {
2646           Info.Diag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
2647           Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
2648           return CompleteObject();
2649         }
2650 
2651         BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
2652         assert(BaseVal && "got reference to unevaluated temporary");
2653       } else {
2654         Info.Diag(E);
2655         return CompleteObject();
2656       }
2657     } else {
2658       BaseVal = Frame->getTemporary(Base);
2659       assert(BaseVal && "missing value for temporary");
2660     }
2661 
2662     // Volatile temporary objects cannot be accessed in constant expressions.
2663     if (BaseType.isVolatileQualified()) {
2664       if (Info.getLangOpts().CPlusPlus) {
2665         Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2666           << AK << 0;
2667         Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
2668       } else {
2669         Info.Diag(E);
2670       }
2671       return CompleteObject();
2672     }
2673   }
2674 
2675   // During the construction of an object, it is not yet 'const'.
2676   // FIXME: We don't set up EvaluatingDecl for local variables or temporaries,
2677   // and this doesn't do quite the right thing for const subobjects of the
2678   // object under construction.
2679   if (LVal.getLValueBase() == Info.EvaluatingDecl) {
2680     BaseType = Info.Ctx.getCanonicalType(BaseType);
2681     BaseType.removeLocalConst();
2682   }
2683 
2684   // In C++1y, we can't safely access any mutable state when we might be
2685   // evaluating after an unmodeled side effect or an evaluation failure.
2686   //
2687   // FIXME: Not all local state is mutable. Allow local constant subobjects
2688   // to be read here (but take care with 'mutable' fields).
2689   if (Frame && Info.getLangOpts().CPlusPlus14 &&
2690       (Info.EvalStatus.HasSideEffects || Info.keepEvaluatingAfterFailure()))
2691     return CompleteObject();
2692 
2693   return CompleteObject(BaseVal, BaseType);
2694 }
2695 
2696 /// \brief Perform an lvalue-to-rvalue conversion on the given glvalue. This
2697 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
2698 /// glvalue referred to by an entity of reference type.
2699 ///
2700 /// \param Info - Information about the ongoing evaluation.
2701 /// \param Conv - The expression for which we are performing the conversion.
2702 ///               Used for diagnostics.
2703 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
2704 ///               case of a non-class type).
2705 /// \param LVal - The glvalue on which we are attempting to perform this action.
2706 /// \param RVal - The produced value will be placed here.
handleLValueToRValueConversion(EvalInfo & Info,const Expr * Conv,QualType Type,const LValue & LVal,APValue & RVal)2707 static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
2708                                            QualType Type,
2709                                            const LValue &LVal, APValue &RVal) {
2710   if (LVal.Designator.Invalid)
2711     return false;
2712 
2713   // Check for special cases where there is no existing APValue to look at.
2714   const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
2715   if (!LVal.Designator.Invalid && Base && !LVal.CallIndex &&
2716       !Type.isVolatileQualified()) {
2717     if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
2718       // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
2719       // initializer until now for such expressions. Such an expression can't be
2720       // an ICE in C, so this only matters for fold.
2721       assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
2722       if (Type.isVolatileQualified()) {
2723         Info.Diag(Conv);
2724         return false;
2725       }
2726       APValue Lit;
2727       if (!Evaluate(Lit, Info, CLE->getInitializer()))
2728         return false;
2729       CompleteObject LitObj(&Lit, Base->getType());
2730       return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal);
2731     } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
2732       // We represent a string literal array as an lvalue pointing at the
2733       // corresponding expression, rather than building an array of chars.
2734       // FIXME: Support ObjCEncodeExpr, MakeStringConstant
2735       APValue Str(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
2736       CompleteObject StrObj(&Str, Base->getType());
2737       return extractSubobject(Info, Conv, StrObj, LVal.Designator, RVal);
2738     }
2739   }
2740 
2741   CompleteObject Obj = findCompleteObject(Info, Conv, AK_Read, LVal, Type);
2742   return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal);
2743 }
2744 
2745 /// Perform an assignment of Val to LVal. Takes ownership of Val.
handleAssignment(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,APValue & Val)2746 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
2747                              QualType LValType, APValue &Val) {
2748   if (LVal.Designator.Invalid)
2749     return false;
2750 
2751   if (!Info.getLangOpts().CPlusPlus14) {
2752     Info.Diag(E);
2753     return false;
2754   }
2755 
2756   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
2757   return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
2758 }
2759 
isOverflowingIntegerType(ASTContext & Ctx,QualType T)2760 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
2761   return T->isSignedIntegerType() &&
2762          Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
2763 }
2764 
2765 namespace {
2766 struct CompoundAssignSubobjectHandler {
2767   EvalInfo &Info;
2768   const Expr *E;
2769   QualType PromotedLHSType;
2770   BinaryOperatorKind Opcode;
2771   const APValue &RHS;
2772 
2773   static const AccessKinds AccessKind = AK_Assign;
2774 
2775   typedef bool result_type;
2776 
checkConst__anon0751fa450511::CompoundAssignSubobjectHandler2777   bool checkConst(QualType QT) {
2778     // Assigning to a const object has undefined behavior.
2779     if (QT.isConstQualified()) {
2780       Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2781       return false;
2782     }
2783     return true;
2784   }
2785 
failed__anon0751fa450511::CompoundAssignSubobjectHandler2786   bool failed() { return false; }
found__anon0751fa450511::CompoundAssignSubobjectHandler2787   bool found(APValue &Subobj, QualType SubobjType) {
2788     switch (Subobj.getKind()) {
2789     case APValue::Int:
2790       return found(Subobj.getInt(), SubobjType);
2791     case APValue::Float:
2792       return found(Subobj.getFloat(), SubobjType);
2793     case APValue::ComplexInt:
2794     case APValue::ComplexFloat:
2795       // FIXME: Implement complex compound assignment.
2796       Info.Diag(E);
2797       return false;
2798     case APValue::LValue:
2799       return foundPointer(Subobj, SubobjType);
2800     default:
2801       // FIXME: can this happen?
2802       Info.Diag(E);
2803       return false;
2804     }
2805   }
found__anon0751fa450511::CompoundAssignSubobjectHandler2806   bool found(APSInt &Value, QualType SubobjType) {
2807     if (!checkConst(SubobjType))
2808       return false;
2809 
2810     if (!SubobjType->isIntegerType() || !RHS.isInt()) {
2811       // We don't support compound assignment on integer-cast-to-pointer
2812       // values.
2813       Info.Diag(E);
2814       return false;
2815     }
2816 
2817     APSInt LHS = HandleIntToIntCast(Info, E, PromotedLHSType,
2818                                     SubobjType, Value);
2819     if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
2820       return false;
2821     Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
2822     return true;
2823   }
found__anon0751fa450511::CompoundAssignSubobjectHandler2824   bool found(APFloat &Value, QualType SubobjType) {
2825     return checkConst(SubobjType) &&
2826            HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
2827                                   Value) &&
2828            handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
2829            HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
2830   }
foundPointer__anon0751fa450511::CompoundAssignSubobjectHandler2831   bool foundPointer(APValue &Subobj, QualType SubobjType) {
2832     if (!checkConst(SubobjType))
2833       return false;
2834 
2835     QualType PointeeType;
2836     if (const PointerType *PT = SubobjType->getAs<PointerType>())
2837       PointeeType = PT->getPointeeType();
2838 
2839     if (PointeeType.isNull() || !RHS.isInt() ||
2840         (Opcode != BO_Add && Opcode != BO_Sub)) {
2841       Info.Diag(E);
2842       return false;
2843     }
2844 
2845     int64_t Offset = getExtValue(RHS.getInt());
2846     if (Opcode == BO_Sub)
2847       Offset = -Offset;
2848 
2849     LValue LVal;
2850     LVal.setFrom(Info.Ctx, Subobj);
2851     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
2852       return false;
2853     LVal.moveInto(Subobj);
2854     return true;
2855   }
foundString__anon0751fa450511::CompoundAssignSubobjectHandler2856   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2857     llvm_unreachable("shouldn't encounter string elements here");
2858   }
2859 };
2860 } // end anonymous namespace
2861 
2862 const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
2863 
2864 /// Perform a compound assignment of LVal <op>= RVal.
handleCompoundAssignment(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,QualType PromotedLValType,BinaryOperatorKind Opcode,const APValue & RVal)2865 static bool handleCompoundAssignment(
2866     EvalInfo &Info, const Expr *E,
2867     const LValue &LVal, QualType LValType, QualType PromotedLValType,
2868     BinaryOperatorKind Opcode, const APValue &RVal) {
2869   if (LVal.Designator.Invalid)
2870     return false;
2871 
2872   if (!Info.getLangOpts().CPlusPlus14) {
2873     Info.Diag(E);
2874     return false;
2875   }
2876 
2877   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
2878   CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
2879                                              RVal };
2880   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
2881 }
2882 
2883 namespace {
2884 struct IncDecSubobjectHandler {
2885   EvalInfo &Info;
2886   const Expr *E;
2887   AccessKinds AccessKind;
2888   APValue *Old;
2889 
2890   typedef bool result_type;
2891 
checkConst__anon0751fa450611::IncDecSubobjectHandler2892   bool checkConst(QualType QT) {
2893     // Assigning to a const object has undefined behavior.
2894     if (QT.isConstQualified()) {
2895       Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2896       return false;
2897     }
2898     return true;
2899   }
2900 
failed__anon0751fa450611::IncDecSubobjectHandler2901   bool failed() { return false; }
found__anon0751fa450611::IncDecSubobjectHandler2902   bool found(APValue &Subobj, QualType SubobjType) {
2903     // Stash the old value. Also clear Old, so we don't clobber it later
2904     // if we're post-incrementing a complex.
2905     if (Old) {
2906       *Old = Subobj;
2907       Old = nullptr;
2908     }
2909 
2910     switch (Subobj.getKind()) {
2911     case APValue::Int:
2912       return found(Subobj.getInt(), SubobjType);
2913     case APValue::Float:
2914       return found(Subobj.getFloat(), SubobjType);
2915     case APValue::ComplexInt:
2916       return found(Subobj.getComplexIntReal(),
2917                    SubobjType->castAs<ComplexType>()->getElementType()
2918                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
2919     case APValue::ComplexFloat:
2920       return found(Subobj.getComplexFloatReal(),
2921                    SubobjType->castAs<ComplexType>()->getElementType()
2922                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
2923     case APValue::LValue:
2924       return foundPointer(Subobj, SubobjType);
2925     default:
2926       // FIXME: can this happen?
2927       Info.Diag(E);
2928       return false;
2929     }
2930   }
found__anon0751fa450611::IncDecSubobjectHandler2931   bool found(APSInt &Value, QualType SubobjType) {
2932     if (!checkConst(SubobjType))
2933       return false;
2934 
2935     if (!SubobjType->isIntegerType()) {
2936       // We don't support increment / decrement on integer-cast-to-pointer
2937       // values.
2938       Info.Diag(E);
2939       return false;
2940     }
2941 
2942     if (Old) *Old = APValue(Value);
2943 
2944     // bool arithmetic promotes to int, and the conversion back to bool
2945     // doesn't reduce mod 2^n, so special-case it.
2946     if (SubobjType->isBooleanType()) {
2947       if (AccessKind == AK_Increment)
2948         Value = 1;
2949       else
2950         Value = !Value;
2951       return true;
2952     }
2953 
2954     bool WasNegative = Value.isNegative();
2955     if (AccessKind == AK_Increment) {
2956       ++Value;
2957 
2958       if (!WasNegative && Value.isNegative() &&
2959           isOverflowingIntegerType(Info.Ctx, SubobjType)) {
2960         APSInt ActualValue(Value, /*IsUnsigned*/true);
2961         HandleOverflow(Info, E, ActualValue, SubobjType);
2962       }
2963     } else {
2964       --Value;
2965 
2966       if (WasNegative && !Value.isNegative() &&
2967           isOverflowingIntegerType(Info.Ctx, SubobjType)) {
2968         unsigned BitWidth = Value.getBitWidth();
2969         APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
2970         ActualValue.setBit(BitWidth);
2971         HandleOverflow(Info, E, ActualValue, SubobjType);
2972       }
2973     }
2974     return true;
2975   }
found__anon0751fa450611::IncDecSubobjectHandler2976   bool found(APFloat &Value, QualType SubobjType) {
2977     if (!checkConst(SubobjType))
2978       return false;
2979 
2980     if (Old) *Old = APValue(Value);
2981 
2982     APFloat One(Value.getSemantics(), 1);
2983     if (AccessKind == AK_Increment)
2984       Value.add(One, APFloat::rmNearestTiesToEven);
2985     else
2986       Value.subtract(One, APFloat::rmNearestTiesToEven);
2987     return true;
2988   }
foundPointer__anon0751fa450611::IncDecSubobjectHandler2989   bool foundPointer(APValue &Subobj, QualType SubobjType) {
2990     if (!checkConst(SubobjType))
2991       return false;
2992 
2993     QualType PointeeType;
2994     if (const PointerType *PT = SubobjType->getAs<PointerType>())
2995       PointeeType = PT->getPointeeType();
2996     else {
2997       Info.Diag(E);
2998       return false;
2999     }
3000 
3001     LValue LVal;
3002     LVal.setFrom(Info.Ctx, Subobj);
3003     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
3004                                      AccessKind == AK_Increment ? 1 : -1))
3005       return false;
3006     LVal.moveInto(Subobj);
3007     return true;
3008   }
foundString__anon0751fa450611::IncDecSubobjectHandler3009   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
3010     llvm_unreachable("shouldn't encounter string elements here");
3011   }
3012 };
3013 } // end anonymous namespace
3014 
3015 /// Perform an increment or decrement on LVal.
handleIncDec(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,bool IsIncrement,APValue * Old)3016 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
3017                          QualType LValType, bool IsIncrement, APValue *Old) {
3018   if (LVal.Designator.Invalid)
3019     return false;
3020 
3021   if (!Info.getLangOpts().CPlusPlus14) {
3022     Info.Diag(E);
3023     return false;
3024   }
3025 
3026   AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
3027   CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
3028   IncDecSubobjectHandler Handler = { Info, E, AK, Old };
3029   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
3030 }
3031 
3032 /// Build an lvalue for the object argument of a member function call.
EvaluateObjectArgument(EvalInfo & Info,const Expr * Object,LValue & This)3033 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
3034                                    LValue &This) {
3035   if (Object->getType()->isPointerType())
3036     return EvaluatePointer(Object, This, Info);
3037 
3038   if (Object->isGLValue())
3039     return EvaluateLValue(Object, This, Info);
3040 
3041   if (Object->getType()->isLiteralType(Info.Ctx))
3042     return EvaluateTemporary(Object, This, Info);
3043 
3044   Info.Diag(Object, diag::note_constexpr_nonliteral) << Object->getType();
3045   return false;
3046 }
3047 
3048 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
3049 /// lvalue referring to the result.
3050 ///
3051 /// \param Info - Information about the ongoing evaluation.
3052 /// \param LV - An lvalue referring to the base of the member pointer.
3053 /// \param RHS - The member pointer expression.
3054 /// \param IncludeMember - Specifies whether the member itself is included in
3055 ///        the resulting LValue subobject designator. This is not possible when
3056 ///        creating a bound member function.
3057 /// \return The field or method declaration to which the member pointer refers,
3058 ///         or 0 if evaluation fails.
HandleMemberPointerAccess(EvalInfo & Info,QualType LVType,LValue & LV,const Expr * RHS,bool IncludeMember=true)3059 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
3060                                                   QualType LVType,
3061                                                   LValue &LV,
3062                                                   const Expr *RHS,
3063                                                   bool IncludeMember = true) {
3064   MemberPtr MemPtr;
3065   if (!EvaluateMemberPointer(RHS, MemPtr, Info))
3066     return nullptr;
3067 
3068   // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
3069   // member value, the behavior is undefined.
3070   if (!MemPtr.getDecl()) {
3071     // FIXME: Specific diagnostic.
3072     Info.Diag(RHS);
3073     return nullptr;
3074   }
3075 
3076   if (MemPtr.isDerivedMember()) {
3077     // This is a member of some derived class. Truncate LV appropriately.
3078     // The end of the derived-to-base path for the base object must match the
3079     // derived-to-base path for the member pointer.
3080     if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
3081         LV.Designator.Entries.size()) {
3082       Info.Diag(RHS);
3083       return nullptr;
3084     }
3085     unsigned PathLengthToMember =
3086         LV.Designator.Entries.size() - MemPtr.Path.size();
3087     for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
3088       const CXXRecordDecl *LVDecl = getAsBaseClass(
3089           LV.Designator.Entries[PathLengthToMember + I]);
3090       const CXXRecordDecl *MPDecl = MemPtr.Path[I];
3091       if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
3092         Info.Diag(RHS);
3093         return nullptr;
3094       }
3095     }
3096 
3097     // Truncate the lvalue to the appropriate derived class.
3098     if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
3099                             PathLengthToMember))
3100       return nullptr;
3101   } else if (!MemPtr.Path.empty()) {
3102     // Extend the LValue path with the member pointer's path.
3103     LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
3104                                   MemPtr.Path.size() + IncludeMember);
3105 
3106     // Walk down to the appropriate base class.
3107     if (const PointerType *PT = LVType->getAs<PointerType>())
3108       LVType = PT->getPointeeType();
3109     const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
3110     assert(RD && "member pointer access on non-class-type expression");
3111     // The first class in the path is that of the lvalue.
3112     for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
3113       const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
3114       if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
3115         return nullptr;
3116       RD = Base;
3117     }
3118     // Finally cast to the class containing the member.
3119     if (!HandleLValueDirectBase(Info, RHS, LV, RD,
3120                                 MemPtr.getContainingRecord()))
3121       return nullptr;
3122   }
3123 
3124   // Add the member. Note that we cannot build bound member functions here.
3125   if (IncludeMember) {
3126     if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
3127       if (!HandleLValueMember(Info, RHS, LV, FD))
3128         return nullptr;
3129     } else if (const IndirectFieldDecl *IFD =
3130                  dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
3131       if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
3132         return nullptr;
3133     } else {
3134       llvm_unreachable("can't construct reference to bound member function");
3135     }
3136   }
3137 
3138   return MemPtr.getDecl();
3139 }
3140 
HandleMemberPointerAccess(EvalInfo & Info,const BinaryOperator * BO,LValue & LV,bool IncludeMember=true)3141 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
3142                                                   const BinaryOperator *BO,
3143                                                   LValue &LV,
3144                                                   bool IncludeMember = true) {
3145   assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
3146 
3147   if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
3148     if (Info.keepEvaluatingAfterFailure()) {
3149       MemberPtr MemPtr;
3150       EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
3151     }
3152     return nullptr;
3153   }
3154 
3155   return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
3156                                    BO->getRHS(), IncludeMember);
3157 }
3158 
3159 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
3160 /// the provided lvalue, which currently refers to the base object.
HandleBaseToDerivedCast(EvalInfo & Info,const CastExpr * E,LValue & Result)3161 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
3162                                     LValue &Result) {
3163   SubobjectDesignator &D = Result.Designator;
3164   if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
3165     return false;
3166 
3167   QualType TargetQT = E->getType();
3168   if (const PointerType *PT = TargetQT->getAs<PointerType>())
3169     TargetQT = PT->getPointeeType();
3170 
3171   // Check this cast lands within the final derived-to-base subobject path.
3172   if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
3173     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
3174       << D.MostDerivedType << TargetQT;
3175     return false;
3176   }
3177 
3178   // Check the type of the final cast. We don't need to check the path,
3179   // since a cast can only be formed if the path is unique.
3180   unsigned NewEntriesSize = D.Entries.size() - E->path_size();
3181   const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
3182   const CXXRecordDecl *FinalType;
3183   if (NewEntriesSize == D.MostDerivedPathLength)
3184     FinalType = D.MostDerivedType->getAsCXXRecordDecl();
3185   else
3186     FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
3187   if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
3188     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
3189       << D.MostDerivedType << TargetQT;
3190     return false;
3191   }
3192 
3193   // Truncate the lvalue to the appropriate derived class.
3194   return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
3195 }
3196 
3197 namespace {
3198 enum EvalStmtResult {
3199   /// Evaluation failed.
3200   ESR_Failed,
3201   /// Hit a 'return' statement.
3202   ESR_Returned,
3203   /// Evaluation succeeded.
3204   ESR_Succeeded,
3205   /// Hit a 'continue' statement.
3206   ESR_Continue,
3207   /// Hit a 'break' statement.
3208   ESR_Break,
3209   /// Still scanning for 'case' or 'default' statement.
3210   ESR_CaseNotFound
3211 };
3212 }
3213 
EvaluateDecl(EvalInfo & Info,const Decl * D)3214 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
3215   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
3216     // We don't need to evaluate the initializer for a static local.
3217     if (!VD->hasLocalStorage())
3218       return true;
3219 
3220     LValue Result;
3221     Result.set(VD, Info.CurrentCall->Index);
3222     APValue &Val = Info.CurrentCall->createTemporary(VD, true);
3223 
3224     const Expr *InitE = VD->getInit();
3225     if (!InitE) {
3226       Info.Diag(D->getLocStart(), diag::note_constexpr_uninitialized)
3227         << false << VD->getType();
3228       Val = APValue();
3229       return false;
3230     }
3231 
3232     if (InitE->isValueDependent())
3233       return false;
3234 
3235     if (!EvaluateInPlace(Val, Info, Result, InitE)) {
3236       // Wipe out any partially-computed value, to allow tracking that this
3237       // evaluation failed.
3238       Val = APValue();
3239       return false;
3240     }
3241   }
3242 
3243   return true;
3244 }
3245 
3246 /// Evaluate a condition (either a variable declaration or an expression).
EvaluateCond(EvalInfo & Info,const VarDecl * CondDecl,const Expr * Cond,bool & Result)3247 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
3248                          const Expr *Cond, bool &Result) {
3249   FullExpressionRAII Scope(Info);
3250   if (CondDecl && !EvaluateDecl(Info, CondDecl))
3251     return false;
3252   return EvaluateAsBooleanCondition(Cond, Result, Info);
3253 }
3254 
3255 static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
3256                                    const Stmt *S,
3257                                    const SwitchCase *SC = nullptr);
3258 
3259 /// Evaluate the body of a loop, and translate the result as appropriate.
EvaluateLoopBody(APValue & Result,EvalInfo & Info,const Stmt * Body,const SwitchCase * Case=nullptr)3260 static EvalStmtResult EvaluateLoopBody(APValue &Result, EvalInfo &Info,
3261                                        const Stmt *Body,
3262                                        const SwitchCase *Case = nullptr) {
3263   BlockScopeRAII Scope(Info);
3264   switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case)) {
3265   case ESR_Break:
3266     return ESR_Succeeded;
3267   case ESR_Succeeded:
3268   case ESR_Continue:
3269     return ESR_Continue;
3270   case ESR_Failed:
3271   case ESR_Returned:
3272   case ESR_CaseNotFound:
3273     return ESR;
3274   }
3275   llvm_unreachable("Invalid EvalStmtResult!");
3276 }
3277 
3278 /// Evaluate a switch statement.
EvaluateSwitch(APValue & Result,EvalInfo & Info,const SwitchStmt * SS)3279 static EvalStmtResult EvaluateSwitch(APValue &Result, EvalInfo &Info,
3280                                      const SwitchStmt *SS) {
3281   BlockScopeRAII Scope(Info);
3282 
3283   // Evaluate the switch condition.
3284   APSInt Value;
3285   {
3286     FullExpressionRAII Scope(Info);
3287     if (SS->getConditionVariable() &&
3288         !EvaluateDecl(Info, SS->getConditionVariable()))
3289       return ESR_Failed;
3290     if (!EvaluateInteger(SS->getCond(), Value, Info))
3291       return ESR_Failed;
3292   }
3293 
3294   // Find the switch case corresponding to the value of the condition.
3295   // FIXME: Cache this lookup.
3296   const SwitchCase *Found = nullptr;
3297   for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
3298        SC = SC->getNextSwitchCase()) {
3299     if (isa<DefaultStmt>(SC)) {
3300       Found = SC;
3301       continue;
3302     }
3303 
3304     const CaseStmt *CS = cast<CaseStmt>(SC);
3305     APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
3306     APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
3307                               : LHS;
3308     if (LHS <= Value && Value <= RHS) {
3309       Found = SC;
3310       break;
3311     }
3312   }
3313 
3314   if (!Found)
3315     return ESR_Succeeded;
3316 
3317   // Search the switch body for the switch case and evaluate it from there.
3318   switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found)) {
3319   case ESR_Break:
3320     return ESR_Succeeded;
3321   case ESR_Succeeded:
3322   case ESR_Continue:
3323   case ESR_Failed:
3324   case ESR_Returned:
3325     return ESR;
3326   case ESR_CaseNotFound:
3327     // This can only happen if the switch case is nested within a statement
3328     // expression. We have no intention of supporting that.
3329     Info.Diag(Found->getLocStart(), diag::note_constexpr_stmt_expr_unsupported);
3330     return ESR_Failed;
3331   }
3332   llvm_unreachable("Invalid EvalStmtResult!");
3333 }
3334 
3335 // Evaluate a statement.
EvaluateStmt(APValue & Result,EvalInfo & Info,const Stmt * S,const SwitchCase * Case)3336 static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
3337                                    const Stmt *S, const SwitchCase *Case) {
3338   if (!Info.nextStep(S))
3339     return ESR_Failed;
3340 
3341   // If we're hunting down a 'case' or 'default' label, recurse through
3342   // substatements until we hit the label.
3343   if (Case) {
3344     // FIXME: We don't start the lifetime of objects whose initialization we
3345     // jump over. However, such objects must be of class type with a trivial
3346     // default constructor that initialize all subobjects, so must be empty,
3347     // so this almost never matters.
3348     switch (S->getStmtClass()) {
3349     case Stmt::CompoundStmtClass:
3350       // FIXME: Precompute which substatement of a compound statement we
3351       // would jump to, and go straight there rather than performing a
3352       // linear scan each time.
3353     case Stmt::LabelStmtClass:
3354     case Stmt::AttributedStmtClass:
3355     case Stmt::DoStmtClass:
3356       break;
3357 
3358     case Stmt::CaseStmtClass:
3359     case Stmt::DefaultStmtClass:
3360       if (Case == S)
3361         Case = nullptr;
3362       break;
3363 
3364     case Stmt::IfStmtClass: {
3365       // FIXME: Precompute which side of an 'if' we would jump to, and go
3366       // straight there rather than scanning both sides.
3367       const IfStmt *IS = cast<IfStmt>(S);
3368 
3369       // Wrap the evaluation in a block scope, in case it's a DeclStmt
3370       // preceded by our switch label.
3371       BlockScopeRAII Scope(Info);
3372 
3373       EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
3374       if (ESR != ESR_CaseNotFound || !IS->getElse())
3375         return ESR;
3376       return EvaluateStmt(Result, Info, IS->getElse(), Case);
3377     }
3378 
3379     case Stmt::WhileStmtClass: {
3380       EvalStmtResult ESR =
3381           EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
3382       if (ESR != ESR_Continue)
3383         return ESR;
3384       break;
3385     }
3386 
3387     case Stmt::ForStmtClass: {
3388       const ForStmt *FS = cast<ForStmt>(S);
3389       EvalStmtResult ESR =
3390           EvaluateLoopBody(Result, Info, FS->getBody(), Case);
3391       if (ESR != ESR_Continue)
3392         return ESR;
3393       if (FS->getInc()) {
3394         FullExpressionRAII IncScope(Info);
3395         if (!EvaluateIgnoredValue(Info, FS->getInc()))
3396           return ESR_Failed;
3397       }
3398       break;
3399     }
3400 
3401     case Stmt::DeclStmtClass:
3402       // FIXME: If the variable has initialization that can't be jumped over,
3403       // bail out of any immediately-surrounding compound-statement too.
3404     default:
3405       return ESR_CaseNotFound;
3406     }
3407   }
3408 
3409   switch (S->getStmtClass()) {
3410   default:
3411     if (const Expr *E = dyn_cast<Expr>(S)) {
3412       // Don't bother evaluating beyond an expression-statement which couldn't
3413       // be evaluated.
3414       FullExpressionRAII Scope(Info);
3415       if (!EvaluateIgnoredValue(Info, E))
3416         return ESR_Failed;
3417       return ESR_Succeeded;
3418     }
3419 
3420     Info.Diag(S->getLocStart());
3421     return ESR_Failed;
3422 
3423   case Stmt::NullStmtClass:
3424     return ESR_Succeeded;
3425 
3426   case Stmt::DeclStmtClass: {
3427     const DeclStmt *DS = cast<DeclStmt>(S);
3428     for (const auto *DclIt : DS->decls()) {
3429       // Each declaration initialization is its own full-expression.
3430       // FIXME: This isn't quite right; if we're performing aggregate
3431       // initialization, each braced subexpression is its own full-expression.
3432       FullExpressionRAII Scope(Info);
3433       if (!EvaluateDecl(Info, DclIt) && !Info.keepEvaluatingAfterFailure())
3434         return ESR_Failed;
3435     }
3436     return ESR_Succeeded;
3437   }
3438 
3439   case Stmt::ReturnStmtClass: {
3440     const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
3441     FullExpressionRAII Scope(Info);
3442     if (RetExpr && !Evaluate(Result, Info, RetExpr))
3443       return ESR_Failed;
3444     return ESR_Returned;
3445   }
3446 
3447   case Stmt::CompoundStmtClass: {
3448     BlockScopeRAII Scope(Info);
3449 
3450     const CompoundStmt *CS = cast<CompoundStmt>(S);
3451     for (const auto *BI : CS->body()) {
3452       EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
3453       if (ESR == ESR_Succeeded)
3454         Case = nullptr;
3455       else if (ESR != ESR_CaseNotFound)
3456         return ESR;
3457     }
3458     return Case ? ESR_CaseNotFound : ESR_Succeeded;
3459   }
3460 
3461   case Stmt::IfStmtClass: {
3462     const IfStmt *IS = cast<IfStmt>(S);
3463 
3464     // Evaluate the condition, as either a var decl or as an expression.
3465     BlockScopeRAII Scope(Info);
3466     bool Cond;
3467     if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
3468       return ESR_Failed;
3469 
3470     if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
3471       EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
3472       if (ESR != ESR_Succeeded)
3473         return ESR;
3474     }
3475     return ESR_Succeeded;
3476   }
3477 
3478   case Stmt::WhileStmtClass: {
3479     const WhileStmt *WS = cast<WhileStmt>(S);
3480     while (true) {
3481       BlockScopeRAII Scope(Info);
3482       bool Continue;
3483       if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
3484                         Continue))
3485         return ESR_Failed;
3486       if (!Continue)
3487         break;
3488 
3489       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
3490       if (ESR != ESR_Continue)
3491         return ESR;
3492     }
3493     return ESR_Succeeded;
3494   }
3495 
3496   case Stmt::DoStmtClass: {
3497     const DoStmt *DS = cast<DoStmt>(S);
3498     bool Continue;
3499     do {
3500       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
3501       if (ESR != ESR_Continue)
3502         return ESR;
3503       Case = nullptr;
3504 
3505       FullExpressionRAII CondScope(Info);
3506       if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info))
3507         return ESR_Failed;
3508     } while (Continue);
3509     return ESR_Succeeded;
3510   }
3511 
3512   case Stmt::ForStmtClass: {
3513     const ForStmt *FS = cast<ForStmt>(S);
3514     BlockScopeRAII Scope(Info);
3515     if (FS->getInit()) {
3516       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
3517       if (ESR != ESR_Succeeded)
3518         return ESR;
3519     }
3520     while (true) {
3521       BlockScopeRAII Scope(Info);
3522       bool Continue = true;
3523       if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
3524                                          FS->getCond(), Continue))
3525         return ESR_Failed;
3526       if (!Continue)
3527         break;
3528 
3529       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
3530       if (ESR != ESR_Continue)
3531         return ESR;
3532 
3533       if (FS->getInc()) {
3534         FullExpressionRAII IncScope(Info);
3535         if (!EvaluateIgnoredValue(Info, FS->getInc()))
3536           return ESR_Failed;
3537       }
3538     }
3539     return ESR_Succeeded;
3540   }
3541 
3542   case Stmt::CXXForRangeStmtClass: {
3543     const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
3544     BlockScopeRAII Scope(Info);
3545 
3546     // Initialize the __range variable.
3547     EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
3548     if (ESR != ESR_Succeeded)
3549       return ESR;
3550 
3551     // Create the __begin and __end iterators.
3552     ESR = EvaluateStmt(Result, Info, FS->getBeginEndStmt());
3553     if (ESR != ESR_Succeeded)
3554       return ESR;
3555 
3556     while (true) {
3557       // Condition: __begin != __end.
3558       {
3559         bool Continue = true;
3560         FullExpressionRAII CondExpr(Info);
3561         if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
3562           return ESR_Failed;
3563         if (!Continue)
3564           break;
3565       }
3566 
3567       // User's variable declaration, initialized by *__begin.
3568       BlockScopeRAII InnerScope(Info);
3569       ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
3570       if (ESR != ESR_Succeeded)
3571         return ESR;
3572 
3573       // Loop body.
3574       ESR = EvaluateLoopBody(Result, Info, FS->getBody());
3575       if (ESR != ESR_Continue)
3576         return ESR;
3577 
3578       // Increment: ++__begin
3579       if (!EvaluateIgnoredValue(Info, FS->getInc()))
3580         return ESR_Failed;
3581     }
3582 
3583     return ESR_Succeeded;
3584   }
3585 
3586   case Stmt::SwitchStmtClass:
3587     return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
3588 
3589   case Stmt::ContinueStmtClass:
3590     return ESR_Continue;
3591 
3592   case Stmt::BreakStmtClass:
3593     return ESR_Break;
3594 
3595   case Stmt::LabelStmtClass:
3596     return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
3597 
3598   case Stmt::AttributedStmtClass:
3599     // As a general principle, C++11 attributes can be ignored without
3600     // any semantic impact.
3601     return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
3602                         Case);
3603 
3604   case Stmt::CaseStmtClass:
3605   case Stmt::DefaultStmtClass:
3606     return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
3607   }
3608 }
3609 
3610 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
3611 /// default constructor. If so, we'll fold it whether or not it's marked as
3612 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
3613 /// so we need special handling.
CheckTrivialDefaultConstructor(EvalInfo & Info,SourceLocation Loc,const CXXConstructorDecl * CD,bool IsValueInitialization)3614 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
3615                                            const CXXConstructorDecl *CD,
3616                                            bool IsValueInitialization) {
3617   if (!CD->isTrivial() || !CD->isDefaultConstructor())
3618     return false;
3619 
3620   // Value-initialization does not call a trivial default constructor, so such a
3621   // call is a core constant expression whether or not the constructor is
3622   // constexpr.
3623   if (!CD->isConstexpr() && !IsValueInitialization) {
3624     if (Info.getLangOpts().CPlusPlus11) {
3625       // FIXME: If DiagDecl is an implicitly-declared special member function,
3626       // we should be much more explicit about why it's not constexpr.
3627       Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
3628         << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
3629       Info.Note(CD->getLocation(), diag::note_declared_at);
3630     } else {
3631       Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
3632     }
3633   }
3634   return true;
3635 }
3636 
3637 /// CheckConstexprFunction - Check that a function can be called in a constant
3638 /// expression.
CheckConstexprFunction(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Declaration,const FunctionDecl * Definition)3639 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
3640                                    const FunctionDecl *Declaration,
3641                                    const FunctionDecl *Definition) {
3642   // Potential constant expressions can contain calls to declared, but not yet
3643   // defined, constexpr functions.
3644   if (Info.checkingPotentialConstantExpression() && !Definition &&
3645       Declaration->isConstexpr())
3646     return false;
3647 
3648   // Bail out with no diagnostic if the function declaration itself is invalid.
3649   // We will have produced a relevant diagnostic while parsing it.
3650   if (Declaration->isInvalidDecl())
3651     return false;
3652 
3653   // Can we evaluate this function call?
3654   if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl())
3655     return true;
3656 
3657   if (Info.getLangOpts().CPlusPlus11) {
3658     const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
3659     // FIXME: If DiagDecl is an implicitly-declared special member function, we
3660     // should be much more explicit about why it's not constexpr.
3661     Info.Diag(CallLoc, diag::note_constexpr_invalid_function, 1)
3662       << DiagDecl->isConstexpr() << isa<CXXConstructorDecl>(DiagDecl)
3663       << DiagDecl;
3664     Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
3665   } else {
3666     Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
3667   }
3668   return false;
3669 }
3670 
3671 /// Determine if a class has any fields that might need to be copied by a
3672 /// trivial copy or move operation.
hasFields(const CXXRecordDecl * RD)3673 static bool hasFields(const CXXRecordDecl *RD) {
3674   if (!RD || RD->isEmpty())
3675     return false;
3676   for (auto *FD : RD->fields()) {
3677     if (FD->isUnnamedBitfield())
3678       continue;
3679     return true;
3680   }
3681   for (auto &Base : RD->bases())
3682     if (hasFields(Base.getType()->getAsCXXRecordDecl()))
3683       return true;
3684   return false;
3685 }
3686 
3687 namespace {
3688 typedef SmallVector<APValue, 8> ArgVector;
3689 }
3690 
3691 /// EvaluateArgs - Evaluate the arguments to a function call.
EvaluateArgs(ArrayRef<const Expr * > Args,ArgVector & ArgValues,EvalInfo & Info)3692 static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
3693                          EvalInfo &Info) {
3694   bool Success = true;
3695   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
3696        I != E; ++I) {
3697     if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
3698       // If we're checking for a potential constant expression, evaluate all
3699       // initializers even if some of them fail.
3700       if (!Info.keepEvaluatingAfterFailure())
3701         return false;
3702       Success = false;
3703     }
3704   }
3705   return Success;
3706 }
3707 
3708 /// Evaluate a function call.
HandleFunctionCall(SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,ArrayRef<const Expr * > Args,const Stmt * Body,EvalInfo & Info,APValue & Result)3709 static bool HandleFunctionCall(SourceLocation CallLoc,
3710                                const FunctionDecl *Callee, const LValue *This,
3711                                ArrayRef<const Expr*> Args, const Stmt *Body,
3712                                EvalInfo &Info, APValue &Result) {
3713   ArgVector ArgValues(Args.size());
3714   if (!EvaluateArgs(Args, ArgValues, Info))
3715     return false;
3716 
3717   if (!Info.CheckCallLimit(CallLoc))
3718     return false;
3719 
3720   CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
3721 
3722   // For a trivial copy or move assignment, perform an APValue copy. This is
3723   // essential for unions, where the operations performed by the assignment
3724   // operator cannot be represented as statements.
3725   //
3726   // Skip this for non-union classes with no fields; in that case, the defaulted
3727   // copy/move does not actually read the object.
3728   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
3729   if (MD && MD->isDefaulted() && MD->isTrivial() &&
3730       (MD->getParent()->isUnion() || hasFields(MD->getParent()))) {
3731     assert(This &&
3732            (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
3733     LValue RHS;
3734     RHS.setFrom(Info.Ctx, ArgValues[0]);
3735     APValue RHSValue;
3736     if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
3737                                         RHS, RHSValue))
3738       return false;
3739     if (!handleAssignment(Info, Args[0], *This, MD->getThisType(Info.Ctx),
3740                           RHSValue))
3741       return false;
3742     This->moveInto(Result);
3743     return true;
3744   }
3745 
3746   EvalStmtResult ESR = EvaluateStmt(Result, Info, Body);
3747   if (ESR == ESR_Succeeded) {
3748     if (Callee->getReturnType()->isVoidType())
3749       return true;
3750     Info.Diag(Callee->getLocEnd(), diag::note_constexpr_no_return);
3751   }
3752   return ESR == ESR_Returned;
3753 }
3754 
3755 /// Evaluate a constructor call.
HandleConstructorCall(SourceLocation CallLoc,const LValue & This,ArrayRef<const Expr * > Args,const CXXConstructorDecl * Definition,EvalInfo & Info,APValue & Result)3756 static bool HandleConstructorCall(SourceLocation CallLoc, const LValue &This,
3757                                   ArrayRef<const Expr*> Args,
3758                                   const CXXConstructorDecl *Definition,
3759                                   EvalInfo &Info, APValue &Result) {
3760   ArgVector ArgValues(Args.size());
3761   if (!EvaluateArgs(Args, ArgValues, Info))
3762     return false;
3763 
3764   if (!Info.CheckCallLimit(CallLoc))
3765     return false;
3766 
3767   const CXXRecordDecl *RD = Definition->getParent();
3768   if (RD->getNumVBases()) {
3769     Info.Diag(CallLoc, diag::note_constexpr_virtual_base) << RD;
3770     return false;
3771   }
3772 
3773   CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues.data());
3774 
3775   // If it's a delegating constructor, just delegate.
3776   if (Definition->isDelegatingConstructor()) {
3777     CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
3778     {
3779       FullExpressionRAII InitScope(Info);
3780       if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()))
3781         return false;
3782     }
3783     return EvaluateStmt(Result, Info, Definition->getBody()) != ESR_Failed;
3784   }
3785 
3786   // For a trivial copy or move constructor, perform an APValue copy. This is
3787   // essential for unions (or classes with anonymous union members), where the
3788   // operations performed by the constructor cannot be represented by
3789   // ctor-initializers.
3790   //
3791   // Skip this for empty non-union classes; we should not perform an
3792   // lvalue-to-rvalue conversion on them because their copy constructor does not
3793   // actually read them.
3794   if (Definition->isDefaulted() &&
3795       ((Definition->isCopyConstructor() && Definition->isTrivial()) ||
3796        (Definition->isMoveConstructor() && Definition->isTrivial())) &&
3797       (Definition->getParent()->isUnion() ||
3798        hasFields(Definition->getParent()))) {
3799     LValue RHS;
3800     RHS.setFrom(Info.Ctx, ArgValues[0]);
3801     return handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
3802                                           RHS, Result);
3803   }
3804 
3805   // Reserve space for the struct members.
3806   if (!RD->isUnion() && Result.isUninit())
3807     Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
3808                      std::distance(RD->field_begin(), RD->field_end()));
3809 
3810   if (RD->isInvalidDecl()) return false;
3811   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3812 
3813   // A scope for temporaries lifetime-extended by reference members.
3814   BlockScopeRAII LifetimeExtendedScope(Info);
3815 
3816   bool Success = true;
3817   unsigned BasesSeen = 0;
3818 #ifndef NDEBUG
3819   CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
3820 #endif
3821   for (const auto *I : Definition->inits()) {
3822     LValue Subobject = This;
3823     APValue *Value = &Result;
3824 
3825     // Determine the subobject to initialize.
3826     FieldDecl *FD = nullptr;
3827     if (I->isBaseInitializer()) {
3828       QualType BaseType(I->getBaseClass(), 0);
3829 #ifndef NDEBUG
3830       // Non-virtual base classes are initialized in the order in the class
3831       // definition. We have already checked for virtual base classes.
3832       assert(!BaseIt->isVirtual() && "virtual base for literal type");
3833       assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
3834              "base class initializers not in expected order");
3835       ++BaseIt;
3836 #endif
3837       if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
3838                                   BaseType->getAsCXXRecordDecl(), &Layout))
3839         return false;
3840       Value = &Result.getStructBase(BasesSeen++);
3841     } else if ((FD = I->getMember())) {
3842       if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
3843         return false;
3844       if (RD->isUnion()) {
3845         Result = APValue(FD);
3846         Value = &Result.getUnionValue();
3847       } else {
3848         Value = &Result.getStructField(FD->getFieldIndex());
3849       }
3850     } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
3851       // Walk the indirect field decl's chain to find the object to initialize,
3852       // and make sure we've initialized every step along it.
3853       for (auto *C : IFD->chain()) {
3854         FD = cast<FieldDecl>(C);
3855         CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
3856         // Switch the union field if it differs. This happens if we had
3857         // preceding zero-initialization, and we're now initializing a union
3858         // subobject other than the first.
3859         // FIXME: In this case, the values of the other subobjects are
3860         // specified, since zero-initialization sets all padding bits to zero.
3861         if (Value->isUninit() ||
3862             (Value->isUnion() && Value->getUnionField() != FD)) {
3863           if (CD->isUnion())
3864             *Value = APValue(FD);
3865           else
3866             *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
3867                              std::distance(CD->field_begin(), CD->field_end()));
3868         }
3869         if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
3870           return false;
3871         if (CD->isUnion())
3872           Value = &Value->getUnionValue();
3873         else
3874           Value = &Value->getStructField(FD->getFieldIndex());
3875       }
3876     } else {
3877       llvm_unreachable("unknown base initializer kind");
3878     }
3879 
3880     FullExpressionRAII InitScope(Info);
3881     if (!EvaluateInPlace(*Value, Info, Subobject, I->getInit()) ||
3882         (FD && FD->isBitField() && !truncateBitfieldValue(Info, I->getInit(),
3883                                                           *Value, FD))) {
3884       // If we're checking for a potential constant expression, evaluate all
3885       // initializers even if some of them fail.
3886       if (!Info.keepEvaluatingAfterFailure())
3887         return false;
3888       Success = false;
3889     }
3890   }
3891 
3892   return Success &&
3893          EvaluateStmt(Result, Info, Definition->getBody()) != ESR_Failed;
3894 }
3895 
3896 //===----------------------------------------------------------------------===//
3897 // Generic Evaluation
3898 //===----------------------------------------------------------------------===//
3899 namespace {
3900 
3901 template <class Derived>
3902 class ExprEvaluatorBase
3903   : public ConstStmtVisitor<Derived, bool> {
3904 private:
DerivedSuccess(const APValue & V,const Expr * E)3905   bool DerivedSuccess(const APValue &V, const Expr *E) {
3906     return static_cast<Derived*>(this)->Success(V, E);
3907   }
DerivedZeroInitialization(const Expr * E)3908   bool DerivedZeroInitialization(const Expr *E) {
3909     return static_cast<Derived*>(this)->ZeroInitialization(E);
3910   }
3911 
3912   // Check whether a conditional operator with a non-constant condition is a
3913   // potential constant expression. If neither arm is a potential constant
3914   // expression, then the conditional operator is not either.
3915   template<typename ConditionalOperator>
CheckPotentialConstantConditional(const ConditionalOperator * E)3916   void CheckPotentialConstantConditional(const ConditionalOperator *E) {
3917     assert(Info.checkingPotentialConstantExpression());
3918 
3919     // Speculatively evaluate both arms.
3920     {
3921       SmallVector<PartialDiagnosticAt, 8> Diag;
3922       SpeculativeEvaluationRAII Speculate(Info, &Diag);
3923 
3924       StmtVisitorTy::Visit(E->getFalseExpr());
3925       if (Diag.empty())
3926         return;
3927 
3928       Diag.clear();
3929       StmtVisitorTy::Visit(E->getTrueExpr());
3930       if (Diag.empty())
3931         return;
3932     }
3933 
3934     Error(E, diag::note_constexpr_conditional_never_const);
3935   }
3936 
3937 
3938   template<typename ConditionalOperator>
HandleConditionalOperator(const ConditionalOperator * E)3939   bool HandleConditionalOperator(const ConditionalOperator *E) {
3940     bool BoolResult;
3941     if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
3942       if (Info.checkingPotentialConstantExpression())
3943         CheckPotentialConstantConditional(E);
3944       return false;
3945     }
3946 
3947     Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
3948     return StmtVisitorTy::Visit(EvalExpr);
3949   }
3950 
3951 protected:
3952   EvalInfo &Info;
3953   typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
3954   typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
3955 
CCEDiag(const Expr * E,diag::kind D)3956   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
3957     return Info.CCEDiag(E, D);
3958   }
3959 
ZeroInitialization(const Expr * E)3960   bool ZeroInitialization(const Expr *E) { return Error(E); }
3961 
3962 public:
ExprEvaluatorBase(EvalInfo & Info)3963   ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
3964 
getEvalInfo()3965   EvalInfo &getEvalInfo() { return Info; }
3966 
3967   /// Report an evaluation error. This should only be called when an error is
3968   /// first discovered. When propagating an error, just return false.
Error(const Expr * E,diag::kind D)3969   bool Error(const Expr *E, diag::kind D) {
3970     Info.Diag(E, D);
3971     return false;
3972   }
Error(const Expr * E)3973   bool Error(const Expr *E) {
3974     return Error(E, diag::note_invalid_subexpr_in_const_expr);
3975   }
3976 
VisitStmt(const Stmt *)3977   bool VisitStmt(const Stmt *) {
3978     llvm_unreachable("Expression evaluator should not be called on stmts");
3979   }
VisitExpr(const Expr * E)3980   bool VisitExpr(const Expr *E) {
3981     return Error(E);
3982   }
3983 
VisitParenExpr(const ParenExpr * E)3984   bool VisitParenExpr(const ParenExpr *E)
3985     { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryExtension(const UnaryOperator * E)3986   bool VisitUnaryExtension(const UnaryOperator *E)
3987     { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryPlus(const UnaryOperator * E)3988   bool VisitUnaryPlus(const UnaryOperator *E)
3989     { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitChooseExpr(const ChooseExpr * E)3990   bool VisitChooseExpr(const ChooseExpr *E)
3991     { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
VisitGenericSelectionExpr(const GenericSelectionExpr * E)3992   bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
3993     { return StmtVisitorTy::Visit(E->getResultExpr()); }
VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr * E)3994   bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
3995     { return StmtVisitorTy::Visit(E->getReplacement()); }
VisitCXXDefaultArgExpr(const CXXDefaultArgExpr * E)3996   bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
3997     { return StmtVisitorTy::Visit(E->getExpr()); }
VisitCXXDefaultInitExpr(const CXXDefaultInitExpr * E)3998   bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
3999     // The initializer may not have been parsed yet, or might be erroneous.
4000     if (!E->getExpr())
4001       return Error(E);
4002     return StmtVisitorTy::Visit(E->getExpr());
4003   }
4004   // We cannot create any objects for which cleanups are required, so there is
4005   // nothing to do here; all cleanups must come from unevaluated subexpressions.
VisitExprWithCleanups(const ExprWithCleanups * E)4006   bool VisitExprWithCleanups(const ExprWithCleanups *E)
4007     { return StmtVisitorTy::Visit(E->getSubExpr()); }
4008 
VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr * E)4009   bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
4010     CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
4011     return static_cast<Derived*>(this)->VisitCastExpr(E);
4012   }
VisitCXXDynamicCastExpr(const CXXDynamicCastExpr * E)4013   bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
4014     CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
4015     return static_cast<Derived*>(this)->VisitCastExpr(E);
4016   }
4017 
VisitBinaryOperator(const BinaryOperator * E)4018   bool VisitBinaryOperator(const BinaryOperator *E) {
4019     switch (E->getOpcode()) {
4020     default:
4021       return Error(E);
4022 
4023     case BO_Comma:
4024       VisitIgnoredValue(E->getLHS());
4025       return StmtVisitorTy::Visit(E->getRHS());
4026 
4027     case BO_PtrMemD:
4028     case BO_PtrMemI: {
4029       LValue Obj;
4030       if (!HandleMemberPointerAccess(Info, E, Obj))
4031         return false;
4032       APValue Result;
4033       if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
4034         return false;
4035       return DerivedSuccess(Result, E);
4036     }
4037     }
4038   }
4039 
VisitBinaryConditionalOperator(const BinaryConditionalOperator * E)4040   bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
4041     // Evaluate and cache the common expression. We treat it as a temporary,
4042     // even though it's not quite the same thing.
4043     if (!Evaluate(Info.CurrentCall->createTemporary(E->getOpaqueValue(), false),
4044                   Info, E->getCommon()))
4045       return false;
4046 
4047     return HandleConditionalOperator(E);
4048   }
4049 
VisitConditionalOperator(const ConditionalOperator * E)4050   bool VisitConditionalOperator(const ConditionalOperator *E) {
4051     bool IsBcpCall = false;
4052     // If the condition (ignoring parens) is a __builtin_constant_p call,
4053     // the result is a constant expression if it can be folded without
4054     // side-effects. This is an important GNU extension. See GCC PR38377
4055     // for discussion.
4056     if (const CallExpr *CallCE =
4057           dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
4058       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
4059         IsBcpCall = true;
4060 
4061     // Always assume __builtin_constant_p(...) ? ... : ... is a potential
4062     // constant expression; we can't check whether it's potentially foldable.
4063     if (Info.checkingPotentialConstantExpression() && IsBcpCall)
4064       return false;
4065 
4066     FoldConstant Fold(Info, IsBcpCall);
4067     if (!HandleConditionalOperator(E)) {
4068       Fold.keepDiagnostics();
4069       return false;
4070     }
4071 
4072     return true;
4073   }
4074 
VisitOpaqueValueExpr(const OpaqueValueExpr * E)4075   bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
4076     if (APValue *Value = Info.CurrentCall->getTemporary(E))
4077       return DerivedSuccess(*Value, E);
4078 
4079     const Expr *Source = E->getSourceExpr();
4080     if (!Source)
4081       return Error(E);
4082     if (Source == E) { // sanity checking.
4083       assert(0 && "OpaqueValueExpr recursively refers to itself");
4084       return Error(E);
4085     }
4086     return StmtVisitorTy::Visit(Source);
4087   }
4088 
VisitCallExpr(const CallExpr * E)4089   bool VisitCallExpr(const CallExpr *E) {
4090     const Expr *Callee = E->getCallee()->IgnoreParens();
4091     QualType CalleeType = Callee->getType();
4092 
4093     const FunctionDecl *FD = nullptr;
4094     LValue *This = nullptr, ThisVal;
4095     auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
4096     bool HasQualifier = false;
4097 
4098     // Extract function decl and 'this' pointer from the callee.
4099     if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
4100       const ValueDecl *Member = nullptr;
4101       if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
4102         // Explicit bound member calls, such as x.f() or p->g();
4103         if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
4104           return false;
4105         Member = ME->getMemberDecl();
4106         This = &ThisVal;
4107         HasQualifier = ME->hasQualifier();
4108       } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
4109         // Indirect bound member calls ('.*' or '->*').
4110         Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
4111         if (!Member) return false;
4112         This = &ThisVal;
4113       } else
4114         return Error(Callee);
4115 
4116       FD = dyn_cast<FunctionDecl>(Member);
4117       if (!FD)
4118         return Error(Callee);
4119     } else if (CalleeType->isFunctionPointerType()) {
4120       LValue Call;
4121       if (!EvaluatePointer(Callee, Call, Info))
4122         return false;
4123 
4124       if (!Call.getLValueOffset().isZero())
4125         return Error(Callee);
4126       FD = dyn_cast_or_null<FunctionDecl>(
4127                              Call.getLValueBase().dyn_cast<const ValueDecl*>());
4128       if (!FD)
4129         return Error(Callee);
4130 
4131       // Overloaded operator calls to member functions are represented as normal
4132       // calls with '*this' as the first argument.
4133       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
4134       if (MD && !MD->isStatic()) {
4135         // FIXME: When selecting an implicit conversion for an overloaded
4136         // operator delete, we sometimes try to evaluate calls to conversion
4137         // operators without a 'this' parameter!
4138         if (Args.empty())
4139           return Error(E);
4140 
4141         if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
4142           return false;
4143         This = &ThisVal;
4144         Args = Args.slice(1);
4145       }
4146 
4147       // Don't call function pointers which have been cast to some other type.
4148       if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
4149         return Error(E);
4150     } else
4151       return Error(E);
4152 
4153     if (This && !This->checkSubobject(Info, E, CSK_This))
4154       return false;
4155 
4156     // DR1358 allows virtual constexpr functions in some cases. Don't allow
4157     // calls to such functions in constant expressions.
4158     if (This && !HasQualifier &&
4159         isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
4160       return Error(E, diag::note_constexpr_virtual_call);
4161 
4162     const FunctionDecl *Definition = nullptr;
4163     Stmt *Body = FD->getBody(Definition);
4164     APValue Result;
4165 
4166     if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) ||
4167         !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body,
4168                             Info, Result))
4169       return false;
4170 
4171     return DerivedSuccess(Result, E);
4172   }
4173 
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)4174   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
4175     return StmtVisitorTy::Visit(E->getInitializer());
4176   }
VisitInitListExpr(const InitListExpr * E)4177   bool VisitInitListExpr(const InitListExpr *E) {
4178     if (E->getNumInits() == 0)
4179       return DerivedZeroInitialization(E);
4180     if (E->getNumInits() == 1)
4181       return StmtVisitorTy::Visit(E->getInit(0));
4182     return Error(E);
4183   }
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)4184   bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
4185     return DerivedZeroInitialization(E);
4186   }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)4187   bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
4188     return DerivedZeroInitialization(E);
4189   }
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)4190   bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
4191     return DerivedZeroInitialization(E);
4192   }
4193 
4194   /// A member expression where the object is a prvalue is itself a prvalue.
VisitMemberExpr(const MemberExpr * E)4195   bool VisitMemberExpr(const MemberExpr *E) {
4196     assert(!E->isArrow() && "missing call to bound member function?");
4197 
4198     APValue Val;
4199     if (!Evaluate(Val, Info, E->getBase()))
4200       return false;
4201 
4202     QualType BaseTy = E->getBase()->getType();
4203 
4204     const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
4205     if (!FD) return Error(E);
4206     assert(!FD->getType()->isReferenceType() && "prvalue reference?");
4207     assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
4208            FD->getParent()->getCanonicalDecl() && "record / field mismatch");
4209 
4210     CompleteObject Obj(&Val, BaseTy);
4211     SubobjectDesignator Designator(BaseTy);
4212     Designator.addDeclUnchecked(FD);
4213 
4214     APValue Result;
4215     return extractSubobject(Info, E, Obj, Designator, Result) &&
4216            DerivedSuccess(Result, E);
4217   }
4218 
VisitCastExpr(const CastExpr * E)4219   bool VisitCastExpr(const CastExpr *E) {
4220     switch (E->getCastKind()) {
4221     default:
4222       break;
4223 
4224     case CK_AtomicToNonAtomic: {
4225       APValue AtomicVal;
4226       if (!EvaluateAtomic(E->getSubExpr(), AtomicVal, Info))
4227         return false;
4228       return DerivedSuccess(AtomicVal, E);
4229     }
4230 
4231     case CK_NoOp:
4232     case CK_UserDefinedConversion:
4233       return StmtVisitorTy::Visit(E->getSubExpr());
4234 
4235     case CK_LValueToRValue: {
4236       LValue LVal;
4237       if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
4238         return false;
4239       APValue RVal;
4240       // Note, we use the subexpression's type in order to retain cv-qualifiers.
4241       if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
4242                                           LVal, RVal))
4243         return false;
4244       return DerivedSuccess(RVal, E);
4245     }
4246     }
4247 
4248     return Error(E);
4249   }
4250 
VisitUnaryPostInc(const UnaryOperator * UO)4251   bool VisitUnaryPostInc(const UnaryOperator *UO) {
4252     return VisitUnaryPostIncDec(UO);
4253   }
VisitUnaryPostDec(const UnaryOperator * UO)4254   bool VisitUnaryPostDec(const UnaryOperator *UO) {
4255     return VisitUnaryPostIncDec(UO);
4256   }
VisitUnaryPostIncDec(const UnaryOperator * UO)4257   bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
4258     if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4259       return Error(UO);
4260 
4261     LValue LVal;
4262     if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
4263       return false;
4264     APValue RVal;
4265     if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
4266                       UO->isIncrementOp(), &RVal))
4267       return false;
4268     return DerivedSuccess(RVal, UO);
4269   }
4270 
VisitStmtExpr(const StmtExpr * E)4271   bool VisitStmtExpr(const StmtExpr *E) {
4272     // We will have checked the full-expressions inside the statement expression
4273     // when they were completed, and don't need to check them again now.
4274     if (Info.checkingForOverflow())
4275       return Error(E);
4276 
4277     BlockScopeRAII Scope(Info);
4278     const CompoundStmt *CS = E->getSubStmt();
4279     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
4280                                            BE = CS->body_end();
4281          /**/; ++BI) {
4282       if (BI + 1 == BE) {
4283         const Expr *FinalExpr = dyn_cast<Expr>(*BI);
4284         if (!FinalExpr) {
4285           Info.Diag((*BI)->getLocStart(),
4286                     diag::note_constexpr_stmt_expr_unsupported);
4287           return false;
4288         }
4289         return this->Visit(FinalExpr);
4290       }
4291 
4292       APValue ReturnValue;
4293       EvalStmtResult ESR = EvaluateStmt(ReturnValue, Info, *BI);
4294       if (ESR != ESR_Succeeded) {
4295         // FIXME: If the statement-expression terminated due to 'return',
4296         // 'break', or 'continue', it would be nice to propagate that to
4297         // the outer statement evaluation rather than bailing out.
4298         if (ESR != ESR_Failed)
4299           Info.Diag((*BI)->getLocStart(),
4300                     diag::note_constexpr_stmt_expr_unsupported);
4301         return false;
4302       }
4303     }
4304   }
4305 
4306   /// Visit a value which is evaluated, but whose value is ignored.
VisitIgnoredValue(const Expr * E)4307   void VisitIgnoredValue(const Expr *E) {
4308     EvaluateIgnoredValue(Info, E);
4309   }
4310 };
4311 
4312 }
4313 
4314 //===----------------------------------------------------------------------===//
4315 // Common base class for lvalue and temporary evaluation.
4316 //===----------------------------------------------------------------------===//
4317 namespace {
4318 template<class Derived>
4319 class LValueExprEvaluatorBase
4320   : public ExprEvaluatorBase<Derived> {
4321 protected:
4322   LValue &Result;
4323   typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
4324   typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
4325 
Success(APValue::LValueBase B)4326   bool Success(APValue::LValueBase B) {
4327     Result.set(B);
4328     return true;
4329   }
4330 
4331 public:
LValueExprEvaluatorBase(EvalInfo & Info,LValue & Result)4332   LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
4333     ExprEvaluatorBaseTy(Info), Result(Result) {}
4334 
Success(const APValue & V,const Expr * E)4335   bool Success(const APValue &V, const Expr *E) {
4336     Result.setFrom(this->Info.Ctx, V);
4337     return true;
4338   }
4339 
VisitMemberExpr(const MemberExpr * E)4340   bool VisitMemberExpr(const MemberExpr *E) {
4341     // Handle non-static data members.
4342     QualType BaseTy;
4343     if (E->isArrow()) {
4344       if (!EvaluatePointer(E->getBase(), Result, this->Info))
4345         return false;
4346       BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
4347     } else if (E->getBase()->isRValue()) {
4348       assert(E->getBase()->getType()->isRecordType());
4349       if (!EvaluateTemporary(E->getBase(), Result, this->Info))
4350         return false;
4351       BaseTy = E->getBase()->getType();
4352     } else {
4353       if (!this->Visit(E->getBase()))
4354         return false;
4355       BaseTy = E->getBase()->getType();
4356     }
4357 
4358     const ValueDecl *MD = E->getMemberDecl();
4359     if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
4360       assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
4361              FD->getParent()->getCanonicalDecl() && "record / field mismatch");
4362       (void)BaseTy;
4363       if (!HandleLValueMember(this->Info, E, Result, FD))
4364         return false;
4365     } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
4366       if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
4367         return false;
4368     } else
4369       return this->Error(E);
4370 
4371     if (MD->getType()->isReferenceType()) {
4372       APValue RefValue;
4373       if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
4374                                           RefValue))
4375         return false;
4376       return Success(RefValue, E);
4377     }
4378     return true;
4379   }
4380 
VisitBinaryOperator(const BinaryOperator * E)4381   bool VisitBinaryOperator(const BinaryOperator *E) {
4382     switch (E->getOpcode()) {
4383     default:
4384       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
4385 
4386     case BO_PtrMemD:
4387     case BO_PtrMemI:
4388       return HandleMemberPointerAccess(this->Info, E, Result);
4389     }
4390   }
4391 
VisitCastExpr(const CastExpr * E)4392   bool VisitCastExpr(const CastExpr *E) {
4393     switch (E->getCastKind()) {
4394     default:
4395       return ExprEvaluatorBaseTy::VisitCastExpr(E);
4396 
4397     case CK_DerivedToBase:
4398     case CK_UncheckedDerivedToBase:
4399       if (!this->Visit(E->getSubExpr()))
4400         return false;
4401 
4402       // Now figure out the necessary offset to add to the base LV to get from
4403       // the derived class to the base class.
4404       return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
4405                                   Result);
4406     }
4407   }
4408 };
4409 }
4410 
4411 //===----------------------------------------------------------------------===//
4412 // LValue Evaluation
4413 //
4414 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
4415 // function designators (in C), decl references to void objects (in C), and
4416 // temporaries (if building with -Wno-address-of-temporary).
4417 //
4418 // LValue evaluation produces values comprising a base expression of one of the
4419 // following types:
4420 // - Declarations
4421 //  * VarDecl
4422 //  * FunctionDecl
4423 // - Literals
4424 //  * CompoundLiteralExpr in C
4425 //  * StringLiteral
4426 //  * CXXTypeidExpr
4427 //  * PredefinedExpr
4428 //  * ObjCStringLiteralExpr
4429 //  * ObjCEncodeExpr
4430 //  * AddrLabelExpr
4431 //  * BlockExpr
4432 //  * CallExpr for a MakeStringConstant builtin
4433 // - Locals and temporaries
4434 //  * MaterializeTemporaryExpr
4435 //  * Any Expr, with a CallIndex indicating the function in which the temporary
4436 //    was evaluated, for cases where the MaterializeTemporaryExpr is missing
4437 //    from the AST (FIXME).
4438 //  * A MaterializeTemporaryExpr that has static storage duration, with no
4439 //    CallIndex, for a lifetime-extended temporary.
4440 // plus an offset in bytes.
4441 //===----------------------------------------------------------------------===//
4442 namespace {
4443 class LValueExprEvaluator
4444   : public LValueExprEvaluatorBase<LValueExprEvaluator> {
4445 public:
LValueExprEvaluator(EvalInfo & Info,LValue & Result)4446   LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
4447     LValueExprEvaluatorBaseTy(Info, Result) {}
4448 
4449   bool VisitVarDecl(const Expr *E, const VarDecl *VD);
4450   bool VisitUnaryPreIncDec(const UnaryOperator *UO);
4451 
4452   bool VisitDeclRefExpr(const DeclRefExpr *E);
VisitPredefinedExpr(const PredefinedExpr * E)4453   bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
4454   bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
4455   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
4456   bool VisitMemberExpr(const MemberExpr *E);
VisitStringLiteral(const StringLiteral * E)4457   bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
VisitObjCEncodeExpr(const ObjCEncodeExpr * E)4458   bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
4459   bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
4460   bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
4461   bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
4462   bool VisitUnaryDeref(const UnaryOperator *E);
4463   bool VisitUnaryReal(const UnaryOperator *E);
4464   bool VisitUnaryImag(const UnaryOperator *E);
VisitUnaryPreInc(const UnaryOperator * UO)4465   bool VisitUnaryPreInc(const UnaryOperator *UO) {
4466     return VisitUnaryPreIncDec(UO);
4467   }
VisitUnaryPreDec(const UnaryOperator * UO)4468   bool VisitUnaryPreDec(const UnaryOperator *UO) {
4469     return VisitUnaryPreIncDec(UO);
4470   }
4471   bool VisitBinAssign(const BinaryOperator *BO);
4472   bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
4473 
VisitCastExpr(const CastExpr * E)4474   bool VisitCastExpr(const CastExpr *E) {
4475     switch (E->getCastKind()) {
4476     default:
4477       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
4478 
4479     case CK_LValueBitCast:
4480       this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4481       if (!Visit(E->getSubExpr()))
4482         return false;
4483       Result.Designator.setInvalid();
4484       return true;
4485 
4486     case CK_BaseToDerived:
4487       if (!Visit(E->getSubExpr()))
4488         return false;
4489       return HandleBaseToDerivedCast(Info, E, Result);
4490     }
4491   }
4492 };
4493 } // end anonymous namespace
4494 
4495 /// Evaluate an expression as an lvalue. This can be legitimately called on
4496 /// expressions which are not glvalues, in two cases:
4497 ///  * function designators in C, and
4498 ///  * "extern void" objects
EvaluateLValue(const Expr * E,LValue & Result,EvalInfo & Info)4499 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info) {
4500   assert(E->isGLValue() || E->getType()->isFunctionType() ||
4501          E->getType()->isVoidType());
4502   return LValueExprEvaluator(Info, Result).Visit(E);
4503 }
4504 
VisitDeclRefExpr(const DeclRefExpr * E)4505 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
4506   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
4507     return Success(FD);
4508   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
4509     return VisitVarDecl(E, VD);
4510   return Error(E);
4511 }
4512 
VisitVarDecl(const Expr * E,const VarDecl * VD)4513 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
4514   CallStackFrame *Frame = nullptr;
4515   if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1)
4516     Frame = Info.CurrentCall;
4517 
4518   if (!VD->getType()->isReferenceType()) {
4519     if (Frame) {
4520       Result.set(VD, Frame->Index);
4521       return true;
4522     }
4523     return Success(VD);
4524   }
4525 
4526   APValue *V;
4527   if (!evaluateVarDeclInit(Info, E, VD, Frame, V))
4528     return false;
4529   if (V->isUninit()) {
4530     if (!Info.checkingPotentialConstantExpression())
4531       Info.Diag(E, diag::note_constexpr_use_uninit_reference);
4532     return false;
4533   }
4534   return Success(*V, E);
4535 }
4536 
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)4537 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
4538     const MaterializeTemporaryExpr *E) {
4539   // Walk through the expression to find the materialized temporary itself.
4540   SmallVector<const Expr *, 2> CommaLHSs;
4541   SmallVector<SubobjectAdjustment, 2> Adjustments;
4542   const Expr *Inner = E->GetTemporaryExpr()->
4543       skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
4544 
4545   // If we passed any comma operators, evaluate their LHSs.
4546   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
4547     if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
4548       return false;
4549 
4550   // A materialized temporary with static storage duration can appear within the
4551   // result of a constant expression evaluation, so we need to preserve its
4552   // value for use outside this evaluation.
4553   APValue *Value;
4554   if (E->getStorageDuration() == SD_Static) {
4555     Value = Info.Ctx.getMaterializedTemporaryValue(E, true);
4556     *Value = APValue();
4557     Result.set(E);
4558   } else {
4559     Value = &Info.CurrentCall->
4560         createTemporary(E, E->getStorageDuration() == SD_Automatic);
4561     Result.set(E, Info.CurrentCall->Index);
4562   }
4563 
4564   QualType Type = Inner->getType();
4565 
4566   // Materialize the temporary itself.
4567   if (!EvaluateInPlace(*Value, Info, Result, Inner) ||
4568       (E->getStorageDuration() == SD_Static &&
4569        !CheckConstantExpression(Info, E->getExprLoc(), Type, *Value))) {
4570     *Value = APValue();
4571     return false;
4572   }
4573 
4574   // Adjust our lvalue to refer to the desired subobject.
4575   for (unsigned I = Adjustments.size(); I != 0; /**/) {
4576     --I;
4577     switch (Adjustments[I].Kind) {
4578     case SubobjectAdjustment::DerivedToBaseAdjustment:
4579       if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
4580                                 Type, Result))
4581         return false;
4582       Type = Adjustments[I].DerivedToBase.BasePath->getType();
4583       break;
4584 
4585     case SubobjectAdjustment::FieldAdjustment:
4586       if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
4587         return false;
4588       Type = Adjustments[I].Field->getType();
4589       break;
4590 
4591     case SubobjectAdjustment::MemberPointerAdjustment:
4592       if (!HandleMemberPointerAccess(this->Info, Type, Result,
4593                                      Adjustments[I].Ptr.RHS))
4594         return false;
4595       Type = Adjustments[I].Ptr.MPT->getPointeeType();
4596       break;
4597     }
4598   }
4599 
4600   return true;
4601 }
4602 
4603 bool
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)4604 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
4605   assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
4606   // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
4607   // only see this when folding in C, so there's no standard to follow here.
4608   return Success(E);
4609 }
4610 
VisitCXXTypeidExpr(const CXXTypeidExpr * E)4611 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
4612   if (!E->isPotentiallyEvaluated())
4613     return Success(E);
4614 
4615   Info.Diag(E, diag::note_constexpr_typeid_polymorphic)
4616     << E->getExprOperand()->getType()
4617     << E->getExprOperand()->getSourceRange();
4618   return false;
4619 }
4620 
VisitCXXUuidofExpr(const CXXUuidofExpr * E)4621 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
4622   return Success(E);
4623 }
4624 
VisitMemberExpr(const MemberExpr * E)4625 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
4626   // Handle static data members.
4627   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
4628     VisitIgnoredValue(E->getBase());
4629     return VisitVarDecl(E, VD);
4630   }
4631 
4632   // Handle static member functions.
4633   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
4634     if (MD->isStatic()) {
4635       VisitIgnoredValue(E->getBase());
4636       return Success(MD);
4637     }
4638   }
4639 
4640   // Handle non-static data members.
4641   return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
4642 }
4643 
VisitArraySubscriptExpr(const ArraySubscriptExpr * E)4644 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
4645   // FIXME: Deal with vectors as array subscript bases.
4646   if (E->getBase()->getType()->isVectorType())
4647     return Error(E);
4648 
4649   if (!EvaluatePointer(E->getBase(), Result, Info))
4650     return false;
4651 
4652   APSInt Index;
4653   if (!EvaluateInteger(E->getIdx(), Index, Info))
4654     return false;
4655 
4656   return HandleLValueArrayAdjustment(Info, E, Result, E->getType(),
4657                                      getExtValue(Index));
4658 }
4659 
VisitUnaryDeref(const UnaryOperator * E)4660 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
4661   return EvaluatePointer(E->getSubExpr(), Result, Info);
4662 }
4663 
VisitUnaryReal(const UnaryOperator * E)4664 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
4665   if (!Visit(E->getSubExpr()))
4666     return false;
4667   // __real is a no-op on scalar lvalues.
4668   if (E->getSubExpr()->getType()->isAnyComplexType())
4669     HandleLValueComplexElement(Info, E, Result, E->getType(), false);
4670   return true;
4671 }
4672 
VisitUnaryImag(const UnaryOperator * E)4673 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
4674   assert(E->getSubExpr()->getType()->isAnyComplexType() &&
4675          "lvalue __imag__ on scalar?");
4676   if (!Visit(E->getSubExpr()))
4677     return false;
4678   HandleLValueComplexElement(Info, E, Result, E->getType(), true);
4679   return true;
4680 }
4681 
VisitUnaryPreIncDec(const UnaryOperator * UO)4682 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
4683   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4684     return Error(UO);
4685 
4686   if (!this->Visit(UO->getSubExpr()))
4687     return false;
4688 
4689   return handleIncDec(
4690       this->Info, UO, Result, UO->getSubExpr()->getType(),
4691       UO->isIncrementOp(), nullptr);
4692 }
4693 
VisitCompoundAssignOperator(const CompoundAssignOperator * CAO)4694 bool LValueExprEvaluator::VisitCompoundAssignOperator(
4695     const CompoundAssignOperator *CAO) {
4696   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4697     return Error(CAO);
4698 
4699   APValue RHS;
4700 
4701   // The overall lvalue result is the result of evaluating the LHS.
4702   if (!this->Visit(CAO->getLHS())) {
4703     if (Info.keepEvaluatingAfterFailure())
4704       Evaluate(RHS, this->Info, CAO->getRHS());
4705     return false;
4706   }
4707 
4708   if (!Evaluate(RHS, this->Info, CAO->getRHS()))
4709     return false;
4710 
4711   return handleCompoundAssignment(
4712       this->Info, CAO,
4713       Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
4714       CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
4715 }
4716 
VisitBinAssign(const BinaryOperator * E)4717 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
4718   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4719     return Error(E);
4720 
4721   APValue NewVal;
4722 
4723   if (!this->Visit(E->getLHS())) {
4724     if (Info.keepEvaluatingAfterFailure())
4725       Evaluate(NewVal, this->Info, E->getRHS());
4726     return false;
4727   }
4728 
4729   if (!Evaluate(NewVal, this->Info, E->getRHS()))
4730     return false;
4731 
4732   return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
4733                           NewVal);
4734 }
4735 
4736 //===----------------------------------------------------------------------===//
4737 // Pointer Evaluation
4738 //===----------------------------------------------------------------------===//
4739 
4740 namespace {
4741 class PointerExprEvaluator
4742   : public ExprEvaluatorBase<PointerExprEvaluator> {
4743   LValue &Result;
4744 
Success(const Expr * E)4745   bool Success(const Expr *E) {
4746     Result.set(E);
4747     return true;
4748   }
4749 public:
4750 
PointerExprEvaluator(EvalInfo & info,LValue & Result)4751   PointerExprEvaluator(EvalInfo &info, LValue &Result)
4752     : ExprEvaluatorBaseTy(info), Result(Result) {}
4753 
Success(const APValue & V,const Expr * E)4754   bool Success(const APValue &V, const Expr *E) {
4755     Result.setFrom(Info.Ctx, V);
4756     return true;
4757   }
ZeroInitialization(const Expr * E)4758   bool ZeroInitialization(const Expr *E) {
4759     return Success((Expr*)nullptr);
4760   }
4761 
4762   bool VisitBinaryOperator(const BinaryOperator *E);
4763   bool VisitCastExpr(const CastExpr* E);
4764   bool VisitUnaryAddrOf(const UnaryOperator *E);
VisitObjCStringLiteral(const ObjCStringLiteral * E)4765   bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
4766       { return Success(E); }
VisitObjCBoxedExpr(const ObjCBoxedExpr * E)4767   bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
4768       { return Success(E); }
VisitAddrLabelExpr(const AddrLabelExpr * E)4769   bool VisitAddrLabelExpr(const AddrLabelExpr *E)
4770       { return Success(E); }
4771   bool VisitCallExpr(const CallExpr *E);
VisitBlockExpr(const BlockExpr * E)4772   bool VisitBlockExpr(const BlockExpr *E) {
4773     if (!E->getBlockDecl()->hasCaptures())
4774       return Success(E);
4775     return Error(E);
4776   }
VisitCXXThisExpr(const CXXThisExpr * E)4777   bool VisitCXXThisExpr(const CXXThisExpr *E) {
4778     // Can't look at 'this' when checking a potential constant expression.
4779     if (Info.checkingPotentialConstantExpression())
4780       return false;
4781     if (!Info.CurrentCall->This) {
4782       if (Info.getLangOpts().CPlusPlus11)
4783         Info.Diag(E, diag::note_constexpr_this) << E->isImplicit();
4784       else
4785         Info.Diag(E);
4786       return false;
4787     }
4788     Result = *Info.CurrentCall->This;
4789     return true;
4790   }
4791 
4792   // FIXME: Missing: @protocol, @selector
4793 };
4794 } // end anonymous namespace
4795 
EvaluatePointer(const Expr * E,LValue & Result,EvalInfo & Info)4796 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
4797   assert(E->isRValue() && E->getType()->hasPointerRepresentation());
4798   return PointerExprEvaluator(Info, Result).Visit(E);
4799 }
4800 
VisitBinaryOperator(const BinaryOperator * E)4801 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
4802   if (E->getOpcode() != BO_Add &&
4803       E->getOpcode() != BO_Sub)
4804     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
4805 
4806   const Expr *PExp = E->getLHS();
4807   const Expr *IExp = E->getRHS();
4808   if (IExp->getType()->isPointerType())
4809     std::swap(PExp, IExp);
4810 
4811   bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
4812   if (!EvalPtrOK && !Info.keepEvaluatingAfterFailure())
4813     return false;
4814 
4815   llvm::APSInt Offset;
4816   if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
4817     return false;
4818 
4819   int64_t AdditionalOffset = getExtValue(Offset);
4820   if (E->getOpcode() == BO_Sub)
4821     AdditionalOffset = -AdditionalOffset;
4822 
4823   QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
4824   return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
4825                                      AdditionalOffset);
4826 }
4827 
VisitUnaryAddrOf(const UnaryOperator * E)4828 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
4829   return EvaluateLValue(E->getSubExpr(), Result, Info);
4830 }
4831 
VisitCastExpr(const CastExpr * E)4832 bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
4833   const Expr* SubExpr = E->getSubExpr();
4834 
4835   switch (E->getCastKind()) {
4836   default:
4837     break;
4838 
4839   case CK_BitCast:
4840   case CK_CPointerToObjCPointerCast:
4841   case CK_BlockPointerToObjCPointerCast:
4842   case CK_AnyPointerToBlockPointerCast:
4843   case CK_AddressSpaceConversion:
4844     if (!Visit(SubExpr))
4845       return false;
4846     // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
4847     // permitted in constant expressions in C++11. Bitcasts from cv void* are
4848     // also static_casts, but we disallow them as a resolution to DR1312.
4849     if (!E->getType()->isVoidPointerType()) {
4850       Result.Designator.setInvalid();
4851       if (SubExpr->getType()->isVoidPointerType())
4852         CCEDiag(E, diag::note_constexpr_invalid_cast)
4853           << 3 << SubExpr->getType();
4854       else
4855         CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4856     }
4857     return true;
4858 
4859   case CK_DerivedToBase:
4860   case CK_UncheckedDerivedToBase:
4861     if (!EvaluatePointer(E->getSubExpr(), Result, Info))
4862       return false;
4863     if (!Result.Base && Result.Offset.isZero())
4864       return true;
4865 
4866     // Now figure out the necessary offset to add to the base LV to get from
4867     // the derived class to the base class.
4868     return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
4869                                   castAs<PointerType>()->getPointeeType(),
4870                                 Result);
4871 
4872   case CK_BaseToDerived:
4873     if (!Visit(E->getSubExpr()))
4874       return false;
4875     if (!Result.Base && Result.Offset.isZero())
4876       return true;
4877     return HandleBaseToDerivedCast(Info, E, Result);
4878 
4879   case CK_NullToPointer:
4880     VisitIgnoredValue(E->getSubExpr());
4881     return ZeroInitialization(E);
4882 
4883   case CK_IntegralToPointer: {
4884     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4885 
4886     APValue Value;
4887     if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
4888       break;
4889 
4890     if (Value.isInt()) {
4891       unsigned Size = Info.Ctx.getTypeSize(E->getType());
4892       uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
4893       Result.Base = (Expr*)nullptr;
4894       Result.Offset = CharUnits::fromQuantity(N);
4895       Result.CallIndex = 0;
4896       Result.Designator.setInvalid();
4897       return true;
4898     } else {
4899       // Cast is of an lvalue, no need to change value.
4900       Result.setFrom(Info.Ctx, Value);
4901       return true;
4902     }
4903   }
4904   case CK_ArrayToPointerDecay:
4905     if (SubExpr->isGLValue()) {
4906       if (!EvaluateLValue(SubExpr, Result, Info))
4907         return false;
4908     } else {
4909       Result.set(SubExpr, Info.CurrentCall->Index);
4910       if (!EvaluateInPlace(Info.CurrentCall->createTemporary(SubExpr, false),
4911                            Info, Result, SubExpr))
4912         return false;
4913     }
4914     // The result is a pointer to the first element of the array.
4915     if (const ConstantArrayType *CAT
4916           = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
4917       Result.addArray(Info, E, CAT);
4918     else
4919       Result.Designator.setInvalid();
4920     return true;
4921 
4922   case CK_FunctionToPointerDecay:
4923     return EvaluateLValue(SubExpr, Result, Info);
4924   }
4925 
4926   return ExprEvaluatorBaseTy::VisitCastExpr(E);
4927 }
4928 
GetAlignOfType(EvalInfo & Info,QualType T)4929 static CharUnits GetAlignOfType(EvalInfo &Info, QualType T) {
4930   // C++ [expr.alignof]p3:
4931   //     When alignof is applied to a reference type, the result is the
4932   //     alignment of the referenced type.
4933   if (const ReferenceType *Ref = T->getAs<ReferenceType>())
4934     T = Ref->getPointeeType();
4935 
4936   // __alignof is defined to return the preferred alignment.
4937   return Info.Ctx.toCharUnitsFromBits(
4938     Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
4939 }
4940 
GetAlignOfExpr(EvalInfo & Info,const Expr * E)4941 static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E) {
4942   E = E->IgnoreParens();
4943 
4944   // The kinds of expressions that we have special-case logic here for
4945   // should be kept up to date with the special checks for those
4946   // expressions in Sema.
4947 
4948   // alignof decl is always accepted, even if it doesn't make sense: we default
4949   // to 1 in those cases.
4950   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
4951     return Info.Ctx.getDeclAlign(DRE->getDecl(),
4952                                  /*RefAsPointee*/true);
4953 
4954   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
4955     return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
4956                                  /*RefAsPointee*/true);
4957 
4958   return GetAlignOfType(Info, E->getType());
4959 }
4960 
VisitCallExpr(const CallExpr * E)4961 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
4962   if (IsStringLiteralCall(E))
4963     return Success(E);
4964 
4965   switch (E->getBuiltinCallee()) {
4966   case Builtin::BI__builtin_addressof:
4967     return EvaluateLValue(E->getArg(0), Result, Info);
4968   case Builtin::BI__builtin_assume_aligned: {
4969     // We need to be very careful here because: if the pointer does not have the
4970     // asserted alignment, then the behavior is undefined, and undefined
4971     // behavior is non-constant.
4972     if (!EvaluatePointer(E->getArg(0), Result, Info))
4973       return false;
4974 
4975     LValue OffsetResult(Result);
4976     APSInt Alignment;
4977     if (!EvaluateInteger(E->getArg(1), Alignment, Info))
4978       return false;
4979     CharUnits Align = CharUnits::fromQuantity(getExtValue(Alignment));
4980 
4981     if (E->getNumArgs() > 2) {
4982       APSInt Offset;
4983       if (!EvaluateInteger(E->getArg(2), Offset, Info))
4984         return false;
4985 
4986       int64_t AdditionalOffset = -getExtValue(Offset);
4987       OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
4988     }
4989 
4990     // If there is a base object, then it must have the correct alignment.
4991     if (OffsetResult.Base) {
4992       CharUnits BaseAlignment;
4993       if (const ValueDecl *VD =
4994           OffsetResult.Base.dyn_cast<const ValueDecl*>()) {
4995         BaseAlignment = Info.Ctx.getDeclAlign(VD);
4996       } else {
4997         BaseAlignment =
4998           GetAlignOfExpr(Info, OffsetResult.Base.get<const Expr*>());
4999       }
5000 
5001       if (BaseAlignment < Align) {
5002         Result.Designator.setInvalid();
5003 	// FIXME: Quantities here cast to integers because the plural modifier
5004 	// does not work on APSInts yet.
5005         CCEDiag(E->getArg(0),
5006                 diag::note_constexpr_baa_insufficient_alignment) << 0
5007           << (int) BaseAlignment.getQuantity()
5008           << (unsigned) getExtValue(Alignment);
5009         return false;
5010       }
5011     }
5012 
5013     // The offset must also have the correct alignment.
5014     if (OffsetResult.Offset.RoundUpToAlignment(Align) != OffsetResult.Offset) {
5015       Result.Designator.setInvalid();
5016       APSInt Offset(64, false);
5017       Offset = OffsetResult.Offset.getQuantity();
5018 
5019       if (OffsetResult.Base)
5020         CCEDiag(E->getArg(0),
5021                 diag::note_constexpr_baa_insufficient_alignment) << 1
5022           << (int) getExtValue(Offset) << (unsigned) getExtValue(Alignment);
5023       else
5024         CCEDiag(E->getArg(0),
5025                 diag::note_constexpr_baa_value_insufficient_alignment)
5026           << Offset << (unsigned) getExtValue(Alignment);
5027 
5028       return false;
5029     }
5030 
5031     return true;
5032   }
5033   default:
5034     return ExprEvaluatorBaseTy::VisitCallExpr(E);
5035   }
5036 }
5037 
5038 //===----------------------------------------------------------------------===//
5039 // Member Pointer Evaluation
5040 //===----------------------------------------------------------------------===//
5041 
5042 namespace {
5043 class MemberPointerExprEvaluator
5044   : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
5045   MemberPtr &Result;
5046 
Success(const ValueDecl * D)5047   bool Success(const ValueDecl *D) {
5048     Result = MemberPtr(D);
5049     return true;
5050   }
5051 public:
5052 
MemberPointerExprEvaluator(EvalInfo & Info,MemberPtr & Result)5053   MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
5054     : ExprEvaluatorBaseTy(Info), Result(Result) {}
5055 
Success(const APValue & V,const Expr * E)5056   bool Success(const APValue &V, const Expr *E) {
5057     Result.setFrom(V);
5058     return true;
5059   }
ZeroInitialization(const Expr * E)5060   bool ZeroInitialization(const Expr *E) {
5061     return Success((const ValueDecl*)nullptr);
5062   }
5063 
5064   bool VisitCastExpr(const CastExpr *E);
5065   bool VisitUnaryAddrOf(const UnaryOperator *E);
5066 };
5067 } // end anonymous namespace
5068 
EvaluateMemberPointer(const Expr * E,MemberPtr & Result,EvalInfo & Info)5069 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
5070                                   EvalInfo &Info) {
5071   assert(E->isRValue() && E->getType()->isMemberPointerType());
5072   return MemberPointerExprEvaluator(Info, Result).Visit(E);
5073 }
5074 
VisitCastExpr(const CastExpr * E)5075 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
5076   switch (E->getCastKind()) {
5077   default:
5078     return ExprEvaluatorBaseTy::VisitCastExpr(E);
5079 
5080   case CK_NullToMemberPointer:
5081     VisitIgnoredValue(E->getSubExpr());
5082     return ZeroInitialization(E);
5083 
5084   case CK_BaseToDerivedMemberPointer: {
5085     if (!Visit(E->getSubExpr()))
5086       return false;
5087     if (E->path_empty())
5088       return true;
5089     // Base-to-derived member pointer casts store the path in derived-to-base
5090     // order, so iterate backwards. The CXXBaseSpecifier also provides us with
5091     // the wrong end of the derived->base arc, so stagger the path by one class.
5092     typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
5093     for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
5094          PathI != PathE; ++PathI) {
5095       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
5096       const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
5097       if (!Result.castToDerived(Derived))
5098         return Error(E);
5099     }
5100     const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
5101     if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
5102       return Error(E);
5103     return true;
5104   }
5105 
5106   case CK_DerivedToBaseMemberPointer:
5107     if (!Visit(E->getSubExpr()))
5108       return false;
5109     for (CastExpr::path_const_iterator PathI = E->path_begin(),
5110          PathE = E->path_end(); PathI != PathE; ++PathI) {
5111       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
5112       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
5113       if (!Result.castToBase(Base))
5114         return Error(E);
5115     }
5116     return true;
5117   }
5118 }
5119 
VisitUnaryAddrOf(const UnaryOperator * E)5120 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
5121   // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
5122   // member can be formed.
5123   return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
5124 }
5125 
5126 //===----------------------------------------------------------------------===//
5127 // Record Evaluation
5128 //===----------------------------------------------------------------------===//
5129 
5130 namespace {
5131   class RecordExprEvaluator
5132   : public ExprEvaluatorBase<RecordExprEvaluator> {
5133     const LValue &This;
5134     APValue &Result;
5135   public:
5136 
RecordExprEvaluator(EvalInfo & info,const LValue & This,APValue & Result)5137     RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
5138       : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
5139 
Success(const APValue & V,const Expr * E)5140     bool Success(const APValue &V, const Expr *E) {
5141       Result = V;
5142       return true;
5143     }
5144     bool ZeroInitialization(const Expr *E);
5145 
5146     bool VisitCastExpr(const CastExpr *E);
5147     bool VisitInitListExpr(const InitListExpr *E);
5148     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
5149     bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
5150   };
5151 }
5152 
5153 /// Perform zero-initialization on an object of non-union class type.
5154 /// C++11 [dcl.init]p5:
5155 ///  To zero-initialize an object or reference of type T means:
5156 ///    [...]
5157 ///    -- if T is a (possibly cv-qualified) non-union class type,
5158 ///       each non-static data member and each base-class subobject is
5159 ///       zero-initialized
HandleClassZeroInitialization(EvalInfo & Info,const Expr * E,const RecordDecl * RD,const LValue & This,APValue & Result)5160 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
5161                                           const RecordDecl *RD,
5162                                           const LValue &This, APValue &Result) {
5163   assert(!RD->isUnion() && "Expected non-union class type");
5164   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
5165   Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
5166                    std::distance(RD->field_begin(), RD->field_end()));
5167 
5168   if (RD->isInvalidDecl()) return false;
5169   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
5170 
5171   if (CD) {
5172     unsigned Index = 0;
5173     for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
5174            End = CD->bases_end(); I != End; ++I, ++Index) {
5175       const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
5176       LValue Subobject = This;
5177       if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
5178         return false;
5179       if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
5180                                          Result.getStructBase(Index)))
5181         return false;
5182     }
5183   }
5184 
5185   for (const auto *I : RD->fields()) {
5186     // -- if T is a reference type, no initialization is performed.
5187     if (I->getType()->isReferenceType())
5188       continue;
5189 
5190     LValue Subobject = This;
5191     if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
5192       return false;
5193 
5194     ImplicitValueInitExpr VIE(I->getType());
5195     if (!EvaluateInPlace(
5196           Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
5197       return false;
5198   }
5199 
5200   return true;
5201 }
5202 
ZeroInitialization(const Expr * E)5203 bool RecordExprEvaluator::ZeroInitialization(const Expr *E) {
5204   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
5205   if (RD->isInvalidDecl()) return false;
5206   if (RD->isUnion()) {
5207     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
5208     // object's first non-static named data member is zero-initialized
5209     RecordDecl::field_iterator I = RD->field_begin();
5210     if (I == RD->field_end()) {
5211       Result = APValue((const FieldDecl*)nullptr);
5212       return true;
5213     }
5214 
5215     LValue Subobject = This;
5216     if (!HandleLValueMember(Info, E, Subobject, *I))
5217       return false;
5218     Result = APValue(*I);
5219     ImplicitValueInitExpr VIE(I->getType());
5220     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
5221   }
5222 
5223   if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
5224     Info.Diag(E, diag::note_constexpr_virtual_base) << RD;
5225     return false;
5226   }
5227 
5228   return HandleClassZeroInitialization(Info, E, RD, This, Result);
5229 }
5230 
VisitCastExpr(const CastExpr * E)5231 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
5232   switch (E->getCastKind()) {
5233   default:
5234     return ExprEvaluatorBaseTy::VisitCastExpr(E);
5235 
5236   case CK_ConstructorConversion:
5237     return Visit(E->getSubExpr());
5238 
5239   case CK_DerivedToBase:
5240   case CK_UncheckedDerivedToBase: {
5241     APValue DerivedObject;
5242     if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
5243       return false;
5244     if (!DerivedObject.isStruct())
5245       return Error(E->getSubExpr());
5246 
5247     // Derived-to-base rvalue conversion: just slice off the derived part.
5248     APValue *Value = &DerivedObject;
5249     const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
5250     for (CastExpr::path_const_iterator PathI = E->path_begin(),
5251          PathE = E->path_end(); PathI != PathE; ++PathI) {
5252       assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
5253       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
5254       Value = &Value->getStructBase(getBaseIndex(RD, Base));
5255       RD = Base;
5256     }
5257     Result = *Value;
5258     return true;
5259   }
5260   }
5261 }
5262 
VisitInitListExpr(const InitListExpr * E)5263 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5264   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
5265   if (RD->isInvalidDecl()) return false;
5266   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
5267 
5268   if (RD->isUnion()) {
5269     const FieldDecl *Field = E->getInitializedFieldInUnion();
5270     Result = APValue(Field);
5271     if (!Field)
5272       return true;
5273 
5274     // If the initializer list for a union does not contain any elements, the
5275     // first element of the union is value-initialized.
5276     // FIXME: The element should be initialized from an initializer list.
5277     //        Is this difference ever observable for initializer lists which
5278     //        we don't build?
5279     ImplicitValueInitExpr VIE(Field->getType());
5280     const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
5281 
5282     LValue Subobject = This;
5283     if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
5284       return false;
5285 
5286     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
5287     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
5288                                   isa<CXXDefaultInitExpr>(InitExpr));
5289 
5290     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
5291   }
5292 
5293   assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) &&
5294          "initializer list for class with base classes");
5295   Result = APValue(APValue::UninitStruct(), 0,
5296                    std::distance(RD->field_begin(), RD->field_end()));
5297   unsigned ElementNo = 0;
5298   bool Success = true;
5299   for (const auto *Field : RD->fields()) {
5300     // Anonymous bit-fields are not considered members of the class for
5301     // purposes of aggregate initialization.
5302     if (Field->isUnnamedBitfield())
5303       continue;
5304 
5305     LValue Subobject = This;
5306 
5307     bool HaveInit = ElementNo < E->getNumInits();
5308 
5309     // FIXME: Diagnostics here should point to the end of the initializer
5310     // list, not the start.
5311     if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
5312                             Subobject, Field, &Layout))
5313       return false;
5314 
5315     // Perform an implicit value-initialization for members beyond the end of
5316     // the initializer list.
5317     ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
5318     const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
5319 
5320     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
5321     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
5322                                   isa<CXXDefaultInitExpr>(Init));
5323 
5324     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
5325     if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
5326         (Field->isBitField() && !truncateBitfieldValue(Info, Init,
5327                                                        FieldVal, Field))) {
5328       if (!Info.keepEvaluatingAfterFailure())
5329         return false;
5330       Success = false;
5331     }
5332   }
5333 
5334   return Success;
5335 }
5336 
VisitCXXConstructExpr(const CXXConstructExpr * E)5337 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
5338   const CXXConstructorDecl *FD = E->getConstructor();
5339   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
5340 
5341   bool ZeroInit = E->requiresZeroInitialization();
5342   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
5343     // If we've already performed zero-initialization, we're already done.
5344     if (!Result.isUninit())
5345       return true;
5346 
5347     // We can get here in two different ways:
5348     //  1) We're performing value-initialization, and should zero-initialize
5349     //     the object, or
5350     //  2) We're performing default-initialization of an object with a trivial
5351     //     constexpr default constructor, in which case we should start the
5352     //     lifetimes of all the base subobjects (there can be no data member
5353     //     subobjects in this case) per [basic.life]p1.
5354     // Either way, ZeroInitialization is appropriate.
5355     return ZeroInitialization(E);
5356   }
5357 
5358   const FunctionDecl *Definition = nullptr;
5359   FD->getBody(Definition);
5360 
5361   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
5362     return false;
5363 
5364   // Avoid materializing a temporary for an elidable copy/move constructor.
5365   if (E->isElidable() && !ZeroInit)
5366     if (const MaterializeTemporaryExpr *ME
5367           = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
5368       return Visit(ME->GetTemporaryExpr());
5369 
5370   if (ZeroInit && !ZeroInitialization(E))
5371     return false;
5372 
5373   auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
5374   return HandleConstructorCall(E->getExprLoc(), This, Args,
5375                                cast<CXXConstructorDecl>(Definition), Info,
5376                                Result);
5377 }
5378 
VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr * E)5379 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
5380     const CXXStdInitializerListExpr *E) {
5381   const ConstantArrayType *ArrayType =
5382       Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
5383 
5384   LValue Array;
5385   if (!EvaluateLValue(E->getSubExpr(), Array, Info))
5386     return false;
5387 
5388   // Get a pointer to the first element of the array.
5389   Array.addArray(Info, E, ArrayType);
5390 
5391   // FIXME: Perform the checks on the field types in SemaInit.
5392   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
5393   RecordDecl::field_iterator Field = Record->field_begin();
5394   if (Field == Record->field_end())
5395     return Error(E);
5396 
5397   // Start pointer.
5398   if (!Field->getType()->isPointerType() ||
5399       !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
5400                             ArrayType->getElementType()))
5401     return Error(E);
5402 
5403   // FIXME: What if the initializer_list type has base classes, etc?
5404   Result = APValue(APValue::UninitStruct(), 0, 2);
5405   Array.moveInto(Result.getStructField(0));
5406 
5407   if (++Field == Record->field_end())
5408     return Error(E);
5409 
5410   if (Field->getType()->isPointerType() &&
5411       Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
5412                            ArrayType->getElementType())) {
5413     // End pointer.
5414     if (!HandleLValueArrayAdjustment(Info, E, Array,
5415                                      ArrayType->getElementType(),
5416                                      ArrayType->getSize().getZExtValue()))
5417       return false;
5418     Array.moveInto(Result.getStructField(1));
5419   } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
5420     // Length.
5421     Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
5422   else
5423     return Error(E);
5424 
5425   if (++Field != Record->field_end())
5426     return Error(E);
5427 
5428   return true;
5429 }
5430 
EvaluateRecord(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)5431 static bool EvaluateRecord(const Expr *E, const LValue &This,
5432                            APValue &Result, EvalInfo &Info) {
5433   assert(E->isRValue() && E->getType()->isRecordType() &&
5434          "can't evaluate expression as a record rvalue");
5435   return RecordExprEvaluator(Info, This, Result).Visit(E);
5436 }
5437 
5438 //===----------------------------------------------------------------------===//
5439 // Temporary Evaluation
5440 //
5441 // Temporaries are represented in the AST as rvalues, but generally behave like
5442 // lvalues. The full-object of which the temporary is a subobject is implicitly
5443 // materialized so that a reference can bind to it.
5444 //===----------------------------------------------------------------------===//
5445 namespace {
5446 class TemporaryExprEvaluator
5447   : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
5448 public:
TemporaryExprEvaluator(EvalInfo & Info,LValue & Result)5449   TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
5450     LValueExprEvaluatorBaseTy(Info, Result) {}
5451 
5452   /// Visit an expression which constructs the value of this temporary.
VisitConstructExpr(const Expr * E)5453   bool VisitConstructExpr(const Expr *E) {
5454     Result.set(E, Info.CurrentCall->Index);
5455     return EvaluateInPlace(Info.CurrentCall->createTemporary(E, false),
5456                            Info, Result, E);
5457   }
5458 
VisitCastExpr(const CastExpr * E)5459   bool VisitCastExpr(const CastExpr *E) {
5460     switch (E->getCastKind()) {
5461     default:
5462       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
5463 
5464     case CK_ConstructorConversion:
5465       return VisitConstructExpr(E->getSubExpr());
5466     }
5467   }
VisitInitListExpr(const InitListExpr * E)5468   bool VisitInitListExpr(const InitListExpr *E) {
5469     return VisitConstructExpr(E);
5470   }
VisitCXXConstructExpr(const CXXConstructExpr * E)5471   bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
5472     return VisitConstructExpr(E);
5473   }
VisitCallExpr(const CallExpr * E)5474   bool VisitCallExpr(const CallExpr *E) {
5475     return VisitConstructExpr(E);
5476   }
VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr * E)5477   bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
5478     return VisitConstructExpr(E);
5479   }
5480 };
5481 } // end anonymous namespace
5482 
5483 /// Evaluate an expression of record type as a temporary.
EvaluateTemporary(const Expr * E,LValue & Result,EvalInfo & Info)5484 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
5485   assert(E->isRValue() && E->getType()->isRecordType());
5486   return TemporaryExprEvaluator(Info, Result).Visit(E);
5487 }
5488 
5489 //===----------------------------------------------------------------------===//
5490 // Vector Evaluation
5491 //===----------------------------------------------------------------------===//
5492 
5493 namespace {
5494   class VectorExprEvaluator
5495   : public ExprEvaluatorBase<VectorExprEvaluator> {
5496     APValue &Result;
5497   public:
5498 
VectorExprEvaluator(EvalInfo & info,APValue & Result)5499     VectorExprEvaluator(EvalInfo &info, APValue &Result)
5500       : ExprEvaluatorBaseTy(info), Result(Result) {}
5501 
Success(const ArrayRef<APValue> & V,const Expr * E)5502     bool Success(const ArrayRef<APValue> &V, const Expr *E) {
5503       assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
5504       // FIXME: remove this APValue copy.
5505       Result = APValue(V.data(), V.size());
5506       return true;
5507     }
Success(const APValue & V,const Expr * E)5508     bool Success(const APValue &V, const Expr *E) {
5509       assert(V.isVector());
5510       Result = V;
5511       return true;
5512     }
5513     bool ZeroInitialization(const Expr *E);
5514 
VisitUnaryReal(const UnaryOperator * E)5515     bool VisitUnaryReal(const UnaryOperator *E)
5516       { return Visit(E->getSubExpr()); }
5517     bool VisitCastExpr(const CastExpr* E);
5518     bool VisitInitListExpr(const InitListExpr *E);
5519     bool VisitUnaryImag(const UnaryOperator *E);
5520     // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
5521     //                 binary comparisons, binary and/or/xor,
5522     //                 shufflevector, ExtVectorElementExpr
5523   };
5524 } // end anonymous namespace
5525 
EvaluateVector(const Expr * E,APValue & Result,EvalInfo & Info)5526 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
5527   assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
5528   return VectorExprEvaluator(Info, Result).Visit(E);
5529 }
5530 
VisitCastExpr(const CastExpr * E)5531 bool VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
5532   const VectorType *VTy = E->getType()->castAs<VectorType>();
5533   unsigned NElts = VTy->getNumElements();
5534 
5535   const Expr *SE = E->getSubExpr();
5536   QualType SETy = SE->getType();
5537 
5538   switch (E->getCastKind()) {
5539   case CK_VectorSplat: {
5540     APValue Val = APValue();
5541     if (SETy->isIntegerType()) {
5542       APSInt IntResult;
5543       if (!EvaluateInteger(SE, IntResult, Info))
5544          return false;
5545       Val = APValue(IntResult);
5546     } else if (SETy->isRealFloatingType()) {
5547        APFloat F(0.0);
5548        if (!EvaluateFloat(SE, F, Info))
5549          return false;
5550        Val = APValue(F);
5551     } else {
5552       return Error(E);
5553     }
5554 
5555     // Splat and create vector APValue.
5556     SmallVector<APValue, 4> Elts(NElts, Val);
5557     return Success(Elts, E);
5558   }
5559   case CK_BitCast: {
5560     // Evaluate the operand into an APInt we can extract from.
5561     llvm::APInt SValInt;
5562     if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
5563       return false;
5564     // Extract the elements
5565     QualType EltTy = VTy->getElementType();
5566     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
5567     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
5568     SmallVector<APValue, 4> Elts;
5569     if (EltTy->isRealFloatingType()) {
5570       const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
5571       unsigned FloatEltSize = EltSize;
5572       if (&Sem == &APFloat::x87DoubleExtended)
5573         FloatEltSize = 80;
5574       for (unsigned i = 0; i < NElts; i++) {
5575         llvm::APInt Elt;
5576         if (BigEndian)
5577           Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
5578         else
5579           Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
5580         Elts.push_back(APValue(APFloat(Sem, Elt)));
5581       }
5582     } else if (EltTy->isIntegerType()) {
5583       for (unsigned i = 0; i < NElts; i++) {
5584         llvm::APInt Elt;
5585         if (BigEndian)
5586           Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
5587         else
5588           Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
5589         Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
5590       }
5591     } else {
5592       return Error(E);
5593     }
5594     return Success(Elts, E);
5595   }
5596   default:
5597     return ExprEvaluatorBaseTy::VisitCastExpr(E);
5598   }
5599 }
5600 
5601 bool
VisitInitListExpr(const InitListExpr * E)5602 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5603   const VectorType *VT = E->getType()->castAs<VectorType>();
5604   unsigned NumInits = E->getNumInits();
5605   unsigned NumElements = VT->getNumElements();
5606 
5607   QualType EltTy = VT->getElementType();
5608   SmallVector<APValue, 4> Elements;
5609 
5610   // The number of initializers can be less than the number of
5611   // vector elements. For OpenCL, this can be due to nested vector
5612   // initialization. For GCC compatibility, missing trailing elements
5613   // should be initialized with zeroes.
5614   unsigned CountInits = 0, CountElts = 0;
5615   while (CountElts < NumElements) {
5616     // Handle nested vector initialization.
5617     if (CountInits < NumInits
5618         && E->getInit(CountInits)->getType()->isVectorType()) {
5619       APValue v;
5620       if (!EvaluateVector(E->getInit(CountInits), v, Info))
5621         return Error(E);
5622       unsigned vlen = v.getVectorLength();
5623       for (unsigned j = 0; j < vlen; j++)
5624         Elements.push_back(v.getVectorElt(j));
5625       CountElts += vlen;
5626     } else if (EltTy->isIntegerType()) {
5627       llvm::APSInt sInt(32);
5628       if (CountInits < NumInits) {
5629         if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
5630           return false;
5631       } else // trailing integer zero.
5632         sInt = Info.Ctx.MakeIntValue(0, EltTy);
5633       Elements.push_back(APValue(sInt));
5634       CountElts++;
5635     } else {
5636       llvm::APFloat f(0.0);
5637       if (CountInits < NumInits) {
5638         if (!EvaluateFloat(E->getInit(CountInits), f, Info))
5639           return false;
5640       } else // trailing float zero.
5641         f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
5642       Elements.push_back(APValue(f));
5643       CountElts++;
5644     }
5645     CountInits++;
5646   }
5647   return Success(Elements, E);
5648 }
5649 
5650 bool
ZeroInitialization(const Expr * E)5651 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
5652   const VectorType *VT = E->getType()->getAs<VectorType>();
5653   QualType EltTy = VT->getElementType();
5654   APValue ZeroElement;
5655   if (EltTy->isIntegerType())
5656     ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
5657   else
5658     ZeroElement =
5659         APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
5660 
5661   SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
5662   return Success(Elements, E);
5663 }
5664 
VisitUnaryImag(const UnaryOperator * E)5665 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
5666   VisitIgnoredValue(E->getSubExpr());
5667   return ZeroInitialization(E);
5668 }
5669 
5670 //===----------------------------------------------------------------------===//
5671 // Array Evaluation
5672 //===----------------------------------------------------------------------===//
5673 
5674 namespace {
5675   class ArrayExprEvaluator
5676   : public ExprEvaluatorBase<ArrayExprEvaluator> {
5677     const LValue &This;
5678     APValue &Result;
5679   public:
5680 
ArrayExprEvaluator(EvalInfo & Info,const LValue & This,APValue & Result)5681     ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
5682       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
5683 
Success(const APValue & V,const Expr * E)5684     bool Success(const APValue &V, const Expr *E) {
5685       assert((V.isArray() || V.isLValue()) &&
5686              "expected array or string literal");
5687       Result = V;
5688       return true;
5689     }
5690 
ZeroInitialization(const Expr * E)5691     bool ZeroInitialization(const Expr *E) {
5692       const ConstantArrayType *CAT =
5693           Info.Ctx.getAsConstantArrayType(E->getType());
5694       if (!CAT)
5695         return Error(E);
5696 
5697       Result = APValue(APValue::UninitArray(), 0,
5698                        CAT->getSize().getZExtValue());
5699       if (!Result.hasArrayFiller()) return true;
5700 
5701       // Zero-initialize all elements.
5702       LValue Subobject = This;
5703       Subobject.addArray(Info, E, CAT);
5704       ImplicitValueInitExpr VIE(CAT->getElementType());
5705       return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
5706     }
5707 
5708     bool VisitInitListExpr(const InitListExpr *E);
5709     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
5710     bool VisitCXXConstructExpr(const CXXConstructExpr *E,
5711                                const LValue &Subobject,
5712                                APValue *Value, QualType Type);
5713   };
5714 } // end anonymous namespace
5715 
EvaluateArray(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)5716 static bool EvaluateArray(const Expr *E, const LValue &This,
5717                           APValue &Result, EvalInfo &Info) {
5718   assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
5719   return ArrayExprEvaluator(Info, This, Result).Visit(E);
5720 }
5721 
VisitInitListExpr(const InitListExpr * E)5722 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5723   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
5724   if (!CAT)
5725     return Error(E);
5726 
5727   // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
5728   // an appropriately-typed string literal enclosed in braces.
5729   if (E->isStringLiteralInit()) {
5730     LValue LV;
5731     if (!EvaluateLValue(E->getInit(0), LV, Info))
5732       return false;
5733     APValue Val;
5734     LV.moveInto(Val);
5735     return Success(Val, E);
5736   }
5737 
5738   bool Success = true;
5739 
5740   assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
5741          "zero-initialized array shouldn't have any initialized elts");
5742   APValue Filler;
5743   if (Result.isArray() && Result.hasArrayFiller())
5744     Filler = Result.getArrayFiller();
5745 
5746   unsigned NumEltsToInit = E->getNumInits();
5747   unsigned NumElts = CAT->getSize().getZExtValue();
5748   const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
5749 
5750   // If the initializer might depend on the array index, run it for each
5751   // array element. For now, just whitelist non-class value-initialization.
5752   if (NumEltsToInit != NumElts && !isa<ImplicitValueInitExpr>(FillerExpr))
5753     NumEltsToInit = NumElts;
5754 
5755   Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
5756 
5757   // If the array was previously zero-initialized, preserve the
5758   // zero-initialized values.
5759   if (!Filler.isUninit()) {
5760     for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
5761       Result.getArrayInitializedElt(I) = Filler;
5762     if (Result.hasArrayFiller())
5763       Result.getArrayFiller() = Filler;
5764   }
5765 
5766   LValue Subobject = This;
5767   Subobject.addArray(Info, E, CAT);
5768   for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
5769     const Expr *Init =
5770         Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
5771     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
5772                          Info, Subobject, Init) ||
5773         !HandleLValueArrayAdjustment(Info, Init, Subobject,
5774                                      CAT->getElementType(), 1)) {
5775       if (!Info.keepEvaluatingAfterFailure())
5776         return false;
5777       Success = false;
5778     }
5779   }
5780 
5781   if (!Result.hasArrayFiller())
5782     return Success;
5783 
5784   // If we get here, we have a trivial filler, which we can just evaluate
5785   // once and splat over the rest of the array elements.
5786   assert(FillerExpr && "no array filler for incomplete init list");
5787   return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
5788                          FillerExpr) && Success;
5789 }
5790 
VisitCXXConstructExpr(const CXXConstructExpr * E)5791 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
5792   return VisitCXXConstructExpr(E, This, &Result, E->getType());
5793 }
5794 
VisitCXXConstructExpr(const CXXConstructExpr * E,const LValue & Subobject,APValue * Value,QualType Type)5795 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
5796                                                const LValue &Subobject,
5797                                                APValue *Value,
5798                                                QualType Type) {
5799   bool HadZeroInit = !Value->isUninit();
5800 
5801   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
5802     unsigned N = CAT->getSize().getZExtValue();
5803 
5804     // Preserve the array filler if we had prior zero-initialization.
5805     APValue Filler =
5806       HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
5807                                              : APValue();
5808 
5809     *Value = APValue(APValue::UninitArray(), N, N);
5810 
5811     if (HadZeroInit)
5812       for (unsigned I = 0; I != N; ++I)
5813         Value->getArrayInitializedElt(I) = Filler;
5814 
5815     // Initialize the elements.
5816     LValue ArrayElt = Subobject;
5817     ArrayElt.addArray(Info, E, CAT);
5818     for (unsigned I = 0; I != N; ++I)
5819       if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
5820                                  CAT->getElementType()) ||
5821           !HandleLValueArrayAdjustment(Info, E, ArrayElt,
5822                                        CAT->getElementType(), 1))
5823         return false;
5824 
5825     return true;
5826   }
5827 
5828   if (!Type->isRecordType())
5829     return Error(E);
5830 
5831   const CXXConstructorDecl *FD = E->getConstructor();
5832 
5833   bool ZeroInit = E->requiresZeroInitialization();
5834   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
5835     if (HadZeroInit)
5836       return true;
5837 
5838     // See RecordExprEvaluator::VisitCXXConstructExpr for explanation.
5839     ImplicitValueInitExpr VIE(Type);
5840     return EvaluateInPlace(*Value, Info, Subobject, &VIE);
5841   }
5842 
5843   const FunctionDecl *Definition = nullptr;
5844   FD->getBody(Definition);
5845 
5846   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
5847     return false;
5848 
5849   if (ZeroInit && !HadZeroInit) {
5850     ImplicitValueInitExpr VIE(Type);
5851     if (!EvaluateInPlace(*Value, Info, Subobject, &VIE))
5852       return false;
5853   }
5854 
5855   auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
5856   return HandleConstructorCall(E->getExprLoc(), Subobject, Args,
5857                                cast<CXXConstructorDecl>(Definition),
5858                                Info, *Value);
5859 }
5860 
5861 //===----------------------------------------------------------------------===//
5862 // Integer Evaluation
5863 //
5864 // As a GNU extension, we support casting pointers to sufficiently-wide integer
5865 // types and back in constant folding. Integer values are thus represented
5866 // either as an integer-valued APValue, or as an lvalue-valued APValue.
5867 //===----------------------------------------------------------------------===//
5868 
5869 namespace {
5870 class IntExprEvaluator
5871   : public ExprEvaluatorBase<IntExprEvaluator> {
5872   APValue &Result;
5873 public:
IntExprEvaluator(EvalInfo & info,APValue & result)5874   IntExprEvaluator(EvalInfo &info, APValue &result)
5875     : ExprEvaluatorBaseTy(info), Result(result) {}
5876 
Success(const llvm::APSInt & SI,const Expr * E,APValue & Result)5877   bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
5878     assert(E->getType()->isIntegralOrEnumerationType() &&
5879            "Invalid evaluation result.");
5880     assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
5881            "Invalid evaluation result.");
5882     assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
5883            "Invalid evaluation result.");
5884     Result = APValue(SI);
5885     return true;
5886   }
Success(const llvm::APSInt & SI,const Expr * E)5887   bool Success(const llvm::APSInt &SI, const Expr *E) {
5888     return Success(SI, E, Result);
5889   }
5890 
Success(const llvm::APInt & I,const Expr * E,APValue & Result)5891   bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
5892     assert(E->getType()->isIntegralOrEnumerationType() &&
5893            "Invalid evaluation result.");
5894     assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
5895            "Invalid evaluation result.");
5896     Result = APValue(APSInt(I));
5897     Result.getInt().setIsUnsigned(
5898                             E->getType()->isUnsignedIntegerOrEnumerationType());
5899     return true;
5900   }
Success(const llvm::APInt & I,const Expr * E)5901   bool Success(const llvm::APInt &I, const Expr *E) {
5902     return Success(I, E, Result);
5903   }
5904 
Success(uint64_t Value,const Expr * E,APValue & Result)5905   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
5906     assert(E->getType()->isIntegralOrEnumerationType() &&
5907            "Invalid evaluation result.");
5908     Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
5909     return true;
5910   }
Success(uint64_t Value,const Expr * E)5911   bool Success(uint64_t Value, const Expr *E) {
5912     return Success(Value, E, Result);
5913   }
5914 
Success(CharUnits Size,const Expr * E)5915   bool Success(CharUnits Size, const Expr *E) {
5916     return Success(Size.getQuantity(), E);
5917   }
5918 
Success(const APValue & V,const Expr * E)5919   bool Success(const APValue &V, const Expr *E) {
5920     if (V.isLValue() || V.isAddrLabelDiff()) {
5921       Result = V;
5922       return true;
5923     }
5924     return Success(V.getInt(), E);
5925   }
5926 
ZeroInitialization(const Expr * E)5927   bool ZeroInitialization(const Expr *E) { return Success(0, E); }
5928 
5929   //===--------------------------------------------------------------------===//
5930   //                            Visitor Methods
5931   //===--------------------------------------------------------------------===//
5932 
VisitIntegerLiteral(const IntegerLiteral * E)5933   bool VisitIntegerLiteral(const IntegerLiteral *E) {
5934     return Success(E->getValue(), E);
5935   }
VisitCharacterLiteral(const CharacterLiteral * E)5936   bool VisitCharacterLiteral(const CharacterLiteral *E) {
5937     return Success(E->getValue(), E);
5938   }
5939 
5940   bool CheckReferencedDecl(const Expr *E, const Decl *D);
VisitDeclRefExpr(const DeclRefExpr * E)5941   bool VisitDeclRefExpr(const DeclRefExpr *E) {
5942     if (CheckReferencedDecl(E, E->getDecl()))
5943       return true;
5944 
5945     return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
5946   }
VisitMemberExpr(const MemberExpr * E)5947   bool VisitMemberExpr(const MemberExpr *E) {
5948     if (CheckReferencedDecl(E, E->getMemberDecl())) {
5949       VisitIgnoredValue(E->getBase());
5950       return true;
5951     }
5952 
5953     return ExprEvaluatorBaseTy::VisitMemberExpr(E);
5954   }
5955 
5956   bool VisitCallExpr(const CallExpr *E);
5957   bool VisitBinaryOperator(const BinaryOperator *E);
5958   bool VisitOffsetOfExpr(const OffsetOfExpr *E);
5959   bool VisitUnaryOperator(const UnaryOperator *E);
5960 
5961   bool VisitCastExpr(const CastExpr* E);
5962   bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
5963 
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)5964   bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
5965     return Success(E->getValue(), E);
5966   }
5967 
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)5968   bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
5969     return Success(E->getValue(), E);
5970   }
5971 
5972   // Note, GNU defines __null as an integer, not a pointer.
VisitGNUNullExpr(const GNUNullExpr * E)5973   bool VisitGNUNullExpr(const GNUNullExpr *E) {
5974     return ZeroInitialization(E);
5975   }
5976 
VisitTypeTraitExpr(const TypeTraitExpr * E)5977   bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
5978     return Success(E->getValue(), E);
5979   }
5980 
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)5981   bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
5982     return Success(E->getValue(), E);
5983   }
5984 
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)5985   bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
5986     return Success(E->getValue(), E);
5987   }
5988 
5989   bool VisitUnaryReal(const UnaryOperator *E);
5990   bool VisitUnaryImag(const UnaryOperator *E);
5991 
5992   bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
5993   bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
5994 
5995 private:
5996   static QualType GetObjectType(APValue::LValueBase B);
5997   bool TryEvaluateBuiltinObjectSize(const CallExpr *E);
5998   // FIXME: Missing: array subscript of vector, member of vector
5999 };
6000 } // end anonymous namespace
6001 
6002 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
6003 /// produce either the integer value or a pointer.
6004 ///
6005 /// GCC has a heinous extension which folds casts between pointer types and
6006 /// pointer-sized integral types. We support this by allowing the evaluation of
6007 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
6008 /// Some simple arithmetic on such values is supported (they are treated much
6009 /// like char*).
EvaluateIntegerOrLValue(const Expr * E,APValue & Result,EvalInfo & Info)6010 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
6011                                     EvalInfo &Info) {
6012   assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
6013   return IntExprEvaluator(Info, Result).Visit(E);
6014 }
6015 
EvaluateInteger(const Expr * E,APSInt & Result,EvalInfo & Info)6016 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
6017   APValue Val;
6018   if (!EvaluateIntegerOrLValue(E, Val, Info))
6019     return false;
6020   if (!Val.isInt()) {
6021     // FIXME: It would be better to produce the diagnostic for casting
6022     //        a pointer to an integer.
6023     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
6024     return false;
6025   }
6026   Result = Val.getInt();
6027   return true;
6028 }
6029 
6030 /// Check whether the given declaration can be directly converted to an integral
6031 /// rvalue. If not, no diagnostic is produced; there are other things we can
6032 /// try.
CheckReferencedDecl(const Expr * E,const Decl * D)6033 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
6034   // Enums are integer constant exprs.
6035   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
6036     // Check for signedness/width mismatches between E type and ECD value.
6037     bool SameSign = (ECD->getInitVal().isSigned()
6038                      == E->getType()->isSignedIntegerOrEnumerationType());
6039     bool SameWidth = (ECD->getInitVal().getBitWidth()
6040                       == Info.Ctx.getIntWidth(E->getType()));
6041     if (SameSign && SameWidth)
6042       return Success(ECD->getInitVal(), E);
6043     else {
6044       // Get rid of mismatch (otherwise Success assertions will fail)
6045       // by computing a new value matching the type of E.
6046       llvm::APSInt Val = ECD->getInitVal();
6047       if (!SameSign)
6048         Val.setIsSigned(!ECD->getInitVal().isSigned());
6049       if (!SameWidth)
6050         Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
6051       return Success(Val, E);
6052     }
6053   }
6054   return false;
6055 }
6056 
6057 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
6058 /// as GCC.
EvaluateBuiltinClassifyType(const CallExpr * E)6059 static int EvaluateBuiltinClassifyType(const CallExpr *E) {
6060   // The following enum mimics the values returned by GCC.
6061   // FIXME: Does GCC differ between lvalue and rvalue references here?
6062   enum gcc_type_class {
6063     no_type_class = -1,
6064     void_type_class, integer_type_class, char_type_class,
6065     enumeral_type_class, boolean_type_class,
6066     pointer_type_class, reference_type_class, offset_type_class,
6067     real_type_class, complex_type_class,
6068     function_type_class, method_type_class,
6069     record_type_class, union_type_class,
6070     array_type_class, string_type_class,
6071     lang_type_class
6072   };
6073 
6074   // If no argument was supplied, default to "no_type_class". This isn't
6075   // ideal, however it is what gcc does.
6076   if (E->getNumArgs() == 0)
6077     return no_type_class;
6078 
6079   QualType ArgTy = E->getArg(0)->getType();
6080   if (ArgTy->isVoidType())
6081     return void_type_class;
6082   else if (ArgTy->isEnumeralType())
6083     return enumeral_type_class;
6084   else if (ArgTy->isBooleanType())
6085     return boolean_type_class;
6086   else if (ArgTy->isCharType())
6087     return string_type_class; // gcc doesn't appear to use char_type_class
6088   else if (ArgTy->isIntegerType())
6089     return integer_type_class;
6090   else if (ArgTy->isPointerType())
6091     return pointer_type_class;
6092   else if (ArgTy->isReferenceType())
6093     return reference_type_class;
6094   else if (ArgTy->isRealType())
6095     return real_type_class;
6096   else if (ArgTy->isComplexType())
6097     return complex_type_class;
6098   else if (ArgTy->isFunctionType())
6099     return function_type_class;
6100   else if (ArgTy->isStructureOrClassType())
6101     return record_type_class;
6102   else if (ArgTy->isUnionType())
6103     return union_type_class;
6104   else if (ArgTy->isArrayType())
6105     return array_type_class;
6106   else if (ArgTy->isUnionType())
6107     return union_type_class;
6108   else  // FIXME: offset_type_class, method_type_class, & lang_type_class?
6109     llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
6110 }
6111 
6112 /// EvaluateBuiltinConstantPForLValue - Determine the result of
6113 /// __builtin_constant_p when applied to the given lvalue.
6114 ///
6115 /// An lvalue is only "constant" if it is a pointer or reference to the first
6116 /// character of a string literal.
6117 template<typename LValue>
EvaluateBuiltinConstantPForLValue(const LValue & LV)6118 static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
6119   const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
6120   return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
6121 }
6122 
6123 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
6124 /// GCC as we can manage.
EvaluateBuiltinConstantP(ASTContext & Ctx,const Expr * Arg)6125 static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
6126   QualType ArgType = Arg->getType();
6127 
6128   // __builtin_constant_p always has one operand. The rules which gcc follows
6129   // are not precisely documented, but are as follows:
6130   //
6131   //  - If the operand is of integral, floating, complex or enumeration type,
6132   //    and can be folded to a known value of that type, it returns 1.
6133   //  - If the operand and can be folded to a pointer to the first character
6134   //    of a string literal (or such a pointer cast to an integral type), it
6135   //    returns 1.
6136   //
6137   // Otherwise, it returns 0.
6138   //
6139   // FIXME: GCC also intends to return 1 for literals of aggregate types, but
6140   // its support for this does not currently work.
6141   if (ArgType->isIntegralOrEnumerationType()) {
6142     Expr::EvalResult Result;
6143     if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
6144       return false;
6145 
6146     APValue &V = Result.Val;
6147     if (V.getKind() == APValue::Int)
6148       return true;
6149 
6150     return EvaluateBuiltinConstantPForLValue(V);
6151   } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
6152     return Arg->isEvaluatable(Ctx);
6153   } else if (ArgType->isPointerType() || Arg->isGLValue()) {
6154     LValue LV;
6155     Expr::EvalStatus Status;
6156     EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
6157     if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
6158                           : EvaluatePointer(Arg, LV, Info)) &&
6159         !Status.HasSideEffects)
6160       return EvaluateBuiltinConstantPForLValue(LV);
6161   }
6162 
6163   // Anything else isn't considered to be sufficiently constant.
6164   return false;
6165 }
6166 
6167 /// Retrieves the "underlying object type" of the given expression,
6168 /// as used by __builtin_object_size.
GetObjectType(APValue::LValueBase B)6169 QualType IntExprEvaluator::GetObjectType(APValue::LValueBase B) {
6170   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
6171     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
6172       return VD->getType();
6173   } else if (const Expr *E = B.get<const Expr*>()) {
6174     if (isa<CompoundLiteralExpr>(E))
6175       return E->getType();
6176   }
6177 
6178   return QualType();
6179 }
6180 
TryEvaluateBuiltinObjectSize(const CallExpr * E)6181 bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) {
6182   LValue Base;
6183 
6184   {
6185     // The operand of __builtin_object_size is never evaluated for side-effects.
6186     // If there are any, but we can determine the pointed-to object anyway, then
6187     // ignore the side-effects.
6188     SpeculativeEvaluationRAII SpeculativeEval(Info);
6189     if (!EvaluatePointer(E->getArg(0), Base, Info))
6190       return false;
6191   }
6192 
6193   if (!Base.getLValueBase()) {
6194     // It is not possible to determine which objects ptr points to at compile time,
6195     // __builtin_object_size should return (size_t) -1 for type 0 or 1
6196     // and (size_t) 0 for type 2 or 3.
6197     llvm::APSInt TypeIntVaue;
6198     const Expr *ExprType = E->getArg(1);
6199     if (!ExprType->EvaluateAsInt(TypeIntVaue, Info.Ctx))
6200       return false;
6201     if (TypeIntVaue == 0 || TypeIntVaue == 1)
6202       return Success(-1, E);
6203     if (TypeIntVaue == 2 || TypeIntVaue == 3)
6204       return Success(0, E);
6205     return Error(E);
6206   }
6207 
6208   QualType T = GetObjectType(Base.getLValueBase());
6209   if (T.isNull() ||
6210       T->isIncompleteType() ||
6211       T->isFunctionType() ||
6212       T->isVariablyModifiedType() ||
6213       T->isDependentType())
6214     return Error(E);
6215 
6216   CharUnits Size = Info.Ctx.getTypeSizeInChars(T);
6217   CharUnits Offset = Base.getLValueOffset();
6218 
6219   if (!Offset.isNegative() && Offset <= Size)
6220     Size -= Offset;
6221   else
6222     Size = CharUnits::Zero();
6223   return Success(Size, E);
6224 }
6225 
VisitCallExpr(const CallExpr * E)6226 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
6227   switch (unsigned BuiltinOp = E->getBuiltinCallee()) {
6228   default:
6229     return ExprEvaluatorBaseTy::VisitCallExpr(E);
6230 
6231   case Builtin::BI__builtin_object_size: {
6232     if (TryEvaluateBuiltinObjectSize(E))
6233       return true;
6234 
6235     // If evaluating the argument has side-effects, we can't determine the size
6236     // of the object, and so we lower it to unknown now. CodeGen relies on us to
6237     // handle all cases where the expression has side-effects.
6238     if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
6239       if (E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue() <= 1)
6240         return Success(-1ULL, E);
6241       return Success(0, E);
6242     }
6243 
6244     // Expression had no side effects, but we couldn't statically determine the
6245     // size of the referenced object.
6246     switch (Info.EvalMode) {
6247     case EvalInfo::EM_ConstantExpression:
6248     case EvalInfo::EM_PotentialConstantExpression:
6249     case EvalInfo::EM_ConstantFold:
6250     case EvalInfo::EM_EvaluateForOverflow:
6251     case EvalInfo::EM_IgnoreSideEffects:
6252       return Error(E);
6253     case EvalInfo::EM_ConstantExpressionUnevaluated:
6254     case EvalInfo::EM_PotentialConstantExpressionUnevaluated:
6255       return Success(-1ULL, E);
6256     }
6257   }
6258 
6259   case Builtin::BI__builtin_bswap16:
6260   case Builtin::BI__builtin_bswap32:
6261   case Builtin::BI__builtin_bswap64: {
6262     APSInt Val;
6263     if (!EvaluateInteger(E->getArg(0), Val, Info))
6264       return false;
6265 
6266     return Success(Val.byteSwap(), E);
6267   }
6268 
6269   case Builtin::BI__builtin_classify_type:
6270     return Success(EvaluateBuiltinClassifyType(E), E);
6271 
6272   // FIXME: BI__builtin_clrsb
6273   // FIXME: BI__builtin_clrsbl
6274   // FIXME: BI__builtin_clrsbll
6275 
6276   case Builtin::BI__builtin_clz:
6277   case Builtin::BI__builtin_clzl:
6278   case Builtin::BI__builtin_clzll:
6279   case Builtin::BI__builtin_clzs: {
6280     APSInt Val;
6281     if (!EvaluateInteger(E->getArg(0), Val, Info))
6282       return false;
6283     if (!Val)
6284       return Error(E);
6285 
6286     return Success(Val.countLeadingZeros(), E);
6287   }
6288 
6289   case Builtin::BI__builtin_constant_p:
6290     return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
6291 
6292   case Builtin::BI__builtin_ctz:
6293   case Builtin::BI__builtin_ctzl:
6294   case Builtin::BI__builtin_ctzll:
6295   case Builtin::BI__builtin_ctzs: {
6296     APSInt Val;
6297     if (!EvaluateInteger(E->getArg(0), Val, Info))
6298       return false;
6299     if (!Val)
6300       return Error(E);
6301 
6302     return Success(Val.countTrailingZeros(), E);
6303   }
6304 
6305   case Builtin::BI__builtin_eh_return_data_regno: {
6306     int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
6307     Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
6308     return Success(Operand, E);
6309   }
6310 
6311   case Builtin::BI__builtin_expect:
6312     return Visit(E->getArg(0));
6313 
6314   case Builtin::BI__builtin_ffs:
6315   case Builtin::BI__builtin_ffsl:
6316   case Builtin::BI__builtin_ffsll: {
6317     APSInt Val;
6318     if (!EvaluateInteger(E->getArg(0), Val, Info))
6319       return false;
6320 
6321     unsigned N = Val.countTrailingZeros();
6322     return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
6323   }
6324 
6325   case Builtin::BI__builtin_fpclassify: {
6326     APFloat Val(0.0);
6327     if (!EvaluateFloat(E->getArg(5), Val, Info))
6328       return false;
6329     unsigned Arg;
6330     switch (Val.getCategory()) {
6331     case APFloat::fcNaN: Arg = 0; break;
6332     case APFloat::fcInfinity: Arg = 1; break;
6333     case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
6334     case APFloat::fcZero: Arg = 4; break;
6335     }
6336     return Visit(E->getArg(Arg));
6337   }
6338 
6339   case Builtin::BI__builtin_isinf_sign: {
6340     APFloat Val(0.0);
6341     return EvaluateFloat(E->getArg(0), Val, Info) &&
6342            Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
6343   }
6344 
6345   case Builtin::BI__builtin_isinf: {
6346     APFloat Val(0.0);
6347     return EvaluateFloat(E->getArg(0), Val, Info) &&
6348            Success(Val.isInfinity() ? 1 : 0, E);
6349   }
6350 
6351   case Builtin::BI__builtin_isfinite: {
6352     APFloat Val(0.0);
6353     return EvaluateFloat(E->getArg(0), Val, Info) &&
6354            Success(Val.isFinite() ? 1 : 0, E);
6355   }
6356 
6357   case Builtin::BI__builtin_isnan: {
6358     APFloat Val(0.0);
6359     return EvaluateFloat(E->getArg(0), Val, Info) &&
6360            Success(Val.isNaN() ? 1 : 0, E);
6361   }
6362 
6363   case Builtin::BI__builtin_isnormal: {
6364     APFloat Val(0.0);
6365     return EvaluateFloat(E->getArg(0), Val, Info) &&
6366            Success(Val.isNormal() ? 1 : 0, E);
6367   }
6368 
6369   case Builtin::BI__builtin_parity:
6370   case Builtin::BI__builtin_parityl:
6371   case Builtin::BI__builtin_parityll: {
6372     APSInt Val;
6373     if (!EvaluateInteger(E->getArg(0), Val, Info))
6374       return false;
6375 
6376     return Success(Val.countPopulation() % 2, E);
6377   }
6378 
6379   case Builtin::BI__builtin_popcount:
6380   case Builtin::BI__builtin_popcountl:
6381   case Builtin::BI__builtin_popcountll: {
6382     APSInt Val;
6383     if (!EvaluateInteger(E->getArg(0), Val, Info))
6384       return false;
6385 
6386     return Success(Val.countPopulation(), E);
6387   }
6388 
6389   case Builtin::BIstrlen:
6390     // A call to strlen is not a constant expression.
6391     if (Info.getLangOpts().CPlusPlus11)
6392       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
6393         << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
6394     else
6395       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
6396     // Fall through.
6397   case Builtin::BI__builtin_strlen: {
6398     // As an extension, we support __builtin_strlen() as a constant expression,
6399     // and support folding strlen() to a constant.
6400     LValue String;
6401     if (!EvaluatePointer(E->getArg(0), String, Info))
6402       return false;
6403 
6404     // Fast path: if it's a string literal, search the string value.
6405     if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
6406             String.getLValueBase().dyn_cast<const Expr *>())) {
6407       // The string literal may have embedded null characters. Find the first
6408       // one and truncate there.
6409       StringRef Str = S->getBytes();
6410       int64_t Off = String.Offset.getQuantity();
6411       if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
6412           S->getCharByteWidth() == 1) {
6413         Str = Str.substr(Off);
6414 
6415         StringRef::size_type Pos = Str.find(0);
6416         if (Pos != StringRef::npos)
6417           Str = Str.substr(0, Pos);
6418 
6419         return Success(Str.size(), E);
6420       }
6421 
6422       // Fall through to slow path to issue appropriate diagnostic.
6423     }
6424 
6425     // Slow path: scan the bytes of the string looking for the terminating 0.
6426     QualType CharTy = E->getArg(0)->getType()->getPointeeType();
6427     for (uint64_t Strlen = 0; /**/; ++Strlen) {
6428       APValue Char;
6429       if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
6430           !Char.isInt())
6431         return false;
6432       if (!Char.getInt())
6433         return Success(Strlen, E);
6434       if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
6435         return false;
6436     }
6437   }
6438 
6439   case Builtin::BI__atomic_always_lock_free:
6440   case Builtin::BI__atomic_is_lock_free:
6441   case Builtin::BI__c11_atomic_is_lock_free: {
6442     APSInt SizeVal;
6443     if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
6444       return false;
6445 
6446     // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
6447     // of two less than the maximum inline atomic width, we know it is
6448     // lock-free.  If the size isn't a power of two, or greater than the
6449     // maximum alignment where we promote atomics, we know it is not lock-free
6450     // (at least not in the sense of atomic_is_lock_free).  Otherwise,
6451     // the answer can only be determined at runtime; for example, 16-byte
6452     // atomics have lock-free implementations on some, but not all,
6453     // x86-64 processors.
6454 
6455     // Check power-of-two.
6456     CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
6457     if (Size.isPowerOfTwo()) {
6458       // Check against inlining width.
6459       unsigned InlineWidthBits =
6460           Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
6461       if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
6462         if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
6463             Size == CharUnits::One() ||
6464             E->getArg(1)->isNullPointerConstant(Info.Ctx,
6465                                                 Expr::NPC_NeverValueDependent))
6466           // OK, we will inline appropriately-aligned operations of this size,
6467           // and _Atomic(T) is appropriately-aligned.
6468           return Success(1, E);
6469 
6470         QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
6471           castAs<PointerType>()->getPointeeType();
6472         if (!PointeeType->isIncompleteType() &&
6473             Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
6474           // OK, we will inline operations on this object.
6475           return Success(1, E);
6476         }
6477       }
6478     }
6479 
6480     return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
6481         Success(0, E) : Error(E);
6482   }
6483   }
6484 }
6485 
HasSameBase(const LValue & A,const LValue & B)6486 static bool HasSameBase(const LValue &A, const LValue &B) {
6487   if (!A.getLValueBase())
6488     return !B.getLValueBase();
6489   if (!B.getLValueBase())
6490     return false;
6491 
6492   if (A.getLValueBase().getOpaqueValue() !=
6493       B.getLValueBase().getOpaqueValue()) {
6494     const Decl *ADecl = GetLValueBaseDecl(A);
6495     if (!ADecl)
6496       return false;
6497     const Decl *BDecl = GetLValueBaseDecl(B);
6498     if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
6499       return false;
6500   }
6501 
6502   return IsGlobalLValue(A.getLValueBase()) ||
6503          A.getLValueCallIndex() == B.getLValueCallIndex();
6504 }
6505 
6506 /// \brief Determine whether this is a pointer past the end of the complete
6507 /// object referred to by the lvalue.
isOnePastTheEndOfCompleteObject(const ASTContext & Ctx,const LValue & LV)6508 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
6509                                             const LValue &LV) {
6510   // A null pointer can be viewed as being "past the end" but we don't
6511   // choose to look at it that way here.
6512   if (!LV.getLValueBase())
6513     return false;
6514 
6515   // If the designator is valid and refers to a subobject, we're not pointing
6516   // past the end.
6517   if (!LV.getLValueDesignator().Invalid &&
6518       !LV.getLValueDesignator().isOnePastTheEnd())
6519     return false;
6520 
6521   // We're a past-the-end pointer if we point to the byte after the object,
6522   // no matter what our type or path is.
6523   auto Size = Ctx.getTypeSizeInChars(getType(LV.getLValueBase()));
6524   return LV.getLValueOffset() == Size;
6525 }
6526 
6527 namespace {
6528 
6529 /// \brief Data recursive integer evaluator of certain binary operators.
6530 ///
6531 /// We use a data recursive algorithm for binary operators so that we are able
6532 /// to handle extreme cases of chained binary operators without causing stack
6533 /// overflow.
6534 class DataRecursiveIntBinOpEvaluator {
6535   struct EvalResult {
6536     APValue Val;
6537     bool Failed;
6538 
EvalResult__anon0751fa451311::DataRecursiveIntBinOpEvaluator::EvalResult6539     EvalResult() : Failed(false) { }
6540 
swap__anon0751fa451311::DataRecursiveIntBinOpEvaluator::EvalResult6541     void swap(EvalResult &RHS) {
6542       Val.swap(RHS.Val);
6543       Failed = RHS.Failed;
6544       RHS.Failed = false;
6545     }
6546   };
6547 
6548   struct Job {
6549     const Expr *E;
6550     EvalResult LHSResult; // meaningful only for binary operator expression.
6551     enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
6552 
Job__anon0751fa451311::DataRecursiveIntBinOpEvaluator::Job6553     Job() : StoredInfo(nullptr) {}
startSpeculativeEval__anon0751fa451311::DataRecursiveIntBinOpEvaluator::Job6554     void startSpeculativeEval(EvalInfo &Info) {
6555       OldEvalStatus = Info.EvalStatus;
6556       Info.EvalStatus.Diag = nullptr;
6557       StoredInfo = &Info;
6558     }
~Job__anon0751fa451311::DataRecursiveIntBinOpEvaluator::Job6559     ~Job() {
6560       if (StoredInfo) {
6561         StoredInfo->EvalStatus = OldEvalStatus;
6562       }
6563     }
6564   private:
6565     EvalInfo *StoredInfo; // non-null if status changed.
6566     Expr::EvalStatus OldEvalStatus;
6567   };
6568 
6569   SmallVector<Job, 16> Queue;
6570 
6571   IntExprEvaluator &IntEval;
6572   EvalInfo &Info;
6573   APValue &FinalResult;
6574 
6575 public:
DataRecursiveIntBinOpEvaluator(IntExprEvaluator & IntEval,APValue & Result)6576   DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
6577     : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
6578 
6579   /// \brief True if \param E is a binary operator that we are going to handle
6580   /// data recursively.
6581   /// We handle binary operators that are comma, logical, or that have operands
6582   /// with integral or enumeration type.
shouldEnqueue(const BinaryOperator * E)6583   static bool shouldEnqueue(const BinaryOperator *E) {
6584     return E->getOpcode() == BO_Comma ||
6585            E->isLogicalOp() ||
6586            (E->getLHS()->getType()->isIntegralOrEnumerationType() &&
6587             E->getRHS()->getType()->isIntegralOrEnumerationType());
6588   }
6589 
Traverse(const BinaryOperator * E)6590   bool Traverse(const BinaryOperator *E) {
6591     enqueue(E);
6592     EvalResult PrevResult;
6593     while (!Queue.empty())
6594       process(PrevResult);
6595 
6596     if (PrevResult.Failed) return false;
6597 
6598     FinalResult.swap(PrevResult.Val);
6599     return true;
6600   }
6601 
6602 private:
Success(uint64_t Value,const Expr * E,APValue & Result)6603   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
6604     return IntEval.Success(Value, E, Result);
6605   }
Success(const APSInt & Value,const Expr * E,APValue & Result)6606   bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
6607     return IntEval.Success(Value, E, Result);
6608   }
Error(const Expr * E)6609   bool Error(const Expr *E) {
6610     return IntEval.Error(E);
6611   }
Error(const Expr * E,diag::kind D)6612   bool Error(const Expr *E, diag::kind D) {
6613     return IntEval.Error(E, D);
6614   }
6615 
CCEDiag(const Expr * E,diag::kind D)6616   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
6617     return Info.CCEDiag(E, D);
6618   }
6619 
6620   // \brief Returns true if visiting the RHS is necessary, false otherwise.
6621   bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
6622                          bool &SuppressRHSDiags);
6623 
6624   bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
6625                   const BinaryOperator *E, APValue &Result);
6626 
EvaluateExpr(const Expr * E,EvalResult & Result)6627   void EvaluateExpr(const Expr *E, EvalResult &Result) {
6628     Result.Failed = !Evaluate(Result.Val, Info, E);
6629     if (Result.Failed)
6630       Result.Val = APValue();
6631   }
6632 
6633   void process(EvalResult &Result);
6634 
enqueue(const Expr * E)6635   void enqueue(const Expr *E) {
6636     E = E->IgnoreParens();
6637     Queue.resize(Queue.size()+1);
6638     Queue.back().E = E;
6639     Queue.back().Kind = Job::AnyExprKind;
6640   }
6641 };
6642 
6643 }
6644 
6645 bool DataRecursiveIntBinOpEvaluator::
VisitBinOpLHSOnly(EvalResult & LHSResult,const BinaryOperator * E,bool & SuppressRHSDiags)6646        VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
6647                          bool &SuppressRHSDiags) {
6648   if (E->getOpcode() == BO_Comma) {
6649     // Ignore LHS but note if we could not evaluate it.
6650     if (LHSResult.Failed)
6651       return Info.noteSideEffect();
6652     return true;
6653   }
6654 
6655   if (E->isLogicalOp()) {
6656     bool LHSAsBool;
6657     if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
6658       // We were able to evaluate the LHS, see if we can get away with not
6659       // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
6660       if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
6661         Success(LHSAsBool, E, LHSResult.Val);
6662         return false; // Ignore RHS
6663       }
6664     } else {
6665       LHSResult.Failed = true;
6666 
6667       // Since we weren't able to evaluate the left hand side, it
6668       // must have had side effects.
6669       if (!Info.noteSideEffect())
6670         return false;
6671 
6672       // We can't evaluate the LHS; however, sometimes the result
6673       // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
6674       // Don't ignore RHS and suppress diagnostics from this arm.
6675       SuppressRHSDiags = true;
6676     }
6677 
6678     return true;
6679   }
6680 
6681   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
6682          E->getRHS()->getType()->isIntegralOrEnumerationType());
6683 
6684   if (LHSResult.Failed && !Info.keepEvaluatingAfterFailure())
6685     return false; // Ignore RHS;
6686 
6687   return true;
6688 }
6689 
6690 bool DataRecursiveIntBinOpEvaluator::
VisitBinOp(const EvalResult & LHSResult,const EvalResult & RHSResult,const BinaryOperator * E,APValue & Result)6691        VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
6692                   const BinaryOperator *E, APValue &Result) {
6693   if (E->getOpcode() == BO_Comma) {
6694     if (RHSResult.Failed)
6695       return false;
6696     Result = RHSResult.Val;
6697     return true;
6698   }
6699 
6700   if (E->isLogicalOp()) {
6701     bool lhsResult, rhsResult;
6702     bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
6703     bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
6704 
6705     if (LHSIsOK) {
6706       if (RHSIsOK) {
6707         if (E->getOpcode() == BO_LOr)
6708           return Success(lhsResult || rhsResult, E, Result);
6709         else
6710           return Success(lhsResult && rhsResult, E, Result);
6711       }
6712     } else {
6713       if (RHSIsOK) {
6714         // We can't evaluate the LHS; however, sometimes the result
6715         // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
6716         if (rhsResult == (E->getOpcode() == BO_LOr))
6717           return Success(rhsResult, E, Result);
6718       }
6719     }
6720 
6721     return false;
6722   }
6723 
6724   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
6725          E->getRHS()->getType()->isIntegralOrEnumerationType());
6726 
6727   if (LHSResult.Failed || RHSResult.Failed)
6728     return false;
6729 
6730   const APValue &LHSVal = LHSResult.Val;
6731   const APValue &RHSVal = RHSResult.Val;
6732 
6733   // Handle cases like (unsigned long)&a + 4.
6734   if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
6735     Result = LHSVal;
6736     CharUnits AdditionalOffset =
6737         CharUnits::fromQuantity(RHSVal.getInt().getZExtValue());
6738     if (E->getOpcode() == BO_Add)
6739       Result.getLValueOffset() += AdditionalOffset;
6740     else
6741       Result.getLValueOffset() -= AdditionalOffset;
6742     return true;
6743   }
6744 
6745   // Handle cases like 4 + (unsigned long)&a
6746   if (E->getOpcode() == BO_Add &&
6747       RHSVal.isLValue() && LHSVal.isInt()) {
6748     Result = RHSVal;
6749     Result.getLValueOffset() +=
6750         CharUnits::fromQuantity(LHSVal.getInt().getZExtValue());
6751     return true;
6752   }
6753 
6754   if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
6755     // Handle (intptr_t)&&A - (intptr_t)&&B.
6756     if (!LHSVal.getLValueOffset().isZero() ||
6757         !RHSVal.getLValueOffset().isZero())
6758       return false;
6759     const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
6760     const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
6761     if (!LHSExpr || !RHSExpr)
6762       return false;
6763     const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
6764     const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
6765     if (!LHSAddrExpr || !RHSAddrExpr)
6766       return false;
6767     // Make sure both labels come from the same function.
6768     if (LHSAddrExpr->getLabel()->getDeclContext() !=
6769         RHSAddrExpr->getLabel()->getDeclContext())
6770       return false;
6771     Result = APValue(LHSAddrExpr, RHSAddrExpr);
6772     return true;
6773   }
6774 
6775   // All the remaining cases expect both operands to be an integer
6776   if (!LHSVal.isInt() || !RHSVal.isInt())
6777     return Error(E);
6778 
6779   // Set up the width and signedness manually, in case it can't be deduced
6780   // from the operation we're performing.
6781   // FIXME: Don't do this in the cases where we can deduce it.
6782   APSInt Value(Info.Ctx.getIntWidth(E->getType()),
6783                E->getType()->isUnsignedIntegerOrEnumerationType());
6784   if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
6785                          RHSVal.getInt(), Value))
6786     return false;
6787   return Success(Value, E, Result);
6788 }
6789 
process(EvalResult & Result)6790 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
6791   Job &job = Queue.back();
6792 
6793   switch (job.Kind) {
6794     case Job::AnyExprKind: {
6795       if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
6796         if (shouldEnqueue(Bop)) {
6797           job.Kind = Job::BinOpKind;
6798           enqueue(Bop->getLHS());
6799           return;
6800         }
6801       }
6802 
6803       EvaluateExpr(job.E, Result);
6804       Queue.pop_back();
6805       return;
6806     }
6807 
6808     case Job::BinOpKind: {
6809       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
6810       bool SuppressRHSDiags = false;
6811       if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
6812         Queue.pop_back();
6813         return;
6814       }
6815       if (SuppressRHSDiags)
6816         job.startSpeculativeEval(Info);
6817       job.LHSResult.swap(Result);
6818       job.Kind = Job::BinOpVisitedLHSKind;
6819       enqueue(Bop->getRHS());
6820       return;
6821     }
6822 
6823     case Job::BinOpVisitedLHSKind: {
6824       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
6825       EvalResult RHS;
6826       RHS.swap(Result);
6827       Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
6828       Queue.pop_back();
6829       return;
6830     }
6831   }
6832 
6833   llvm_unreachable("Invalid Job::Kind!");
6834 }
6835 
VisitBinaryOperator(const BinaryOperator * E)6836 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
6837   if (E->isAssignmentOp())
6838     return Error(E);
6839 
6840   if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
6841     return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
6842 
6843   QualType LHSTy = E->getLHS()->getType();
6844   QualType RHSTy = E->getRHS()->getType();
6845 
6846   if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
6847     ComplexValue LHS, RHS;
6848     bool LHSOK;
6849     if (E->getLHS()->getType()->isRealFloatingType()) {
6850       LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
6851       if (LHSOK) {
6852         LHS.makeComplexFloat();
6853         LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
6854       }
6855     } else {
6856       LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
6857     }
6858     if (!LHSOK && !Info.keepEvaluatingAfterFailure())
6859       return false;
6860 
6861     if (E->getRHS()->getType()->isRealFloatingType()) {
6862       if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
6863         return false;
6864       RHS.makeComplexFloat();
6865       RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
6866     } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
6867       return false;
6868 
6869     if (LHS.isComplexFloat()) {
6870       APFloat::cmpResult CR_r =
6871         LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
6872       APFloat::cmpResult CR_i =
6873         LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
6874 
6875       if (E->getOpcode() == BO_EQ)
6876         return Success((CR_r == APFloat::cmpEqual &&
6877                         CR_i == APFloat::cmpEqual), E);
6878       else {
6879         assert(E->getOpcode() == BO_NE &&
6880                "Invalid complex comparison.");
6881         return Success(((CR_r == APFloat::cmpGreaterThan ||
6882                          CR_r == APFloat::cmpLessThan ||
6883                          CR_r == APFloat::cmpUnordered) ||
6884                         (CR_i == APFloat::cmpGreaterThan ||
6885                          CR_i == APFloat::cmpLessThan ||
6886                          CR_i == APFloat::cmpUnordered)), E);
6887       }
6888     } else {
6889       if (E->getOpcode() == BO_EQ)
6890         return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
6891                         LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
6892       else {
6893         assert(E->getOpcode() == BO_NE &&
6894                "Invalid compex comparison.");
6895         return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
6896                         LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
6897       }
6898     }
6899   }
6900 
6901   if (LHSTy->isRealFloatingType() &&
6902       RHSTy->isRealFloatingType()) {
6903     APFloat RHS(0.0), LHS(0.0);
6904 
6905     bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
6906     if (!LHSOK && !Info.keepEvaluatingAfterFailure())
6907       return false;
6908 
6909     if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
6910       return false;
6911 
6912     APFloat::cmpResult CR = LHS.compare(RHS);
6913 
6914     switch (E->getOpcode()) {
6915     default:
6916       llvm_unreachable("Invalid binary operator!");
6917     case BO_LT:
6918       return Success(CR == APFloat::cmpLessThan, E);
6919     case BO_GT:
6920       return Success(CR == APFloat::cmpGreaterThan, E);
6921     case BO_LE:
6922       return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
6923     case BO_GE:
6924       return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
6925                      E);
6926     case BO_EQ:
6927       return Success(CR == APFloat::cmpEqual, E);
6928     case BO_NE:
6929       return Success(CR == APFloat::cmpGreaterThan
6930                      || CR == APFloat::cmpLessThan
6931                      || CR == APFloat::cmpUnordered, E);
6932     }
6933   }
6934 
6935   if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
6936     if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
6937       LValue LHSValue, RHSValue;
6938 
6939       bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
6940       if (!LHSOK && Info.keepEvaluatingAfterFailure())
6941         return false;
6942 
6943       if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
6944         return false;
6945 
6946       // Reject differing bases from the normal codepath; we special-case
6947       // comparisons to null.
6948       if (!HasSameBase(LHSValue, RHSValue)) {
6949         if (E->getOpcode() == BO_Sub) {
6950           // Handle &&A - &&B.
6951           if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
6952             return false;
6953           const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
6954           const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr*>();
6955           if (!LHSExpr || !RHSExpr)
6956             return false;
6957           const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
6958           const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
6959           if (!LHSAddrExpr || !RHSAddrExpr)
6960             return false;
6961           // Make sure both labels come from the same function.
6962           if (LHSAddrExpr->getLabel()->getDeclContext() !=
6963               RHSAddrExpr->getLabel()->getDeclContext())
6964             return false;
6965           Result = APValue(LHSAddrExpr, RHSAddrExpr);
6966           return true;
6967         }
6968         // Inequalities and subtractions between unrelated pointers have
6969         // unspecified or undefined behavior.
6970         if (!E->isEqualityOp())
6971           return Error(E);
6972         // A constant address may compare equal to the address of a symbol.
6973         // The one exception is that address of an object cannot compare equal
6974         // to a null pointer constant.
6975         if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
6976             (!RHSValue.Base && !RHSValue.Offset.isZero()))
6977           return Error(E);
6978         // It's implementation-defined whether distinct literals will have
6979         // distinct addresses. In clang, the result of such a comparison is
6980         // unspecified, so it is not a constant expression. However, we do know
6981         // that the address of a literal will be non-null.
6982         if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
6983             LHSValue.Base && RHSValue.Base)
6984           return Error(E);
6985         // We can't tell whether weak symbols will end up pointing to the same
6986         // object.
6987         if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
6988           return Error(E);
6989         // We can't compare the address of the start of one object with the
6990         // past-the-end address of another object, per C++ DR1652.
6991         if ((LHSValue.Base && LHSValue.Offset.isZero() &&
6992              isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
6993             (RHSValue.Base && RHSValue.Offset.isZero() &&
6994              isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
6995           return Error(E);
6996         // We can't tell whether an object is at the same address as another
6997         // zero sized object.
6998         if ((RHSValue.Base && isZeroSized(LHSValue)) ||
6999             (LHSValue.Base && isZeroSized(RHSValue)))
7000           return Error(E);
7001         // Pointers with different bases cannot represent the same object.
7002         // (Note that clang defaults to -fmerge-all-constants, which can
7003         // lead to inconsistent results for comparisons involving the address
7004         // of a constant; this generally doesn't matter in practice.)
7005         return Success(E->getOpcode() == BO_NE, E);
7006       }
7007 
7008       const CharUnits &LHSOffset = LHSValue.getLValueOffset();
7009       const CharUnits &RHSOffset = RHSValue.getLValueOffset();
7010 
7011       SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
7012       SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
7013 
7014       if (E->getOpcode() == BO_Sub) {
7015         // C++11 [expr.add]p6:
7016         //   Unless both pointers point to elements of the same array object, or
7017         //   one past the last element of the array object, the behavior is
7018         //   undefined.
7019         if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
7020             !AreElementsOfSameArray(getType(LHSValue.Base),
7021                                     LHSDesignator, RHSDesignator))
7022           CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
7023 
7024         QualType Type = E->getLHS()->getType();
7025         QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
7026 
7027         CharUnits ElementSize;
7028         if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
7029           return false;
7030 
7031         // As an extension, a type may have zero size (empty struct or union in
7032         // C, array of zero length). Pointer subtraction in such cases has
7033         // undefined behavior, so is not constant.
7034         if (ElementSize.isZero()) {
7035           Info.Diag(E, diag::note_constexpr_pointer_subtraction_zero_size)
7036             << ElementType;
7037           return false;
7038         }
7039 
7040         // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
7041         // and produce incorrect results when it overflows. Such behavior
7042         // appears to be non-conforming, but is common, so perhaps we should
7043         // assume the standard intended for such cases to be undefined behavior
7044         // and check for them.
7045 
7046         // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
7047         // overflow in the final conversion to ptrdiff_t.
7048         APSInt LHS(
7049           llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
7050         APSInt RHS(
7051           llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
7052         APSInt ElemSize(
7053           llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
7054         APSInt TrueResult = (LHS - RHS) / ElemSize;
7055         APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
7056 
7057         if (Result.extend(65) != TrueResult)
7058           HandleOverflow(Info, E, TrueResult, E->getType());
7059         return Success(Result, E);
7060       }
7061 
7062       // C++11 [expr.rel]p3:
7063       //   Pointers to void (after pointer conversions) can be compared, with a
7064       //   result defined as follows: If both pointers represent the same
7065       //   address or are both the null pointer value, the result is true if the
7066       //   operator is <= or >= and false otherwise; otherwise the result is
7067       //   unspecified.
7068       // We interpret this as applying to pointers to *cv* void.
7069       if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
7070           E->isRelationalOp())
7071         CCEDiag(E, diag::note_constexpr_void_comparison);
7072 
7073       // C++11 [expr.rel]p2:
7074       // - If two pointers point to non-static data members of the same object,
7075       //   or to subobjects or array elements fo such members, recursively, the
7076       //   pointer to the later declared member compares greater provided the
7077       //   two members have the same access control and provided their class is
7078       //   not a union.
7079       //   [...]
7080       // - Otherwise pointer comparisons are unspecified.
7081       if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
7082           E->isRelationalOp()) {
7083         bool WasArrayIndex;
7084         unsigned Mismatch =
7085           FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
7086                                  RHSDesignator, WasArrayIndex);
7087         // At the point where the designators diverge, the comparison has a
7088         // specified value if:
7089         //  - we are comparing array indices
7090         //  - we are comparing fields of a union, or fields with the same access
7091         // Otherwise, the result is unspecified and thus the comparison is not a
7092         // constant expression.
7093         if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
7094             Mismatch < RHSDesignator.Entries.size()) {
7095           const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
7096           const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
7097           if (!LF && !RF)
7098             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
7099           else if (!LF)
7100             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
7101               << getAsBaseClass(LHSDesignator.Entries[Mismatch])
7102               << RF->getParent() << RF;
7103           else if (!RF)
7104             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
7105               << getAsBaseClass(RHSDesignator.Entries[Mismatch])
7106               << LF->getParent() << LF;
7107           else if (!LF->getParent()->isUnion() &&
7108                    LF->getAccess() != RF->getAccess())
7109             CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
7110               << LF << LF->getAccess() << RF << RF->getAccess()
7111               << LF->getParent();
7112         }
7113       }
7114 
7115       // The comparison here must be unsigned, and performed with the same
7116       // width as the pointer.
7117       unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
7118       uint64_t CompareLHS = LHSOffset.getQuantity();
7119       uint64_t CompareRHS = RHSOffset.getQuantity();
7120       assert(PtrSize <= 64 && "Unexpected pointer width");
7121       uint64_t Mask = ~0ULL >> (64 - PtrSize);
7122       CompareLHS &= Mask;
7123       CompareRHS &= Mask;
7124 
7125       // If there is a base and this is a relational operator, we can only
7126       // compare pointers within the object in question; otherwise, the result
7127       // depends on where the object is located in memory.
7128       if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
7129         QualType BaseTy = getType(LHSValue.Base);
7130         if (BaseTy->isIncompleteType())
7131           return Error(E);
7132         CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
7133         uint64_t OffsetLimit = Size.getQuantity();
7134         if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
7135           return Error(E);
7136       }
7137 
7138       switch (E->getOpcode()) {
7139       default: llvm_unreachable("missing comparison operator");
7140       case BO_LT: return Success(CompareLHS < CompareRHS, E);
7141       case BO_GT: return Success(CompareLHS > CompareRHS, E);
7142       case BO_LE: return Success(CompareLHS <= CompareRHS, E);
7143       case BO_GE: return Success(CompareLHS >= CompareRHS, E);
7144       case BO_EQ: return Success(CompareLHS == CompareRHS, E);
7145       case BO_NE: return Success(CompareLHS != CompareRHS, E);
7146       }
7147     }
7148   }
7149 
7150   if (LHSTy->isMemberPointerType()) {
7151     assert(E->isEqualityOp() && "unexpected member pointer operation");
7152     assert(RHSTy->isMemberPointerType() && "invalid comparison");
7153 
7154     MemberPtr LHSValue, RHSValue;
7155 
7156     bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
7157     if (!LHSOK && Info.keepEvaluatingAfterFailure())
7158       return false;
7159 
7160     if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
7161       return false;
7162 
7163     // C++11 [expr.eq]p2:
7164     //   If both operands are null, they compare equal. Otherwise if only one is
7165     //   null, they compare unequal.
7166     if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
7167       bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
7168       return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
7169     }
7170 
7171     //   Otherwise if either is a pointer to a virtual member function, the
7172     //   result is unspecified.
7173     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
7174       if (MD->isVirtual())
7175         CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
7176     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
7177       if (MD->isVirtual())
7178         CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
7179 
7180     //   Otherwise they compare equal if and only if they would refer to the
7181     //   same member of the same most derived object or the same subobject if
7182     //   they were dereferenced with a hypothetical object of the associated
7183     //   class type.
7184     bool Equal = LHSValue == RHSValue;
7185     return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
7186   }
7187 
7188   if (LHSTy->isNullPtrType()) {
7189     assert(E->isComparisonOp() && "unexpected nullptr operation");
7190     assert(RHSTy->isNullPtrType() && "missing pointer conversion");
7191     // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
7192     // are compared, the result is true of the operator is <=, >= or ==, and
7193     // false otherwise.
7194     BinaryOperator::Opcode Opcode = E->getOpcode();
7195     return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
7196   }
7197 
7198   assert((!LHSTy->isIntegralOrEnumerationType() ||
7199           !RHSTy->isIntegralOrEnumerationType()) &&
7200          "DataRecursiveIntBinOpEvaluator should have handled integral types");
7201   // We can't continue from here for non-integral types.
7202   return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7203 }
7204 
7205 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
7206 /// a result as the expression's type.
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)7207 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
7208                                     const UnaryExprOrTypeTraitExpr *E) {
7209   switch(E->getKind()) {
7210   case UETT_AlignOf: {
7211     if (E->isArgumentType())
7212       return Success(GetAlignOfType(Info, E->getArgumentType()), E);
7213     else
7214       return Success(GetAlignOfExpr(Info, E->getArgumentExpr()), E);
7215   }
7216 
7217   case UETT_VecStep: {
7218     QualType Ty = E->getTypeOfArgument();
7219 
7220     if (Ty->isVectorType()) {
7221       unsigned n = Ty->castAs<VectorType>()->getNumElements();
7222 
7223       // The vec_step built-in functions that take a 3-component
7224       // vector return 4. (OpenCL 1.1 spec 6.11.12)
7225       if (n == 3)
7226         n = 4;
7227 
7228       return Success(n, E);
7229     } else
7230       return Success(1, E);
7231   }
7232 
7233   case UETT_SizeOf: {
7234     QualType SrcTy = E->getTypeOfArgument();
7235     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
7236     //   the result is the size of the referenced type."
7237     if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
7238       SrcTy = Ref->getPointeeType();
7239 
7240     CharUnits Sizeof;
7241     if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
7242       return false;
7243     return Success(Sizeof, E);
7244   }
7245   }
7246 
7247   llvm_unreachable("unknown expr/type trait");
7248 }
7249 
VisitOffsetOfExpr(const OffsetOfExpr * OOE)7250 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
7251   CharUnits Result;
7252   unsigned n = OOE->getNumComponents();
7253   if (n == 0)
7254     return Error(OOE);
7255   QualType CurrentType = OOE->getTypeSourceInfo()->getType();
7256   for (unsigned i = 0; i != n; ++i) {
7257     OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
7258     switch (ON.getKind()) {
7259     case OffsetOfExpr::OffsetOfNode::Array: {
7260       const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
7261       APSInt IdxResult;
7262       if (!EvaluateInteger(Idx, IdxResult, Info))
7263         return false;
7264       const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
7265       if (!AT)
7266         return Error(OOE);
7267       CurrentType = AT->getElementType();
7268       CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
7269       Result += IdxResult.getSExtValue() * ElementSize;
7270       break;
7271     }
7272 
7273     case OffsetOfExpr::OffsetOfNode::Field: {
7274       FieldDecl *MemberDecl = ON.getField();
7275       const RecordType *RT = CurrentType->getAs<RecordType>();
7276       if (!RT)
7277         return Error(OOE);
7278       RecordDecl *RD = RT->getDecl();
7279       if (RD->isInvalidDecl()) return false;
7280       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
7281       unsigned i = MemberDecl->getFieldIndex();
7282       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
7283       Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
7284       CurrentType = MemberDecl->getType().getNonReferenceType();
7285       break;
7286     }
7287 
7288     case OffsetOfExpr::OffsetOfNode::Identifier:
7289       llvm_unreachable("dependent __builtin_offsetof");
7290 
7291     case OffsetOfExpr::OffsetOfNode::Base: {
7292       CXXBaseSpecifier *BaseSpec = ON.getBase();
7293       if (BaseSpec->isVirtual())
7294         return Error(OOE);
7295 
7296       // Find the layout of the class whose base we are looking into.
7297       const RecordType *RT = CurrentType->getAs<RecordType>();
7298       if (!RT)
7299         return Error(OOE);
7300       RecordDecl *RD = RT->getDecl();
7301       if (RD->isInvalidDecl()) return false;
7302       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
7303 
7304       // Find the base class itself.
7305       CurrentType = BaseSpec->getType();
7306       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
7307       if (!BaseRT)
7308         return Error(OOE);
7309 
7310       // Add the offset to the base.
7311       Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
7312       break;
7313     }
7314     }
7315   }
7316   return Success(Result, OOE);
7317 }
7318 
VisitUnaryOperator(const UnaryOperator * E)7319 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
7320   switch (E->getOpcode()) {
7321   default:
7322     // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
7323     // See C99 6.6p3.
7324     return Error(E);
7325   case UO_Extension:
7326     // FIXME: Should extension allow i-c-e extension expressions in its scope?
7327     // If so, we could clear the diagnostic ID.
7328     return Visit(E->getSubExpr());
7329   case UO_Plus:
7330     // The result is just the value.
7331     return Visit(E->getSubExpr());
7332   case UO_Minus: {
7333     if (!Visit(E->getSubExpr()))
7334       return false;
7335     if (!Result.isInt()) return Error(E);
7336     const APSInt &Value = Result.getInt();
7337     if (Value.isSigned() && Value.isMinSignedValue())
7338       HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
7339                      E->getType());
7340     return Success(-Value, E);
7341   }
7342   case UO_Not: {
7343     if (!Visit(E->getSubExpr()))
7344       return false;
7345     if (!Result.isInt()) return Error(E);
7346     return Success(~Result.getInt(), E);
7347   }
7348   case UO_LNot: {
7349     bool bres;
7350     if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
7351       return false;
7352     return Success(!bres, E);
7353   }
7354   }
7355 }
7356 
7357 /// HandleCast - This is used to evaluate implicit or explicit casts where the
7358 /// result type is integer.
VisitCastExpr(const CastExpr * E)7359 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
7360   const Expr *SubExpr = E->getSubExpr();
7361   QualType DestType = E->getType();
7362   QualType SrcType = SubExpr->getType();
7363 
7364   switch (E->getCastKind()) {
7365   case CK_BaseToDerived:
7366   case CK_DerivedToBase:
7367   case CK_UncheckedDerivedToBase:
7368   case CK_Dynamic:
7369   case CK_ToUnion:
7370   case CK_ArrayToPointerDecay:
7371   case CK_FunctionToPointerDecay:
7372   case CK_NullToPointer:
7373   case CK_NullToMemberPointer:
7374   case CK_BaseToDerivedMemberPointer:
7375   case CK_DerivedToBaseMemberPointer:
7376   case CK_ReinterpretMemberPointer:
7377   case CK_ConstructorConversion:
7378   case CK_IntegralToPointer:
7379   case CK_ToVoid:
7380   case CK_VectorSplat:
7381   case CK_IntegralToFloating:
7382   case CK_FloatingCast:
7383   case CK_CPointerToObjCPointerCast:
7384   case CK_BlockPointerToObjCPointerCast:
7385   case CK_AnyPointerToBlockPointerCast:
7386   case CK_ObjCObjectLValueCast:
7387   case CK_FloatingRealToComplex:
7388   case CK_FloatingComplexToReal:
7389   case CK_FloatingComplexCast:
7390   case CK_FloatingComplexToIntegralComplex:
7391   case CK_IntegralRealToComplex:
7392   case CK_IntegralComplexCast:
7393   case CK_IntegralComplexToFloatingComplex:
7394   case CK_BuiltinFnToFnPtr:
7395   case CK_ZeroToOCLEvent:
7396   case CK_NonAtomicToAtomic:
7397   case CK_AddressSpaceConversion:
7398     llvm_unreachable("invalid cast kind for integral value");
7399 
7400   case CK_BitCast:
7401   case CK_Dependent:
7402   case CK_LValueBitCast:
7403   case CK_ARCProduceObject:
7404   case CK_ARCConsumeObject:
7405   case CK_ARCReclaimReturnedObject:
7406   case CK_ARCExtendBlockObject:
7407   case CK_CopyAndAutoreleaseBlockObject:
7408     return Error(E);
7409 
7410   case CK_UserDefinedConversion:
7411   case CK_LValueToRValue:
7412   case CK_AtomicToNonAtomic:
7413   case CK_NoOp:
7414     return ExprEvaluatorBaseTy::VisitCastExpr(E);
7415 
7416   case CK_MemberPointerToBoolean:
7417   case CK_PointerToBoolean:
7418   case CK_IntegralToBoolean:
7419   case CK_FloatingToBoolean:
7420   case CK_FloatingComplexToBoolean:
7421   case CK_IntegralComplexToBoolean: {
7422     bool BoolResult;
7423     if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
7424       return false;
7425     return Success(BoolResult, E);
7426   }
7427 
7428   case CK_IntegralCast: {
7429     if (!Visit(SubExpr))
7430       return false;
7431 
7432     if (!Result.isInt()) {
7433       // Allow casts of address-of-label differences if they are no-ops
7434       // or narrowing.  (The narrowing case isn't actually guaranteed to
7435       // be constant-evaluatable except in some narrow cases which are hard
7436       // to detect here.  We let it through on the assumption the user knows
7437       // what they are doing.)
7438       if (Result.isAddrLabelDiff())
7439         return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
7440       // Only allow casts of lvalues if they are lossless.
7441       return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
7442     }
7443 
7444     return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
7445                                       Result.getInt()), E);
7446   }
7447 
7448   case CK_PointerToIntegral: {
7449     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
7450 
7451     LValue LV;
7452     if (!EvaluatePointer(SubExpr, LV, Info))
7453       return false;
7454 
7455     if (LV.getLValueBase()) {
7456       // Only allow based lvalue casts if they are lossless.
7457       // FIXME: Allow a larger integer size than the pointer size, and allow
7458       // narrowing back down to pointer width in subsequent integral casts.
7459       // FIXME: Check integer type's active bits, not its type size.
7460       if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
7461         return Error(E);
7462 
7463       LV.Designator.setInvalid();
7464       LV.moveInto(Result);
7465       return true;
7466     }
7467 
7468     APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
7469                                          SrcType);
7470     return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
7471   }
7472 
7473   case CK_IntegralComplexToReal: {
7474     ComplexValue C;
7475     if (!EvaluateComplex(SubExpr, C, Info))
7476       return false;
7477     return Success(C.getComplexIntReal(), E);
7478   }
7479 
7480   case CK_FloatingToIntegral: {
7481     APFloat F(0.0);
7482     if (!EvaluateFloat(SubExpr, F, Info))
7483       return false;
7484 
7485     APSInt Value;
7486     if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
7487       return false;
7488     return Success(Value, E);
7489   }
7490   }
7491 
7492   llvm_unreachable("unknown cast resulting in integral value");
7493 }
7494 
VisitUnaryReal(const UnaryOperator * E)7495 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
7496   if (E->getSubExpr()->getType()->isAnyComplexType()) {
7497     ComplexValue LV;
7498     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
7499       return false;
7500     if (!LV.isComplexInt())
7501       return Error(E);
7502     return Success(LV.getComplexIntReal(), E);
7503   }
7504 
7505   return Visit(E->getSubExpr());
7506 }
7507 
VisitUnaryImag(const UnaryOperator * E)7508 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
7509   if (E->getSubExpr()->getType()->isComplexIntegerType()) {
7510     ComplexValue LV;
7511     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
7512       return false;
7513     if (!LV.isComplexInt())
7514       return Error(E);
7515     return Success(LV.getComplexIntImag(), E);
7516   }
7517 
7518   VisitIgnoredValue(E->getSubExpr());
7519   return Success(0, E);
7520 }
7521 
VisitSizeOfPackExpr(const SizeOfPackExpr * E)7522 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
7523   return Success(E->getPackLength(), E);
7524 }
7525 
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)7526 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
7527   return Success(E->getValue(), E);
7528 }
7529 
7530 //===----------------------------------------------------------------------===//
7531 // Float Evaluation
7532 //===----------------------------------------------------------------------===//
7533 
7534 namespace {
7535 class FloatExprEvaluator
7536   : public ExprEvaluatorBase<FloatExprEvaluator> {
7537   APFloat &Result;
7538 public:
FloatExprEvaluator(EvalInfo & info,APFloat & result)7539   FloatExprEvaluator(EvalInfo &info, APFloat &result)
7540     : ExprEvaluatorBaseTy(info), Result(result) {}
7541 
Success(const APValue & V,const Expr * e)7542   bool Success(const APValue &V, const Expr *e) {
7543     Result = V.getFloat();
7544     return true;
7545   }
7546 
ZeroInitialization(const Expr * E)7547   bool ZeroInitialization(const Expr *E) {
7548     Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
7549     return true;
7550   }
7551 
7552   bool VisitCallExpr(const CallExpr *E);
7553 
7554   bool VisitUnaryOperator(const UnaryOperator *E);
7555   bool VisitBinaryOperator(const BinaryOperator *E);
7556   bool VisitFloatingLiteral(const FloatingLiteral *E);
7557   bool VisitCastExpr(const CastExpr *E);
7558 
7559   bool VisitUnaryReal(const UnaryOperator *E);
7560   bool VisitUnaryImag(const UnaryOperator *E);
7561 
7562   // FIXME: Missing: array subscript of vector, member of vector
7563 };
7564 } // end anonymous namespace
7565 
EvaluateFloat(const Expr * E,APFloat & Result,EvalInfo & Info)7566 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
7567   assert(E->isRValue() && E->getType()->isRealFloatingType());
7568   return FloatExprEvaluator(Info, Result).Visit(E);
7569 }
7570 
TryEvaluateBuiltinNaN(const ASTContext & Context,QualType ResultTy,const Expr * Arg,bool SNaN,llvm::APFloat & Result)7571 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
7572                                   QualType ResultTy,
7573                                   const Expr *Arg,
7574                                   bool SNaN,
7575                                   llvm::APFloat &Result) {
7576   const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
7577   if (!S) return false;
7578 
7579   const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
7580 
7581   llvm::APInt fill;
7582 
7583   // Treat empty strings as if they were zero.
7584   if (S->getString().empty())
7585     fill = llvm::APInt(32, 0);
7586   else if (S->getString().getAsInteger(0, fill))
7587     return false;
7588 
7589   if (SNaN)
7590     Result = llvm::APFloat::getSNaN(Sem, false, &fill);
7591   else
7592     Result = llvm::APFloat::getQNaN(Sem, false, &fill);
7593   return true;
7594 }
7595 
VisitCallExpr(const CallExpr * E)7596 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
7597   switch (E->getBuiltinCallee()) {
7598   default:
7599     return ExprEvaluatorBaseTy::VisitCallExpr(E);
7600 
7601   case Builtin::BI__builtin_huge_val:
7602   case Builtin::BI__builtin_huge_valf:
7603   case Builtin::BI__builtin_huge_vall:
7604   case Builtin::BI__builtin_inf:
7605   case Builtin::BI__builtin_inff:
7606   case Builtin::BI__builtin_infl: {
7607     const llvm::fltSemantics &Sem =
7608       Info.Ctx.getFloatTypeSemantics(E->getType());
7609     Result = llvm::APFloat::getInf(Sem);
7610     return true;
7611   }
7612 
7613   case Builtin::BI__builtin_nans:
7614   case Builtin::BI__builtin_nansf:
7615   case Builtin::BI__builtin_nansl:
7616     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
7617                                true, Result))
7618       return Error(E);
7619     return true;
7620 
7621   case Builtin::BI__builtin_nan:
7622   case Builtin::BI__builtin_nanf:
7623   case Builtin::BI__builtin_nanl:
7624     // If this is __builtin_nan() turn this into a nan, otherwise we
7625     // can't constant fold it.
7626     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
7627                                false, Result))
7628       return Error(E);
7629     return true;
7630 
7631   case Builtin::BI__builtin_fabs:
7632   case Builtin::BI__builtin_fabsf:
7633   case Builtin::BI__builtin_fabsl:
7634     if (!EvaluateFloat(E->getArg(0), Result, Info))
7635       return false;
7636 
7637     if (Result.isNegative())
7638       Result.changeSign();
7639     return true;
7640 
7641   // FIXME: Builtin::BI__builtin_powi
7642   // FIXME: Builtin::BI__builtin_powif
7643   // FIXME: Builtin::BI__builtin_powil
7644 
7645   case Builtin::BI__builtin_copysign:
7646   case Builtin::BI__builtin_copysignf:
7647   case Builtin::BI__builtin_copysignl: {
7648     APFloat RHS(0.);
7649     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
7650         !EvaluateFloat(E->getArg(1), RHS, Info))
7651       return false;
7652     Result.copySign(RHS);
7653     return true;
7654   }
7655   }
7656 }
7657 
VisitUnaryReal(const UnaryOperator * E)7658 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
7659   if (E->getSubExpr()->getType()->isAnyComplexType()) {
7660     ComplexValue CV;
7661     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
7662       return false;
7663     Result = CV.FloatReal;
7664     return true;
7665   }
7666 
7667   return Visit(E->getSubExpr());
7668 }
7669 
VisitUnaryImag(const UnaryOperator * E)7670 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
7671   if (E->getSubExpr()->getType()->isAnyComplexType()) {
7672     ComplexValue CV;
7673     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
7674       return false;
7675     Result = CV.FloatImag;
7676     return true;
7677   }
7678 
7679   VisitIgnoredValue(E->getSubExpr());
7680   const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
7681   Result = llvm::APFloat::getZero(Sem);
7682   return true;
7683 }
7684 
VisitUnaryOperator(const UnaryOperator * E)7685 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
7686   switch (E->getOpcode()) {
7687   default: return Error(E);
7688   case UO_Plus:
7689     return EvaluateFloat(E->getSubExpr(), Result, Info);
7690   case UO_Minus:
7691     if (!EvaluateFloat(E->getSubExpr(), Result, Info))
7692       return false;
7693     Result.changeSign();
7694     return true;
7695   }
7696 }
7697 
VisitBinaryOperator(const BinaryOperator * E)7698 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
7699   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
7700     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7701 
7702   APFloat RHS(0.0);
7703   bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
7704   if (!LHSOK && !Info.keepEvaluatingAfterFailure())
7705     return false;
7706   return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
7707          handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
7708 }
7709 
VisitFloatingLiteral(const FloatingLiteral * E)7710 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
7711   Result = E->getValue();
7712   return true;
7713 }
7714 
VisitCastExpr(const CastExpr * E)7715 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
7716   const Expr* SubExpr = E->getSubExpr();
7717 
7718   switch (E->getCastKind()) {
7719   default:
7720     return ExprEvaluatorBaseTy::VisitCastExpr(E);
7721 
7722   case CK_IntegralToFloating: {
7723     APSInt IntResult;
7724     return EvaluateInteger(SubExpr, IntResult, Info) &&
7725            HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
7726                                 E->getType(), Result);
7727   }
7728 
7729   case CK_FloatingCast: {
7730     if (!Visit(SubExpr))
7731       return false;
7732     return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
7733                                   Result);
7734   }
7735 
7736   case CK_FloatingComplexToReal: {
7737     ComplexValue V;
7738     if (!EvaluateComplex(SubExpr, V, Info))
7739       return false;
7740     Result = V.getComplexFloatReal();
7741     return true;
7742   }
7743   }
7744 }
7745 
7746 //===----------------------------------------------------------------------===//
7747 // Complex Evaluation (for float and integer)
7748 //===----------------------------------------------------------------------===//
7749 
7750 namespace {
7751 class ComplexExprEvaluator
7752   : public ExprEvaluatorBase<ComplexExprEvaluator> {
7753   ComplexValue &Result;
7754 
7755 public:
ComplexExprEvaluator(EvalInfo & info,ComplexValue & Result)7756   ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
7757     : ExprEvaluatorBaseTy(info), Result(Result) {}
7758 
Success(const APValue & V,const Expr * e)7759   bool Success(const APValue &V, const Expr *e) {
7760     Result.setFrom(V);
7761     return true;
7762   }
7763 
7764   bool ZeroInitialization(const Expr *E);
7765 
7766   //===--------------------------------------------------------------------===//
7767   //                            Visitor Methods
7768   //===--------------------------------------------------------------------===//
7769 
7770   bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
7771   bool VisitCastExpr(const CastExpr *E);
7772   bool VisitBinaryOperator(const BinaryOperator *E);
7773   bool VisitUnaryOperator(const UnaryOperator *E);
7774   bool VisitInitListExpr(const InitListExpr *E);
7775 };
7776 } // end anonymous namespace
7777 
EvaluateComplex(const Expr * E,ComplexValue & Result,EvalInfo & Info)7778 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
7779                             EvalInfo &Info) {
7780   assert(E->isRValue() && E->getType()->isAnyComplexType());
7781   return ComplexExprEvaluator(Info, Result).Visit(E);
7782 }
7783 
ZeroInitialization(const Expr * E)7784 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
7785   QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
7786   if (ElemTy->isRealFloatingType()) {
7787     Result.makeComplexFloat();
7788     APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
7789     Result.FloatReal = Zero;
7790     Result.FloatImag = Zero;
7791   } else {
7792     Result.makeComplexInt();
7793     APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
7794     Result.IntReal = Zero;
7795     Result.IntImag = Zero;
7796   }
7797   return true;
7798 }
7799 
VisitImaginaryLiteral(const ImaginaryLiteral * E)7800 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
7801   const Expr* SubExpr = E->getSubExpr();
7802 
7803   if (SubExpr->getType()->isRealFloatingType()) {
7804     Result.makeComplexFloat();
7805     APFloat &Imag = Result.FloatImag;
7806     if (!EvaluateFloat(SubExpr, Imag, Info))
7807       return false;
7808 
7809     Result.FloatReal = APFloat(Imag.getSemantics());
7810     return true;
7811   } else {
7812     assert(SubExpr->getType()->isIntegerType() &&
7813            "Unexpected imaginary literal.");
7814 
7815     Result.makeComplexInt();
7816     APSInt &Imag = Result.IntImag;
7817     if (!EvaluateInteger(SubExpr, Imag, Info))
7818       return false;
7819 
7820     Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
7821     return true;
7822   }
7823 }
7824 
VisitCastExpr(const CastExpr * E)7825 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
7826 
7827   switch (E->getCastKind()) {
7828   case CK_BitCast:
7829   case CK_BaseToDerived:
7830   case CK_DerivedToBase:
7831   case CK_UncheckedDerivedToBase:
7832   case CK_Dynamic:
7833   case CK_ToUnion:
7834   case CK_ArrayToPointerDecay:
7835   case CK_FunctionToPointerDecay:
7836   case CK_NullToPointer:
7837   case CK_NullToMemberPointer:
7838   case CK_BaseToDerivedMemberPointer:
7839   case CK_DerivedToBaseMemberPointer:
7840   case CK_MemberPointerToBoolean:
7841   case CK_ReinterpretMemberPointer:
7842   case CK_ConstructorConversion:
7843   case CK_IntegralToPointer:
7844   case CK_PointerToIntegral:
7845   case CK_PointerToBoolean:
7846   case CK_ToVoid:
7847   case CK_VectorSplat:
7848   case CK_IntegralCast:
7849   case CK_IntegralToBoolean:
7850   case CK_IntegralToFloating:
7851   case CK_FloatingToIntegral:
7852   case CK_FloatingToBoolean:
7853   case CK_FloatingCast:
7854   case CK_CPointerToObjCPointerCast:
7855   case CK_BlockPointerToObjCPointerCast:
7856   case CK_AnyPointerToBlockPointerCast:
7857   case CK_ObjCObjectLValueCast:
7858   case CK_FloatingComplexToReal:
7859   case CK_FloatingComplexToBoolean:
7860   case CK_IntegralComplexToReal:
7861   case CK_IntegralComplexToBoolean:
7862   case CK_ARCProduceObject:
7863   case CK_ARCConsumeObject:
7864   case CK_ARCReclaimReturnedObject:
7865   case CK_ARCExtendBlockObject:
7866   case CK_CopyAndAutoreleaseBlockObject:
7867   case CK_BuiltinFnToFnPtr:
7868   case CK_ZeroToOCLEvent:
7869   case CK_NonAtomicToAtomic:
7870   case CK_AddressSpaceConversion:
7871     llvm_unreachable("invalid cast kind for complex value");
7872 
7873   case CK_LValueToRValue:
7874   case CK_AtomicToNonAtomic:
7875   case CK_NoOp:
7876     return ExprEvaluatorBaseTy::VisitCastExpr(E);
7877 
7878   case CK_Dependent:
7879   case CK_LValueBitCast:
7880   case CK_UserDefinedConversion:
7881     return Error(E);
7882 
7883   case CK_FloatingRealToComplex: {
7884     APFloat &Real = Result.FloatReal;
7885     if (!EvaluateFloat(E->getSubExpr(), Real, Info))
7886       return false;
7887 
7888     Result.makeComplexFloat();
7889     Result.FloatImag = APFloat(Real.getSemantics());
7890     return true;
7891   }
7892 
7893   case CK_FloatingComplexCast: {
7894     if (!Visit(E->getSubExpr()))
7895       return false;
7896 
7897     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
7898     QualType From
7899       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
7900 
7901     return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
7902            HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
7903   }
7904 
7905   case CK_FloatingComplexToIntegralComplex: {
7906     if (!Visit(E->getSubExpr()))
7907       return false;
7908 
7909     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
7910     QualType From
7911       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
7912     Result.makeComplexInt();
7913     return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
7914                                 To, Result.IntReal) &&
7915            HandleFloatToIntCast(Info, E, From, Result.FloatImag,
7916                                 To, Result.IntImag);
7917   }
7918 
7919   case CK_IntegralRealToComplex: {
7920     APSInt &Real = Result.IntReal;
7921     if (!EvaluateInteger(E->getSubExpr(), Real, Info))
7922       return false;
7923 
7924     Result.makeComplexInt();
7925     Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
7926     return true;
7927   }
7928 
7929   case CK_IntegralComplexCast: {
7930     if (!Visit(E->getSubExpr()))
7931       return false;
7932 
7933     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
7934     QualType From
7935       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
7936 
7937     Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
7938     Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
7939     return true;
7940   }
7941 
7942   case CK_IntegralComplexToFloatingComplex: {
7943     if (!Visit(E->getSubExpr()))
7944       return false;
7945 
7946     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
7947     QualType From
7948       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
7949     Result.makeComplexFloat();
7950     return HandleIntToFloatCast(Info, E, From, Result.IntReal,
7951                                 To, Result.FloatReal) &&
7952            HandleIntToFloatCast(Info, E, From, Result.IntImag,
7953                                 To, Result.FloatImag);
7954   }
7955   }
7956 
7957   llvm_unreachable("unknown cast resulting in complex value");
7958 }
7959 
VisitBinaryOperator(const BinaryOperator * E)7960 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
7961   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
7962     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7963 
7964   // Track whether the LHS or RHS is real at the type system level. When this is
7965   // the case we can simplify our evaluation strategy.
7966   bool LHSReal = false, RHSReal = false;
7967 
7968   bool LHSOK;
7969   if (E->getLHS()->getType()->isRealFloatingType()) {
7970     LHSReal = true;
7971     APFloat &Real = Result.FloatReal;
7972     LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
7973     if (LHSOK) {
7974       Result.makeComplexFloat();
7975       Result.FloatImag = APFloat(Real.getSemantics());
7976     }
7977   } else {
7978     LHSOK = Visit(E->getLHS());
7979   }
7980   if (!LHSOK && !Info.keepEvaluatingAfterFailure())
7981     return false;
7982 
7983   ComplexValue RHS;
7984   if (E->getRHS()->getType()->isRealFloatingType()) {
7985     RHSReal = true;
7986     APFloat &Real = RHS.FloatReal;
7987     if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
7988       return false;
7989     RHS.makeComplexFloat();
7990     RHS.FloatImag = APFloat(Real.getSemantics());
7991   } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
7992     return false;
7993 
7994   assert(!(LHSReal && RHSReal) &&
7995          "Cannot have both operands of a complex operation be real.");
7996   switch (E->getOpcode()) {
7997   default: return Error(E);
7998   case BO_Add:
7999     if (Result.isComplexFloat()) {
8000       Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
8001                                        APFloat::rmNearestTiesToEven);
8002       if (LHSReal)
8003         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
8004       else if (!RHSReal)
8005         Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
8006                                          APFloat::rmNearestTiesToEven);
8007     } else {
8008       Result.getComplexIntReal() += RHS.getComplexIntReal();
8009       Result.getComplexIntImag() += RHS.getComplexIntImag();
8010     }
8011     break;
8012   case BO_Sub:
8013     if (Result.isComplexFloat()) {
8014       Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
8015                                             APFloat::rmNearestTiesToEven);
8016       if (LHSReal) {
8017         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
8018         Result.getComplexFloatImag().changeSign();
8019       } else if (!RHSReal) {
8020         Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
8021                                               APFloat::rmNearestTiesToEven);
8022       }
8023     } else {
8024       Result.getComplexIntReal() -= RHS.getComplexIntReal();
8025       Result.getComplexIntImag() -= RHS.getComplexIntImag();
8026     }
8027     break;
8028   case BO_Mul:
8029     if (Result.isComplexFloat()) {
8030       // This is an implementation of complex multiplication according to the
8031       // constraints laid out in C11 Annex G. The implemantion uses the
8032       // following naming scheme:
8033       //   (a + ib) * (c + id)
8034       ComplexValue LHS = Result;
8035       APFloat &A = LHS.getComplexFloatReal();
8036       APFloat &B = LHS.getComplexFloatImag();
8037       APFloat &C = RHS.getComplexFloatReal();
8038       APFloat &D = RHS.getComplexFloatImag();
8039       APFloat &ResR = Result.getComplexFloatReal();
8040       APFloat &ResI = Result.getComplexFloatImag();
8041       if (LHSReal) {
8042         assert(!RHSReal && "Cannot have two real operands for a complex op!");
8043         ResR = A * C;
8044         ResI = A * D;
8045       } else if (RHSReal) {
8046         ResR = C * A;
8047         ResI = C * B;
8048       } else {
8049         // In the fully general case, we need to handle NaNs and infinities
8050         // robustly.
8051         APFloat AC = A * C;
8052         APFloat BD = B * D;
8053         APFloat AD = A * D;
8054         APFloat BC = B * C;
8055         ResR = AC - BD;
8056         ResI = AD + BC;
8057         if (ResR.isNaN() && ResI.isNaN()) {
8058           bool Recalc = false;
8059           if (A.isInfinity() || B.isInfinity()) {
8060             A = APFloat::copySign(
8061                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
8062             B = APFloat::copySign(
8063                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
8064             if (C.isNaN())
8065               C = APFloat::copySign(APFloat(C.getSemantics()), C);
8066             if (D.isNaN())
8067               D = APFloat::copySign(APFloat(D.getSemantics()), D);
8068             Recalc = true;
8069           }
8070           if (C.isInfinity() || D.isInfinity()) {
8071             C = APFloat::copySign(
8072                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
8073             D = APFloat::copySign(
8074                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
8075             if (A.isNaN())
8076               A = APFloat::copySign(APFloat(A.getSemantics()), A);
8077             if (B.isNaN())
8078               B = APFloat::copySign(APFloat(B.getSemantics()), B);
8079             Recalc = true;
8080           }
8081           if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
8082                           AD.isInfinity() || BC.isInfinity())) {
8083             if (A.isNaN())
8084               A = APFloat::copySign(APFloat(A.getSemantics()), A);
8085             if (B.isNaN())
8086               B = APFloat::copySign(APFloat(B.getSemantics()), B);
8087             if (C.isNaN())
8088               C = APFloat::copySign(APFloat(C.getSemantics()), C);
8089             if (D.isNaN())
8090               D = APFloat::copySign(APFloat(D.getSemantics()), D);
8091             Recalc = true;
8092           }
8093           if (Recalc) {
8094             ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
8095             ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
8096           }
8097         }
8098       }
8099     } else {
8100       ComplexValue LHS = Result;
8101       Result.getComplexIntReal() =
8102         (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
8103          LHS.getComplexIntImag() * RHS.getComplexIntImag());
8104       Result.getComplexIntImag() =
8105         (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
8106          LHS.getComplexIntImag() * RHS.getComplexIntReal());
8107     }
8108     break;
8109   case BO_Div:
8110     if (Result.isComplexFloat()) {
8111       // This is an implementation of complex division according to the
8112       // constraints laid out in C11 Annex G. The implemantion uses the
8113       // following naming scheme:
8114       //   (a + ib) / (c + id)
8115       ComplexValue LHS = Result;
8116       APFloat &A = LHS.getComplexFloatReal();
8117       APFloat &B = LHS.getComplexFloatImag();
8118       APFloat &C = RHS.getComplexFloatReal();
8119       APFloat &D = RHS.getComplexFloatImag();
8120       APFloat &ResR = Result.getComplexFloatReal();
8121       APFloat &ResI = Result.getComplexFloatImag();
8122       if (RHSReal) {
8123         ResR = A / C;
8124         ResI = B / C;
8125       } else {
8126         if (LHSReal) {
8127           // No real optimizations we can do here, stub out with zero.
8128           B = APFloat::getZero(A.getSemantics());
8129         }
8130         int DenomLogB = 0;
8131         APFloat MaxCD = maxnum(abs(C), abs(D));
8132         if (MaxCD.isFinite()) {
8133           DenomLogB = ilogb(MaxCD);
8134           C = scalbn(C, -DenomLogB);
8135           D = scalbn(D, -DenomLogB);
8136         }
8137         APFloat Denom = C * C + D * D;
8138         ResR = scalbn((A * C + B * D) / Denom, -DenomLogB);
8139         ResI = scalbn((B * C - A * D) / Denom, -DenomLogB);
8140         if (ResR.isNaN() && ResI.isNaN()) {
8141           if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
8142             ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
8143             ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
8144           } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
8145                      D.isFinite()) {
8146             A = APFloat::copySign(
8147                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
8148             B = APFloat::copySign(
8149                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
8150             ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
8151             ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
8152           } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
8153             C = APFloat::copySign(
8154                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
8155             D = APFloat::copySign(
8156                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
8157             ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
8158             ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
8159           }
8160         }
8161       }
8162     } else {
8163       if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
8164         return Error(E, diag::note_expr_divide_by_zero);
8165 
8166       ComplexValue LHS = Result;
8167       APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
8168         RHS.getComplexIntImag() * RHS.getComplexIntImag();
8169       Result.getComplexIntReal() =
8170         (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
8171          LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
8172       Result.getComplexIntImag() =
8173         (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
8174          LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
8175     }
8176     break;
8177   }
8178 
8179   return true;
8180 }
8181 
VisitUnaryOperator(const UnaryOperator * E)8182 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
8183   // Get the operand value into 'Result'.
8184   if (!Visit(E->getSubExpr()))
8185     return false;
8186 
8187   switch (E->getOpcode()) {
8188   default:
8189     return Error(E);
8190   case UO_Extension:
8191     return true;
8192   case UO_Plus:
8193     // The result is always just the subexpr.
8194     return true;
8195   case UO_Minus:
8196     if (Result.isComplexFloat()) {
8197       Result.getComplexFloatReal().changeSign();
8198       Result.getComplexFloatImag().changeSign();
8199     }
8200     else {
8201       Result.getComplexIntReal() = -Result.getComplexIntReal();
8202       Result.getComplexIntImag() = -Result.getComplexIntImag();
8203     }
8204     return true;
8205   case UO_Not:
8206     if (Result.isComplexFloat())
8207       Result.getComplexFloatImag().changeSign();
8208     else
8209       Result.getComplexIntImag() = -Result.getComplexIntImag();
8210     return true;
8211   }
8212 }
8213 
VisitInitListExpr(const InitListExpr * E)8214 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
8215   if (E->getNumInits() == 2) {
8216     if (E->getType()->isComplexType()) {
8217       Result.makeComplexFloat();
8218       if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
8219         return false;
8220       if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
8221         return false;
8222     } else {
8223       Result.makeComplexInt();
8224       if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
8225         return false;
8226       if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
8227         return false;
8228     }
8229     return true;
8230   }
8231   return ExprEvaluatorBaseTy::VisitInitListExpr(E);
8232 }
8233 
8234 //===----------------------------------------------------------------------===//
8235 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
8236 // implicit conversion.
8237 //===----------------------------------------------------------------------===//
8238 
8239 namespace {
8240 class AtomicExprEvaluator :
8241     public ExprEvaluatorBase<AtomicExprEvaluator> {
8242   APValue &Result;
8243 public:
AtomicExprEvaluator(EvalInfo & Info,APValue & Result)8244   AtomicExprEvaluator(EvalInfo &Info, APValue &Result)
8245       : ExprEvaluatorBaseTy(Info), Result(Result) {}
8246 
Success(const APValue & V,const Expr * E)8247   bool Success(const APValue &V, const Expr *E) {
8248     Result = V;
8249     return true;
8250   }
8251 
ZeroInitialization(const Expr * E)8252   bool ZeroInitialization(const Expr *E) {
8253     ImplicitValueInitExpr VIE(
8254         E->getType()->castAs<AtomicType>()->getValueType());
8255     return Evaluate(Result, Info, &VIE);
8256   }
8257 
VisitCastExpr(const CastExpr * E)8258   bool VisitCastExpr(const CastExpr *E) {
8259     switch (E->getCastKind()) {
8260     default:
8261       return ExprEvaluatorBaseTy::VisitCastExpr(E);
8262     case CK_NonAtomicToAtomic:
8263       return Evaluate(Result, Info, E->getSubExpr());
8264     }
8265   }
8266 };
8267 } // end anonymous namespace
8268 
EvaluateAtomic(const Expr * E,APValue & Result,EvalInfo & Info)8269 static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info) {
8270   assert(E->isRValue() && E->getType()->isAtomicType());
8271   return AtomicExprEvaluator(Info, Result).Visit(E);
8272 }
8273 
8274 //===----------------------------------------------------------------------===//
8275 // Void expression evaluation, primarily for a cast to void on the LHS of a
8276 // comma operator
8277 //===----------------------------------------------------------------------===//
8278 
8279 namespace {
8280 class VoidExprEvaluator
8281   : public ExprEvaluatorBase<VoidExprEvaluator> {
8282 public:
VoidExprEvaluator(EvalInfo & Info)8283   VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
8284 
Success(const APValue & V,const Expr * e)8285   bool Success(const APValue &V, const Expr *e) { return true; }
8286 
VisitCastExpr(const CastExpr * E)8287   bool VisitCastExpr(const CastExpr *E) {
8288     switch (E->getCastKind()) {
8289     default:
8290       return ExprEvaluatorBaseTy::VisitCastExpr(E);
8291     case CK_ToVoid:
8292       VisitIgnoredValue(E->getSubExpr());
8293       return true;
8294     }
8295   }
8296 
VisitCallExpr(const CallExpr * E)8297   bool VisitCallExpr(const CallExpr *E) {
8298     switch (E->getBuiltinCallee()) {
8299     default:
8300       return ExprEvaluatorBaseTy::VisitCallExpr(E);
8301     case Builtin::BI__assume:
8302     case Builtin::BI__builtin_assume:
8303       // The argument is not evaluated!
8304       return true;
8305     }
8306   }
8307 };
8308 } // end anonymous namespace
8309 
EvaluateVoid(const Expr * E,EvalInfo & Info)8310 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
8311   assert(E->isRValue() && E->getType()->isVoidType());
8312   return VoidExprEvaluator(Info).Visit(E);
8313 }
8314 
8315 //===----------------------------------------------------------------------===//
8316 // Top level Expr::EvaluateAsRValue method.
8317 //===----------------------------------------------------------------------===//
8318 
Evaluate(APValue & Result,EvalInfo & Info,const Expr * E)8319 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
8320   // In C, function designators are not lvalues, but we evaluate them as if they
8321   // are.
8322   QualType T = E->getType();
8323   if (E->isGLValue() || T->isFunctionType()) {
8324     LValue LV;
8325     if (!EvaluateLValue(E, LV, Info))
8326       return false;
8327     LV.moveInto(Result);
8328   } else if (T->isVectorType()) {
8329     if (!EvaluateVector(E, Result, Info))
8330       return false;
8331   } else if (T->isIntegralOrEnumerationType()) {
8332     if (!IntExprEvaluator(Info, Result).Visit(E))
8333       return false;
8334   } else if (T->hasPointerRepresentation()) {
8335     LValue LV;
8336     if (!EvaluatePointer(E, LV, Info))
8337       return false;
8338     LV.moveInto(Result);
8339   } else if (T->isRealFloatingType()) {
8340     llvm::APFloat F(0.0);
8341     if (!EvaluateFloat(E, F, Info))
8342       return false;
8343     Result = APValue(F);
8344   } else if (T->isAnyComplexType()) {
8345     ComplexValue C;
8346     if (!EvaluateComplex(E, C, Info))
8347       return false;
8348     C.moveInto(Result);
8349   } else if (T->isMemberPointerType()) {
8350     MemberPtr P;
8351     if (!EvaluateMemberPointer(E, P, Info))
8352       return false;
8353     P.moveInto(Result);
8354     return true;
8355   } else if (T->isArrayType()) {
8356     LValue LV;
8357     LV.set(E, Info.CurrentCall->Index);
8358     APValue &Value = Info.CurrentCall->createTemporary(E, false);
8359     if (!EvaluateArray(E, LV, Value, Info))
8360       return false;
8361     Result = Value;
8362   } else if (T->isRecordType()) {
8363     LValue LV;
8364     LV.set(E, Info.CurrentCall->Index);
8365     APValue &Value = Info.CurrentCall->createTemporary(E, false);
8366     if (!EvaluateRecord(E, LV, Value, Info))
8367       return false;
8368     Result = Value;
8369   } else if (T->isVoidType()) {
8370     if (!Info.getLangOpts().CPlusPlus11)
8371       Info.CCEDiag(E, diag::note_constexpr_nonliteral)
8372         << E->getType();
8373     if (!EvaluateVoid(E, Info))
8374       return false;
8375   } else if (T->isAtomicType()) {
8376     if (!EvaluateAtomic(E, Result, Info))
8377       return false;
8378   } else if (Info.getLangOpts().CPlusPlus11) {
8379     Info.Diag(E, diag::note_constexpr_nonliteral) << E->getType();
8380     return false;
8381   } else {
8382     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
8383     return false;
8384   }
8385 
8386   return true;
8387 }
8388 
8389 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
8390 /// cases, the in-place evaluation is essential, since later initializers for
8391 /// an object can indirectly refer to subobjects which were initialized earlier.
EvaluateInPlace(APValue & Result,EvalInfo & Info,const LValue & This,const Expr * E,bool AllowNonLiteralTypes)8392 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
8393                             const Expr *E, bool AllowNonLiteralTypes) {
8394   assert(!E->isValueDependent());
8395 
8396   if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
8397     return false;
8398 
8399   if (E->isRValue()) {
8400     // Evaluate arrays and record types in-place, so that later initializers can
8401     // refer to earlier-initialized members of the object.
8402     if (E->getType()->isArrayType())
8403       return EvaluateArray(E, This, Result, Info);
8404     else if (E->getType()->isRecordType())
8405       return EvaluateRecord(E, This, Result, Info);
8406   }
8407 
8408   // For any other type, in-place evaluation is unimportant.
8409   return Evaluate(Result, Info, E);
8410 }
8411 
8412 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
8413 /// lvalue-to-rvalue cast if it is an lvalue.
EvaluateAsRValue(EvalInfo & Info,const Expr * E,APValue & Result)8414 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
8415   if (E->getType().isNull())
8416     return false;
8417 
8418   if (!CheckLiteralType(Info, E))
8419     return false;
8420 
8421   if (!::Evaluate(Result, Info, E))
8422     return false;
8423 
8424   if (E->isGLValue()) {
8425     LValue LV;
8426     LV.setFrom(Info.Ctx, Result);
8427     if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
8428       return false;
8429   }
8430 
8431   // Check this core constant expression is a constant expression.
8432   return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
8433 }
8434 
FastEvaluateAsRValue(const Expr * Exp,Expr::EvalResult & Result,const ASTContext & Ctx,bool & IsConst)8435 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
8436                                  const ASTContext &Ctx, bool &IsConst) {
8437   // Fast-path evaluations of integer literals, since we sometimes see files
8438   // containing vast quantities of these.
8439   if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
8440     Result.Val = APValue(APSInt(L->getValue(),
8441                                 L->getType()->isUnsignedIntegerType()));
8442     IsConst = true;
8443     return true;
8444   }
8445 
8446   // This case should be rare, but we need to check it before we check on
8447   // the type below.
8448   if (Exp->getType().isNull()) {
8449     IsConst = false;
8450     return true;
8451   }
8452 
8453   // FIXME: Evaluating values of large array and record types can cause
8454   // performance problems. Only do so in C++11 for now.
8455   if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
8456                           Exp->getType()->isRecordType()) &&
8457       !Ctx.getLangOpts().CPlusPlus11) {
8458     IsConst = false;
8459     return true;
8460   }
8461   return false;
8462 }
8463 
8464 
8465 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
8466 /// any crazy technique (that has nothing to do with language standards) that
8467 /// we want to.  If this function returns true, it returns the folded constant
8468 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
8469 /// will be applied to the result.
EvaluateAsRValue(EvalResult & Result,const ASTContext & Ctx) const8470 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
8471   bool IsConst;
8472   if (FastEvaluateAsRValue(this, Result, Ctx, IsConst))
8473     return IsConst;
8474 
8475   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
8476   return ::EvaluateAsRValue(Info, this, Result.Val);
8477 }
8478 
EvaluateAsBooleanCondition(bool & Result,const ASTContext & Ctx) const8479 bool Expr::EvaluateAsBooleanCondition(bool &Result,
8480                                       const ASTContext &Ctx) const {
8481   EvalResult Scratch;
8482   return EvaluateAsRValue(Scratch, Ctx) &&
8483          HandleConversionToBool(Scratch.Val, Result);
8484 }
8485 
EvaluateAsInt(APSInt & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects) const8486 bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
8487                          SideEffectsKind AllowSideEffects) const {
8488   if (!getType()->isIntegralOrEnumerationType())
8489     return false;
8490 
8491   EvalResult ExprResult;
8492   if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
8493       (!AllowSideEffects && ExprResult.HasSideEffects))
8494     return false;
8495 
8496   Result = ExprResult.Val.getInt();
8497   return true;
8498 }
8499 
EvaluateAsLValue(EvalResult & Result,const ASTContext & Ctx) const8500 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
8501   EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
8502 
8503   LValue LV;
8504   if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
8505       !CheckLValueConstantExpression(Info, getExprLoc(),
8506                                      Ctx.getLValueReferenceType(getType()), LV))
8507     return false;
8508 
8509   LV.moveInto(Result.Val);
8510   return true;
8511 }
8512 
EvaluateAsInitializer(APValue & Value,const ASTContext & Ctx,const VarDecl * VD,SmallVectorImpl<PartialDiagnosticAt> & Notes) const8513 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
8514                                  const VarDecl *VD,
8515                             SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
8516   // FIXME: Evaluating initializers for large array and record types can cause
8517   // performance problems. Only do so in C++11 for now.
8518   if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
8519       !Ctx.getLangOpts().CPlusPlus11)
8520     return false;
8521 
8522   Expr::EvalStatus EStatus;
8523   EStatus.Diag = &Notes;
8524 
8525   EvalInfo InitInfo(Ctx, EStatus, EvalInfo::EM_ConstantFold);
8526   InitInfo.setEvaluatingDecl(VD, Value);
8527 
8528   LValue LVal;
8529   LVal.set(VD);
8530 
8531   // C++11 [basic.start.init]p2:
8532   //  Variables with static storage duration or thread storage duration shall be
8533   //  zero-initialized before any other initialization takes place.
8534   // This behavior is not present in C.
8535   if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
8536       !VD->getType()->isReferenceType()) {
8537     ImplicitValueInitExpr VIE(VD->getType());
8538     if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE,
8539                          /*AllowNonLiteralTypes=*/true))
8540       return false;
8541   }
8542 
8543   if (!EvaluateInPlace(Value, InitInfo, LVal, this,
8544                        /*AllowNonLiteralTypes=*/true) ||
8545       EStatus.HasSideEffects)
8546     return false;
8547 
8548   return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
8549                                  Value);
8550 }
8551 
8552 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
8553 /// constant folded, but discard the result.
isEvaluatable(const ASTContext & Ctx) const8554 bool Expr::isEvaluatable(const ASTContext &Ctx) const {
8555   EvalResult Result;
8556   return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects;
8557 }
8558 
EvaluateKnownConstInt(const ASTContext & Ctx,SmallVectorImpl<PartialDiagnosticAt> * Diag) const8559 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
8560                     SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
8561   EvalResult EvalResult;
8562   EvalResult.Diag = Diag;
8563   bool Result = EvaluateAsRValue(EvalResult, Ctx);
8564   (void)Result;
8565   assert(Result && "Could not evaluate expression");
8566   assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
8567 
8568   return EvalResult.Val.getInt();
8569 }
8570 
EvaluateForOverflow(const ASTContext & Ctx) const8571 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
8572   bool IsConst;
8573   EvalResult EvalResult;
8574   if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) {
8575     EvalInfo Info(Ctx, EvalResult, EvalInfo::EM_EvaluateForOverflow);
8576     (void)::EvaluateAsRValue(Info, this, EvalResult.Val);
8577   }
8578 }
8579 
isGlobalLValue() const8580 bool Expr::EvalResult::isGlobalLValue() const {
8581   assert(Val.isLValue());
8582   return IsGlobalLValue(Val.getLValueBase());
8583 }
8584 
8585 
8586 /// isIntegerConstantExpr - this recursive routine will test if an expression is
8587 /// an integer constant expression.
8588 
8589 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
8590 /// comma, etc
8591 
8592 // CheckICE - This function does the fundamental ICE checking: the returned
8593 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
8594 // and a (possibly null) SourceLocation indicating the location of the problem.
8595 //
8596 // Note that to reduce code duplication, this helper does no evaluation
8597 // itself; the caller checks whether the expression is evaluatable, and
8598 // in the rare cases where CheckICE actually cares about the evaluated
8599 // value, it calls into Evalute.
8600 
8601 namespace {
8602 
8603 enum ICEKind {
8604   /// This expression is an ICE.
8605   IK_ICE,
8606   /// This expression is not an ICE, but if it isn't evaluated, it's
8607   /// a legal subexpression for an ICE. This return value is used to handle
8608   /// the comma operator in C99 mode, and non-constant subexpressions.
8609   IK_ICEIfUnevaluated,
8610   /// This expression is not an ICE, and is not a legal subexpression for one.
8611   IK_NotICE
8612 };
8613 
8614 struct ICEDiag {
8615   ICEKind Kind;
8616   SourceLocation Loc;
8617 
ICEDiag__anon0751fa451911::ICEDiag8618   ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
8619 };
8620 
8621 }
8622 
NoDiag()8623 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
8624 
Worst(ICEDiag A,ICEDiag B)8625 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
8626 
CheckEvalInICE(const Expr * E,const ASTContext & Ctx)8627 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
8628   Expr::EvalResult EVResult;
8629   if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
8630       !EVResult.Val.isInt())
8631     return ICEDiag(IK_NotICE, E->getLocStart());
8632 
8633   return NoDiag();
8634 }
8635 
CheckICE(const Expr * E,const ASTContext & Ctx)8636 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
8637   assert(!E->isValueDependent() && "Should not see value dependent exprs!");
8638   if (!E->getType()->isIntegralOrEnumerationType())
8639     return ICEDiag(IK_NotICE, E->getLocStart());
8640 
8641   switch (E->getStmtClass()) {
8642 #define ABSTRACT_STMT(Node)
8643 #define STMT(Node, Base) case Expr::Node##Class:
8644 #define EXPR(Node, Base)
8645 #include "clang/AST/StmtNodes.inc"
8646   case Expr::PredefinedExprClass:
8647   case Expr::FloatingLiteralClass:
8648   case Expr::ImaginaryLiteralClass:
8649   case Expr::StringLiteralClass:
8650   case Expr::ArraySubscriptExprClass:
8651   case Expr::MemberExprClass:
8652   case Expr::CompoundAssignOperatorClass:
8653   case Expr::CompoundLiteralExprClass:
8654   case Expr::ExtVectorElementExprClass:
8655   case Expr::DesignatedInitExprClass:
8656   case Expr::ImplicitValueInitExprClass:
8657   case Expr::ParenListExprClass:
8658   case Expr::VAArgExprClass:
8659   case Expr::AddrLabelExprClass:
8660   case Expr::StmtExprClass:
8661   case Expr::CXXMemberCallExprClass:
8662   case Expr::CUDAKernelCallExprClass:
8663   case Expr::CXXDynamicCastExprClass:
8664   case Expr::CXXTypeidExprClass:
8665   case Expr::CXXUuidofExprClass:
8666   case Expr::MSPropertyRefExprClass:
8667   case Expr::CXXNullPtrLiteralExprClass:
8668   case Expr::UserDefinedLiteralClass:
8669   case Expr::CXXThisExprClass:
8670   case Expr::CXXThrowExprClass:
8671   case Expr::CXXNewExprClass:
8672   case Expr::CXXDeleteExprClass:
8673   case Expr::CXXPseudoDestructorExprClass:
8674   case Expr::UnresolvedLookupExprClass:
8675   case Expr::TypoExprClass:
8676   case Expr::DependentScopeDeclRefExprClass:
8677   case Expr::CXXConstructExprClass:
8678   case Expr::CXXStdInitializerListExprClass:
8679   case Expr::CXXBindTemporaryExprClass:
8680   case Expr::ExprWithCleanupsClass:
8681   case Expr::CXXTemporaryObjectExprClass:
8682   case Expr::CXXUnresolvedConstructExprClass:
8683   case Expr::CXXDependentScopeMemberExprClass:
8684   case Expr::UnresolvedMemberExprClass:
8685   case Expr::ObjCStringLiteralClass:
8686   case Expr::ObjCBoxedExprClass:
8687   case Expr::ObjCArrayLiteralClass:
8688   case Expr::ObjCDictionaryLiteralClass:
8689   case Expr::ObjCEncodeExprClass:
8690   case Expr::ObjCMessageExprClass:
8691   case Expr::ObjCSelectorExprClass:
8692   case Expr::ObjCProtocolExprClass:
8693   case Expr::ObjCIvarRefExprClass:
8694   case Expr::ObjCPropertyRefExprClass:
8695   case Expr::ObjCSubscriptRefExprClass:
8696   case Expr::ObjCIsaExprClass:
8697   case Expr::ShuffleVectorExprClass:
8698   case Expr::ConvertVectorExprClass:
8699   case Expr::BlockExprClass:
8700   case Expr::NoStmtClass:
8701   case Expr::OpaqueValueExprClass:
8702   case Expr::PackExpansionExprClass:
8703   case Expr::SubstNonTypeTemplateParmPackExprClass:
8704   case Expr::FunctionParmPackExprClass:
8705   case Expr::AsTypeExprClass:
8706   case Expr::ObjCIndirectCopyRestoreExprClass:
8707   case Expr::MaterializeTemporaryExprClass:
8708   case Expr::PseudoObjectExprClass:
8709   case Expr::AtomicExprClass:
8710   case Expr::LambdaExprClass:
8711   case Expr::CXXFoldExprClass:
8712     return ICEDiag(IK_NotICE, E->getLocStart());
8713 
8714   case Expr::InitListExprClass: {
8715     // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
8716     // form "T x = { a };" is equivalent to "T x = a;".
8717     // Unless we're initializing a reference, T is a scalar as it is known to be
8718     // of integral or enumeration type.
8719     if (E->isRValue())
8720       if (cast<InitListExpr>(E)->getNumInits() == 1)
8721         return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
8722     return ICEDiag(IK_NotICE, E->getLocStart());
8723   }
8724 
8725   case Expr::SizeOfPackExprClass:
8726   case Expr::GNUNullExprClass:
8727     // GCC considers the GNU __null value to be an integral constant expression.
8728     return NoDiag();
8729 
8730   case Expr::SubstNonTypeTemplateParmExprClass:
8731     return
8732       CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
8733 
8734   case Expr::ParenExprClass:
8735     return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
8736   case Expr::GenericSelectionExprClass:
8737     return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
8738   case Expr::IntegerLiteralClass:
8739   case Expr::CharacterLiteralClass:
8740   case Expr::ObjCBoolLiteralExprClass:
8741   case Expr::CXXBoolLiteralExprClass:
8742   case Expr::CXXScalarValueInitExprClass:
8743   case Expr::TypeTraitExprClass:
8744   case Expr::ArrayTypeTraitExprClass:
8745   case Expr::ExpressionTraitExprClass:
8746   case Expr::CXXNoexceptExprClass:
8747     return NoDiag();
8748   case Expr::CallExprClass:
8749   case Expr::CXXOperatorCallExprClass: {
8750     // C99 6.6/3 allows function calls within unevaluated subexpressions of
8751     // constant expressions, but they can never be ICEs because an ICE cannot
8752     // contain an operand of (pointer to) function type.
8753     const CallExpr *CE = cast<CallExpr>(E);
8754     if (CE->getBuiltinCallee())
8755       return CheckEvalInICE(E, Ctx);
8756     return ICEDiag(IK_NotICE, E->getLocStart());
8757   }
8758   case Expr::DeclRefExprClass: {
8759     if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
8760       return NoDiag();
8761     const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
8762     if (Ctx.getLangOpts().CPlusPlus &&
8763         D && IsConstNonVolatile(D->getType())) {
8764       // Parameter variables are never constants.  Without this check,
8765       // getAnyInitializer() can find a default argument, which leads
8766       // to chaos.
8767       if (isa<ParmVarDecl>(D))
8768         return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
8769 
8770       // C++ 7.1.5.1p2
8771       //   A variable of non-volatile const-qualified integral or enumeration
8772       //   type initialized by an ICE can be used in ICEs.
8773       if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
8774         if (!Dcl->getType()->isIntegralOrEnumerationType())
8775           return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
8776 
8777         const VarDecl *VD;
8778         // Look for a declaration of this variable that has an initializer, and
8779         // check whether it is an ICE.
8780         if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
8781           return NoDiag();
8782         else
8783           return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
8784       }
8785     }
8786     return ICEDiag(IK_NotICE, E->getLocStart());
8787   }
8788   case Expr::UnaryOperatorClass: {
8789     const UnaryOperator *Exp = cast<UnaryOperator>(E);
8790     switch (Exp->getOpcode()) {
8791     case UO_PostInc:
8792     case UO_PostDec:
8793     case UO_PreInc:
8794     case UO_PreDec:
8795     case UO_AddrOf:
8796     case UO_Deref:
8797       // C99 6.6/3 allows increment and decrement within unevaluated
8798       // subexpressions of constant expressions, but they can never be ICEs
8799       // because an ICE cannot contain an lvalue operand.
8800       return ICEDiag(IK_NotICE, E->getLocStart());
8801     case UO_Extension:
8802     case UO_LNot:
8803     case UO_Plus:
8804     case UO_Minus:
8805     case UO_Not:
8806     case UO_Real:
8807     case UO_Imag:
8808       return CheckICE(Exp->getSubExpr(), Ctx);
8809     }
8810 
8811     // OffsetOf falls through here.
8812   }
8813   case Expr::OffsetOfExprClass: {
8814     // Note that per C99, offsetof must be an ICE. And AFAIK, using
8815     // EvaluateAsRValue matches the proposed gcc behavior for cases like
8816     // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
8817     // compliance: we should warn earlier for offsetof expressions with
8818     // array subscripts that aren't ICEs, and if the array subscripts
8819     // are ICEs, the value of the offsetof must be an integer constant.
8820     return CheckEvalInICE(E, Ctx);
8821   }
8822   case Expr::UnaryExprOrTypeTraitExprClass: {
8823     const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
8824     if ((Exp->getKind() ==  UETT_SizeOf) &&
8825         Exp->getTypeOfArgument()->isVariableArrayType())
8826       return ICEDiag(IK_NotICE, E->getLocStart());
8827     return NoDiag();
8828   }
8829   case Expr::BinaryOperatorClass: {
8830     const BinaryOperator *Exp = cast<BinaryOperator>(E);
8831     switch (Exp->getOpcode()) {
8832     case BO_PtrMemD:
8833     case BO_PtrMemI:
8834     case BO_Assign:
8835     case BO_MulAssign:
8836     case BO_DivAssign:
8837     case BO_RemAssign:
8838     case BO_AddAssign:
8839     case BO_SubAssign:
8840     case BO_ShlAssign:
8841     case BO_ShrAssign:
8842     case BO_AndAssign:
8843     case BO_XorAssign:
8844     case BO_OrAssign:
8845       // C99 6.6/3 allows assignments within unevaluated subexpressions of
8846       // constant expressions, but they can never be ICEs because an ICE cannot
8847       // contain an lvalue operand.
8848       return ICEDiag(IK_NotICE, E->getLocStart());
8849 
8850     case BO_Mul:
8851     case BO_Div:
8852     case BO_Rem:
8853     case BO_Add:
8854     case BO_Sub:
8855     case BO_Shl:
8856     case BO_Shr:
8857     case BO_LT:
8858     case BO_GT:
8859     case BO_LE:
8860     case BO_GE:
8861     case BO_EQ:
8862     case BO_NE:
8863     case BO_And:
8864     case BO_Xor:
8865     case BO_Or:
8866     case BO_Comma: {
8867       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
8868       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
8869       if (Exp->getOpcode() == BO_Div ||
8870           Exp->getOpcode() == BO_Rem) {
8871         // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
8872         // we don't evaluate one.
8873         if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
8874           llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
8875           if (REval == 0)
8876             return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
8877           if (REval.isSigned() && REval.isAllOnesValue()) {
8878             llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
8879             if (LEval.isMinSignedValue())
8880               return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
8881           }
8882         }
8883       }
8884       if (Exp->getOpcode() == BO_Comma) {
8885         if (Ctx.getLangOpts().C99) {
8886           // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
8887           // if it isn't evaluated.
8888           if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
8889             return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
8890         } else {
8891           // In both C89 and C++, commas in ICEs are illegal.
8892           return ICEDiag(IK_NotICE, E->getLocStart());
8893         }
8894       }
8895       return Worst(LHSResult, RHSResult);
8896     }
8897     case BO_LAnd:
8898     case BO_LOr: {
8899       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
8900       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
8901       if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
8902         // Rare case where the RHS has a comma "side-effect"; we need
8903         // to actually check the condition to see whether the side
8904         // with the comma is evaluated.
8905         if ((Exp->getOpcode() == BO_LAnd) !=
8906             (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
8907           return RHSResult;
8908         return NoDiag();
8909       }
8910 
8911       return Worst(LHSResult, RHSResult);
8912     }
8913     }
8914   }
8915   case Expr::ImplicitCastExprClass:
8916   case Expr::CStyleCastExprClass:
8917   case Expr::CXXFunctionalCastExprClass:
8918   case Expr::CXXStaticCastExprClass:
8919   case Expr::CXXReinterpretCastExprClass:
8920   case Expr::CXXConstCastExprClass:
8921   case Expr::ObjCBridgedCastExprClass: {
8922     const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
8923     if (isa<ExplicitCastExpr>(E)) {
8924       if (const FloatingLiteral *FL
8925             = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
8926         unsigned DestWidth = Ctx.getIntWidth(E->getType());
8927         bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
8928         APSInt IgnoredVal(DestWidth, !DestSigned);
8929         bool Ignored;
8930         // If the value does not fit in the destination type, the behavior is
8931         // undefined, so we are not required to treat it as a constant
8932         // expression.
8933         if (FL->getValue().convertToInteger(IgnoredVal,
8934                                             llvm::APFloat::rmTowardZero,
8935                                             &Ignored) & APFloat::opInvalidOp)
8936           return ICEDiag(IK_NotICE, E->getLocStart());
8937         return NoDiag();
8938       }
8939     }
8940     switch (cast<CastExpr>(E)->getCastKind()) {
8941     case CK_LValueToRValue:
8942     case CK_AtomicToNonAtomic:
8943     case CK_NonAtomicToAtomic:
8944     case CK_NoOp:
8945     case CK_IntegralToBoolean:
8946     case CK_IntegralCast:
8947       return CheckICE(SubExpr, Ctx);
8948     default:
8949       return ICEDiag(IK_NotICE, E->getLocStart());
8950     }
8951   }
8952   case Expr::BinaryConditionalOperatorClass: {
8953     const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
8954     ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
8955     if (CommonResult.Kind == IK_NotICE) return CommonResult;
8956     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
8957     if (FalseResult.Kind == IK_NotICE) return FalseResult;
8958     if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
8959     if (FalseResult.Kind == IK_ICEIfUnevaluated &&
8960         Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
8961     return FalseResult;
8962   }
8963   case Expr::ConditionalOperatorClass: {
8964     const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
8965     // If the condition (ignoring parens) is a __builtin_constant_p call,
8966     // then only the true side is actually considered in an integer constant
8967     // expression, and it is fully evaluated.  This is an important GNU
8968     // extension.  See GCC PR38377 for discussion.
8969     if (const CallExpr *CallCE
8970         = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
8971       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
8972         return CheckEvalInICE(E, Ctx);
8973     ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
8974     if (CondResult.Kind == IK_NotICE)
8975       return CondResult;
8976 
8977     ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
8978     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
8979 
8980     if (TrueResult.Kind == IK_NotICE)
8981       return TrueResult;
8982     if (FalseResult.Kind == IK_NotICE)
8983       return FalseResult;
8984     if (CondResult.Kind == IK_ICEIfUnevaluated)
8985       return CondResult;
8986     if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
8987       return NoDiag();
8988     // Rare case where the diagnostics depend on which side is evaluated
8989     // Note that if we get here, CondResult is 0, and at least one of
8990     // TrueResult and FalseResult is non-zero.
8991     if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
8992       return FalseResult;
8993     return TrueResult;
8994   }
8995   case Expr::CXXDefaultArgExprClass:
8996     return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
8997   case Expr::CXXDefaultInitExprClass:
8998     return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
8999   case Expr::ChooseExprClass: {
9000     return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
9001   }
9002   }
9003 
9004   llvm_unreachable("Invalid StmtClass!");
9005 }
9006 
9007 /// Evaluate an expression as a C++11 integral constant expression.
EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext & Ctx,const Expr * E,llvm::APSInt * Value,SourceLocation * Loc)9008 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
9009                                                     const Expr *E,
9010                                                     llvm::APSInt *Value,
9011                                                     SourceLocation *Loc) {
9012   if (!E->getType()->isIntegralOrEnumerationType()) {
9013     if (Loc) *Loc = E->getExprLoc();
9014     return false;
9015   }
9016 
9017   APValue Result;
9018   if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
9019     return false;
9020 
9021   if (!Result.isInt()) {
9022     if (Loc) *Loc = E->getExprLoc();
9023     return false;
9024   }
9025 
9026   if (Value) *Value = Result.getInt();
9027   return true;
9028 }
9029 
isIntegerConstantExpr(const ASTContext & Ctx,SourceLocation * Loc) const9030 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
9031                                  SourceLocation *Loc) const {
9032   if (Ctx.getLangOpts().CPlusPlus11)
9033     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
9034 
9035   ICEDiag D = CheckICE(this, Ctx);
9036   if (D.Kind != IK_ICE) {
9037     if (Loc) *Loc = D.Loc;
9038     return false;
9039   }
9040   return true;
9041 }
9042 
isIntegerConstantExpr(llvm::APSInt & Value,const ASTContext & Ctx,SourceLocation * Loc,bool isEvaluated) const9043 bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx,
9044                                  SourceLocation *Loc, bool isEvaluated) const {
9045   if (Ctx.getLangOpts().CPlusPlus11)
9046     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
9047 
9048   if (!isIntegerConstantExpr(Ctx, Loc))
9049     return false;
9050   if (!EvaluateAsInt(Value, Ctx))
9051     llvm_unreachable("ICE cannot be evaluated!");
9052   return true;
9053 }
9054 
isCXX98IntegralConstantExpr(const ASTContext & Ctx) const9055 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
9056   return CheckICE(this, Ctx).Kind == IK_ICE;
9057 }
9058 
isCXX11ConstantExpr(const ASTContext & Ctx,APValue * Result,SourceLocation * Loc) const9059 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
9060                                SourceLocation *Loc) const {
9061   // We support this checking in C++98 mode in order to diagnose compatibility
9062   // issues.
9063   assert(Ctx.getLangOpts().CPlusPlus);
9064 
9065   // Build evaluation settings.
9066   Expr::EvalStatus Status;
9067   SmallVector<PartialDiagnosticAt, 8> Diags;
9068   Status.Diag = &Diags;
9069   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
9070 
9071   APValue Scratch;
9072   bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
9073 
9074   if (!Diags.empty()) {
9075     IsConstExpr = false;
9076     if (Loc) *Loc = Diags[0].first;
9077   } else if (!IsConstExpr) {
9078     // FIXME: This shouldn't happen.
9079     if (Loc) *Loc = getExprLoc();
9080   }
9081 
9082   return IsConstExpr;
9083 }
9084 
EvaluateWithSubstitution(APValue & Value,ASTContext & Ctx,const FunctionDecl * Callee,ArrayRef<const Expr * > Args) const9085 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
9086                                     const FunctionDecl *Callee,
9087                                     ArrayRef<const Expr*> Args) const {
9088   Expr::EvalStatus Status;
9089   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
9090 
9091   ArgVector ArgValues(Args.size());
9092   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
9093        I != E; ++I) {
9094     if ((*I)->isValueDependent() ||
9095         !Evaluate(ArgValues[I - Args.begin()], Info, *I))
9096       // If evaluation fails, throw away the argument entirely.
9097       ArgValues[I - Args.begin()] = APValue();
9098     if (Info.EvalStatus.HasSideEffects)
9099       return false;
9100   }
9101 
9102   // Build fake call to Callee.
9103   CallStackFrame Frame(Info, Callee->getLocation(), Callee, /*This*/nullptr,
9104                        ArgValues.data());
9105   return Evaluate(Value, Info, this) && !Info.EvalStatus.HasSideEffects;
9106 }
9107 
isPotentialConstantExpr(const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)9108 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
9109                                    SmallVectorImpl<
9110                                      PartialDiagnosticAt> &Diags) {
9111   // FIXME: It would be useful to check constexpr function templates, but at the
9112   // moment the constant expression evaluator cannot cope with the non-rigorous
9113   // ASTs which we build for dependent expressions.
9114   if (FD->isDependentContext())
9115     return true;
9116 
9117   Expr::EvalStatus Status;
9118   Status.Diag = &Diags;
9119 
9120   EvalInfo Info(FD->getASTContext(), Status,
9121                 EvalInfo::EM_PotentialConstantExpression);
9122 
9123   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
9124   const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
9125 
9126   // Fabricate an arbitrary expression on the stack and pretend that it
9127   // is a temporary being used as the 'this' pointer.
9128   LValue This;
9129   ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
9130   This.set(&VIE, Info.CurrentCall->Index);
9131 
9132   ArrayRef<const Expr*> Args;
9133 
9134   SourceLocation Loc = FD->getLocation();
9135 
9136   APValue Scratch;
9137   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
9138     // Evaluate the call as a constant initializer, to allow the construction
9139     // of objects of non-literal types.
9140     Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
9141     HandleConstructorCall(Loc, This, Args, CD, Info, Scratch);
9142   } else
9143     HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
9144                        Args, FD->getBody(), Info, Scratch);
9145 
9146   return Diags.empty();
9147 }
9148 
isPotentialConstantExprUnevaluated(Expr * E,const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)9149 bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
9150                                               const FunctionDecl *FD,
9151                                               SmallVectorImpl<
9152                                                 PartialDiagnosticAt> &Diags) {
9153   Expr::EvalStatus Status;
9154   Status.Diag = &Diags;
9155 
9156   EvalInfo Info(FD->getASTContext(), Status,
9157                 EvalInfo::EM_PotentialConstantExpressionUnevaluated);
9158 
9159   // Fabricate a call stack frame to give the arguments a plausible cover story.
9160   ArrayRef<const Expr*> Args;
9161   ArgVector ArgValues(0);
9162   bool Success = EvaluateArgs(Args, ArgValues, Info);
9163   (void)Success;
9164   assert(Success &&
9165          "Failed to set up arguments for potential constant evaluation");
9166   CallStackFrame Frame(Info, SourceLocation(), FD, nullptr, ArgValues.data());
9167 
9168   APValue ResultScratch;
9169   Evaluate(ResultScratch, Info, E);
9170   return Diags.empty();
9171 }
9172