1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Builtin calls as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/Basic/TargetBuiltins.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/CodeGen/CGFunctionInfo.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/InlineAsm.h"
26 #include "llvm/IR/Intrinsics.h"
27 
28 using namespace clang;
29 using namespace CodeGen;
30 using namespace llvm;
31 
32 /// getBuiltinLibFunction - Given a builtin id for a function like
33 /// "__builtin_fabsf", return a Function* for "fabsf".
getBuiltinLibFunction(const FunctionDecl * FD,unsigned BuiltinID)34 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
35                                                   unsigned BuiltinID) {
36   assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
37 
38   // Get the name, skip over the __builtin_ prefix (if necessary).
39   StringRef Name;
40   GlobalDecl D(FD);
41 
42   // If the builtin has been declared explicitly with an assembler label,
43   // use the mangled name. This differs from the plain label on platforms
44   // that prefix labels.
45   if (FD->hasAttr<AsmLabelAttr>())
46     Name = getMangledName(D);
47   else
48     Name = Context.BuiltinInfo.GetName(BuiltinID) + 10;
49 
50   llvm::FunctionType *Ty =
51     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
52 
53   return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
54 }
55 
56 /// Emit the conversions required to turn the given value into an
57 /// integer of the given size.
EmitToInt(CodeGenFunction & CGF,llvm::Value * V,QualType T,llvm::IntegerType * IntType)58 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
59                         QualType T, llvm::IntegerType *IntType) {
60   V = CGF.EmitToMemory(V, T);
61 
62   if (V->getType()->isPointerTy())
63     return CGF.Builder.CreatePtrToInt(V, IntType);
64 
65   assert(V->getType() == IntType);
66   return V;
67 }
68 
EmitFromInt(CodeGenFunction & CGF,llvm::Value * V,QualType T,llvm::Type * ResultType)69 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
70                           QualType T, llvm::Type *ResultType) {
71   V = CGF.EmitFromMemory(V, T);
72 
73   if (ResultType->isPointerTy())
74     return CGF.Builder.CreateIntToPtr(V, ResultType);
75 
76   assert(V->getType() == ResultType);
77   return V;
78 }
79 
80 /// Utility to insert an atomic instruction based on Instrinsic::ID
81 /// and the expression node.
EmitBinaryAtomic(CodeGenFunction & CGF,llvm::AtomicRMWInst::BinOp Kind,const CallExpr * E)82 static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
83                                llvm::AtomicRMWInst::BinOp Kind,
84                                const CallExpr *E) {
85   QualType T = E->getType();
86   assert(E->getArg(0)->getType()->isPointerType());
87   assert(CGF.getContext().hasSameUnqualifiedType(T,
88                                   E->getArg(0)->getType()->getPointeeType()));
89   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
90 
91   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
92   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
93 
94   llvm::IntegerType *IntType =
95     llvm::IntegerType::get(CGF.getLLVMContext(),
96                            CGF.getContext().getTypeSize(T));
97   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
98 
99   llvm::Value *Args[2];
100   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
101   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
102   llvm::Type *ValueType = Args[1]->getType();
103   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
104 
105   llvm::Value *Result =
106       CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
107                                   llvm::SequentiallyConsistent);
108   Result = EmitFromInt(CGF, Result, T, ValueType);
109   return RValue::get(Result);
110 }
111 
112 /// Utility to insert an atomic instruction based Instrinsic::ID and
113 /// the expression node, where the return value is the result of the
114 /// operation.
EmitBinaryAtomicPost(CodeGenFunction & CGF,llvm::AtomicRMWInst::BinOp Kind,const CallExpr * E,Instruction::BinaryOps Op,bool Invert=false)115 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
116                                    llvm::AtomicRMWInst::BinOp Kind,
117                                    const CallExpr *E,
118                                    Instruction::BinaryOps Op,
119                                    bool Invert = false) {
120   QualType T = E->getType();
121   assert(E->getArg(0)->getType()->isPointerType());
122   assert(CGF.getContext().hasSameUnqualifiedType(T,
123                                   E->getArg(0)->getType()->getPointeeType()));
124   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
125 
126   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
127   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
128 
129   llvm::IntegerType *IntType =
130     llvm::IntegerType::get(CGF.getLLVMContext(),
131                            CGF.getContext().getTypeSize(T));
132   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
133 
134   llvm::Value *Args[2];
135   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
136   llvm::Type *ValueType = Args[1]->getType();
137   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
138   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
139 
140   llvm::Value *Result =
141       CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
142                                   llvm::SequentiallyConsistent);
143   Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
144   if (Invert)
145     Result = CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
146                                      llvm::ConstantInt::get(IntType, -1));
147   Result = EmitFromInt(CGF, Result, T, ValueType);
148   return RValue::get(Result);
149 }
150 
151 /// EmitFAbs - Emit a call to @llvm.fabs().
EmitFAbs(CodeGenFunction & CGF,Value * V)152 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
153   Value *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
154   llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
155   Call->setDoesNotAccessMemory();
156   return Call;
157 }
158 
emitLibraryCall(CodeGenFunction & CGF,const FunctionDecl * Fn,const CallExpr * E,llvm::Value * calleeValue)159 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *Fn,
160                               const CallExpr *E, llvm::Value *calleeValue) {
161   return CGF.EmitCall(E->getCallee()->getType(), calleeValue, E,
162                       ReturnValueSlot(), Fn);
163 }
164 
165 /// \brief Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
166 /// depending on IntrinsicID.
167 ///
168 /// \arg CGF The current codegen function.
169 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
170 /// \arg X The first argument to the llvm.*.with.overflow.*.
171 /// \arg Y The second argument to the llvm.*.with.overflow.*.
172 /// \arg Carry The carry returned by the llvm.*.with.overflow.*.
173 /// \returns The result (i.e. sum/product) returned by the intrinsic.
EmitOverflowIntrinsic(CodeGenFunction & CGF,const llvm::Intrinsic::ID IntrinsicID,llvm::Value * X,llvm::Value * Y,llvm::Value * & Carry)174 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
175                                           const llvm::Intrinsic::ID IntrinsicID,
176                                           llvm::Value *X, llvm::Value *Y,
177                                           llvm::Value *&Carry) {
178   // Make sure we have integers of the same width.
179   assert(X->getType() == Y->getType() &&
180          "Arguments must be the same type. (Did you forget to make sure both "
181          "arguments have the same integer width?)");
182 
183   llvm::Value *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
184   llvm::Value *Tmp = CGF.Builder.CreateCall2(Callee, X, Y);
185   Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
186   return CGF.Builder.CreateExtractValue(Tmp, 0);
187 }
188 
EmitBuiltinExpr(const FunctionDecl * FD,unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue)189 RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD,
190                                         unsigned BuiltinID, const CallExpr *E,
191                                         ReturnValueSlot ReturnValue) {
192   // See if we can constant fold this builtin.  If so, don't emit it at all.
193   Expr::EvalResult Result;
194   if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
195       !Result.hasSideEffects()) {
196     if (Result.Val.isInt())
197       return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
198                                                 Result.Val.getInt()));
199     if (Result.Val.isFloat())
200       return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
201                                                Result.Val.getFloat()));
202   }
203 
204   switch (BuiltinID) {
205   default: break;  // Handle intrinsics and libm functions below.
206   case Builtin::BI__builtin___CFStringMakeConstantString:
207   case Builtin::BI__builtin___NSStringMakeConstantString:
208     return RValue::get(CGM.EmitConstantExpr(E, E->getType(), nullptr));
209   case Builtin::BI__builtin_stdarg_start:
210   case Builtin::BI__builtin_va_start:
211   case Builtin::BI__va_start:
212   case Builtin::BI__builtin_va_end: {
213     Value *ArgValue = (BuiltinID == Builtin::BI__va_start)
214                           ? EmitScalarExpr(E->getArg(0))
215                           : EmitVAListRef(E->getArg(0));
216     llvm::Type *DestType = Int8PtrTy;
217     if (ArgValue->getType() != DestType)
218       ArgValue = Builder.CreateBitCast(ArgValue, DestType,
219                                        ArgValue->getName().data());
220 
221     Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_end) ?
222       Intrinsic::vaend : Intrinsic::vastart;
223     return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue));
224   }
225   case Builtin::BI__builtin_va_copy: {
226     Value *DstPtr = EmitVAListRef(E->getArg(0));
227     Value *SrcPtr = EmitVAListRef(E->getArg(1));
228 
229     llvm::Type *Type = Int8PtrTy;
230 
231     DstPtr = Builder.CreateBitCast(DstPtr, Type);
232     SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
233     return RValue::get(Builder.CreateCall2(CGM.getIntrinsic(Intrinsic::vacopy),
234                                            DstPtr, SrcPtr));
235   }
236   case Builtin::BI__builtin_abs:
237   case Builtin::BI__builtin_labs:
238   case Builtin::BI__builtin_llabs: {
239     Value *ArgValue = EmitScalarExpr(E->getArg(0));
240 
241     Value *NegOp = Builder.CreateNeg(ArgValue, "neg");
242     Value *CmpResult =
243     Builder.CreateICmpSGE(ArgValue,
244                           llvm::Constant::getNullValue(ArgValue->getType()),
245                                                             "abscond");
246     Value *Result =
247       Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
248 
249     return RValue::get(Result);
250   }
251   case Builtin::BI__builtin_fabs:
252   case Builtin::BI__builtin_fabsf:
253   case Builtin::BI__builtin_fabsl: {
254     Value *Arg1 = EmitScalarExpr(E->getArg(0));
255     Value *Result = EmitFAbs(*this, Arg1);
256     return RValue::get(Result);
257   }
258   case Builtin::BI__builtin_fmod:
259   case Builtin::BI__builtin_fmodf:
260   case Builtin::BI__builtin_fmodl: {
261     Value *Arg1 = EmitScalarExpr(E->getArg(0));
262     Value *Arg2 = EmitScalarExpr(E->getArg(1));
263     Value *Result = Builder.CreateFRem(Arg1, Arg2, "fmod");
264     return RValue::get(Result);
265   }
266 
267   case Builtin::BI__builtin_conj:
268   case Builtin::BI__builtin_conjf:
269   case Builtin::BI__builtin_conjl: {
270     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
271     Value *Real = ComplexVal.first;
272     Value *Imag = ComplexVal.second;
273     Value *Zero =
274       Imag->getType()->isFPOrFPVectorTy()
275         ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType())
276         : llvm::Constant::getNullValue(Imag->getType());
277 
278     Imag = Builder.CreateFSub(Zero, Imag, "sub");
279     return RValue::getComplex(std::make_pair(Real, Imag));
280   }
281   case Builtin::BI__builtin_creal:
282   case Builtin::BI__builtin_crealf:
283   case Builtin::BI__builtin_creall:
284   case Builtin::BIcreal:
285   case Builtin::BIcrealf:
286   case Builtin::BIcreall: {
287     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
288     return RValue::get(ComplexVal.first);
289   }
290 
291   case Builtin::BI__builtin_cimag:
292   case Builtin::BI__builtin_cimagf:
293   case Builtin::BI__builtin_cimagl:
294   case Builtin::BIcimag:
295   case Builtin::BIcimagf:
296   case Builtin::BIcimagl: {
297     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
298     return RValue::get(ComplexVal.second);
299   }
300 
301   case Builtin::BI__builtin_ctzs:
302   case Builtin::BI__builtin_ctz:
303   case Builtin::BI__builtin_ctzl:
304   case Builtin::BI__builtin_ctzll: {
305     Value *ArgValue = EmitScalarExpr(E->getArg(0));
306 
307     llvm::Type *ArgType = ArgValue->getType();
308     Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
309 
310     llvm::Type *ResultType = ConvertType(E->getType());
311     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
312     Value *Result = Builder.CreateCall2(F, ArgValue, ZeroUndef);
313     if (Result->getType() != ResultType)
314       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
315                                      "cast");
316     return RValue::get(Result);
317   }
318   case Builtin::BI__builtin_clzs:
319   case Builtin::BI__builtin_clz:
320   case Builtin::BI__builtin_clzl:
321   case Builtin::BI__builtin_clzll: {
322     Value *ArgValue = EmitScalarExpr(E->getArg(0));
323 
324     llvm::Type *ArgType = ArgValue->getType();
325     Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
326 
327     llvm::Type *ResultType = ConvertType(E->getType());
328     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
329     Value *Result = Builder.CreateCall2(F, ArgValue, ZeroUndef);
330     if (Result->getType() != ResultType)
331       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
332                                      "cast");
333     return RValue::get(Result);
334   }
335   case Builtin::BI__builtin_ffs:
336   case Builtin::BI__builtin_ffsl:
337   case Builtin::BI__builtin_ffsll: {
338     // ffs(x) -> x ? cttz(x) + 1 : 0
339     Value *ArgValue = EmitScalarExpr(E->getArg(0));
340 
341     llvm::Type *ArgType = ArgValue->getType();
342     Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
343 
344     llvm::Type *ResultType = ConvertType(E->getType());
345     Value *Tmp = Builder.CreateAdd(Builder.CreateCall2(F, ArgValue,
346                                                        Builder.getTrue()),
347                                    llvm::ConstantInt::get(ArgType, 1));
348     Value *Zero = llvm::Constant::getNullValue(ArgType);
349     Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
350     Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
351     if (Result->getType() != ResultType)
352       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
353                                      "cast");
354     return RValue::get(Result);
355   }
356   case Builtin::BI__builtin_parity:
357   case Builtin::BI__builtin_parityl:
358   case Builtin::BI__builtin_parityll: {
359     // parity(x) -> ctpop(x) & 1
360     Value *ArgValue = EmitScalarExpr(E->getArg(0));
361 
362     llvm::Type *ArgType = ArgValue->getType();
363     Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
364 
365     llvm::Type *ResultType = ConvertType(E->getType());
366     Value *Tmp = Builder.CreateCall(F, ArgValue);
367     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
368     if (Result->getType() != ResultType)
369       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
370                                      "cast");
371     return RValue::get(Result);
372   }
373   case Builtin::BI__builtin_popcount:
374   case Builtin::BI__builtin_popcountl:
375   case Builtin::BI__builtin_popcountll: {
376     Value *ArgValue = EmitScalarExpr(E->getArg(0));
377 
378     llvm::Type *ArgType = ArgValue->getType();
379     Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
380 
381     llvm::Type *ResultType = ConvertType(E->getType());
382     Value *Result = Builder.CreateCall(F, ArgValue);
383     if (Result->getType() != ResultType)
384       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
385                                      "cast");
386     return RValue::get(Result);
387   }
388   case Builtin::BI__builtin_expect: {
389     Value *ArgValue = EmitScalarExpr(E->getArg(0));
390     llvm::Type *ArgType = ArgValue->getType();
391 
392     Value *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
393     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
394 
395     Value *Result = Builder.CreateCall2(FnExpect, ArgValue, ExpectedValue,
396                                         "expval");
397     return RValue::get(Result);
398   }
399   case Builtin::BI__builtin_assume_aligned: {
400     Value *PtrValue = EmitScalarExpr(E->getArg(0));
401     Value *OffsetValue =
402       (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
403 
404     Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
405     ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
406     unsigned Alignment = (unsigned) AlignmentCI->getZExtValue();
407 
408     EmitAlignmentAssumption(PtrValue, Alignment, OffsetValue);
409     return RValue::get(PtrValue);
410   }
411   case Builtin::BI__assume:
412   case Builtin::BI__builtin_assume: {
413     if (E->getArg(0)->HasSideEffects(getContext()))
414       return RValue::get(nullptr);
415 
416     Value *ArgValue = EmitScalarExpr(E->getArg(0));
417     Value *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
418     return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
419   }
420   case Builtin::BI__builtin_bswap16:
421   case Builtin::BI__builtin_bswap32:
422   case Builtin::BI__builtin_bswap64: {
423     Value *ArgValue = EmitScalarExpr(E->getArg(0));
424     llvm::Type *ArgType = ArgValue->getType();
425     Value *F = CGM.getIntrinsic(Intrinsic::bswap, ArgType);
426     return RValue::get(Builder.CreateCall(F, ArgValue));
427   }
428   case Builtin::BI__builtin_object_size: {
429     // We rely on constant folding to deal with expressions with side effects.
430     assert(!E->getArg(0)->HasSideEffects(getContext()) &&
431            "should have been constant folded");
432 
433     // We pass this builtin onto the optimizer so that it can
434     // figure out the object size in more complex cases.
435     llvm::Type *ResType = ConvertType(E->getType());
436 
437     // LLVM only supports 0 and 2, make sure that we pass along that
438     // as a boolean.
439     Value *Ty = EmitScalarExpr(E->getArg(1));
440     ConstantInt *CI = dyn_cast<ConstantInt>(Ty);
441     assert(CI);
442     uint64_t val = CI->getZExtValue();
443     CI = ConstantInt::get(Builder.getInt1Ty(), (val & 0x2) >> 1);
444     // FIXME: Get right address space.
445     llvm::Type *Tys[] = { ResType, Builder.getInt8PtrTy(0) };
446     Value *F = CGM.getIntrinsic(Intrinsic::objectsize, Tys);
447     return RValue::get(Builder.CreateCall2(F, EmitScalarExpr(E->getArg(0)),CI));
448   }
449   case Builtin::BI__builtin_prefetch: {
450     Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
451     // FIXME: Technically these constants should of type 'int', yes?
452     RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
453       llvm::ConstantInt::get(Int32Ty, 0);
454     Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
455       llvm::ConstantInt::get(Int32Ty, 3);
456     Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
457     Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
458     return RValue::get(Builder.CreateCall4(F, Address, RW, Locality, Data));
459   }
460   case Builtin::BI__builtin_readcyclecounter: {
461     Value *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
462     return RValue::get(Builder.CreateCall(F));
463   }
464   case Builtin::BI__builtin___clear_cache: {
465     Value *Begin = EmitScalarExpr(E->getArg(0));
466     Value *End = EmitScalarExpr(E->getArg(1));
467     Value *F = CGM.getIntrinsic(Intrinsic::clear_cache);
468     return RValue::get(Builder.CreateCall2(F, Begin, End));
469   }
470   case Builtin::BI__builtin_trap: {
471     Value *F = CGM.getIntrinsic(Intrinsic::trap);
472     return RValue::get(Builder.CreateCall(F));
473   }
474   case Builtin::BI__debugbreak: {
475     Value *F = CGM.getIntrinsic(Intrinsic::debugtrap);
476     return RValue::get(Builder.CreateCall(F));
477   }
478   case Builtin::BI__builtin_unreachable: {
479     if (SanOpts.has(SanitizerKind::Unreachable)) {
480       SanitizerScope SanScope(this);
481       EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
482                                SanitizerKind::Unreachable),
483                 "builtin_unreachable", EmitCheckSourceLocation(E->getExprLoc()),
484                 None);
485     } else
486       Builder.CreateUnreachable();
487 
488     // We do need to preserve an insertion point.
489     EmitBlock(createBasicBlock("unreachable.cont"));
490 
491     return RValue::get(nullptr);
492   }
493 
494   case Builtin::BI__builtin_powi:
495   case Builtin::BI__builtin_powif:
496   case Builtin::BI__builtin_powil: {
497     Value *Base = EmitScalarExpr(E->getArg(0));
498     Value *Exponent = EmitScalarExpr(E->getArg(1));
499     llvm::Type *ArgType = Base->getType();
500     Value *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
501     return RValue::get(Builder.CreateCall2(F, Base, Exponent));
502   }
503 
504   case Builtin::BI__builtin_isgreater:
505   case Builtin::BI__builtin_isgreaterequal:
506   case Builtin::BI__builtin_isless:
507   case Builtin::BI__builtin_islessequal:
508   case Builtin::BI__builtin_islessgreater:
509   case Builtin::BI__builtin_isunordered: {
510     // Ordered comparisons: we know the arguments to these are matching scalar
511     // floating point values.
512     Value *LHS = EmitScalarExpr(E->getArg(0));
513     Value *RHS = EmitScalarExpr(E->getArg(1));
514 
515     switch (BuiltinID) {
516     default: llvm_unreachable("Unknown ordered comparison");
517     case Builtin::BI__builtin_isgreater:
518       LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
519       break;
520     case Builtin::BI__builtin_isgreaterequal:
521       LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
522       break;
523     case Builtin::BI__builtin_isless:
524       LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
525       break;
526     case Builtin::BI__builtin_islessequal:
527       LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
528       break;
529     case Builtin::BI__builtin_islessgreater:
530       LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
531       break;
532     case Builtin::BI__builtin_isunordered:
533       LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
534       break;
535     }
536     // ZExt bool to int type.
537     return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
538   }
539   case Builtin::BI__builtin_isnan: {
540     Value *V = EmitScalarExpr(E->getArg(0));
541     V = Builder.CreateFCmpUNO(V, V, "cmp");
542     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
543   }
544 
545   case Builtin::BI__builtin_isinf: {
546     // isinf(x) --> fabs(x) == infinity
547     Value *V = EmitScalarExpr(E->getArg(0));
548     V = EmitFAbs(*this, V);
549 
550     V = Builder.CreateFCmpOEQ(V, ConstantFP::getInfinity(V->getType()),"isinf");
551     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
552   }
553 
554   // TODO: BI__builtin_isinf_sign
555   //   isinf_sign(x) -> isinf(x) ? (signbit(x) ? -1 : 1) : 0
556 
557   case Builtin::BI__builtin_isnormal: {
558     // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
559     Value *V = EmitScalarExpr(E->getArg(0));
560     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
561 
562     Value *Abs = EmitFAbs(*this, V);
563     Value *IsLessThanInf =
564       Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
565     APFloat Smallest = APFloat::getSmallestNormalized(
566                    getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
567     Value *IsNormal =
568       Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
569                             "isnormal");
570     V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
571     V = Builder.CreateAnd(V, IsNormal, "and");
572     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
573   }
574 
575   case Builtin::BI__builtin_isfinite: {
576     // isfinite(x) --> x == x && fabs(x) != infinity;
577     Value *V = EmitScalarExpr(E->getArg(0));
578     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
579 
580     Value *Abs = EmitFAbs(*this, V);
581     Value *IsNotInf =
582       Builder.CreateFCmpUNE(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
583 
584     V = Builder.CreateAnd(Eq, IsNotInf, "and");
585     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
586   }
587 
588   case Builtin::BI__builtin_fpclassify: {
589     Value *V = EmitScalarExpr(E->getArg(5));
590     llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
591 
592     // Create Result
593     BasicBlock *Begin = Builder.GetInsertBlock();
594     BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
595     Builder.SetInsertPoint(End);
596     PHINode *Result =
597       Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
598                         "fpclassify_result");
599 
600     // if (V==0) return FP_ZERO
601     Builder.SetInsertPoint(Begin);
602     Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
603                                           "iszero");
604     Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
605     BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
606     Builder.CreateCondBr(IsZero, End, NotZero);
607     Result->addIncoming(ZeroLiteral, Begin);
608 
609     // if (V != V) return FP_NAN
610     Builder.SetInsertPoint(NotZero);
611     Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
612     Value *NanLiteral = EmitScalarExpr(E->getArg(0));
613     BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
614     Builder.CreateCondBr(IsNan, End, NotNan);
615     Result->addIncoming(NanLiteral, NotZero);
616 
617     // if (fabs(V) == infinity) return FP_INFINITY
618     Builder.SetInsertPoint(NotNan);
619     Value *VAbs = EmitFAbs(*this, V);
620     Value *IsInf =
621       Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
622                             "isinf");
623     Value *InfLiteral = EmitScalarExpr(E->getArg(1));
624     BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
625     Builder.CreateCondBr(IsInf, End, NotInf);
626     Result->addIncoming(InfLiteral, NotNan);
627 
628     // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
629     Builder.SetInsertPoint(NotInf);
630     APFloat Smallest = APFloat::getSmallestNormalized(
631         getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
632     Value *IsNormal =
633       Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
634                             "isnormal");
635     Value *NormalResult =
636       Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
637                            EmitScalarExpr(E->getArg(3)));
638     Builder.CreateBr(End);
639     Result->addIncoming(NormalResult, NotInf);
640 
641     // return Result
642     Builder.SetInsertPoint(End);
643     return RValue::get(Result);
644   }
645 
646   case Builtin::BIalloca:
647   case Builtin::BI_alloca:
648   case Builtin::BI__builtin_alloca: {
649     Value *Size = EmitScalarExpr(E->getArg(0));
650     return RValue::get(Builder.CreateAlloca(Builder.getInt8Ty(), Size));
651   }
652   case Builtin::BIbzero:
653   case Builtin::BI__builtin_bzero: {
654     std::pair<llvm::Value*, unsigned> Dest =
655         EmitPointerWithAlignment(E->getArg(0));
656     Value *SizeVal = EmitScalarExpr(E->getArg(1));
657     Builder.CreateMemSet(Dest.first, Builder.getInt8(0), SizeVal,
658                          Dest.second, false);
659     return RValue::get(Dest.first);
660   }
661   case Builtin::BImemcpy:
662   case Builtin::BI__builtin_memcpy: {
663     std::pair<llvm::Value*, unsigned> Dest =
664         EmitPointerWithAlignment(E->getArg(0));
665     std::pair<llvm::Value*, unsigned> Src =
666         EmitPointerWithAlignment(E->getArg(1));
667     Value *SizeVal = EmitScalarExpr(E->getArg(2));
668     unsigned Align = std::min(Dest.second, Src.second);
669     Builder.CreateMemCpy(Dest.first, Src.first, SizeVal, Align, false);
670     return RValue::get(Dest.first);
671   }
672 
673   case Builtin::BI__builtin___memcpy_chk: {
674     // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
675     llvm::APSInt Size, DstSize;
676     if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
677         !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
678       break;
679     if (Size.ugt(DstSize))
680       break;
681     std::pair<llvm::Value*, unsigned> Dest =
682         EmitPointerWithAlignment(E->getArg(0));
683     std::pair<llvm::Value*, unsigned> Src =
684         EmitPointerWithAlignment(E->getArg(1));
685     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
686     unsigned Align = std::min(Dest.second, Src.second);
687     Builder.CreateMemCpy(Dest.first, Src.first, SizeVal, Align, false);
688     return RValue::get(Dest.first);
689   }
690 
691   case Builtin::BI__builtin_objc_memmove_collectable: {
692     Value *Address = EmitScalarExpr(E->getArg(0));
693     Value *SrcAddr = EmitScalarExpr(E->getArg(1));
694     Value *SizeVal = EmitScalarExpr(E->getArg(2));
695     CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
696                                                   Address, SrcAddr, SizeVal);
697     return RValue::get(Address);
698   }
699 
700   case Builtin::BI__builtin___memmove_chk: {
701     // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
702     llvm::APSInt Size, DstSize;
703     if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
704         !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
705       break;
706     if (Size.ugt(DstSize))
707       break;
708     std::pair<llvm::Value*, unsigned> Dest =
709         EmitPointerWithAlignment(E->getArg(0));
710     std::pair<llvm::Value*, unsigned> Src =
711         EmitPointerWithAlignment(E->getArg(1));
712     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
713     unsigned Align = std::min(Dest.second, Src.second);
714     Builder.CreateMemMove(Dest.first, Src.first, SizeVal, Align, false);
715     return RValue::get(Dest.first);
716   }
717 
718   case Builtin::BImemmove:
719   case Builtin::BI__builtin_memmove: {
720     std::pair<llvm::Value*, unsigned> Dest =
721         EmitPointerWithAlignment(E->getArg(0));
722     std::pair<llvm::Value*, unsigned> Src =
723         EmitPointerWithAlignment(E->getArg(1));
724     Value *SizeVal = EmitScalarExpr(E->getArg(2));
725     unsigned Align = std::min(Dest.second, Src.second);
726     Builder.CreateMemMove(Dest.first, Src.first, SizeVal, Align, false);
727     return RValue::get(Dest.first);
728   }
729   case Builtin::BImemset:
730   case Builtin::BI__builtin_memset: {
731     std::pair<llvm::Value*, unsigned> Dest =
732         EmitPointerWithAlignment(E->getArg(0));
733     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
734                                          Builder.getInt8Ty());
735     Value *SizeVal = EmitScalarExpr(E->getArg(2));
736     Builder.CreateMemSet(Dest.first, ByteVal, SizeVal, Dest.second, false);
737     return RValue::get(Dest.first);
738   }
739   case Builtin::BI__builtin___memset_chk: {
740     // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
741     llvm::APSInt Size, DstSize;
742     if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
743         !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
744       break;
745     if (Size.ugt(DstSize))
746       break;
747     std::pair<llvm::Value*, unsigned> Dest =
748         EmitPointerWithAlignment(E->getArg(0));
749     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
750                                          Builder.getInt8Ty());
751     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
752     Builder.CreateMemSet(Dest.first, ByteVal, SizeVal, Dest.second, false);
753     return RValue::get(Dest.first);
754   }
755   case Builtin::BI__builtin_dwarf_cfa: {
756     // The offset in bytes from the first argument to the CFA.
757     //
758     // Why on earth is this in the frontend?  Is there any reason at
759     // all that the backend can't reasonably determine this while
760     // lowering llvm.eh.dwarf.cfa()?
761     //
762     // TODO: If there's a satisfactory reason, add a target hook for
763     // this instead of hard-coding 0, which is correct for most targets.
764     int32_t Offset = 0;
765 
766     Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
767     return RValue::get(Builder.CreateCall(F,
768                                       llvm::ConstantInt::get(Int32Ty, Offset)));
769   }
770   case Builtin::BI__builtin_return_address: {
771     Value *Depth = EmitScalarExpr(E->getArg(0));
772     Depth = Builder.CreateIntCast(Depth, Int32Ty, false);
773     Value *F = CGM.getIntrinsic(Intrinsic::returnaddress);
774     return RValue::get(Builder.CreateCall(F, Depth));
775   }
776   case Builtin::BI__builtin_frame_address: {
777     Value *Depth = EmitScalarExpr(E->getArg(0));
778     Depth = Builder.CreateIntCast(Depth, Int32Ty, false);
779     Value *F = CGM.getIntrinsic(Intrinsic::frameaddress);
780     return RValue::get(Builder.CreateCall(F, Depth));
781   }
782   case Builtin::BI__builtin_extract_return_addr: {
783     Value *Address = EmitScalarExpr(E->getArg(0));
784     Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
785     return RValue::get(Result);
786   }
787   case Builtin::BI__builtin_frob_return_addr: {
788     Value *Address = EmitScalarExpr(E->getArg(0));
789     Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
790     return RValue::get(Result);
791   }
792   case Builtin::BI__builtin_dwarf_sp_column: {
793     llvm::IntegerType *Ty
794       = cast<llvm::IntegerType>(ConvertType(E->getType()));
795     int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
796     if (Column == -1) {
797       CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
798       return RValue::get(llvm::UndefValue::get(Ty));
799     }
800     return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
801   }
802   case Builtin::BI__builtin_init_dwarf_reg_size_table: {
803     Value *Address = EmitScalarExpr(E->getArg(0));
804     if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
805       CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
806     return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
807   }
808   case Builtin::BI__builtin_eh_return: {
809     Value *Int = EmitScalarExpr(E->getArg(0));
810     Value *Ptr = EmitScalarExpr(E->getArg(1));
811 
812     llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
813     assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
814            "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
815     Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32
816                                   ? Intrinsic::eh_return_i32
817                                   : Intrinsic::eh_return_i64);
818     Builder.CreateCall2(F, Int, Ptr);
819     Builder.CreateUnreachable();
820 
821     // We do need to preserve an insertion point.
822     EmitBlock(createBasicBlock("builtin_eh_return.cont"));
823 
824     return RValue::get(nullptr);
825   }
826   case Builtin::BI__builtin_unwind_init: {
827     Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
828     return RValue::get(Builder.CreateCall(F));
829   }
830   case Builtin::BI__builtin_extend_pointer: {
831     // Extends a pointer to the size of an _Unwind_Word, which is
832     // uint64_t on all platforms.  Generally this gets poked into a
833     // register and eventually used as an address, so if the
834     // addressing registers are wider than pointers and the platform
835     // doesn't implicitly ignore high-order bits when doing
836     // addressing, we need to make sure we zext / sext based on
837     // the platform's expectations.
838     //
839     // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
840 
841     // Cast the pointer to intptr_t.
842     Value *Ptr = EmitScalarExpr(E->getArg(0));
843     Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
844 
845     // If that's 64 bits, we're done.
846     if (IntPtrTy->getBitWidth() == 64)
847       return RValue::get(Result);
848 
849     // Otherwise, ask the codegen data what to do.
850     if (getTargetHooks().extendPointerWithSExt())
851       return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
852     else
853       return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
854   }
855   case Builtin::BI__builtin_setjmp: {
856     // Buffer is a void**.
857     Value *Buf = EmitScalarExpr(E->getArg(0));
858 
859     // Store the frame pointer to the setjmp buffer.
860     Value *FrameAddr =
861       Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
862                          ConstantInt::get(Int32Ty, 0));
863     Builder.CreateStore(FrameAddr, Buf);
864 
865     // Store the stack pointer to the setjmp buffer.
866     Value *StackAddr =
867       Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
868     Value *StackSaveSlot =
869       Builder.CreateGEP(Buf, ConstantInt::get(Int32Ty, 2));
870     Builder.CreateStore(StackAddr, StackSaveSlot);
871 
872     // Call LLVM's EH setjmp, which is lightweight.
873     Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
874     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
875     return RValue::get(Builder.CreateCall(F, Buf));
876   }
877   case Builtin::BI__builtin_longjmp: {
878     Value *Buf = EmitScalarExpr(E->getArg(0));
879     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
880 
881     // Call LLVM's EH longjmp, which is lightweight.
882     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
883 
884     // longjmp doesn't return; mark this as unreachable.
885     Builder.CreateUnreachable();
886 
887     // We do need to preserve an insertion point.
888     EmitBlock(createBasicBlock("longjmp.cont"));
889 
890     return RValue::get(nullptr);
891   }
892   case Builtin::BI__sync_fetch_and_add:
893   case Builtin::BI__sync_fetch_and_sub:
894   case Builtin::BI__sync_fetch_and_or:
895   case Builtin::BI__sync_fetch_and_and:
896   case Builtin::BI__sync_fetch_and_xor:
897   case Builtin::BI__sync_fetch_and_nand:
898   case Builtin::BI__sync_add_and_fetch:
899   case Builtin::BI__sync_sub_and_fetch:
900   case Builtin::BI__sync_and_and_fetch:
901   case Builtin::BI__sync_or_and_fetch:
902   case Builtin::BI__sync_xor_and_fetch:
903   case Builtin::BI__sync_nand_and_fetch:
904   case Builtin::BI__sync_val_compare_and_swap:
905   case Builtin::BI__sync_bool_compare_and_swap:
906   case Builtin::BI__sync_lock_test_and_set:
907   case Builtin::BI__sync_lock_release:
908   case Builtin::BI__sync_swap:
909     llvm_unreachable("Shouldn't make it through sema");
910   case Builtin::BI__sync_fetch_and_add_1:
911   case Builtin::BI__sync_fetch_and_add_2:
912   case Builtin::BI__sync_fetch_and_add_4:
913   case Builtin::BI__sync_fetch_and_add_8:
914   case Builtin::BI__sync_fetch_and_add_16:
915     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
916   case Builtin::BI__sync_fetch_and_sub_1:
917   case Builtin::BI__sync_fetch_and_sub_2:
918   case Builtin::BI__sync_fetch_and_sub_4:
919   case Builtin::BI__sync_fetch_and_sub_8:
920   case Builtin::BI__sync_fetch_and_sub_16:
921     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
922   case Builtin::BI__sync_fetch_and_or_1:
923   case Builtin::BI__sync_fetch_and_or_2:
924   case Builtin::BI__sync_fetch_and_or_4:
925   case Builtin::BI__sync_fetch_and_or_8:
926   case Builtin::BI__sync_fetch_and_or_16:
927     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
928   case Builtin::BI__sync_fetch_and_and_1:
929   case Builtin::BI__sync_fetch_and_and_2:
930   case Builtin::BI__sync_fetch_and_and_4:
931   case Builtin::BI__sync_fetch_and_and_8:
932   case Builtin::BI__sync_fetch_and_and_16:
933     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
934   case Builtin::BI__sync_fetch_and_xor_1:
935   case Builtin::BI__sync_fetch_and_xor_2:
936   case Builtin::BI__sync_fetch_and_xor_4:
937   case Builtin::BI__sync_fetch_and_xor_8:
938   case Builtin::BI__sync_fetch_and_xor_16:
939     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
940   case Builtin::BI__sync_fetch_and_nand_1:
941   case Builtin::BI__sync_fetch_and_nand_2:
942   case Builtin::BI__sync_fetch_and_nand_4:
943   case Builtin::BI__sync_fetch_and_nand_8:
944   case Builtin::BI__sync_fetch_and_nand_16:
945     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
946 
947   // Clang extensions: not overloaded yet.
948   case Builtin::BI__sync_fetch_and_min:
949     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
950   case Builtin::BI__sync_fetch_and_max:
951     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
952   case Builtin::BI__sync_fetch_and_umin:
953     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
954   case Builtin::BI__sync_fetch_and_umax:
955     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
956 
957   case Builtin::BI__sync_add_and_fetch_1:
958   case Builtin::BI__sync_add_and_fetch_2:
959   case Builtin::BI__sync_add_and_fetch_4:
960   case Builtin::BI__sync_add_and_fetch_8:
961   case Builtin::BI__sync_add_and_fetch_16:
962     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
963                                 llvm::Instruction::Add);
964   case Builtin::BI__sync_sub_and_fetch_1:
965   case Builtin::BI__sync_sub_and_fetch_2:
966   case Builtin::BI__sync_sub_and_fetch_4:
967   case Builtin::BI__sync_sub_and_fetch_8:
968   case Builtin::BI__sync_sub_and_fetch_16:
969     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
970                                 llvm::Instruction::Sub);
971   case Builtin::BI__sync_and_and_fetch_1:
972   case Builtin::BI__sync_and_and_fetch_2:
973   case Builtin::BI__sync_and_and_fetch_4:
974   case Builtin::BI__sync_and_and_fetch_8:
975   case Builtin::BI__sync_and_and_fetch_16:
976     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
977                                 llvm::Instruction::And);
978   case Builtin::BI__sync_or_and_fetch_1:
979   case Builtin::BI__sync_or_and_fetch_2:
980   case Builtin::BI__sync_or_and_fetch_4:
981   case Builtin::BI__sync_or_and_fetch_8:
982   case Builtin::BI__sync_or_and_fetch_16:
983     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
984                                 llvm::Instruction::Or);
985   case Builtin::BI__sync_xor_and_fetch_1:
986   case Builtin::BI__sync_xor_and_fetch_2:
987   case Builtin::BI__sync_xor_and_fetch_4:
988   case Builtin::BI__sync_xor_and_fetch_8:
989   case Builtin::BI__sync_xor_and_fetch_16:
990     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
991                                 llvm::Instruction::Xor);
992   case Builtin::BI__sync_nand_and_fetch_1:
993   case Builtin::BI__sync_nand_and_fetch_2:
994   case Builtin::BI__sync_nand_and_fetch_4:
995   case Builtin::BI__sync_nand_and_fetch_8:
996   case Builtin::BI__sync_nand_and_fetch_16:
997     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
998                                 llvm::Instruction::And, true);
999 
1000   case Builtin::BI__sync_val_compare_and_swap_1:
1001   case Builtin::BI__sync_val_compare_and_swap_2:
1002   case Builtin::BI__sync_val_compare_and_swap_4:
1003   case Builtin::BI__sync_val_compare_and_swap_8:
1004   case Builtin::BI__sync_val_compare_and_swap_16: {
1005     QualType T = E->getType();
1006     llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
1007     unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
1008 
1009     llvm::IntegerType *IntType =
1010       llvm::IntegerType::get(getLLVMContext(),
1011                              getContext().getTypeSize(T));
1012     llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
1013 
1014     Value *Args[3];
1015     Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
1016     Args[1] = EmitScalarExpr(E->getArg(1));
1017     llvm::Type *ValueType = Args[1]->getType();
1018     Args[1] = EmitToInt(*this, Args[1], T, IntType);
1019     Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
1020 
1021     Value *Result = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2],
1022                                                 llvm::SequentiallyConsistent,
1023                                                 llvm::SequentiallyConsistent);
1024     Result = Builder.CreateExtractValue(Result, 0);
1025     Result = EmitFromInt(*this, Result, T, ValueType);
1026     return RValue::get(Result);
1027   }
1028 
1029   case Builtin::BI__sync_bool_compare_and_swap_1:
1030   case Builtin::BI__sync_bool_compare_and_swap_2:
1031   case Builtin::BI__sync_bool_compare_and_swap_4:
1032   case Builtin::BI__sync_bool_compare_and_swap_8:
1033   case Builtin::BI__sync_bool_compare_and_swap_16: {
1034     QualType T = E->getArg(1)->getType();
1035     llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
1036     unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
1037 
1038     llvm::IntegerType *IntType =
1039       llvm::IntegerType::get(getLLVMContext(),
1040                              getContext().getTypeSize(T));
1041     llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
1042 
1043     Value *Args[3];
1044     Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
1045     Args[1] = EmitToInt(*this, EmitScalarExpr(E->getArg(1)), T, IntType);
1046     Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
1047 
1048     Value *Pair = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2],
1049                                               llvm::SequentiallyConsistent,
1050                                               llvm::SequentiallyConsistent);
1051     Value *Result = Builder.CreateExtractValue(Pair, 1);
1052     // zext bool to int.
1053     Result = Builder.CreateZExt(Result, ConvertType(E->getType()));
1054     return RValue::get(Result);
1055   }
1056 
1057   case Builtin::BI__sync_swap_1:
1058   case Builtin::BI__sync_swap_2:
1059   case Builtin::BI__sync_swap_4:
1060   case Builtin::BI__sync_swap_8:
1061   case Builtin::BI__sync_swap_16:
1062     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
1063 
1064   case Builtin::BI__sync_lock_test_and_set_1:
1065   case Builtin::BI__sync_lock_test_and_set_2:
1066   case Builtin::BI__sync_lock_test_and_set_4:
1067   case Builtin::BI__sync_lock_test_and_set_8:
1068   case Builtin::BI__sync_lock_test_and_set_16:
1069     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
1070 
1071   case Builtin::BI__sync_lock_release_1:
1072   case Builtin::BI__sync_lock_release_2:
1073   case Builtin::BI__sync_lock_release_4:
1074   case Builtin::BI__sync_lock_release_8:
1075   case Builtin::BI__sync_lock_release_16: {
1076     Value *Ptr = EmitScalarExpr(E->getArg(0));
1077     QualType ElTy = E->getArg(0)->getType()->getPointeeType();
1078     CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
1079     llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
1080                                              StoreSize.getQuantity() * 8);
1081     Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
1082     llvm::StoreInst *Store =
1083       Builder.CreateStore(llvm::Constant::getNullValue(ITy), Ptr);
1084     Store->setAlignment(StoreSize.getQuantity());
1085     Store->setAtomic(llvm::Release);
1086     return RValue::get(nullptr);
1087   }
1088 
1089   case Builtin::BI__sync_synchronize: {
1090     // We assume this is supposed to correspond to a C++0x-style
1091     // sequentially-consistent fence (i.e. this is only usable for
1092     // synchonization, not device I/O or anything like that). This intrinsic
1093     // is really badly designed in the sense that in theory, there isn't
1094     // any way to safely use it... but in practice, it mostly works
1095     // to use it with non-atomic loads and stores to get acquire/release
1096     // semantics.
1097     Builder.CreateFence(llvm::SequentiallyConsistent);
1098     return RValue::get(nullptr);
1099   }
1100 
1101   case Builtin::BI__c11_atomic_is_lock_free:
1102   case Builtin::BI__atomic_is_lock_free: {
1103     // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
1104     // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
1105     // _Atomic(T) is always properly-aligned.
1106     const char *LibCallName = "__atomic_is_lock_free";
1107     CallArgList Args;
1108     Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
1109              getContext().getSizeType());
1110     if (BuiltinID == Builtin::BI__atomic_is_lock_free)
1111       Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
1112                getContext().VoidPtrTy);
1113     else
1114       Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
1115                getContext().VoidPtrTy);
1116     const CGFunctionInfo &FuncInfo =
1117         CGM.getTypes().arrangeFreeFunctionCall(E->getType(), Args,
1118                                                FunctionType::ExtInfo(),
1119                                                RequiredArgs::All);
1120     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
1121     llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
1122     return EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
1123   }
1124 
1125   case Builtin::BI__atomic_test_and_set: {
1126     // Look at the argument type to determine whether this is a volatile
1127     // operation. The parameter type is always volatile.
1128     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
1129     bool Volatile =
1130         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
1131 
1132     Value *Ptr = EmitScalarExpr(E->getArg(0));
1133     unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
1134     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
1135     Value *NewVal = Builder.getInt8(1);
1136     Value *Order = EmitScalarExpr(E->getArg(1));
1137     if (isa<llvm::ConstantInt>(Order)) {
1138       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1139       AtomicRMWInst *Result = nullptr;
1140       switch (ord) {
1141       case 0:  // memory_order_relaxed
1142       default: // invalid order
1143         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1144                                          Ptr, NewVal,
1145                                          llvm::Monotonic);
1146         break;
1147       case 1:  // memory_order_consume
1148       case 2:  // memory_order_acquire
1149         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1150                                          Ptr, NewVal,
1151                                          llvm::Acquire);
1152         break;
1153       case 3:  // memory_order_release
1154         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1155                                          Ptr, NewVal,
1156                                          llvm::Release);
1157         break;
1158       case 4:  // memory_order_acq_rel
1159         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1160                                          Ptr, NewVal,
1161                                          llvm::AcquireRelease);
1162         break;
1163       case 5:  // memory_order_seq_cst
1164         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1165                                          Ptr, NewVal,
1166                                          llvm::SequentiallyConsistent);
1167         break;
1168       }
1169       Result->setVolatile(Volatile);
1170       return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
1171     }
1172 
1173     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1174 
1175     llvm::BasicBlock *BBs[5] = {
1176       createBasicBlock("monotonic", CurFn),
1177       createBasicBlock("acquire", CurFn),
1178       createBasicBlock("release", CurFn),
1179       createBasicBlock("acqrel", CurFn),
1180       createBasicBlock("seqcst", CurFn)
1181     };
1182     llvm::AtomicOrdering Orders[5] = {
1183       llvm::Monotonic, llvm::Acquire, llvm::Release,
1184       llvm::AcquireRelease, llvm::SequentiallyConsistent
1185     };
1186 
1187     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1188     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
1189 
1190     Builder.SetInsertPoint(ContBB);
1191     PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
1192 
1193     for (unsigned i = 0; i < 5; ++i) {
1194       Builder.SetInsertPoint(BBs[i]);
1195       AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1196                                                    Ptr, NewVal, Orders[i]);
1197       RMW->setVolatile(Volatile);
1198       Result->addIncoming(RMW, BBs[i]);
1199       Builder.CreateBr(ContBB);
1200     }
1201 
1202     SI->addCase(Builder.getInt32(0), BBs[0]);
1203     SI->addCase(Builder.getInt32(1), BBs[1]);
1204     SI->addCase(Builder.getInt32(2), BBs[1]);
1205     SI->addCase(Builder.getInt32(3), BBs[2]);
1206     SI->addCase(Builder.getInt32(4), BBs[3]);
1207     SI->addCase(Builder.getInt32(5), BBs[4]);
1208 
1209     Builder.SetInsertPoint(ContBB);
1210     return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
1211   }
1212 
1213   case Builtin::BI__atomic_clear: {
1214     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
1215     bool Volatile =
1216         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
1217 
1218     Value *Ptr = EmitScalarExpr(E->getArg(0));
1219     unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
1220     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
1221     Value *NewVal = Builder.getInt8(0);
1222     Value *Order = EmitScalarExpr(E->getArg(1));
1223     if (isa<llvm::ConstantInt>(Order)) {
1224       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1225       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
1226       Store->setAlignment(1);
1227       switch (ord) {
1228       case 0:  // memory_order_relaxed
1229       default: // invalid order
1230         Store->setOrdering(llvm::Monotonic);
1231         break;
1232       case 3:  // memory_order_release
1233         Store->setOrdering(llvm::Release);
1234         break;
1235       case 5:  // memory_order_seq_cst
1236         Store->setOrdering(llvm::SequentiallyConsistent);
1237         break;
1238       }
1239       return RValue::get(nullptr);
1240     }
1241 
1242     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1243 
1244     llvm::BasicBlock *BBs[3] = {
1245       createBasicBlock("monotonic", CurFn),
1246       createBasicBlock("release", CurFn),
1247       createBasicBlock("seqcst", CurFn)
1248     };
1249     llvm::AtomicOrdering Orders[3] = {
1250       llvm::Monotonic, llvm::Release, llvm::SequentiallyConsistent
1251     };
1252 
1253     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1254     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
1255 
1256     for (unsigned i = 0; i < 3; ++i) {
1257       Builder.SetInsertPoint(BBs[i]);
1258       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
1259       Store->setAlignment(1);
1260       Store->setOrdering(Orders[i]);
1261       Builder.CreateBr(ContBB);
1262     }
1263 
1264     SI->addCase(Builder.getInt32(0), BBs[0]);
1265     SI->addCase(Builder.getInt32(3), BBs[1]);
1266     SI->addCase(Builder.getInt32(5), BBs[2]);
1267 
1268     Builder.SetInsertPoint(ContBB);
1269     return RValue::get(nullptr);
1270   }
1271 
1272   case Builtin::BI__atomic_thread_fence:
1273   case Builtin::BI__atomic_signal_fence:
1274   case Builtin::BI__c11_atomic_thread_fence:
1275   case Builtin::BI__c11_atomic_signal_fence: {
1276     llvm::SynchronizationScope Scope;
1277     if (BuiltinID == Builtin::BI__atomic_signal_fence ||
1278         BuiltinID == Builtin::BI__c11_atomic_signal_fence)
1279       Scope = llvm::SingleThread;
1280     else
1281       Scope = llvm::CrossThread;
1282     Value *Order = EmitScalarExpr(E->getArg(0));
1283     if (isa<llvm::ConstantInt>(Order)) {
1284       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1285       switch (ord) {
1286       case 0:  // memory_order_relaxed
1287       default: // invalid order
1288         break;
1289       case 1:  // memory_order_consume
1290       case 2:  // memory_order_acquire
1291         Builder.CreateFence(llvm::Acquire, Scope);
1292         break;
1293       case 3:  // memory_order_release
1294         Builder.CreateFence(llvm::Release, Scope);
1295         break;
1296       case 4:  // memory_order_acq_rel
1297         Builder.CreateFence(llvm::AcquireRelease, Scope);
1298         break;
1299       case 5:  // memory_order_seq_cst
1300         Builder.CreateFence(llvm::SequentiallyConsistent, Scope);
1301         break;
1302       }
1303       return RValue::get(nullptr);
1304     }
1305 
1306     llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
1307     AcquireBB = createBasicBlock("acquire", CurFn);
1308     ReleaseBB = createBasicBlock("release", CurFn);
1309     AcqRelBB = createBasicBlock("acqrel", CurFn);
1310     SeqCstBB = createBasicBlock("seqcst", CurFn);
1311     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1312 
1313     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1314     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
1315 
1316     Builder.SetInsertPoint(AcquireBB);
1317     Builder.CreateFence(llvm::Acquire, Scope);
1318     Builder.CreateBr(ContBB);
1319     SI->addCase(Builder.getInt32(1), AcquireBB);
1320     SI->addCase(Builder.getInt32(2), AcquireBB);
1321 
1322     Builder.SetInsertPoint(ReleaseBB);
1323     Builder.CreateFence(llvm::Release, Scope);
1324     Builder.CreateBr(ContBB);
1325     SI->addCase(Builder.getInt32(3), ReleaseBB);
1326 
1327     Builder.SetInsertPoint(AcqRelBB);
1328     Builder.CreateFence(llvm::AcquireRelease, Scope);
1329     Builder.CreateBr(ContBB);
1330     SI->addCase(Builder.getInt32(4), AcqRelBB);
1331 
1332     Builder.SetInsertPoint(SeqCstBB);
1333     Builder.CreateFence(llvm::SequentiallyConsistent, Scope);
1334     Builder.CreateBr(ContBB);
1335     SI->addCase(Builder.getInt32(5), SeqCstBB);
1336 
1337     Builder.SetInsertPoint(ContBB);
1338     return RValue::get(nullptr);
1339   }
1340 
1341     // Library functions with special handling.
1342   case Builtin::BIsqrt:
1343   case Builtin::BIsqrtf:
1344   case Builtin::BIsqrtl: {
1345     // Transform a call to sqrt* into a @llvm.sqrt.* intrinsic call, but only
1346     // in finite- or unsafe-math mode (the intrinsic has different semantics
1347     // for handling negative numbers compared to the library function, so
1348     // -fmath-errno=0 is not enough).
1349     if (!FD->hasAttr<ConstAttr>())
1350       break;
1351     if (!(CGM.getCodeGenOpts().UnsafeFPMath ||
1352           CGM.getCodeGenOpts().NoNaNsFPMath))
1353       break;
1354     Value *Arg0 = EmitScalarExpr(E->getArg(0));
1355     llvm::Type *ArgType = Arg0->getType();
1356     Value *F = CGM.getIntrinsic(Intrinsic::sqrt, ArgType);
1357     return RValue::get(Builder.CreateCall(F, Arg0));
1358   }
1359 
1360   case Builtin::BIpow:
1361   case Builtin::BIpowf:
1362   case Builtin::BIpowl: {
1363     // Transform a call to pow* into a @llvm.pow.* intrinsic call.
1364     if (!FD->hasAttr<ConstAttr>())
1365       break;
1366     Value *Base = EmitScalarExpr(E->getArg(0));
1367     Value *Exponent = EmitScalarExpr(E->getArg(1));
1368     llvm::Type *ArgType = Base->getType();
1369     Value *F = CGM.getIntrinsic(Intrinsic::pow, ArgType);
1370     return RValue::get(Builder.CreateCall2(F, Base, Exponent));
1371   }
1372 
1373   case Builtin::BIfma:
1374   case Builtin::BIfmaf:
1375   case Builtin::BIfmal:
1376   case Builtin::BI__builtin_fma:
1377   case Builtin::BI__builtin_fmaf:
1378   case Builtin::BI__builtin_fmal: {
1379     // Rewrite fma to intrinsic.
1380     Value *FirstArg = EmitScalarExpr(E->getArg(0));
1381     llvm::Type *ArgType = FirstArg->getType();
1382     Value *F = CGM.getIntrinsic(Intrinsic::fma, ArgType);
1383     return RValue::get(Builder.CreateCall3(F, FirstArg,
1384                                               EmitScalarExpr(E->getArg(1)),
1385                                               EmitScalarExpr(E->getArg(2))));
1386   }
1387 
1388   case Builtin::BI__builtin_signbit:
1389   case Builtin::BI__builtin_signbitf:
1390   case Builtin::BI__builtin_signbitl: {
1391     LLVMContext &C = CGM.getLLVMContext();
1392 
1393     Value *Arg = EmitScalarExpr(E->getArg(0));
1394     llvm::Type *ArgTy = Arg->getType();
1395     int ArgWidth = ArgTy->getPrimitiveSizeInBits();
1396     llvm::Type *ArgIntTy = llvm::IntegerType::get(C, ArgWidth);
1397     Value *BCArg = Builder.CreateBitCast(Arg, ArgIntTy);
1398     if (ArgTy->isPPC_FP128Ty()) {
1399       // The higher-order double comes first, and so we need to truncate the
1400       // pair to extract the overall sign. The order of the pair is the same
1401       // in both little- and big-Endian modes.
1402       ArgWidth >>= 1;
1403       ArgIntTy = llvm::IntegerType::get(C, ArgWidth);
1404       BCArg = Builder.CreateTrunc(BCArg, ArgIntTy);
1405     }
1406     Value *ZeroCmp = llvm::Constant::getNullValue(ArgIntTy);
1407     Value *Result = Builder.CreateICmpSLT(BCArg, ZeroCmp);
1408     return RValue::get(Builder.CreateZExt(Result, ConvertType(E->getType())));
1409   }
1410   case Builtin::BI__builtin_annotation: {
1411     llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
1412     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
1413                                       AnnVal->getType());
1414 
1415     // Get the annotation string, go through casts. Sema requires this to be a
1416     // non-wide string literal, potentially casted, so the cast<> is safe.
1417     const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
1418     StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
1419     return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
1420   }
1421   case Builtin::BI__builtin_addcb:
1422   case Builtin::BI__builtin_addcs:
1423   case Builtin::BI__builtin_addc:
1424   case Builtin::BI__builtin_addcl:
1425   case Builtin::BI__builtin_addcll:
1426   case Builtin::BI__builtin_subcb:
1427   case Builtin::BI__builtin_subcs:
1428   case Builtin::BI__builtin_subc:
1429   case Builtin::BI__builtin_subcl:
1430   case Builtin::BI__builtin_subcll: {
1431 
1432     // We translate all of these builtins from expressions of the form:
1433     //   int x = ..., y = ..., carryin = ..., carryout, result;
1434     //   result = __builtin_addc(x, y, carryin, &carryout);
1435     //
1436     // to LLVM IR of the form:
1437     //
1438     //   %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
1439     //   %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
1440     //   %carry1 = extractvalue {i32, i1} %tmp1, 1
1441     //   %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
1442     //                                                       i32 %carryin)
1443     //   %result = extractvalue {i32, i1} %tmp2, 0
1444     //   %carry2 = extractvalue {i32, i1} %tmp2, 1
1445     //   %tmp3 = or i1 %carry1, %carry2
1446     //   %tmp4 = zext i1 %tmp3 to i32
1447     //   store i32 %tmp4, i32* %carryout
1448 
1449     // Scalarize our inputs.
1450     llvm::Value *X = EmitScalarExpr(E->getArg(0));
1451     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
1452     llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
1453     std::pair<llvm::Value*, unsigned> CarryOutPtr =
1454       EmitPointerWithAlignment(E->getArg(3));
1455 
1456     // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
1457     llvm::Intrinsic::ID IntrinsicId;
1458     switch (BuiltinID) {
1459     default: llvm_unreachable("Unknown multiprecision builtin id.");
1460     case Builtin::BI__builtin_addcb:
1461     case Builtin::BI__builtin_addcs:
1462     case Builtin::BI__builtin_addc:
1463     case Builtin::BI__builtin_addcl:
1464     case Builtin::BI__builtin_addcll:
1465       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
1466       break;
1467     case Builtin::BI__builtin_subcb:
1468     case Builtin::BI__builtin_subcs:
1469     case Builtin::BI__builtin_subc:
1470     case Builtin::BI__builtin_subcl:
1471     case Builtin::BI__builtin_subcll:
1472       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
1473       break;
1474     }
1475 
1476     // Construct our resulting LLVM IR expression.
1477     llvm::Value *Carry1;
1478     llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
1479                                               X, Y, Carry1);
1480     llvm::Value *Carry2;
1481     llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
1482                                               Sum1, Carryin, Carry2);
1483     llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
1484                                                X->getType());
1485     llvm::StoreInst *CarryOutStore = Builder.CreateStore(CarryOut,
1486                                                          CarryOutPtr.first);
1487     CarryOutStore->setAlignment(CarryOutPtr.second);
1488     return RValue::get(Sum2);
1489   }
1490   case Builtin::BI__builtin_uadd_overflow:
1491   case Builtin::BI__builtin_uaddl_overflow:
1492   case Builtin::BI__builtin_uaddll_overflow:
1493   case Builtin::BI__builtin_usub_overflow:
1494   case Builtin::BI__builtin_usubl_overflow:
1495   case Builtin::BI__builtin_usubll_overflow:
1496   case Builtin::BI__builtin_umul_overflow:
1497   case Builtin::BI__builtin_umull_overflow:
1498   case Builtin::BI__builtin_umulll_overflow:
1499   case Builtin::BI__builtin_sadd_overflow:
1500   case Builtin::BI__builtin_saddl_overflow:
1501   case Builtin::BI__builtin_saddll_overflow:
1502   case Builtin::BI__builtin_ssub_overflow:
1503   case Builtin::BI__builtin_ssubl_overflow:
1504   case Builtin::BI__builtin_ssubll_overflow:
1505   case Builtin::BI__builtin_smul_overflow:
1506   case Builtin::BI__builtin_smull_overflow:
1507   case Builtin::BI__builtin_smulll_overflow: {
1508 
1509     // We translate all of these builtins directly to the relevant llvm IR node.
1510 
1511     // Scalarize our inputs.
1512     llvm::Value *X = EmitScalarExpr(E->getArg(0));
1513     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
1514     std::pair<llvm::Value *, unsigned> SumOutPtr =
1515       EmitPointerWithAlignment(E->getArg(2));
1516 
1517     // Decide which of the overflow intrinsics we are lowering to:
1518     llvm::Intrinsic::ID IntrinsicId;
1519     switch (BuiltinID) {
1520     default: llvm_unreachable("Unknown security overflow builtin id.");
1521     case Builtin::BI__builtin_uadd_overflow:
1522     case Builtin::BI__builtin_uaddl_overflow:
1523     case Builtin::BI__builtin_uaddll_overflow:
1524       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
1525       break;
1526     case Builtin::BI__builtin_usub_overflow:
1527     case Builtin::BI__builtin_usubl_overflow:
1528     case Builtin::BI__builtin_usubll_overflow:
1529       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
1530       break;
1531     case Builtin::BI__builtin_umul_overflow:
1532     case Builtin::BI__builtin_umull_overflow:
1533     case Builtin::BI__builtin_umulll_overflow:
1534       IntrinsicId = llvm::Intrinsic::umul_with_overflow;
1535       break;
1536     case Builtin::BI__builtin_sadd_overflow:
1537     case Builtin::BI__builtin_saddl_overflow:
1538     case Builtin::BI__builtin_saddll_overflow:
1539       IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
1540       break;
1541     case Builtin::BI__builtin_ssub_overflow:
1542     case Builtin::BI__builtin_ssubl_overflow:
1543     case Builtin::BI__builtin_ssubll_overflow:
1544       IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
1545       break;
1546     case Builtin::BI__builtin_smul_overflow:
1547     case Builtin::BI__builtin_smull_overflow:
1548     case Builtin::BI__builtin_smulll_overflow:
1549       IntrinsicId = llvm::Intrinsic::smul_with_overflow;
1550       break;
1551     }
1552 
1553 
1554     llvm::Value *Carry;
1555     llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
1556     llvm::StoreInst *SumOutStore = Builder.CreateStore(Sum, SumOutPtr.first);
1557     SumOutStore->setAlignment(SumOutPtr.second);
1558 
1559     return RValue::get(Carry);
1560   }
1561   case Builtin::BI__builtin_addressof:
1562     return RValue::get(EmitLValue(E->getArg(0)).getAddress());
1563   case Builtin::BI__builtin_operator_new:
1564     return EmitBuiltinNewDeleteCall(FD->getType()->castAs<FunctionProtoType>(),
1565                                     E->getArg(0), false);
1566   case Builtin::BI__builtin_operator_delete:
1567     return EmitBuiltinNewDeleteCall(FD->getType()->castAs<FunctionProtoType>(),
1568                                     E->getArg(0), true);
1569   case Builtin::BI__noop:
1570     // __noop always evaluates to an integer literal zero.
1571     return RValue::get(ConstantInt::get(IntTy, 0));
1572   case Builtin::BI__builtin_call_with_static_chain: {
1573     const CallExpr *Call = cast<CallExpr>(E->getArg(0));
1574     const Expr *Chain = E->getArg(1);
1575     return EmitCall(Call->getCallee()->getType(),
1576                     EmitScalarExpr(Call->getCallee()), Call, ReturnValue,
1577                     Call->getCalleeDecl(), EmitScalarExpr(Chain));
1578   }
1579   case Builtin::BI_InterlockedExchange:
1580   case Builtin::BI_InterlockedExchangePointer:
1581     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
1582   case Builtin::BI_InterlockedCompareExchangePointer: {
1583     llvm::Type *RTy;
1584     llvm::IntegerType *IntType =
1585       IntegerType::get(getLLVMContext(),
1586                        getContext().getTypeSize(E->getType()));
1587     llvm::Type *IntPtrType = IntType->getPointerTo();
1588 
1589     llvm::Value *Destination =
1590       Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
1591 
1592     llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
1593     RTy = Exchange->getType();
1594     Exchange = Builder.CreatePtrToInt(Exchange, IntType);
1595 
1596     llvm::Value *Comparand =
1597       Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
1598 
1599     auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
1600                                               SequentiallyConsistent,
1601                                               SequentiallyConsistent);
1602     Result->setVolatile(true);
1603 
1604     return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
1605                                                                          0),
1606                                               RTy));
1607   }
1608   case Builtin::BI_InterlockedCompareExchange: {
1609     AtomicCmpXchgInst *CXI = Builder.CreateAtomicCmpXchg(
1610         EmitScalarExpr(E->getArg(0)),
1611         EmitScalarExpr(E->getArg(2)),
1612         EmitScalarExpr(E->getArg(1)),
1613         SequentiallyConsistent,
1614         SequentiallyConsistent);
1615       CXI->setVolatile(true);
1616       return RValue::get(Builder.CreateExtractValue(CXI, 0));
1617   }
1618   case Builtin::BI_InterlockedIncrement: {
1619     AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
1620       AtomicRMWInst::Add,
1621       EmitScalarExpr(E->getArg(0)),
1622       ConstantInt::get(Int32Ty, 1),
1623       llvm::SequentiallyConsistent);
1624     RMWI->setVolatile(true);
1625     return RValue::get(Builder.CreateAdd(RMWI, ConstantInt::get(Int32Ty, 1)));
1626   }
1627   case Builtin::BI_InterlockedDecrement: {
1628     AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
1629       AtomicRMWInst::Sub,
1630       EmitScalarExpr(E->getArg(0)),
1631       ConstantInt::get(Int32Ty, 1),
1632       llvm::SequentiallyConsistent);
1633     RMWI->setVolatile(true);
1634     return RValue::get(Builder.CreateSub(RMWI, ConstantInt::get(Int32Ty, 1)));
1635   }
1636   case Builtin::BI_InterlockedExchangeAdd: {
1637     AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
1638       AtomicRMWInst::Add,
1639       EmitScalarExpr(E->getArg(0)),
1640       EmitScalarExpr(E->getArg(1)),
1641       llvm::SequentiallyConsistent);
1642     RMWI->setVolatile(true);
1643     return RValue::get(RMWI);
1644   }
1645   case Builtin::BI__readfsdword: {
1646     Value *IntToPtr =
1647       Builder.CreateIntToPtr(EmitScalarExpr(E->getArg(0)),
1648                              llvm::PointerType::get(CGM.Int32Ty, 257));
1649     LoadInst *Load =
1650         Builder.CreateAlignedLoad(IntToPtr, /*Align=*/4, /*isVolatile=*/true);
1651     return RValue::get(Load);
1652   }
1653   }
1654 
1655   // If this is an alias for a lib function (e.g. __builtin_sin), emit
1656   // the call using the normal call path, but using the unmangled
1657   // version of the function name.
1658   if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
1659     return emitLibraryCall(*this, FD, E,
1660                            CGM.getBuiltinLibFunction(FD, BuiltinID));
1661 
1662   // If this is a predefined lib function (e.g. malloc), emit the call
1663   // using exactly the normal call path.
1664   if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
1665     return emitLibraryCall(*this, FD, E, EmitScalarExpr(E->getCallee()));
1666 
1667   // See if we have a target specific intrinsic.
1668   const char *Name = getContext().BuiltinInfo.GetName(BuiltinID);
1669   Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
1670   if (const char *Prefix =
1671           llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch())) {
1672     IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name);
1673     // NOTE we dont need to perform a compatibility flag check here since the
1674     // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
1675     // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
1676     if (IntrinsicID == Intrinsic::not_intrinsic)
1677       IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix, Name);
1678   }
1679 
1680   if (IntrinsicID != Intrinsic::not_intrinsic) {
1681     SmallVector<Value*, 16> Args;
1682 
1683     // Find out if any arguments are required to be integer constant
1684     // expressions.
1685     unsigned ICEArguments = 0;
1686     ASTContext::GetBuiltinTypeError Error;
1687     getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
1688     assert(Error == ASTContext::GE_None && "Should not codegen an error");
1689 
1690     Function *F = CGM.getIntrinsic(IntrinsicID);
1691     llvm::FunctionType *FTy = F->getFunctionType();
1692 
1693     for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
1694       Value *ArgValue;
1695       // If this is a normal argument, just emit it as a scalar.
1696       if ((ICEArguments & (1 << i)) == 0) {
1697         ArgValue = EmitScalarExpr(E->getArg(i));
1698       } else {
1699         // If this is required to be a constant, constant fold it so that we
1700         // know that the generated intrinsic gets a ConstantInt.
1701         llvm::APSInt Result;
1702         bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
1703         assert(IsConst && "Constant arg isn't actually constant?");
1704         (void)IsConst;
1705         ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
1706       }
1707 
1708       // If the intrinsic arg type is different from the builtin arg type
1709       // we need to do a bit cast.
1710       llvm::Type *PTy = FTy->getParamType(i);
1711       if (PTy != ArgValue->getType()) {
1712         assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
1713                "Must be able to losslessly bit cast to param");
1714         ArgValue = Builder.CreateBitCast(ArgValue, PTy);
1715       }
1716 
1717       Args.push_back(ArgValue);
1718     }
1719 
1720     Value *V = Builder.CreateCall(F, Args);
1721     QualType BuiltinRetType = E->getType();
1722 
1723     llvm::Type *RetTy = VoidTy;
1724     if (!BuiltinRetType->isVoidType())
1725       RetTy = ConvertType(BuiltinRetType);
1726 
1727     if (RetTy != V->getType()) {
1728       assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
1729              "Must be able to losslessly bit cast result type");
1730       V = Builder.CreateBitCast(V, RetTy);
1731     }
1732 
1733     return RValue::get(V);
1734   }
1735 
1736   // See if we have a target specific builtin that needs to be lowered.
1737   if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
1738     return RValue::get(V);
1739 
1740   ErrorUnsupported(E, "builtin function");
1741 
1742   // Unknown builtin, for now just dump it out and return undef.
1743   return GetUndefRValue(E->getType());
1744 }
1745 
EmitTargetBuiltinExpr(unsigned BuiltinID,const CallExpr * E)1746 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
1747                                               const CallExpr *E) {
1748   switch (getTarget().getTriple().getArch()) {
1749   case llvm::Triple::arm:
1750   case llvm::Triple::armeb:
1751   case llvm::Triple::thumb:
1752   case llvm::Triple::thumbeb:
1753     return EmitARMBuiltinExpr(BuiltinID, E);
1754   case llvm::Triple::aarch64:
1755   case llvm::Triple::aarch64_be:
1756     return EmitAArch64BuiltinExpr(BuiltinID, E);
1757   case llvm::Triple::x86:
1758   case llvm::Triple::x86_64:
1759     return EmitX86BuiltinExpr(BuiltinID, E);
1760   case llvm::Triple::ppc:
1761   case llvm::Triple::ppc64:
1762   case llvm::Triple::ppc64le:
1763     return EmitPPCBuiltinExpr(BuiltinID, E);
1764   case llvm::Triple::r600:
1765   case llvm::Triple::amdgcn:
1766     return EmitR600BuiltinExpr(BuiltinID, E);
1767   default:
1768     return nullptr;
1769   }
1770 }
1771 
GetNeonType(CodeGenFunction * CGF,NeonTypeFlags TypeFlags,bool V1Ty=false)1772 static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
1773                                      NeonTypeFlags TypeFlags,
1774                                      bool V1Ty=false) {
1775   int IsQuad = TypeFlags.isQuad();
1776   switch (TypeFlags.getEltType()) {
1777   case NeonTypeFlags::Int8:
1778   case NeonTypeFlags::Poly8:
1779     return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
1780   case NeonTypeFlags::Int16:
1781   case NeonTypeFlags::Poly16:
1782   case NeonTypeFlags::Float16:
1783     return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
1784   case NeonTypeFlags::Int32:
1785     return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
1786   case NeonTypeFlags::Int64:
1787   case NeonTypeFlags::Poly64:
1788     return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
1789   case NeonTypeFlags::Poly128:
1790     // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
1791     // There is a lot of i128 and f128 API missing.
1792     // so we use v16i8 to represent poly128 and get pattern matched.
1793     return llvm::VectorType::get(CGF->Int8Ty, 16);
1794   case NeonTypeFlags::Float32:
1795     return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
1796   case NeonTypeFlags::Float64:
1797     return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
1798   }
1799   llvm_unreachable("Unknown vector element type!");
1800 }
1801 
EmitNeonSplat(Value * V,Constant * C)1802 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
1803   unsigned nElts = cast<llvm::VectorType>(V->getType())->getNumElements();
1804   Value* SV = llvm::ConstantVector::getSplat(nElts, C);
1805   return Builder.CreateShuffleVector(V, V, SV, "lane");
1806 }
1807 
EmitNeonCall(Function * F,SmallVectorImpl<Value * > & Ops,const char * name,unsigned shift,bool rightshift)1808 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
1809                                      const char *name,
1810                                      unsigned shift, bool rightshift) {
1811   unsigned j = 0;
1812   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
1813        ai != ae; ++ai, ++j)
1814     if (shift > 0 && shift == j)
1815       Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
1816     else
1817       Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
1818 
1819   return Builder.CreateCall(F, Ops, name);
1820 }
1821 
EmitNeonShiftVector(Value * V,llvm::Type * Ty,bool neg)1822 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
1823                                             bool neg) {
1824   int SV = cast<ConstantInt>(V)->getSExtValue();
1825 
1826   llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
1827   llvm::Constant *C = ConstantInt::get(VTy->getElementType(), neg ? -SV : SV);
1828   return llvm::ConstantVector::getSplat(VTy->getNumElements(), C);
1829 }
1830 
1831 // \brief Right-shift a vector by a constant.
EmitNeonRShiftImm(Value * Vec,Value * Shift,llvm::Type * Ty,bool usgn,const char * name)1832 Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
1833                                           llvm::Type *Ty, bool usgn,
1834                                           const char *name) {
1835   llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
1836 
1837   int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
1838   int EltSize = VTy->getScalarSizeInBits();
1839 
1840   Vec = Builder.CreateBitCast(Vec, Ty);
1841 
1842   // lshr/ashr are undefined when the shift amount is equal to the vector
1843   // element size.
1844   if (ShiftAmt == EltSize) {
1845     if (usgn) {
1846       // Right-shifting an unsigned value by its size yields 0.
1847       llvm::Constant *Zero = ConstantInt::get(VTy->getElementType(), 0);
1848       return llvm::ConstantVector::getSplat(VTy->getNumElements(), Zero);
1849     } else {
1850       // Right-shifting a signed value by its size is equivalent
1851       // to a shift of size-1.
1852       --ShiftAmt;
1853       Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
1854     }
1855   }
1856 
1857   Shift = EmitNeonShiftVector(Shift, Ty, false);
1858   if (usgn)
1859     return Builder.CreateLShr(Vec, Shift, name);
1860   else
1861     return Builder.CreateAShr(Vec, Shift, name);
1862 }
1863 
1864 /// GetPointeeAlignment - Given an expression with a pointer type, find the
1865 /// alignment of the type referenced by the pointer.  Skip over implicit
1866 /// casts.
1867 std::pair<llvm::Value*, unsigned>
EmitPointerWithAlignment(const Expr * Addr)1868 CodeGenFunction::EmitPointerWithAlignment(const Expr *Addr) {
1869   assert(Addr->getType()->isPointerType());
1870   Addr = Addr->IgnoreParens();
1871   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Addr)) {
1872     if ((ICE->getCastKind() == CK_BitCast || ICE->getCastKind() == CK_NoOp) &&
1873         ICE->getSubExpr()->getType()->isPointerType()) {
1874       std::pair<llvm::Value*, unsigned> Ptr =
1875           EmitPointerWithAlignment(ICE->getSubExpr());
1876       Ptr.first = Builder.CreateBitCast(Ptr.first,
1877                                         ConvertType(Addr->getType()));
1878       return Ptr;
1879     } else if (ICE->getCastKind() == CK_ArrayToPointerDecay) {
1880       LValue LV = EmitLValue(ICE->getSubExpr());
1881       unsigned Align = LV.getAlignment().getQuantity();
1882       if (!Align) {
1883         // FIXME: Once LValues are fixed to always set alignment,
1884         // zap this code.
1885         QualType PtTy = ICE->getSubExpr()->getType();
1886         if (!PtTy->isIncompleteType())
1887           Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
1888         else
1889           Align = 1;
1890       }
1891       return std::make_pair(LV.getAddress(), Align);
1892     }
1893   }
1894   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Addr)) {
1895     if (UO->getOpcode() == UO_AddrOf) {
1896       LValue LV = EmitLValue(UO->getSubExpr());
1897       unsigned Align = LV.getAlignment().getQuantity();
1898       if (!Align) {
1899         // FIXME: Once LValues are fixed to always set alignment,
1900         // zap this code.
1901         QualType PtTy = UO->getSubExpr()->getType();
1902         if (!PtTy->isIncompleteType())
1903           Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
1904         else
1905           Align = 1;
1906       }
1907       return std::make_pair(LV.getAddress(), Align);
1908     }
1909   }
1910 
1911   unsigned Align = 1;
1912   QualType PtTy = Addr->getType()->getPointeeType();
1913   if (!PtTy->isIncompleteType())
1914     Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
1915 
1916   return std::make_pair(EmitScalarExpr(Addr), Align);
1917 }
1918 
1919 enum {
1920   AddRetType = (1 << 0),
1921   Add1ArgType = (1 << 1),
1922   Add2ArgTypes = (1 << 2),
1923 
1924   VectorizeRetType = (1 << 3),
1925   VectorizeArgTypes = (1 << 4),
1926 
1927   InventFloatType = (1 << 5),
1928   UnsignedAlts = (1 << 6),
1929 
1930   Use64BitVectors = (1 << 7),
1931   Use128BitVectors = (1 << 8),
1932 
1933   Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
1934   VectorRet = AddRetType | VectorizeRetType,
1935   VectorRetGetArgs01 =
1936       AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
1937   FpCmpzModifiers =
1938       AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
1939 };
1940 
1941  struct NeonIntrinsicInfo {
1942   unsigned BuiltinID;
1943   unsigned LLVMIntrinsic;
1944   unsigned AltLLVMIntrinsic;
1945   const char *NameHint;
1946   unsigned TypeModifier;
1947 
operator <NeonIntrinsicInfo1948   bool operator<(unsigned RHSBuiltinID) const {
1949     return BuiltinID < RHSBuiltinID;
1950   }
1951 };
1952 
1953 #define NEONMAP0(NameBase) \
1954   { NEON::BI__builtin_neon_ ## NameBase, 0, 0, #NameBase, 0 }
1955 
1956 #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
1957   { NEON:: BI__builtin_neon_ ## NameBase, \
1958       Intrinsic::LLVMIntrinsic, 0, #NameBase, TypeModifier }
1959 
1960 #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
1961   { NEON:: BI__builtin_neon_ ## NameBase, \
1962       Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
1963       #NameBase, TypeModifier }
1964 
1965 static NeonIntrinsicInfo ARMSIMDIntrinsicMap [] = {
1966   NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
1967   NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
1968   NEONMAP1(vabs_v, arm_neon_vabs, 0),
1969   NEONMAP1(vabsq_v, arm_neon_vabs, 0),
1970   NEONMAP0(vaddhn_v),
1971   NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
1972   NEONMAP1(vaeseq_v, arm_neon_aese, 0),
1973   NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
1974   NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
1975   NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
1976   NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
1977   NEONMAP1(vcage_v, arm_neon_vacge, 0),
1978   NEONMAP1(vcageq_v, arm_neon_vacge, 0),
1979   NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
1980   NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
1981   NEONMAP1(vcale_v, arm_neon_vacge, 0),
1982   NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
1983   NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
1984   NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
1985   NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
1986   NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
1987   NEONMAP1(vclz_v, ctlz, Add1ArgType),
1988   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
1989   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
1990   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
1991   NEONMAP1(vcvt_f16_v, arm_neon_vcvtfp2hf, 0),
1992   NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
1993   NEONMAP0(vcvt_f32_v),
1994   NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
1995   NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
1996   NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
1997   NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
1998   NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
1999   NEONMAP0(vcvt_s32_v),
2000   NEONMAP0(vcvt_s64_v),
2001   NEONMAP0(vcvt_u32_v),
2002   NEONMAP0(vcvt_u64_v),
2003   NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
2004   NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
2005   NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
2006   NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
2007   NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
2008   NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
2009   NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
2010   NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
2011   NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
2012   NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
2013   NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
2014   NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
2015   NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
2016   NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
2017   NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
2018   NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
2019   NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
2020   NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
2021   NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
2022   NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
2023   NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
2024   NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
2025   NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
2026   NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
2027   NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
2028   NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
2029   NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
2030   NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
2031   NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
2032   NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
2033   NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
2034   NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
2035   NEONMAP0(vcvtq_f32_v),
2036   NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
2037   NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
2038   NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
2039   NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
2040   NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
2041   NEONMAP0(vcvtq_s32_v),
2042   NEONMAP0(vcvtq_s64_v),
2043   NEONMAP0(vcvtq_u32_v),
2044   NEONMAP0(vcvtq_u64_v),
2045   NEONMAP0(vext_v),
2046   NEONMAP0(vextq_v),
2047   NEONMAP0(vfma_v),
2048   NEONMAP0(vfmaq_v),
2049   NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
2050   NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
2051   NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
2052   NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
2053   NEONMAP0(vld1_dup_v),
2054   NEONMAP1(vld1_v, arm_neon_vld1, 0),
2055   NEONMAP0(vld1q_dup_v),
2056   NEONMAP1(vld1q_v, arm_neon_vld1, 0),
2057   NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
2058   NEONMAP1(vld2_v, arm_neon_vld2, 0),
2059   NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
2060   NEONMAP1(vld2q_v, arm_neon_vld2, 0),
2061   NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
2062   NEONMAP1(vld3_v, arm_neon_vld3, 0),
2063   NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
2064   NEONMAP1(vld3q_v, arm_neon_vld3, 0),
2065   NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
2066   NEONMAP1(vld4_v, arm_neon_vld4, 0),
2067   NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
2068   NEONMAP1(vld4q_v, arm_neon_vld4, 0),
2069   NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
2070   NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
2071   NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
2072   NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
2073   NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
2074   NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
2075   NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
2076   NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
2077   NEONMAP0(vmovl_v),
2078   NEONMAP0(vmovn_v),
2079   NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
2080   NEONMAP0(vmull_v),
2081   NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
2082   NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
2083   NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
2084   NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
2085   NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
2086   NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
2087   NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
2088   NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
2089   NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
2090   NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
2091   NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
2092   NEONMAP2(vqadd_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
2093   NEONMAP2(vqaddq_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
2094   NEONMAP2(vqdmlal_v, arm_neon_vqdmull, arm_neon_vqadds, 0),
2095   NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, arm_neon_vqsubs, 0),
2096   NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
2097   NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
2098   NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
2099   NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
2100   NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
2101   NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
2102   NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
2103   NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
2104   NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
2105   NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
2106   NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
2107   NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
2108   NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
2109   NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
2110   NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
2111   NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
2112   NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
2113   NEONMAP2(vqsub_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
2114   NEONMAP2(vqsubq_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
2115   NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
2116   NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
2117   NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
2118   NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
2119   NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
2120   NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
2121   NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
2122   NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
2123   NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
2124   NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
2125   NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
2126   NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
2127   NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
2128   NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
2129   NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
2130   NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
2131   NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
2132   NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
2133   NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
2134   NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
2135   NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
2136   NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
2137   NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
2138   NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
2139   NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
2140   NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
2141   NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
2142   NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
2143   NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
2144   NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
2145   NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
2146   NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
2147   NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
2148   NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
2149   NEONMAP0(vshl_n_v),
2150   NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
2151   NEONMAP0(vshll_n_v),
2152   NEONMAP0(vshlq_n_v),
2153   NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
2154   NEONMAP0(vshr_n_v),
2155   NEONMAP0(vshrn_n_v),
2156   NEONMAP0(vshrq_n_v),
2157   NEONMAP1(vst1_v, arm_neon_vst1, 0),
2158   NEONMAP1(vst1q_v, arm_neon_vst1, 0),
2159   NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
2160   NEONMAP1(vst2_v, arm_neon_vst2, 0),
2161   NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
2162   NEONMAP1(vst2q_v, arm_neon_vst2, 0),
2163   NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
2164   NEONMAP1(vst3_v, arm_neon_vst3, 0),
2165   NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
2166   NEONMAP1(vst3q_v, arm_neon_vst3, 0),
2167   NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
2168   NEONMAP1(vst4_v, arm_neon_vst4, 0),
2169   NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
2170   NEONMAP1(vst4q_v, arm_neon_vst4, 0),
2171   NEONMAP0(vsubhn_v),
2172   NEONMAP0(vtrn_v),
2173   NEONMAP0(vtrnq_v),
2174   NEONMAP0(vtst_v),
2175   NEONMAP0(vtstq_v),
2176   NEONMAP0(vuzp_v),
2177   NEONMAP0(vuzpq_v),
2178   NEONMAP0(vzip_v),
2179   NEONMAP0(vzipq_v)
2180 };
2181 
2182 static NeonIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
2183   NEONMAP1(vabs_v, aarch64_neon_abs, 0),
2184   NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
2185   NEONMAP0(vaddhn_v),
2186   NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
2187   NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
2188   NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
2189   NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
2190   NEONMAP1(vcage_v, aarch64_neon_facge, 0),
2191   NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
2192   NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
2193   NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
2194   NEONMAP1(vcale_v, aarch64_neon_facge, 0),
2195   NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
2196   NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
2197   NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
2198   NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
2199   NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
2200   NEONMAP1(vclz_v, ctlz, Add1ArgType),
2201   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
2202   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
2203   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
2204   NEONMAP1(vcvt_f16_v, aarch64_neon_vcvtfp2hf, 0),
2205   NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
2206   NEONMAP0(vcvt_f32_v),
2207   NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
2208   NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
2209   NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
2210   NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
2211   NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
2212   NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
2213   NEONMAP0(vcvtq_f32_v),
2214   NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
2215   NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
2216   NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
2217   NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
2218   NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
2219   NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
2220   NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
2221   NEONMAP0(vext_v),
2222   NEONMAP0(vextq_v),
2223   NEONMAP0(vfma_v),
2224   NEONMAP0(vfmaq_v),
2225   NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
2226   NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
2227   NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
2228   NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
2229   NEONMAP0(vmovl_v),
2230   NEONMAP0(vmovn_v),
2231   NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
2232   NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
2233   NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
2234   NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
2235   NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
2236   NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
2237   NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
2238   NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
2239   NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
2240   NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
2241   NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
2242   NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
2243   NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
2244   NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
2245   NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
2246   NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
2247   NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
2248   NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
2249   NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
2250   NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
2251   NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
2252   NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
2253   NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
2254   NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
2255   NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
2256   NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
2257   NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
2258   NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
2259   NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
2260   NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
2261   NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
2262   NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
2263   NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
2264   NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
2265   NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
2266   NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
2267   NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
2268   NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
2269   NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
2270   NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
2271   NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
2272   NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
2273   NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
2274   NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
2275   NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
2276   NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
2277   NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
2278   NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
2279   NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
2280   NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
2281   NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
2282   NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
2283   NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
2284   NEONMAP0(vshl_n_v),
2285   NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
2286   NEONMAP0(vshll_n_v),
2287   NEONMAP0(vshlq_n_v),
2288   NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
2289   NEONMAP0(vshr_n_v),
2290   NEONMAP0(vshrn_n_v),
2291   NEONMAP0(vshrq_n_v),
2292   NEONMAP0(vsubhn_v),
2293   NEONMAP0(vtst_v),
2294   NEONMAP0(vtstq_v),
2295 };
2296 
2297 static NeonIntrinsicInfo AArch64SISDIntrinsicMap[] = {
2298   NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
2299   NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
2300   NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
2301   NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
2302   NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
2303   NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
2304   NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
2305   NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
2306   NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
2307   NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
2308   NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
2309   NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
2310   NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
2311   NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
2312   NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
2313   NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
2314   NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
2315   NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
2316   NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
2317   NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
2318   NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
2319   NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
2320   NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
2321   NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
2322   NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
2323   NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
2324   NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
2325   NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
2326   NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
2327   NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
2328   NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
2329   NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
2330   NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
2331   NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
2332   NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
2333   NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
2334   NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
2335   NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
2336   NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
2337   NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
2338   NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
2339   NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
2340   NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
2341   NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
2342   NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
2343   NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
2344   NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
2345   NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
2346   NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
2347   NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
2348   NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
2349   NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
2350   NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
2351   NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
2352   NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
2353   NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
2354   NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
2355   NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
2356   NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
2357   NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
2358   NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
2359   NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
2360   NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
2361   NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
2362   NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
2363   NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
2364   NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
2365   NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
2366   NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
2367   NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
2368   NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
2369   NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
2370   NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
2371   NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
2372   NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
2373   NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
2374   NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
2375   NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
2376   NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
2377   NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
2378   NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
2379   NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
2380   NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
2381   NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
2382   NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
2383   NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
2384   NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
2385   NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
2386   NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
2387   NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
2388   NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
2389   NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
2390   NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
2391   NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
2392   NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
2393   NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
2394   NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
2395   NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
2396   NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
2397   NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
2398   NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
2399   NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
2400   NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
2401   NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
2402   NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
2403   NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
2404   NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
2405   NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
2406   NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
2407   NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
2408   NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
2409   NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
2410   NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
2411   NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
2412   NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
2413   NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
2414   NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
2415   NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
2416   NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
2417   NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
2418   NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
2419   NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
2420   NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
2421   NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
2422   NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
2423   NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
2424   NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
2425   NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
2426   NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
2427   NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
2428   NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
2429   NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
2430   NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
2431   NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
2432   NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
2433   NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
2434   NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
2435   NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
2436   NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
2437   NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
2438   NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
2439   NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
2440   NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
2441   NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
2442   NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
2443   NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
2444   NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
2445   NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
2446   NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
2447   NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
2448   NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
2449   NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
2450   NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
2451   NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
2452   NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
2453   NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
2454   NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
2455   NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
2456   NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
2457   NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
2458   NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
2459   NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
2460   NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
2461   NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
2462   NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
2463   NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
2464   NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
2465   NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
2466   NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
2467   NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
2468   NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
2469   NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
2470   NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
2471   NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
2472   NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
2473   NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
2474   NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
2475   NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
2476   NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
2477   NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
2478   NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
2479   NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
2480   NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
2481   NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
2482   NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
2483   NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
2484   NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
2485   NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
2486   NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
2487   NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
2488   NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
2489   NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
2490 };
2491 
2492 #undef NEONMAP0
2493 #undef NEONMAP1
2494 #undef NEONMAP2
2495 
2496 static bool NEONSIMDIntrinsicsProvenSorted = false;
2497 
2498 static bool AArch64SIMDIntrinsicsProvenSorted = false;
2499 static bool AArch64SISDIntrinsicsProvenSorted = false;
2500 
2501 
2502 static const NeonIntrinsicInfo *
findNeonIntrinsicInMap(ArrayRef<NeonIntrinsicInfo> IntrinsicMap,unsigned BuiltinID,bool & MapProvenSorted)2503 findNeonIntrinsicInMap(ArrayRef<NeonIntrinsicInfo> IntrinsicMap,
2504                        unsigned BuiltinID, bool &MapProvenSorted) {
2505 
2506 #ifndef NDEBUG
2507   if (!MapProvenSorted) {
2508     // FIXME: use std::is_sorted once C++11 is allowed
2509     for (unsigned i = 0; i < IntrinsicMap.size() - 1; ++i)
2510       assert(IntrinsicMap[i].BuiltinID <= IntrinsicMap[i + 1].BuiltinID);
2511     MapProvenSorted = true;
2512   }
2513 #endif
2514 
2515   const NeonIntrinsicInfo *Builtin =
2516       std::lower_bound(IntrinsicMap.begin(), IntrinsicMap.end(), BuiltinID);
2517 
2518   if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
2519     return Builtin;
2520 
2521   return nullptr;
2522 }
2523 
LookupNeonLLVMIntrinsic(unsigned IntrinsicID,unsigned Modifier,llvm::Type * ArgType,const CallExpr * E)2524 Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
2525                                                    unsigned Modifier,
2526                                                    llvm::Type *ArgType,
2527                                                    const CallExpr *E) {
2528   int VectorSize = 0;
2529   if (Modifier & Use64BitVectors)
2530     VectorSize = 64;
2531   else if (Modifier & Use128BitVectors)
2532     VectorSize = 128;
2533 
2534   // Return type.
2535   SmallVector<llvm::Type *, 3> Tys;
2536   if (Modifier & AddRetType) {
2537     llvm::Type *Ty = ConvertType(E->getCallReturnType());
2538     if (Modifier & VectorizeRetType)
2539       Ty = llvm::VectorType::get(
2540           Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
2541 
2542     Tys.push_back(Ty);
2543   }
2544 
2545   // Arguments.
2546   if (Modifier & VectorizeArgTypes) {
2547     int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
2548     ArgType = llvm::VectorType::get(ArgType, Elts);
2549   }
2550 
2551   if (Modifier & (Add1ArgType | Add2ArgTypes))
2552     Tys.push_back(ArgType);
2553 
2554   if (Modifier & Add2ArgTypes)
2555     Tys.push_back(ArgType);
2556 
2557   if (Modifier & InventFloatType)
2558     Tys.push_back(FloatTy);
2559 
2560   return CGM.getIntrinsic(IntrinsicID, Tys);
2561 }
2562 
EmitCommonNeonSISDBuiltinExpr(CodeGenFunction & CGF,const NeonIntrinsicInfo & SISDInfo,SmallVectorImpl<Value * > & Ops,const CallExpr * E)2563 static Value *EmitCommonNeonSISDBuiltinExpr(CodeGenFunction &CGF,
2564                                             const NeonIntrinsicInfo &SISDInfo,
2565                                             SmallVectorImpl<Value *> &Ops,
2566                                             const CallExpr *E) {
2567   unsigned BuiltinID = SISDInfo.BuiltinID;
2568   unsigned int Int = SISDInfo.LLVMIntrinsic;
2569   unsigned Modifier = SISDInfo.TypeModifier;
2570   const char *s = SISDInfo.NameHint;
2571 
2572   switch (BuiltinID) {
2573   case NEON::BI__builtin_neon_vcled_s64:
2574   case NEON::BI__builtin_neon_vcled_u64:
2575   case NEON::BI__builtin_neon_vcles_f32:
2576   case NEON::BI__builtin_neon_vcled_f64:
2577   case NEON::BI__builtin_neon_vcltd_s64:
2578   case NEON::BI__builtin_neon_vcltd_u64:
2579   case NEON::BI__builtin_neon_vclts_f32:
2580   case NEON::BI__builtin_neon_vcltd_f64:
2581   case NEON::BI__builtin_neon_vcales_f32:
2582   case NEON::BI__builtin_neon_vcaled_f64:
2583   case NEON::BI__builtin_neon_vcalts_f32:
2584   case NEON::BI__builtin_neon_vcaltd_f64:
2585     // Only one direction of comparisons actually exist, cmle is actually a cmge
2586     // with swapped operands. The table gives us the right intrinsic but we
2587     // still need to do the swap.
2588     std::swap(Ops[0], Ops[1]);
2589     break;
2590   }
2591 
2592   assert(Int && "Generic code assumes a valid intrinsic");
2593 
2594   // Determine the type(s) of this overloaded AArch64 intrinsic.
2595   const Expr *Arg = E->getArg(0);
2596   llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
2597   Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
2598 
2599   int j = 0;
2600   ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
2601   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
2602        ai != ae; ++ai, ++j) {
2603     llvm::Type *ArgTy = ai->getType();
2604     if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
2605              ArgTy->getPrimitiveSizeInBits())
2606       continue;
2607 
2608     assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
2609     // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
2610     // it before inserting.
2611     Ops[j] =
2612         CGF.Builder.CreateTruncOrBitCast(Ops[j], ArgTy->getVectorElementType());
2613     Ops[j] =
2614         CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
2615   }
2616 
2617   Value *Result = CGF.EmitNeonCall(F, Ops, s);
2618   llvm::Type *ResultType = CGF.ConvertType(E->getType());
2619   if (ResultType->getPrimitiveSizeInBits() <
2620       Result->getType()->getPrimitiveSizeInBits())
2621     return CGF.Builder.CreateExtractElement(Result, C0);
2622 
2623   return CGF.Builder.CreateBitCast(Result, ResultType, s);
2624 }
2625 
EmitCommonNeonBuiltinExpr(unsigned BuiltinID,unsigned LLVMIntrinsic,unsigned AltLLVMIntrinsic,const char * NameHint,unsigned Modifier,const CallExpr * E,SmallVectorImpl<llvm::Value * > & Ops,llvm::Value * Align)2626 Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
2627     unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
2628     const char *NameHint, unsigned Modifier, const CallExpr *E,
2629     SmallVectorImpl<llvm::Value *> &Ops, llvm::Value *Align) {
2630   // Get the last argument, which specifies the vector type.
2631   llvm::APSInt NeonTypeConst;
2632   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
2633   if (!Arg->isIntegerConstantExpr(NeonTypeConst, getContext()))
2634     return nullptr;
2635 
2636   // Determine the type of this overloaded NEON intrinsic.
2637   NeonTypeFlags Type(NeonTypeConst.getZExtValue());
2638   bool Usgn = Type.isUnsigned();
2639   bool Quad = Type.isQuad();
2640 
2641   llvm::VectorType *VTy = GetNeonType(this, Type);
2642   llvm::Type *Ty = VTy;
2643   if (!Ty)
2644     return nullptr;
2645 
2646   unsigned Int = LLVMIntrinsic;
2647   if ((Modifier & UnsignedAlts) && !Usgn)
2648     Int = AltLLVMIntrinsic;
2649 
2650   switch (BuiltinID) {
2651   default: break;
2652   case NEON::BI__builtin_neon_vabs_v:
2653   case NEON::BI__builtin_neon_vabsq_v:
2654     if (VTy->getElementType()->isFloatingPointTy())
2655       return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
2656     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
2657   case NEON::BI__builtin_neon_vaddhn_v: {
2658     llvm::VectorType *SrcTy =
2659         llvm::VectorType::getExtendedElementVectorType(VTy);
2660 
2661     // %sum = add <4 x i32> %lhs, %rhs
2662     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
2663     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
2664     Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
2665 
2666     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
2667     Constant *ShiftAmt = ConstantInt::get(SrcTy->getElementType(),
2668                                        SrcTy->getScalarSizeInBits() / 2);
2669     ShiftAmt = ConstantVector::getSplat(VTy->getNumElements(), ShiftAmt);
2670     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
2671 
2672     // %res = trunc <4 x i32> %high to <4 x i16>
2673     return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
2674   }
2675   case NEON::BI__builtin_neon_vcale_v:
2676   case NEON::BI__builtin_neon_vcaleq_v:
2677   case NEON::BI__builtin_neon_vcalt_v:
2678   case NEON::BI__builtin_neon_vcaltq_v:
2679     std::swap(Ops[0], Ops[1]);
2680   case NEON::BI__builtin_neon_vcage_v:
2681   case NEON::BI__builtin_neon_vcageq_v:
2682   case NEON::BI__builtin_neon_vcagt_v:
2683   case NEON::BI__builtin_neon_vcagtq_v: {
2684     llvm::Type *VecFlt = llvm::VectorType::get(
2685         VTy->getScalarSizeInBits() == 32 ? FloatTy : DoubleTy,
2686         VTy->getNumElements());
2687     llvm::Type *Tys[] = { VTy, VecFlt };
2688     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
2689     return EmitNeonCall(F, Ops, NameHint);
2690   }
2691   case NEON::BI__builtin_neon_vclz_v:
2692   case NEON::BI__builtin_neon_vclzq_v:
2693     // We generate target-independent intrinsic, which needs a second argument
2694     // for whether or not clz of zero is undefined; on ARM it isn't.
2695     Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
2696     break;
2697   case NEON::BI__builtin_neon_vcvt_f32_v:
2698   case NEON::BI__builtin_neon_vcvtq_f32_v:
2699     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2700     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad));
2701     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
2702                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
2703   case NEON::BI__builtin_neon_vcvt_n_f32_v:
2704   case NEON::BI__builtin_neon_vcvt_n_f64_v:
2705   case NEON::BI__builtin_neon_vcvtq_n_f32_v:
2706   case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
2707     bool Double =
2708       (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64);
2709     llvm::Type *FloatTy =
2710         GetNeonType(this, NeonTypeFlags(Double ? NeonTypeFlags::Float64
2711                                                : NeonTypeFlags::Float32,
2712                                         false, Quad));
2713     llvm::Type *Tys[2] = { FloatTy, Ty };
2714     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
2715     Function *F = CGM.getIntrinsic(Int, Tys);
2716     return EmitNeonCall(F, Ops, "vcvt_n");
2717   }
2718   case NEON::BI__builtin_neon_vcvt_n_s32_v:
2719   case NEON::BI__builtin_neon_vcvt_n_u32_v:
2720   case NEON::BI__builtin_neon_vcvt_n_s64_v:
2721   case NEON::BI__builtin_neon_vcvt_n_u64_v:
2722   case NEON::BI__builtin_neon_vcvtq_n_s32_v:
2723   case NEON::BI__builtin_neon_vcvtq_n_u32_v:
2724   case NEON::BI__builtin_neon_vcvtq_n_s64_v:
2725   case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
2726     bool Double =
2727       (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64);
2728     llvm::Type *FloatTy =
2729         GetNeonType(this, NeonTypeFlags(Double ? NeonTypeFlags::Float64
2730                                                : NeonTypeFlags::Float32,
2731                                         false, Quad));
2732     llvm::Type *Tys[2] = { Ty, FloatTy };
2733     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
2734     return EmitNeonCall(F, Ops, "vcvt_n");
2735   }
2736   case NEON::BI__builtin_neon_vcvt_s32_v:
2737   case NEON::BI__builtin_neon_vcvt_u32_v:
2738   case NEON::BI__builtin_neon_vcvt_s64_v:
2739   case NEON::BI__builtin_neon_vcvt_u64_v:
2740   case NEON::BI__builtin_neon_vcvtq_s32_v:
2741   case NEON::BI__builtin_neon_vcvtq_u32_v:
2742   case NEON::BI__builtin_neon_vcvtq_s64_v:
2743   case NEON::BI__builtin_neon_vcvtq_u64_v: {
2744     bool Double =
2745       (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64);
2746     llvm::Type *FloatTy =
2747         GetNeonType(this, NeonTypeFlags(Double ? NeonTypeFlags::Float64
2748                                                : NeonTypeFlags::Float32,
2749                                         false, Quad));
2750     Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
2751     return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
2752                 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
2753   }
2754   case NEON::BI__builtin_neon_vcvta_s32_v:
2755   case NEON::BI__builtin_neon_vcvta_s64_v:
2756   case NEON::BI__builtin_neon_vcvta_u32_v:
2757   case NEON::BI__builtin_neon_vcvta_u64_v:
2758   case NEON::BI__builtin_neon_vcvtaq_s32_v:
2759   case NEON::BI__builtin_neon_vcvtaq_s64_v:
2760   case NEON::BI__builtin_neon_vcvtaq_u32_v:
2761   case NEON::BI__builtin_neon_vcvtaq_u64_v:
2762   case NEON::BI__builtin_neon_vcvtn_s32_v:
2763   case NEON::BI__builtin_neon_vcvtn_s64_v:
2764   case NEON::BI__builtin_neon_vcvtn_u32_v:
2765   case NEON::BI__builtin_neon_vcvtn_u64_v:
2766   case NEON::BI__builtin_neon_vcvtnq_s32_v:
2767   case NEON::BI__builtin_neon_vcvtnq_s64_v:
2768   case NEON::BI__builtin_neon_vcvtnq_u32_v:
2769   case NEON::BI__builtin_neon_vcvtnq_u64_v:
2770   case NEON::BI__builtin_neon_vcvtp_s32_v:
2771   case NEON::BI__builtin_neon_vcvtp_s64_v:
2772   case NEON::BI__builtin_neon_vcvtp_u32_v:
2773   case NEON::BI__builtin_neon_vcvtp_u64_v:
2774   case NEON::BI__builtin_neon_vcvtpq_s32_v:
2775   case NEON::BI__builtin_neon_vcvtpq_s64_v:
2776   case NEON::BI__builtin_neon_vcvtpq_u32_v:
2777   case NEON::BI__builtin_neon_vcvtpq_u64_v:
2778   case NEON::BI__builtin_neon_vcvtm_s32_v:
2779   case NEON::BI__builtin_neon_vcvtm_s64_v:
2780   case NEON::BI__builtin_neon_vcvtm_u32_v:
2781   case NEON::BI__builtin_neon_vcvtm_u64_v:
2782   case NEON::BI__builtin_neon_vcvtmq_s32_v:
2783   case NEON::BI__builtin_neon_vcvtmq_s64_v:
2784   case NEON::BI__builtin_neon_vcvtmq_u32_v:
2785   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
2786     bool Double =
2787       (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64);
2788     llvm::Type *InTy =
2789       GetNeonType(this,
2790                   NeonTypeFlags(Double ? NeonTypeFlags::Float64
2791                                 : NeonTypeFlags::Float32, false, Quad));
2792     llvm::Type *Tys[2] = { Ty, InTy };
2793     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
2794   }
2795   case NEON::BI__builtin_neon_vext_v:
2796   case NEON::BI__builtin_neon_vextq_v: {
2797     int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
2798     SmallVector<Constant*, 16> Indices;
2799     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
2800       Indices.push_back(ConstantInt::get(Int32Ty, i+CV));
2801 
2802     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2803     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2804     Value *SV = llvm::ConstantVector::get(Indices);
2805     return Builder.CreateShuffleVector(Ops[0], Ops[1], SV, "vext");
2806   }
2807   case NEON::BI__builtin_neon_vfma_v:
2808   case NEON::BI__builtin_neon_vfmaq_v: {
2809     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
2810     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2811     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2812     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
2813 
2814     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
2815     return Builder.CreateCall3(F, Ops[1], Ops[2], Ops[0]);
2816   }
2817   case NEON::BI__builtin_neon_vld1_v:
2818   case NEON::BI__builtin_neon_vld1q_v:
2819     Ops.push_back(Align);
2820     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vld1");
2821   case NEON::BI__builtin_neon_vld2_v:
2822   case NEON::BI__builtin_neon_vld2q_v:
2823   case NEON::BI__builtin_neon_vld3_v:
2824   case NEON::BI__builtin_neon_vld3q_v:
2825   case NEON::BI__builtin_neon_vld4_v:
2826   case NEON::BI__builtin_neon_vld4q_v: {
2827     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Ty);
2828     Ops[1] = Builder.CreateCall2(F, Ops[1], Align, NameHint);
2829     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2830     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2831     return Builder.CreateStore(Ops[1], Ops[0]);
2832   }
2833   case NEON::BI__builtin_neon_vld1_dup_v:
2834   case NEON::BI__builtin_neon_vld1q_dup_v: {
2835     Value *V = UndefValue::get(Ty);
2836     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
2837     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2838     LoadInst *Ld = Builder.CreateLoad(Ops[0]);
2839     Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
2840     llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
2841     Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
2842     return EmitNeonSplat(Ops[0], CI);
2843   }
2844   case NEON::BI__builtin_neon_vld2_lane_v:
2845   case NEON::BI__builtin_neon_vld2q_lane_v:
2846   case NEON::BI__builtin_neon_vld3_lane_v:
2847   case NEON::BI__builtin_neon_vld3q_lane_v:
2848   case NEON::BI__builtin_neon_vld4_lane_v:
2849   case NEON::BI__builtin_neon_vld4q_lane_v: {
2850     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Ty);
2851     for (unsigned I = 2; I < Ops.size() - 1; ++I)
2852       Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
2853     Ops.push_back(Align);
2854     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
2855     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2856     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2857     return Builder.CreateStore(Ops[1], Ops[0]);
2858   }
2859   case NEON::BI__builtin_neon_vmovl_v: {
2860     llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
2861     Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
2862     if (Usgn)
2863       return Builder.CreateZExt(Ops[0], Ty, "vmovl");
2864     return Builder.CreateSExt(Ops[0], Ty, "vmovl");
2865   }
2866   case NEON::BI__builtin_neon_vmovn_v: {
2867     llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
2868     Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
2869     return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
2870   }
2871   case NEON::BI__builtin_neon_vmull_v:
2872     // FIXME: the integer vmull operations could be emitted in terms of pure
2873     // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
2874     // hoisting the exts outside loops. Until global ISel comes along that can
2875     // see through such movement this leads to bad CodeGen. So we need an
2876     // intrinsic for now.
2877     Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
2878     Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
2879     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
2880   case NEON::BI__builtin_neon_vpadal_v:
2881   case NEON::BI__builtin_neon_vpadalq_v: {
2882     // The source operand type has twice as many elements of half the size.
2883     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
2884     llvm::Type *EltTy =
2885       llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
2886     llvm::Type *NarrowTy =
2887       llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
2888     llvm::Type *Tys[2] = { Ty, NarrowTy };
2889     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
2890   }
2891   case NEON::BI__builtin_neon_vpaddl_v:
2892   case NEON::BI__builtin_neon_vpaddlq_v: {
2893     // The source operand type has twice as many elements of half the size.
2894     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
2895     llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
2896     llvm::Type *NarrowTy =
2897       llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
2898     llvm::Type *Tys[2] = { Ty, NarrowTy };
2899     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
2900   }
2901   case NEON::BI__builtin_neon_vqdmlal_v:
2902   case NEON::BI__builtin_neon_vqdmlsl_v: {
2903     SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
2904     Value *Mul = EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty),
2905                               MulOps, "vqdmlal");
2906 
2907     SmallVector<Value *, 2> AccumOps;
2908     AccumOps.push_back(Ops[0]);
2909     AccumOps.push_back(Mul);
2910     return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty),
2911                         AccumOps, NameHint);
2912   }
2913   case NEON::BI__builtin_neon_vqshl_n_v:
2914   case NEON::BI__builtin_neon_vqshlq_n_v:
2915     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
2916                         1, false);
2917   case NEON::BI__builtin_neon_vqshlu_n_v:
2918   case NEON::BI__builtin_neon_vqshluq_n_v:
2919     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
2920                         1, false);
2921   case NEON::BI__builtin_neon_vrecpe_v:
2922   case NEON::BI__builtin_neon_vrecpeq_v:
2923   case NEON::BI__builtin_neon_vrsqrte_v:
2924   case NEON::BI__builtin_neon_vrsqrteq_v:
2925     Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
2926     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
2927 
2928   case NEON::BI__builtin_neon_vrshr_n_v:
2929   case NEON::BI__builtin_neon_vrshrq_n_v:
2930     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
2931                         1, true);
2932   case NEON::BI__builtin_neon_vshl_n_v:
2933   case NEON::BI__builtin_neon_vshlq_n_v:
2934     Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
2935     return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
2936                              "vshl_n");
2937   case NEON::BI__builtin_neon_vshll_n_v: {
2938     llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy);
2939     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
2940     if (Usgn)
2941       Ops[0] = Builder.CreateZExt(Ops[0], VTy);
2942     else
2943       Ops[0] = Builder.CreateSExt(Ops[0], VTy);
2944     Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
2945     return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
2946   }
2947   case NEON::BI__builtin_neon_vshrn_n_v: {
2948     llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy);
2949     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
2950     Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
2951     if (Usgn)
2952       Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
2953     else
2954       Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
2955     return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
2956   }
2957   case NEON::BI__builtin_neon_vshr_n_v:
2958   case NEON::BI__builtin_neon_vshrq_n_v:
2959     return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
2960   case NEON::BI__builtin_neon_vst1_v:
2961   case NEON::BI__builtin_neon_vst1q_v:
2962   case NEON::BI__builtin_neon_vst2_v:
2963   case NEON::BI__builtin_neon_vst2q_v:
2964   case NEON::BI__builtin_neon_vst3_v:
2965   case NEON::BI__builtin_neon_vst3q_v:
2966   case NEON::BI__builtin_neon_vst4_v:
2967   case NEON::BI__builtin_neon_vst4q_v:
2968   case NEON::BI__builtin_neon_vst2_lane_v:
2969   case NEON::BI__builtin_neon_vst2q_lane_v:
2970   case NEON::BI__builtin_neon_vst3_lane_v:
2971   case NEON::BI__builtin_neon_vst3q_lane_v:
2972   case NEON::BI__builtin_neon_vst4_lane_v:
2973   case NEON::BI__builtin_neon_vst4q_lane_v:
2974     Ops.push_back(Align);
2975     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "");
2976   case NEON::BI__builtin_neon_vsubhn_v: {
2977     llvm::VectorType *SrcTy =
2978         llvm::VectorType::getExtendedElementVectorType(VTy);
2979 
2980     // %sum = add <4 x i32> %lhs, %rhs
2981     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
2982     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
2983     Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
2984 
2985     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
2986     Constant *ShiftAmt = ConstantInt::get(SrcTy->getElementType(),
2987                                        SrcTy->getScalarSizeInBits() / 2);
2988     ShiftAmt = ConstantVector::getSplat(VTy->getNumElements(), ShiftAmt);
2989     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
2990 
2991     // %res = trunc <4 x i32> %high to <4 x i16>
2992     return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
2993   }
2994   case NEON::BI__builtin_neon_vtrn_v:
2995   case NEON::BI__builtin_neon_vtrnq_v: {
2996     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
2997     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2998     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
2999     Value *SV = nullptr;
3000 
3001     for (unsigned vi = 0; vi != 2; ++vi) {
3002       SmallVector<Constant*, 16> Indices;
3003       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
3004         Indices.push_back(Builder.getInt32(i+vi));
3005         Indices.push_back(Builder.getInt32(i+e+vi));
3006       }
3007       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
3008       SV = llvm::ConstantVector::get(Indices);
3009       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn");
3010       SV = Builder.CreateStore(SV, Addr);
3011     }
3012     return SV;
3013   }
3014   case NEON::BI__builtin_neon_vtst_v:
3015   case NEON::BI__builtin_neon_vtstq_v: {
3016     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3017     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3018     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
3019     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
3020                                 ConstantAggregateZero::get(Ty));
3021     return Builder.CreateSExt(Ops[0], Ty, "vtst");
3022   }
3023   case NEON::BI__builtin_neon_vuzp_v:
3024   case NEON::BI__builtin_neon_vuzpq_v: {
3025     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
3026     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3027     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
3028     Value *SV = nullptr;
3029 
3030     for (unsigned vi = 0; vi != 2; ++vi) {
3031       SmallVector<Constant*, 16> Indices;
3032       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
3033         Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi));
3034 
3035       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
3036       SV = llvm::ConstantVector::get(Indices);
3037       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp");
3038       SV = Builder.CreateStore(SV, Addr);
3039     }
3040     return SV;
3041   }
3042   case NEON::BI__builtin_neon_vzip_v:
3043   case NEON::BI__builtin_neon_vzipq_v: {
3044     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
3045     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3046     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
3047     Value *SV = nullptr;
3048 
3049     for (unsigned vi = 0; vi != 2; ++vi) {
3050       SmallVector<Constant*, 16> Indices;
3051       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
3052         Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1));
3053         Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e));
3054       }
3055       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
3056       SV = llvm::ConstantVector::get(Indices);
3057       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip");
3058       SV = Builder.CreateStore(SV, Addr);
3059     }
3060     return SV;
3061   }
3062   }
3063 
3064   assert(Int && "Expected valid intrinsic number");
3065 
3066   // Determine the type(s) of this overloaded AArch64 intrinsic.
3067   Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
3068 
3069   Value *Result = EmitNeonCall(F, Ops, NameHint);
3070   llvm::Type *ResultType = ConvertType(E->getType());
3071   // AArch64 intrinsic one-element vector type cast to
3072   // scalar type expected by the builtin
3073   return Builder.CreateBitCast(Result, ResultType, NameHint);
3074 }
3075 
EmitAArch64CompareBuiltinExpr(Value * Op,llvm::Type * Ty,const CmpInst::Predicate Fp,const CmpInst::Predicate Ip,const Twine & Name)3076 Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
3077     Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
3078     const CmpInst::Predicate Ip, const Twine &Name) {
3079   llvm::Type *OTy = Op->getType();
3080 
3081   // FIXME: this is utterly horrific. We should not be looking at previous
3082   // codegen context to find out what needs doing. Unfortunately TableGen
3083   // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
3084   // (etc).
3085   if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
3086     OTy = BI->getOperand(0)->getType();
3087 
3088   Op = Builder.CreateBitCast(Op, OTy);
3089   if (OTy->getScalarType()->isFloatingPointTy()) {
3090     Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
3091   } else {
3092     Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
3093   }
3094   return Builder.CreateSExt(Op, Ty, Name);
3095 }
3096 
packTBLDVectorList(CodeGenFunction & CGF,ArrayRef<Value * > Ops,Value * ExtOp,Value * IndexOp,llvm::Type * ResTy,unsigned IntID,const char * Name)3097 static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
3098                                  Value *ExtOp, Value *IndexOp,
3099                                  llvm::Type *ResTy, unsigned IntID,
3100                                  const char *Name) {
3101   SmallVector<Value *, 2> TblOps;
3102   if (ExtOp)
3103     TblOps.push_back(ExtOp);
3104 
3105   // Build a vector containing sequential number like (0, 1, 2, ..., 15)
3106   SmallVector<Constant*, 16> Indices;
3107   llvm::VectorType *TblTy = cast<llvm::VectorType>(Ops[0]->getType());
3108   for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
3109     Indices.push_back(ConstantInt::get(CGF.Int32Ty, 2*i));
3110     Indices.push_back(ConstantInt::get(CGF.Int32Ty, 2*i+1));
3111   }
3112   Value *SV = llvm::ConstantVector::get(Indices);
3113 
3114   int PairPos = 0, End = Ops.size() - 1;
3115   while (PairPos < End) {
3116     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
3117                                                      Ops[PairPos+1], SV, Name));
3118     PairPos += 2;
3119   }
3120 
3121   // If there's an odd number of 64-bit lookup table, fill the high 64-bit
3122   // of the 128-bit lookup table with zero.
3123   if (PairPos == End) {
3124     Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
3125     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
3126                                                      ZeroTbl, SV, Name));
3127   }
3128 
3129   Function *TblF;
3130   TblOps.push_back(IndexOp);
3131   TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
3132 
3133   return CGF.EmitNeonCall(TblF, TblOps, Name);
3134 }
3135 
GetValueForARMHint(unsigned BuiltinID)3136 Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
3137   switch (BuiltinID) {
3138   default:
3139     return nullptr;
3140   case ARM::BI__builtin_arm_nop:
3141     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
3142                               llvm::ConstantInt::get(Int32Ty, 0));
3143   case ARM::BI__builtin_arm_yield:
3144   case ARM::BI__yield:
3145     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
3146                               llvm::ConstantInt::get(Int32Ty, 1));
3147   case ARM::BI__builtin_arm_wfe:
3148   case ARM::BI__wfe:
3149     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
3150                               llvm::ConstantInt::get(Int32Ty, 2));
3151   case ARM::BI__builtin_arm_wfi:
3152   case ARM::BI__wfi:
3153     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
3154                               llvm::ConstantInt::get(Int32Ty, 3));
3155   case ARM::BI__builtin_arm_sev:
3156   case ARM::BI__sev:
3157     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
3158                               llvm::ConstantInt::get(Int32Ty, 4));
3159   case ARM::BI__builtin_arm_sevl:
3160   case ARM::BI__sevl:
3161     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
3162                               llvm::ConstantInt::get(Int32Ty, 5));
3163   }
3164 }
3165 
EmitARMBuiltinExpr(unsigned BuiltinID,const CallExpr * E)3166 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
3167                                            const CallExpr *E) {
3168   if (auto Hint = GetValueForARMHint(BuiltinID))
3169     return Hint;
3170 
3171   if (BuiltinID == ARM::BI__emit) {
3172     bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
3173     llvm::FunctionType *FTy =
3174         llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
3175 
3176     APSInt Value;
3177     if (!E->getArg(0)->EvaluateAsInt(Value, CGM.getContext()))
3178       llvm_unreachable("Sema will ensure that the parameter is constant");
3179 
3180     uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
3181 
3182     llvm::InlineAsm *Emit =
3183         IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
3184                                  /*SideEffects=*/true)
3185                 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
3186                                  /*SideEffects=*/true);
3187 
3188     return Builder.CreateCall(Emit);
3189   }
3190 
3191   if (BuiltinID == ARM::BI__builtin_arm_dbg) {
3192     Value *Option = EmitScalarExpr(E->getArg(0));
3193     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
3194   }
3195 
3196   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
3197     Value *Address = EmitScalarExpr(E->getArg(0));
3198     Value *RW      = EmitScalarExpr(E->getArg(1));
3199     Value *IsData  = EmitScalarExpr(E->getArg(2));
3200 
3201     // Locality is not supported on ARM target
3202     Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
3203 
3204     Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
3205     return Builder.CreateCall4(F, Address, RW, Locality, IsData);
3206   }
3207 
3208   if (BuiltinID == ARM::BI__builtin_arm_rbit) {
3209     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_rbit),
3210                                                EmitScalarExpr(E->getArg(0)),
3211                               "rbit");
3212   }
3213 
3214   if (BuiltinID == ARM::BI__clear_cache) {
3215     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
3216     const FunctionDecl *FD = E->getDirectCallee();
3217     SmallVector<Value*, 2> Ops;
3218     for (unsigned i = 0; i < 2; i++)
3219       Ops.push_back(EmitScalarExpr(E->getArg(i)));
3220     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
3221     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
3222     StringRef Name = FD->getName();
3223     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
3224   }
3225 
3226   if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
3227       ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
3228         BuiltinID == ARM::BI__builtin_arm_ldaex) &&
3229        getContext().getTypeSize(E->getType()) == 64) ||
3230       BuiltinID == ARM::BI__ldrexd) {
3231     Function *F;
3232 
3233     switch (BuiltinID) {
3234     default: llvm_unreachable("unexpected builtin");
3235     case ARM::BI__builtin_arm_ldaex:
3236       F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
3237       break;
3238     case ARM::BI__builtin_arm_ldrexd:
3239     case ARM::BI__builtin_arm_ldrex:
3240     case ARM::BI__ldrexd:
3241       F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
3242       break;
3243     }
3244 
3245     Value *LdPtr = EmitScalarExpr(E->getArg(0));
3246     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
3247                                     "ldrexd");
3248 
3249     Value *Val0 = Builder.CreateExtractValue(Val, 1);
3250     Value *Val1 = Builder.CreateExtractValue(Val, 0);
3251     Val0 = Builder.CreateZExt(Val0, Int64Ty);
3252     Val1 = Builder.CreateZExt(Val1, Int64Ty);
3253 
3254     Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
3255     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
3256     Val = Builder.CreateOr(Val, Val1);
3257     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
3258   }
3259 
3260   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
3261       BuiltinID == ARM::BI__builtin_arm_ldaex) {
3262     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
3263 
3264     QualType Ty = E->getType();
3265     llvm::Type *RealResTy = ConvertType(Ty);
3266     llvm::Type *IntResTy = llvm::IntegerType::get(getLLVMContext(),
3267                                                   getContext().getTypeSize(Ty));
3268     LoadAddr = Builder.CreateBitCast(LoadAddr, IntResTy->getPointerTo());
3269 
3270     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
3271                                        ? Intrinsic::arm_ldaex
3272                                        : Intrinsic::arm_ldrex,
3273                                    LoadAddr->getType());
3274     Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
3275 
3276     if (RealResTy->isPointerTy())
3277       return Builder.CreateIntToPtr(Val, RealResTy);
3278     else {
3279       Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
3280       return Builder.CreateBitCast(Val, RealResTy);
3281     }
3282   }
3283 
3284   if (BuiltinID == ARM::BI__builtin_arm_strexd ||
3285       ((BuiltinID == ARM::BI__builtin_arm_stlex ||
3286         BuiltinID == ARM::BI__builtin_arm_strex) &&
3287        getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
3288     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
3289                                        ? Intrinsic::arm_stlexd
3290                                        : Intrinsic::arm_strexd);
3291     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, nullptr);
3292 
3293     Value *Tmp = CreateMemTemp(E->getArg(0)->getType());
3294     Value *Val = EmitScalarExpr(E->getArg(0));
3295     Builder.CreateStore(Val, Tmp);
3296 
3297     Value *LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
3298     Val = Builder.CreateLoad(LdPtr);
3299 
3300     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
3301     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
3302     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
3303     return Builder.CreateCall3(F, Arg0, Arg1, StPtr, "strexd");
3304   }
3305 
3306   if (BuiltinID == ARM::BI__builtin_arm_strex ||
3307       BuiltinID == ARM::BI__builtin_arm_stlex) {
3308     Value *StoreVal = EmitScalarExpr(E->getArg(0));
3309     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
3310 
3311     QualType Ty = E->getArg(0)->getType();
3312     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
3313                                                  getContext().getTypeSize(Ty));
3314     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
3315 
3316     if (StoreVal->getType()->isPointerTy())
3317       StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
3318     else {
3319       StoreVal = Builder.CreateBitCast(StoreVal, StoreTy);
3320       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
3321     }
3322 
3323     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
3324                                        ? Intrinsic::arm_stlex
3325                                        : Intrinsic::arm_strex,
3326                                    StoreAddr->getType());
3327     return Builder.CreateCall2(F, StoreVal, StoreAddr, "strex");
3328   }
3329 
3330   if (BuiltinID == ARM::BI__builtin_arm_clrex) {
3331     Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
3332     return Builder.CreateCall(F);
3333   }
3334 
3335   // CRC32
3336   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
3337   switch (BuiltinID) {
3338   case ARM::BI__builtin_arm_crc32b:
3339     CRCIntrinsicID = Intrinsic::arm_crc32b; break;
3340   case ARM::BI__builtin_arm_crc32cb:
3341     CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
3342   case ARM::BI__builtin_arm_crc32h:
3343     CRCIntrinsicID = Intrinsic::arm_crc32h; break;
3344   case ARM::BI__builtin_arm_crc32ch:
3345     CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
3346   case ARM::BI__builtin_arm_crc32w:
3347   case ARM::BI__builtin_arm_crc32d:
3348     CRCIntrinsicID = Intrinsic::arm_crc32w; break;
3349   case ARM::BI__builtin_arm_crc32cw:
3350   case ARM::BI__builtin_arm_crc32cd:
3351     CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
3352   }
3353 
3354   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
3355     Value *Arg0 = EmitScalarExpr(E->getArg(0));
3356     Value *Arg1 = EmitScalarExpr(E->getArg(1));
3357 
3358     // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
3359     // intrinsics, hence we need different codegen for these cases.
3360     if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
3361         BuiltinID == ARM::BI__builtin_arm_crc32cd) {
3362       Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
3363       Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
3364       Value *Arg1b = Builder.CreateLShr(Arg1, C1);
3365       Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
3366 
3367       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
3368       Value *Res = Builder.CreateCall2(F, Arg0, Arg1a);
3369       return Builder.CreateCall2(F, Res, Arg1b);
3370     } else {
3371       Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
3372 
3373       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
3374       return Builder.CreateCall2(F, Arg0, Arg1);
3375     }
3376   }
3377 
3378   SmallVector<Value*, 4> Ops;
3379   llvm::Value *Align = nullptr;
3380   for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
3381     if (i == 0) {
3382       switch (BuiltinID) {
3383       case NEON::BI__builtin_neon_vld1_v:
3384       case NEON::BI__builtin_neon_vld1q_v:
3385       case NEON::BI__builtin_neon_vld1q_lane_v:
3386       case NEON::BI__builtin_neon_vld1_lane_v:
3387       case NEON::BI__builtin_neon_vld1_dup_v:
3388       case NEON::BI__builtin_neon_vld1q_dup_v:
3389       case NEON::BI__builtin_neon_vst1_v:
3390       case NEON::BI__builtin_neon_vst1q_v:
3391       case NEON::BI__builtin_neon_vst1q_lane_v:
3392       case NEON::BI__builtin_neon_vst1_lane_v:
3393       case NEON::BI__builtin_neon_vst2_v:
3394       case NEON::BI__builtin_neon_vst2q_v:
3395       case NEON::BI__builtin_neon_vst2_lane_v:
3396       case NEON::BI__builtin_neon_vst2q_lane_v:
3397       case NEON::BI__builtin_neon_vst3_v:
3398       case NEON::BI__builtin_neon_vst3q_v:
3399       case NEON::BI__builtin_neon_vst3_lane_v:
3400       case NEON::BI__builtin_neon_vst3q_lane_v:
3401       case NEON::BI__builtin_neon_vst4_v:
3402       case NEON::BI__builtin_neon_vst4q_v:
3403       case NEON::BI__builtin_neon_vst4_lane_v:
3404       case NEON::BI__builtin_neon_vst4q_lane_v:
3405         // Get the alignment for the argument in addition to the value;
3406         // we'll use it later.
3407         std::pair<llvm::Value*, unsigned> Src =
3408             EmitPointerWithAlignment(E->getArg(0));
3409         Ops.push_back(Src.first);
3410         Align = Builder.getInt32(Src.second);
3411         continue;
3412       }
3413     }
3414     if (i == 1) {
3415       switch (BuiltinID) {
3416       case NEON::BI__builtin_neon_vld2_v:
3417       case NEON::BI__builtin_neon_vld2q_v:
3418       case NEON::BI__builtin_neon_vld3_v:
3419       case NEON::BI__builtin_neon_vld3q_v:
3420       case NEON::BI__builtin_neon_vld4_v:
3421       case NEON::BI__builtin_neon_vld4q_v:
3422       case NEON::BI__builtin_neon_vld2_lane_v:
3423       case NEON::BI__builtin_neon_vld2q_lane_v:
3424       case NEON::BI__builtin_neon_vld3_lane_v:
3425       case NEON::BI__builtin_neon_vld3q_lane_v:
3426       case NEON::BI__builtin_neon_vld4_lane_v:
3427       case NEON::BI__builtin_neon_vld4q_lane_v:
3428       case NEON::BI__builtin_neon_vld2_dup_v:
3429       case NEON::BI__builtin_neon_vld3_dup_v:
3430       case NEON::BI__builtin_neon_vld4_dup_v:
3431         // Get the alignment for the argument in addition to the value;
3432         // we'll use it later.
3433         std::pair<llvm::Value*, unsigned> Src =
3434             EmitPointerWithAlignment(E->getArg(1));
3435         Ops.push_back(Src.first);
3436         Align = Builder.getInt32(Src.second);
3437         continue;
3438       }
3439     }
3440     Ops.push_back(EmitScalarExpr(E->getArg(i)));
3441   }
3442 
3443   switch (BuiltinID) {
3444   default: break;
3445   // vget_lane and vset_lane are not overloaded and do not have an extra
3446   // argument that specifies the vector type.
3447   case NEON::BI__builtin_neon_vget_lane_i8:
3448   case NEON::BI__builtin_neon_vget_lane_i16:
3449   case NEON::BI__builtin_neon_vget_lane_i32:
3450   case NEON::BI__builtin_neon_vget_lane_i64:
3451   case NEON::BI__builtin_neon_vget_lane_f32:
3452   case NEON::BI__builtin_neon_vgetq_lane_i8:
3453   case NEON::BI__builtin_neon_vgetq_lane_i16:
3454   case NEON::BI__builtin_neon_vgetq_lane_i32:
3455   case NEON::BI__builtin_neon_vgetq_lane_i64:
3456   case NEON::BI__builtin_neon_vgetq_lane_f32:
3457     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
3458                                         "vget_lane");
3459   case NEON::BI__builtin_neon_vset_lane_i8:
3460   case NEON::BI__builtin_neon_vset_lane_i16:
3461   case NEON::BI__builtin_neon_vset_lane_i32:
3462   case NEON::BI__builtin_neon_vset_lane_i64:
3463   case NEON::BI__builtin_neon_vset_lane_f32:
3464   case NEON::BI__builtin_neon_vsetq_lane_i8:
3465   case NEON::BI__builtin_neon_vsetq_lane_i16:
3466   case NEON::BI__builtin_neon_vsetq_lane_i32:
3467   case NEON::BI__builtin_neon_vsetq_lane_i64:
3468   case NEON::BI__builtin_neon_vsetq_lane_f32:
3469     Ops.push_back(EmitScalarExpr(E->getArg(2)));
3470     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
3471 
3472   // Non-polymorphic crypto instructions also not overloaded
3473   case NEON::BI__builtin_neon_vsha1h_u32:
3474     Ops.push_back(EmitScalarExpr(E->getArg(0)));
3475     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
3476                         "vsha1h");
3477   case NEON::BI__builtin_neon_vsha1cq_u32:
3478     Ops.push_back(EmitScalarExpr(E->getArg(2)));
3479     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
3480                         "vsha1h");
3481   case NEON::BI__builtin_neon_vsha1pq_u32:
3482     Ops.push_back(EmitScalarExpr(E->getArg(2)));
3483     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
3484                         "vsha1h");
3485   case NEON::BI__builtin_neon_vsha1mq_u32:
3486     Ops.push_back(EmitScalarExpr(E->getArg(2)));
3487     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
3488                         "vsha1h");
3489   }
3490 
3491   // Get the last argument, which specifies the vector type.
3492   llvm::APSInt Result;
3493   const Expr *Arg = E->getArg(E->getNumArgs()-1);
3494   if (!Arg->isIntegerConstantExpr(Result, getContext()))
3495     return nullptr;
3496 
3497   if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
3498       BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
3499     // Determine the overloaded type of this builtin.
3500     llvm::Type *Ty;
3501     if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
3502       Ty = FloatTy;
3503     else
3504       Ty = DoubleTy;
3505 
3506     // Determine whether this is an unsigned conversion or not.
3507     bool usgn = Result.getZExtValue() == 1;
3508     unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
3509 
3510     // Call the appropriate intrinsic.
3511     Function *F = CGM.getIntrinsic(Int, Ty);
3512     return Builder.CreateCall(F, Ops, "vcvtr");
3513   }
3514 
3515   // Determine the type of this overloaded NEON intrinsic.
3516   NeonTypeFlags Type(Result.getZExtValue());
3517   bool usgn = Type.isUnsigned();
3518   bool rightShift = false;
3519 
3520   llvm::VectorType *VTy = GetNeonType(this, Type);
3521   llvm::Type *Ty = VTy;
3522   if (!Ty)
3523     return nullptr;
3524 
3525   // Many NEON builtins have identical semantics and uses in ARM and
3526   // AArch64. Emit these in a single function.
3527   auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
3528   const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
3529       IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
3530   if (Builtin)
3531     return EmitCommonNeonBuiltinExpr(
3532         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
3533         Builtin->NameHint, Builtin->TypeModifier, E, Ops, Align);
3534 
3535   unsigned Int;
3536   switch (BuiltinID) {
3537   default: return nullptr;
3538   case NEON::BI__builtin_neon_vld1q_lane_v:
3539     // Handle 64-bit integer elements as a special case.  Use shuffles of
3540     // one-element vectors to avoid poor code for i64 in the backend.
3541     if (VTy->getElementType()->isIntegerTy(64)) {
3542       // Extract the other lane.
3543       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3544       int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
3545       Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
3546       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
3547       // Load the value as a one-element vector.
3548       Ty = llvm::VectorType::get(VTy->getElementType(), 1);
3549       Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Ty);
3550       Value *Ld = Builder.CreateCall2(F, Ops[0], Align);
3551       // Combine them.
3552       SmallVector<Constant*, 2> Indices;
3553       Indices.push_back(ConstantInt::get(Int32Ty, 1-Lane));
3554       Indices.push_back(ConstantInt::get(Int32Ty, Lane));
3555       SV = llvm::ConstantVector::get(Indices);
3556       return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane");
3557     }
3558     // fall through
3559   case NEON::BI__builtin_neon_vld1_lane_v: {
3560     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3561     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
3562     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3563     LoadInst *Ld = Builder.CreateLoad(Ops[0]);
3564     Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
3565     return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
3566   }
3567   case NEON::BI__builtin_neon_vld2_dup_v:
3568   case NEON::BI__builtin_neon_vld3_dup_v:
3569   case NEON::BI__builtin_neon_vld4_dup_v: {
3570     // Handle 64-bit elements as a special-case.  There is no "dup" needed.
3571     if (VTy->getElementType()->getPrimitiveSizeInBits() == 64) {
3572       switch (BuiltinID) {
3573       case NEON::BI__builtin_neon_vld2_dup_v:
3574         Int = Intrinsic::arm_neon_vld2;
3575         break;
3576       case NEON::BI__builtin_neon_vld3_dup_v:
3577         Int = Intrinsic::arm_neon_vld3;
3578         break;
3579       case NEON::BI__builtin_neon_vld4_dup_v:
3580         Int = Intrinsic::arm_neon_vld4;
3581         break;
3582       default: llvm_unreachable("unknown vld_dup intrinsic?");
3583       }
3584       Function *F = CGM.getIntrinsic(Int, Ty);
3585       Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld_dup");
3586       Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
3587       Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3588       return Builder.CreateStore(Ops[1], Ops[0]);
3589     }
3590     switch (BuiltinID) {
3591     case NEON::BI__builtin_neon_vld2_dup_v:
3592       Int = Intrinsic::arm_neon_vld2lane;
3593       break;
3594     case NEON::BI__builtin_neon_vld3_dup_v:
3595       Int = Intrinsic::arm_neon_vld3lane;
3596       break;
3597     case NEON::BI__builtin_neon_vld4_dup_v:
3598       Int = Intrinsic::arm_neon_vld4lane;
3599       break;
3600     default: llvm_unreachable("unknown vld_dup intrinsic?");
3601     }
3602     Function *F = CGM.getIntrinsic(Int, Ty);
3603     llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType());
3604 
3605     SmallVector<Value*, 6> Args;
3606     Args.push_back(Ops[1]);
3607     Args.append(STy->getNumElements(), UndefValue::get(Ty));
3608 
3609     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
3610     Args.push_back(CI);
3611     Args.push_back(Align);
3612 
3613     Ops[1] = Builder.CreateCall(F, Args, "vld_dup");
3614     // splat lane 0 to all elts in each vector of the result.
3615     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3616       Value *Val = Builder.CreateExtractValue(Ops[1], i);
3617       Value *Elt = Builder.CreateBitCast(Val, Ty);
3618       Elt = EmitNeonSplat(Elt, CI);
3619       Elt = Builder.CreateBitCast(Elt, Val->getType());
3620       Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i);
3621     }
3622     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
3623     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3624     return Builder.CreateStore(Ops[1], Ops[0]);
3625   }
3626   case NEON::BI__builtin_neon_vqrshrn_n_v:
3627     Int =
3628       usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
3629     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
3630                         1, true);
3631   case NEON::BI__builtin_neon_vqrshrun_n_v:
3632     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
3633                         Ops, "vqrshrun_n", 1, true);
3634   case NEON::BI__builtin_neon_vqshrn_n_v:
3635     Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
3636     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
3637                         1, true);
3638   case NEON::BI__builtin_neon_vqshrun_n_v:
3639     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
3640                         Ops, "vqshrun_n", 1, true);
3641   case NEON::BI__builtin_neon_vrecpe_v:
3642   case NEON::BI__builtin_neon_vrecpeq_v:
3643     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
3644                         Ops, "vrecpe");
3645   case NEON::BI__builtin_neon_vrshrn_n_v:
3646     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
3647                         Ops, "vrshrn_n", 1, true);
3648   case NEON::BI__builtin_neon_vrsra_n_v:
3649   case NEON::BI__builtin_neon_vrsraq_n_v:
3650     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3651     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3652     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
3653     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
3654     Ops[1] = Builder.CreateCall2(CGM.getIntrinsic(Int, Ty), Ops[1], Ops[2]);
3655     return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
3656   case NEON::BI__builtin_neon_vsri_n_v:
3657   case NEON::BI__builtin_neon_vsriq_n_v:
3658     rightShift = true;
3659   case NEON::BI__builtin_neon_vsli_n_v:
3660   case NEON::BI__builtin_neon_vsliq_n_v:
3661     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
3662     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
3663                         Ops, "vsli_n");
3664   case NEON::BI__builtin_neon_vsra_n_v:
3665   case NEON::BI__builtin_neon_vsraq_n_v:
3666     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3667     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
3668     return Builder.CreateAdd(Ops[0], Ops[1]);
3669   case NEON::BI__builtin_neon_vst1q_lane_v:
3670     // Handle 64-bit integer elements as a special case.  Use a shuffle to get
3671     // a one-element vector and avoid poor code for i64 in the backend.
3672     if (VTy->getElementType()->isIntegerTy(64)) {
3673       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3674       Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
3675       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
3676       Ops[2] = Align;
3677       return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
3678                                                  Ops[1]->getType()), Ops);
3679     }
3680     // fall through
3681   case NEON::BI__builtin_neon_vst1_lane_v: {
3682     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3683     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
3684     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
3685     StoreInst *St = Builder.CreateStore(Ops[1],
3686                                         Builder.CreateBitCast(Ops[0], Ty));
3687     St->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
3688     return St;
3689   }
3690   case NEON::BI__builtin_neon_vtbl1_v:
3691     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
3692                         Ops, "vtbl1");
3693   case NEON::BI__builtin_neon_vtbl2_v:
3694     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
3695                         Ops, "vtbl2");
3696   case NEON::BI__builtin_neon_vtbl3_v:
3697     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
3698                         Ops, "vtbl3");
3699   case NEON::BI__builtin_neon_vtbl4_v:
3700     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
3701                         Ops, "vtbl4");
3702   case NEON::BI__builtin_neon_vtbx1_v:
3703     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
3704                         Ops, "vtbx1");
3705   case NEON::BI__builtin_neon_vtbx2_v:
3706     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
3707                         Ops, "vtbx2");
3708   case NEON::BI__builtin_neon_vtbx3_v:
3709     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
3710                         Ops, "vtbx3");
3711   case NEON::BI__builtin_neon_vtbx4_v:
3712     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
3713                         Ops, "vtbx4");
3714   }
3715 }
3716 
EmitAArch64TblBuiltinExpr(CodeGenFunction & CGF,unsigned BuiltinID,const CallExpr * E,SmallVectorImpl<Value * > & Ops)3717 static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
3718                                       const CallExpr *E,
3719                                       SmallVectorImpl<Value *> &Ops) {
3720   unsigned int Int = 0;
3721   const char *s = nullptr;
3722 
3723   switch (BuiltinID) {
3724   default:
3725     return nullptr;
3726   case NEON::BI__builtin_neon_vtbl1_v:
3727   case NEON::BI__builtin_neon_vqtbl1_v:
3728   case NEON::BI__builtin_neon_vqtbl1q_v:
3729   case NEON::BI__builtin_neon_vtbl2_v:
3730   case NEON::BI__builtin_neon_vqtbl2_v:
3731   case NEON::BI__builtin_neon_vqtbl2q_v:
3732   case NEON::BI__builtin_neon_vtbl3_v:
3733   case NEON::BI__builtin_neon_vqtbl3_v:
3734   case NEON::BI__builtin_neon_vqtbl3q_v:
3735   case NEON::BI__builtin_neon_vtbl4_v:
3736   case NEON::BI__builtin_neon_vqtbl4_v:
3737   case NEON::BI__builtin_neon_vqtbl4q_v:
3738     break;
3739   case NEON::BI__builtin_neon_vtbx1_v:
3740   case NEON::BI__builtin_neon_vqtbx1_v:
3741   case NEON::BI__builtin_neon_vqtbx1q_v:
3742   case NEON::BI__builtin_neon_vtbx2_v:
3743   case NEON::BI__builtin_neon_vqtbx2_v:
3744   case NEON::BI__builtin_neon_vqtbx2q_v:
3745   case NEON::BI__builtin_neon_vtbx3_v:
3746   case NEON::BI__builtin_neon_vqtbx3_v:
3747   case NEON::BI__builtin_neon_vqtbx3q_v:
3748   case NEON::BI__builtin_neon_vtbx4_v:
3749   case NEON::BI__builtin_neon_vqtbx4_v:
3750   case NEON::BI__builtin_neon_vqtbx4q_v:
3751     break;
3752   }
3753 
3754   assert(E->getNumArgs() >= 3);
3755 
3756   // Get the last argument, which specifies the vector type.
3757   llvm::APSInt Result;
3758   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
3759   if (!Arg->isIntegerConstantExpr(Result, CGF.getContext()))
3760     return nullptr;
3761 
3762   // Determine the type of this overloaded NEON intrinsic.
3763   NeonTypeFlags Type(Result.getZExtValue());
3764   llvm::VectorType *VTy = GetNeonType(&CGF, Type);
3765   llvm::Type *Ty = VTy;
3766   if (!Ty)
3767     return nullptr;
3768 
3769   unsigned nElts = VTy->getNumElements();
3770 
3771   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3772 
3773   // AArch64 scalar builtins are not overloaded, they do not have an extra
3774   // argument that specifies the vector type, need to handle each case.
3775   SmallVector<Value *, 2> TblOps;
3776   switch (BuiltinID) {
3777   case NEON::BI__builtin_neon_vtbl1_v: {
3778     TblOps.push_back(Ops[0]);
3779     return packTBLDVectorList(CGF, TblOps, nullptr, Ops[1], Ty,
3780                               Intrinsic::aarch64_neon_tbl1, "vtbl1");
3781   }
3782   case NEON::BI__builtin_neon_vtbl2_v: {
3783     TblOps.push_back(Ops[0]);
3784     TblOps.push_back(Ops[1]);
3785     return packTBLDVectorList(CGF, TblOps, nullptr, Ops[2], Ty,
3786                               Intrinsic::aarch64_neon_tbl1, "vtbl1");
3787   }
3788   case NEON::BI__builtin_neon_vtbl3_v: {
3789     TblOps.push_back(Ops[0]);
3790     TblOps.push_back(Ops[1]);
3791     TblOps.push_back(Ops[2]);
3792     return packTBLDVectorList(CGF, TblOps, nullptr, Ops[3], Ty,
3793                               Intrinsic::aarch64_neon_tbl2, "vtbl2");
3794   }
3795   case NEON::BI__builtin_neon_vtbl4_v: {
3796     TblOps.push_back(Ops[0]);
3797     TblOps.push_back(Ops[1]);
3798     TblOps.push_back(Ops[2]);
3799     TblOps.push_back(Ops[3]);
3800     return packTBLDVectorList(CGF, TblOps, nullptr, Ops[4], Ty,
3801                               Intrinsic::aarch64_neon_tbl2, "vtbl2");
3802   }
3803   case NEON::BI__builtin_neon_vtbx1_v: {
3804     TblOps.push_back(Ops[1]);
3805     Value *TblRes = packTBLDVectorList(CGF, TblOps, nullptr, Ops[2], Ty,
3806                                        Intrinsic::aarch64_neon_tbl1, "vtbl1");
3807 
3808     llvm::Constant *Eight = ConstantInt::get(VTy->getElementType(), 8);
3809     Value* EightV = llvm::ConstantVector::getSplat(nElts, Eight);
3810     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
3811     CmpRes = Builder.CreateSExt(CmpRes, Ty);
3812 
3813     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
3814     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
3815     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
3816   }
3817   case NEON::BI__builtin_neon_vtbx2_v: {
3818     TblOps.push_back(Ops[1]);
3819     TblOps.push_back(Ops[2]);
3820     return packTBLDVectorList(CGF, TblOps, Ops[0], Ops[3], Ty,
3821                               Intrinsic::aarch64_neon_tbx1, "vtbx1");
3822   }
3823   case NEON::BI__builtin_neon_vtbx3_v: {
3824     TblOps.push_back(Ops[1]);
3825     TblOps.push_back(Ops[2]);
3826     TblOps.push_back(Ops[3]);
3827     Value *TblRes = packTBLDVectorList(CGF, TblOps, nullptr, Ops[4], Ty,
3828                                        Intrinsic::aarch64_neon_tbl2, "vtbl2");
3829 
3830     llvm::Constant *TwentyFour = ConstantInt::get(VTy->getElementType(), 24);
3831     Value* TwentyFourV = llvm::ConstantVector::getSplat(nElts, TwentyFour);
3832     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
3833                                            TwentyFourV);
3834     CmpRes = Builder.CreateSExt(CmpRes, Ty);
3835 
3836     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
3837     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
3838     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
3839   }
3840   case NEON::BI__builtin_neon_vtbx4_v: {
3841     TblOps.push_back(Ops[1]);
3842     TblOps.push_back(Ops[2]);
3843     TblOps.push_back(Ops[3]);
3844     TblOps.push_back(Ops[4]);
3845     return packTBLDVectorList(CGF, TblOps, Ops[0], Ops[5], Ty,
3846                               Intrinsic::aarch64_neon_tbx2, "vtbx2");
3847   }
3848   case NEON::BI__builtin_neon_vqtbl1_v:
3849   case NEON::BI__builtin_neon_vqtbl1q_v:
3850     Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
3851   case NEON::BI__builtin_neon_vqtbl2_v:
3852   case NEON::BI__builtin_neon_vqtbl2q_v: {
3853     Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
3854   case NEON::BI__builtin_neon_vqtbl3_v:
3855   case NEON::BI__builtin_neon_vqtbl3q_v:
3856     Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
3857   case NEON::BI__builtin_neon_vqtbl4_v:
3858   case NEON::BI__builtin_neon_vqtbl4q_v:
3859     Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
3860   case NEON::BI__builtin_neon_vqtbx1_v:
3861   case NEON::BI__builtin_neon_vqtbx1q_v:
3862     Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
3863   case NEON::BI__builtin_neon_vqtbx2_v:
3864   case NEON::BI__builtin_neon_vqtbx2q_v:
3865     Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
3866   case NEON::BI__builtin_neon_vqtbx3_v:
3867   case NEON::BI__builtin_neon_vqtbx3q_v:
3868     Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
3869   case NEON::BI__builtin_neon_vqtbx4_v:
3870   case NEON::BI__builtin_neon_vqtbx4q_v:
3871     Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
3872   }
3873   }
3874 
3875   if (!Int)
3876     return nullptr;
3877 
3878   Function *F = CGF.CGM.getIntrinsic(Int, Ty);
3879   return CGF.EmitNeonCall(F, Ops, s);
3880 }
3881 
vectorWrapScalar16(Value * Op)3882 Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
3883   llvm::Type *VTy = llvm::VectorType::get(Int16Ty, 4);
3884   Op = Builder.CreateBitCast(Op, Int16Ty);
3885   Value *V = UndefValue::get(VTy);
3886   llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
3887   Op = Builder.CreateInsertElement(V, Op, CI);
3888   return Op;
3889 }
3890 
vectorWrapScalar8(Value * Op)3891 Value *CodeGenFunction::vectorWrapScalar8(Value *Op) {
3892   llvm::Type *VTy = llvm::VectorType::get(Int8Ty, 8);
3893   Op = Builder.CreateBitCast(Op, Int8Ty);
3894   Value *V = UndefValue::get(VTy);
3895   llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
3896   Op = Builder.CreateInsertElement(V, Op, CI);
3897   return Op;
3898 }
3899 
3900 Value *CodeGenFunction::
emitVectorWrappedScalar8Intrinsic(unsigned Int,SmallVectorImpl<Value * > & Ops,const char * Name)3901 emitVectorWrappedScalar8Intrinsic(unsigned Int, SmallVectorImpl<Value*> &Ops,
3902                                   const char *Name) {
3903   // i8 is not a legal types for AArch64, so we can't just use
3904   // a normal overloaded intrinsic call for these scalar types. Instead
3905   // we'll build 64-bit vectors w/ lane zero being our input values and
3906   // perform the operation on that. The back end can pattern match directly
3907   // to the scalar instruction.
3908   Ops[0] = vectorWrapScalar8(Ops[0]);
3909   Ops[1] = vectorWrapScalar8(Ops[1]);
3910   llvm::Type *VTy = llvm::VectorType::get(Int8Ty, 8);
3911   Value *V = EmitNeonCall(CGM.getIntrinsic(Int, VTy), Ops, Name);
3912   Constant *CI = ConstantInt::get(SizeTy, 0);
3913   return Builder.CreateExtractElement(V, CI, "lane0");
3914 }
3915 
3916 Value *CodeGenFunction::
emitVectorWrappedScalar16Intrinsic(unsigned Int,SmallVectorImpl<Value * > & Ops,const char * Name)3917 emitVectorWrappedScalar16Intrinsic(unsigned Int, SmallVectorImpl<Value*> &Ops,
3918                                    const char *Name) {
3919   // i16 is not a legal types for AArch64, so we can't just use
3920   // a normal overloaded intrinsic call for these scalar types. Instead
3921   // we'll build 64-bit vectors w/ lane zero being our input values and
3922   // perform the operation on that. The back end can pattern match directly
3923   // to the scalar instruction.
3924   Ops[0] = vectorWrapScalar16(Ops[0]);
3925   Ops[1] = vectorWrapScalar16(Ops[1]);
3926   llvm::Type *VTy = llvm::VectorType::get(Int16Ty, 4);
3927   Value *V = EmitNeonCall(CGM.getIntrinsic(Int, VTy), Ops, Name);
3928   Constant *CI = ConstantInt::get(SizeTy, 0);
3929   return Builder.CreateExtractElement(V, CI, "lane0");
3930 }
3931 
EmitAArch64BuiltinExpr(unsigned BuiltinID,const CallExpr * E)3932 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
3933                                                const CallExpr *E) {
3934   unsigned HintID = static_cast<unsigned>(-1);
3935   switch (BuiltinID) {
3936   default: break;
3937   case AArch64::BI__builtin_arm_nop:
3938     HintID = 0;
3939     break;
3940   case AArch64::BI__builtin_arm_yield:
3941     HintID = 1;
3942     break;
3943   case AArch64::BI__builtin_arm_wfe:
3944     HintID = 2;
3945     break;
3946   case AArch64::BI__builtin_arm_wfi:
3947     HintID = 3;
3948     break;
3949   case AArch64::BI__builtin_arm_sev:
3950     HintID = 4;
3951     break;
3952   case AArch64::BI__builtin_arm_sevl:
3953     HintID = 5;
3954     break;
3955   }
3956 
3957   if (HintID != static_cast<unsigned>(-1)) {
3958     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
3959     return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
3960   }
3961 
3962   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
3963     Value *Address         = EmitScalarExpr(E->getArg(0));
3964     Value *RW              = EmitScalarExpr(E->getArg(1));
3965     Value *CacheLevel      = EmitScalarExpr(E->getArg(2));
3966     Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
3967     Value *IsData          = EmitScalarExpr(E->getArg(4));
3968 
3969     Value *Locality = nullptr;
3970     if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
3971       // Temporal fetch, needs to convert cache level to locality.
3972       Locality = llvm::ConstantInt::get(Int32Ty,
3973         -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
3974     } else {
3975       // Streaming fetch.
3976       Locality = llvm::ConstantInt::get(Int32Ty, 0);
3977     }
3978 
3979     // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
3980     // PLDL3STRM or PLDL2STRM.
3981     Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
3982     return Builder.CreateCall4(F, Address, RW, Locality, IsData);
3983   }
3984 
3985   if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
3986     assert((getContext().getTypeSize(E->getType()) == 32) &&
3987            "rbit of unusual size!");
3988     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
3989     return Builder.CreateCall(
3990         CGM.getIntrinsic(Intrinsic::aarch64_rbit, Arg->getType()), Arg, "rbit");
3991   }
3992   if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
3993     assert((getContext().getTypeSize(E->getType()) == 64) &&
3994            "rbit of unusual size!");
3995     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
3996     return Builder.CreateCall(
3997         CGM.getIntrinsic(Intrinsic::aarch64_rbit, Arg->getType()), Arg, "rbit");
3998   }
3999 
4000   if (BuiltinID == AArch64::BI__clear_cache) {
4001     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
4002     const FunctionDecl *FD = E->getDirectCallee();
4003     SmallVector<Value*, 2> Ops;
4004     for (unsigned i = 0; i < 2; i++)
4005       Ops.push_back(EmitScalarExpr(E->getArg(i)));
4006     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
4007     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
4008     StringRef Name = FD->getName();
4009     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
4010   }
4011 
4012   if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
4013       BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
4014       getContext().getTypeSize(E->getType()) == 128) {
4015     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
4016                                        ? Intrinsic::aarch64_ldaxp
4017                                        : Intrinsic::aarch64_ldxp);
4018 
4019     Value *LdPtr = EmitScalarExpr(E->getArg(0));
4020     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
4021                                     "ldxp");
4022 
4023     Value *Val0 = Builder.CreateExtractValue(Val, 1);
4024     Value *Val1 = Builder.CreateExtractValue(Val, 0);
4025     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
4026     Val0 = Builder.CreateZExt(Val0, Int128Ty);
4027     Val1 = Builder.CreateZExt(Val1, Int128Ty);
4028 
4029     Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
4030     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
4031     Val = Builder.CreateOr(Val, Val1);
4032     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
4033   } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
4034              BuiltinID == AArch64::BI__builtin_arm_ldaex) {
4035     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
4036 
4037     QualType Ty = E->getType();
4038     llvm::Type *RealResTy = ConvertType(Ty);
4039     llvm::Type *IntResTy = llvm::IntegerType::get(getLLVMContext(),
4040                                                   getContext().getTypeSize(Ty));
4041     LoadAddr = Builder.CreateBitCast(LoadAddr, IntResTy->getPointerTo());
4042 
4043     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
4044                                        ? Intrinsic::aarch64_ldaxr
4045                                        : Intrinsic::aarch64_ldxr,
4046                                    LoadAddr->getType());
4047     Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
4048 
4049     if (RealResTy->isPointerTy())
4050       return Builder.CreateIntToPtr(Val, RealResTy);
4051 
4052     Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
4053     return Builder.CreateBitCast(Val, RealResTy);
4054   }
4055 
4056   if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
4057        BuiltinID == AArch64::BI__builtin_arm_stlex) &&
4058       getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
4059     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
4060                                        ? Intrinsic::aarch64_stlxp
4061                                        : Intrinsic::aarch64_stxp);
4062     llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty, nullptr);
4063 
4064     Value *One = llvm::ConstantInt::get(Int32Ty, 1);
4065     Value *Tmp = Builder.CreateAlloca(ConvertType(E->getArg(0)->getType()),
4066                                       One);
4067     Value *Val = EmitScalarExpr(E->getArg(0));
4068     Builder.CreateStore(Val, Tmp);
4069 
4070     Value *LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
4071     Val = Builder.CreateLoad(LdPtr);
4072 
4073     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
4074     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
4075     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
4076                                          Int8PtrTy);
4077     return Builder.CreateCall3(F, Arg0, Arg1, StPtr, "stxp");
4078   } else if (BuiltinID == AArch64::BI__builtin_arm_strex ||
4079              BuiltinID == AArch64::BI__builtin_arm_stlex) {
4080     Value *StoreVal = EmitScalarExpr(E->getArg(0));
4081     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
4082 
4083     QualType Ty = E->getArg(0)->getType();
4084     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
4085                                                  getContext().getTypeSize(Ty));
4086     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
4087 
4088     if (StoreVal->getType()->isPointerTy())
4089       StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
4090     else {
4091       StoreVal = Builder.CreateBitCast(StoreVal, StoreTy);
4092       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
4093     }
4094 
4095     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
4096                                        ? Intrinsic::aarch64_stlxr
4097                                        : Intrinsic::aarch64_stxr,
4098                                    StoreAddr->getType());
4099     return Builder.CreateCall2(F, StoreVal, StoreAddr, "stxr");
4100   }
4101 
4102   if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
4103     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
4104     return Builder.CreateCall(F);
4105   }
4106 
4107   // CRC32
4108   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
4109   switch (BuiltinID) {
4110   case AArch64::BI__builtin_arm_crc32b:
4111     CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
4112   case AArch64::BI__builtin_arm_crc32cb:
4113     CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
4114   case AArch64::BI__builtin_arm_crc32h:
4115     CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
4116   case AArch64::BI__builtin_arm_crc32ch:
4117     CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
4118   case AArch64::BI__builtin_arm_crc32w:
4119     CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
4120   case AArch64::BI__builtin_arm_crc32cw:
4121     CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
4122   case AArch64::BI__builtin_arm_crc32d:
4123     CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
4124   case AArch64::BI__builtin_arm_crc32cd:
4125     CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
4126   }
4127 
4128   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
4129     Value *Arg0 = EmitScalarExpr(E->getArg(0));
4130     Value *Arg1 = EmitScalarExpr(E->getArg(1));
4131     Function *F = CGM.getIntrinsic(CRCIntrinsicID);
4132 
4133     llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
4134     Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
4135 
4136     return Builder.CreateCall2(F, Arg0, Arg1);
4137   }
4138 
4139   llvm::SmallVector<Value*, 4> Ops;
4140   for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++)
4141     Ops.push_back(EmitScalarExpr(E->getArg(i)));
4142 
4143   auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
4144   const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
4145       SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
4146 
4147   if (Builtin) {
4148     Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
4149     Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
4150     assert(Result && "SISD intrinsic should have been handled");
4151     return Result;
4152   }
4153 
4154   llvm::APSInt Result;
4155   const Expr *Arg = E->getArg(E->getNumArgs()-1);
4156   NeonTypeFlags Type(0);
4157   if (Arg->isIntegerConstantExpr(Result, getContext()))
4158     // Determine the type of this overloaded NEON intrinsic.
4159     Type = NeonTypeFlags(Result.getZExtValue());
4160 
4161   bool usgn = Type.isUnsigned();
4162   bool quad = Type.isQuad();
4163 
4164   // Handle non-overloaded intrinsics first.
4165   switch (BuiltinID) {
4166   default: break;
4167   case NEON::BI__builtin_neon_vldrq_p128: {
4168     llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
4169     Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
4170     return Builder.CreateLoad(Ptr);
4171   }
4172   case NEON::BI__builtin_neon_vstrq_p128: {
4173     llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
4174     Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
4175     return Builder.CreateStore(EmitScalarExpr(E->getArg(1)), Ptr);
4176   }
4177   case NEON::BI__builtin_neon_vcvts_u32_f32:
4178   case NEON::BI__builtin_neon_vcvtd_u64_f64:
4179     usgn = true;
4180     // FALL THROUGH
4181   case NEON::BI__builtin_neon_vcvts_s32_f32:
4182   case NEON::BI__builtin_neon_vcvtd_s64_f64: {
4183     Ops.push_back(EmitScalarExpr(E->getArg(0)));
4184     bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
4185     llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
4186     llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
4187     Ops[0] = Builder.CreateBitCast(Ops[0], FTy);
4188     if (usgn)
4189       return Builder.CreateFPToUI(Ops[0], InTy);
4190     return Builder.CreateFPToSI(Ops[0], InTy);
4191   }
4192   case NEON::BI__builtin_neon_vcvts_f32_u32:
4193   case NEON::BI__builtin_neon_vcvtd_f64_u64:
4194     usgn = true;
4195     // FALL THROUGH
4196   case NEON::BI__builtin_neon_vcvts_f32_s32:
4197   case NEON::BI__builtin_neon_vcvtd_f64_s64: {
4198     Ops.push_back(EmitScalarExpr(E->getArg(0)));
4199     bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
4200     llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
4201     llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
4202     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
4203     if (usgn)
4204       return Builder.CreateUIToFP(Ops[0], FTy);
4205     return Builder.CreateSIToFP(Ops[0], FTy);
4206   }
4207   case NEON::BI__builtin_neon_vpaddd_s64: {
4208     llvm::Type *Ty =
4209       llvm::VectorType::get(llvm::Type::getInt64Ty(getLLVMContext()), 2);
4210     Value *Vec = EmitScalarExpr(E->getArg(0));
4211     // The vector is v2f64, so make sure it's bitcast to that.
4212     Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
4213     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
4214     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
4215     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
4216     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
4217     // Pairwise addition of a v2f64 into a scalar f64.
4218     return Builder.CreateAdd(Op0, Op1, "vpaddd");
4219   }
4220   case NEON::BI__builtin_neon_vpaddd_f64: {
4221     llvm::Type *Ty =
4222       llvm::VectorType::get(llvm::Type::getDoubleTy(getLLVMContext()), 2);
4223     Value *Vec = EmitScalarExpr(E->getArg(0));
4224     // The vector is v2f64, so make sure it's bitcast to that.
4225     Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
4226     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
4227     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
4228     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
4229     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
4230     // Pairwise addition of a v2f64 into a scalar f64.
4231     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
4232   }
4233   case NEON::BI__builtin_neon_vpadds_f32: {
4234     llvm::Type *Ty =
4235       llvm::VectorType::get(llvm::Type::getFloatTy(getLLVMContext()), 2);
4236     Value *Vec = EmitScalarExpr(E->getArg(0));
4237     // The vector is v2f32, so make sure it's bitcast to that.
4238     Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
4239     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
4240     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
4241     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
4242     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
4243     // Pairwise addition of a v2f32 into a scalar f32.
4244     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
4245   }
4246   case NEON::BI__builtin_neon_vceqzd_s64:
4247   case NEON::BI__builtin_neon_vceqzd_f64:
4248   case NEON::BI__builtin_neon_vceqzs_f32:
4249     Ops.push_back(EmitScalarExpr(E->getArg(0)));
4250     return EmitAArch64CompareBuiltinExpr(
4251         Ops[0], ConvertType(E->getCallReturnType()), ICmpInst::FCMP_OEQ,
4252         ICmpInst::ICMP_EQ, "vceqz");
4253   case NEON::BI__builtin_neon_vcgezd_s64:
4254   case NEON::BI__builtin_neon_vcgezd_f64:
4255   case NEON::BI__builtin_neon_vcgezs_f32:
4256     Ops.push_back(EmitScalarExpr(E->getArg(0)));
4257     return EmitAArch64CompareBuiltinExpr(
4258         Ops[0], ConvertType(E->getCallReturnType()), ICmpInst::FCMP_OGE,
4259         ICmpInst::ICMP_SGE, "vcgez");
4260   case NEON::BI__builtin_neon_vclezd_s64:
4261   case NEON::BI__builtin_neon_vclezd_f64:
4262   case NEON::BI__builtin_neon_vclezs_f32:
4263     Ops.push_back(EmitScalarExpr(E->getArg(0)));
4264     return EmitAArch64CompareBuiltinExpr(
4265         Ops[0], ConvertType(E->getCallReturnType()), ICmpInst::FCMP_OLE,
4266         ICmpInst::ICMP_SLE, "vclez");
4267   case NEON::BI__builtin_neon_vcgtzd_s64:
4268   case NEON::BI__builtin_neon_vcgtzd_f64:
4269   case NEON::BI__builtin_neon_vcgtzs_f32:
4270     Ops.push_back(EmitScalarExpr(E->getArg(0)));
4271     return EmitAArch64CompareBuiltinExpr(
4272         Ops[0], ConvertType(E->getCallReturnType()), ICmpInst::FCMP_OGT,
4273         ICmpInst::ICMP_SGT, "vcgtz");
4274   case NEON::BI__builtin_neon_vcltzd_s64:
4275   case NEON::BI__builtin_neon_vcltzd_f64:
4276   case NEON::BI__builtin_neon_vcltzs_f32:
4277     Ops.push_back(EmitScalarExpr(E->getArg(0)));
4278     return EmitAArch64CompareBuiltinExpr(
4279         Ops[0], ConvertType(E->getCallReturnType()), ICmpInst::FCMP_OLT,
4280         ICmpInst::ICMP_SLT, "vcltz");
4281 
4282   case NEON::BI__builtin_neon_vceqzd_u64: {
4283     llvm::Type *Ty = llvm::Type::getInt64Ty(getLLVMContext());
4284     Ops.push_back(EmitScalarExpr(E->getArg(0)));
4285     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4286     Ops[0] = Builder.CreateICmp(llvm::ICmpInst::ICMP_EQ, Ops[0],
4287                                 llvm::Constant::getNullValue(Ty));
4288     return Builder.CreateSExt(Ops[0], Ty, "vceqzd");
4289   }
4290   case NEON::BI__builtin_neon_vceqd_f64:
4291   case NEON::BI__builtin_neon_vcled_f64:
4292   case NEON::BI__builtin_neon_vcltd_f64:
4293   case NEON::BI__builtin_neon_vcged_f64:
4294   case NEON::BI__builtin_neon_vcgtd_f64: {
4295     llvm::CmpInst::Predicate P;
4296     switch (BuiltinID) {
4297     default: llvm_unreachable("missing builtin ID in switch!");
4298     case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
4299     case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
4300     case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
4301     case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
4302     case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
4303     }
4304     Ops.push_back(EmitScalarExpr(E->getArg(1)));
4305     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
4306     Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
4307     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
4308     return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
4309   }
4310   case NEON::BI__builtin_neon_vceqs_f32:
4311   case NEON::BI__builtin_neon_vcles_f32:
4312   case NEON::BI__builtin_neon_vclts_f32:
4313   case NEON::BI__builtin_neon_vcges_f32:
4314   case NEON::BI__builtin_neon_vcgts_f32: {
4315     llvm::CmpInst::Predicate P;
4316     switch (BuiltinID) {
4317     default: llvm_unreachable("missing builtin ID in switch!");
4318     case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
4319     case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
4320     case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
4321     case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
4322     case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
4323     }
4324     Ops.push_back(EmitScalarExpr(E->getArg(1)));
4325     Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
4326     Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
4327     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
4328     return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
4329   }
4330   case NEON::BI__builtin_neon_vceqd_s64:
4331   case NEON::BI__builtin_neon_vceqd_u64:
4332   case NEON::BI__builtin_neon_vcgtd_s64:
4333   case NEON::BI__builtin_neon_vcgtd_u64:
4334   case NEON::BI__builtin_neon_vcltd_s64:
4335   case NEON::BI__builtin_neon_vcltd_u64:
4336   case NEON::BI__builtin_neon_vcged_u64:
4337   case NEON::BI__builtin_neon_vcged_s64:
4338   case NEON::BI__builtin_neon_vcled_u64:
4339   case NEON::BI__builtin_neon_vcled_s64: {
4340     llvm::CmpInst::Predicate P;
4341     switch (BuiltinID) {
4342     default: llvm_unreachable("missing builtin ID in switch!");
4343     case NEON::BI__builtin_neon_vceqd_s64:
4344     case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
4345     case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
4346     case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
4347     case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
4348     case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
4349     case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
4350     case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
4351     case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
4352     case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
4353     }
4354     Ops.push_back(EmitScalarExpr(E->getArg(1)));
4355     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
4356     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
4357     Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
4358     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
4359   }
4360   case NEON::BI__builtin_neon_vtstd_s64:
4361   case NEON::BI__builtin_neon_vtstd_u64: {
4362     llvm::Type *Ty = llvm::Type::getInt64Ty(getLLVMContext());
4363     Ops.push_back(EmitScalarExpr(E->getArg(1)));
4364     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4365     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4366     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
4367     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
4368                                 llvm::Constant::getNullValue(Ty));
4369     return Builder.CreateSExt(Ops[0], Ty, "vtstd");
4370   }
4371   case NEON::BI__builtin_neon_vset_lane_i8:
4372   case NEON::BI__builtin_neon_vset_lane_i16:
4373   case NEON::BI__builtin_neon_vset_lane_i32:
4374   case NEON::BI__builtin_neon_vset_lane_i64:
4375   case NEON::BI__builtin_neon_vset_lane_f32:
4376   case NEON::BI__builtin_neon_vsetq_lane_i8:
4377   case NEON::BI__builtin_neon_vsetq_lane_i16:
4378   case NEON::BI__builtin_neon_vsetq_lane_i32:
4379   case NEON::BI__builtin_neon_vsetq_lane_i64:
4380   case NEON::BI__builtin_neon_vsetq_lane_f32:
4381     Ops.push_back(EmitScalarExpr(E->getArg(2)));
4382     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
4383   case NEON::BI__builtin_neon_vset_lane_f64:
4384     // The vector type needs a cast for the v1f64 variant.
4385     Ops[1] = Builder.CreateBitCast(Ops[1],
4386                                    llvm::VectorType::get(DoubleTy, 1));
4387     Ops.push_back(EmitScalarExpr(E->getArg(2)));
4388     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
4389   case NEON::BI__builtin_neon_vsetq_lane_f64:
4390     // The vector type needs a cast for the v2f64 variant.
4391     Ops[1] = Builder.CreateBitCast(Ops[1],
4392         llvm::VectorType::get(llvm::Type::getDoubleTy(getLLVMContext()), 2));
4393     Ops.push_back(EmitScalarExpr(E->getArg(2)));
4394     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
4395 
4396   case NEON::BI__builtin_neon_vget_lane_i8:
4397   case NEON::BI__builtin_neon_vdupb_lane_i8:
4398     Ops[0] = Builder.CreateBitCast(Ops[0],
4399         llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8));
4400     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4401                                         "vget_lane");
4402   case NEON::BI__builtin_neon_vgetq_lane_i8:
4403   case NEON::BI__builtin_neon_vdupb_laneq_i8:
4404     Ops[0] = Builder.CreateBitCast(Ops[0],
4405         llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16));
4406     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4407                                         "vgetq_lane");
4408   case NEON::BI__builtin_neon_vget_lane_i16:
4409   case NEON::BI__builtin_neon_vduph_lane_i16:
4410     Ops[0] = Builder.CreateBitCast(Ops[0],
4411         llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4));
4412     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4413                                         "vget_lane");
4414   case NEON::BI__builtin_neon_vgetq_lane_i16:
4415   case NEON::BI__builtin_neon_vduph_laneq_i16:
4416     Ops[0] = Builder.CreateBitCast(Ops[0],
4417         llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8));
4418     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4419                                         "vgetq_lane");
4420   case NEON::BI__builtin_neon_vget_lane_i32:
4421   case NEON::BI__builtin_neon_vdups_lane_i32:
4422     Ops[0] = Builder.CreateBitCast(
4423         Ops[0],
4424         llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 32), 2));
4425     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4426                                         "vget_lane");
4427   case NEON::BI__builtin_neon_vdups_lane_f32:
4428     Ops[0] = Builder.CreateBitCast(Ops[0],
4429         llvm::VectorType::get(llvm::Type::getFloatTy(getLLVMContext()), 2));
4430     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4431                                         "vdups_lane");
4432   case NEON::BI__builtin_neon_vgetq_lane_i32:
4433   case NEON::BI__builtin_neon_vdups_laneq_i32:
4434     Ops[0] = Builder.CreateBitCast(Ops[0],
4435         llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 32), 4));
4436     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4437                                         "vgetq_lane");
4438   case NEON::BI__builtin_neon_vget_lane_i64:
4439   case NEON::BI__builtin_neon_vdupd_lane_i64:
4440     Ops[0] = Builder.CreateBitCast(Ops[0],
4441         llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 64), 1));
4442     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4443                                         "vget_lane");
4444   case NEON::BI__builtin_neon_vdupd_lane_f64:
4445     Ops[0] = Builder.CreateBitCast(Ops[0],
4446         llvm::VectorType::get(llvm::Type::getDoubleTy(getLLVMContext()), 1));
4447     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4448                                         "vdupd_lane");
4449   case NEON::BI__builtin_neon_vgetq_lane_i64:
4450   case NEON::BI__builtin_neon_vdupd_laneq_i64:
4451     Ops[0] = Builder.CreateBitCast(Ops[0],
4452         llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 64), 2));
4453     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4454                                         "vgetq_lane");
4455   case NEON::BI__builtin_neon_vget_lane_f32:
4456     Ops[0] = Builder.CreateBitCast(Ops[0],
4457         llvm::VectorType::get(llvm::Type::getFloatTy(getLLVMContext()), 2));
4458     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4459                                         "vget_lane");
4460   case NEON::BI__builtin_neon_vget_lane_f64:
4461     Ops[0] = Builder.CreateBitCast(Ops[0],
4462         llvm::VectorType::get(llvm::Type::getDoubleTy(getLLVMContext()), 1));
4463     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4464                                         "vget_lane");
4465   case NEON::BI__builtin_neon_vgetq_lane_f32:
4466   case NEON::BI__builtin_neon_vdups_laneq_f32:
4467     Ops[0] = Builder.CreateBitCast(Ops[0],
4468         llvm::VectorType::get(llvm::Type::getFloatTy(getLLVMContext()), 4));
4469     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4470                                         "vgetq_lane");
4471   case NEON::BI__builtin_neon_vgetq_lane_f64:
4472   case NEON::BI__builtin_neon_vdupd_laneq_f64:
4473     Ops[0] = Builder.CreateBitCast(Ops[0],
4474         llvm::VectorType::get(llvm::Type::getDoubleTy(getLLVMContext()), 2));
4475     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4476                                         "vgetq_lane");
4477   case NEON::BI__builtin_neon_vaddd_s64:
4478   case NEON::BI__builtin_neon_vaddd_u64:
4479     return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
4480   case NEON::BI__builtin_neon_vsubd_s64:
4481   case NEON::BI__builtin_neon_vsubd_u64:
4482     return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
4483   case NEON::BI__builtin_neon_vqdmlalh_s16:
4484   case NEON::BI__builtin_neon_vqdmlslh_s16: {
4485     SmallVector<Value *, 2> ProductOps;
4486     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
4487     ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
4488     llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
4489     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
4490                           ProductOps, "vqdmlXl");
4491     Constant *CI = ConstantInt::get(SizeTy, 0);
4492     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
4493 
4494     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
4495                                         ? Intrinsic::aarch64_neon_sqadd
4496                                         : Intrinsic::aarch64_neon_sqsub;
4497     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
4498   }
4499   case NEON::BI__builtin_neon_vqshlud_n_s64: {
4500     Ops.push_back(EmitScalarExpr(E->getArg(1)));
4501     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
4502     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
4503                         Ops, "vqshlu_n");
4504   }
4505   case NEON::BI__builtin_neon_vqshld_n_u64:
4506   case NEON::BI__builtin_neon_vqshld_n_s64: {
4507     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
4508                                    ? Intrinsic::aarch64_neon_uqshl
4509                                    : Intrinsic::aarch64_neon_sqshl;
4510     Ops.push_back(EmitScalarExpr(E->getArg(1)));
4511     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
4512     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
4513   }
4514   case NEON::BI__builtin_neon_vrshrd_n_u64:
4515   case NEON::BI__builtin_neon_vrshrd_n_s64: {
4516     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
4517                                    ? Intrinsic::aarch64_neon_urshl
4518                                    : Intrinsic::aarch64_neon_srshl;
4519     Ops.push_back(EmitScalarExpr(E->getArg(1)));
4520     int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
4521     Ops[1] = ConstantInt::get(Int64Ty, -SV);
4522     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
4523   }
4524   case NEON::BI__builtin_neon_vrsrad_n_u64:
4525   case NEON::BI__builtin_neon_vrsrad_n_s64: {
4526     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
4527                                    ? Intrinsic::aarch64_neon_urshl
4528                                    : Intrinsic::aarch64_neon_srshl;
4529     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
4530     Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
4531     Ops[1] = Builder.CreateCall2(CGM.getIntrinsic(Int, Int64Ty), Ops[1],
4532                                  Builder.CreateSExt(Ops[2], Int64Ty));
4533     return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
4534   }
4535   case NEON::BI__builtin_neon_vshld_n_s64:
4536   case NEON::BI__builtin_neon_vshld_n_u64: {
4537     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
4538     return Builder.CreateShl(
4539         Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
4540   }
4541   case NEON::BI__builtin_neon_vshrd_n_s64: {
4542     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
4543     return Builder.CreateAShr(
4544         Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
4545                                                    Amt->getZExtValue())),
4546         "shrd_n");
4547   }
4548   case NEON::BI__builtin_neon_vshrd_n_u64: {
4549     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
4550     uint64_t ShiftAmt = Amt->getZExtValue();
4551     // Right-shifting an unsigned value by its size yields 0.
4552     if (ShiftAmt == 64)
4553       return ConstantInt::get(Int64Ty, 0);
4554     return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
4555                               "shrd_n");
4556   }
4557   case NEON::BI__builtin_neon_vsrad_n_s64: {
4558     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
4559     Ops[1] = Builder.CreateAShr(
4560         Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
4561                                                    Amt->getZExtValue())),
4562         "shrd_n");
4563     return Builder.CreateAdd(Ops[0], Ops[1]);
4564   }
4565   case NEON::BI__builtin_neon_vsrad_n_u64: {
4566     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
4567     uint64_t ShiftAmt = Amt->getZExtValue();
4568     // Right-shifting an unsigned value by its size yields 0.
4569     // As Op + 0 = Op, return Ops[0] directly.
4570     if (ShiftAmt == 64)
4571       return Ops[0];
4572     Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
4573                                 "shrd_n");
4574     return Builder.CreateAdd(Ops[0], Ops[1]);
4575   }
4576   case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
4577   case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
4578   case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
4579   case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
4580     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
4581                                           "lane");
4582     SmallVector<Value *, 2> ProductOps;
4583     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
4584     ProductOps.push_back(vectorWrapScalar16(Ops[2]));
4585     llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
4586     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
4587                           ProductOps, "vqdmlXl");
4588     Constant *CI = ConstantInt::get(SizeTy, 0);
4589     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
4590     Ops.pop_back();
4591 
4592     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
4593                        BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
4594                           ? Intrinsic::aarch64_neon_sqadd
4595                           : Intrinsic::aarch64_neon_sqsub;
4596     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
4597   }
4598   case NEON::BI__builtin_neon_vqdmlals_s32:
4599   case NEON::BI__builtin_neon_vqdmlsls_s32: {
4600     SmallVector<Value *, 2> ProductOps;
4601     ProductOps.push_back(Ops[1]);
4602     ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
4603     Ops[1] =
4604         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
4605                      ProductOps, "vqdmlXl");
4606 
4607     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
4608                                         ? Intrinsic::aarch64_neon_sqadd
4609                                         : Intrinsic::aarch64_neon_sqsub;
4610     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
4611   }
4612   case NEON::BI__builtin_neon_vqdmlals_lane_s32:
4613   case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
4614   case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
4615   case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
4616     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
4617                                           "lane");
4618     SmallVector<Value *, 2> ProductOps;
4619     ProductOps.push_back(Ops[1]);
4620     ProductOps.push_back(Ops[2]);
4621     Ops[1] =
4622         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
4623                      ProductOps, "vqdmlXl");
4624     Ops.pop_back();
4625 
4626     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
4627                        BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
4628                           ? Intrinsic::aarch64_neon_sqadd
4629                           : Intrinsic::aarch64_neon_sqsub;
4630     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
4631   }
4632   }
4633 
4634   llvm::VectorType *VTy = GetNeonType(this, Type);
4635   llvm::Type *Ty = VTy;
4636   if (!Ty)
4637     return nullptr;
4638 
4639   // Not all intrinsics handled by the common case work for AArch64 yet, so only
4640   // defer to common code if it's been added to our special map.
4641   Builtin = findNeonIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
4642                                    AArch64SIMDIntrinsicsProvenSorted);
4643 
4644   if (Builtin)
4645     return EmitCommonNeonBuiltinExpr(
4646         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
4647         Builtin->NameHint, Builtin->TypeModifier, E, Ops, nullptr);
4648 
4649   if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops))
4650     return V;
4651 
4652   unsigned Int;
4653   switch (BuiltinID) {
4654   default: return nullptr;
4655   case NEON::BI__builtin_neon_vbsl_v:
4656   case NEON::BI__builtin_neon_vbslq_v: {
4657     llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
4658     Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
4659     Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
4660     Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
4661 
4662     Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
4663     Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
4664     Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
4665     return Builder.CreateBitCast(Ops[0], Ty);
4666   }
4667   case NEON::BI__builtin_neon_vfma_lane_v:
4668   case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
4669     // The ARM builtins (and instructions) have the addend as the first
4670     // operand, but the 'fma' intrinsics have it last. Swap it around here.
4671     Value *Addend = Ops[0];
4672     Value *Multiplicand = Ops[1];
4673     Value *LaneSource = Ops[2];
4674     Ops[0] = Multiplicand;
4675     Ops[1] = LaneSource;
4676     Ops[2] = Addend;
4677 
4678     // Now adjust things to handle the lane access.
4679     llvm::Type *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v ?
4680       llvm::VectorType::get(VTy->getElementType(), VTy->getNumElements() / 2) :
4681       VTy;
4682     llvm::Constant *cst = cast<Constant>(Ops[3]);
4683     Value *SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), cst);
4684     Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
4685     Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
4686 
4687     Ops.pop_back();
4688     Int = Intrinsic::fma;
4689     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
4690   }
4691   case NEON::BI__builtin_neon_vfma_laneq_v: {
4692     llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
4693     // v1f64 fma should be mapped to Neon scalar f64 fma
4694     if (VTy && VTy->getElementType() == DoubleTy) {
4695       Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
4696       Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
4697       llvm::Type *VTy = GetNeonType(this,
4698         NeonTypeFlags(NeonTypeFlags::Float64, false, true));
4699       Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
4700       Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
4701       Value *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy);
4702       Value *Result = Builder.CreateCall3(F, Ops[1], Ops[2], Ops[0]);
4703       return Builder.CreateBitCast(Result, Ty);
4704     }
4705     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
4706     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4707     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4708 
4709     llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(),
4710                                             VTy->getNumElements() * 2);
4711     Ops[2] = Builder.CreateBitCast(Ops[2], STy);
4712     Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(),
4713                                                cast<ConstantInt>(Ops[3]));
4714     Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
4715 
4716     return Builder.CreateCall3(F, Ops[2], Ops[1], Ops[0]);
4717   }
4718   case NEON::BI__builtin_neon_vfmaq_laneq_v: {
4719     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
4720     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4721     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4722 
4723     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
4724     Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
4725     return Builder.CreateCall3(F, Ops[2], Ops[1], Ops[0]);
4726   }
4727   case NEON::BI__builtin_neon_vfmas_lane_f32:
4728   case NEON::BI__builtin_neon_vfmas_laneq_f32:
4729   case NEON::BI__builtin_neon_vfmad_lane_f64:
4730   case NEON::BI__builtin_neon_vfmad_laneq_f64: {
4731     Ops.push_back(EmitScalarExpr(E->getArg(3)));
4732     llvm::Type *Ty = ConvertType(E->getCallReturnType());
4733     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
4734     Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
4735     return Builder.CreateCall3(F, Ops[1], Ops[2], Ops[0]);
4736   }
4737   case NEON::BI__builtin_neon_vfms_v:
4738   case NEON::BI__builtin_neon_vfmsq_v: {  // Only used for FP types
4739     // FIXME: probably remove when we no longer support aarch64_simd.h
4740     // (arm_neon.h delegates to vfma).
4741 
4742     // The ARM builtins (and instructions) have the addend as the first
4743     // operand, but the 'fma' intrinsics have it last. Swap it around here.
4744     Value *Subtrahend = Ops[0];
4745     Value *Multiplicand = Ops[2];
4746     Ops[0] = Multiplicand;
4747     Ops[2] = Subtrahend;
4748     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
4749     Ops[1] = Builder.CreateFNeg(Ops[1]);
4750     Int = Intrinsic::fma;
4751     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmls");
4752   }
4753   case NEON::BI__builtin_neon_vmull_v:
4754     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
4755     Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
4756     if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
4757     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
4758   case NEON::BI__builtin_neon_vmax_v:
4759   case NEON::BI__builtin_neon_vmaxq_v:
4760     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
4761     Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
4762     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
4763     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
4764   case NEON::BI__builtin_neon_vmin_v:
4765   case NEON::BI__builtin_neon_vminq_v:
4766     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
4767     Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
4768     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
4769     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
4770   case NEON::BI__builtin_neon_vabd_v:
4771   case NEON::BI__builtin_neon_vabdq_v:
4772     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
4773     Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
4774     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
4775     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
4776   case NEON::BI__builtin_neon_vpadal_v:
4777   case NEON::BI__builtin_neon_vpadalq_v: {
4778     unsigned ArgElts = VTy->getNumElements();
4779     llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
4780     unsigned BitWidth = EltTy->getBitWidth();
4781     llvm::Type *ArgTy = llvm::VectorType::get(
4782         llvm::IntegerType::get(getLLVMContext(), BitWidth/2), 2*ArgElts);
4783     llvm::Type* Tys[2] = { VTy, ArgTy };
4784     Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
4785     SmallVector<llvm::Value*, 1> TmpOps;
4786     TmpOps.push_back(Ops[1]);
4787     Function *F = CGM.getIntrinsic(Int, Tys);
4788     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
4789     llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
4790     return Builder.CreateAdd(tmp, addend);
4791   }
4792   case NEON::BI__builtin_neon_vpmin_v:
4793   case NEON::BI__builtin_neon_vpminq_v:
4794     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
4795     Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
4796     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
4797     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
4798   case NEON::BI__builtin_neon_vpmax_v:
4799   case NEON::BI__builtin_neon_vpmaxq_v:
4800     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
4801     Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
4802     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
4803     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
4804   case NEON::BI__builtin_neon_vminnm_v:
4805   case NEON::BI__builtin_neon_vminnmq_v:
4806     Int = Intrinsic::aarch64_neon_fminnm;
4807     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
4808   case NEON::BI__builtin_neon_vmaxnm_v:
4809   case NEON::BI__builtin_neon_vmaxnmq_v:
4810     Int = Intrinsic::aarch64_neon_fmaxnm;
4811     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
4812   case NEON::BI__builtin_neon_vrecpss_f32: {
4813     llvm::Type *f32Type = llvm::Type::getFloatTy(getLLVMContext());
4814     Ops.push_back(EmitScalarExpr(E->getArg(1)));
4815     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, f32Type),
4816                         Ops, "vrecps");
4817   }
4818   case NEON::BI__builtin_neon_vrecpsd_f64: {
4819     llvm::Type *f64Type = llvm::Type::getDoubleTy(getLLVMContext());
4820     Ops.push_back(EmitScalarExpr(E->getArg(1)));
4821     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, f64Type),
4822                         Ops, "vrecps");
4823   }
4824   case NEON::BI__builtin_neon_vqshrun_n_v:
4825     Int = Intrinsic::aarch64_neon_sqshrun;
4826     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
4827   case NEON::BI__builtin_neon_vqrshrun_n_v:
4828     Int = Intrinsic::aarch64_neon_sqrshrun;
4829     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
4830   case NEON::BI__builtin_neon_vqshrn_n_v:
4831     Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
4832     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
4833   case NEON::BI__builtin_neon_vrshrn_n_v:
4834     Int = Intrinsic::aarch64_neon_rshrn;
4835     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
4836   case NEON::BI__builtin_neon_vqrshrn_n_v:
4837     Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
4838     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
4839   case NEON::BI__builtin_neon_vrnda_v:
4840   case NEON::BI__builtin_neon_vrndaq_v: {
4841     Int = Intrinsic::round;
4842     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
4843   }
4844   case NEON::BI__builtin_neon_vrndi_v:
4845   case NEON::BI__builtin_neon_vrndiq_v: {
4846     Int = Intrinsic::nearbyint;
4847     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndi");
4848   }
4849   case NEON::BI__builtin_neon_vrndm_v:
4850   case NEON::BI__builtin_neon_vrndmq_v: {
4851     Int = Intrinsic::floor;
4852     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
4853   }
4854   case NEON::BI__builtin_neon_vrndn_v:
4855   case NEON::BI__builtin_neon_vrndnq_v: {
4856     Int = Intrinsic::aarch64_neon_frintn;
4857     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
4858   }
4859   case NEON::BI__builtin_neon_vrndp_v:
4860   case NEON::BI__builtin_neon_vrndpq_v: {
4861     Int = Intrinsic::ceil;
4862     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
4863   }
4864   case NEON::BI__builtin_neon_vrndx_v:
4865   case NEON::BI__builtin_neon_vrndxq_v: {
4866     Int = Intrinsic::rint;
4867     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
4868   }
4869   case NEON::BI__builtin_neon_vrnd_v:
4870   case NEON::BI__builtin_neon_vrndq_v: {
4871     Int = Intrinsic::trunc;
4872     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
4873   }
4874   case NEON::BI__builtin_neon_vceqz_v:
4875   case NEON::BI__builtin_neon_vceqzq_v:
4876     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
4877                                          ICmpInst::ICMP_EQ, "vceqz");
4878   case NEON::BI__builtin_neon_vcgez_v:
4879   case NEON::BI__builtin_neon_vcgezq_v:
4880     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
4881                                          ICmpInst::ICMP_SGE, "vcgez");
4882   case NEON::BI__builtin_neon_vclez_v:
4883   case NEON::BI__builtin_neon_vclezq_v:
4884     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
4885                                          ICmpInst::ICMP_SLE, "vclez");
4886   case NEON::BI__builtin_neon_vcgtz_v:
4887   case NEON::BI__builtin_neon_vcgtzq_v:
4888     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
4889                                          ICmpInst::ICMP_SGT, "vcgtz");
4890   case NEON::BI__builtin_neon_vcltz_v:
4891   case NEON::BI__builtin_neon_vcltzq_v:
4892     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
4893                                          ICmpInst::ICMP_SLT, "vcltz");
4894   case NEON::BI__builtin_neon_vcvt_f64_v:
4895   case NEON::BI__builtin_neon_vcvtq_f64_v:
4896     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4897     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
4898     return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
4899                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
4900   case NEON::BI__builtin_neon_vcvt_f64_f32: {
4901     assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
4902            "unexpected vcvt_f64_f32 builtin");
4903     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
4904     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
4905 
4906     return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
4907   }
4908   case NEON::BI__builtin_neon_vcvt_f32_f64: {
4909     assert(Type.getEltType() == NeonTypeFlags::Float32 &&
4910            "unexpected vcvt_f32_f64 builtin");
4911     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
4912     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
4913 
4914     return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
4915   }
4916   case NEON::BI__builtin_neon_vcvt_s32_v:
4917   case NEON::BI__builtin_neon_vcvt_u32_v:
4918   case NEON::BI__builtin_neon_vcvt_s64_v:
4919   case NEON::BI__builtin_neon_vcvt_u64_v:
4920   case NEON::BI__builtin_neon_vcvtq_s32_v:
4921   case NEON::BI__builtin_neon_vcvtq_u32_v:
4922   case NEON::BI__builtin_neon_vcvtq_s64_v:
4923   case NEON::BI__builtin_neon_vcvtq_u64_v: {
4924     bool Double =
4925       (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64);
4926     llvm::Type *InTy =
4927       GetNeonType(this,
4928                   NeonTypeFlags(Double ? NeonTypeFlags::Float64
4929                                 : NeonTypeFlags::Float32, false, quad));
4930     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
4931     if (usgn)
4932       return Builder.CreateFPToUI(Ops[0], Ty);
4933     return Builder.CreateFPToSI(Ops[0], Ty);
4934   }
4935   case NEON::BI__builtin_neon_vcvta_s32_v:
4936   case NEON::BI__builtin_neon_vcvtaq_s32_v:
4937   case NEON::BI__builtin_neon_vcvta_u32_v:
4938   case NEON::BI__builtin_neon_vcvtaq_u32_v:
4939   case NEON::BI__builtin_neon_vcvta_s64_v:
4940   case NEON::BI__builtin_neon_vcvtaq_s64_v:
4941   case NEON::BI__builtin_neon_vcvta_u64_v:
4942   case NEON::BI__builtin_neon_vcvtaq_u64_v: {
4943     Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
4944     bool Double =
4945       (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64);
4946     llvm::Type *InTy =
4947       GetNeonType(this,
4948                   NeonTypeFlags(Double ? NeonTypeFlags::Float64
4949                                 : NeonTypeFlags::Float32, false, quad));
4950     llvm::Type *Tys[2] = { Ty, InTy };
4951     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
4952   }
4953   case NEON::BI__builtin_neon_vcvtm_s32_v:
4954   case NEON::BI__builtin_neon_vcvtmq_s32_v:
4955   case NEON::BI__builtin_neon_vcvtm_u32_v:
4956   case NEON::BI__builtin_neon_vcvtmq_u32_v:
4957   case NEON::BI__builtin_neon_vcvtm_s64_v:
4958   case NEON::BI__builtin_neon_vcvtmq_s64_v:
4959   case NEON::BI__builtin_neon_vcvtm_u64_v:
4960   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
4961     Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
4962     bool Double =
4963       (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64);
4964     llvm::Type *InTy =
4965       GetNeonType(this,
4966                   NeonTypeFlags(Double ? NeonTypeFlags::Float64
4967                                 : NeonTypeFlags::Float32, false, quad));
4968     llvm::Type *Tys[2] = { Ty, InTy };
4969     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
4970   }
4971   case NEON::BI__builtin_neon_vcvtn_s32_v:
4972   case NEON::BI__builtin_neon_vcvtnq_s32_v:
4973   case NEON::BI__builtin_neon_vcvtn_u32_v:
4974   case NEON::BI__builtin_neon_vcvtnq_u32_v:
4975   case NEON::BI__builtin_neon_vcvtn_s64_v:
4976   case NEON::BI__builtin_neon_vcvtnq_s64_v:
4977   case NEON::BI__builtin_neon_vcvtn_u64_v:
4978   case NEON::BI__builtin_neon_vcvtnq_u64_v: {
4979     Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
4980     bool Double =
4981       (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64);
4982     llvm::Type *InTy =
4983       GetNeonType(this,
4984                   NeonTypeFlags(Double ? NeonTypeFlags::Float64
4985                                 : NeonTypeFlags::Float32, false, quad));
4986     llvm::Type *Tys[2] = { Ty, InTy };
4987     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
4988   }
4989   case NEON::BI__builtin_neon_vcvtp_s32_v:
4990   case NEON::BI__builtin_neon_vcvtpq_s32_v:
4991   case NEON::BI__builtin_neon_vcvtp_u32_v:
4992   case NEON::BI__builtin_neon_vcvtpq_u32_v:
4993   case NEON::BI__builtin_neon_vcvtp_s64_v:
4994   case NEON::BI__builtin_neon_vcvtpq_s64_v:
4995   case NEON::BI__builtin_neon_vcvtp_u64_v:
4996   case NEON::BI__builtin_neon_vcvtpq_u64_v: {
4997     Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
4998     bool Double =
4999       (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64);
5000     llvm::Type *InTy =
5001       GetNeonType(this,
5002                   NeonTypeFlags(Double ? NeonTypeFlags::Float64
5003                                 : NeonTypeFlags::Float32, false, quad));
5004     llvm::Type *Tys[2] = { Ty, InTy };
5005     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
5006   }
5007   case NEON::BI__builtin_neon_vmulx_v:
5008   case NEON::BI__builtin_neon_vmulxq_v: {
5009     Int = Intrinsic::aarch64_neon_fmulx;
5010     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
5011   }
5012   case NEON::BI__builtin_neon_vmul_lane_v:
5013   case NEON::BI__builtin_neon_vmul_laneq_v: {
5014     // v1f64 vmul_lane should be mapped to Neon scalar mul lane
5015     bool Quad = false;
5016     if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
5017       Quad = true;
5018     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
5019     llvm::Type *VTy = GetNeonType(this,
5020       NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
5021     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
5022     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
5023     Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
5024     return Builder.CreateBitCast(Result, Ty);
5025   }
5026   case NEON::BI__builtin_neon_vnegd_s64:
5027     return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
5028   case NEON::BI__builtin_neon_vpmaxnm_v:
5029   case NEON::BI__builtin_neon_vpmaxnmq_v: {
5030     Int = Intrinsic::aarch64_neon_fmaxnmp;
5031     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
5032   }
5033   case NEON::BI__builtin_neon_vpminnm_v:
5034   case NEON::BI__builtin_neon_vpminnmq_v: {
5035     Int = Intrinsic::aarch64_neon_fminnmp;
5036     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
5037   }
5038   case NEON::BI__builtin_neon_vsqrt_v:
5039   case NEON::BI__builtin_neon_vsqrtq_v: {
5040     Int = Intrinsic::sqrt;
5041     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5042     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
5043   }
5044   case NEON::BI__builtin_neon_vrbit_v:
5045   case NEON::BI__builtin_neon_vrbitq_v: {
5046     Int = Intrinsic::aarch64_neon_rbit;
5047     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
5048   }
5049   case NEON::BI__builtin_neon_vaddv_u8:
5050     // FIXME: These are handled by the AArch64 scalar code.
5051     usgn = true;
5052     // FALLTHROUGH
5053   case NEON::BI__builtin_neon_vaddv_s8: {
5054     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
5055     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5056     VTy =
5057       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8);
5058     llvm::Type *Tys[2] = { Ty, VTy };
5059     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5060     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
5061     return Builder.CreateTrunc(Ops[0],
5062              llvm::IntegerType::get(getLLVMContext(), 8));
5063   }
5064   case NEON::BI__builtin_neon_vaddv_u16:
5065     usgn = true;
5066     // FALLTHROUGH
5067   case NEON::BI__builtin_neon_vaddv_s16: {
5068     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
5069     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5070     VTy =
5071       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4);
5072     llvm::Type *Tys[2] = { Ty, VTy };
5073     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5074     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
5075     return Builder.CreateTrunc(Ops[0],
5076              llvm::IntegerType::get(getLLVMContext(), 16));
5077   }
5078   case NEON::BI__builtin_neon_vaddvq_u8:
5079     usgn = true;
5080     // FALLTHROUGH
5081   case NEON::BI__builtin_neon_vaddvq_s8: {
5082     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
5083     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5084     VTy =
5085       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16);
5086     llvm::Type *Tys[2] = { Ty, VTy };
5087     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5088     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
5089     return Builder.CreateTrunc(Ops[0],
5090              llvm::IntegerType::get(getLLVMContext(), 8));
5091   }
5092   case NEON::BI__builtin_neon_vaddvq_u16:
5093     usgn = true;
5094     // FALLTHROUGH
5095   case NEON::BI__builtin_neon_vaddvq_s16: {
5096     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
5097     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5098     VTy =
5099       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8);
5100     llvm::Type *Tys[2] = { Ty, VTy };
5101     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5102     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
5103     return Builder.CreateTrunc(Ops[0],
5104              llvm::IntegerType::get(getLLVMContext(), 16));
5105   }
5106   case NEON::BI__builtin_neon_vmaxv_u8: {
5107     Int = Intrinsic::aarch64_neon_umaxv;
5108     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5109     VTy =
5110       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8);
5111     llvm::Type *Tys[2] = { Ty, VTy };
5112     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5113     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
5114     return Builder.CreateTrunc(Ops[0],
5115              llvm::IntegerType::get(getLLVMContext(), 8));
5116   }
5117   case NEON::BI__builtin_neon_vmaxv_u16: {
5118     Int = Intrinsic::aarch64_neon_umaxv;
5119     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5120     VTy =
5121       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4);
5122     llvm::Type *Tys[2] = { Ty, VTy };
5123     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5124     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
5125     return Builder.CreateTrunc(Ops[0],
5126              llvm::IntegerType::get(getLLVMContext(), 16));
5127   }
5128   case NEON::BI__builtin_neon_vmaxvq_u8: {
5129     Int = Intrinsic::aarch64_neon_umaxv;
5130     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5131     VTy =
5132       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16);
5133     llvm::Type *Tys[2] = { Ty, VTy };
5134     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5135     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
5136     return Builder.CreateTrunc(Ops[0],
5137              llvm::IntegerType::get(getLLVMContext(), 8));
5138   }
5139   case NEON::BI__builtin_neon_vmaxvq_u16: {
5140     Int = Intrinsic::aarch64_neon_umaxv;
5141     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5142     VTy =
5143       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8);
5144     llvm::Type *Tys[2] = { Ty, VTy };
5145     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5146     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
5147     return Builder.CreateTrunc(Ops[0],
5148              llvm::IntegerType::get(getLLVMContext(), 16));
5149   }
5150   case NEON::BI__builtin_neon_vmaxv_s8: {
5151     Int = Intrinsic::aarch64_neon_smaxv;
5152     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5153     VTy =
5154       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8);
5155     llvm::Type *Tys[2] = { Ty, VTy };
5156     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5157     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
5158     return Builder.CreateTrunc(Ops[0],
5159              llvm::IntegerType::get(getLLVMContext(), 8));
5160   }
5161   case NEON::BI__builtin_neon_vmaxv_s16: {
5162     Int = Intrinsic::aarch64_neon_smaxv;
5163     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5164     VTy =
5165       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4);
5166     llvm::Type *Tys[2] = { Ty, VTy };
5167     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5168     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
5169     return Builder.CreateTrunc(Ops[0],
5170              llvm::IntegerType::get(getLLVMContext(), 16));
5171   }
5172   case NEON::BI__builtin_neon_vmaxvq_s8: {
5173     Int = Intrinsic::aarch64_neon_smaxv;
5174     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5175     VTy =
5176       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16);
5177     llvm::Type *Tys[2] = { Ty, VTy };
5178     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5179     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
5180     return Builder.CreateTrunc(Ops[0],
5181              llvm::IntegerType::get(getLLVMContext(), 8));
5182   }
5183   case NEON::BI__builtin_neon_vmaxvq_s16: {
5184     Int = Intrinsic::aarch64_neon_smaxv;
5185     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5186     VTy =
5187       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8);
5188     llvm::Type *Tys[2] = { Ty, VTy };
5189     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5190     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
5191     return Builder.CreateTrunc(Ops[0],
5192              llvm::IntegerType::get(getLLVMContext(), 16));
5193   }
5194   case NEON::BI__builtin_neon_vminv_u8: {
5195     Int = Intrinsic::aarch64_neon_uminv;
5196     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5197     VTy =
5198       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8);
5199     llvm::Type *Tys[2] = { Ty, VTy };
5200     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5201     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
5202     return Builder.CreateTrunc(Ops[0],
5203              llvm::IntegerType::get(getLLVMContext(), 8));
5204   }
5205   case NEON::BI__builtin_neon_vminv_u16: {
5206     Int = Intrinsic::aarch64_neon_uminv;
5207     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5208     VTy =
5209       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4);
5210     llvm::Type *Tys[2] = { Ty, VTy };
5211     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5212     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
5213     return Builder.CreateTrunc(Ops[0],
5214              llvm::IntegerType::get(getLLVMContext(), 16));
5215   }
5216   case NEON::BI__builtin_neon_vminvq_u8: {
5217     Int = Intrinsic::aarch64_neon_uminv;
5218     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5219     VTy =
5220       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16);
5221     llvm::Type *Tys[2] = { Ty, VTy };
5222     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5223     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
5224     return Builder.CreateTrunc(Ops[0],
5225              llvm::IntegerType::get(getLLVMContext(), 8));
5226   }
5227   case NEON::BI__builtin_neon_vminvq_u16: {
5228     Int = Intrinsic::aarch64_neon_uminv;
5229     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5230     VTy =
5231       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8);
5232     llvm::Type *Tys[2] = { Ty, VTy };
5233     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5234     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
5235     return Builder.CreateTrunc(Ops[0],
5236              llvm::IntegerType::get(getLLVMContext(), 16));
5237   }
5238   case NEON::BI__builtin_neon_vminv_s8: {
5239     Int = Intrinsic::aarch64_neon_sminv;
5240     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5241     VTy =
5242       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8);
5243     llvm::Type *Tys[2] = { Ty, VTy };
5244     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5245     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
5246     return Builder.CreateTrunc(Ops[0],
5247              llvm::IntegerType::get(getLLVMContext(), 8));
5248   }
5249   case NEON::BI__builtin_neon_vminv_s16: {
5250     Int = Intrinsic::aarch64_neon_sminv;
5251     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5252     VTy =
5253       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4);
5254     llvm::Type *Tys[2] = { Ty, VTy };
5255     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5256     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
5257     return Builder.CreateTrunc(Ops[0],
5258              llvm::IntegerType::get(getLLVMContext(), 16));
5259   }
5260   case NEON::BI__builtin_neon_vminvq_s8: {
5261     Int = Intrinsic::aarch64_neon_sminv;
5262     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5263     VTy =
5264       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16);
5265     llvm::Type *Tys[2] = { Ty, VTy };
5266     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5267     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
5268     return Builder.CreateTrunc(Ops[0],
5269              llvm::IntegerType::get(getLLVMContext(), 8));
5270   }
5271   case NEON::BI__builtin_neon_vminvq_s16: {
5272     Int = Intrinsic::aarch64_neon_sminv;
5273     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5274     VTy =
5275       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8);
5276     llvm::Type *Tys[2] = { Ty, VTy };
5277     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5278     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
5279     return Builder.CreateTrunc(Ops[0],
5280              llvm::IntegerType::get(getLLVMContext(), 16));
5281   }
5282   case NEON::BI__builtin_neon_vmul_n_f64: {
5283     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
5284     Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
5285     return Builder.CreateFMul(Ops[0], RHS);
5286   }
5287   case NEON::BI__builtin_neon_vaddlv_u8: {
5288     Int = Intrinsic::aarch64_neon_uaddlv;
5289     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5290     VTy =
5291       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8);
5292     llvm::Type *Tys[2] = { Ty, VTy };
5293     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5294     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
5295     return Builder.CreateTrunc(Ops[0],
5296              llvm::IntegerType::get(getLLVMContext(), 16));
5297   }
5298   case NEON::BI__builtin_neon_vaddlv_u16: {
5299     Int = Intrinsic::aarch64_neon_uaddlv;
5300     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5301     VTy =
5302       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4);
5303     llvm::Type *Tys[2] = { Ty, VTy };
5304     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5305     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
5306   }
5307   case NEON::BI__builtin_neon_vaddlvq_u8: {
5308     Int = Intrinsic::aarch64_neon_uaddlv;
5309     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5310     VTy =
5311       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16);
5312     llvm::Type *Tys[2] = { Ty, VTy };
5313     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5314     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
5315     return Builder.CreateTrunc(Ops[0],
5316              llvm::IntegerType::get(getLLVMContext(), 16));
5317   }
5318   case NEON::BI__builtin_neon_vaddlvq_u16: {
5319     Int = Intrinsic::aarch64_neon_uaddlv;
5320     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5321     VTy =
5322       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8);
5323     llvm::Type *Tys[2] = { Ty, VTy };
5324     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5325     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
5326   }
5327   case NEON::BI__builtin_neon_vaddlv_s8: {
5328     Int = Intrinsic::aarch64_neon_saddlv;
5329     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5330     VTy =
5331       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8);
5332     llvm::Type *Tys[2] = { Ty, VTy };
5333     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5334     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
5335     return Builder.CreateTrunc(Ops[0],
5336              llvm::IntegerType::get(getLLVMContext(), 16));
5337   }
5338   case NEON::BI__builtin_neon_vaddlv_s16: {
5339     Int = Intrinsic::aarch64_neon_saddlv;
5340     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5341     VTy =
5342       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4);
5343     llvm::Type *Tys[2] = { Ty, VTy };
5344     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5345     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
5346   }
5347   case NEON::BI__builtin_neon_vaddlvq_s8: {
5348     Int = Intrinsic::aarch64_neon_saddlv;
5349     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5350     VTy =
5351       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16);
5352     llvm::Type *Tys[2] = { Ty, VTy };
5353     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5354     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
5355     return Builder.CreateTrunc(Ops[0],
5356              llvm::IntegerType::get(getLLVMContext(), 16));
5357   }
5358   case NEON::BI__builtin_neon_vaddlvq_s16: {
5359     Int = Intrinsic::aarch64_neon_saddlv;
5360     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5361     VTy =
5362       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8);
5363     llvm::Type *Tys[2] = { Ty, VTy };
5364     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5365     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
5366   }
5367   case NEON::BI__builtin_neon_vsri_n_v:
5368   case NEON::BI__builtin_neon_vsriq_n_v: {
5369     Int = Intrinsic::aarch64_neon_vsri;
5370     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
5371     return EmitNeonCall(Intrin, Ops, "vsri_n");
5372   }
5373   case NEON::BI__builtin_neon_vsli_n_v:
5374   case NEON::BI__builtin_neon_vsliq_n_v: {
5375     Int = Intrinsic::aarch64_neon_vsli;
5376     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
5377     return EmitNeonCall(Intrin, Ops, "vsli_n");
5378   }
5379   case NEON::BI__builtin_neon_vsra_n_v:
5380   case NEON::BI__builtin_neon_vsraq_n_v:
5381     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5382     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
5383     return Builder.CreateAdd(Ops[0], Ops[1]);
5384   case NEON::BI__builtin_neon_vrsra_n_v:
5385   case NEON::BI__builtin_neon_vrsraq_n_v: {
5386     Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
5387     SmallVector<llvm::Value*,2> TmpOps;
5388     TmpOps.push_back(Ops[1]);
5389     TmpOps.push_back(Ops[2]);
5390     Function* F = CGM.getIntrinsic(Int, Ty);
5391     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
5392     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
5393     return Builder.CreateAdd(Ops[0], tmp);
5394   }
5395     // FIXME: Sharing loads & stores with 32-bit is complicated by the absence
5396     // of an Align parameter here.
5397   case NEON::BI__builtin_neon_vld1_x2_v:
5398   case NEON::BI__builtin_neon_vld1q_x2_v:
5399   case NEON::BI__builtin_neon_vld1_x3_v:
5400   case NEON::BI__builtin_neon_vld1q_x3_v:
5401   case NEON::BI__builtin_neon_vld1_x4_v:
5402   case NEON::BI__builtin_neon_vld1q_x4_v: {
5403     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
5404     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5405     llvm::Type *Tys[2] = { VTy, PTy };
5406     unsigned Int;
5407     switch (BuiltinID) {
5408     case NEON::BI__builtin_neon_vld1_x2_v:
5409     case NEON::BI__builtin_neon_vld1q_x2_v:
5410       Int = Intrinsic::aarch64_neon_ld1x2;
5411       break;
5412     case NEON::BI__builtin_neon_vld1_x3_v:
5413     case NEON::BI__builtin_neon_vld1q_x3_v:
5414       Int = Intrinsic::aarch64_neon_ld1x3;
5415       break;
5416     case NEON::BI__builtin_neon_vld1_x4_v:
5417     case NEON::BI__builtin_neon_vld1q_x4_v:
5418       Int = Intrinsic::aarch64_neon_ld1x4;
5419       break;
5420     }
5421     Function *F = CGM.getIntrinsic(Int, Tys);
5422     Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
5423     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5424     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5425     return Builder.CreateStore(Ops[1], Ops[0]);
5426   }
5427   case NEON::BI__builtin_neon_vst1_x2_v:
5428   case NEON::BI__builtin_neon_vst1q_x2_v:
5429   case NEON::BI__builtin_neon_vst1_x3_v:
5430   case NEON::BI__builtin_neon_vst1q_x3_v:
5431   case NEON::BI__builtin_neon_vst1_x4_v:
5432   case NEON::BI__builtin_neon_vst1q_x4_v: {
5433     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
5434     llvm::Type *Tys[2] = { VTy, PTy };
5435     unsigned Int;
5436     switch (BuiltinID) {
5437     case NEON::BI__builtin_neon_vst1_x2_v:
5438     case NEON::BI__builtin_neon_vst1q_x2_v:
5439       Int = Intrinsic::aarch64_neon_st1x2;
5440       break;
5441     case NEON::BI__builtin_neon_vst1_x3_v:
5442     case NEON::BI__builtin_neon_vst1q_x3_v:
5443       Int = Intrinsic::aarch64_neon_st1x3;
5444       break;
5445     case NEON::BI__builtin_neon_vst1_x4_v:
5446     case NEON::BI__builtin_neon_vst1q_x4_v:
5447       Int = Intrinsic::aarch64_neon_st1x4;
5448       break;
5449     }
5450     SmallVector<Value *, 4> IntOps(Ops.begin()+1, Ops.end());
5451     IntOps.push_back(Ops[0]);
5452     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), IntOps, "");
5453   }
5454   case NEON::BI__builtin_neon_vld1_v:
5455   case NEON::BI__builtin_neon_vld1q_v:
5456     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
5457     return Builder.CreateLoad(Ops[0]);
5458   case NEON::BI__builtin_neon_vst1_v:
5459   case NEON::BI__builtin_neon_vst1q_v:
5460     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
5461     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
5462     return Builder.CreateStore(Ops[1], Ops[0]);
5463   case NEON::BI__builtin_neon_vld1_lane_v:
5464   case NEON::BI__builtin_neon_vld1q_lane_v:
5465     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5466     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
5467     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5468     Ops[0] = Builder.CreateLoad(Ops[0]);
5469     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
5470   case NEON::BI__builtin_neon_vld1_dup_v:
5471   case NEON::BI__builtin_neon_vld1q_dup_v: {
5472     Value *V = UndefValue::get(Ty);
5473     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
5474     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5475     Ops[0] = Builder.CreateLoad(Ops[0]);
5476     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
5477     Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
5478     return EmitNeonSplat(Ops[0], CI);
5479   }
5480   case NEON::BI__builtin_neon_vst1_lane_v:
5481   case NEON::BI__builtin_neon_vst1q_lane_v:
5482     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5483     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
5484     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5485     return Builder.CreateStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty));
5486   case NEON::BI__builtin_neon_vld2_v:
5487   case NEON::BI__builtin_neon_vld2q_v: {
5488     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
5489     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5490     llvm::Type *Tys[2] = { VTy, PTy };
5491     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
5492     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
5493     Ops[0] = Builder.CreateBitCast(Ops[0],
5494                 llvm::PointerType::getUnqual(Ops[1]->getType()));
5495     return Builder.CreateStore(Ops[1], Ops[0]);
5496   }
5497   case NEON::BI__builtin_neon_vld3_v:
5498   case NEON::BI__builtin_neon_vld3q_v: {
5499     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
5500     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5501     llvm::Type *Tys[2] = { VTy, PTy };
5502     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
5503     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
5504     Ops[0] = Builder.CreateBitCast(Ops[0],
5505                 llvm::PointerType::getUnqual(Ops[1]->getType()));
5506     return Builder.CreateStore(Ops[1], Ops[0]);
5507   }
5508   case NEON::BI__builtin_neon_vld4_v:
5509   case NEON::BI__builtin_neon_vld4q_v: {
5510     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
5511     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5512     llvm::Type *Tys[2] = { VTy, PTy };
5513     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
5514     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
5515     Ops[0] = Builder.CreateBitCast(Ops[0],
5516                 llvm::PointerType::getUnqual(Ops[1]->getType()));
5517     return Builder.CreateStore(Ops[1], Ops[0]);
5518   }
5519   case NEON::BI__builtin_neon_vld2_dup_v:
5520   case NEON::BI__builtin_neon_vld2q_dup_v: {
5521     llvm::Type *PTy =
5522       llvm::PointerType::getUnqual(VTy->getElementType());
5523     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5524     llvm::Type *Tys[2] = { VTy, PTy };
5525     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
5526     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
5527     Ops[0] = Builder.CreateBitCast(Ops[0],
5528                 llvm::PointerType::getUnqual(Ops[1]->getType()));
5529     return Builder.CreateStore(Ops[1], Ops[0]);
5530   }
5531   case NEON::BI__builtin_neon_vld3_dup_v:
5532   case NEON::BI__builtin_neon_vld3q_dup_v: {
5533     llvm::Type *PTy =
5534       llvm::PointerType::getUnqual(VTy->getElementType());
5535     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5536     llvm::Type *Tys[2] = { VTy, PTy };
5537     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
5538     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
5539     Ops[0] = Builder.CreateBitCast(Ops[0],
5540                 llvm::PointerType::getUnqual(Ops[1]->getType()));
5541     return Builder.CreateStore(Ops[1], Ops[0]);
5542   }
5543   case NEON::BI__builtin_neon_vld4_dup_v:
5544   case NEON::BI__builtin_neon_vld4q_dup_v: {
5545     llvm::Type *PTy =
5546       llvm::PointerType::getUnqual(VTy->getElementType());
5547     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5548     llvm::Type *Tys[2] = { VTy, PTy };
5549     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
5550     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
5551     Ops[0] = Builder.CreateBitCast(Ops[0],
5552                 llvm::PointerType::getUnqual(Ops[1]->getType()));
5553     return Builder.CreateStore(Ops[1], Ops[0]);
5554   }
5555   case NEON::BI__builtin_neon_vld2_lane_v:
5556   case NEON::BI__builtin_neon_vld2q_lane_v: {
5557     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
5558     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
5559     Ops.push_back(Ops[1]);
5560     Ops.erase(Ops.begin()+1);
5561     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5562     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5563     Ops[3] = Builder.CreateZExt(Ops[3],
5564                 llvm::IntegerType::get(getLLVMContext(), 64));
5565     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
5566     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5567     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5568     return Builder.CreateStore(Ops[1], Ops[0]);
5569   }
5570   case NEON::BI__builtin_neon_vld3_lane_v:
5571   case NEON::BI__builtin_neon_vld3q_lane_v: {
5572     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
5573     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
5574     Ops.push_back(Ops[1]);
5575     Ops.erase(Ops.begin()+1);
5576     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5577     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5578     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
5579     Ops[4] = Builder.CreateZExt(Ops[4],
5580                 llvm::IntegerType::get(getLLVMContext(), 64));
5581     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
5582     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5583     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5584     return Builder.CreateStore(Ops[1], Ops[0]);
5585   }
5586   case NEON::BI__builtin_neon_vld4_lane_v:
5587   case NEON::BI__builtin_neon_vld4q_lane_v: {
5588     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
5589     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
5590     Ops.push_back(Ops[1]);
5591     Ops.erase(Ops.begin()+1);
5592     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5593     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5594     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
5595     Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
5596     Ops[5] = Builder.CreateZExt(Ops[5],
5597                 llvm::IntegerType::get(getLLVMContext(), 64));
5598     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
5599     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5600     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5601     return Builder.CreateStore(Ops[1], Ops[0]);
5602   }
5603   case NEON::BI__builtin_neon_vst2_v:
5604   case NEON::BI__builtin_neon_vst2q_v: {
5605     Ops.push_back(Ops[0]);
5606     Ops.erase(Ops.begin());
5607     llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
5608     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
5609                         Ops, "");
5610   }
5611   case NEON::BI__builtin_neon_vst2_lane_v:
5612   case NEON::BI__builtin_neon_vst2q_lane_v: {
5613     Ops.push_back(Ops[0]);
5614     Ops.erase(Ops.begin());
5615     Ops[2] = Builder.CreateZExt(Ops[2],
5616                 llvm::IntegerType::get(getLLVMContext(), 64));
5617     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
5618     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
5619                         Ops, "");
5620   }
5621   case NEON::BI__builtin_neon_vst3_v:
5622   case NEON::BI__builtin_neon_vst3q_v: {
5623     Ops.push_back(Ops[0]);
5624     Ops.erase(Ops.begin());
5625     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
5626     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
5627                         Ops, "");
5628   }
5629   case NEON::BI__builtin_neon_vst3_lane_v:
5630   case NEON::BI__builtin_neon_vst3q_lane_v: {
5631     Ops.push_back(Ops[0]);
5632     Ops.erase(Ops.begin());
5633     Ops[3] = Builder.CreateZExt(Ops[3],
5634                 llvm::IntegerType::get(getLLVMContext(), 64));
5635     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
5636     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
5637                         Ops, "");
5638   }
5639   case NEON::BI__builtin_neon_vst4_v:
5640   case NEON::BI__builtin_neon_vst4q_v: {
5641     Ops.push_back(Ops[0]);
5642     Ops.erase(Ops.begin());
5643     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
5644     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
5645                         Ops, "");
5646   }
5647   case NEON::BI__builtin_neon_vst4_lane_v:
5648   case NEON::BI__builtin_neon_vst4q_lane_v: {
5649     Ops.push_back(Ops[0]);
5650     Ops.erase(Ops.begin());
5651     Ops[4] = Builder.CreateZExt(Ops[4],
5652                 llvm::IntegerType::get(getLLVMContext(), 64));
5653     llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
5654     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
5655                         Ops, "");
5656   }
5657   case NEON::BI__builtin_neon_vtrn_v:
5658   case NEON::BI__builtin_neon_vtrnq_v: {
5659     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
5660     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5661     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5662     Value *SV = nullptr;
5663 
5664     for (unsigned vi = 0; vi != 2; ++vi) {
5665       SmallVector<Constant*, 16> Indices;
5666       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
5667         Indices.push_back(ConstantInt::get(Int32Ty, i+vi));
5668         Indices.push_back(ConstantInt::get(Int32Ty, i+e+vi));
5669       }
5670       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
5671       SV = llvm::ConstantVector::get(Indices);
5672       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn");
5673       SV = Builder.CreateStore(SV, Addr);
5674     }
5675     return SV;
5676   }
5677   case NEON::BI__builtin_neon_vuzp_v:
5678   case NEON::BI__builtin_neon_vuzpq_v: {
5679     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
5680     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5681     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5682     Value *SV = nullptr;
5683 
5684     for (unsigned vi = 0; vi != 2; ++vi) {
5685       SmallVector<Constant*, 16> Indices;
5686       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
5687         Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi));
5688 
5689       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
5690       SV = llvm::ConstantVector::get(Indices);
5691       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp");
5692       SV = Builder.CreateStore(SV, Addr);
5693     }
5694     return SV;
5695   }
5696   case NEON::BI__builtin_neon_vzip_v:
5697   case NEON::BI__builtin_neon_vzipq_v: {
5698     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
5699     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5700     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5701     Value *SV = nullptr;
5702 
5703     for (unsigned vi = 0; vi != 2; ++vi) {
5704       SmallVector<Constant*, 16> Indices;
5705       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
5706         Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1));
5707         Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e));
5708       }
5709       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
5710       SV = llvm::ConstantVector::get(Indices);
5711       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip");
5712       SV = Builder.CreateStore(SV, Addr);
5713     }
5714     return SV;
5715   }
5716   case NEON::BI__builtin_neon_vqtbl1q_v: {
5717     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
5718                         Ops, "vtbl1");
5719   }
5720   case NEON::BI__builtin_neon_vqtbl2q_v: {
5721     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
5722                         Ops, "vtbl2");
5723   }
5724   case NEON::BI__builtin_neon_vqtbl3q_v: {
5725     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
5726                         Ops, "vtbl3");
5727   }
5728   case NEON::BI__builtin_neon_vqtbl4q_v: {
5729     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
5730                         Ops, "vtbl4");
5731   }
5732   case NEON::BI__builtin_neon_vqtbx1q_v: {
5733     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
5734                         Ops, "vtbx1");
5735   }
5736   case NEON::BI__builtin_neon_vqtbx2q_v: {
5737     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
5738                         Ops, "vtbx2");
5739   }
5740   case NEON::BI__builtin_neon_vqtbx3q_v: {
5741     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
5742                         Ops, "vtbx3");
5743   }
5744   case NEON::BI__builtin_neon_vqtbx4q_v: {
5745     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
5746                         Ops, "vtbx4");
5747   }
5748   case NEON::BI__builtin_neon_vsqadd_v:
5749   case NEON::BI__builtin_neon_vsqaddq_v: {
5750     Int = Intrinsic::aarch64_neon_usqadd;
5751     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
5752   }
5753   case NEON::BI__builtin_neon_vuqadd_v:
5754   case NEON::BI__builtin_neon_vuqaddq_v: {
5755     Int = Intrinsic::aarch64_neon_suqadd;
5756     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
5757   }
5758   }
5759 }
5760 
5761 llvm::Value *CodeGenFunction::
BuildVector(ArrayRef<llvm::Value * > Ops)5762 BuildVector(ArrayRef<llvm::Value*> Ops) {
5763   assert((Ops.size() & (Ops.size() - 1)) == 0 &&
5764          "Not a power-of-two sized vector!");
5765   bool AllConstants = true;
5766   for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
5767     AllConstants &= isa<Constant>(Ops[i]);
5768 
5769   // If this is a constant vector, create a ConstantVector.
5770   if (AllConstants) {
5771     SmallVector<llvm::Constant*, 16> CstOps;
5772     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
5773       CstOps.push_back(cast<Constant>(Ops[i]));
5774     return llvm::ConstantVector::get(CstOps);
5775   }
5776 
5777   // Otherwise, insertelement the values to build the vector.
5778   Value *Result =
5779     llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
5780 
5781   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
5782     Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
5783 
5784   return Result;
5785 }
5786 
EmitX86BuiltinExpr(unsigned BuiltinID,const CallExpr * E)5787 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
5788                                            const CallExpr *E) {
5789   SmallVector<Value*, 4> Ops;
5790 
5791   // Find out if any arguments are required to be integer constant expressions.
5792   unsigned ICEArguments = 0;
5793   ASTContext::GetBuiltinTypeError Error;
5794   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
5795   assert(Error == ASTContext::GE_None && "Should not codegen an error");
5796 
5797   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
5798     // If this is a normal argument, just emit it as a scalar.
5799     if ((ICEArguments & (1 << i)) == 0) {
5800       Ops.push_back(EmitScalarExpr(E->getArg(i)));
5801       continue;
5802     }
5803 
5804     // If this is required to be a constant, constant fold it so that we know
5805     // that the generated intrinsic gets a ConstantInt.
5806     llvm::APSInt Result;
5807     bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
5808     assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
5809     Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
5810   }
5811 
5812   switch (BuiltinID) {
5813   default: return nullptr;
5814   case X86::BI_mm_prefetch: {
5815     Value *Address = EmitScalarExpr(E->getArg(0));
5816     Value *RW = ConstantInt::get(Int32Ty, 0);
5817     Value *Locality = EmitScalarExpr(E->getArg(1));
5818     Value *Data = ConstantInt::get(Int32Ty, 1);
5819     Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
5820     return Builder.CreateCall4(F, Address, RW, Locality, Data);
5821   }
5822   case X86::BI__builtin_ia32_vec_init_v8qi:
5823   case X86::BI__builtin_ia32_vec_init_v4hi:
5824   case X86::BI__builtin_ia32_vec_init_v2si:
5825     return Builder.CreateBitCast(BuildVector(Ops),
5826                                  llvm::Type::getX86_MMXTy(getLLVMContext()));
5827   case X86::BI__builtin_ia32_vec_ext_v2si:
5828     return Builder.CreateExtractElement(Ops[0],
5829                                   llvm::ConstantInt::get(Ops[1]->getType(), 0));
5830   case X86::BI__builtin_ia32_ldmxcsr: {
5831     Value *Tmp = CreateMemTemp(E->getArg(0)->getType());
5832     Builder.CreateStore(Ops[0], Tmp);
5833     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
5834                               Builder.CreateBitCast(Tmp, Int8PtrTy));
5835   }
5836   case X86::BI__builtin_ia32_stmxcsr: {
5837     Value *Tmp = CreateMemTemp(E->getType());
5838     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
5839                        Builder.CreateBitCast(Tmp, Int8PtrTy));
5840     return Builder.CreateLoad(Tmp, "stmxcsr");
5841   }
5842   case X86::BI__builtin_ia32_storehps:
5843   case X86::BI__builtin_ia32_storelps: {
5844     llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty);
5845     llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
5846 
5847     // cast val v2i64
5848     Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
5849 
5850     // extract (0, 1)
5851     unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
5852     llvm::Value *Idx = llvm::ConstantInt::get(SizeTy, Index);
5853     Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract");
5854 
5855     // cast pointer to i64 & store
5856     Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
5857     return Builder.CreateStore(Ops[1], Ops[0]);
5858   }
5859   case X86::BI__builtin_ia32_palignr: {
5860     unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
5861 
5862     // If palignr is shifting the pair of input vectors less than 9 bytes,
5863     // emit a shuffle instruction.
5864     if (shiftVal <= 8) {
5865       SmallVector<llvm::Constant*, 8> Indices;
5866       for (unsigned i = 0; i != 8; ++i)
5867         Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
5868 
5869       Value* SV = llvm::ConstantVector::get(Indices);
5870       return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
5871     }
5872 
5873     // If palignr is shifting the pair of input vectors more than 8 but less
5874     // than 16 bytes, emit a logical right shift of the destination.
5875     if (shiftVal < 16) {
5876       // MMX has these as 1 x i64 vectors for some odd optimization reasons.
5877       llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 1);
5878 
5879       Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
5880       Ops[1] = llvm::ConstantInt::get(VecTy, (shiftVal-8) * 8);
5881 
5882       // create i32 constant
5883       llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_mmx_psrl_q);
5884       return Builder.CreateCall(F, makeArrayRef(Ops.data(), 2), "palignr");
5885     }
5886 
5887     // If palignr is shifting the pair of vectors more than 16 bytes, emit zero.
5888     return llvm::Constant::getNullValue(ConvertType(E->getType()));
5889   }
5890   case X86::BI__builtin_ia32_palignr128: {
5891     unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
5892 
5893     // If palignr is shifting the pair of input vectors less than 17 bytes,
5894     // emit a shuffle instruction.
5895     if (shiftVal <= 16) {
5896       SmallVector<llvm::Constant*, 16> Indices;
5897       for (unsigned i = 0; i != 16; ++i)
5898         Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
5899 
5900       Value* SV = llvm::ConstantVector::get(Indices);
5901       return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
5902     }
5903 
5904     // If palignr is shifting the pair of input vectors more than 16 but less
5905     // than 32 bytes, emit a logical right shift of the destination.
5906     if (shiftVal < 32) {
5907       llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
5908 
5909       Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
5910       Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8);
5911 
5912       // create i32 constant
5913       llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_psrl_dq);
5914       return Builder.CreateCall(F, makeArrayRef(Ops.data(), 2), "palignr");
5915     }
5916 
5917     // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
5918     return llvm::Constant::getNullValue(ConvertType(E->getType()));
5919   }
5920   case X86::BI__builtin_ia32_palignr256: {
5921     unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
5922 
5923     // If palignr is shifting the pair of input vectors less than 17 bytes,
5924     // emit a shuffle instruction.
5925     if (shiftVal <= 16) {
5926       SmallVector<llvm::Constant*, 32> Indices;
5927       // 256-bit palignr operates on 128-bit lanes so we need to handle that
5928       for (unsigned l = 0; l != 2; ++l) {
5929         unsigned LaneStart = l * 16;
5930         unsigned LaneEnd = (l+1) * 16;
5931         for (unsigned i = 0; i != 16; ++i) {
5932           unsigned Idx = shiftVal + i + LaneStart;
5933           if (Idx >= LaneEnd) Idx += 16; // end of lane, switch operand
5934           Indices.push_back(llvm::ConstantInt::get(Int32Ty, Idx));
5935         }
5936       }
5937 
5938       Value* SV = llvm::ConstantVector::get(Indices);
5939       return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
5940     }
5941 
5942     // If palignr is shifting the pair of input vectors more than 16 but less
5943     // than 32 bytes, emit a logical right shift of the destination.
5944     if (shiftVal < 32) {
5945       llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 4);
5946 
5947       Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
5948       Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8);
5949 
5950       // create i32 constant
5951       llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_avx2_psrl_dq);
5952       return Builder.CreateCall(F, makeArrayRef(Ops.data(), 2), "palignr");
5953     }
5954 
5955     // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
5956     return llvm::Constant::getNullValue(ConvertType(E->getType()));
5957   }
5958   case X86::BI__builtin_ia32_movntps:
5959   case X86::BI__builtin_ia32_movntps256:
5960   case X86::BI__builtin_ia32_movntpd:
5961   case X86::BI__builtin_ia32_movntpd256:
5962   case X86::BI__builtin_ia32_movntdq:
5963   case X86::BI__builtin_ia32_movntdq256:
5964   case X86::BI__builtin_ia32_movnti:
5965   case X86::BI__builtin_ia32_movnti64: {
5966     llvm::MDNode *Node = llvm::MDNode::get(
5967         getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
5968 
5969     // Convert the type of the pointer to a pointer to the stored type.
5970     Value *BC = Builder.CreateBitCast(Ops[0],
5971                                 llvm::PointerType::getUnqual(Ops[1]->getType()),
5972                                       "cast");
5973     StoreInst *SI = Builder.CreateStore(Ops[1], BC);
5974     SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
5975 
5976     // If the operand is an integer, we can't assume alignment. Otherwise,
5977     // assume natural alignment.
5978     QualType ArgTy = E->getArg(1)->getType();
5979     unsigned Align;
5980     if (ArgTy->isIntegerType())
5981       Align = 1;
5982     else
5983       Align = getContext().getTypeSizeInChars(ArgTy).getQuantity();
5984     SI->setAlignment(Align);
5985     return SI;
5986   }
5987   // 3DNow!
5988   case X86::BI__builtin_ia32_pswapdsf:
5989   case X86::BI__builtin_ia32_pswapdsi: {
5990     const char *name;
5991     Intrinsic::ID ID;
5992     switch(BuiltinID) {
5993     default: llvm_unreachable("Unsupported intrinsic!");
5994     case X86::BI__builtin_ia32_pswapdsf:
5995     case X86::BI__builtin_ia32_pswapdsi:
5996       name = "pswapd";
5997       ID = Intrinsic::x86_3dnowa_pswapd;
5998       break;
5999     }
6000     llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
6001     Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
6002     llvm::Function *F = CGM.getIntrinsic(ID);
6003     return Builder.CreateCall(F, Ops, name);
6004   }
6005   case X86::BI__builtin_ia32_rdrand16_step:
6006   case X86::BI__builtin_ia32_rdrand32_step:
6007   case X86::BI__builtin_ia32_rdrand64_step:
6008   case X86::BI__builtin_ia32_rdseed16_step:
6009   case X86::BI__builtin_ia32_rdseed32_step:
6010   case X86::BI__builtin_ia32_rdseed64_step: {
6011     Intrinsic::ID ID;
6012     switch (BuiltinID) {
6013     default: llvm_unreachable("Unsupported intrinsic!");
6014     case X86::BI__builtin_ia32_rdrand16_step:
6015       ID = Intrinsic::x86_rdrand_16;
6016       break;
6017     case X86::BI__builtin_ia32_rdrand32_step:
6018       ID = Intrinsic::x86_rdrand_32;
6019       break;
6020     case X86::BI__builtin_ia32_rdrand64_step:
6021       ID = Intrinsic::x86_rdrand_64;
6022       break;
6023     case X86::BI__builtin_ia32_rdseed16_step:
6024       ID = Intrinsic::x86_rdseed_16;
6025       break;
6026     case X86::BI__builtin_ia32_rdseed32_step:
6027       ID = Intrinsic::x86_rdseed_32;
6028       break;
6029     case X86::BI__builtin_ia32_rdseed64_step:
6030       ID = Intrinsic::x86_rdseed_64;
6031       break;
6032     }
6033 
6034     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
6035     Builder.CreateStore(Builder.CreateExtractValue(Call, 0), Ops[0]);
6036     return Builder.CreateExtractValue(Call, 1);
6037   }
6038   // AVX2 broadcast
6039   case X86::BI__builtin_ia32_vbroadcastsi256: {
6040     Value *VecTmp = CreateMemTemp(E->getArg(0)->getType());
6041     Builder.CreateStore(Ops[0], VecTmp);
6042     Value *F = CGM.getIntrinsic(Intrinsic::x86_avx2_vbroadcasti128);
6043     return Builder.CreateCall(F, Builder.CreateBitCast(VecTmp, Int8PtrTy));
6044   }
6045   // SSE comparison intrisics
6046   case X86::BI__builtin_ia32_cmpeqps:
6047   case X86::BI__builtin_ia32_cmpltps:
6048   case X86::BI__builtin_ia32_cmpleps:
6049   case X86::BI__builtin_ia32_cmpunordps:
6050   case X86::BI__builtin_ia32_cmpneqps:
6051   case X86::BI__builtin_ia32_cmpnltps:
6052   case X86::BI__builtin_ia32_cmpnleps:
6053   case X86::BI__builtin_ia32_cmpordps:
6054   case X86::BI__builtin_ia32_cmpeqss:
6055   case X86::BI__builtin_ia32_cmpltss:
6056   case X86::BI__builtin_ia32_cmpless:
6057   case X86::BI__builtin_ia32_cmpunordss:
6058   case X86::BI__builtin_ia32_cmpneqss:
6059   case X86::BI__builtin_ia32_cmpnltss:
6060   case X86::BI__builtin_ia32_cmpnless:
6061   case X86::BI__builtin_ia32_cmpordss:
6062   case X86::BI__builtin_ia32_cmpeqpd:
6063   case X86::BI__builtin_ia32_cmpltpd:
6064   case X86::BI__builtin_ia32_cmplepd:
6065   case X86::BI__builtin_ia32_cmpunordpd:
6066   case X86::BI__builtin_ia32_cmpneqpd:
6067   case X86::BI__builtin_ia32_cmpnltpd:
6068   case X86::BI__builtin_ia32_cmpnlepd:
6069   case X86::BI__builtin_ia32_cmpordpd:
6070   case X86::BI__builtin_ia32_cmpeqsd:
6071   case X86::BI__builtin_ia32_cmpltsd:
6072   case X86::BI__builtin_ia32_cmplesd:
6073   case X86::BI__builtin_ia32_cmpunordsd:
6074   case X86::BI__builtin_ia32_cmpneqsd:
6075   case X86::BI__builtin_ia32_cmpnltsd:
6076   case X86::BI__builtin_ia32_cmpnlesd:
6077   case X86::BI__builtin_ia32_cmpordsd:
6078     // These exist so that the builtin that takes an immediate can be bounds
6079     // checked by clang to avoid passing bad immediates to the backend. Since
6080     // AVX has a larger immediate than SSE we would need separate builtins to
6081     // do the different bounds checking. Rather than create a clang specific
6082     // SSE only builtin, this implements eight separate builtins to match gcc
6083     // implementation.
6084 
6085     // Choose the immediate.
6086     unsigned Imm;
6087     switch (BuiltinID) {
6088     default: llvm_unreachable("Unsupported intrinsic!");
6089     case X86::BI__builtin_ia32_cmpeqps:
6090     case X86::BI__builtin_ia32_cmpeqss:
6091     case X86::BI__builtin_ia32_cmpeqpd:
6092     case X86::BI__builtin_ia32_cmpeqsd:
6093       Imm = 0;
6094       break;
6095     case X86::BI__builtin_ia32_cmpltps:
6096     case X86::BI__builtin_ia32_cmpltss:
6097     case X86::BI__builtin_ia32_cmpltpd:
6098     case X86::BI__builtin_ia32_cmpltsd:
6099       Imm = 1;
6100       break;
6101     case X86::BI__builtin_ia32_cmpleps:
6102     case X86::BI__builtin_ia32_cmpless:
6103     case X86::BI__builtin_ia32_cmplepd:
6104     case X86::BI__builtin_ia32_cmplesd:
6105       Imm = 2;
6106       break;
6107     case X86::BI__builtin_ia32_cmpunordps:
6108     case X86::BI__builtin_ia32_cmpunordss:
6109     case X86::BI__builtin_ia32_cmpunordpd:
6110     case X86::BI__builtin_ia32_cmpunordsd:
6111       Imm = 3;
6112       break;
6113     case X86::BI__builtin_ia32_cmpneqps:
6114     case X86::BI__builtin_ia32_cmpneqss:
6115     case X86::BI__builtin_ia32_cmpneqpd:
6116     case X86::BI__builtin_ia32_cmpneqsd:
6117       Imm = 4;
6118       break;
6119     case X86::BI__builtin_ia32_cmpnltps:
6120     case X86::BI__builtin_ia32_cmpnltss:
6121     case X86::BI__builtin_ia32_cmpnltpd:
6122     case X86::BI__builtin_ia32_cmpnltsd:
6123       Imm = 5;
6124       break;
6125     case X86::BI__builtin_ia32_cmpnleps:
6126     case X86::BI__builtin_ia32_cmpnless:
6127     case X86::BI__builtin_ia32_cmpnlepd:
6128     case X86::BI__builtin_ia32_cmpnlesd:
6129       Imm = 6;
6130       break;
6131     case X86::BI__builtin_ia32_cmpordps:
6132     case X86::BI__builtin_ia32_cmpordss:
6133     case X86::BI__builtin_ia32_cmpordpd:
6134     case X86::BI__builtin_ia32_cmpordsd:
6135       Imm = 7;
6136       break;
6137     }
6138 
6139     // Choose the intrinsic ID.
6140     const char *name;
6141     Intrinsic::ID ID;
6142     switch (BuiltinID) {
6143     default: llvm_unreachable("Unsupported intrinsic!");
6144     case X86::BI__builtin_ia32_cmpeqps:
6145     case X86::BI__builtin_ia32_cmpltps:
6146     case X86::BI__builtin_ia32_cmpleps:
6147     case X86::BI__builtin_ia32_cmpunordps:
6148     case X86::BI__builtin_ia32_cmpneqps:
6149     case X86::BI__builtin_ia32_cmpnltps:
6150     case X86::BI__builtin_ia32_cmpnleps:
6151     case X86::BI__builtin_ia32_cmpordps:
6152       name = "cmpps";
6153       ID = Intrinsic::x86_sse_cmp_ps;
6154       break;
6155     case X86::BI__builtin_ia32_cmpeqss:
6156     case X86::BI__builtin_ia32_cmpltss:
6157     case X86::BI__builtin_ia32_cmpless:
6158     case X86::BI__builtin_ia32_cmpunordss:
6159     case X86::BI__builtin_ia32_cmpneqss:
6160     case X86::BI__builtin_ia32_cmpnltss:
6161     case X86::BI__builtin_ia32_cmpnless:
6162     case X86::BI__builtin_ia32_cmpordss:
6163       name = "cmpss";
6164       ID = Intrinsic::x86_sse_cmp_ss;
6165       break;
6166     case X86::BI__builtin_ia32_cmpeqpd:
6167     case X86::BI__builtin_ia32_cmpltpd:
6168     case X86::BI__builtin_ia32_cmplepd:
6169     case X86::BI__builtin_ia32_cmpunordpd:
6170     case X86::BI__builtin_ia32_cmpneqpd:
6171     case X86::BI__builtin_ia32_cmpnltpd:
6172     case X86::BI__builtin_ia32_cmpnlepd:
6173     case X86::BI__builtin_ia32_cmpordpd:
6174       name = "cmppd";
6175       ID = Intrinsic::x86_sse2_cmp_pd;
6176       break;
6177     case X86::BI__builtin_ia32_cmpeqsd:
6178     case X86::BI__builtin_ia32_cmpltsd:
6179     case X86::BI__builtin_ia32_cmplesd:
6180     case X86::BI__builtin_ia32_cmpunordsd:
6181     case X86::BI__builtin_ia32_cmpneqsd:
6182     case X86::BI__builtin_ia32_cmpnltsd:
6183     case X86::BI__builtin_ia32_cmpnlesd:
6184     case X86::BI__builtin_ia32_cmpordsd:
6185       name = "cmpsd";
6186       ID = Intrinsic::x86_sse2_cmp_sd;
6187       break;
6188     }
6189 
6190     Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
6191     llvm::Function *F = CGM.getIntrinsic(ID);
6192     return Builder.CreateCall(F, Ops, name);
6193   }
6194 }
6195 
6196 
EmitPPCBuiltinExpr(unsigned BuiltinID,const CallExpr * E)6197 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
6198                                            const CallExpr *E) {
6199   SmallVector<Value*, 4> Ops;
6200 
6201   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
6202     Ops.push_back(EmitScalarExpr(E->getArg(i)));
6203 
6204   Intrinsic::ID ID = Intrinsic::not_intrinsic;
6205 
6206   switch (BuiltinID) {
6207   default: return nullptr;
6208 
6209   // vec_ld, vec_lvsl, vec_lvsr
6210   case PPC::BI__builtin_altivec_lvx:
6211   case PPC::BI__builtin_altivec_lvxl:
6212   case PPC::BI__builtin_altivec_lvebx:
6213   case PPC::BI__builtin_altivec_lvehx:
6214   case PPC::BI__builtin_altivec_lvewx:
6215   case PPC::BI__builtin_altivec_lvsl:
6216   case PPC::BI__builtin_altivec_lvsr:
6217   case PPC::BI__builtin_vsx_lxvd2x:
6218   case PPC::BI__builtin_vsx_lxvw4x:
6219   {
6220     Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
6221 
6222     Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
6223     Ops.pop_back();
6224 
6225     switch (BuiltinID) {
6226     default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
6227     case PPC::BI__builtin_altivec_lvx:
6228       ID = Intrinsic::ppc_altivec_lvx;
6229       break;
6230     case PPC::BI__builtin_altivec_lvxl:
6231       ID = Intrinsic::ppc_altivec_lvxl;
6232       break;
6233     case PPC::BI__builtin_altivec_lvebx:
6234       ID = Intrinsic::ppc_altivec_lvebx;
6235       break;
6236     case PPC::BI__builtin_altivec_lvehx:
6237       ID = Intrinsic::ppc_altivec_lvehx;
6238       break;
6239     case PPC::BI__builtin_altivec_lvewx:
6240       ID = Intrinsic::ppc_altivec_lvewx;
6241       break;
6242     case PPC::BI__builtin_altivec_lvsl:
6243       ID = Intrinsic::ppc_altivec_lvsl;
6244       break;
6245     case PPC::BI__builtin_altivec_lvsr:
6246       ID = Intrinsic::ppc_altivec_lvsr;
6247       break;
6248     case PPC::BI__builtin_vsx_lxvd2x:
6249       ID = Intrinsic::ppc_vsx_lxvd2x;
6250       break;
6251     case PPC::BI__builtin_vsx_lxvw4x:
6252       ID = Intrinsic::ppc_vsx_lxvw4x;
6253       break;
6254     }
6255     llvm::Function *F = CGM.getIntrinsic(ID);
6256     return Builder.CreateCall(F, Ops, "");
6257   }
6258 
6259   // vec_st
6260   case PPC::BI__builtin_altivec_stvx:
6261   case PPC::BI__builtin_altivec_stvxl:
6262   case PPC::BI__builtin_altivec_stvebx:
6263   case PPC::BI__builtin_altivec_stvehx:
6264   case PPC::BI__builtin_altivec_stvewx:
6265   case PPC::BI__builtin_vsx_stxvd2x:
6266   case PPC::BI__builtin_vsx_stxvw4x:
6267   {
6268     Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
6269     Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
6270     Ops.pop_back();
6271 
6272     switch (BuiltinID) {
6273     default: llvm_unreachable("Unsupported st intrinsic!");
6274     case PPC::BI__builtin_altivec_stvx:
6275       ID = Intrinsic::ppc_altivec_stvx;
6276       break;
6277     case PPC::BI__builtin_altivec_stvxl:
6278       ID = Intrinsic::ppc_altivec_stvxl;
6279       break;
6280     case PPC::BI__builtin_altivec_stvebx:
6281       ID = Intrinsic::ppc_altivec_stvebx;
6282       break;
6283     case PPC::BI__builtin_altivec_stvehx:
6284       ID = Intrinsic::ppc_altivec_stvehx;
6285       break;
6286     case PPC::BI__builtin_altivec_stvewx:
6287       ID = Intrinsic::ppc_altivec_stvewx;
6288       break;
6289     case PPC::BI__builtin_vsx_stxvd2x:
6290       ID = Intrinsic::ppc_vsx_stxvd2x;
6291       break;
6292     case PPC::BI__builtin_vsx_stxvw4x:
6293       ID = Intrinsic::ppc_vsx_stxvw4x;
6294       break;
6295     }
6296     llvm::Function *F = CGM.getIntrinsic(ID);
6297     return Builder.CreateCall(F, Ops, "");
6298   }
6299   }
6300 }
6301 
6302 // Emit an intrinsic that has 1 float or double.
emitUnaryFPBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID)6303 static Value *emitUnaryFPBuiltin(CodeGenFunction &CGF,
6304                                  const CallExpr *E,
6305                                  unsigned IntrinsicID) {
6306   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
6307 
6308   Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
6309   return CGF.Builder.CreateCall(F, Src0);
6310 }
6311 
6312 // Emit an intrinsic that has 3 float or double operands.
emitTernaryFPBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID)6313 static Value *emitTernaryFPBuiltin(CodeGenFunction &CGF,
6314                                    const CallExpr *E,
6315                                    unsigned IntrinsicID) {
6316   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
6317   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
6318   llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
6319 
6320   Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
6321   return CGF.Builder.CreateCall3(F, Src0, Src1, Src2);
6322 }
6323 
6324 // Emit an intrinsic that has 1 float or double operand, and 1 integer.
emitFPIntBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID)6325 static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
6326                                const CallExpr *E,
6327                                unsigned IntrinsicID) {
6328   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
6329   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
6330 
6331   Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
6332   return CGF.Builder.CreateCall2(F, Src0, Src1);
6333 }
6334 
EmitR600BuiltinExpr(unsigned BuiltinID,const CallExpr * E)6335 Value *CodeGenFunction::EmitR600BuiltinExpr(unsigned BuiltinID,
6336                                             const CallExpr *E) {
6337   switch (BuiltinID) {
6338   case R600::BI__builtin_amdgpu_div_scale:
6339   case R600::BI__builtin_amdgpu_div_scalef: {
6340     // Translate from the intrinsics's struct return to the builtin's out
6341     // argument.
6342 
6343     std::pair<llvm::Value *, unsigned> FlagOutPtr
6344       = EmitPointerWithAlignment(E->getArg(3));
6345 
6346     llvm::Value *X = EmitScalarExpr(E->getArg(0));
6347     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
6348     llvm::Value *Z = EmitScalarExpr(E->getArg(2));
6349 
6350     llvm::Value *Callee = CGM.getIntrinsic(Intrinsic::AMDGPU_div_scale,
6351                                            X->getType());
6352 
6353     llvm::Value *Tmp = Builder.CreateCall3(Callee, X, Y, Z);
6354 
6355     llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
6356     llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
6357 
6358     llvm::Type *RealFlagType
6359       = FlagOutPtr.first->getType()->getPointerElementType();
6360 
6361     llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
6362     llvm::StoreInst *FlagStore = Builder.CreateStore(FlagExt, FlagOutPtr.first);
6363     FlagStore->setAlignment(FlagOutPtr.second);
6364     return Result;
6365   }
6366   case R600::BI__builtin_amdgpu_div_fmas:
6367   case R600::BI__builtin_amdgpu_div_fmasf: {
6368     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
6369     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
6370     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
6371     llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
6372 
6373     llvm::Value *F = CGM.getIntrinsic(Intrinsic::AMDGPU_div_fmas,
6374                                       Src0->getType());
6375     llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
6376     return Builder.CreateCall4(F, Src0, Src1, Src2, Src3ToBool);
6377   }
6378   case R600::BI__builtin_amdgpu_div_fixup:
6379   case R600::BI__builtin_amdgpu_div_fixupf:
6380     return emitTernaryFPBuiltin(*this, E, Intrinsic::AMDGPU_div_fixup);
6381   case R600::BI__builtin_amdgpu_trig_preop:
6382   case R600::BI__builtin_amdgpu_trig_preopf:
6383     return emitFPIntBuiltin(*this, E, Intrinsic::AMDGPU_trig_preop);
6384   case R600::BI__builtin_amdgpu_rcp:
6385   case R600::BI__builtin_amdgpu_rcpf:
6386     return emitUnaryFPBuiltin(*this, E, Intrinsic::AMDGPU_rcp);
6387   case R600::BI__builtin_amdgpu_rsq:
6388   case R600::BI__builtin_amdgpu_rsqf:
6389     return emitUnaryFPBuiltin(*this, E, Intrinsic::AMDGPU_rsq);
6390   case R600::BI__builtin_amdgpu_rsq_clamped:
6391   case R600::BI__builtin_amdgpu_rsq_clampedf:
6392     return emitUnaryFPBuiltin(*this, E, Intrinsic::AMDGPU_rsq_clamped);
6393   case R600::BI__builtin_amdgpu_ldexp:
6394   case R600::BI__builtin_amdgpu_ldexpf:
6395     return emitFPIntBuiltin(*this, E, Intrinsic::AMDGPU_ldexp);
6396   case R600::BI__builtin_amdgpu_class:
6397   case R600::BI__builtin_amdgpu_classf:
6398     return emitFPIntBuiltin(*this, E, Intrinsic::AMDGPU_class);
6399    default:
6400     return nullptr;
6401   }
6402 }
6403