1 //===- ThreadSafetyTIL.cpp -------------------------------------*- C++ --*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT in the llvm repository for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
11 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
12 
13 namespace clang {
14 namespace threadSafety {
15 namespace til {
16 
17 
getUnaryOpcodeString(TIL_UnaryOpcode Op)18 StringRef getUnaryOpcodeString(TIL_UnaryOpcode Op) {
19   switch (Op) {
20     case UOP_Minus:    return "-";
21     case UOP_BitNot:   return "~";
22     case UOP_LogicNot: return "!";
23   }
24   return "";
25 }
26 
27 
getBinaryOpcodeString(TIL_BinaryOpcode Op)28 StringRef getBinaryOpcodeString(TIL_BinaryOpcode Op) {
29   switch (Op) {
30     case BOP_Mul:      return "*";
31     case BOP_Div:      return "/";
32     case BOP_Rem:      return "%";
33     case BOP_Add:      return "+";
34     case BOP_Sub:      return "-";
35     case BOP_Shl:      return "<<";
36     case BOP_Shr:      return ">>";
37     case BOP_BitAnd:   return "&";
38     case BOP_BitXor:   return "^";
39     case BOP_BitOr:    return "|";
40     case BOP_Eq:       return "==";
41     case BOP_Neq:      return "!=";
42     case BOP_Lt:       return "<";
43     case BOP_Leq:      return "<=";
44     case BOP_LogicAnd: return "&&";
45     case BOP_LogicOr:  return "||";
46   }
47   return "";
48 }
49 
50 
force()51 SExpr* Future::force() {
52   Status = FS_evaluating;
53   Result = compute();
54   Status = FS_done;
55   return Result;
56 }
57 
58 
addPredecessor(BasicBlock * Pred)59 unsigned BasicBlock::addPredecessor(BasicBlock *Pred) {
60   unsigned Idx = Predecessors.size();
61   Predecessors.reserveCheck(1, Arena);
62   Predecessors.push_back(Pred);
63   for (SExpr *E : Args) {
64     if (Phi* Ph = dyn_cast<Phi>(E)) {
65       Ph->values().reserveCheck(1, Arena);
66       Ph->values().push_back(nullptr);
67     }
68   }
69   return Idx;
70 }
71 
72 
reservePredecessors(unsigned NumPreds)73 void BasicBlock::reservePredecessors(unsigned NumPreds) {
74   Predecessors.reserve(NumPreds, Arena);
75   for (SExpr *E : Args) {
76     if (Phi* Ph = dyn_cast<Phi>(E)) {
77       Ph->values().reserve(NumPreds, Arena);
78     }
79   }
80 }
81 
82 
83 // If E is a variable, then trace back through any aliases or redundant
84 // Phi nodes to find the canonical definition.
getCanonicalVal(const SExpr * E)85 const SExpr *getCanonicalVal(const SExpr *E) {
86   while (true) {
87     if (auto *V = dyn_cast<Variable>(E)) {
88       if (V->kind() == Variable::VK_Let) {
89         E = V->definition();
90         continue;
91       }
92     }
93     if (const Phi *Ph = dyn_cast<Phi>(E)) {
94       if (Ph->status() == Phi::PH_SingleVal) {
95         E = Ph->values()[0];
96         continue;
97       }
98     }
99     break;
100   }
101   return E;
102 }
103 
104 
105 // If E is a variable, then trace back through any aliases or redundant
106 // Phi nodes to find the canonical definition.
107 // The non-const version will simplify incomplete Phi nodes.
simplifyToCanonicalVal(SExpr * E)108 SExpr *simplifyToCanonicalVal(SExpr *E) {
109   while (true) {
110     if (auto *V = dyn_cast<Variable>(E)) {
111       if (V->kind() != Variable::VK_Let)
112         return V;
113       // Eliminate redundant variables, e.g. x = y, or x = 5,
114       // but keep anything more complicated.
115       if (til::ThreadSafetyTIL::isTrivial(V->definition())) {
116         E = V->definition();
117         continue;
118       }
119       return V;
120     }
121     if (auto *Ph = dyn_cast<Phi>(E)) {
122       if (Ph->status() == Phi::PH_Incomplete)
123         simplifyIncompleteArg(Ph);
124       // Eliminate redundant Phi nodes.
125       if (Ph->status() == Phi::PH_SingleVal) {
126         E = Ph->values()[0];
127         continue;
128       }
129     }
130     return E;
131   }
132 }
133 
134 
135 // Trace the arguments of an incomplete Phi node to see if they have the same
136 // canonical definition.  If so, mark the Phi node as redundant.
137 // getCanonicalVal() will recursively call simplifyIncompletePhi().
simplifyIncompleteArg(til::Phi * Ph)138 void simplifyIncompleteArg(til::Phi *Ph) {
139   assert(Ph && Ph->status() == Phi::PH_Incomplete);
140 
141   // eliminate infinite recursion -- assume that this node is not redundant.
142   Ph->setStatus(Phi::PH_MultiVal);
143 
144   SExpr *E0 = simplifyToCanonicalVal(Ph->values()[0]);
145   for (unsigned i=1, n=Ph->values().size(); i<n; ++i) {
146     SExpr *Ei = simplifyToCanonicalVal(Ph->values()[i]);
147     if (Ei == Ph)
148       continue;  // Recursive reference to itself.  Don't count.
149     if (Ei != E0) {
150       return;    // Status is already set to MultiVal.
151     }
152   }
153   Ph->setStatus(Phi::PH_SingleVal);
154 }
155 
156 
157 // Renumbers the arguments and instructions to have unique, sequential IDs.
renumberInstrs(int ID)158 int BasicBlock::renumberInstrs(int ID) {
159   for (auto *Arg : Args)
160     Arg->setID(this, ID++);
161   for (auto *Instr : Instrs)
162     Instr->setID(this, ID++);
163   TermInstr->setID(this, ID++);
164   return ID;
165 }
166 
167 // Sorts the CFGs blocks using a reverse post-order depth-first traversal.
168 // Each block will be written into the Blocks array in order, and its BlockID
169 // will be set to the index in the array.  Sorting should start from the entry
170 // block, and ID should be the total number of blocks.
topologicalSort(SimpleArray<BasicBlock * > & Blocks,int ID)171 int BasicBlock::topologicalSort(SimpleArray<BasicBlock*>& Blocks, int ID) {
172   if (Visited) return ID;
173   Visited = true;
174   for (auto *Block : successors())
175     ID = Block->topologicalSort(Blocks, ID);
176   // set ID and update block array in place.
177   // We may lose pointers to unreachable blocks.
178   assert(ID > 0);
179   BlockID = --ID;
180   Blocks[BlockID] = this;
181   return ID;
182 }
183 
184 // Performs a reverse topological traversal, starting from the exit block and
185 // following back-edges.  The dominator is serialized before any predecessors,
186 // which guarantees that all blocks are serialized after their dominator and
187 // before their post-dominator (because it's a reverse topological traversal).
188 // ID should be initially set to 0.
189 //
190 // This sort assumes that (1) dominators have been computed, (2) there are no
191 // critical edges, and (3) the entry block is reachable from the exit block
192 // and no blocks are accessable via traversal of back-edges from the exit that
193 // weren't accessable via forward edges from the entry.
topologicalFinalSort(SimpleArray<BasicBlock * > & Blocks,int ID)194 int BasicBlock::topologicalFinalSort(SimpleArray<BasicBlock*>& Blocks, int ID) {
195   // Visited is assumed to have been set by the topologicalSort.  This pass
196   // assumes !Visited means that we've visited this node before.
197   if (!Visited) return ID;
198   Visited = false;
199   if (DominatorNode.Parent)
200     ID = DominatorNode.Parent->topologicalFinalSort(Blocks, ID);
201   for (auto *Pred : Predecessors)
202     ID = Pred->topologicalFinalSort(Blocks, ID);
203   assert(static_cast<size_t>(ID) < Blocks.size());
204   BlockID = ID++;
205   Blocks[BlockID] = this;
206   return ID;
207 }
208 
209 // Computes the immediate dominator of the current block.  Assumes that all of
210 // its predecessors have already computed their dominators.  This is achieved
211 // by visiting the nodes in topological order.
computeDominator()212 void BasicBlock::computeDominator() {
213   BasicBlock *Candidate = nullptr;
214   // Walk backwards from each predecessor to find the common dominator node.
215   for (auto *Pred : Predecessors) {
216     // Skip back-edges
217     if (Pred->BlockID >= BlockID) continue;
218     // If we don't yet have a candidate for dominator yet, take this one.
219     if (Candidate == nullptr) {
220       Candidate = Pred;
221       continue;
222     }
223     // Walk the alternate and current candidate back to find a common ancestor.
224     auto *Alternate = Pred;
225     while (Alternate != Candidate) {
226       if (Candidate->BlockID > Alternate->BlockID)
227         Candidate = Candidate->DominatorNode.Parent;
228       else
229         Alternate = Alternate->DominatorNode.Parent;
230     }
231   }
232   DominatorNode.Parent = Candidate;
233   DominatorNode.SizeOfSubTree = 1;
234 }
235 
236 // Computes the immediate post-dominator of the current block.  Assumes that all
237 // of its successors have already computed their post-dominators.  This is
238 // achieved visiting the nodes in reverse topological order.
computePostDominator()239 void BasicBlock::computePostDominator() {
240   BasicBlock *Candidate = nullptr;
241   // Walk back from each predecessor to find the common post-dominator node.
242   for (auto *Succ : successors()) {
243     // Skip back-edges
244     if (Succ->BlockID <= BlockID) continue;
245     // If we don't yet have a candidate for post-dominator yet, take this one.
246     if (Candidate == nullptr) {
247       Candidate = Succ;
248       continue;
249     }
250     // Walk the alternate and current candidate back to find a common ancestor.
251     auto *Alternate = Succ;
252     while (Alternate != Candidate) {
253       if (Candidate->BlockID < Alternate->BlockID)
254         Candidate = Candidate->PostDominatorNode.Parent;
255       else
256         Alternate = Alternate->PostDominatorNode.Parent;
257     }
258   }
259   PostDominatorNode.Parent = Candidate;
260   PostDominatorNode.SizeOfSubTree = 1;
261 }
262 
263 
264 // Renumber instructions in all blocks
renumberInstrs()265 void SCFG::renumberInstrs() {
266   int InstrID = 0;
267   for (auto *Block : Blocks)
268     InstrID = Block->renumberInstrs(InstrID);
269 }
270 
271 
computeNodeSize(BasicBlock * B,BasicBlock::TopologyNode BasicBlock::* TN)272 static inline void computeNodeSize(BasicBlock *B,
273                                    BasicBlock::TopologyNode BasicBlock::*TN) {
274   BasicBlock::TopologyNode *N = &(B->*TN);
275   if (N->Parent) {
276     BasicBlock::TopologyNode *P = &(N->Parent->*TN);
277     // Initially set ID relative to the (as yet uncomputed) parent ID
278     N->NodeID = P->SizeOfSubTree;
279     P->SizeOfSubTree += N->SizeOfSubTree;
280   }
281 }
282 
computeNodeID(BasicBlock * B,BasicBlock::TopologyNode BasicBlock::* TN)283 static inline void computeNodeID(BasicBlock *B,
284                                  BasicBlock::TopologyNode BasicBlock::*TN) {
285   BasicBlock::TopologyNode *N = &(B->*TN);
286   if (N->Parent) {
287     BasicBlock::TopologyNode *P = &(N->Parent->*TN);
288     N->NodeID += P->NodeID;    // Fix NodeIDs relative to starting node.
289   }
290 }
291 
292 
293 // Normalizes a CFG.  Normalization has a few major components:
294 // 1) Removing unreachable blocks.
295 // 2) Computing dominators and post-dominators
296 // 3) Topologically sorting the blocks into the "Blocks" array.
computeNormalForm()297 void SCFG::computeNormalForm() {
298   // Topologically sort the blocks starting from the entry block.
299   int NumUnreachableBlocks = Entry->topologicalSort(Blocks, Blocks.size());
300   if (NumUnreachableBlocks > 0) {
301     // If there were unreachable blocks shift everything down, and delete them.
302     for (size_t I = NumUnreachableBlocks, E = Blocks.size(); I < E; ++I) {
303       size_t NI = I - NumUnreachableBlocks;
304       Blocks[NI] = Blocks[I];
305       Blocks[NI]->BlockID = NI;
306       // FIXME: clean up predecessor pointers to unreachable blocks?
307     }
308     Blocks.drop(NumUnreachableBlocks);
309   }
310 
311   // Compute dominators.
312   for (auto *Block : Blocks)
313     Block->computeDominator();
314 
315   // Once dominators have been computed, the final sort may be performed.
316   int NumBlocks = Exit->topologicalFinalSort(Blocks, 0);
317   assert(static_cast<size_t>(NumBlocks) == Blocks.size());
318   (void) NumBlocks;
319 
320   // Renumber the instructions now that we have a final sort.
321   renumberInstrs();
322 
323   // Compute post-dominators and compute the sizes of each node in the
324   // dominator tree.
325   for (auto *Block : Blocks.reverse()) {
326     Block->computePostDominator();
327     computeNodeSize(Block, &BasicBlock::DominatorNode);
328   }
329   // Compute the sizes of each node in the post-dominator tree and assign IDs in
330   // the dominator tree.
331   for (auto *Block : Blocks) {
332     computeNodeID(Block, &BasicBlock::DominatorNode);
333     computeNodeSize(Block, &BasicBlock::PostDominatorNode);
334   }
335   // Assign IDs in the post-dominator tree.
336   for (auto *Block : Blocks.reverse()) {
337     computeNodeID(Block, &BasicBlock::PostDominatorNode);
338   }
339 }
340 
341 }  // end namespace til
342 }  // end namespace threadSafety
343 }  // end namespace clang
344