1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implements C++ name mangling according to the Itanium C++ ABI,
11 // which is used in GCC 3.2 and newer (and many compilers that are
12 // ABI-compatible with GCC):
13 //
14 //   http://mentorembedded.github.io/cxx-abi/abi.html#mangling
15 //
16 //===----------------------------------------------------------------------===//
17 #include "clang/AST/Mangle.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/Basic/ABI.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 
35 #define MANGLE_CHECKER 0
36 
37 #if MANGLE_CHECKER
38 #include <cxxabi.h>
39 #endif
40 
41 using namespace clang;
42 
43 namespace {
44 
45 /// \brief Retrieve the declaration context that should be used when mangling
46 /// the given declaration.
getEffectiveDeclContext(const Decl * D)47 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
48   // The ABI assumes that lambda closure types that occur within
49   // default arguments live in the context of the function. However, due to
50   // the way in which Clang parses and creates function declarations, this is
51   // not the case: the lambda closure type ends up living in the context
52   // where the function itself resides, because the function declaration itself
53   // had not yet been created. Fix the context here.
54   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
55     if (RD->isLambda())
56       if (ParmVarDecl *ContextParam
57             = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
58         return ContextParam->getDeclContext();
59   }
60 
61   // Perform the same check for block literals.
62   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
63     if (ParmVarDecl *ContextParam
64           = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
65       return ContextParam->getDeclContext();
66   }
67 
68   const DeclContext *DC = D->getDeclContext();
69   if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
70     return getEffectiveDeclContext(CD);
71 
72   return DC;
73 }
74 
getEffectiveParentContext(const DeclContext * DC)75 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
76   return getEffectiveDeclContext(cast<Decl>(DC));
77 }
78 
isLocalContainerContext(const DeclContext * DC)79 static bool isLocalContainerContext(const DeclContext *DC) {
80   return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
81 }
82 
GetLocalClassDecl(const Decl * D)83 static const RecordDecl *GetLocalClassDecl(const Decl *D) {
84   const DeclContext *DC = getEffectiveDeclContext(D);
85   while (!DC->isNamespace() && !DC->isTranslationUnit()) {
86     if (isLocalContainerContext(DC))
87       return dyn_cast<RecordDecl>(D);
88     D = cast<Decl>(DC);
89     DC = getEffectiveDeclContext(D);
90   }
91   return nullptr;
92 }
93 
getStructor(const FunctionDecl * fn)94 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
95   if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
96     return ftd->getTemplatedDecl();
97 
98   return fn;
99 }
100 
getStructor(const NamedDecl * decl)101 static const NamedDecl *getStructor(const NamedDecl *decl) {
102   const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
103   return (fn ? getStructor(fn) : decl);
104 }
105 
isLambda(const NamedDecl * ND)106 static bool isLambda(const NamedDecl *ND) {
107   const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
108   if (!Record)
109     return false;
110 
111   return Record->isLambda();
112 }
113 
114 static const unsigned UnknownArity = ~0U;
115 
116 class ItaniumMangleContextImpl : public ItaniumMangleContext {
117   typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
118   llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
119   llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
120 
121 public:
ItaniumMangleContextImpl(ASTContext & Context,DiagnosticsEngine & Diags)122   explicit ItaniumMangleContextImpl(ASTContext &Context,
123                                     DiagnosticsEngine &Diags)
124       : ItaniumMangleContext(Context, Diags) {}
125 
126   /// @name Mangler Entry Points
127   /// @{
128 
129   bool shouldMangleCXXName(const NamedDecl *D) override;
shouldMangleStringLiteral(const StringLiteral *)130   bool shouldMangleStringLiteral(const StringLiteral *) override {
131     return false;
132   }
133   void mangleCXXName(const NamedDecl *D, raw_ostream &) override;
134   void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
135                    raw_ostream &) override;
136   void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
137                           const ThisAdjustment &ThisAdjustment,
138                           raw_ostream &) override;
139   void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
140                                 raw_ostream &) override;
141   void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
142   void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
143   void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
144                            const CXXRecordDecl *Type, raw_ostream &) override;
145   void mangleCXXRTTI(QualType T, raw_ostream &) override;
146   void mangleCXXRTTIName(QualType T, raw_ostream &) override;
147   void mangleTypeName(QualType T, raw_ostream &) override;
148   void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
149                      raw_ostream &) override;
150   void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
151                      raw_ostream &) override;
152 
153   void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
154   void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
155   void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
156   void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
157   void mangleDynamicAtExitDestructor(const VarDecl *D,
158                                      raw_ostream &Out) override;
159   void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
160   void mangleItaniumThreadLocalWrapper(const VarDecl *D,
161                                        raw_ostream &) override;
162 
163   void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
164 
getNextDiscriminator(const NamedDecl * ND,unsigned & disc)165   bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
166     // Lambda closure types are already numbered.
167     if (isLambda(ND))
168       return false;
169 
170     // Anonymous tags are already numbered.
171     if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
172       if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
173         return false;
174     }
175 
176     // Use the canonical number for externally visible decls.
177     if (ND->isExternallyVisible()) {
178       unsigned discriminator = getASTContext().getManglingNumber(ND);
179       if (discriminator == 1)
180         return false;
181       disc = discriminator - 2;
182       return true;
183     }
184 
185     // Make up a reasonable number for internal decls.
186     unsigned &discriminator = Uniquifier[ND];
187     if (!discriminator) {
188       const DeclContext *DC = getEffectiveDeclContext(ND);
189       discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
190     }
191     if (discriminator == 1)
192       return false;
193     disc = discriminator-2;
194     return true;
195   }
196   /// @}
197 };
198 
199 /// CXXNameMangler - Manage the mangling of a single name.
200 class CXXNameMangler {
201   ItaniumMangleContextImpl &Context;
202   raw_ostream &Out;
203 
204   /// The "structor" is the top-level declaration being mangled, if
205   /// that's not a template specialization; otherwise it's the pattern
206   /// for that specialization.
207   const NamedDecl *Structor;
208   unsigned StructorType;
209 
210   /// SeqID - The next subsitution sequence number.
211   unsigned SeqID;
212 
213   class FunctionTypeDepthState {
214     unsigned Bits;
215 
216     enum { InResultTypeMask = 1 };
217 
218   public:
FunctionTypeDepthState()219     FunctionTypeDepthState() : Bits(0) {}
220 
221     /// The number of function types we're inside.
getDepth() const222     unsigned getDepth() const {
223       return Bits >> 1;
224     }
225 
226     /// True if we're in the return type of the innermost function type.
isInResultType() const227     bool isInResultType() const {
228       return Bits & InResultTypeMask;
229     }
230 
push()231     FunctionTypeDepthState push() {
232       FunctionTypeDepthState tmp = *this;
233       Bits = (Bits & ~InResultTypeMask) + 2;
234       return tmp;
235     }
236 
enterResultType()237     void enterResultType() {
238       Bits |= InResultTypeMask;
239     }
240 
leaveResultType()241     void leaveResultType() {
242       Bits &= ~InResultTypeMask;
243     }
244 
pop(FunctionTypeDepthState saved)245     void pop(FunctionTypeDepthState saved) {
246       assert(getDepth() == saved.getDepth() + 1);
247       Bits = saved.Bits;
248     }
249 
250   } FunctionTypeDepth;
251 
252   llvm::DenseMap<uintptr_t, unsigned> Substitutions;
253 
getASTContext() const254   ASTContext &getASTContext() const { return Context.getASTContext(); }
255 
256 public:
CXXNameMangler(ItaniumMangleContextImpl & C,raw_ostream & Out_,const NamedDecl * D=nullptr)257   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
258                  const NamedDecl *D = nullptr)
259     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
260       SeqID(0) {
261     // These can't be mangled without a ctor type or dtor type.
262     assert(!D || (!isa<CXXDestructorDecl>(D) &&
263                   !isa<CXXConstructorDecl>(D)));
264   }
CXXNameMangler(ItaniumMangleContextImpl & C,raw_ostream & Out_,const CXXConstructorDecl * D,CXXCtorType Type)265   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
266                  const CXXConstructorDecl *D, CXXCtorType Type)
267     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
268       SeqID(0) { }
CXXNameMangler(ItaniumMangleContextImpl & C,raw_ostream & Out_,const CXXDestructorDecl * D,CXXDtorType Type)269   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
270                  const CXXDestructorDecl *D, CXXDtorType Type)
271     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
272       SeqID(0) { }
273 
274 #if MANGLE_CHECKER
~CXXNameMangler()275   ~CXXNameMangler() {
276     if (Out.str()[0] == '\01')
277       return;
278 
279     int status = 0;
280     char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
281     assert(status == 0 && "Could not demangle mangled name!");
282     free(result);
283   }
284 #endif
getStream()285   raw_ostream &getStream() { return Out; }
286 
287   void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
288   void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
289   void mangleNumber(const llvm::APSInt &I);
290   void mangleNumber(int64_t Number);
291   void mangleFloat(const llvm::APFloat &F);
292   void mangleFunctionEncoding(const FunctionDecl *FD);
293   void mangleSeqID(unsigned SeqID);
294   void mangleName(const NamedDecl *ND);
295   void mangleType(QualType T);
296   void mangleNameOrStandardSubstitution(const NamedDecl *ND);
297 
298 private:
299 
300   bool mangleSubstitution(const NamedDecl *ND);
301   bool mangleSubstitution(QualType T);
302   bool mangleSubstitution(TemplateName Template);
303   bool mangleSubstitution(uintptr_t Ptr);
304 
305   void mangleExistingSubstitution(QualType type);
306   void mangleExistingSubstitution(TemplateName name);
307 
308   bool mangleStandardSubstitution(const NamedDecl *ND);
309 
addSubstitution(const NamedDecl * ND)310   void addSubstitution(const NamedDecl *ND) {
311     ND = cast<NamedDecl>(ND->getCanonicalDecl());
312 
313     addSubstitution(reinterpret_cast<uintptr_t>(ND));
314   }
315   void addSubstitution(QualType T);
316   void addSubstitution(TemplateName Template);
317   void addSubstitution(uintptr_t Ptr);
318 
319   void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
320                               NamedDecl *firstQualifierLookup,
321                               bool recursive = false);
322   void mangleUnresolvedName(NestedNameSpecifier *qualifier,
323                             NamedDecl *firstQualifierLookup,
324                             DeclarationName name,
325                             unsigned KnownArity = UnknownArity);
326 
327   void mangleName(const TemplateDecl *TD,
328                   const TemplateArgument *TemplateArgs,
329                   unsigned NumTemplateArgs);
mangleUnqualifiedName(const NamedDecl * ND)330   void mangleUnqualifiedName(const NamedDecl *ND) {
331     mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
332   }
333   void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
334                              unsigned KnownArity);
335   void mangleUnscopedName(const NamedDecl *ND);
336   void mangleUnscopedTemplateName(const TemplateDecl *ND);
337   void mangleUnscopedTemplateName(TemplateName);
338   void mangleSourceName(const IdentifierInfo *II);
339   void mangleLocalName(const Decl *D);
340   void mangleBlockForPrefix(const BlockDecl *Block);
341   void mangleUnqualifiedBlock(const BlockDecl *Block);
342   void mangleLambda(const CXXRecordDecl *Lambda);
343   void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
344                         bool NoFunction=false);
345   void mangleNestedName(const TemplateDecl *TD,
346                         const TemplateArgument *TemplateArgs,
347                         unsigned NumTemplateArgs);
348   void manglePrefix(NestedNameSpecifier *qualifier);
349   void manglePrefix(const DeclContext *DC, bool NoFunction=false);
350   void manglePrefix(QualType type);
351   void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
352   void mangleTemplatePrefix(TemplateName Template);
353   void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
354   void mangleQualifiers(Qualifiers Quals);
355   void mangleRefQualifier(RefQualifierKind RefQualifier);
356 
357   void mangleObjCMethodName(const ObjCMethodDecl *MD);
358 
359   // Declare manglers for every type class.
360 #define ABSTRACT_TYPE(CLASS, PARENT)
361 #define NON_CANONICAL_TYPE(CLASS, PARENT)
362 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
363 #include "clang/AST/TypeNodes.def"
364 
365   void mangleType(const TagType*);
366   void mangleType(TemplateName);
367   void mangleBareFunctionType(const FunctionType *T,
368                               bool MangleReturnType);
369   void mangleNeonVectorType(const VectorType *T);
370   void mangleAArch64NeonVectorType(const VectorType *T);
371 
372   void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
373   void mangleMemberExpr(const Expr *base, bool isArrow,
374                         NestedNameSpecifier *qualifier,
375                         NamedDecl *firstQualifierLookup,
376                         DeclarationName name,
377                         unsigned knownArity);
378   void mangleCastExpression(const Expr *E, StringRef CastEncoding);
379   void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
380   void mangleCXXCtorType(CXXCtorType T);
381   void mangleCXXDtorType(CXXDtorType T);
382 
383   void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
384   void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
385                           unsigned NumTemplateArgs);
386   void mangleTemplateArgs(const TemplateArgumentList &AL);
387   void mangleTemplateArg(TemplateArgument A);
388 
389   void mangleTemplateParameter(unsigned Index);
390 
391   void mangleFunctionParam(const ParmVarDecl *parm);
392 };
393 
394 }
395 
shouldMangleCXXName(const NamedDecl * D)396 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
397   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
398   if (FD) {
399     LanguageLinkage L = FD->getLanguageLinkage();
400     // Overloadable functions need mangling.
401     if (FD->hasAttr<OverloadableAttr>())
402       return true;
403 
404     // "main" is not mangled.
405     if (FD->isMain())
406       return false;
407 
408     // C++ functions and those whose names are not a simple identifier need
409     // mangling.
410     if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
411       return true;
412 
413     // C functions are not mangled.
414     if (L == CLanguageLinkage)
415       return false;
416   }
417 
418   // Otherwise, no mangling is done outside C++ mode.
419   if (!getASTContext().getLangOpts().CPlusPlus)
420     return false;
421 
422   const VarDecl *VD = dyn_cast<VarDecl>(D);
423   if (VD) {
424     // C variables are not mangled.
425     if (VD->isExternC())
426       return false;
427 
428     // Variables at global scope with non-internal linkage are not mangled
429     const DeclContext *DC = getEffectiveDeclContext(D);
430     // Check for extern variable declared locally.
431     if (DC->isFunctionOrMethod() && D->hasLinkage())
432       while (!DC->isNamespace() && !DC->isTranslationUnit())
433         DC = getEffectiveParentContext(DC);
434     if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
435         !isa<VarTemplateSpecializationDecl>(D))
436       return false;
437   }
438 
439   return true;
440 }
441 
mangle(const NamedDecl * D,StringRef Prefix)442 void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
443   // <mangled-name> ::= _Z <encoding>
444   //            ::= <data name>
445   //            ::= <special-name>
446   Out << Prefix;
447   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
448     mangleFunctionEncoding(FD);
449   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
450     mangleName(VD);
451   else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
452     mangleName(IFD->getAnonField());
453   else
454     mangleName(cast<FieldDecl>(D));
455 }
456 
mangleFunctionEncoding(const FunctionDecl * FD)457 void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
458   // <encoding> ::= <function name> <bare-function-type>
459   mangleName(FD);
460 
461   // Don't mangle in the type if this isn't a decl we should typically mangle.
462   if (!Context.shouldMangleDeclName(FD))
463     return;
464 
465   if (FD->hasAttr<EnableIfAttr>()) {
466     FunctionTypeDepthState Saved = FunctionTypeDepth.push();
467     Out << "Ua9enable_ifI";
468     // FIXME: specific_attr_iterator iterates in reverse order. Fix that and use
469     // it here.
470     for (AttrVec::const_reverse_iterator I = FD->getAttrs().rbegin(),
471                                          E = FD->getAttrs().rend();
472          I != E; ++I) {
473       EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
474       if (!EIA)
475         continue;
476       Out << 'X';
477       mangleExpression(EIA->getCond());
478       Out << 'E';
479     }
480     Out << 'E';
481     FunctionTypeDepth.pop(Saved);
482   }
483 
484   // Whether the mangling of a function type includes the return type depends on
485   // the context and the nature of the function. The rules for deciding whether
486   // the return type is included are:
487   //
488   //   1. Template functions (names or types) have return types encoded, with
489   //   the exceptions listed below.
490   //   2. Function types not appearing as part of a function name mangling,
491   //   e.g. parameters, pointer types, etc., have return type encoded, with the
492   //   exceptions listed below.
493   //   3. Non-template function names do not have return types encoded.
494   //
495   // The exceptions mentioned in (1) and (2) above, for which the return type is
496   // never included, are
497   //   1. Constructors.
498   //   2. Destructors.
499   //   3. Conversion operator functions, e.g. operator int.
500   bool MangleReturnType = false;
501   if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
502     if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
503           isa<CXXConversionDecl>(FD)))
504       MangleReturnType = true;
505 
506     // Mangle the type of the primary template.
507     FD = PrimaryTemplate->getTemplatedDecl();
508   }
509 
510   mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
511                          MangleReturnType);
512 }
513 
IgnoreLinkageSpecDecls(const DeclContext * DC)514 static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
515   while (isa<LinkageSpecDecl>(DC)) {
516     DC = getEffectiveParentContext(DC);
517   }
518 
519   return DC;
520 }
521 
522 /// isStd - Return whether a given namespace is the 'std' namespace.
isStd(const NamespaceDecl * NS)523 static bool isStd(const NamespaceDecl *NS) {
524   if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
525                                 ->isTranslationUnit())
526     return false;
527 
528   const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
529   return II && II->isStr("std");
530 }
531 
532 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
533 // namespace.
isStdNamespace(const DeclContext * DC)534 static bool isStdNamespace(const DeclContext *DC) {
535   if (!DC->isNamespace())
536     return false;
537 
538   return isStd(cast<NamespaceDecl>(DC));
539 }
540 
541 static const TemplateDecl *
isTemplate(const NamedDecl * ND,const TemplateArgumentList * & TemplateArgs)542 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
543   // Check if we have a function template.
544   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
545     if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
546       TemplateArgs = FD->getTemplateSpecializationArgs();
547       return TD;
548     }
549   }
550 
551   // Check if we have a class template.
552   if (const ClassTemplateSpecializationDecl *Spec =
553         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
554     TemplateArgs = &Spec->getTemplateArgs();
555     return Spec->getSpecializedTemplate();
556   }
557 
558   // Check if we have a variable template.
559   if (const VarTemplateSpecializationDecl *Spec =
560           dyn_cast<VarTemplateSpecializationDecl>(ND)) {
561     TemplateArgs = &Spec->getTemplateArgs();
562     return Spec->getSpecializedTemplate();
563   }
564 
565   return nullptr;
566 }
567 
mangleName(const NamedDecl * ND)568 void CXXNameMangler::mangleName(const NamedDecl *ND) {
569   //  <name> ::= <nested-name>
570   //         ::= <unscoped-name>
571   //         ::= <unscoped-template-name> <template-args>
572   //         ::= <local-name>
573   //
574   const DeclContext *DC = getEffectiveDeclContext(ND);
575 
576   // If this is an extern variable declared locally, the relevant DeclContext
577   // is that of the containing namespace, or the translation unit.
578   // FIXME: This is a hack; extern variables declared locally should have
579   // a proper semantic declaration context!
580   if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
581     while (!DC->isNamespace() && !DC->isTranslationUnit())
582       DC = getEffectiveParentContext(DC);
583   else if (GetLocalClassDecl(ND)) {
584     mangleLocalName(ND);
585     return;
586   }
587 
588   DC = IgnoreLinkageSpecDecls(DC);
589 
590   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
591     // Check if we have a template.
592     const TemplateArgumentList *TemplateArgs = nullptr;
593     if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
594       mangleUnscopedTemplateName(TD);
595       mangleTemplateArgs(*TemplateArgs);
596       return;
597     }
598 
599     mangleUnscopedName(ND);
600     return;
601   }
602 
603   if (isLocalContainerContext(DC)) {
604     mangleLocalName(ND);
605     return;
606   }
607 
608   mangleNestedName(ND, DC);
609 }
mangleName(const TemplateDecl * TD,const TemplateArgument * TemplateArgs,unsigned NumTemplateArgs)610 void CXXNameMangler::mangleName(const TemplateDecl *TD,
611                                 const TemplateArgument *TemplateArgs,
612                                 unsigned NumTemplateArgs) {
613   const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
614 
615   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
616     mangleUnscopedTemplateName(TD);
617     mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
618   } else {
619     mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
620   }
621 }
622 
mangleUnscopedName(const NamedDecl * ND)623 void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
624   //  <unscoped-name> ::= <unqualified-name>
625   //                  ::= St <unqualified-name>   # ::std::
626 
627   if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
628     Out << "St";
629 
630   mangleUnqualifiedName(ND);
631 }
632 
mangleUnscopedTemplateName(const TemplateDecl * ND)633 void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
634   //     <unscoped-template-name> ::= <unscoped-name>
635   //                              ::= <substitution>
636   if (mangleSubstitution(ND))
637     return;
638 
639   // <template-template-param> ::= <template-param>
640   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND))
641     mangleTemplateParameter(TTP->getIndex());
642   else
643     mangleUnscopedName(ND->getTemplatedDecl());
644 
645   addSubstitution(ND);
646 }
647 
mangleUnscopedTemplateName(TemplateName Template)648 void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
649   //     <unscoped-template-name> ::= <unscoped-name>
650   //                              ::= <substitution>
651   if (TemplateDecl *TD = Template.getAsTemplateDecl())
652     return mangleUnscopedTemplateName(TD);
653 
654   if (mangleSubstitution(Template))
655     return;
656 
657   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
658   assert(Dependent && "Not a dependent template name?");
659   if (const IdentifierInfo *Id = Dependent->getIdentifier())
660     mangleSourceName(Id);
661   else
662     mangleOperatorName(Dependent->getOperator(), UnknownArity);
663 
664   addSubstitution(Template);
665 }
666 
mangleFloat(const llvm::APFloat & f)667 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
668   // ABI:
669   //   Floating-point literals are encoded using a fixed-length
670   //   lowercase hexadecimal string corresponding to the internal
671   //   representation (IEEE on Itanium), high-order bytes first,
672   //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
673   //   on Itanium.
674   // The 'without leading zeroes' thing seems to be an editorial
675   // mistake; see the discussion on cxx-abi-dev beginning on
676   // 2012-01-16.
677 
678   // Our requirements here are just barely weird enough to justify
679   // using a custom algorithm instead of post-processing APInt::toString().
680 
681   llvm::APInt valueBits = f.bitcastToAPInt();
682   unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
683   assert(numCharacters != 0);
684 
685   // Allocate a buffer of the right number of characters.
686   SmallVector<char, 20> buffer;
687   buffer.set_size(numCharacters);
688 
689   // Fill the buffer left-to-right.
690   for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
691     // The bit-index of the next hex digit.
692     unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
693 
694     // Project out 4 bits starting at 'digitIndex'.
695     llvm::integerPart hexDigit
696       = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
697     hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
698     hexDigit &= 0xF;
699 
700     // Map that over to a lowercase hex digit.
701     static const char charForHex[16] = {
702       '0', '1', '2', '3', '4', '5', '6', '7',
703       '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
704     };
705     buffer[stringIndex] = charForHex[hexDigit];
706   }
707 
708   Out.write(buffer.data(), numCharacters);
709 }
710 
mangleNumber(const llvm::APSInt & Value)711 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
712   if (Value.isSigned() && Value.isNegative()) {
713     Out << 'n';
714     Value.abs().print(Out, /*signed*/ false);
715   } else {
716     Value.print(Out, /*signed*/ false);
717   }
718 }
719 
mangleNumber(int64_t Number)720 void CXXNameMangler::mangleNumber(int64_t Number) {
721   //  <number> ::= [n] <non-negative decimal integer>
722   if (Number < 0) {
723     Out << 'n';
724     Number = -Number;
725   }
726 
727   Out << Number;
728 }
729 
mangleCallOffset(int64_t NonVirtual,int64_t Virtual)730 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
731   //  <call-offset>  ::= h <nv-offset> _
732   //                 ::= v <v-offset> _
733   //  <nv-offset>    ::= <offset number>        # non-virtual base override
734   //  <v-offset>     ::= <offset number> _ <virtual offset number>
735   //                      # virtual base override, with vcall offset
736   if (!Virtual) {
737     Out << 'h';
738     mangleNumber(NonVirtual);
739     Out << '_';
740     return;
741   }
742 
743   Out << 'v';
744   mangleNumber(NonVirtual);
745   Out << '_';
746   mangleNumber(Virtual);
747   Out << '_';
748 }
749 
manglePrefix(QualType type)750 void CXXNameMangler::manglePrefix(QualType type) {
751   if (const TemplateSpecializationType *TST =
752         type->getAs<TemplateSpecializationType>()) {
753     if (!mangleSubstitution(QualType(TST, 0))) {
754       mangleTemplatePrefix(TST->getTemplateName());
755 
756       // FIXME: GCC does not appear to mangle the template arguments when
757       // the template in question is a dependent template name. Should we
758       // emulate that badness?
759       mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
760       addSubstitution(QualType(TST, 0));
761     }
762   } else if (const DependentTemplateSpecializationType *DTST
763                = type->getAs<DependentTemplateSpecializationType>()) {
764     TemplateName Template
765       = getASTContext().getDependentTemplateName(DTST->getQualifier(),
766                                                  DTST->getIdentifier());
767     mangleTemplatePrefix(Template);
768 
769     // FIXME: GCC does not appear to mangle the template arguments when
770     // the template in question is a dependent template name. Should we
771     // emulate that badness?
772     mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
773   } else {
774     // We use the QualType mangle type variant here because it handles
775     // substitutions.
776     mangleType(type);
777   }
778 }
779 
780 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
781 ///
782 /// \param firstQualifierLookup - the entity found by unqualified lookup
783 ///   for the first name in the qualifier, if this is for a member expression
784 /// \param recursive - true if this is being called recursively,
785 ///   i.e. if there is more prefix "to the right".
mangleUnresolvedPrefix(NestedNameSpecifier * qualifier,NamedDecl * firstQualifierLookup,bool recursive)786 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
787                                             NamedDecl *firstQualifierLookup,
788                                             bool recursive) {
789 
790   // x, ::x
791   // <unresolved-name> ::= [gs] <base-unresolved-name>
792 
793   // T::x / decltype(p)::x
794   // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
795 
796   // T::N::x /decltype(p)::N::x
797   // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
798   //                       <base-unresolved-name>
799 
800   // A::x, N::y, A<T>::z; "gs" means leading "::"
801   // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
802   //                       <base-unresolved-name>
803 
804   switch (qualifier->getKind()) {
805   case NestedNameSpecifier::Global:
806     Out << "gs";
807 
808     // We want an 'sr' unless this is the entire NNS.
809     if (recursive)
810       Out << "sr";
811 
812     // We never want an 'E' here.
813     return;
814 
815   case NestedNameSpecifier::Super:
816     llvm_unreachable("Can't mangle __super specifier");
817 
818   case NestedNameSpecifier::Namespace:
819     if (qualifier->getPrefix())
820       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
821                              /*recursive*/ true);
822     else
823       Out << "sr";
824     mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
825     break;
826   case NestedNameSpecifier::NamespaceAlias:
827     if (qualifier->getPrefix())
828       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
829                              /*recursive*/ true);
830     else
831       Out << "sr";
832     mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
833     break;
834 
835   case NestedNameSpecifier::TypeSpec:
836   case NestedNameSpecifier::TypeSpecWithTemplate: {
837     const Type *type = qualifier->getAsType();
838 
839     // We only want to use an unresolved-type encoding if this is one of:
840     //   - a decltype
841     //   - a template type parameter
842     //   - a template template parameter with arguments
843     // In all of these cases, we should have no prefix.
844     if (qualifier->getPrefix()) {
845       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
846                              /*recursive*/ true);
847     } else {
848       // Otherwise, all the cases want this.
849       Out << "sr";
850     }
851 
852     // Only certain other types are valid as prefixes;  enumerate them.
853     switch (type->getTypeClass()) {
854     case Type::Builtin:
855     case Type::Complex:
856     case Type::Adjusted:
857     case Type::Decayed:
858     case Type::Pointer:
859     case Type::BlockPointer:
860     case Type::LValueReference:
861     case Type::RValueReference:
862     case Type::MemberPointer:
863     case Type::ConstantArray:
864     case Type::IncompleteArray:
865     case Type::VariableArray:
866     case Type::DependentSizedArray:
867     case Type::DependentSizedExtVector:
868     case Type::Vector:
869     case Type::ExtVector:
870     case Type::FunctionProto:
871     case Type::FunctionNoProto:
872     case Type::Enum:
873     case Type::Paren:
874     case Type::Elaborated:
875     case Type::Attributed:
876     case Type::Auto:
877     case Type::PackExpansion:
878     case Type::ObjCObject:
879     case Type::ObjCInterface:
880     case Type::ObjCObjectPointer:
881     case Type::Atomic:
882       llvm_unreachable("type is illegal as a nested name specifier");
883 
884     case Type::SubstTemplateTypeParmPack:
885       // FIXME: not clear how to mangle this!
886       // template <class T...> class A {
887       //   template <class U...> void foo(decltype(T::foo(U())) x...);
888       // };
889       Out << "_SUBSTPACK_";
890       break;
891 
892     // <unresolved-type> ::= <template-param>
893     //                   ::= <decltype>
894     //                   ::= <template-template-param> <template-args>
895     // (this last is not official yet)
896     case Type::TypeOfExpr:
897     case Type::TypeOf:
898     case Type::Decltype:
899     case Type::TemplateTypeParm:
900     case Type::UnaryTransform:
901     case Type::SubstTemplateTypeParm:
902     unresolvedType:
903       assert(!qualifier->getPrefix());
904 
905       // We only get here recursively if we're followed by identifiers.
906       if (recursive) Out << 'N';
907 
908       // This seems to do everything we want.  It's not really
909       // sanctioned for a substituted template parameter, though.
910       mangleType(QualType(type, 0));
911 
912       // We never want to print 'E' directly after an unresolved-type,
913       // so we return directly.
914       return;
915 
916     case Type::Typedef:
917       mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
918       break;
919 
920     case Type::UnresolvedUsing:
921       mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
922                          ->getIdentifier());
923       break;
924 
925     case Type::Record:
926       mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
927       break;
928 
929     case Type::TemplateSpecialization: {
930       const TemplateSpecializationType *tst
931         = cast<TemplateSpecializationType>(type);
932       TemplateName name = tst->getTemplateName();
933       switch (name.getKind()) {
934       case TemplateName::Template:
935       case TemplateName::QualifiedTemplate: {
936         TemplateDecl *temp = name.getAsTemplateDecl();
937 
938         // If the base is a template template parameter, this is an
939         // unresolved type.
940         assert(temp && "no template for template specialization type");
941         if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
942 
943         mangleSourceName(temp->getIdentifier());
944         break;
945       }
946 
947       case TemplateName::OverloadedTemplate:
948       case TemplateName::DependentTemplate:
949         llvm_unreachable("invalid base for a template specialization type");
950 
951       case TemplateName::SubstTemplateTemplateParm: {
952         SubstTemplateTemplateParmStorage *subst
953           = name.getAsSubstTemplateTemplateParm();
954         mangleExistingSubstitution(subst->getReplacement());
955         break;
956       }
957 
958       case TemplateName::SubstTemplateTemplateParmPack: {
959         // FIXME: not clear how to mangle this!
960         // template <template <class U> class T...> class A {
961         //   template <class U...> void foo(decltype(T<U>::foo) x...);
962         // };
963         Out << "_SUBSTPACK_";
964         break;
965       }
966       }
967 
968       mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
969       break;
970     }
971 
972     case Type::InjectedClassName:
973       mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
974                          ->getIdentifier());
975       break;
976 
977     case Type::DependentName:
978       mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
979       break;
980 
981     case Type::DependentTemplateSpecialization: {
982       const DependentTemplateSpecializationType *tst
983         = cast<DependentTemplateSpecializationType>(type);
984       mangleSourceName(tst->getIdentifier());
985       mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
986       break;
987     }
988     }
989     break;
990   }
991 
992   case NestedNameSpecifier::Identifier:
993     // Member expressions can have these without prefixes.
994     if (qualifier->getPrefix()) {
995       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
996                              /*recursive*/ true);
997     } else if (firstQualifierLookup) {
998 
999       // Try to make a proper qualifier out of the lookup result, and
1000       // then just recurse on that.
1001       NestedNameSpecifier *newQualifier;
1002       if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
1003         QualType type = getASTContext().getTypeDeclType(typeDecl);
1004 
1005         // Pretend we had a different nested name specifier.
1006         newQualifier = NestedNameSpecifier::Create(getASTContext(),
1007                                                    /*prefix*/ nullptr,
1008                                                    /*template*/ false,
1009                                                    type.getTypePtr());
1010       } else if (NamespaceDecl *nspace =
1011                    dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
1012         newQualifier = NestedNameSpecifier::Create(getASTContext(),
1013                                                    /*prefix*/ nullptr,
1014                                                    nspace);
1015       } else if (NamespaceAliasDecl *alias =
1016                    dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
1017         newQualifier = NestedNameSpecifier::Create(getASTContext(),
1018                                                    /*prefix*/ nullptr,
1019                                                    alias);
1020       } else {
1021         // No sensible mangling to do here.
1022         newQualifier = nullptr;
1023       }
1024 
1025       if (newQualifier)
1026         return mangleUnresolvedPrefix(newQualifier, /*lookup*/ nullptr,
1027                                       recursive);
1028 
1029     } else {
1030       Out << "sr";
1031     }
1032 
1033     mangleSourceName(qualifier->getAsIdentifier());
1034     break;
1035   }
1036 
1037   // If this was the innermost part of the NNS, and we fell out to
1038   // here, append an 'E'.
1039   if (!recursive)
1040     Out << 'E';
1041 }
1042 
1043 /// Mangle an unresolved-name, which is generally used for names which
1044 /// weren't resolved to specific entities.
mangleUnresolvedName(NestedNameSpecifier * qualifier,NamedDecl * firstQualifierLookup,DeclarationName name,unsigned knownArity)1045 void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
1046                                           NamedDecl *firstQualifierLookup,
1047                                           DeclarationName name,
1048                                           unsigned knownArity) {
1049   if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
1050   mangleUnqualifiedName(nullptr, name, knownArity);
1051 }
1052 
mangleUnqualifiedName(const NamedDecl * ND,DeclarationName Name,unsigned KnownArity)1053 void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1054                                            DeclarationName Name,
1055                                            unsigned KnownArity) {
1056   //  <unqualified-name> ::= <operator-name>
1057   //                     ::= <ctor-dtor-name>
1058   //                     ::= <source-name>
1059   switch (Name.getNameKind()) {
1060   case DeclarationName::Identifier: {
1061     if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
1062       // We must avoid conflicts between internally- and externally-
1063       // linked variable and function declaration names in the same TU:
1064       //   void test() { extern void foo(); }
1065       //   static void foo();
1066       // This naming convention is the same as that followed by GCC,
1067       // though it shouldn't actually matter.
1068       if (ND && ND->getFormalLinkage() == InternalLinkage &&
1069           getEffectiveDeclContext(ND)->isFileContext())
1070         Out << 'L';
1071 
1072       mangleSourceName(II);
1073       break;
1074     }
1075 
1076     // Otherwise, an anonymous entity.  We must have a declaration.
1077     assert(ND && "mangling empty name without declaration");
1078 
1079     if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1080       if (NS->isAnonymousNamespace()) {
1081         // This is how gcc mangles these names.
1082         Out << "12_GLOBAL__N_1";
1083         break;
1084       }
1085     }
1086 
1087     if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1088       // We must have an anonymous union or struct declaration.
1089       const RecordDecl *RD =
1090         cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
1091 
1092       // Itanium C++ ABI 5.1.2:
1093       //
1094       //   For the purposes of mangling, the name of an anonymous union is
1095       //   considered to be the name of the first named data member found by a
1096       //   pre-order, depth-first, declaration-order walk of the data members of
1097       //   the anonymous union. If there is no such data member (i.e., if all of
1098       //   the data members in the union are unnamed), then there is no way for
1099       //   a program to refer to the anonymous union, and there is therefore no
1100       //   need to mangle its name.
1101       assert(RD->isAnonymousStructOrUnion()
1102              && "Expected anonymous struct or union!");
1103       const FieldDecl *FD = RD->findFirstNamedDataMember();
1104 
1105       // It's actually possible for various reasons for us to get here
1106       // with an empty anonymous struct / union.  Fortunately, it
1107       // doesn't really matter what name we generate.
1108       if (!FD) break;
1109       assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1110 
1111       mangleSourceName(FD->getIdentifier());
1112       break;
1113     }
1114 
1115     // Class extensions have no name as a category, and it's possible
1116     // for them to be the semantic parent of certain declarations
1117     // (primarily, tag decls defined within declarations).  Such
1118     // declarations will always have internal linkage, so the name
1119     // doesn't really matter, but we shouldn't crash on them.  For
1120     // safety, just handle all ObjC containers here.
1121     if (isa<ObjCContainerDecl>(ND))
1122       break;
1123 
1124     // We must have an anonymous struct.
1125     const TagDecl *TD = cast<TagDecl>(ND);
1126     if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1127       assert(TD->getDeclContext() == D->getDeclContext() &&
1128              "Typedef should not be in another decl context!");
1129       assert(D->getDeclName().getAsIdentifierInfo() &&
1130              "Typedef was not named!");
1131       mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1132       break;
1133     }
1134 
1135     // <unnamed-type-name> ::= <closure-type-name>
1136     //
1137     // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1138     // <lambda-sig> ::= <parameter-type>+   # Parameter types or 'v' for 'void'.
1139     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1140       if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1141         mangleLambda(Record);
1142         break;
1143       }
1144     }
1145 
1146     if (TD->isExternallyVisible()) {
1147       unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1148       Out << "Ut";
1149       if (UnnamedMangle > 1)
1150         Out << llvm::utostr(UnnamedMangle - 2);
1151       Out << '_';
1152       break;
1153     }
1154 
1155     // Get a unique id for the anonymous struct.
1156     unsigned AnonStructId = Context.getAnonymousStructId(TD);
1157 
1158     // Mangle it as a source name in the form
1159     // [n] $_<id>
1160     // where n is the length of the string.
1161     SmallString<8> Str;
1162     Str += "$_";
1163     Str += llvm::utostr(AnonStructId);
1164 
1165     Out << Str.size();
1166     Out << Str.str();
1167     break;
1168   }
1169 
1170   case DeclarationName::ObjCZeroArgSelector:
1171   case DeclarationName::ObjCOneArgSelector:
1172   case DeclarationName::ObjCMultiArgSelector:
1173     llvm_unreachable("Can't mangle Objective-C selector names here!");
1174 
1175   case DeclarationName::CXXConstructorName:
1176     if (ND == Structor)
1177       // If the named decl is the C++ constructor we're mangling, use the type
1178       // we were given.
1179       mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1180     else
1181       // Otherwise, use the complete constructor name. This is relevant if a
1182       // class with a constructor is declared within a constructor.
1183       mangleCXXCtorType(Ctor_Complete);
1184     break;
1185 
1186   case DeclarationName::CXXDestructorName:
1187     if (ND == Structor)
1188       // If the named decl is the C++ destructor we're mangling, use the type we
1189       // were given.
1190       mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1191     else
1192       // Otherwise, use the complete destructor name. This is relevant if a
1193       // class with a destructor is declared within a destructor.
1194       mangleCXXDtorType(Dtor_Complete);
1195     break;
1196 
1197   case DeclarationName::CXXConversionFunctionName:
1198     // <operator-name> ::= cv <type>    # (cast)
1199     Out << "cv";
1200     mangleType(Name.getCXXNameType());
1201     break;
1202 
1203   case DeclarationName::CXXOperatorName: {
1204     unsigned Arity;
1205     if (ND) {
1206       Arity = cast<FunctionDecl>(ND)->getNumParams();
1207 
1208       // If we have a C++ member function, we need to include the 'this' pointer.
1209       // FIXME: This does not make sense for operators that are static, but their
1210       // names stay the same regardless of the arity (operator new for instance).
1211       if (isa<CXXMethodDecl>(ND))
1212         Arity++;
1213     } else
1214       Arity = KnownArity;
1215 
1216     mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1217     break;
1218   }
1219 
1220   case DeclarationName::CXXLiteralOperatorName:
1221     // FIXME: This mangling is not yet official.
1222     Out << "li";
1223     mangleSourceName(Name.getCXXLiteralIdentifier());
1224     break;
1225 
1226   case DeclarationName::CXXUsingDirective:
1227     llvm_unreachable("Can't mangle a using directive name!");
1228   }
1229 }
1230 
mangleSourceName(const IdentifierInfo * II)1231 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1232   // <source-name> ::= <positive length number> <identifier>
1233   // <number> ::= [n] <non-negative decimal integer>
1234   // <identifier> ::= <unqualified source code identifier>
1235   Out << II->getLength() << II->getName();
1236 }
1237 
mangleNestedName(const NamedDecl * ND,const DeclContext * DC,bool NoFunction)1238 void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1239                                       const DeclContext *DC,
1240                                       bool NoFunction) {
1241   // <nested-name>
1242   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1243   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1244   //       <template-args> E
1245 
1246   Out << 'N';
1247   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1248     Qualifiers MethodQuals =
1249         Qualifiers::fromCVRMask(Method->getTypeQualifiers());
1250     // We do not consider restrict a distinguishing attribute for overloading
1251     // purposes so we must not mangle it.
1252     MethodQuals.removeRestrict();
1253     mangleQualifiers(MethodQuals);
1254     mangleRefQualifier(Method->getRefQualifier());
1255   }
1256 
1257   // Check if we have a template.
1258   const TemplateArgumentList *TemplateArgs = nullptr;
1259   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1260     mangleTemplatePrefix(TD, NoFunction);
1261     mangleTemplateArgs(*TemplateArgs);
1262   }
1263   else {
1264     manglePrefix(DC, NoFunction);
1265     mangleUnqualifiedName(ND);
1266   }
1267 
1268   Out << 'E';
1269 }
mangleNestedName(const TemplateDecl * TD,const TemplateArgument * TemplateArgs,unsigned NumTemplateArgs)1270 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1271                                       const TemplateArgument *TemplateArgs,
1272                                       unsigned NumTemplateArgs) {
1273   // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1274 
1275   Out << 'N';
1276 
1277   mangleTemplatePrefix(TD);
1278   mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1279 
1280   Out << 'E';
1281 }
1282 
mangleLocalName(const Decl * D)1283 void CXXNameMangler::mangleLocalName(const Decl *D) {
1284   // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1285   //              := Z <function encoding> E s [<discriminator>]
1286   // <local-name> := Z <function encoding> E d [ <parameter number> ]
1287   //                 _ <entity name>
1288   // <discriminator> := _ <non-negative number>
1289   assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1290   const RecordDecl *RD = GetLocalClassDecl(D);
1291   const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1292 
1293   Out << 'Z';
1294 
1295   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1296     mangleObjCMethodName(MD);
1297   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1298     mangleBlockForPrefix(BD);
1299   else
1300     mangleFunctionEncoding(cast<FunctionDecl>(DC));
1301 
1302   Out << 'E';
1303 
1304   if (RD) {
1305     // The parameter number is omitted for the last parameter, 0 for the
1306     // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1307     // <entity name> will of course contain a <closure-type-name>: Its
1308     // numbering will be local to the particular argument in which it appears
1309     // -- other default arguments do not affect its encoding.
1310     const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1311     if (CXXRD->isLambda()) {
1312       if (const ParmVarDecl *Parm
1313               = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1314         if (const FunctionDecl *Func
1315               = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1316           Out << 'd';
1317           unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1318           if (Num > 1)
1319             mangleNumber(Num - 2);
1320           Out << '_';
1321         }
1322       }
1323     }
1324 
1325     // Mangle the name relative to the closest enclosing function.
1326     // equality ok because RD derived from ND above
1327     if (D == RD)  {
1328       mangleUnqualifiedName(RD);
1329     } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1330       manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1331       mangleUnqualifiedBlock(BD);
1332     } else {
1333       const NamedDecl *ND = cast<NamedDecl>(D);
1334       mangleNestedName(ND, getEffectiveDeclContext(ND), true /*NoFunction*/);
1335     }
1336   } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1337     // Mangle a block in a default parameter; see above explanation for
1338     // lambdas.
1339     if (const ParmVarDecl *Parm
1340             = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1341       if (const FunctionDecl *Func
1342             = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1343         Out << 'd';
1344         unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1345         if (Num > 1)
1346           mangleNumber(Num - 2);
1347         Out << '_';
1348       }
1349     }
1350 
1351     mangleUnqualifiedBlock(BD);
1352   } else {
1353     mangleUnqualifiedName(cast<NamedDecl>(D));
1354   }
1355 
1356   if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1357     unsigned disc;
1358     if (Context.getNextDiscriminator(ND, disc)) {
1359       if (disc < 10)
1360         Out << '_' << disc;
1361       else
1362         Out << "__" << disc << '_';
1363     }
1364   }
1365 }
1366 
mangleBlockForPrefix(const BlockDecl * Block)1367 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1368   if (GetLocalClassDecl(Block)) {
1369     mangleLocalName(Block);
1370     return;
1371   }
1372   const DeclContext *DC = getEffectiveDeclContext(Block);
1373   if (isLocalContainerContext(DC)) {
1374     mangleLocalName(Block);
1375     return;
1376   }
1377   manglePrefix(getEffectiveDeclContext(Block));
1378   mangleUnqualifiedBlock(Block);
1379 }
1380 
mangleUnqualifiedBlock(const BlockDecl * Block)1381 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1382   if (Decl *Context = Block->getBlockManglingContextDecl()) {
1383     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1384         Context->getDeclContext()->isRecord()) {
1385       if (const IdentifierInfo *Name
1386             = cast<NamedDecl>(Context)->getIdentifier()) {
1387         mangleSourceName(Name);
1388         Out << 'M';
1389       }
1390     }
1391   }
1392 
1393   // If we have a block mangling number, use it.
1394   unsigned Number = Block->getBlockManglingNumber();
1395   // Otherwise, just make up a number. It doesn't matter what it is because
1396   // the symbol in question isn't externally visible.
1397   if (!Number)
1398     Number = Context.getBlockId(Block, false);
1399   Out << "Ub";
1400   if (Number > 0)
1401     Out << Number - 1;
1402   Out << '_';
1403 }
1404 
mangleLambda(const CXXRecordDecl * Lambda)1405 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1406   // If the context of a closure type is an initializer for a class member
1407   // (static or nonstatic), it is encoded in a qualified name with a final
1408   // <prefix> of the form:
1409   //
1410   //   <data-member-prefix> := <member source-name> M
1411   //
1412   // Technically, the data-member-prefix is part of the <prefix>. However,
1413   // since a closure type will always be mangled with a prefix, it's easier
1414   // to emit that last part of the prefix here.
1415   if (Decl *Context = Lambda->getLambdaContextDecl()) {
1416     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1417         Context->getDeclContext()->isRecord()) {
1418       if (const IdentifierInfo *Name
1419             = cast<NamedDecl>(Context)->getIdentifier()) {
1420         mangleSourceName(Name);
1421         Out << 'M';
1422       }
1423     }
1424   }
1425 
1426   Out << "Ul";
1427   const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1428                                    getAs<FunctionProtoType>();
1429   mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
1430   Out << "E";
1431 
1432   // The number is omitted for the first closure type with a given
1433   // <lambda-sig> in a given context; it is n-2 for the nth closure type
1434   // (in lexical order) with that same <lambda-sig> and context.
1435   //
1436   // The AST keeps track of the number for us.
1437   unsigned Number = Lambda->getLambdaManglingNumber();
1438   assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1439   if (Number > 1)
1440     mangleNumber(Number - 2);
1441   Out << '_';
1442 }
1443 
manglePrefix(NestedNameSpecifier * qualifier)1444 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1445   switch (qualifier->getKind()) {
1446   case NestedNameSpecifier::Global:
1447     // nothing
1448     return;
1449 
1450   case NestedNameSpecifier::Super:
1451     llvm_unreachable("Can't mangle __super specifier");
1452 
1453   case NestedNameSpecifier::Namespace:
1454     mangleName(qualifier->getAsNamespace());
1455     return;
1456 
1457   case NestedNameSpecifier::NamespaceAlias:
1458     mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1459     return;
1460 
1461   case NestedNameSpecifier::TypeSpec:
1462   case NestedNameSpecifier::TypeSpecWithTemplate:
1463     manglePrefix(QualType(qualifier->getAsType(), 0));
1464     return;
1465 
1466   case NestedNameSpecifier::Identifier:
1467     // Member expressions can have these without prefixes, but that
1468     // should end up in mangleUnresolvedPrefix instead.
1469     assert(qualifier->getPrefix());
1470     manglePrefix(qualifier->getPrefix());
1471 
1472     mangleSourceName(qualifier->getAsIdentifier());
1473     return;
1474   }
1475 
1476   llvm_unreachable("unexpected nested name specifier");
1477 }
1478 
manglePrefix(const DeclContext * DC,bool NoFunction)1479 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1480   //  <prefix> ::= <prefix> <unqualified-name>
1481   //           ::= <template-prefix> <template-args>
1482   //           ::= <template-param>
1483   //           ::= # empty
1484   //           ::= <substitution>
1485 
1486   DC = IgnoreLinkageSpecDecls(DC);
1487 
1488   if (DC->isTranslationUnit())
1489     return;
1490 
1491   if (NoFunction && isLocalContainerContext(DC))
1492     return;
1493 
1494   assert(!isLocalContainerContext(DC));
1495 
1496   const NamedDecl *ND = cast<NamedDecl>(DC);
1497   if (mangleSubstitution(ND))
1498     return;
1499 
1500   // Check if we have a template.
1501   const TemplateArgumentList *TemplateArgs = nullptr;
1502   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1503     mangleTemplatePrefix(TD);
1504     mangleTemplateArgs(*TemplateArgs);
1505   } else {
1506     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1507     mangleUnqualifiedName(ND);
1508   }
1509 
1510   addSubstitution(ND);
1511 }
1512 
mangleTemplatePrefix(TemplateName Template)1513 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1514   // <template-prefix> ::= <prefix> <template unqualified-name>
1515   //                   ::= <template-param>
1516   //                   ::= <substitution>
1517   if (TemplateDecl *TD = Template.getAsTemplateDecl())
1518     return mangleTemplatePrefix(TD);
1519 
1520   if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1521     manglePrefix(Qualified->getQualifier());
1522 
1523   if (OverloadedTemplateStorage *Overloaded
1524                                       = Template.getAsOverloadedTemplate()) {
1525     mangleUnqualifiedName(nullptr, (*Overloaded->begin())->getDeclName(),
1526                           UnknownArity);
1527     return;
1528   }
1529 
1530   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1531   assert(Dependent && "Unknown template name kind?");
1532   manglePrefix(Dependent->getQualifier());
1533   mangleUnscopedTemplateName(Template);
1534 }
1535 
mangleTemplatePrefix(const TemplateDecl * ND,bool NoFunction)1536 void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
1537                                           bool NoFunction) {
1538   // <template-prefix> ::= <prefix> <template unqualified-name>
1539   //                   ::= <template-param>
1540   //                   ::= <substitution>
1541   // <template-template-param> ::= <template-param>
1542   //                               <substitution>
1543 
1544   if (mangleSubstitution(ND))
1545     return;
1546 
1547   // <template-template-param> ::= <template-param>
1548   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1549     mangleTemplateParameter(TTP->getIndex());
1550   } else {
1551     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1552     mangleUnqualifiedName(ND->getTemplatedDecl());
1553   }
1554 
1555   addSubstitution(ND);
1556 }
1557 
1558 /// Mangles a template name under the production <type>.  Required for
1559 /// template template arguments.
1560 ///   <type> ::= <class-enum-type>
1561 ///          ::= <template-param>
1562 ///          ::= <substitution>
mangleType(TemplateName TN)1563 void CXXNameMangler::mangleType(TemplateName TN) {
1564   if (mangleSubstitution(TN))
1565     return;
1566 
1567   TemplateDecl *TD = nullptr;
1568 
1569   switch (TN.getKind()) {
1570   case TemplateName::QualifiedTemplate:
1571     TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1572     goto HaveDecl;
1573 
1574   case TemplateName::Template:
1575     TD = TN.getAsTemplateDecl();
1576     goto HaveDecl;
1577 
1578   HaveDecl:
1579     if (isa<TemplateTemplateParmDecl>(TD))
1580       mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1581     else
1582       mangleName(TD);
1583     break;
1584 
1585   case TemplateName::OverloadedTemplate:
1586     llvm_unreachable("can't mangle an overloaded template name as a <type>");
1587 
1588   case TemplateName::DependentTemplate: {
1589     const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1590     assert(Dependent->isIdentifier());
1591 
1592     // <class-enum-type> ::= <name>
1593     // <name> ::= <nested-name>
1594     mangleUnresolvedPrefix(Dependent->getQualifier(), nullptr);
1595     mangleSourceName(Dependent->getIdentifier());
1596     break;
1597   }
1598 
1599   case TemplateName::SubstTemplateTemplateParm: {
1600     // Substituted template parameters are mangled as the substituted
1601     // template.  This will check for the substitution twice, which is
1602     // fine, but we have to return early so that we don't try to *add*
1603     // the substitution twice.
1604     SubstTemplateTemplateParmStorage *subst
1605       = TN.getAsSubstTemplateTemplateParm();
1606     mangleType(subst->getReplacement());
1607     return;
1608   }
1609 
1610   case TemplateName::SubstTemplateTemplateParmPack: {
1611     // FIXME: not clear how to mangle this!
1612     // template <template <class> class T...> class A {
1613     //   template <template <class> class U...> void foo(B<T,U> x...);
1614     // };
1615     Out << "_SUBSTPACK_";
1616     break;
1617   }
1618   }
1619 
1620   addSubstitution(TN);
1621 }
1622 
1623 void
mangleOperatorName(OverloadedOperatorKind OO,unsigned Arity)1624 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1625   switch (OO) {
1626   // <operator-name> ::= nw     # new
1627   case OO_New: Out << "nw"; break;
1628   //              ::= na        # new[]
1629   case OO_Array_New: Out << "na"; break;
1630   //              ::= dl        # delete
1631   case OO_Delete: Out << "dl"; break;
1632   //              ::= da        # delete[]
1633   case OO_Array_Delete: Out << "da"; break;
1634   //              ::= ps        # + (unary)
1635   //              ::= pl        # + (binary or unknown)
1636   case OO_Plus:
1637     Out << (Arity == 1? "ps" : "pl"); break;
1638   //              ::= ng        # - (unary)
1639   //              ::= mi        # - (binary or unknown)
1640   case OO_Minus:
1641     Out << (Arity == 1? "ng" : "mi"); break;
1642   //              ::= ad        # & (unary)
1643   //              ::= an        # & (binary or unknown)
1644   case OO_Amp:
1645     Out << (Arity == 1? "ad" : "an"); break;
1646   //              ::= de        # * (unary)
1647   //              ::= ml        # * (binary or unknown)
1648   case OO_Star:
1649     // Use binary when unknown.
1650     Out << (Arity == 1? "de" : "ml"); break;
1651   //              ::= co        # ~
1652   case OO_Tilde: Out << "co"; break;
1653   //              ::= dv        # /
1654   case OO_Slash: Out << "dv"; break;
1655   //              ::= rm        # %
1656   case OO_Percent: Out << "rm"; break;
1657   //              ::= or        # |
1658   case OO_Pipe: Out << "or"; break;
1659   //              ::= eo        # ^
1660   case OO_Caret: Out << "eo"; break;
1661   //              ::= aS        # =
1662   case OO_Equal: Out << "aS"; break;
1663   //              ::= pL        # +=
1664   case OO_PlusEqual: Out << "pL"; break;
1665   //              ::= mI        # -=
1666   case OO_MinusEqual: Out << "mI"; break;
1667   //              ::= mL        # *=
1668   case OO_StarEqual: Out << "mL"; break;
1669   //              ::= dV        # /=
1670   case OO_SlashEqual: Out << "dV"; break;
1671   //              ::= rM        # %=
1672   case OO_PercentEqual: Out << "rM"; break;
1673   //              ::= aN        # &=
1674   case OO_AmpEqual: Out << "aN"; break;
1675   //              ::= oR        # |=
1676   case OO_PipeEqual: Out << "oR"; break;
1677   //              ::= eO        # ^=
1678   case OO_CaretEqual: Out << "eO"; break;
1679   //              ::= ls        # <<
1680   case OO_LessLess: Out << "ls"; break;
1681   //              ::= rs        # >>
1682   case OO_GreaterGreater: Out << "rs"; break;
1683   //              ::= lS        # <<=
1684   case OO_LessLessEqual: Out << "lS"; break;
1685   //              ::= rS        # >>=
1686   case OO_GreaterGreaterEqual: Out << "rS"; break;
1687   //              ::= eq        # ==
1688   case OO_EqualEqual: Out << "eq"; break;
1689   //              ::= ne        # !=
1690   case OO_ExclaimEqual: Out << "ne"; break;
1691   //              ::= lt        # <
1692   case OO_Less: Out << "lt"; break;
1693   //              ::= gt        # >
1694   case OO_Greater: Out << "gt"; break;
1695   //              ::= le        # <=
1696   case OO_LessEqual: Out << "le"; break;
1697   //              ::= ge        # >=
1698   case OO_GreaterEqual: Out << "ge"; break;
1699   //              ::= nt        # !
1700   case OO_Exclaim: Out << "nt"; break;
1701   //              ::= aa        # &&
1702   case OO_AmpAmp: Out << "aa"; break;
1703   //              ::= oo        # ||
1704   case OO_PipePipe: Out << "oo"; break;
1705   //              ::= pp        # ++
1706   case OO_PlusPlus: Out << "pp"; break;
1707   //              ::= mm        # --
1708   case OO_MinusMinus: Out << "mm"; break;
1709   //              ::= cm        # ,
1710   case OO_Comma: Out << "cm"; break;
1711   //              ::= pm        # ->*
1712   case OO_ArrowStar: Out << "pm"; break;
1713   //              ::= pt        # ->
1714   case OO_Arrow: Out << "pt"; break;
1715   //              ::= cl        # ()
1716   case OO_Call: Out << "cl"; break;
1717   //              ::= ix        # []
1718   case OO_Subscript: Out << "ix"; break;
1719 
1720   //              ::= qu        # ?
1721   // The conditional operator can't be overloaded, but we still handle it when
1722   // mangling expressions.
1723   case OO_Conditional: Out << "qu"; break;
1724 
1725   case OO_None:
1726   case NUM_OVERLOADED_OPERATORS:
1727     llvm_unreachable("Not an overloaded operator");
1728   }
1729 }
1730 
mangleQualifiers(Qualifiers Quals)1731 void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1732   // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
1733   if (Quals.hasRestrict())
1734     Out << 'r';
1735   if (Quals.hasVolatile())
1736     Out << 'V';
1737   if (Quals.hasConst())
1738     Out << 'K';
1739 
1740   if (Quals.hasAddressSpace()) {
1741     // Address space extension:
1742     //
1743     //   <type> ::= U <target-addrspace>
1744     //   <type> ::= U <OpenCL-addrspace>
1745     //   <type> ::= U <CUDA-addrspace>
1746 
1747     SmallString<64> ASString;
1748     unsigned AS = Quals.getAddressSpace();
1749 
1750     if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
1751       //  <target-addrspace> ::= "AS" <address-space-number>
1752       unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
1753       ASString = "AS" + llvm::utostr_32(TargetAS);
1754     } else {
1755       switch (AS) {
1756       default: llvm_unreachable("Not a language specific address space");
1757       //  <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" ]
1758       case LangAS::opencl_global:   ASString = "CLglobal";   break;
1759       case LangAS::opencl_local:    ASString = "CLlocal";    break;
1760       case LangAS::opencl_constant: ASString = "CLconstant"; break;
1761       //  <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
1762       case LangAS::cuda_device:     ASString = "CUdevice";   break;
1763       case LangAS::cuda_constant:   ASString = "CUconstant"; break;
1764       case LangAS::cuda_shared:     ASString = "CUshared";   break;
1765       }
1766     }
1767     Out << 'U' << ASString.size() << ASString;
1768   }
1769 
1770   StringRef LifetimeName;
1771   switch (Quals.getObjCLifetime()) {
1772   // Objective-C ARC Extension:
1773   //
1774   //   <type> ::= U "__strong"
1775   //   <type> ::= U "__weak"
1776   //   <type> ::= U "__autoreleasing"
1777   case Qualifiers::OCL_None:
1778     break;
1779 
1780   case Qualifiers::OCL_Weak:
1781     LifetimeName = "__weak";
1782     break;
1783 
1784   case Qualifiers::OCL_Strong:
1785     LifetimeName = "__strong";
1786     break;
1787 
1788   case Qualifiers::OCL_Autoreleasing:
1789     LifetimeName = "__autoreleasing";
1790     break;
1791 
1792   case Qualifiers::OCL_ExplicitNone:
1793     // The __unsafe_unretained qualifier is *not* mangled, so that
1794     // __unsafe_unretained types in ARC produce the same manglings as the
1795     // equivalent (but, naturally, unqualified) types in non-ARC, providing
1796     // better ABI compatibility.
1797     //
1798     // It's safe to do this because unqualified 'id' won't show up
1799     // in any type signatures that need to be mangled.
1800     break;
1801   }
1802   if (!LifetimeName.empty())
1803     Out << 'U' << LifetimeName.size() << LifetimeName;
1804 }
1805 
mangleRefQualifier(RefQualifierKind RefQualifier)1806 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1807   // <ref-qualifier> ::= R                # lvalue reference
1808   //                 ::= O                # rvalue-reference
1809   switch (RefQualifier) {
1810   case RQ_None:
1811     break;
1812 
1813   case RQ_LValue:
1814     Out << 'R';
1815     break;
1816 
1817   case RQ_RValue:
1818     Out << 'O';
1819     break;
1820   }
1821 }
1822 
mangleObjCMethodName(const ObjCMethodDecl * MD)1823 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1824   Context.mangleObjCMethodName(MD, Out);
1825 }
1826 
isTypeSubstitutable(Qualifiers Quals,const Type * Ty)1827 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty) {
1828   if (Quals)
1829     return true;
1830   if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
1831     return true;
1832   if (Ty->isOpenCLSpecificType())
1833     return true;
1834   if (Ty->isBuiltinType())
1835     return false;
1836 
1837   return true;
1838 }
1839 
mangleType(QualType T)1840 void CXXNameMangler::mangleType(QualType T) {
1841   // If our type is instantiation-dependent but not dependent, we mangle
1842   // it as it was written in the source, removing any top-level sugar.
1843   // Otherwise, use the canonical type.
1844   //
1845   // FIXME: This is an approximation of the instantiation-dependent name
1846   // mangling rules, since we should really be using the type as written and
1847   // augmented via semantic analysis (i.e., with implicit conversions and
1848   // default template arguments) for any instantiation-dependent type.
1849   // Unfortunately, that requires several changes to our AST:
1850   //   - Instantiation-dependent TemplateSpecializationTypes will need to be
1851   //     uniqued, so that we can handle substitutions properly
1852   //   - Default template arguments will need to be represented in the
1853   //     TemplateSpecializationType, since they need to be mangled even though
1854   //     they aren't written.
1855   //   - Conversions on non-type template arguments need to be expressed, since
1856   //     they can affect the mangling of sizeof/alignof.
1857   if (!T->isInstantiationDependentType() || T->isDependentType())
1858     T = T.getCanonicalType();
1859   else {
1860     // Desugar any types that are purely sugar.
1861     do {
1862       // Don't desugar through template specialization types that aren't
1863       // type aliases. We need to mangle the template arguments as written.
1864       if (const TemplateSpecializationType *TST
1865                                       = dyn_cast<TemplateSpecializationType>(T))
1866         if (!TST->isTypeAlias())
1867           break;
1868 
1869       QualType Desugared
1870         = T.getSingleStepDesugaredType(Context.getASTContext());
1871       if (Desugared == T)
1872         break;
1873 
1874       T = Desugared;
1875     } while (true);
1876   }
1877   SplitQualType split = T.split();
1878   Qualifiers quals = split.Quals;
1879   const Type *ty = split.Ty;
1880 
1881   bool isSubstitutable = isTypeSubstitutable(quals, ty);
1882   if (isSubstitutable && mangleSubstitution(T))
1883     return;
1884 
1885   // If we're mangling a qualified array type, push the qualifiers to
1886   // the element type.
1887   if (quals && isa<ArrayType>(T)) {
1888     ty = Context.getASTContext().getAsArrayType(T);
1889     quals = Qualifiers();
1890 
1891     // Note that we don't update T: we want to add the
1892     // substitution at the original type.
1893   }
1894 
1895   if (quals) {
1896     mangleQualifiers(quals);
1897     // Recurse:  even if the qualified type isn't yet substitutable,
1898     // the unqualified type might be.
1899     mangleType(QualType(ty, 0));
1900   } else {
1901     switch (ty->getTypeClass()) {
1902 #define ABSTRACT_TYPE(CLASS, PARENT)
1903 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
1904     case Type::CLASS: \
1905       llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1906       return;
1907 #define TYPE(CLASS, PARENT) \
1908     case Type::CLASS: \
1909       mangleType(static_cast<const CLASS##Type*>(ty)); \
1910       break;
1911 #include "clang/AST/TypeNodes.def"
1912     }
1913   }
1914 
1915   // Add the substitution.
1916   if (isSubstitutable)
1917     addSubstitution(T);
1918 }
1919 
mangleNameOrStandardSubstitution(const NamedDecl * ND)1920 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1921   if (!mangleStandardSubstitution(ND))
1922     mangleName(ND);
1923 }
1924 
mangleType(const BuiltinType * T)1925 void CXXNameMangler::mangleType(const BuiltinType *T) {
1926   //  <type>         ::= <builtin-type>
1927   //  <builtin-type> ::= v  # void
1928   //                 ::= w  # wchar_t
1929   //                 ::= b  # bool
1930   //                 ::= c  # char
1931   //                 ::= a  # signed char
1932   //                 ::= h  # unsigned char
1933   //                 ::= s  # short
1934   //                 ::= t  # unsigned short
1935   //                 ::= i  # int
1936   //                 ::= j  # unsigned int
1937   //                 ::= l  # long
1938   //                 ::= m  # unsigned long
1939   //                 ::= x  # long long, __int64
1940   //                 ::= y  # unsigned long long, __int64
1941   //                 ::= n  # __int128
1942   //                 ::= o  # unsigned __int128
1943   //                 ::= f  # float
1944   //                 ::= d  # double
1945   //                 ::= e  # long double, __float80
1946   // UNSUPPORTED:    ::= g  # __float128
1947   // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
1948   // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
1949   // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
1950   //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
1951   //                 ::= Di # char32_t
1952   //                 ::= Ds # char16_t
1953   //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1954   //                 ::= u <source-name>    # vendor extended type
1955   switch (T->getKind()) {
1956   case BuiltinType::Void: Out << 'v'; break;
1957   case BuiltinType::Bool: Out << 'b'; break;
1958   case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1959   case BuiltinType::UChar: Out << 'h'; break;
1960   case BuiltinType::UShort: Out << 't'; break;
1961   case BuiltinType::UInt: Out << 'j'; break;
1962   case BuiltinType::ULong: Out << 'm'; break;
1963   case BuiltinType::ULongLong: Out << 'y'; break;
1964   case BuiltinType::UInt128: Out << 'o'; break;
1965   case BuiltinType::SChar: Out << 'a'; break;
1966   case BuiltinType::WChar_S:
1967   case BuiltinType::WChar_U: Out << 'w'; break;
1968   case BuiltinType::Char16: Out << "Ds"; break;
1969   case BuiltinType::Char32: Out << "Di"; break;
1970   case BuiltinType::Short: Out << 's'; break;
1971   case BuiltinType::Int: Out << 'i'; break;
1972   case BuiltinType::Long: Out << 'l'; break;
1973   case BuiltinType::LongLong: Out << 'x'; break;
1974   case BuiltinType::Int128: Out << 'n'; break;
1975   case BuiltinType::Half: Out << "Dh"; break;
1976   case BuiltinType::Float: Out << 'f'; break;
1977   case BuiltinType::Double: Out << 'd'; break;
1978   case BuiltinType::LongDouble: Out << 'e'; break;
1979   case BuiltinType::NullPtr: Out << "Dn"; break;
1980 
1981 #define BUILTIN_TYPE(Id, SingletonId)
1982 #define PLACEHOLDER_TYPE(Id, SingletonId) \
1983   case BuiltinType::Id:
1984 #include "clang/AST/BuiltinTypes.def"
1985   case BuiltinType::Dependent:
1986     llvm_unreachable("mangling a placeholder type");
1987   case BuiltinType::ObjCId: Out << "11objc_object"; break;
1988   case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1989   case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
1990   case BuiltinType::OCLImage1d: Out << "11ocl_image1d"; break;
1991   case BuiltinType::OCLImage1dArray: Out << "16ocl_image1darray"; break;
1992   case BuiltinType::OCLImage1dBuffer: Out << "17ocl_image1dbuffer"; break;
1993   case BuiltinType::OCLImage2d: Out << "11ocl_image2d"; break;
1994   case BuiltinType::OCLImage2dArray: Out << "16ocl_image2darray"; break;
1995   case BuiltinType::OCLImage3d: Out << "11ocl_image3d"; break;
1996   case BuiltinType::OCLSampler: Out << "11ocl_sampler"; break;
1997   case BuiltinType::OCLEvent: Out << "9ocl_event"; break;
1998   }
1999 }
2000 
2001 // <type>          ::= <function-type>
2002 // <function-type> ::= [<CV-qualifiers>] F [Y]
2003 //                      <bare-function-type> [<ref-qualifier>] E
mangleType(const FunctionProtoType * T)2004 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
2005   // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
2006   // e.g. "const" in "int (A::*)() const".
2007   mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
2008 
2009   Out << 'F';
2010 
2011   // FIXME: We don't have enough information in the AST to produce the 'Y'
2012   // encoding for extern "C" function types.
2013   mangleBareFunctionType(T, /*MangleReturnType=*/true);
2014 
2015   // Mangle the ref-qualifier, if present.
2016   mangleRefQualifier(T->getRefQualifier());
2017 
2018   Out << 'E';
2019 }
mangleType(const FunctionNoProtoType * T)2020 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2021   llvm_unreachable("Can't mangle K&R function prototypes");
2022 }
mangleBareFunctionType(const FunctionType * T,bool MangleReturnType)2023 void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
2024                                             bool MangleReturnType) {
2025   // We should never be mangling something without a prototype.
2026   const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2027 
2028   // Record that we're in a function type.  See mangleFunctionParam
2029   // for details on what we're trying to achieve here.
2030   FunctionTypeDepthState saved = FunctionTypeDepth.push();
2031 
2032   // <bare-function-type> ::= <signature type>+
2033   if (MangleReturnType) {
2034     FunctionTypeDepth.enterResultType();
2035     mangleType(Proto->getReturnType());
2036     FunctionTypeDepth.leaveResultType();
2037   }
2038 
2039   if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
2040     //   <builtin-type> ::= v   # void
2041     Out << 'v';
2042 
2043     FunctionTypeDepth.pop(saved);
2044     return;
2045   }
2046 
2047   for (const auto &Arg : Proto->param_types())
2048     mangleType(Context.getASTContext().getSignatureParameterType(Arg));
2049 
2050   FunctionTypeDepth.pop(saved);
2051 
2052   // <builtin-type>      ::= z  # ellipsis
2053   if (Proto->isVariadic())
2054     Out << 'z';
2055 }
2056 
2057 // <type>            ::= <class-enum-type>
2058 // <class-enum-type> ::= <name>
mangleType(const UnresolvedUsingType * T)2059 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
2060   mangleName(T->getDecl());
2061 }
2062 
2063 // <type>            ::= <class-enum-type>
2064 // <class-enum-type> ::= <name>
mangleType(const EnumType * T)2065 void CXXNameMangler::mangleType(const EnumType *T) {
2066   mangleType(static_cast<const TagType*>(T));
2067 }
mangleType(const RecordType * T)2068 void CXXNameMangler::mangleType(const RecordType *T) {
2069   mangleType(static_cast<const TagType*>(T));
2070 }
mangleType(const TagType * T)2071 void CXXNameMangler::mangleType(const TagType *T) {
2072   mangleName(T->getDecl());
2073 }
2074 
2075 // <type>       ::= <array-type>
2076 // <array-type> ::= A <positive dimension number> _ <element type>
2077 //              ::= A [<dimension expression>] _ <element type>
mangleType(const ConstantArrayType * T)2078 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
2079   Out << 'A' << T->getSize() << '_';
2080   mangleType(T->getElementType());
2081 }
mangleType(const VariableArrayType * T)2082 void CXXNameMangler::mangleType(const VariableArrayType *T) {
2083   Out << 'A';
2084   // decayed vla types (size 0) will just be skipped.
2085   if (T->getSizeExpr())
2086     mangleExpression(T->getSizeExpr());
2087   Out << '_';
2088   mangleType(T->getElementType());
2089 }
mangleType(const DependentSizedArrayType * T)2090 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
2091   Out << 'A';
2092   mangleExpression(T->getSizeExpr());
2093   Out << '_';
2094   mangleType(T->getElementType());
2095 }
mangleType(const IncompleteArrayType * T)2096 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2097   Out << "A_";
2098   mangleType(T->getElementType());
2099 }
2100 
2101 // <type>                   ::= <pointer-to-member-type>
2102 // <pointer-to-member-type> ::= M <class type> <member type>
mangleType(const MemberPointerType * T)2103 void CXXNameMangler::mangleType(const MemberPointerType *T) {
2104   Out << 'M';
2105   mangleType(QualType(T->getClass(), 0));
2106   QualType PointeeType = T->getPointeeType();
2107   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2108     mangleType(FPT);
2109 
2110     // Itanium C++ ABI 5.1.8:
2111     //
2112     //   The type of a non-static member function is considered to be different,
2113     //   for the purposes of substitution, from the type of a namespace-scope or
2114     //   static member function whose type appears similar. The types of two
2115     //   non-static member functions are considered to be different, for the
2116     //   purposes of substitution, if the functions are members of different
2117     //   classes. In other words, for the purposes of substitution, the class of
2118     //   which the function is a member is considered part of the type of
2119     //   function.
2120 
2121     // Given that we already substitute member function pointers as a
2122     // whole, the net effect of this rule is just to unconditionally
2123     // suppress substitution on the function type in a member pointer.
2124     // We increment the SeqID here to emulate adding an entry to the
2125     // substitution table.
2126     ++SeqID;
2127   } else
2128     mangleType(PointeeType);
2129 }
2130 
2131 // <type>           ::= <template-param>
mangleType(const TemplateTypeParmType * T)2132 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2133   mangleTemplateParameter(T->getIndex());
2134 }
2135 
2136 // <type>           ::= <template-param>
mangleType(const SubstTemplateTypeParmPackType * T)2137 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2138   // FIXME: not clear how to mangle this!
2139   // template <class T...> class A {
2140   //   template <class U...> void foo(T(*)(U) x...);
2141   // };
2142   Out << "_SUBSTPACK_";
2143 }
2144 
2145 // <type> ::= P <type>   # pointer-to
mangleType(const PointerType * T)2146 void CXXNameMangler::mangleType(const PointerType *T) {
2147   Out << 'P';
2148   mangleType(T->getPointeeType());
2149 }
mangleType(const ObjCObjectPointerType * T)2150 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2151   Out << 'P';
2152   mangleType(T->getPointeeType());
2153 }
2154 
2155 // <type> ::= R <type>   # reference-to
mangleType(const LValueReferenceType * T)2156 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2157   Out << 'R';
2158   mangleType(T->getPointeeType());
2159 }
2160 
2161 // <type> ::= O <type>   # rvalue reference-to (C++0x)
mangleType(const RValueReferenceType * T)2162 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2163   Out << 'O';
2164   mangleType(T->getPointeeType());
2165 }
2166 
2167 // <type> ::= C <type>   # complex pair (C 2000)
mangleType(const ComplexType * T)2168 void CXXNameMangler::mangleType(const ComplexType *T) {
2169   Out << 'C';
2170   mangleType(T->getElementType());
2171 }
2172 
2173 // ARM's ABI for Neon vector types specifies that they should be mangled as
2174 // if they are structs (to match ARM's initial implementation).  The
2175 // vector type must be one of the special types predefined by ARM.
mangleNeonVectorType(const VectorType * T)2176 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2177   QualType EltType = T->getElementType();
2178   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2179   const char *EltName = nullptr;
2180   if (T->getVectorKind() == VectorType::NeonPolyVector) {
2181     switch (cast<BuiltinType>(EltType)->getKind()) {
2182     case BuiltinType::SChar:
2183     case BuiltinType::UChar:
2184       EltName = "poly8_t";
2185       break;
2186     case BuiltinType::Short:
2187     case BuiltinType::UShort:
2188       EltName = "poly16_t";
2189       break;
2190     case BuiltinType::ULongLong:
2191       EltName = "poly64_t";
2192       break;
2193     default: llvm_unreachable("unexpected Neon polynomial vector element type");
2194     }
2195   } else {
2196     switch (cast<BuiltinType>(EltType)->getKind()) {
2197     case BuiltinType::SChar:     EltName = "int8_t"; break;
2198     case BuiltinType::UChar:     EltName = "uint8_t"; break;
2199     case BuiltinType::Short:     EltName = "int16_t"; break;
2200     case BuiltinType::UShort:    EltName = "uint16_t"; break;
2201     case BuiltinType::Int:       EltName = "int32_t"; break;
2202     case BuiltinType::UInt:      EltName = "uint32_t"; break;
2203     case BuiltinType::LongLong:  EltName = "int64_t"; break;
2204     case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2205     case BuiltinType::Double:    EltName = "float64_t"; break;
2206     case BuiltinType::Float:     EltName = "float32_t"; break;
2207     case BuiltinType::Half:      EltName = "float16_t";break;
2208     default:
2209       llvm_unreachable("unexpected Neon vector element type");
2210     }
2211   }
2212   const char *BaseName = nullptr;
2213   unsigned BitSize = (T->getNumElements() *
2214                       getASTContext().getTypeSize(EltType));
2215   if (BitSize == 64)
2216     BaseName = "__simd64_";
2217   else {
2218     assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2219     BaseName = "__simd128_";
2220   }
2221   Out << strlen(BaseName) + strlen(EltName);
2222   Out << BaseName << EltName;
2223 }
2224 
mangleAArch64VectorBase(const BuiltinType * EltType)2225 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
2226   switch (EltType->getKind()) {
2227   case BuiltinType::SChar:
2228     return "Int8";
2229   case BuiltinType::Short:
2230     return "Int16";
2231   case BuiltinType::Int:
2232     return "Int32";
2233   case BuiltinType::Long:
2234   case BuiltinType::LongLong:
2235     return "Int64";
2236   case BuiltinType::UChar:
2237     return "Uint8";
2238   case BuiltinType::UShort:
2239     return "Uint16";
2240   case BuiltinType::UInt:
2241     return "Uint32";
2242   case BuiltinType::ULong:
2243   case BuiltinType::ULongLong:
2244     return "Uint64";
2245   case BuiltinType::Half:
2246     return "Float16";
2247   case BuiltinType::Float:
2248     return "Float32";
2249   case BuiltinType::Double:
2250     return "Float64";
2251   default:
2252     llvm_unreachable("Unexpected vector element base type");
2253   }
2254 }
2255 
2256 // AArch64's ABI for Neon vector types specifies that they should be mangled as
2257 // the equivalent internal name. The vector type must be one of the special
2258 // types predefined by ARM.
mangleAArch64NeonVectorType(const VectorType * T)2259 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
2260   QualType EltType = T->getElementType();
2261   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2262   unsigned BitSize =
2263       (T->getNumElements() * getASTContext().getTypeSize(EltType));
2264   (void)BitSize; // Silence warning.
2265 
2266   assert((BitSize == 64 || BitSize == 128) &&
2267          "Neon vector type not 64 or 128 bits");
2268 
2269   StringRef EltName;
2270   if (T->getVectorKind() == VectorType::NeonPolyVector) {
2271     switch (cast<BuiltinType>(EltType)->getKind()) {
2272     case BuiltinType::UChar:
2273       EltName = "Poly8";
2274       break;
2275     case BuiltinType::UShort:
2276       EltName = "Poly16";
2277       break;
2278     case BuiltinType::ULong:
2279       EltName = "Poly64";
2280       break;
2281     default:
2282       llvm_unreachable("unexpected Neon polynomial vector element type");
2283     }
2284   } else
2285     EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
2286 
2287   std::string TypeName =
2288       ("__" + EltName + "x" + llvm::utostr(T->getNumElements()) + "_t").str();
2289   Out << TypeName.length() << TypeName;
2290 }
2291 
2292 // GNU extension: vector types
2293 // <type>                  ::= <vector-type>
2294 // <vector-type>           ::= Dv <positive dimension number> _
2295 //                                    <extended element type>
2296 //                         ::= Dv [<dimension expression>] _ <element type>
2297 // <extended element type> ::= <element type>
2298 //                         ::= p # AltiVec vector pixel
2299 //                         ::= b # Altivec vector bool
mangleType(const VectorType * T)2300 void CXXNameMangler::mangleType(const VectorType *T) {
2301   if ((T->getVectorKind() == VectorType::NeonVector ||
2302        T->getVectorKind() == VectorType::NeonPolyVector)) {
2303     llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
2304     llvm::Triple::ArchType Arch =
2305         getASTContext().getTargetInfo().getTriple().getArch();
2306     if ((Arch == llvm::Triple::aarch64 ||
2307          Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
2308       mangleAArch64NeonVectorType(T);
2309     else
2310       mangleNeonVectorType(T);
2311     return;
2312   }
2313   Out << "Dv" << T->getNumElements() << '_';
2314   if (T->getVectorKind() == VectorType::AltiVecPixel)
2315     Out << 'p';
2316   else if (T->getVectorKind() == VectorType::AltiVecBool)
2317     Out << 'b';
2318   else
2319     mangleType(T->getElementType());
2320 }
mangleType(const ExtVectorType * T)2321 void CXXNameMangler::mangleType(const ExtVectorType *T) {
2322   mangleType(static_cast<const VectorType*>(T));
2323 }
mangleType(const DependentSizedExtVectorType * T)2324 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2325   Out << "Dv";
2326   mangleExpression(T->getSizeExpr());
2327   Out << '_';
2328   mangleType(T->getElementType());
2329 }
2330 
mangleType(const PackExpansionType * T)2331 void CXXNameMangler::mangleType(const PackExpansionType *T) {
2332   // <type>  ::= Dp <type>          # pack expansion (C++0x)
2333   Out << "Dp";
2334   mangleType(T->getPattern());
2335 }
2336 
mangleType(const ObjCInterfaceType * T)2337 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2338   mangleSourceName(T->getDecl()->getIdentifier());
2339 }
2340 
mangleType(const ObjCObjectType * T)2341 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
2342   if (!T->qual_empty()) {
2343     // Mangle protocol qualifiers.
2344     SmallString<64> QualStr;
2345     llvm::raw_svector_ostream QualOS(QualStr);
2346     QualOS << "objcproto";
2347     for (const auto *I : T->quals()) {
2348       StringRef name = I->getName();
2349       QualOS << name.size() << name;
2350     }
2351     QualOS.flush();
2352     Out << 'U' << QualStr.size() << QualStr;
2353   }
2354   mangleType(T->getBaseType());
2355 }
2356 
mangleType(const BlockPointerType * T)2357 void CXXNameMangler::mangleType(const BlockPointerType *T) {
2358   Out << "U13block_pointer";
2359   mangleType(T->getPointeeType());
2360 }
2361 
mangleType(const InjectedClassNameType * T)2362 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2363   // Mangle injected class name types as if the user had written the
2364   // specialization out fully.  It may not actually be possible to see
2365   // this mangling, though.
2366   mangleType(T->getInjectedSpecializationType());
2367 }
2368 
mangleType(const TemplateSpecializationType * T)2369 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2370   if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2371     mangleName(TD, T->getArgs(), T->getNumArgs());
2372   } else {
2373     if (mangleSubstitution(QualType(T, 0)))
2374       return;
2375 
2376     mangleTemplatePrefix(T->getTemplateName());
2377 
2378     // FIXME: GCC does not appear to mangle the template arguments when
2379     // the template in question is a dependent template name. Should we
2380     // emulate that badness?
2381     mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2382     addSubstitution(QualType(T, 0));
2383   }
2384 }
2385 
mangleType(const DependentNameType * T)2386 void CXXNameMangler::mangleType(const DependentNameType *T) {
2387   // Proposal by cxx-abi-dev, 2014-03-26
2388   // <class-enum-type> ::= <name>    # non-dependent or dependent type name or
2389   //                                 # dependent elaborated type specifier using
2390   //                                 # 'typename'
2391   //                   ::= Ts <name> # dependent elaborated type specifier using
2392   //                                 # 'struct' or 'class'
2393   //                   ::= Tu <name> # dependent elaborated type specifier using
2394   //                                 # 'union'
2395   //                   ::= Te <name> # dependent elaborated type specifier using
2396   //                                 # 'enum'
2397   switch (T->getKeyword()) {
2398     case ETK_Typename:
2399       break;
2400     case ETK_Struct:
2401     case ETK_Class:
2402     case ETK_Interface:
2403       Out << "Ts";
2404       break;
2405     case ETK_Union:
2406       Out << "Tu";
2407       break;
2408     case ETK_Enum:
2409       Out << "Te";
2410       break;
2411     default:
2412       llvm_unreachable("unexpected keyword for dependent type name");
2413   }
2414   // Typename types are always nested
2415   Out << 'N';
2416   manglePrefix(T->getQualifier());
2417   mangleSourceName(T->getIdentifier());
2418   Out << 'E';
2419 }
2420 
mangleType(const DependentTemplateSpecializationType * T)2421 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2422   // Dependently-scoped template types are nested if they have a prefix.
2423   Out << 'N';
2424 
2425   // TODO: avoid making this TemplateName.
2426   TemplateName Prefix =
2427     getASTContext().getDependentTemplateName(T->getQualifier(),
2428                                              T->getIdentifier());
2429   mangleTemplatePrefix(Prefix);
2430 
2431   // FIXME: GCC does not appear to mangle the template arguments when
2432   // the template in question is a dependent template name. Should we
2433   // emulate that badness?
2434   mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2435   Out << 'E';
2436 }
2437 
mangleType(const TypeOfType * T)2438 void CXXNameMangler::mangleType(const TypeOfType *T) {
2439   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2440   // "extension with parameters" mangling.
2441   Out << "u6typeof";
2442 }
2443 
mangleType(const TypeOfExprType * T)2444 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2445   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2446   // "extension with parameters" mangling.
2447   Out << "u6typeof";
2448 }
2449 
mangleType(const DecltypeType * T)2450 void CXXNameMangler::mangleType(const DecltypeType *T) {
2451   Expr *E = T->getUnderlyingExpr();
2452 
2453   // type ::= Dt <expression> E  # decltype of an id-expression
2454   //                             #   or class member access
2455   //      ::= DT <expression> E  # decltype of an expression
2456 
2457   // This purports to be an exhaustive list of id-expressions and
2458   // class member accesses.  Note that we do not ignore parentheses;
2459   // parentheses change the semantics of decltype for these
2460   // expressions (and cause the mangler to use the other form).
2461   if (isa<DeclRefExpr>(E) ||
2462       isa<MemberExpr>(E) ||
2463       isa<UnresolvedLookupExpr>(E) ||
2464       isa<DependentScopeDeclRefExpr>(E) ||
2465       isa<CXXDependentScopeMemberExpr>(E) ||
2466       isa<UnresolvedMemberExpr>(E))
2467     Out << "Dt";
2468   else
2469     Out << "DT";
2470   mangleExpression(E);
2471   Out << 'E';
2472 }
2473 
mangleType(const UnaryTransformType * T)2474 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2475   // If this is dependent, we need to record that. If not, we simply
2476   // mangle it as the underlying type since they are equivalent.
2477   if (T->isDependentType()) {
2478     Out << 'U';
2479 
2480     switch (T->getUTTKind()) {
2481       case UnaryTransformType::EnumUnderlyingType:
2482         Out << "3eut";
2483         break;
2484     }
2485   }
2486 
2487   mangleType(T->getUnderlyingType());
2488 }
2489 
mangleType(const AutoType * T)2490 void CXXNameMangler::mangleType(const AutoType *T) {
2491   QualType D = T->getDeducedType();
2492   // <builtin-type> ::= Da  # dependent auto
2493   if (D.isNull())
2494     Out << (T->isDecltypeAuto() ? "Dc" : "Da");
2495   else
2496     mangleType(D);
2497 }
2498 
mangleType(const AtomicType * T)2499 void CXXNameMangler::mangleType(const AtomicType *T) {
2500   // <type> ::= U <source-name> <type>  # vendor extended type qualifier
2501   // (Until there's a standardized mangling...)
2502   Out << "U7_Atomic";
2503   mangleType(T->getValueType());
2504 }
2505 
mangleIntegerLiteral(QualType T,const llvm::APSInt & Value)2506 void CXXNameMangler::mangleIntegerLiteral(QualType T,
2507                                           const llvm::APSInt &Value) {
2508   //  <expr-primary> ::= L <type> <value number> E # integer literal
2509   Out << 'L';
2510 
2511   mangleType(T);
2512   if (T->isBooleanType()) {
2513     // Boolean values are encoded as 0/1.
2514     Out << (Value.getBoolValue() ? '1' : '0');
2515   } else {
2516     mangleNumber(Value);
2517   }
2518   Out << 'E';
2519 
2520 }
2521 
2522 /// Mangles a member expression.
mangleMemberExpr(const Expr * base,bool isArrow,NestedNameSpecifier * qualifier,NamedDecl * firstQualifierLookup,DeclarationName member,unsigned arity)2523 void CXXNameMangler::mangleMemberExpr(const Expr *base,
2524                                       bool isArrow,
2525                                       NestedNameSpecifier *qualifier,
2526                                       NamedDecl *firstQualifierLookup,
2527                                       DeclarationName member,
2528                                       unsigned arity) {
2529   // <expression> ::= dt <expression> <unresolved-name>
2530   //              ::= pt <expression> <unresolved-name>
2531   if (base) {
2532 
2533     // Ignore member expressions involving anonymous unions.
2534     while (const auto *RT = base->getType()->getAs<RecordType>()) {
2535       if (!RT->getDecl()->isAnonymousStructOrUnion())
2536         break;
2537       const auto *ME = dyn_cast<MemberExpr>(base);
2538       if (!ME)
2539         break;
2540       base = ME->getBase();
2541       isArrow = ME->isArrow();
2542     }
2543 
2544     if (base->isImplicitCXXThis()) {
2545       // Note: GCC mangles member expressions to the implicit 'this' as
2546       // *this., whereas we represent them as this->. The Itanium C++ ABI
2547       // does not specify anything here, so we follow GCC.
2548       Out << "dtdefpT";
2549     } else {
2550       Out << (isArrow ? "pt" : "dt");
2551       mangleExpression(base);
2552     }
2553   }
2554   mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
2555 }
2556 
2557 /// Look at the callee of the given call expression and determine if
2558 /// it's a parenthesized id-expression which would have triggered ADL
2559 /// otherwise.
isParenthesizedADLCallee(const CallExpr * call)2560 static bool isParenthesizedADLCallee(const CallExpr *call) {
2561   const Expr *callee = call->getCallee();
2562   const Expr *fn = callee->IgnoreParens();
2563 
2564   // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
2565   // too, but for those to appear in the callee, it would have to be
2566   // parenthesized.
2567   if (callee == fn) return false;
2568 
2569   // Must be an unresolved lookup.
2570   const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2571   if (!lookup) return false;
2572 
2573   assert(!lookup->requiresADL());
2574 
2575   // Must be an unqualified lookup.
2576   if (lookup->getQualifier()) return false;
2577 
2578   // Must not have found a class member.  Note that if one is a class
2579   // member, they're all class members.
2580   if (lookup->getNumDecls() > 0 &&
2581       (*lookup->decls_begin())->isCXXClassMember())
2582     return false;
2583 
2584   // Otherwise, ADL would have been triggered.
2585   return true;
2586 }
2587 
mangleCastExpression(const Expr * E,StringRef CastEncoding)2588 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
2589   const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2590   Out << CastEncoding;
2591   mangleType(ECE->getType());
2592   mangleExpression(ECE->getSubExpr());
2593 }
2594 
mangleExpression(const Expr * E,unsigned Arity)2595 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2596   // <expression> ::= <unary operator-name> <expression>
2597   //              ::= <binary operator-name> <expression> <expression>
2598   //              ::= <trinary operator-name> <expression> <expression> <expression>
2599   //              ::= cv <type> expression           # conversion with one argument
2600   //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2601   //              ::= dc <type> <expression>         # dynamic_cast<type> (expression)
2602   //              ::= sc <type> <expression>         # static_cast<type> (expression)
2603   //              ::= cc <type> <expression>         # const_cast<type> (expression)
2604   //              ::= rc <type> <expression>         # reinterpret_cast<type> (expression)
2605   //              ::= st <type>                      # sizeof (a type)
2606   //              ::= at <type>                      # alignof (a type)
2607   //              ::= <template-param>
2608   //              ::= <function-param>
2609   //              ::= sr <type> <unqualified-name>                   # dependent name
2610   //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
2611   //              ::= ds <expression> <expression>                   # expr.*expr
2612   //              ::= sZ <template-param>                            # size of a parameter pack
2613   //              ::= sZ <function-param>    # size of a function parameter pack
2614   //              ::= <expr-primary>
2615   // <expr-primary> ::= L <type> <value number> E    # integer literal
2616   //                ::= L <type <value float> E      # floating literal
2617   //                ::= L <mangled-name> E           # external name
2618   //                ::= fpT                          # 'this' expression
2619   QualType ImplicitlyConvertedToType;
2620 
2621 recurse:
2622   switch (E->getStmtClass()) {
2623   case Expr::NoStmtClass:
2624 #define ABSTRACT_STMT(Type)
2625 #define EXPR(Type, Base)
2626 #define STMT(Type, Base) \
2627   case Expr::Type##Class:
2628 #include "clang/AST/StmtNodes.inc"
2629     // fallthrough
2630 
2631   // These all can only appear in local or variable-initialization
2632   // contexts and so should never appear in a mangling.
2633   case Expr::AddrLabelExprClass:
2634   case Expr::DesignatedInitExprClass:
2635   case Expr::ImplicitValueInitExprClass:
2636   case Expr::ParenListExprClass:
2637   case Expr::LambdaExprClass:
2638   case Expr::MSPropertyRefExprClass:
2639   case Expr::TypoExprClass:  // This should no longer exist in the AST by now.
2640     llvm_unreachable("unexpected statement kind");
2641 
2642   // FIXME: invent manglings for all these.
2643   case Expr::BlockExprClass:
2644   case Expr::CXXPseudoDestructorExprClass:
2645   case Expr::ChooseExprClass:
2646   case Expr::CompoundLiteralExprClass:
2647   case Expr::ExtVectorElementExprClass:
2648   case Expr::GenericSelectionExprClass:
2649   case Expr::ObjCEncodeExprClass:
2650   case Expr::ObjCIsaExprClass:
2651   case Expr::ObjCIvarRefExprClass:
2652   case Expr::ObjCMessageExprClass:
2653   case Expr::ObjCPropertyRefExprClass:
2654   case Expr::ObjCProtocolExprClass:
2655   case Expr::ObjCSelectorExprClass:
2656   case Expr::ObjCStringLiteralClass:
2657   case Expr::ObjCBoxedExprClass:
2658   case Expr::ObjCArrayLiteralClass:
2659   case Expr::ObjCDictionaryLiteralClass:
2660   case Expr::ObjCSubscriptRefExprClass:
2661   case Expr::ObjCIndirectCopyRestoreExprClass:
2662   case Expr::OffsetOfExprClass:
2663   case Expr::PredefinedExprClass:
2664   case Expr::ShuffleVectorExprClass:
2665   case Expr::ConvertVectorExprClass:
2666   case Expr::StmtExprClass:
2667   case Expr::TypeTraitExprClass:
2668   case Expr::ArrayTypeTraitExprClass:
2669   case Expr::ExpressionTraitExprClass:
2670   case Expr::VAArgExprClass:
2671   case Expr::CUDAKernelCallExprClass:
2672   case Expr::AsTypeExprClass:
2673   case Expr::PseudoObjectExprClass:
2674   case Expr::AtomicExprClass:
2675   {
2676     // As bad as this diagnostic is, it's better than crashing.
2677     DiagnosticsEngine &Diags = Context.getDiags();
2678     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2679                                      "cannot yet mangle expression type %0");
2680     Diags.Report(E->getExprLoc(), DiagID)
2681       << E->getStmtClassName() << E->getSourceRange();
2682     break;
2683   }
2684 
2685   case Expr::CXXUuidofExprClass: {
2686     const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
2687     if (UE->isTypeOperand()) {
2688       QualType UuidT = UE->getTypeOperand(Context.getASTContext());
2689       Out << "u8__uuidoft";
2690       mangleType(UuidT);
2691     } else {
2692       Expr *UuidExp = UE->getExprOperand();
2693       Out << "u8__uuidofz";
2694       mangleExpression(UuidExp, Arity);
2695     }
2696     break;
2697   }
2698 
2699   // Even gcc-4.5 doesn't mangle this.
2700   case Expr::BinaryConditionalOperatorClass: {
2701     DiagnosticsEngine &Diags = Context.getDiags();
2702     unsigned DiagID =
2703       Diags.getCustomDiagID(DiagnosticsEngine::Error,
2704                 "?: operator with omitted middle operand cannot be mangled");
2705     Diags.Report(E->getExprLoc(), DiagID)
2706       << E->getStmtClassName() << E->getSourceRange();
2707     break;
2708   }
2709 
2710   // These are used for internal purposes and cannot be meaningfully mangled.
2711   case Expr::OpaqueValueExprClass:
2712     llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2713 
2714   case Expr::InitListExprClass: {
2715     Out << "il";
2716     const InitListExpr *InitList = cast<InitListExpr>(E);
2717     for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2718       mangleExpression(InitList->getInit(i));
2719     Out << "E";
2720     break;
2721   }
2722 
2723   case Expr::CXXDefaultArgExprClass:
2724     mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2725     break;
2726 
2727   case Expr::CXXDefaultInitExprClass:
2728     mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
2729     break;
2730 
2731   case Expr::CXXStdInitializerListExprClass:
2732     mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
2733     break;
2734 
2735   case Expr::SubstNonTypeTemplateParmExprClass:
2736     mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2737                      Arity);
2738     break;
2739 
2740   case Expr::UserDefinedLiteralClass:
2741     // We follow g++'s approach of mangling a UDL as a call to the literal
2742     // operator.
2743   case Expr::CXXMemberCallExprClass: // fallthrough
2744   case Expr::CallExprClass: {
2745     const CallExpr *CE = cast<CallExpr>(E);
2746 
2747     // <expression> ::= cp <simple-id> <expression>* E
2748     // We use this mangling only when the call would use ADL except
2749     // for being parenthesized.  Per discussion with David
2750     // Vandervoorde, 2011.04.25.
2751     if (isParenthesizedADLCallee(CE)) {
2752       Out << "cp";
2753       // The callee here is a parenthesized UnresolvedLookupExpr with
2754       // no qualifier and should always get mangled as a <simple-id>
2755       // anyway.
2756 
2757     // <expression> ::= cl <expression>* E
2758     } else {
2759       Out << "cl";
2760     }
2761 
2762     mangleExpression(CE->getCallee(), CE->getNumArgs());
2763     for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
2764       mangleExpression(CE->getArg(I));
2765     Out << 'E';
2766     break;
2767   }
2768 
2769   case Expr::CXXNewExprClass: {
2770     const CXXNewExpr *New = cast<CXXNewExpr>(E);
2771     if (New->isGlobalNew()) Out << "gs";
2772     Out << (New->isArray() ? "na" : "nw");
2773     for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2774            E = New->placement_arg_end(); I != E; ++I)
2775       mangleExpression(*I);
2776     Out << '_';
2777     mangleType(New->getAllocatedType());
2778     if (New->hasInitializer()) {
2779       if (New->getInitializationStyle() == CXXNewExpr::ListInit)
2780         Out << "il";
2781       else
2782         Out << "pi";
2783       const Expr *Init = New->getInitializer();
2784       if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2785         // Directly inline the initializers.
2786         for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2787                                                   E = CCE->arg_end();
2788              I != E; ++I)
2789           mangleExpression(*I);
2790       } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2791         for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2792           mangleExpression(PLE->getExpr(i));
2793       } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
2794                  isa<InitListExpr>(Init)) {
2795         // Only take InitListExprs apart for list-initialization.
2796         const InitListExpr *InitList = cast<InitListExpr>(Init);
2797         for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2798           mangleExpression(InitList->getInit(i));
2799       } else
2800         mangleExpression(Init);
2801     }
2802     Out << 'E';
2803     break;
2804   }
2805 
2806   case Expr::MemberExprClass: {
2807     const MemberExpr *ME = cast<MemberExpr>(E);
2808     mangleMemberExpr(ME->getBase(), ME->isArrow(),
2809                      ME->getQualifier(), nullptr,
2810                      ME->getMemberDecl()->getDeclName(), Arity);
2811     break;
2812   }
2813 
2814   case Expr::UnresolvedMemberExprClass: {
2815     const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
2816     mangleMemberExpr(ME->getBase(), ME->isArrow(),
2817                      ME->getQualifier(), nullptr, ME->getMemberName(),
2818                      Arity);
2819     if (ME->hasExplicitTemplateArgs())
2820       mangleTemplateArgs(ME->getExplicitTemplateArgs());
2821     break;
2822   }
2823 
2824   case Expr::CXXDependentScopeMemberExprClass: {
2825     const CXXDependentScopeMemberExpr *ME
2826       = cast<CXXDependentScopeMemberExpr>(E);
2827     mangleMemberExpr(ME->getBase(), ME->isArrow(),
2828                      ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
2829                      ME->getMember(), Arity);
2830     if (ME->hasExplicitTemplateArgs())
2831       mangleTemplateArgs(ME->getExplicitTemplateArgs());
2832     break;
2833   }
2834 
2835   case Expr::UnresolvedLookupExprClass: {
2836     const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
2837     mangleUnresolvedName(ULE->getQualifier(), nullptr, ULE->getName(), Arity);
2838 
2839     // All the <unresolved-name> productions end in a
2840     // base-unresolved-name, where <template-args> are just tacked
2841     // onto the end.
2842     if (ULE->hasExplicitTemplateArgs())
2843       mangleTemplateArgs(ULE->getExplicitTemplateArgs());
2844     break;
2845   }
2846 
2847   case Expr::CXXUnresolvedConstructExprClass: {
2848     const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
2849     unsigned N = CE->arg_size();
2850 
2851     Out << "cv";
2852     mangleType(CE->getType());
2853     if (N != 1) Out << '_';
2854     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2855     if (N != 1) Out << 'E';
2856     break;
2857   }
2858 
2859   case Expr::CXXTemporaryObjectExprClass:
2860   case Expr::CXXConstructExprClass: {
2861     const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
2862     unsigned N = CE->getNumArgs();
2863 
2864     if (CE->isListInitialization())
2865       Out << "tl";
2866     else
2867       Out << "cv";
2868     mangleType(CE->getType());
2869     if (N != 1) Out << '_';
2870     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2871     if (N != 1) Out << 'E';
2872     break;
2873   }
2874 
2875   case Expr::CXXScalarValueInitExprClass:
2876     Out <<"cv";
2877     mangleType(E->getType());
2878     Out <<"_E";
2879     break;
2880 
2881   case Expr::CXXNoexceptExprClass:
2882     Out << "nx";
2883     mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
2884     break;
2885 
2886   case Expr::UnaryExprOrTypeTraitExprClass: {
2887     const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
2888 
2889     if (!SAE->isInstantiationDependent()) {
2890       // Itanium C++ ABI:
2891       //   If the operand of a sizeof or alignof operator is not
2892       //   instantiation-dependent it is encoded as an integer literal
2893       //   reflecting the result of the operator.
2894       //
2895       //   If the result of the operator is implicitly converted to a known
2896       //   integer type, that type is used for the literal; otherwise, the type
2897       //   of std::size_t or std::ptrdiff_t is used.
2898       QualType T = (ImplicitlyConvertedToType.isNull() ||
2899                     !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
2900                                                     : ImplicitlyConvertedToType;
2901       llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
2902       mangleIntegerLiteral(T, V);
2903       break;
2904     }
2905 
2906     switch(SAE->getKind()) {
2907     case UETT_SizeOf:
2908       Out << 's';
2909       break;
2910     case UETT_AlignOf:
2911       Out << 'a';
2912       break;
2913     case UETT_VecStep:
2914       DiagnosticsEngine &Diags = Context.getDiags();
2915       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2916                                      "cannot yet mangle vec_step expression");
2917       Diags.Report(DiagID);
2918       return;
2919     }
2920     if (SAE->isArgumentType()) {
2921       Out << 't';
2922       mangleType(SAE->getArgumentType());
2923     } else {
2924       Out << 'z';
2925       mangleExpression(SAE->getArgumentExpr());
2926     }
2927     break;
2928   }
2929 
2930   case Expr::CXXThrowExprClass: {
2931     const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
2932     //  <expression> ::= tw <expression>  # throw expression
2933     //               ::= tr               # rethrow
2934     if (TE->getSubExpr()) {
2935       Out << "tw";
2936       mangleExpression(TE->getSubExpr());
2937     } else {
2938       Out << "tr";
2939     }
2940     break;
2941   }
2942 
2943   case Expr::CXXTypeidExprClass: {
2944     const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
2945     //  <expression> ::= ti <type>        # typeid (type)
2946     //               ::= te <expression>  # typeid (expression)
2947     if (TIE->isTypeOperand()) {
2948       Out << "ti";
2949       mangleType(TIE->getTypeOperand(Context.getASTContext()));
2950     } else {
2951       Out << "te";
2952       mangleExpression(TIE->getExprOperand());
2953     }
2954     break;
2955   }
2956 
2957   case Expr::CXXDeleteExprClass: {
2958     const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
2959     //  <expression> ::= [gs] dl <expression>  # [::] delete expr
2960     //               ::= [gs] da <expression>  # [::] delete [] expr
2961     if (DE->isGlobalDelete()) Out << "gs";
2962     Out << (DE->isArrayForm() ? "da" : "dl");
2963     mangleExpression(DE->getArgument());
2964     break;
2965   }
2966 
2967   case Expr::UnaryOperatorClass: {
2968     const UnaryOperator *UO = cast<UnaryOperator>(E);
2969     mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
2970                        /*Arity=*/1);
2971     mangleExpression(UO->getSubExpr());
2972     break;
2973   }
2974 
2975   case Expr::ArraySubscriptExprClass: {
2976     const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
2977 
2978     // Array subscript is treated as a syntactically weird form of
2979     // binary operator.
2980     Out << "ix";
2981     mangleExpression(AE->getLHS());
2982     mangleExpression(AE->getRHS());
2983     break;
2984   }
2985 
2986   case Expr::CompoundAssignOperatorClass: // fallthrough
2987   case Expr::BinaryOperatorClass: {
2988     const BinaryOperator *BO = cast<BinaryOperator>(E);
2989     if (BO->getOpcode() == BO_PtrMemD)
2990       Out << "ds";
2991     else
2992       mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
2993                          /*Arity=*/2);
2994     mangleExpression(BO->getLHS());
2995     mangleExpression(BO->getRHS());
2996     break;
2997   }
2998 
2999   case Expr::ConditionalOperatorClass: {
3000     const ConditionalOperator *CO = cast<ConditionalOperator>(E);
3001     mangleOperatorName(OO_Conditional, /*Arity=*/3);
3002     mangleExpression(CO->getCond());
3003     mangleExpression(CO->getLHS(), Arity);
3004     mangleExpression(CO->getRHS(), Arity);
3005     break;
3006   }
3007 
3008   case Expr::ImplicitCastExprClass: {
3009     ImplicitlyConvertedToType = E->getType();
3010     E = cast<ImplicitCastExpr>(E)->getSubExpr();
3011     goto recurse;
3012   }
3013 
3014   case Expr::ObjCBridgedCastExprClass: {
3015     // Mangle ownership casts as a vendor extended operator __bridge,
3016     // __bridge_transfer, or __bridge_retain.
3017     StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
3018     Out << "v1U" << Kind.size() << Kind;
3019   }
3020   // Fall through to mangle the cast itself.
3021 
3022   case Expr::CStyleCastExprClass:
3023   case Expr::CXXFunctionalCastExprClass:
3024     mangleCastExpression(E, "cv");
3025     break;
3026 
3027   case Expr::CXXStaticCastExprClass:
3028     mangleCastExpression(E, "sc");
3029     break;
3030   case Expr::CXXDynamicCastExprClass:
3031     mangleCastExpression(E, "dc");
3032     break;
3033   case Expr::CXXReinterpretCastExprClass:
3034     mangleCastExpression(E, "rc");
3035     break;
3036   case Expr::CXXConstCastExprClass:
3037     mangleCastExpression(E, "cc");
3038     break;
3039 
3040   case Expr::CXXOperatorCallExprClass: {
3041     const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
3042     unsigned NumArgs = CE->getNumArgs();
3043     mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
3044     // Mangle the arguments.
3045     for (unsigned i = 0; i != NumArgs; ++i)
3046       mangleExpression(CE->getArg(i));
3047     break;
3048   }
3049 
3050   case Expr::ParenExprClass:
3051     mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
3052     break;
3053 
3054   case Expr::DeclRefExprClass: {
3055     const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
3056 
3057     switch (D->getKind()) {
3058     default:
3059       //  <expr-primary> ::= L <mangled-name> E # external name
3060       Out << 'L';
3061       mangle(D, "_Z");
3062       Out << 'E';
3063       break;
3064 
3065     case Decl::ParmVar:
3066       mangleFunctionParam(cast<ParmVarDecl>(D));
3067       break;
3068 
3069     case Decl::EnumConstant: {
3070       const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
3071       mangleIntegerLiteral(ED->getType(), ED->getInitVal());
3072       break;
3073     }
3074 
3075     case Decl::NonTypeTemplateParm: {
3076       const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
3077       mangleTemplateParameter(PD->getIndex());
3078       break;
3079     }
3080 
3081     }
3082 
3083     break;
3084   }
3085 
3086   case Expr::SubstNonTypeTemplateParmPackExprClass:
3087     // FIXME: not clear how to mangle this!
3088     // template <unsigned N...> class A {
3089     //   template <class U...> void foo(U (&x)[N]...);
3090     // };
3091     Out << "_SUBSTPACK_";
3092     break;
3093 
3094   case Expr::FunctionParmPackExprClass: {
3095     // FIXME: not clear how to mangle this!
3096     const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
3097     Out << "v110_SUBSTPACK";
3098     mangleFunctionParam(FPPE->getParameterPack());
3099     break;
3100   }
3101 
3102   case Expr::DependentScopeDeclRefExprClass: {
3103     const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
3104     mangleUnresolvedName(DRE->getQualifier(), nullptr, DRE->getDeclName(),
3105                          Arity);
3106 
3107     // All the <unresolved-name> productions end in a
3108     // base-unresolved-name, where <template-args> are just tacked
3109     // onto the end.
3110     if (DRE->hasExplicitTemplateArgs())
3111       mangleTemplateArgs(DRE->getExplicitTemplateArgs());
3112     break;
3113   }
3114 
3115   case Expr::CXXBindTemporaryExprClass:
3116     mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
3117     break;
3118 
3119   case Expr::ExprWithCleanupsClass:
3120     mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
3121     break;
3122 
3123   case Expr::FloatingLiteralClass: {
3124     const FloatingLiteral *FL = cast<FloatingLiteral>(E);
3125     Out << 'L';
3126     mangleType(FL->getType());
3127     mangleFloat(FL->getValue());
3128     Out << 'E';
3129     break;
3130   }
3131 
3132   case Expr::CharacterLiteralClass:
3133     Out << 'L';
3134     mangleType(E->getType());
3135     Out << cast<CharacterLiteral>(E)->getValue();
3136     Out << 'E';
3137     break;
3138 
3139   // FIXME. __objc_yes/__objc_no are mangled same as true/false
3140   case Expr::ObjCBoolLiteralExprClass:
3141     Out << "Lb";
3142     Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3143     Out << 'E';
3144     break;
3145 
3146   case Expr::CXXBoolLiteralExprClass:
3147     Out << "Lb";
3148     Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3149     Out << 'E';
3150     break;
3151 
3152   case Expr::IntegerLiteralClass: {
3153     llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
3154     if (E->getType()->isSignedIntegerType())
3155       Value.setIsSigned(true);
3156     mangleIntegerLiteral(E->getType(), Value);
3157     break;
3158   }
3159 
3160   case Expr::ImaginaryLiteralClass: {
3161     const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
3162     // Mangle as if a complex literal.
3163     // Proposal from David Vandevoorde, 2010.06.30.
3164     Out << 'L';
3165     mangleType(E->getType());
3166     if (const FloatingLiteral *Imag =
3167           dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
3168       // Mangle a floating-point zero of the appropriate type.
3169       mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
3170       Out << '_';
3171       mangleFloat(Imag->getValue());
3172     } else {
3173       Out << "0_";
3174       llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
3175       if (IE->getSubExpr()->getType()->isSignedIntegerType())
3176         Value.setIsSigned(true);
3177       mangleNumber(Value);
3178     }
3179     Out << 'E';
3180     break;
3181   }
3182 
3183   case Expr::StringLiteralClass: {
3184     // Revised proposal from David Vandervoorde, 2010.07.15.
3185     Out << 'L';
3186     assert(isa<ConstantArrayType>(E->getType()));
3187     mangleType(E->getType());
3188     Out << 'E';
3189     break;
3190   }
3191 
3192   case Expr::GNUNullExprClass:
3193     // FIXME: should this really be mangled the same as nullptr?
3194     // fallthrough
3195 
3196   case Expr::CXXNullPtrLiteralExprClass: {
3197     Out << "LDnE";
3198     break;
3199   }
3200 
3201   case Expr::PackExpansionExprClass:
3202     Out << "sp";
3203     mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
3204     break;
3205 
3206   case Expr::SizeOfPackExprClass: {
3207     Out << "sZ";
3208     const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
3209     if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
3210       mangleTemplateParameter(TTP->getIndex());
3211     else if (const NonTypeTemplateParmDecl *NTTP
3212                 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
3213       mangleTemplateParameter(NTTP->getIndex());
3214     else if (const TemplateTemplateParmDecl *TempTP
3215                                     = dyn_cast<TemplateTemplateParmDecl>(Pack))
3216       mangleTemplateParameter(TempTP->getIndex());
3217     else
3218       mangleFunctionParam(cast<ParmVarDecl>(Pack));
3219     break;
3220   }
3221 
3222   case Expr::MaterializeTemporaryExprClass: {
3223     mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
3224     break;
3225   }
3226 
3227   case Expr::CXXFoldExprClass: {
3228     auto *FE = cast<CXXFoldExpr>(E);
3229     if (FE->isLeftFold())
3230       Out << (FE->getInit() ? "fL" : "fl");
3231     else
3232       Out << (FE->getInit() ? "fR" : "fr");
3233 
3234     if (FE->getOperator() == BO_PtrMemD)
3235       Out << "ds";
3236     else
3237       mangleOperatorName(
3238           BinaryOperator::getOverloadedOperator(FE->getOperator()),
3239           /*Arity=*/2);
3240 
3241     if (FE->getLHS())
3242       mangleExpression(FE->getLHS());
3243     if (FE->getRHS())
3244       mangleExpression(FE->getRHS());
3245     break;
3246   }
3247 
3248   case Expr::CXXThisExprClass:
3249     Out << "fpT";
3250     break;
3251   }
3252 }
3253 
3254 /// Mangle an expression which refers to a parameter variable.
3255 ///
3256 /// <expression>     ::= <function-param>
3257 /// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
3258 /// <function-param> ::= fp <top-level CV-qualifiers>
3259 ///                      <parameter-2 non-negative number> _ # L == 0, I > 0
3260 /// <function-param> ::= fL <L-1 non-negative number>
3261 ///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
3262 /// <function-param> ::= fL <L-1 non-negative number>
3263 ///                      p <top-level CV-qualifiers>
3264 ///                      <I-1 non-negative number> _         # L > 0, I > 0
3265 ///
3266 /// L is the nesting depth of the parameter, defined as 1 if the
3267 /// parameter comes from the innermost function prototype scope
3268 /// enclosing the current context, 2 if from the next enclosing
3269 /// function prototype scope, and so on, with one special case: if
3270 /// we've processed the full parameter clause for the innermost
3271 /// function type, then L is one less.  This definition conveniently
3272 /// makes it irrelevant whether a function's result type was written
3273 /// trailing or leading, but is otherwise overly complicated; the
3274 /// numbering was first designed without considering references to
3275 /// parameter in locations other than return types, and then the
3276 /// mangling had to be generalized without changing the existing
3277 /// manglings.
3278 ///
3279 /// I is the zero-based index of the parameter within its parameter
3280 /// declaration clause.  Note that the original ABI document describes
3281 /// this using 1-based ordinals.
mangleFunctionParam(const ParmVarDecl * parm)3282 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
3283   unsigned parmDepth = parm->getFunctionScopeDepth();
3284   unsigned parmIndex = parm->getFunctionScopeIndex();
3285 
3286   // Compute 'L'.
3287   // parmDepth does not include the declaring function prototype.
3288   // FunctionTypeDepth does account for that.
3289   assert(parmDepth < FunctionTypeDepth.getDepth());
3290   unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
3291   if (FunctionTypeDepth.isInResultType())
3292     nestingDepth--;
3293 
3294   if (nestingDepth == 0) {
3295     Out << "fp";
3296   } else {
3297     Out << "fL" << (nestingDepth - 1) << 'p';
3298   }
3299 
3300   // Top-level qualifiers.  We don't have to worry about arrays here,
3301   // because parameters declared as arrays should already have been
3302   // transformed to have pointer type. FIXME: apparently these don't
3303   // get mangled if used as an rvalue of a known non-class type?
3304   assert(!parm->getType()->isArrayType()
3305          && "parameter's type is still an array type?");
3306   mangleQualifiers(parm->getType().getQualifiers());
3307 
3308   // Parameter index.
3309   if (parmIndex != 0) {
3310     Out << (parmIndex - 1);
3311   }
3312   Out << '_';
3313 }
3314 
mangleCXXCtorType(CXXCtorType T)3315 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
3316   // <ctor-dtor-name> ::= C1  # complete object constructor
3317   //                  ::= C2  # base object constructor
3318   //
3319   // In addition, C5 is a comdat name with C1 and C2 in it.
3320   switch (T) {
3321   case Ctor_Complete:
3322     Out << "C1";
3323     break;
3324   case Ctor_Base:
3325     Out << "C2";
3326     break;
3327   case Ctor_Comdat:
3328     Out << "C5";
3329     break;
3330   }
3331 }
3332 
mangleCXXDtorType(CXXDtorType T)3333 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
3334   // <ctor-dtor-name> ::= D0  # deleting destructor
3335   //                  ::= D1  # complete object destructor
3336   //                  ::= D2  # base object destructor
3337   //
3338   // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
3339   switch (T) {
3340   case Dtor_Deleting:
3341     Out << "D0";
3342     break;
3343   case Dtor_Complete:
3344     Out << "D1";
3345     break;
3346   case Dtor_Base:
3347     Out << "D2";
3348     break;
3349   case Dtor_Comdat:
3350     Out << "D5";
3351     break;
3352   }
3353 }
3354 
mangleTemplateArgs(const ASTTemplateArgumentListInfo & TemplateArgs)3355 void CXXNameMangler::mangleTemplateArgs(
3356                           const ASTTemplateArgumentListInfo &TemplateArgs) {
3357   // <template-args> ::= I <template-arg>+ E
3358   Out << 'I';
3359   for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
3360     mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
3361   Out << 'E';
3362 }
3363 
mangleTemplateArgs(const TemplateArgumentList & AL)3364 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
3365   // <template-args> ::= I <template-arg>+ E
3366   Out << 'I';
3367   for (unsigned i = 0, e = AL.size(); i != e; ++i)
3368     mangleTemplateArg(AL[i]);
3369   Out << 'E';
3370 }
3371 
mangleTemplateArgs(const TemplateArgument * TemplateArgs,unsigned NumTemplateArgs)3372 void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
3373                                         unsigned NumTemplateArgs) {
3374   // <template-args> ::= I <template-arg>+ E
3375   Out << 'I';
3376   for (unsigned i = 0; i != NumTemplateArgs; ++i)
3377     mangleTemplateArg(TemplateArgs[i]);
3378   Out << 'E';
3379 }
3380 
mangleTemplateArg(TemplateArgument A)3381 void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
3382   // <template-arg> ::= <type>              # type or template
3383   //                ::= X <expression> E    # expression
3384   //                ::= <expr-primary>      # simple expressions
3385   //                ::= J <template-arg>* E # argument pack
3386   if (!A.isInstantiationDependent() || A.isDependent())
3387     A = Context.getASTContext().getCanonicalTemplateArgument(A);
3388 
3389   switch (A.getKind()) {
3390   case TemplateArgument::Null:
3391     llvm_unreachable("Cannot mangle NULL template argument");
3392 
3393   case TemplateArgument::Type:
3394     mangleType(A.getAsType());
3395     break;
3396   case TemplateArgument::Template:
3397     // This is mangled as <type>.
3398     mangleType(A.getAsTemplate());
3399     break;
3400   case TemplateArgument::TemplateExpansion:
3401     // <type>  ::= Dp <type>          # pack expansion (C++0x)
3402     Out << "Dp";
3403     mangleType(A.getAsTemplateOrTemplatePattern());
3404     break;
3405   case TemplateArgument::Expression: {
3406     // It's possible to end up with a DeclRefExpr here in certain
3407     // dependent cases, in which case we should mangle as a
3408     // declaration.
3409     const Expr *E = A.getAsExpr()->IgnoreParens();
3410     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3411       const ValueDecl *D = DRE->getDecl();
3412       if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3413         Out << "L";
3414         mangle(D, "_Z");
3415         Out << 'E';
3416         break;
3417       }
3418     }
3419 
3420     Out << 'X';
3421     mangleExpression(E);
3422     Out << 'E';
3423     break;
3424   }
3425   case TemplateArgument::Integral:
3426     mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
3427     break;
3428   case TemplateArgument::Declaration: {
3429     //  <expr-primary> ::= L <mangled-name> E # external name
3430     // Clang produces AST's where pointer-to-member-function expressions
3431     // and pointer-to-function expressions are represented as a declaration not
3432     // an expression. We compensate for it here to produce the correct mangling.
3433     ValueDecl *D = A.getAsDecl();
3434     bool compensateMangling = !A.getParamTypeForDecl()->isReferenceType();
3435     if (compensateMangling) {
3436       Out << 'X';
3437       mangleOperatorName(OO_Amp, 1);
3438     }
3439 
3440     Out << 'L';
3441     // References to external entities use the mangled name; if the name would
3442     // not normally be manged then mangle it as unqualified.
3443     //
3444     // FIXME: The ABI specifies that external names here should have _Z, but
3445     // gcc leaves this off.
3446     if (compensateMangling)
3447       mangle(D, "_Z");
3448     else
3449       mangle(D, "Z");
3450     Out << 'E';
3451 
3452     if (compensateMangling)
3453       Out << 'E';
3454 
3455     break;
3456   }
3457   case TemplateArgument::NullPtr: {
3458     //  <expr-primary> ::= L <type> 0 E
3459     Out << 'L';
3460     mangleType(A.getNullPtrType());
3461     Out << "0E";
3462     break;
3463   }
3464   case TemplateArgument::Pack: {
3465     //  <template-arg> ::= J <template-arg>* E
3466     Out << 'J';
3467     for (const auto &P : A.pack_elements())
3468       mangleTemplateArg(P);
3469     Out << 'E';
3470   }
3471   }
3472 }
3473 
mangleTemplateParameter(unsigned Index)3474 void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3475   // <template-param> ::= T_    # first template parameter
3476   //                  ::= T <parameter-2 non-negative number> _
3477   if (Index == 0)
3478     Out << "T_";
3479   else
3480     Out << 'T' << (Index - 1) << '_';
3481 }
3482 
mangleSeqID(unsigned SeqID)3483 void CXXNameMangler::mangleSeqID(unsigned SeqID) {
3484   if (SeqID == 1)
3485     Out << '0';
3486   else if (SeqID > 1) {
3487     SeqID--;
3488 
3489     // <seq-id> is encoded in base-36, using digits and upper case letters.
3490     char Buffer[7]; // log(2**32) / log(36) ~= 7
3491     MutableArrayRef<char> BufferRef(Buffer);
3492     MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
3493 
3494     for (; SeqID != 0; SeqID /= 36) {
3495       unsigned C = SeqID % 36;
3496       *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
3497     }
3498 
3499     Out.write(I.base(), I - BufferRef.rbegin());
3500   }
3501   Out << '_';
3502 }
3503 
mangleExistingSubstitution(QualType type)3504 void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3505   bool result = mangleSubstitution(type);
3506   assert(result && "no existing substitution for type");
3507   (void) result;
3508 }
3509 
mangleExistingSubstitution(TemplateName tname)3510 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3511   bool result = mangleSubstitution(tname);
3512   assert(result && "no existing substitution for template name");
3513   (void) result;
3514 }
3515 
3516 // <substitution> ::= S <seq-id> _
3517 //                ::= S_
mangleSubstitution(const NamedDecl * ND)3518 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3519   // Try one of the standard substitutions first.
3520   if (mangleStandardSubstitution(ND))
3521     return true;
3522 
3523   ND = cast<NamedDecl>(ND->getCanonicalDecl());
3524   return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3525 }
3526 
3527 /// \brief Determine whether the given type has any qualifiers that are
3528 /// relevant for substitutions.
hasMangledSubstitutionQualifiers(QualType T)3529 static bool hasMangledSubstitutionQualifiers(QualType T) {
3530   Qualifiers Qs = T.getQualifiers();
3531   return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3532 }
3533 
mangleSubstitution(QualType T)3534 bool CXXNameMangler::mangleSubstitution(QualType T) {
3535   if (!hasMangledSubstitutionQualifiers(T)) {
3536     if (const RecordType *RT = T->getAs<RecordType>())
3537       return mangleSubstitution(RT->getDecl());
3538   }
3539 
3540   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3541 
3542   return mangleSubstitution(TypePtr);
3543 }
3544 
mangleSubstitution(TemplateName Template)3545 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3546   if (TemplateDecl *TD = Template.getAsTemplateDecl())
3547     return mangleSubstitution(TD);
3548 
3549   Template = Context.getASTContext().getCanonicalTemplateName(Template);
3550   return mangleSubstitution(
3551                       reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3552 }
3553 
mangleSubstitution(uintptr_t Ptr)3554 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3555   llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3556   if (I == Substitutions.end())
3557     return false;
3558 
3559   unsigned SeqID = I->second;
3560   Out << 'S';
3561   mangleSeqID(SeqID);
3562 
3563   return true;
3564 }
3565 
isCharType(QualType T)3566 static bool isCharType(QualType T) {
3567   if (T.isNull())
3568     return false;
3569 
3570   return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3571     T->isSpecificBuiltinType(BuiltinType::Char_U);
3572 }
3573 
3574 /// isCharSpecialization - Returns whether a given type is a template
3575 /// specialization of a given name with a single argument of type char.
isCharSpecialization(QualType T,const char * Name)3576 static bool isCharSpecialization(QualType T, const char *Name) {
3577   if (T.isNull())
3578     return false;
3579 
3580   const RecordType *RT = T->getAs<RecordType>();
3581   if (!RT)
3582     return false;
3583 
3584   const ClassTemplateSpecializationDecl *SD =
3585     dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3586   if (!SD)
3587     return false;
3588 
3589   if (!isStdNamespace(getEffectiveDeclContext(SD)))
3590     return false;
3591 
3592   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3593   if (TemplateArgs.size() != 1)
3594     return false;
3595 
3596   if (!isCharType(TemplateArgs[0].getAsType()))
3597     return false;
3598 
3599   return SD->getIdentifier()->getName() == Name;
3600 }
3601 
3602 template <std::size_t StrLen>
isStreamCharSpecialization(const ClassTemplateSpecializationDecl * SD,const char (& Str)[StrLen])3603 static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3604                                        const char (&Str)[StrLen]) {
3605   if (!SD->getIdentifier()->isStr(Str))
3606     return false;
3607 
3608   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3609   if (TemplateArgs.size() != 2)
3610     return false;
3611 
3612   if (!isCharType(TemplateArgs[0].getAsType()))
3613     return false;
3614 
3615   if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3616     return false;
3617 
3618   return true;
3619 }
3620 
mangleStandardSubstitution(const NamedDecl * ND)3621 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3622   // <substitution> ::= St # ::std::
3623   if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3624     if (isStd(NS)) {
3625       Out << "St";
3626       return true;
3627     }
3628   }
3629 
3630   if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3631     if (!isStdNamespace(getEffectiveDeclContext(TD)))
3632       return false;
3633 
3634     // <substitution> ::= Sa # ::std::allocator
3635     if (TD->getIdentifier()->isStr("allocator")) {
3636       Out << "Sa";
3637       return true;
3638     }
3639 
3640     // <<substitution> ::= Sb # ::std::basic_string
3641     if (TD->getIdentifier()->isStr("basic_string")) {
3642       Out << "Sb";
3643       return true;
3644     }
3645   }
3646 
3647   if (const ClassTemplateSpecializationDecl *SD =
3648         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3649     if (!isStdNamespace(getEffectiveDeclContext(SD)))
3650       return false;
3651 
3652     //    <substitution> ::= Ss # ::std::basic_string<char,
3653     //                            ::std::char_traits<char>,
3654     //                            ::std::allocator<char> >
3655     if (SD->getIdentifier()->isStr("basic_string")) {
3656       const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3657 
3658       if (TemplateArgs.size() != 3)
3659         return false;
3660 
3661       if (!isCharType(TemplateArgs[0].getAsType()))
3662         return false;
3663 
3664       if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3665         return false;
3666 
3667       if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3668         return false;
3669 
3670       Out << "Ss";
3671       return true;
3672     }
3673 
3674     //    <substitution> ::= Si # ::std::basic_istream<char,
3675     //                            ::std::char_traits<char> >
3676     if (isStreamCharSpecialization(SD, "basic_istream")) {
3677       Out << "Si";
3678       return true;
3679     }
3680 
3681     //    <substitution> ::= So # ::std::basic_ostream<char,
3682     //                            ::std::char_traits<char> >
3683     if (isStreamCharSpecialization(SD, "basic_ostream")) {
3684       Out << "So";
3685       return true;
3686     }
3687 
3688     //    <substitution> ::= Sd # ::std::basic_iostream<char,
3689     //                            ::std::char_traits<char> >
3690     if (isStreamCharSpecialization(SD, "basic_iostream")) {
3691       Out << "Sd";
3692       return true;
3693     }
3694   }
3695   return false;
3696 }
3697 
addSubstitution(QualType T)3698 void CXXNameMangler::addSubstitution(QualType T) {
3699   if (!hasMangledSubstitutionQualifiers(T)) {
3700     if (const RecordType *RT = T->getAs<RecordType>()) {
3701       addSubstitution(RT->getDecl());
3702       return;
3703     }
3704   }
3705 
3706   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3707   addSubstitution(TypePtr);
3708 }
3709 
addSubstitution(TemplateName Template)3710 void CXXNameMangler::addSubstitution(TemplateName Template) {
3711   if (TemplateDecl *TD = Template.getAsTemplateDecl())
3712     return addSubstitution(TD);
3713 
3714   Template = Context.getASTContext().getCanonicalTemplateName(Template);
3715   addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3716 }
3717 
addSubstitution(uintptr_t Ptr)3718 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3719   assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3720   Substitutions[Ptr] = SeqID++;
3721 }
3722 
3723 //
3724 
3725 /// \brief Mangles the name of the declaration D and emits that name to the
3726 /// given output stream.
3727 ///
3728 /// If the declaration D requires a mangled name, this routine will emit that
3729 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3730 /// and this routine will return false. In this case, the caller should just
3731 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
3732 /// name.
mangleCXXName(const NamedDecl * D,raw_ostream & Out)3733 void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D,
3734                                              raw_ostream &Out) {
3735   assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3736           "Invalid mangleName() call, argument is not a variable or function!");
3737   assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
3738          "Invalid mangleName() call on 'structor decl!");
3739 
3740   PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3741                                  getASTContext().getSourceManager(),
3742                                  "Mangling declaration");
3743 
3744   CXXNameMangler Mangler(*this, Out, D);
3745   Mangler.mangle(D);
3746 }
3747 
mangleCXXCtor(const CXXConstructorDecl * D,CXXCtorType Type,raw_ostream & Out)3748 void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
3749                                              CXXCtorType Type,
3750                                              raw_ostream &Out) {
3751   CXXNameMangler Mangler(*this, Out, D, Type);
3752   Mangler.mangle(D);
3753 }
3754 
mangleCXXDtor(const CXXDestructorDecl * D,CXXDtorType Type,raw_ostream & Out)3755 void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
3756                                              CXXDtorType Type,
3757                                              raw_ostream &Out) {
3758   CXXNameMangler Mangler(*this, Out, D, Type);
3759   Mangler.mangle(D);
3760 }
3761 
mangleCXXCtorComdat(const CXXConstructorDecl * D,raw_ostream & Out)3762 void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
3763                                                    raw_ostream &Out) {
3764   CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
3765   Mangler.mangle(D);
3766 }
3767 
mangleCXXDtorComdat(const CXXDestructorDecl * D,raw_ostream & Out)3768 void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
3769                                                    raw_ostream &Out) {
3770   CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
3771   Mangler.mangle(D);
3772 }
3773 
mangleThunk(const CXXMethodDecl * MD,const ThunkInfo & Thunk,raw_ostream & Out)3774 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
3775                                            const ThunkInfo &Thunk,
3776                                            raw_ostream &Out) {
3777   //  <special-name> ::= T <call-offset> <base encoding>
3778   //                      # base is the nominal target function of thunk
3779   //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
3780   //                      # base is the nominal target function of thunk
3781   //                      # first call-offset is 'this' adjustment
3782   //                      # second call-offset is result adjustment
3783 
3784   assert(!isa<CXXDestructorDecl>(MD) &&
3785          "Use mangleCXXDtor for destructor decls!");
3786   CXXNameMangler Mangler(*this, Out);
3787   Mangler.getStream() << "_ZT";
3788   if (!Thunk.Return.isEmpty())
3789     Mangler.getStream() << 'c';
3790 
3791   // Mangle the 'this' pointer adjustment.
3792   Mangler.mangleCallOffset(Thunk.This.NonVirtual,
3793                            Thunk.This.Virtual.Itanium.VCallOffsetOffset);
3794 
3795   // Mangle the return pointer adjustment if there is one.
3796   if (!Thunk.Return.isEmpty())
3797     Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
3798                              Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
3799 
3800   Mangler.mangleFunctionEncoding(MD);
3801 }
3802 
mangleCXXDtorThunk(const CXXDestructorDecl * DD,CXXDtorType Type,const ThisAdjustment & ThisAdjustment,raw_ostream & Out)3803 void ItaniumMangleContextImpl::mangleCXXDtorThunk(
3804     const CXXDestructorDecl *DD, CXXDtorType Type,
3805     const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
3806   //  <special-name> ::= T <call-offset> <base encoding>
3807   //                      # base is the nominal target function of thunk
3808   CXXNameMangler Mangler(*this, Out, DD, Type);
3809   Mangler.getStream() << "_ZT";
3810 
3811   // Mangle the 'this' pointer adjustment.
3812   Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
3813                            ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
3814 
3815   Mangler.mangleFunctionEncoding(DD);
3816 }
3817 
3818 /// mangleGuardVariable - Returns the mangled name for a guard variable
3819 /// for the passed in VarDecl.
mangleStaticGuardVariable(const VarDecl * D,raw_ostream & Out)3820 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
3821                                                          raw_ostream &Out) {
3822   //  <special-name> ::= GV <object name>       # Guard variable for one-time
3823   //                                            # initialization
3824   CXXNameMangler Mangler(*this, Out);
3825   Mangler.getStream() << "_ZGV";
3826   Mangler.mangleName(D);
3827 }
3828 
mangleDynamicInitializer(const VarDecl * MD,raw_ostream & Out)3829 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
3830                                                         raw_ostream &Out) {
3831   // These symbols are internal in the Itanium ABI, so the names don't matter.
3832   // Clang has traditionally used this symbol and allowed LLVM to adjust it to
3833   // avoid duplicate symbols.
3834   Out << "__cxx_global_var_init";
3835 }
3836 
mangleDynamicAtExitDestructor(const VarDecl * D,raw_ostream & Out)3837 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
3838                                                              raw_ostream &Out) {
3839   // Prefix the mangling of D with __dtor_.
3840   CXXNameMangler Mangler(*this, Out);
3841   Mangler.getStream() << "__dtor_";
3842   if (shouldMangleDeclName(D))
3843     Mangler.mangle(D);
3844   else
3845     Mangler.getStream() << D->getName();
3846 }
3847 
mangleItaniumThreadLocalInit(const VarDecl * D,raw_ostream & Out)3848 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
3849                                                             raw_ostream &Out) {
3850   //  <special-name> ::= TH <object name>
3851   CXXNameMangler Mangler(*this, Out);
3852   Mangler.getStream() << "_ZTH";
3853   Mangler.mangleName(D);
3854 }
3855 
3856 void
mangleItaniumThreadLocalWrapper(const VarDecl * D,raw_ostream & Out)3857 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
3858                                                           raw_ostream &Out) {
3859   //  <special-name> ::= TW <object name>
3860   CXXNameMangler Mangler(*this, Out);
3861   Mangler.getStream() << "_ZTW";
3862   Mangler.mangleName(D);
3863 }
3864 
mangleReferenceTemporary(const VarDecl * D,unsigned ManglingNumber,raw_ostream & Out)3865 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
3866                                                         unsigned ManglingNumber,
3867                                                         raw_ostream &Out) {
3868   // We match the GCC mangling here.
3869   //  <special-name> ::= GR <object name>
3870   CXXNameMangler Mangler(*this, Out);
3871   Mangler.getStream() << "_ZGR";
3872   Mangler.mangleName(D);
3873   assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
3874   Mangler.mangleSeqID(ManglingNumber - 1);
3875 }
3876 
mangleCXXVTable(const CXXRecordDecl * RD,raw_ostream & Out)3877 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
3878                                                raw_ostream &Out) {
3879   // <special-name> ::= TV <type>  # virtual table
3880   CXXNameMangler Mangler(*this, Out);
3881   Mangler.getStream() << "_ZTV";
3882   Mangler.mangleNameOrStandardSubstitution(RD);
3883 }
3884 
mangleCXXVTT(const CXXRecordDecl * RD,raw_ostream & Out)3885 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
3886                                             raw_ostream &Out) {
3887   // <special-name> ::= TT <type>  # VTT structure
3888   CXXNameMangler Mangler(*this, Out);
3889   Mangler.getStream() << "_ZTT";
3890   Mangler.mangleNameOrStandardSubstitution(RD);
3891 }
3892 
mangleCXXCtorVTable(const CXXRecordDecl * RD,int64_t Offset,const CXXRecordDecl * Type,raw_ostream & Out)3893 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
3894                                                    int64_t Offset,
3895                                                    const CXXRecordDecl *Type,
3896                                                    raw_ostream &Out) {
3897   // <special-name> ::= TC <type> <offset number> _ <base type>
3898   CXXNameMangler Mangler(*this, Out);
3899   Mangler.getStream() << "_ZTC";
3900   Mangler.mangleNameOrStandardSubstitution(RD);
3901   Mangler.getStream() << Offset;
3902   Mangler.getStream() << '_';
3903   Mangler.mangleNameOrStandardSubstitution(Type);
3904 }
3905 
mangleCXXRTTI(QualType Ty,raw_ostream & Out)3906 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
3907   // <special-name> ::= TI <type>  # typeinfo structure
3908   assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
3909   CXXNameMangler Mangler(*this, Out);
3910   Mangler.getStream() << "_ZTI";
3911   Mangler.mangleType(Ty);
3912 }
3913 
mangleCXXRTTIName(QualType Ty,raw_ostream & Out)3914 void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
3915                                                  raw_ostream &Out) {
3916   // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
3917   CXXNameMangler Mangler(*this, Out);
3918   Mangler.getStream() << "_ZTS";
3919   Mangler.mangleType(Ty);
3920 }
3921 
mangleTypeName(QualType Ty,raw_ostream & Out)3922 void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
3923   mangleCXXRTTIName(Ty, Out);
3924 }
3925 
mangleStringLiteral(const StringLiteral *,raw_ostream &)3926 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
3927   llvm_unreachable("Can't mangle string literals");
3928 }
3929 
3930 ItaniumMangleContext *
create(ASTContext & Context,DiagnosticsEngine & Diags)3931 ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
3932   return new ItaniumMangleContextImpl(Context, Diags);
3933 }
3934 
3935