1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "clang/CodeGen/CGFunctionInfo.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/Support/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
32 static TryEmitResult
33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
34 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
35                                       QualType ET,
36                                       const ObjCMethodDecl *Method,
37                                       RValue Result);
38 
39 /// Given the address of a variable of pointer type, find the correct
40 /// null to store into it.
41 static llvm::Constant *getNullForVariable(llvm::Value *addr) {
42   llvm::Type *type =
43     cast<llvm::PointerType>(addr->getType())->getElementType();
44   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
45 }
46 
47 /// Emits an instance of NSConstantString representing the object.
48 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
49 {
50   llvm::Constant *C =
51       CGM.getObjCRuntime().GenerateConstantString(E->getString());
52   // FIXME: This bitcast should just be made an invariant on the Runtime.
53   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
54 }
55 
56 /// EmitObjCBoxedExpr - This routine generates code to call
57 /// the appropriate expression boxing method. This will either be
58 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:].
59 ///
60 llvm::Value *
61 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
62   // Generate the correct selector for this literal's concrete type.
63   const Expr *SubExpr = E->getSubExpr();
64   // Get the method.
65   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
66   assert(BoxingMethod && "BoxingMethod is null");
67   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
68   Selector Sel = BoxingMethod->getSelector();
69 
70   // Generate a reference to the class pointer, which will be the receiver.
71   // Assumes that the method was introduced in the class that should be
72   // messaged (avoids pulling it out of the result type).
73   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
74   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
75   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
76 
77   const ParmVarDecl *argDecl = *BoxingMethod->param_begin();
78   QualType ArgQT = argDecl->getType().getUnqualifiedType();
79   RValue RV = EmitAnyExpr(SubExpr);
80   CallArgList Args;
81   Args.add(RV, ArgQT);
82 
83   RValue result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
84                                               BoxingMethod->getResultType(), Sel, Receiver, Args,
85                                               ClassDecl, BoxingMethod);
86   return Builder.CreateBitCast(result.getScalarVal(),
87                                ConvertType(E->getType()));
88 }
89 
90 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
91                                     const ObjCMethodDecl *MethodWithObjects) {
92   ASTContext &Context = CGM.getContext();
93   const ObjCDictionaryLiteral *DLE = 0;
94   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
95   if (!ALE)
96     DLE = cast<ObjCDictionaryLiteral>(E);
97 
98   // Compute the type of the array we're initializing.
99   uint64_t NumElements =
100     ALE ? ALE->getNumElements() : DLE->getNumElements();
101   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
102                             NumElements);
103   QualType ElementType = Context.getObjCIdType().withConst();
104   QualType ElementArrayType
105     = Context.getConstantArrayType(ElementType, APNumElements,
106                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
107 
108   // Allocate the temporary array(s).
109   llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects");
110   llvm::Value *Keys = 0;
111   if (DLE)
112     Keys = CreateMemTemp(ElementArrayType, "keys");
113 
114   // In ARC, we may need to do extra work to keep all the keys and
115   // values alive until after the call.
116   SmallVector<llvm::Value *, 16> NeededObjects;
117   bool TrackNeededObjects =
118     (getLangOpts().ObjCAutoRefCount &&
119     CGM.getCodeGenOpts().OptimizationLevel != 0);
120 
121   // Perform the actual initialialization of the array(s).
122   for (uint64_t i = 0; i < NumElements; i++) {
123     if (ALE) {
124       // Emit the element and store it to the appropriate array slot.
125       const Expr *Rhs = ALE->getElement(i);
126       LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
127                                    ElementType,
128                                    Context.getTypeAlignInChars(Rhs->getType()),
129                                    Context);
130 
131       llvm::Value *value = EmitScalarExpr(Rhs);
132       EmitStoreThroughLValue(RValue::get(value), LV, true);
133       if (TrackNeededObjects) {
134         NeededObjects.push_back(value);
135       }
136     } else {
137       // Emit the key and store it to the appropriate array slot.
138       const Expr *Key = DLE->getKeyValueElement(i).Key;
139       LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i),
140                                       ElementType,
141                                     Context.getTypeAlignInChars(Key->getType()),
142                                       Context);
143       llvm::Value *keyValue = EmitScalarExpr(Key);
144       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
145 
146       // Emit the value and store it to the appropriate array slot.
147       const Expr *Value = DLE->getKeyValueElement(i).Value;
148       LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
149                                         ElementType,
150                                   Context.getTypeAlignInChars(Value->getType()),
151                                         Context);
152       llvm::Value *valueValue = EmitScalarExpr(Value);
153       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
154       if (TrackNeededObjects) {
155         NeededObjects.push_back(keyValue);
156         NeededObjects.push_back(valueValue);
157       }
158     }
159   }
160 
161   // Generate the argument list.
162   CallArgList Args;
163   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
164   const ParmVarDecl *argDecl = *PI++;
165   QualType ArgQT = argDecl->getType().getUnqualifiedType();
166   Args.add(RValue::get(Objects), ArgQT);
167   if (DLE) {
168     argDecl = *PI++;
169     ArgQT = argDecl->getType().getUnqualifiedType();
170     Args.add(RValue::get(Keys), ArgQT);
171   }
172   argDecl = *PI;
173   ArgQT = argDecl->getType().getUnqualifiedType();
174   llvm::Value *Count =
175     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
176   Args.add(RValue::get(Count), ArgQT);
177 
178   // Generate a reference to the class pointer, which will be the receiver.
179   Selector Sel = MethodWithObjects->getSelector();
180   QualType ResultType = E->getType();
181   const ObjCObjectPointerType *InterfacePointerType
182     = ResultType->getAsObjCInterfacePointerType();
183   ObjCInterfaceDecl *Class
184     = InterfacePointerType->getObjectType()->getInterface();
185   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
186   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
187 
188   // Generate the message send.
189   RValue result
190     = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
191                                   MethodWithObjects->getResultType(),
192                                   Sel,
193                                   Receiver, Args, Class,
194                                   MethodWithObjects);
195 
196   // The above message send needs these objects, but in ARC they are
197   // passed in a buffer that is essentially __unsafe_unretained.
198   // Therefore we must prevent the optimizer from releasing them until
199   // after the call.
200   if (TrackNeededObjects) {
201     EmitARCIntrinsicUse(NeededObjects);
202   }
203 
204   return Builder.CreateBitCast(result.getScalarVal(),
205                                ConvertType(E->getType()));
206 }
207 
208 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
209   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
210 }
211 
212 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
213                                             const ObjCDictionaryLiteral *E) {
214   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
215 }
216 
217 /// Emit a selector.
218 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
219   // Untyped selector.
220   // Note that this implementation allows for non-constant strings to be passed
221   // as arguments to @selector().  Currently, the only thing preventing this
222   // behaviour is the type checking in the front end.
223   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
224 }
225 
226 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
227   // FIXME: This should pass the Decl not the name.
228   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
229 }
230 
231 /// \brief Adjust the type of the result of an Objective-C message send
232 /// expression when the method has a related result type.
233 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
234                                       QualType ExpT,
235                                       const ObjCMethodDecl *Method,
236                                       RValue Result) {
237   if (!Method)
238     return Result;
239 
240   if (!Method->hasRelatedResultType() ||
241       CGF.getContext().hasSameType(ExpT, Method->getResultType()) ||
242       !Result.isScalar())
243     return Result;
244 
245   // We have applied a related result type. Cast the rvalue appropriately.
246   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
247                                                CGF.ConvertType(ExpT)));
248 }
249 
250 /// Decide whether to extend the lifetime of the receiver of a
251 /// returns-inner-pointer message.
252 static bool
253 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
254   switch (message->getReceiverKind()) {
255 
256   // For a normal instance message, we should extend unless the
257   // receiver is loaded from a variable with precise lifetime.
258   case ObjCMessageExpr::Instance: {
259     const Expr *receiver = message->getInstanceReceiver();
260     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
261     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
262     receiver = ice->getSubExpr()->IgnoreParens();
263 
264     // Only __strong variables.
265     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
266       return true;
267 
268     // All ivars and fields have precise lifetime.
269     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
270       return false;
271 
272     // Otherwise, check for variables.
273     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
274     if (!declRef) return true;
275     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
276     if (!var) return true;
277 
278     // All variables have precise lifetime except local variables with
279     // automatic storage duration that aren't specially marked.
280     return (var->hasLocalStorage() &&
281             !var->hasAttr<ObjCPreciseLifetimeAttr>());
282   }
283 
284   case ObjCMessageExpr::Class:
285   case ObjCMessageExpr::SuperClass:
286     // It's never necessary for class objects.
287     return false;
288 
289   case ObjCMessageExpr::SuperInstance:
290     // We generally assume that 'self' lives throughout a method call.
291     return false;
292   }
293 
294   llvm_unreachable("invalid receiver kind");
295 }
296 
297 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
298                                             ReturnValueSlot Return) {
299   // Only the lookup mechanism and first two arguments of the method
300   // implementation vary between runtimes.  We can get the receiver and
301   // arguments in generic code.
302 
303   bool isDelegateInit = E->isDelegateInitCall();
304 
305   const ObjCMethodDecl *method = E->getMethodDecl();
306 
307   // We don't retain the receiver in delegate init calls, and this is
308   // safe because the receiver value is always loaded from 'self',
309   // which we zero out.  We don't want to Block_copy block receivers,
310   // though.
311   bool retainSelf =
312     (!isDelegateInit &&
313      CGM.getLangOpts().ObjCAutoRefCount &&
314      method &&
315      method->hasAttr<NSConsumesSelfAttr>());
316 
317   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
318   bool isSuperMessage = false;
319   bool isClassMessage = false;
320   ObjCInterfaceDecl *OID = 0;
321   // Find the receiver
322   QualType ReceiverType;
323   llvm::Value *Receiver = 0;
324   switch (E->getReceiverKind()) {
325   case ObjCMessageExpr::Instance:
326     ReceiverType = E->getInstanceReceiver()->getType();
327     if (retainSelf) {
328       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
329                                                    E->getInstanceReceiver());
330       Receiver = ter.getPointer();
331       if (ter.getInt()) retainSelf = false;
332     } else
333       Receiver = EmitScalarExpr(E->getInstanceReceiver());
334     break;
335 
336   case ObjCMessageExpr::Class: {
337     ReceiverType = E->getClassReceiver();
338     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
339     assert(ObjTy && "Invalid Objective-C class message send");
340     OID = ObjTy->getInterface();
341     assert(OID && "Invalid Objective-C class message send");
342     Receiver = Runtime.GetClass(*this, OID);
343     isClassMessage = true;
344     break;
345   }
346 
347   case ObjCMessageExpr::SuperInstance:
348     ReceiverType = E->getSuperType();
349     Receiver = LoadObjCSelf();
350     isSuperMessage = true;
351     break;
352 
353   case ObjCMessageExpr::SuperClass:
354     ReceiverType = E->getSuperType();
355     Receiver = LoadObjCSelf();
356     isSuperMessage = true;
357     isClassMessage = true;
358     break;
359   }
360 
361   if (retainSelf)
362     Receiver = EmitARCRetainNonBlock(Receiver);
363 
364   // In ARC, we sometimes want to "extend the lifetime"
365   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
366   // messages.
367   if (getLangOpts().ObjCAutoRefCount && method &&
368       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
369       shouldExtendReceiverForInnerPointerMessage(E))
370     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
371 
372   QualType ResultType =
373     method ? method->getResultType() : E->getType();
374 
375   CallArgList Args;
376   EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
377 
378   // For delegate init calls in ARC, do an unsafe store of null into
379   // self.  This represents the call taking direct ownership of that
380   // value.  We have to do this after emitting the other call
381   // arguments because they might also reference self, but we don't
382   // have to worry about any of them modifying self because that would
383   // be an undefined read and write of an object in unordered
384   // expressions.
385   if (isDelegateInit) {
386     assert(getLangOpts().ObjCAutoRefCount &&
387            "delegate init calls should only be marked in ARC");
388 
389     // Do an unsafe store of null into self.
390     llvm::Value *selfAddr =
391       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
392     assert(selfAddr && "no self entry for a delegate init call?");
393 
394     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
395   }
396 
397   RValue result;
398   if (isSuperMessage) {
399     // super is only valid in an Objective-C method
400     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
401     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
402     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
403                                               E->getSelector(),
404                                               OMD->getClassInterface(),
405                                               isCategoryImpl,
406                                               Receiver,
407                                               isClassMessage,
408                                               Args,
409                                               method);
410   } else {
411     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
412                                          E->getSelector(),
413                                          Receiver, Args, OID,
414                                          method);
415   }
416 
417   // For delegate init calls in ARC, implicitly store the result of
418   // the call back into self.  This takes ownership of the value.
419   if (isDelegateInit) {
420     llvm::Value *selfAddr =
421       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
422     llvm::Value *newSelf = result.getScalarVal();
423 
424     // The delegate return type isn't necessarily a matching type; in
425     // fact, it's quite likely to be 'id'.
426     llvm::Type *selfTy =
427       cast<llvm::PointerType>(selfAddr->getType())->getElementType();
428     newSelf = Builder.CreateBitCast(newSelf, selfTy);
429 
430     Builder.CreateStore(newSelf, selfAddr);
431   }
432 
433   return AdjustRelatedResultType(*this, E->getType(), method, result);
434 }
435 
436 namespace {
437 struct FinishARCDealloc : EHScopeStack::Cleanup {
438   void Emit(CodeGenFunction &CGF, Flags flags) {
439     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
440 
441     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
442     const ObjCInterfaceDecl *iface = impl->getClassInterface();
443     if (!iface->getSuperClass()) return;
444 
445     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
446 
447     // Call [super dealloc] if we have a superclass.
448     llvm::Value *self = CGF.LoadObjCSelf();
449 
450     CallArgList args;
451     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
452                                                       CGF.getContext().VoidTy,
453                                                       method->getSelector(),
454                                                       iface,
455                                                       isCategory,
456                                                       self,
457                                                       /*is class msg*/ false,
458                                                       args,
459                                                       method);
460   }
461 };
462 }
463 
464 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
465 /// the LLVM function and sets the other context used by
466 /// CodeGenFunction.
467 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
468                                       const ObjCContainerDecl *CD,
469                                       SourceLocation StartLoc) {
470   FunctionArgList args;
471   // Check if we should generate debug info for this method.
472   if (OMD->hasAttr<NoDebugAttr>())
473     DebugInfo = NULL; // disable debug info indefinitely for this function
474 
475   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
476 
477   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
478   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
479 
480   args.push_back(OMD->getSelfDecl());
481   args.push_back(OMD->getCmdDecl());
482 
483   for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(),
484          E = OMD->param_end(); PI != E; ++PI)
485     args.push_back(*PI);
486 
487   CurGD = OMD;
488 
489   StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc);
490 
491   // In ARC, certain methods get an extra cleanup.
492   if (CGM.getLangOpts().ObjCAutoRefCount &&
493       OMD->isInstanceMethod() &&
494       OMD->getSelector().isUnarySelector()) {
495     const IdentifierInfo *ident =
496       OMD->getSelector().getIdentifierInfoForSlot(0);
497     if (ident->isStr("dealloc"))
498       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
499   }
500 }
501 
502 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
503                                               LValue lvalue, QualType type);
504 
505 /// Generate an Objective-C method.  An Objective-C method is a C function with
506 /// its pointer, name, and types registered in the class struture.
507 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
508   StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart());
509   EmitStmt(OMD->getBody());
510   FinishFunction(OMD->getBodyRBrace());
511 }
512 
513 /// emitStructGetterCall - Call the runtime function to load a property
514 /// into the return value slot.
515 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
516                                  bool isAtomic, bool hasStrong) {
517   ASTContext &Context = CGF.getContext();
518 
519   llvm::Value *src =
520     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
521                           ivar, 0).getAddress();
522 
523   // objc_copyStruct (ReturnValue, &structIvar,
524   //                  sizeof (Type of Ivar), isAtomic, false);
525   CallArgList args;
526 
527   llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
528   args.add(RValue::get(dest), Context.VoidPtrTy);
529 
530   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
531   args.add(RValue::get(src), Context.VoidPtrTy);
532 
533   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
534   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
535   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
536   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
537 
538   llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
539   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args,
540                                                       FunctionType::ExtInfo(),
541                                                       RequiredArgs::All),
542                fn, ReturnValueSlot(), args);
543 }
544 
545 /// Determine whether the given architecture supports unaligned atomic
546 /// accesses.  They don't have to be fast, just faster than a function
547 /// call and a mutex.
548 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
549   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
550   // currently supported by the backend.)
551   return 0;
552 }
553 
554 /// Return the maximum size that permits atomic accesses for the given
555 /// architecture.
556 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
557                                         llvm::Triple::ArchType arch) {
558   // ARM has 8-byte atomic accesses, but it's not clear whether we
559   // want to rely on them here.
560 
561   // In the default case, just assume that any size up to a pointer is
562   // fine given adequate alignment.
563   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
564 }
565 
566 namespace {
567   class PropertyImplStrategy {
568   public:
569     enum StrategyKind {
570       /// The 'native' strategy is to use the architecture's provided
571       /// reads and writes.
572       Native,
573 
574       /// Use objc_setProperty and objc_getProperty.
575       GetSetProperty,
576 
577       /// Use objc_setProperty for the setter, but use expression
578       /// evaluation for the getter.
579       SetPropertyAndExpressionGet,
580 
581       /// Use objc_copyStruct.
582       CopyStruct,
583 
584       /// The 'expression' strategy is to emit normal assignment or
585       /// lvalue-to-rvalue expressions.
586       Expression
587     };
588 
589     StrategyKind getKind() const { return StrategyKind(Kind); }
590 
591     bool hasStrongMember() const { return HasStrong; }
592     bool isAtomic() const { return IsAtomic; }
593     bool isCopy() const { return IsCopy; }
594 
595     CharUnits getIvarSize() const { return IvarSize; }
596     CharUnits getIvarAlignment() const { return IvarAlignment; }
597 
598     PropertyImplStrategy(CodeGenModule &CGM,
599                          const ObjCPropertyImplDecl *propImpl);
600 
601   private:
602     unsigned Kind : 8;
603     unsigned IsAtomic : 1;
604     unsigned IsCopy : 1;
605     unsigned HasStrong : 1;
606 
607     CharUnits IvarSize;
608     CharUnits IvarAlignment;
609   };
610 }
611 
612 /// Pick an implementation strategy for the given property synthesis.
613 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
614                                      const ObjCPropertyImplDecl *propImpl) {
615   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
616   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
617 
618   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
619   IsAtomic = prop->isAtomic();
620   HasStrong = false; // doesn't matter here.
621 
622   // Evaluate the ivar's size and alignment.
623   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
624   QualType ivarType = ivar->getType();
625   llvm::tie(IvarSize, IvarAlignment)
626     = CGM.getContext().getTypeInfoInChars(ivarType);
627 
628   // If we have a copy property, we always have to use getProperty/setProperty.
629   // TODO: we could actually use setProperty and an expression for non-atomics.
630   if (IsCopy) {
631     Kind = GetSetProperty;
632     return;
633   }
634 
635   // Handle retain.
636   if (setterKind == ObjCPropertyDecl::Retain) {
637     // In GC-only, there's nothing special that needs to be done.
638     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
639       // fallthrough
640 
641     // In ARC, if the property is non-atomic, use expression emission,
642     // which translates to objc_storeStrong.  This isn't required, but
643     // it's slightly nicer.
644     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
645       // Using standard expression emission for the setter is only
646       // acceptable if the ivar is __strong, which won't be true if
647       // the property is annotated with __attribute__((NSObject)).
648       // TODO: falling all the way back to objc_setProperty here is
649       // just laziness, though;  we could still use objc_storeStrong
650       // if we hacked it right.
651       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
652         Kind = Expression;
653       else
654         Kind = SetPropertyAndExpressionGet;
655       return;
656 
657     // Otherwise, we need to at least use setProperty.  However, if
658     // the property isn't atomic, we can use normal expression
659     // emission for the getter.
660     } else if (!IsAtomic) {
661       Kind = SetPropertyAndExpressionGet;
662       return;
663 
664     // Otherwise, we have to use both setProperty and getProperty.
665     } else {
666       Kind = GetSetProperty;
667       return;
668     }
669   }
670 
671   // If we're not atomic, just use expression accesses.
672   if (!IsAtomic) {
673     Kind = Expression;
674     return;
675   }
676 
677   // Properties on bitfield ivars need to be emitted using expression
678   // accesses even if they're nominally atomic.
679   if (ivar->isBitField()) {
680     Kind = Expression;
681     return;
682   }
683 
684   // GC-qualified or ARC-qualified ivars need to be emitted as
685   // expressions.  This actually works out to being atomic anyway,
686   // except for ARC __strong, but that should trigger the above code.
687   if (ivarType.hasNonTrivialObjCLifetime() ||
688       (CGM.getLangOpts().getGC() &&
689        CGM.getContext().getObjCGCAttrKind(ivarType))) {
690     Kind = Expression;
691     return;
692   }
693 
694   // Compute whether the ivar has strong members.
695   if (CGM.getLangOpts().getGC())
696     if (const RecordType *recordType = ivarType->getAs<RecordType>())
697       HasStrong = recordType->getDecl()->hasObjectMember();
698 
699   // We can never access structs with object members with a native
700   // access, because we need to use write barriers.  This is what
701   // objc_copyStruct is for.
702   if (HasStrong) {
703     Kind = CopyStruct;
704     return;
705   }
706 
707   // Otherwise, this is target-dependent and based on the size and
708   // alignment of the ivar.
709 
710   // If the size of the ivar is not a power of two, give up.  We don't
711   // want to get into the business of doing compare-and-swaps.
712   if (!IvarSize.isPowerOfTwo()) {
713     Kind = CopyStruct;
714     return;
715   }
716 
717   llvm::Triple::ArchType arch =
718     CGM.getTarget().getTriple().getArch();
719 
720   // Most architectures require memory to fit within a single cache
721   // line, so the alignment has to be at least the size of the access.
722   // Otherwise we have to grab a lock.
723   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
724     Kind = CopyStruct;
725     return;
726   }
727 
728   // If the ivar's size exceeds the architecture's maximum atomic
729   // access size, we have to use CopyStruct.
730   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
731     Kind = CopyStruct;
732     return;
733   }
734 
735   // Otherwise, we can use native loads and stores.
736   Kind = Native;
737 }
738 
739 /// \brief Generate an Objective-C property getter function.
740 ///
741 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
742 /// is illegal within a category.
743 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
744                                          const ObjCPropertyImplDecl *PID) {
745   llvm::Constant *AtomicHelperFn =
746     GenerateObjCAtomicGetterCopyHelperFunction(PID);
747   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
748   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
749   assert(OMD && "Invalid call to generate getter (empty method)");
750   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
751 
752   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
753 
754   FinishFunction();
755 }
756 
757 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
758   const Expr *getter = propImpl->getGetterCXXConstructor();
759   if (!getter) return true;
760 
761   // Sema only makes only of these when the ivar has a C++ class type,
762   // so the form is pretty constrained.
763 
764   // If the property has a reference type, we might just be binding a
765   // reference, in which case the result will be a gl-value.  We should
766   // treat this as a non-trivial operation.
767   if (getter->isGLValue())
768     return false;
769 
770   // If we selected a trivial copy-constructor, we're okay.
771   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
772     return (construct->getConstructor()->isTrivial());
773 
774   // The constructor might require cleanups (in which case it's never
775   // trivial).
776   assert(isa<ExprWithCleanups>(getter));
777   return false;
778 }
779 
780 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
781 /// copy the ivar into the resturn slot.
782 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
783                                           llvm::Value *returnAddr,
784                                           ObjCIvarDecl *ivar,
785                                           llvm::Constant *AtomicHelperFn) {
786   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
787   //                           AtomicHelperFn);
788   CallArgList args;
789 
790   // The 1st argument is the return Slot.
791   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
792 
793   // The 2nd argument is the address of the ivar.
794   llvm::Value *ivarAddr =
795   CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
796                         CGF.LoadObjCSelf(), ivar, 0).getAddress();
797   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
798   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
799 
800   // Third argument is the helper function.
801   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
802 
803   llvm::Value *copyCppAtomicObjectFn =
804     CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
805   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
806                                                       args,
807                                                       FunctionType::ExtInfo(),
808                                                       RequiredArgs::All),
809                copyCppAtomicObjectFn, ReturnValueSlot(), args);
810 }
811 
812 void
813 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
814                                         const ObjCPropertyImplDecl *propImpl,
815                                         const ObjCMethodDecl *GetterMethodDecl,
816                                         llvm::Constant *AtomicHelperFn) {
817   // If there's a non-trivial 'get' expression, we just have to emit that.
818   if (!hasTrivialGetExpr(propImpl)) {
819     if (!AtomicHelperFn) {
820       ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
821                      /*nrvo*/ 0);
822       EmitReturnStmt(ret);
823     }
824     else {
825       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
826       emitCPPObjectAtomicGetterCall(*this, ReturnValue,
827                                     ivar, AtomicHelperFn);
828     }
829     return;
830   }
831 
832   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
833   QualType propType = prop->getType();
834   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
835 
836   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
837 
838   // Pick an implementation strategy.
839   PropertyImplStrategy strategy(CGM, propImpl);
840   switch (strategy.getKind()) {
841   case PropertyImplStrategy::Native: {
842     // We don't need to do anything for a zero-size struct.
843     if (strategy.getIvarSize().isZero())
844       return;
845 
846     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
847 
848     // Currently, all atomic accesses have to be through integer
849     // types, so there's no point in trying to pick a prettier type.
850     llvm::Type *bitcastType =
851       llvm::Type::getIntNTy(getLLVMContext(),
852                             getContext().toBits(strategy.getIvarSize()));
853     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
854 
855     // Perform an atomic load.  This does not impose ordering constraints.
856     llvm::Value *ivarAddr = LV.getAddress();
857     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
858     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
859     load->setAlignment(strategy.getIvarAlignment().getQuantity());
860     load->setAtomic(llvm::Unordered);
861 
862     // Store that value into the return address.  Doing this with a
863     // bitcast is likely to produce some pretty ugly IR, but it's not
864     // the *most* terrible thing in the world.
865     Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
866 
867     // Make sure we don't do an autorelease.
868     AutoreleaseResult = false;
869     return;
870   }
871 
872   case PropertyImplStrategy::GetSetProperty: {
873     llvm::Value *getPropertyFn =
874       CGM.getObjCRuntime().GetPropertyGetFunction();
875     if (!getPropertyFn) {
876       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
877       return;
878     }
879 
880     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
881     // FIXME: Can't this be simpler? This might even be worse than the
882     // corresponding gcc code.
883     llvm::Value *cmd =
884       Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
885     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
886     llvm::Value *ivarOffset =
887       EmitIvarOffset(classImpl->getClassInterface(), ivar);
888 
889     CallArgList args;
890     args.add(RValue::get(self), getContext().getObjCIdType());
891     args.add(RValue::get(cmd), getContext().getObjCSelType());
892     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
893     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
894              getContext().BoolTy);
895 
896     // FIXME: We shouldn't need to get the function info here, the
897     // runtime already should have computed it to build the function.
898     RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args,
899                                                        FunctionType::ExtInfo(),
900                                                             RequiredArgs::All),
901                          getPropertyFn, ReturnValueSlot(), args);
902 
903     // We need to fix the type here. Ivars with copy & retain are
904     // always objects so we don't need to worry about complex or
905     // aggregates.
906     RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(),
907            getTypes().ConvertType(getterMethod->getResultType())));
908 
909     EmitReturnOfRValue(RV, propType);
910 
911     // objc_getProperty does an autorelease, so we should suppress ours.
912     AutoreleaseResult = false;
913 
914     return;
915   }
916 
917   case PropertyImplStrategy::CopyStruct:
918     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
919                          strategy.hasStrongMember());
920     return;
921 
922   case PropertyImplStrategy::Expression:
923   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
924     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
925 
926     QualType ivarType = ivar->getType();
927     switch (getEvaluationKind(ivarType)) {
928     case TEK_Complex: {
929       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
930       EmitStoreOfComplex(pair,
931                          MakeNaturalAlignAddrLValue(ReturnValue, ivarType),
932                          /*init*/ true);
933       return;
934     }
935     case TEK_Aggregate:
936       // The return value slot is guaranteed to not be aliased, but
937       // that's not necessarily the same as "on the stack", so
938       // we still potentially need objc_memmove_collectable.
939       EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
940       return;
941     case TEK_Scalar: {
942       llvm::Value *value;
943       if (propType->isReferenceType()) {
944         value = LV.getAddress();
945       } else {
946         // We want to load and autoreleaseReturnValue ARC __weak ivars.
947         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
948           value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
949 
950         // Otherwise we want to do a simple load, suppressing the
951         // final autorelease.
952         } else {
953           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
954           AutoreleaseResult = false;
955         }
956 
957         value = Builder.CreateBitCast(value, ConvertType(propType));
958         value = Builder.CreateBitCast(value,
959                   ConvertType(GetterMethodDecl->getResultType()));
960       }
961 
962       EmitReturnOfRValue(RValue::get(value), propType);
963       return;
964     }
965     }
966     llvm_unreachable("bad evaluation kind");
967   }
968 
969   }
970   llvm_unreachable("bad @property implementation strategy!");
971 }
972 
973 /// emitStructSetterCall - Call the runtime function to store the value
974 /// from the first formal parameter into the given ivar.
975 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
976                                  ObjCIvarDecl *ivar) {
977   // objc_copyStruct (&structIvar, &Arg,
978   //                  sizeof (struct something), true, false);
979   CallArgList args;
980 
981   // The first argument is the address of the ivar.
982   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
983                                                 CGF.LoadObjCSelf(), ivar, 0)
984     .getAddress();
985   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
986   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
987 
988   // The second argument is the address of the parameter variable.
989   ParmVarDecl *argVar = *OMD->param_begin();
990   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
991                      VK_LValue, SourceLocation());
992   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
993   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
994   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
995 
996   // The third argument is the sizeof the type.
997   llvm::Value *size =
998     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
999   args.add(RValue::get(size), CGF.getContext().getSizeType());
1000 
1001   // The fourth argument is the 'isAtomic' flag.
1002   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1003 
1004   // The fifth argument is the 'hasStrong' flag.
1005   // FIXME: should this really always be false?
1006   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1007 
1008   llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1009   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1010                                                       args,
1011                                                       FunctionType::ExtInfo(),
1012                                                       RequiredArgs::All),
1013                copyStructFn, ReturnValueSlot(), args);
1014 }
1015 
1016 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1017 /// the value from the first formal parameter into the given ivar, using
1018 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1019 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1020                                           ObjCMethodDecl *OMD,
1021                                           ObjCIvarDecl *ivar,
1022                                           llvm::Constant *AtomicHelperFn) {
1023   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1024   //                           AtomicHelperFn);
1025   CallArgList args;
1026 
1027   // The first argument is the address of the ivar.
1028   llvm::Value *ivarAddr =
1029     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1030                           CGF.LoadObjCSelf(), ivar, 0).getAddress();
1031   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1032   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1033 
1034   // The second argument is the address of the parameter variable.
1035   ParmVarDecl *argVar = *OMD->param_begin();
1036   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1037                      VK_LValue, SourceLocation());
1038   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
1039   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1040   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1041 
1042   // Third argument is the helper function.
1043   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1044 
1045   llvm::Value *copyCppAtomicObjectFn =
1046     CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1047   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1048                                                       args,
1049                                                       FunctionType::ExtInfo(),
1050                                                       RequiredArgs::All),
1051                copyCppAtomicObjectFn, ReturnValueSlot(), args);
1052 }
1053 
1054 
1055 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1056   Expr *setter = PID->getSetterCXXAssignment();
1057   if (!setter) return true;
1058 
1059   // Sema only makes only of these when the ivar has a C++ class type,
1060   // so the form is pretty constrained.
1061 
1062   // An operator call is trivial if the function it calls is trivial.
1063   // This also implies that there's nothing non-trivial going on with
1064   // the arguments, because operator= can only be trivial if it's a
1065   // synthesized assignment operator and therefore both parameters are
1066   // references.
1067   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1068     if (const FunctionDecl *callee
1069           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1070       if (callee->isTrivial())
1071         return true;
1072     return false;
1073   }
1074 
1075   assert(isa<ExprWithCleanups>(setter));
1076   return false;
1077 }
1078 
1079 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1080   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1081     return false;
1082   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1083 }
1084 
1085 void
1086 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1087                                         const ObjCPropertyImplDecl *propImpl,
1088                                         llvm::Constant *AtomicHelperFn) {
1089   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1090   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1091   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1092 
1093   // Just use the setter expression if Sema gave us one and it's
1094   // non-trivial.
1095   if (!hasTrivialSetExpr(propImpl)) {
1096     if (!AtomicHelperFn)
1097       // If non-atomic, assignment is called directly.
1098       EmitStmt(propImpl->getSetterCXXAssignment());
1099     else
1100       // If atomic, assignment is called via a locking api.
1101       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1102                                     AtomicHelperFn);
1103     return;
1104   }
1105 
1106   PropertyImplStrategy strategy(CGM, propImpl);
1107   switch (strategy.getKind()) {
1108   case PropertyImplStrategy::Native: {
1109     // We don't need to do anything for a zero-size struct.
1110     if (strategy.getIvarSize().isZero())
1111       return;
1112 
1113     llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
1114 
1115     LValue ivarLValue =
1116       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1117     llvm::Value *ivarAddr = ivarLValue.getAddress();
1118 
1119     // Currently, all atomic accesses have to be through integer
1120     // types, so there's no point in trying to pick a prettier type.
1121     llvm::Type *bitcastType =
1122       llvm::Type::getIntNTy(getLLVMContext(),
1123                             getContext().toBits(strategy.getIvarSize()));
1124     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1125 
1126     // Cast both arguments to the chosen operation type.
1127     argAddr = Builder.CreateBitCast(argAddr, bitcastType);
1128     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1129 
1130     // This bitcast load is likely to cause some nasty IR.
1131     llvm::Value *load = Builder.CreateLoad(argAddr);
1132 
1133     // Perform an atomic store.  There are no memory ordering requirements.
1134     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1135     store->setAlignment(strategy.getIvarAlignment().getQuantity());
1136     store->setAtomic(llvm::Unordered);
1137     return;
1138   }
1139 
1140   case PropertyImplStrategy::GetSetProperty:
1141   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1142 
1143     llvm::Value *setOptimizedPropertyFn = 0;
1144     llvm::Value *setPropertyFn = 0;
1145     if (UseOptimizedSetter(CGM)) {
1146       // 10.8 and iOS 6.0 code and GC is off
1147       setOptimizedPropertyFn =
1148         CGM.getObjCRuntime()
1149            .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1150                                             strategy.isCopy());
1151       if (!setOptimizedPropertyFn) {
1152         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1153         return;
1154       }
1155     }
1156     else {
1157       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1158       if (!setPropertyFn) {
1159         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1160         return;
1161       }
1162     }
1163 
1164     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1165     //                       <is-atomic>, <is-copy>).
1166     llvm::Value *cmd =
1167       Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
1168     llvm::Value *self =
1169       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1170     llvm::Value *ivarOffset =
1171       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1172     llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
1173     arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
1174 
1175     CallArgList args;
1176     args.add(RValue::get(self), getContext().getObjCIdType());
1177     args.add(RValue::get(cmd), getContext().getObjCSelType());
1178     if (setOptimizedPropertyFn) {
1179       args.add(RValue::get(arg), getContext().getObjCIdType());
1180       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1181       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1182                                                   FunctionType::ExtInfo(),
1183                                                   RequiredArgs::All),
1184                setOptimizedPropertyFn, ReturnValueSlot(), args);
1185     } else {
1186       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1187       args.add(RValue::get(arg), getContext().getObjCIdType());
1188       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1189                getContext().BoolTy);
1190       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1191                getContext().BoolTy);
1192       // FIXME: We shouldn't need to get the function info here, the runtime
1193       // already should have computed it to build the function.
1194       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1195                                                   FunctionType::ExtInfo(),
1196                                                   RequiredArgs::All),
1197                setPropertyFn, ReturnValueSlot(), args);
1198     }
1199 
1200     return;
1201   }
1202 
1203   case PropertyImplStrategy::CopyStruct:
1204     emitStructSetterCall(*this, setterMethod, ivar);
1205     return;
1206 
1207   case PropertyImplStrategy::Expression:
1208     break;
1209   }
1210 
1211   // Otherwise, fake up some ASTs and emit a normal assignment.
1212   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1213   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1214                    VK_LValue, SourceLocation());
1215   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1216                             selfDecl->getType(), CK_LValueToRValue, &self,
1217                             VK_RValue);
1218   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1219                           SourceLocation(), SourceLocation(),
1220                           &selfLoad, true, true);
1221 
1222   ParmVarDecl *argDecl = *setterMethod->param_begin();
1223   QualType argType = argDecl->getType().getNonReferenceType();
1224   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1225   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1226                            argType.getUnqualifiedType(), CK_LValueToRValue,
1227                            &arg, VK_RValue);
1228 
1229   // The property type can differ from the ivar type in some situations with
1230   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1231   // The following absurdity is just to ensure well-formed IR.
1232   CastKind argCK = CK_NoOp;
1233   if (ivarRef.getType()->isObjCObjectPointerType()) {
1234     if (argLoad.getType()->isObjCObjectPointerType())
1235       argCK = CK_BitCast;
1236     else if (argLoad.getType()->isBlockPointerType())
1237       argCK = CK_BlockPointerToObjCPointerCast;
1238     else
1239       argCK = CK_CPointerToObjCPointerCast;
1240   } else if (ivarRef.getType()->isBlockPointerType()) {
1241      if (argLoad.getType()->isBlockPointerType())
1242       argCK = CK_BitCast;
1243     else
1244       argCK = CK_AnyPointerToBlockPointerCast;
1245   } else if (ivarRef.getType()->isPointerType()) {
1246     argCK = CK_BitCast;
1247   }
1248   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1249                            ivarRef.getType(), argCK, &argLoad,
1250                            VK_RValue);
1251   Expr *finalArg = &argLoad;
1252   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1253                                            argLoad.getType()))
1254     finalArg = &argCast;
1255 
1256 
1257   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1258                         ivarRef.getType(), VK_RValue, OK_Ordinary,
1259                         SourceLocation(), false);
1260   EmitStmt(&assign);
1261 }
1262 
1263 /// \brief Generate an Objective-C property setter function.
1264 ///
1265 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1266 /// is illegal within a category.
1267 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1268                                          const ObjCPropertyImplDecl *PID) {
1269   llvm::Constant *AtomicHelperFn =
1270     GenerateObjCAtomicSetterCopyHelperFunction(PID);
1271   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1272   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1273   assert(OMD && "Invalid call to generate setter (empty method)");
1274   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
1275 
1276   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1277 
1278   FinishFunction();
1279 }
1280 
1281 namespace {
1282   struct DestroyIvar : EHScopeStack::Cleanup {
1283   private:
1284     llvm::Value *addr;
1285     const ObjCIvarDecl *ivar;
1286     CodeGenFunction::Destroyer *destroyer;
1287     bool useEHCleanupForArray;
1288   public:
1289     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1290                 CodeGenFunction::Destroyer *destroyer,
1291                 bool useEHCleanupForArray)
1292       : addr(addr), ivar(ivar), destroyer(destroyer),
1293         useEHCleanupForArray(useEHCleanupForArray) {}
1294 
1295     void Emit(CodeGenFunction &CGF, Flags flags) {
1296       LValue lvalue
1297         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1298       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1299                       flags.isForNormalCleanup() && useEHCleanupForArray);
1300     }
1301   };
1302 }
1303 
1304 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1305 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1306                                       llvm::Value *addr,
1307                                       QualType type) {
1308   llvm::Value *null = getNullForVariable(addr);
1309   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1310 }
1311 
1312 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1313                                   ObjCImplementationDecl *impl) {
1314   CodeGenFunction::RunCleanupsScope scope(CGF);
1315 
1316   llvm::Value *self = CGF.LoadObjCSelf();
1317 
1318   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1319   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1320        ivar; ivar = ivar->getNextIvar()) {
1321     QualType type = ivar->getType();
1322 
1323     // Check whether the ivar is a destructible type.
1324     QualType::DestructionKind dtorKind = type.isDestructedType();
1325     if (!dtorKind) continue;
1326 
1327     CodeGenFunction::Destroyer *destroyer = 0;
1328 
1329     // Use a call to objc_storeStrong to destroy strong ivars, for the
1330     // general benefit of the tools.
1331     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1332       destroyer = destroyARCStrongWithStore;
1333 
1334     // Otherwise use the default for the destruction kind.
1335     } else {
1336       destroyer = CGF.getDestroyer(dtorKind);
1337     }
1338 
1339     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1340 
1341     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1342                                          cleanupKind & EHCleanup);
1343   }
1344 
1345   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1346 }
1347 
1348 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1349                                                  ObjCMethodDecl *MD,
1350                                                  bool ctor) {
1351   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1352   StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart());
1353 
1354   // Emit .cxx_construct.
1355   if (ctor) {
1356     // Suppress the final autorelease in ARC.
1357     AutoreleaseResult = false;
1358 
1359     SmallVector<CXXCtorInitializer *, 8> IvarInitializers;
1360     for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(),
1361            E = IMP->init_end(); B != E; ++B) {
1362       CXXCtorInitializer *IvarInit = (*B);
1363       FieldDecl *Field = IvarInit->getAnyMember();
1364       ObjCIvarDecl  *Ivar = cast<ObjCIvarDecl>(Field);
1365       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1366                                     LoadObjCSelf(), Ivar, 0);
1367       EmitAggExpr(IvarInit->getInit(),
1368                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1369                                           AggValueSlot::DoesNotNeedGCBarriers,
1370                                           AggValueSlot::IsNotAliased));
1371     }
1372     // constructor returns 'self'.
1373     CodeGenTypes &Types = CGM.getTypes();
1374     QualType IdTy(CGM.getContext().getObjCIdType());
1375     llvm::Value *SelfAsId =
1376       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1377     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1378 
1379   // Emit .cxx_destruct.
1380   } else {
1381     emitCXXDestructMethod(*this, IMP);
1382   }
1383   FinishFunction();
1384 }
1385 
1386 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
1387   CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
1388   it++; it++;
1389   const ABIArgInfo &AI = it->info;
1390   // FIXME. Is this sufficient check?
1391   return (AI.getKind() == ABIArgInfo::Indirect);
1392 }
1393 
1394 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
1395   if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
1396     return false;
1397   if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
1398     return FDTTy->getDecl()->hasObjectMember();
1399   return false;
1400 }
1401 
1402 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1403   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1404   DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1405                   Self->getType(), VK_LValue, SourceLocation());
1406   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1407 }
1408 
1409 QualType CodeGenFunction::TypeOfSelfObject() {
1410   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1411   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1412   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1413     getContext().getCanonicalType(selfDecl->getType()));
1414   return PTy->getPointeeType();
1415 }
1416 
1417 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1418   llvm::Constant *EnumerationMutationFn =
1419     CGM.getObjCRuntime().EnumerationMutationFunction();
1420 
1421   if (!EnumerationMutationFn) {
1422     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1423     return;
1424   }
1425 
1426   CGDebugInfo *DI = getDebugInfo();
1427   if (DI)
1428     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1429 
1430   // The local variable comes into scope immediately.
1431   AutoVarEmission variable = AutoVarEmission::invalid();
1432   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1433     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1434 
1435   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1436 
1437   // Fast enumeration state.
1438   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1439   llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
1440   EmitNullInitialization(StatePtr, StateTy);
1441 
1442   // Number of elements in the items array.
1443   static const unsigned NumItems = 16;
1444 
1445   // Fetch the countByEnumeratingWithState:objects:count: selector.
1446   IdentifierInfo *II[] = {
1447     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1448     &CGM.getContext().Idents.get("objects"),
1449     &CGM.getContext().Idents.get("count")
1450   };
1451   Selector FastEnumSel =
1452     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1453 
1454   QualType ItemsTy =
1455     getContext().getConstantArrayType(getContext().getObjCIdType(),
1456                                       llvm::APInt(32, NumItems),
1457                                       ArrayType::Normal, 0);
1458   llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1459 
1460   // Emit the collection pointer.  In ARC, we do a retain.
1461   llvm::Value *Collection;
1462   if (getLangOpts().ObjCAutoRefCount) {
1463     Collection = EmitARCRetainScalarExpr(S.getCollection());
1464 
1465     // Enter a cleanup to do the release.
1466     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1467   } else {
1468     Collection = EmitScalarExpr(S.getCollection());
1469   }
1470 
1471   // The 'continue' label needs to appear within the cleanup for the
1472   // collection object.
1473   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1474 
1475   // Send it our message:
1476   CallArgList Args;
1477 
1478   // The first argument is a temporary of the enumeration-state type.
1479   Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
1480 
1481   // The second argument is a temporary array with space for NumItems
1482   // pointers.  We'll actually be loading elements from the array
1483   // pointer written into the control state; this buffer is so that
1484   // collections that *aren't* backed by arrays can still queue up
1485   // batches of elements.
1486   Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
1487 
1488   // The third argument is the capacity of that temporary array.
1489   llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1490   llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1491   Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1492 
1493   // Start the enumeration.
1494   RValue CountRV =
1495     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1496                                              getContext().UnsignedLongTy,
1497                                              FastEnumSel,
1498                                              Collection, Args);
1499 
1500   // The initial number of objects that were returned in the buffer.
1501   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1502 
1503   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1504   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1505 
1506   llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1507 
1508   // If the limit pointer was zero to begin with, the collection is
1509   // empty; skip all this.
1510   Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
1511                        EmptyBB, LoopInitBB);
1512 
1513   // Otherwise, initialize the loop.
1514   EmitBlock(LoopInitBB);
1515 
1516   // Save the initial mutations value.  This is the value at an
1517   // address that was written into the state object by
1518   // countByEnumeratingWithState:objects:count:.
1519   llvm::Value *StateMutationsPtrPtr =
1520     Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1521   llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
1522                                                       "mutationsptr");
1523 
1524   llvm::Value *initialMutations =
1525     Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
1526 
1527   // Start looping.  This is the point we return to whenever we have a
1528   // fresh, non-empty batch of objects.
1529   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1530   EmitBlock(LoopBodyBB);
1531 
1532   // The current index into the buffer.
1533   llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1534   index->addIncoming(zero, LoopInitBB);
1535 
1536   // The current buffer size.
1537   llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1538   count->addIncoming(initialBufferLimit, LoopInitBB);
1539 
1540   // Check whether the mutations value has changed from where it was
1541   // at start.  StateMutationsPtr should actually be invariant between
1542   // refreshes.
1543   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1544   llvm::Value *currentMutations
1545     = Builder.CreateLoad(StateMutationsPtr, "statemutations");
1546 
1547   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1548   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1549 
1550   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1551                        WasNotMutatedBB, WasMutatedBB);
1552 
1553   // If so, call the enumeration-mutation function.
1554   EmitBlock(WasMutatedBB);
1555   llvm::Value *V =
1556     Builder.CreateBitCast(Collection,
1557                           ConvertType(getContext().getObjCIdType()));
1558   CallArgList Args2;
1559   Args2.add(RValue::get(V), getContext().getObjCIdType());
1560   // FIXME: We shouldn't need to get the function info here, the runtime already
1561   // should have computed it to build the function.
1562   EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2,
1563                                                   FunctionType::ExtInfo(),
1564                                                   RequiredArgs::All),
1565            EnumerationMutationFn, ReturnValueSlot(), Args2);
1566 
1567   // Otherwise, or if the mutation function returns, just continue.
1568   EmitBlock(WasNotMutatedBB);
1569 
1570   // Initialize the element variable.
1571   RunCleanupsScope elementVariableScope(*this);
1572   bool elementIsVariable;
1573   LValue elementLValue;
1574   QualType elementType;
1575   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1576     // Initialize the variable, in case it's a __block variable or something.
1577     EmitAutoVarInit(variable);
1578 
1579     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1580     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1581                         VK_LValue, SourceLocation());
1582     elementLValue = EmitLValue(&tempDRE);
1583     elementType = D->getType();
1584     elementIsVariable = true;
1585 
1586     if (D->isARCPseudoStrong())
1587       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1588   } else {
1589     elementLValue = LValue(); // suppress warning
1590     elementType = cast<Expr>(S.getElement())->getType();
1591     elementIsVariable = false;
1592   }
1593   llvm::Type *convertedElementType = ConvertType(elementType);
1594 
1595   // Fetch the buffer out of the enumeration state.
1596   // TODO: this pointer should actually be invariant between
1597   // refreshes, which would help us do certain loop optimizations.
1598   llvm::Value *StateItemsPtr =
1599     Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1600   llvm::Value *EnumStateItems =
1601     Builder.CreateLoad(StateItemsPtr, "stateitems");
1602 
1603   // Fetch the value at the current index from the buffer.
1604   llvm::Value *CurrentItemPtr =
1605     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1606   llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
1607 
1608   // Cast that value to the right type.
1609   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1610                                       "currentitem");
1611 
1612   // Make sure we have an l-value.  Yes, this gets evaluated every
1613   // time through the loop.
1614   if (!elementIsVariable) {
1615     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1616     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1617   } else {
1618     EmitScalarInit(CurrentItem, elementLValue);
1619   }
1620 
1621   // If we do have an element variable, this assignment is the end of
1622   // its initialization.
1623   if (elementIsVariable)
1624     EmitAutoVarCleanups(variable);
1625 
1626   // Perform the loop body, setting up break and continue labels.
1627   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1628   {
1629     RunCleanupsScope Scope(*this);
1630     EmitStmt(S.getBody());
1631   }
1632   BreakContinueStack.pop_back();
1633 
1634   // Destroy the element variable now.
1635   elementVariableScope.ForceCleanup();
1636 
1637   // Check whether there are more elements.
1638   EmitBlock(AfterBody.getBlock());
1639 
1640   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1641 
1642   // First we check in the local buffer.
1643   llvm::Value *indexPlusOne
1644     = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1645 
1646   // If we haven't overrun the buffer yet, we can continue.
1647   Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
1648                        LoopBodyBB, FetchMoreBB);
1649 
1650   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1651   count->addIncoming(count, AfterBody.getBlock());
1652 
1653   // Otherwise, we have to fetch more elements.
1654   EmitBlock(FetchMoreBB);
1655 
1656   CountRV =
1657     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1658                                              getContext().UnsignedLongTy,
1659                                              FastEnumSel,
1660                                              Collection, Args);
1661 
1662   // If we got a zero count, we're done.
1663   llvm::Value *refetchCount = CountRV.getScalarVal();
1664 
1665   // (note that the message send might split FetchMoreBB)
1666   index->addIncoming(zero, Builder.GetInsertBlock());
1667   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1668 
1669   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1670                        EmptyBB, LoopBodyBB);
1671 
1672   // No more elements.
1673   EmitBlock(EmptyBB);
1674 
1675   if (!elementIsVariable) {
1676     // If the element was not a declaration, set it to be null.
1677 
1678     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1679     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1680     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1681   }
1682 
1683   if (DI)
1684     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1685 
1686   // Leave the cleanup we entered in ARC.
1687   if (getLangOpts().ObjCAutoRefCount)
1688     PopCleanupBlock();
1689 
1690   EmitBlock(LoopEnd.getBlock());
1691 }
1692 
1693 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1694   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1695 }
1696 
1697 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1698   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1699 }
1700 
1701 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1702                                               const ObjCAtSynchronizedStmt &S) {
1703   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1704 }
1705 
1706 /// Produce the code for a CK_ARCProduceObject.  Just does a
1707 /// primitive retain.
1708 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
1709                                                     llvm::Value *value) {
1710   return EmitARCRetain(type, value);
1711 }
1712 
1713 namespace {
1714   struct CallObjCRelease : EHScopeStack::Cleanup {
1715     CallObjCRelease(llvm::Value *object) : object(object) {}
1716     llvm::Value *object;
1717 
1718     void Emit(CodeGenFunction &CGF, Flags flags) {
1719       // Releases at the end of the full-expression are imprecise.
1720       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1721     }
1722   };
1723 }
1724 
1725 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1726 /// release at the end of the full-expression.
1727 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1728                                                     llvm::Value *object) {
1729   // If we're in a conditional branch, we need to make the cleanup
1730   // conditional.
1731   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1732   return object;
1733 }
1734 
1735 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1736                                                            llvm::Value *value) {
1737   return EmitARCRetainAutorelease(type, value);
1738 }
1739 
1740 /// Given a number of pointers, inform the optimizer that they're
1741 /// being intrinsically used up until this point in the program.
1742 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
1743   llvm::Constant *&fn = CGM.getARCEntrypoints().clang_arc_use;
1744   if (!fn) {
1745     llvm::FunctionType *fnType =
1746       llvm::FunctionType::get(CGM.VoidTy, ArrayRef<llvm::Type*>(), true);
1747     fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use");
1748   }
1749 
1750   // This isn't really a "runtime" function, but as an intrinsic it
1751   // doesn't really matter as long as we align things up.
1752   EmitNounwindRuntimeCall(fn, values);
1753 }
1754 
1755 
1756 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1757                                                 llvm::FunctionType *type,
1758                                                 StringRef fnName) {
1759   llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
1760 
1761   if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) {
1762     // If the target runtime doesn't naturally support ARC, emit weak
1763     // references to the runtime support library.  We don't really
1764     // permit this to fail, but we need a particular relocation style.
1765     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
1766       f->setLinkage(llvm::Function::ExternalWeakLinkage);
1767     } else if (fnName == "objc_retain" || fnName  == "objc_release") {
1768       // If we have Native ARC, set nonlazybind attribute for these APIs for
1769       // performance.
1770       f->addFnAttr(llvm::Attribute::NonLazyBind);
1771     }
1772   }
1773 
1774   return fn;
1775 }
1776 
1777 /// Perform an operation having the signature
1778 ///   i8* (i8*)
1779 /// where a null input causes a no-op and returns null.
1780 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1781                                           llvm::Value *value,
1782                                           llvm::Constant *&fn,
1783                                           StringRef fnName,
1784                                           bool isTailCall = false) {
1785   if (isa<llvm::ConstantPointerNull>(value)) return value;
1786 
1787   if (!fn) {
1788     llvm::FunctionType *fnType =
1789       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
1790     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1791   }
1792 
1793   // Cast the argument to 'id'.
1794   llvm::Type *origType = value->getType();
1795   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1796 
1797   // Call the function.
1798   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
1799   if (isTailCall)
1800     call->setTailCall();
1801 
1802   // Cast the result back to the original type.
1803   return CGF.Builder.CreateBitCast(call, origType);
1804 }
1805 
1806 /// Perform an operation having the following signature:
1807 ///   i8* (i8**)
1808 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1809                                          llvm::Value *addr,
1810                                          llvm::Constant *&fn,
1811                                          StringRef fnName) {
1812   if (!fn) {
1813     llvm::FunctionType *fnType =
1814       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false);
1815     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1816   }
1817 
1818   // Cast the argument to 'id*'.
1819   llvm::Type *origType = addr->getType();
1820   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1821 
1822   // Call the function.
1823   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr);
1824 
1825   // Cast the result back to a dereference of the original type.
1826   if (origType != CGF.Int8PtrPtrTy)
1827     result = CGF.Builder.CreateBitCast(result,
1828                         cast<llvm::PointerType>(origType)->getElementType());
1829 
1830   return result;
1831 }
1832 
1833 /// Perform an operation having the following signature:
1834 ///   i8* (i8**, i8*)
1835 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1836                                           llvm::Value *addr,
1837                                           llvm::Value *value,
1838                                           llvm::Constant *&fn,
1839                                           StringRef fnName,
1840                                           bool ignored) {
1841   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1842            == value->getType());
1843 
1844   if (!fn) {
1845     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1846 
1847     llvm::FunctionType *fnType
1848       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1849     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1850   }
1851 
1852   llvm::Type *origType = value->getType();
1853 
1854   llvm::Value *args[] = {
1855     CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy),
1856     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
1857   };
1858   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
1859 
1860   if (ignored) return 0;
1861 
1862   return CGF.Builder.CreateBitCast(result, origType);
1863 }
1864 
1865 /// Perform an operation having the following signature:
1866 ///   void (i8**, i8**)
1867 static void emitARCCopyOperation(CodeGenFunction &CGF,
1868                                  llvm::Value *dst,
1869                                  llvm::Value *src,
1870                                  llvm::Constant *&fn,
1871                                  StringRef fnName) {
1872   assert(dst->getType() == src->getType());
1873 
1874   if (!fn) {
1875     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy };
1876 
1877     llvm::FunctionType *fnType
1878       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1879     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1880   }
1881 
1882   llvm::Value *args[] = {
1883     CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy),
1884     CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy)
1885   };
1886   CGF.EmitNounwindRuntimeCall(fn, args);
1887 }
1888 
1889 /// Produce the code to do a retain.  Based on the type, calls one of:
1890 ///   call i8* \@objc_retain(i8* %value)
1891 ///   call i8* \@objc_retainBlock(i8* %value)
1892 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1893   if (type->isBlockPointerType())
1894     return EmitARCRetainBlock(value, /*mandatory*/ false);
1895   else
1896     return EmitARCRetainNonBlock(value);
1897 }
1898 
1899 /// Retain the given object, with normal retain semantics.
1900 ///   call i8* \@objc_retain(i8* %value)
1901 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1902   return emitARCValueOperation(*this, value,
1903                                CGM.getARCEntrypoints().objc_retain,
1904                                "objc_retain");
1905 }
1906 
1907 /// Retain the given block, with _Block_copy semantics.
1908 ///   call i8* \@objc_retainBlock(i8* %value)
1909 ///
1910 /// \param mandatory - If false, emit the call with metadata
1911 /// indicating that it's okay for the optimizer to eliminate this call
1912 /// if it can prove that the block never escapes except down the stack.
1913 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1914                                                  bool mandatory) {
1915   llvm::Value *result
1916     = emitARCValueOperation(*this, value,
1917                             CGM.getARCEntrypoints().objc_retainBlock,
1918                             "objc_retainBlock");
1919 
1920   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1921   // tell the optimizer that it doesn't need to do this copy if the
1922   // block doesn't escape, where being passed as an argument doesn't
1923   // count as escaping.
1924   if (!mandatory && isa<llvm::Instruction>(result)) {
1925     llvm::CallInst *call
1926       = cast<llvm::CallInst>(result->stripPointerCasts());
1927     assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
1928 
1929     SmallVector<llvm::Value*,1> args;
1930     call->setMetadata("clang.arc.copy_on_escape",
1931                       llvm::MDNode::get(Builder.getContext(), args));
1932   }
1933 
1934   return result;
1935 }
1936 
1937 /// Retain the given object which is the result of a function call.
1938 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
1939 ///
1940 /// Yes, this function name is one character away from a different
1941 /// call with completely different semantics.
1942 llvm::Value *
1943 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
1944   // Fetch the void(void) inline asm which marks that we're going to
1945   // retain the autoreleased return value.
1946   llvm::InlineAsm *&marker
1947     = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
1948   if (!marker) {
1949     StringRef assembly
1950       = CGM.getTargetCodeGenInfo()
1951            .getARCRetainAutoreleasedReturnValueMarker();
1952 
1953     // If we have an empty assembly string, there's nothing to do.
1954     if (assembly.empty()) {
1955 
1956     // Otherwise, at -O0, build an inline asm that we're going to call
1957     // in a moment.
1958     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1959       llvm::FunctionType *type =
1960         llvm::FunctionType::get(VoidTy, /*variadic*/false);
1961 
1962       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
1963 
1964     // If we're at -O1 and above, we don't want to litter the code
1965     // with this marker yet, so leave a breadcrumb for the ARC
1966     // optimizer to pick up.
1967     } else {
1968       llvm::NamedMDNode *metadata =
1969         CGM.getModule().getOrInsertNamedMetadata(
1970                             "clang.arc.retainAutoreleasedReturnValueMarker");
1971       assert(metadata->getNumOperands() <= 1);
1972       if (metadata->getNumOperands() == 0) {
1973         llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly);
1974         metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string));
1975       }
1976     }
1977   }
1978 
1979   // Call the marker asm if we made one, which we do only at -O0.
1980   if (marker) Builder.CreateCall(marker);
1981 
1982   return emitARCValueOperation(*this, value,
1983                      CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
1984                                "objc_retainAutoreleasedReturnValue");
1985 }
1986 
1987 /// Release the given object.
1988 ///   call void \@objc_release(i8* %value)
1989 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
1990                                      ARCPreciseLifetime_t precise) {
1991   if (isa<llvm::ConstantPointerNull>(value)) return;
1992 
1993   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
1994   if (!fn) {
1995     llvm::FunctionType *fnType =
1996       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
1997     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
1998   }
1999 
2000   // Cast the argument to 'id'.
2001   value = Builder.CreateBitCast(value, Int8PtrTy);
2002 
2003   // Call objc_release.
2004   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2005 
2006   if (precise == ARCImpreciseLifetime) {
2007     SmallVector<llvm::Value*,1> args;
2008     call->setMetadata("clang.imprecise_release",
2009                       llvm::MDNode::get(Builder.getContext(), args));
2010   }
2011 }
2012 
2013 /// Destroy a __strong variable.
2014 ///
2015 /// At -O0, emit a call to store 'null' into the address;
2016 /// instrumenting tools prefer this because the address is exposed,
2017 /// but it's relatively cumbersome to optimize.
2018 ///
2019 /// At -O1 and above, just load and call objc_release.
2020 ///
2021 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
2022 void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr,
2023                                            ARCPreciseLifetime_t precise) {
2024   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2025     llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType());
2026     llvm::Value *null = llvm::ConstantPointerNull::get(
2027                           cast<llvm::PointerType>(addrTy->getElementType()));
2028     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2029     return;
2030   }
2031 
2032   llvm::Value *value = Builder.CreateLoad(addr);
2033   EmitARCRelease(value, precise);
2034 }
2035 
2036 /// Store into a strong object.  Always calls this:
2037 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2038 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
2039                                                      llvm::Value *value,
2040                                                      bool ignored) {
2041   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
2042            == value->getType());
2043 
2044   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
2045   if (!fn) {
2046     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
2047     llvm::FunctionType *fnType
2048       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
2049     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
2050   }
2051 
2052   llvm::Value *args[] = {
2053     Builder.CreateBitCast(addr, Int8PtrPtrTy),
2054     Builder.CreateBitCast(value, Int8PtrTy)
2055   };
2056   EmitNounwindRuntimeCall(fn, args);
2057 
2058   if (ignored) return 0;
2059   return value;
2060 }
2061 
2062 /// Store into a strong object.  Sometimes calls this:
2063 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2064 /// Other times, breaks it down into components.
2065 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2066                                                  llvm::Value *newValue,
2067                                                  bool ignored) {
2068   QualType type = dst.getType();
2069   bool isBlock = type->isBlockPointerType();
2070 
2071   // Use a store barrier at -O0 unless this is a block type or the
2072   // lvalue is inadequately aligned.
2073   if (shouldUseFusedARCCalls() &&
2074       !isBlock &&
2075       (dst.getAlignment().isZero() ||
2076        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2077     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2078   }
2079 
2080   // Otherwise, split it out.
2081 
2082   // Retain the new value.
2083   newValue = EmitARCRetain(type, newValue);
2084 
2085   // Read the old value.
2086   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2087 
2088   // Store.  We do this before the release so that any deallocs won't
2089   // see the old value.
2090   EmitStoreOfScalar(newValue, dst);
2091 
2092   // Finally, release the old value.
2093   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2094 
2095   return newValue;
2096 }
2097 
2098 /// Autorelease the given object.
2099 ///   call i8* \@objc_autorelease(i8* %value)
2100 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2101   return emitARCValueOperation(*this, value,
2102                                CGM.getARCEntrypoints().objc_autorelease,
2103                                "objc_autorelease");
2104 }
2105 
2106 /// Autorelease the given object.
2107 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2108 llvm::Value *
2109 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2110   return emitARCValueOperation(*this, value,
2111                             CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
2112                                "objc_autoreleaseReturnValue",
2113                                /*isTailCall*/ true);
2114 }
2115 
2116 /// Do a fused retain/autorelease of the given object.
2117 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2118 llvm::Value *
2119 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2120   return emitARCValueOperation(*this, value,
2121                      CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
2122                                "objc_retainAutoreleaseReturnValue",
2123                                /*isTailCall*/ true);
2124 }
2125 
2126 /// Do a fused retain/autorelease of the given object.
2127 ///   call i8* \@objc_retainAutorelease(i8* %value)
2128 /// or
2129 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2130 ///   call i8* \@objc_autorelease(i8* %retain)
2131 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2132                                                        llvm::Value *value) {
2133   if (!type->isBlockPointerType())
2134     return EmitARCRetainAutoreleaseNonBlock(value);
2135 
2136   if (isa<llvm::ConstantPointerNull>(value)) return value;
2137 
2138   llvm::Type *origType = value->getType();
2139   value = Builder.CreateBitCast(value, Int8PtrTy);
2140   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2141   value = EmitARCAutorelease(value);
2142   return Builder.CreateBitCast(value, origType);
2143 }
2144 
2145 /// Do a fused retain/autorelease of the given object.
2146 ///   call i8* \@objc_retainAutorelease(i8* %value)
2147 llvm::Value *
2148 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2149   return emitARCValueOperation(*this, value,
2150                                CGM.getARCEntrypoints().objc_retainAutorelease,
2151                                "objc_retainAutorelease");
2152 }
2153 
2154 /// i8* \@objc_loadWeak(i8** %addr)
2155 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2156 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
2157   return emitARCLoadOperation(*this, addr,
2158                               CGM.getARCEntrypoints().objc_loadWeak,
2159                               "objc_loadWeak");
2160 }
2161 
2162 /// i8* \@objc_loadWeakRetained(i8** %addr)
2163 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
2164   return emitARCLoadOperation(*this, addr,
2165                               CGM.getARCEntrypoints().objc_loadWeakRetained,
2166                               "objc_loadWeakRetained");
2167 }
2168 
2169 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2170 /// Returns %value.
2171 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
2172                                                llvm::Value *value,
2173                                                bool ignored) {
2174   return emitARCStoreOperation(*this, addr, value,
2175                                CGM.getARCEntrypoints().objc_storeWeak,
2176                                "objc_storeWeak", ignored);
2177 }
2178 
2179 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2180 /// Returns %value.  %addr is known to not have a current weak entry.
2181 /// Essentially equivalent to:
2182 ///   *addr = nil; objc_storeWeak(addr, value);
2183 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
2184   // If we're initializing to null, just write null to memory; no need
2185   // to get the runtime involved.  But don't do this if optimization
2186   // is enabled, because accounting for this would make the optimizer
2187   // much more complicated.
2188   if (isa<llvm::ConstantPointerNull>(value) &&
2189       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2190     Builder.CreateStore(value, addr);
2191     return;
2192   }
2193 
2194   emitARCStoreOperation(*this, addr, value,
2195                         CGM.getARCEntrypoints().objc_initWeak,
2196                         "objc_initWeak", /*ignored*/ true);
2197 }
2198 
2199 /// void \@objc_destroyWeak(i8** %addr)
2200 /// Essentially objc_storeWeak(addr, nil).
2201 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
2202   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
2203   if (!fn) {
2204     llvm::FunctionType *fnType =
2205       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false);
2206     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2207   }
2208 
2209   // Cast the argument to 'id*'.
2210   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2211 
2212   EmitNounwindRuntimeCall(fn, addr);
2213 }
2214 
2215 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2216 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2217 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2218 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
2219   emitARCCopyOperation(*this, dst, src,
2220                        CGM.getARCEntrypoints().objc_moveWeak,
2221                        "objc_moveWeak");
2222 }
2223 
2224 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2225 /// Disregards the current value in %dest.  Essentially
2226 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2227 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
2228   emitARCCopyOperation(*this, dst, src,
2229                        CGM.getARCEntrypoints().objc_copyWeak,
2230                        "objc_copyWeak");
2231 }
2232 
2233 /// Produce the code to do a objc_autoreleasepool_push.
2234 ///   call i8* \@objc_autoreleasePoolPush(void)
2235 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2236   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
2237   if (!fn) {
2238     llvm::FunctionType *fnType =
2239       llvm::FunctionType::get(Int8PtrTy, false);
2240     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2241   }
2242 
2243   return EmitNounwindRuntimeCall(fn);
2244 }
2245 
2246 /// Produce the code to do a primitive release.
2247 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2248 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2249   assert(value->getType() == Int8PtrTy);
2250 
2251   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
2252   if (!fn) {
2253     llvm::FunctionType *fnType =
2254       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2255 
2256     // We don't want to use a weak import here; instead we should not
2257     // fall into this path.
2258     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2259   }
2260 
2261   // objc_autoreleasePoolPop can throw.
2262   EmitRuntimeCallOrInvoke(fn, value);
2263 }
2264 
2265 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2266 /// Which is: [[NSAutoreleasePool alloc] init];
2267 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2268 /// init is declared as: - (id) init; in its NSObject super class.
2269 ///
2270 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2271   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2272   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2273   // [NSAutoreleasePool alloc]
2274   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2275   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2276   CallArgList Args;
2277   RValue AllocRV =
2278     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2279                                 getContext().getObjCIdType(),
2280                                 AllocSel, Receiver, Args);
2281 
2282   // [Receiver init]
2283   Receiver = AllocRV.getScalarVal();
2284   II = &CGM.getContext().Idents.get("init");
2285   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2286   RValue InitRV =
2287     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2288                                 getContext().getObjCIdType(),
2289                                 InitSel, Receiver, Args);
2290   return InitRV.getScalarVal();
2291 }
2292 
2293 /// Produce the code to do a primitive release.
2294 /// [tmp drain];
2295 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2296   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2297   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2298   CallArgList Args;
2299   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2300                               getContext().VoidTy, DrainSel, Arg, Args);
2301 }
2302 
2303 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2304                                               llvm::Value *addr,
2305                                               QualType type) {
2306   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2307 }
2308 
2309 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2310                                                 llvm::Value *addr,
2311                                                 QualType type) {
2312   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2313 }
2314 
2315 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2316                                      llvm::Value *addr,
2317                                      QualType type) {
2318   CGF.EmitARCDestroyWeak(addr);
2319 }
2320 
2321 namespace {
2322   struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
2323     llvm::Value *Token;
2324 
2325     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2326 
2327     void Emit(CodeGenFunction &CGF, Flags flags) {
2328       CGF.EmitObjCAutoreleasePoolPop(Token);
2329     }
2330   };
2331   struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
2332     llvm::Value *Token;
2333 
2334     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2335 
2336     void Emit(CodeGenFunction &CGF, Flags flags) {
2337       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2338     }
2339   };
2340 }
2341 
2342 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2343   if (CGM.getLangOpts().ObjCAutoRefCount)
2344     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2345   else
2346     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2347 }
2348 
2349 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2350                                                   LValue lvalue,
2351                                                   QualType type) {
2352   switch (type.getObjCLifetime()) {
2353   case Qualifiers::OCL_None:
2354   case Qualifiers::OCL_ExplicitNone:
2355   case Qualifiers::OCL_Strong:
2356   case Qualifiers::OCL_Autoreleasing:
2357     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue,
2358                                               SourceLocation()).getScalarVal(),
2359                          false);
2360 
2361   case Qualifiers::OCL_Weak:
2362     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2363                          true);
2364   }
2365 
2366   llvm_unreachable("impossible lifetime!");
2367 }
2368 
2369 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2370                                                   const Expr *e) {
2371   e = e->IgnoreParens();
2372   QualType type = e->getType();
2373 
2374   // If we're loading retained from a __strong xvalue, we can avoid
2375   // an extra retain/release pair by zeroing out the source of this
2376   // "move" operation.
2377   if (e->isXValue() &&
2378       !type.isConstQualified() &&
2379       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2380     // Emit the lvalue.
2381     LValue lv = CGF.EmitLValue(e);
2382 
2383     // Load the object pointer.
2384     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2385                                                SourceLocation()).getScalarVal();
2386 
2387     // Set the source pointer to NULL.
2388     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2389 
2390     return TryEmitResult(result, true);
2391   }
2392 
2393   // As a very special optimization, in ARC++, if the l-value is the
2394   // result of a non-volatile assignment, do a simple retain of the
2395   // result of the call to objc_storeWeak instead of reloading.
2396   if (CGF.getLangOpts().CPlusPlus &&
2397       !type.isVolatileQualified() &&
2398       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2399       isa<BinaryOperator>(e) &&
2400       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2401     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2402 
2403   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2404 }
2405 
2406 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2407                                            llvm::Value *value);
2408 
2409 /// Given that the given expression is some sort of call (which does
2410 /// not return retained), emit a retain following it.
2411 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
2412   llvm::Value *value = CGF.EmitScalarExpr(e);
2413   return emitARCRetainAfterCall(CGF, value);
2414 }
2415 
2416 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2417                                            llvm::Value *value) {
2418   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2419     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2420 
2421     // Place the retain immediately following the call.
2422     CGF.Builder.SetInsertPoint(call->getParent(),
2423                                ++llvm::BasicBlock::iterator(call));
2424     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2425 
2426     CGF.Builder.restoreIP(ip);
2427     return value;
2428   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2429     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2430 
2431     // Place the retain at the beginning of the normal destination block.
2432     llvm::BasicBlock *BB = invoke->getNormalDest();
2433     CGF.Builder.SetInsertPoint(BB, BB->begin());
2434     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2435 
2436     CGF.Builder.restoreIP(ip);
2437     return value;
2438 
2439   // Bitcasts can arise because of related-result returns.  Rewrite
2440   // the operand.
2441   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2442     llvm::Value *operand = bitcast->getOperand(0);
2443     operand = emitARCRetainAfterCall(CGF, operand);
2444     bitcast->setOperand(0, operand);
2445     return bitcast;
2446 
2447   // Generic fall-back case.
2448   } else {
2449     // Retain using the non-block variant: we never need to do a copy
2450     // of a block that's been returned to us.
2451     return CGF.EmitARCRetainNonBlock(value);
2452   }
2453 }
2454 
2455 /// Determine whether it might be important to emit a separate
2456 /// objc_retain_block on the result of the given expression, or
2457 /// whether it's okay to just emit it in a +1 context.
2458 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2459   assert(e->getType()->isBlockPointerType());
2460   e = e->IgnoreParens();
2461 
2462   // For future goodness, emit block expressions directly in +1
2463   // contexts if we can.
2464   if (isa<BlockExpr>(e))
2465     return false;
2466 
2467   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2468     switch (cast->getCastKind()) {
2469     // Emitting these operations in +1 contexts is goodness.
2470     case CK_LValueToRValue:
2471     case CK_ARCReclaimReturnedObject:
2472     case CK_ARCConsumeObject:
2473     case CK_ARCProduceObject:
2474       return false;
2475 
2476     // These operations preserve a block type.
2477     case CK_NoOp:
2478     case CK_BitCast:
2479       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2480 
2481     // These operations are known to be bad (or haven't been considered).
2482     case CK_AnyPointerToBlockPointerCast:
2483     default:
2484       return true;
2485     }
2486   }
2487 
2488   return true;
2489 }
2490 
2491 /// Try to emit a PseudoObjectExpr at +1.
2492 ///
2493 /// This massively duplicates emitPseudoObjectRValue.
2494 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
2495                                                   const PseudoObjectExpr *E) {
2496   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2497 
2498   // Find the result expression.
2499   const Expr *resultExpr = E->getResultExpr();
2500   assert(resultExpr);
2501   TryEmitResult result;
2502 
2503   for (PseudoObjectExpr::const_semantics_iterator
2504          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2505     const Expr *semantic = *i;
2506 
2507     // If this semantic expression is an opaque value, bind it
2508     // to the result of its source expression.
2509     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2510       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2511       OVMA opaqueData;
2512 
2513       // If this semantic is the result of the pseudo-object
2514       // expression, try to evaluate the source as +1.
2515       if (ov == resultExpr) {
2516         assert(!OVMA::shouldBindAsLValue(ov));
2517         result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
2518         opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
2519 
2520       // Otherwise, just bind it.
2521       } else {
2522         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2523       }
2524       opaques.push_back(opaqueData);
2525 
2526     // Otherwise, if the expression is the result, evaluate it
2527     // and remember the result.
2528     } else if (semantic == resultExpr) {
2529       result = tryEmitARCRetainScalarExpr(CGF, semantic);
2530 
2531     // Otherwise, evaluate the expression in an ignored context.
2532     } else {
2533       CGF.EmitIgnoredExpr(semantic);
2534     }
2535   }
2536 
2537   // Unbind all the opaques now.
2538   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2539     opaques[i].unbind(CGF);
2540 
2541   return result;
2542 }
2543 
2544 static TryEmitResult
2545 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2546   // We should *never* see a nested full-expression here, because if
2547   // we fail to emit at +1, our caller must not retain after we close
2548   // out the full-expression.
2549   assert(!isa<ExprWithCleanups>(e));
2550 
2551   // The desired result type, if it differs from the type of the
2552   // ultimate opaque expression.
2553   llvm::Type *resultType = 0;
2554 
2555   while (true) {
2556     e = e->IgnoreParens();
2557 
2558     // There's a break at the end of this if-chain;  anything
2559     // that wants to keep looping has to explicitly continue.
2560     if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2561       switch (ce->getCastKind()) {
2562       // No-op casts don't change the type, so we just ignore them.
2563       case CK_NoOp:
2564         e = ce->getSubExpr();
2565         continue;
2566 
2567       case CK_LValueToRValue: {
2568         TryEmitResult loadResult
2569           = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
2570         if (resultType) {
2571           llvm::Value *value = loadResult.getPointer();
2572           value = CGF.Builder.CreateBitCast(value, resultType);
2573           loadResult.setPointer(value);
2574         }
2575         return loadResult;
2576       }
2577 
2578       // These casts can change the type, so remember that and
2579       // soldier on.  We only need to remember the outermost such
2580       // cast, though.
2581       case CK_CPointerToObjCPointerCast:
2582       case CK_BlockPointerToObjCPointerCast:
2583       case CK_AnyPointerToBlockPointerCast:
2584       case CK_BitCast:
2585         if (!resultType)
2586           resultType = CGF.ConvertType(ce->getType());
2587         e = ce->getSubExpr();
2588         assert(e->getType()->hasPointerRepresentation());
2589         continue;
2590 
2591       // For consumptions, just emit the subexpression and thus elide
2592       // the retain/release pair.
2593       case CK_ARCConsumeObject: {
2594         llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
2595         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2596         return TryEmitResult(result, true);
2597       }
2598 
2599       // Block extends are net +0.  Naively, we could just recurse on
2600       // the subexpression, but actually we need to ensure that the
2601       // value is copied as a block, so there's a little filter here.
2602       case CK_ARCExtendBlockObject: {
2603         llvm::Value *result; // will be a +0 value
2604 
2605         // If we can't safely assume the sub-expression will produce a
2606         // block-copied value, emit the sub-expression at +0.
2607         if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
2608           result = CGF.EmitScalarExpr(ce->getSubExpr());
2609 
2610         // Otherwise, try to emit the sub-expression at +1 recursively.
2611         } else {
2612           TryEmitResult subresult
2613             = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
2614           result = subresult.getPointer();
2615 
2616           // If that produced a retained value, just use that,
2617           // possibly casting down.
2618           if (subresult.getInt()) {
2619             if (resultType)
2620               result = CGF.Builder.CreateBitCast(result, resultType);
2621             return TryEmitResult(result, true);
2622           }
2623 
2624           // Otherwise it's +0.
2625         }
2626 
2627         // Retain the object as a block, then cast down.
2628         result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2629         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2630         return TryEmitResult(result, true);
2631       }
2632 
2633       // For reclaims, emit the subexpression as a retained call and
2634       // skip the consumption.
2635       case CK_ARCReclaimReturnedObject: {
2636         llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
2637         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2638         return TryEmitResult(result, true);
2639       }
2640 
2641       default:
2642         break;
2643       }
2644 
2645     // Skip __extension__.
2646     } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
2647       if (op->getOpcode() == UO_Extension) {
2648         e = op->getSubExpr();
2649         continue;
2650       }
2651 
2652     // For calls and message sends, use the retained-call logic.
2653     // Delegate inits are a special case in that they're the only
2654     // returns-retained expression that *isn't* surrounded by
2655     // a consume.
2656     } else if (isa<CallExpr>(e) ||
2657                (isa<ObjCMessageExpr>(e) &&
2658                 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2659       llvm::Value *result = emitARCRetainCall(CGF, e);
2660       if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2661       return TryEmitResult(result, true);
2662 
2663     // Look through pseudo-object expressions.
2664     } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2665       TryEmitResult result
2666         = tryEmitARCRetainPseudoObject(CGF, pseudo);
2667       if (resultType) {
2668         llvm::Value *value = result.getPointer();
2669         value = CGF.Builder.CreateBitCast(value, resultType);
2670         result.setPointer(value);
2671       }
2672       return result;
2673     }
2674 
2675     // Conservatively halt the search at any other expression kind.
2676     break;
2677   }
2678 
2679   // We didn't find an obvious production, so emit what we've got and
2680   // tell the caller that we didn't manage to retain.
2681   llvm::Value *result = CGF.EmitScalarExpr(e);
2682   if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2683   return TryEmitResult(result, false);
2684 }
2685 
2686 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2687                                                 LValue lvalue,
2688                                                 QualType type) {
2689   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2690   llvm::Value *value = result.getPointer();
2691   if (!result.getInt())
2692     value = CGF.EmitARCRetain(type, value);
2693   return value;
2694 }
2695 
2696 /// EmitARCRetainScalarExpr - Semantically equivalent to
2697 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2698 /// best-effort attempt to peephole expressions that naturally produce
2699 /// retained objects.
2700 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2701   // The retain needs to happen within the full-expression.
2702   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2703     enterFullExpression(cleanups);
2704     RunCleanupsScope scope(*this);
2705     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
2706   }
2707 
2708   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2709   llvm::Value *value = result.getPointer();
2710   if (!result.getInt())
2711     value = EmitARCRetain(e->getType(), value);
2712   return value;
2713 }
2714 
2715 llvm::Value *
2716 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2717   // The retain needs to happen within the full-expression.
2718   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2719     enterFullExpression(cleanups);
2720     RunCleanupsScope scope(*this);
2721     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
2722   }
2723 
2724   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2725   llvm::Value *value = result.getPointer();
2726   if (result.getInt())
2727     value = EmitARCAutorelease(value);
2728   else
2729     value = EmitARCRetainAutorelease(e->getType(), value);
2730   return value;
2731 }
2732 
2733 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2734   llvm::Value *result;
2735   bool doRetain;
2736 
2737   if (shouldEmitSeparateBlockRetain(e)) {
2738     result = EmitScalarExpr(e);
2739     doRetain = true;
2740   } else {
2741     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2742     result = subresult.getPointer();
2743     doRetain = !subresult.getInt();
2744   }
2745 
2746   if (doRetain)
2747     result = EmitARCRetainBlock(result, /*mandatory*/ true);
2748   return EmitObjCConsumeObject(e->getType(), result);
2749 }
2750 
2751 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
2752   // In ARC, retain and autorelease the expression.
2753   if (getLangOpts().ObjCAutoRefCount) {
2754     // Do so before running any cleanups for the full-expression.
2755     // EmitARCRetainAutoreleaseScalarExpr does this for us.
2756     return EmitARCRetainAutoreleaseScalarExpr(expr);
2757   }
2758 
2759   // Otherwise, use the normal scalar-expression emission.  The
2760   // exception machinery doesn't do anything special with the
2761   // exception like retaining it, so there's no safety associated with
2762   // only running cleanups after the throw has started, and when it
2763   // matters it tends to be substantially inferior code.
2764   return EmitScalarExpr(expr);
2765 }
2766 
2767 std::pair<LValue,llvm::Value*>
2768 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
2769                                     bool ignored) {
2770   // Evaluate the RHS first.
2771   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
2772   llvm::Value *value = result.getPointer();
2773 
2774   bool hasImmediateRetain = result.getInt();
2775 
2776   // If we didn't emit a retained object, and the l-value is of block
2777   // type, then we need to emit the block-retain immediately in case
2778   // it invalidates the l-value.
2779   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
2780     value = EmitARCRetainBlock(value, /*mandatory*/ false);
2781     hasImmediateRetain = true;
2782   }
2783 
2784   LValue lvalue = EmitLValue(e->getLHS());
2785 
2786   // If the RHS was emitted retained, expand this.
2787   if (hasImmediateRetain) {
2788     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
2789     EmitStoreOfScalar(value, lvalue);
2790     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
2791   } else {
2792     value = EmitARCStoreStrong(lvalue, value, ignored);
2793   }
2794 
2795   return std::pair<LValue,llvm::Value*>(lvalue, value);
2796 }
2797 
2798 std::pair<LValue,llvm::Value*>
2799 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
2800   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
2801   LValue lvalue = EmitLValue(e->getLHS());
2802 
2803   EmitStoreOfScalar(value, lvalue);
2804 
2805   return std::pair<LValue,llvm::Value*>(lvalue, value);
2806 }
2807 
2808 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
2809                                           const ObjCAutoreleasePoolStmt &ARPS) {
2810   const Stmt *subStmt = ARPS.getSubStmt();
2811   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
2812 
2813   CGDebugInfo *DI = getDebugInfo();
2814   if (DI)
2815     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
2816 
2817   // Keep track of the current cleanup stack depth.
2818   RunCleanupsScope Scope(*this);
2819   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
2820     llvm::Value *token = EmitObjCAutoreleasePoolPush();
2821     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
2822   } else {
2823     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
2824     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
2825   }
2826 
2827   for (CompoundStmt::const_body_iterator I = S.body_begin(),
2828        E = S.body_end(); I != E; ++I)
2829     EmitStmt(*I);
2830 
2831   if (DI)
2832     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
2833 }
2834 
2835 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2836 /// make sure it survives garbage collection until this point.
2837 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
2838   // We just use an inline assembly.
2839   llvm::FunctionType *extenderType
2840     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
2841   llvm::Value *extender
2842     = llvm::InlineAsm::get(extenderType,
2843                            /* assembly */ "",
2844                            /* constraints */ "r",
2845                            /* side effects */ true);
2846 
2847   object = Builder.CreateBitCast(object, VoidPtrTy);
2848   EmitNounwindRuntimeCall(extender, object);
2849 }
2850 
2851 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
2852 /// non-trivial copy assignment function, produce following helper function.
2853 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
2854 ///
2855 llvm::Constant *
2856 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
2857                                         const ObjCPropertyImplDecl *PID) {
2858   if (!getLangOpts().CPlusPlus ||
2859       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2860     return 0;
2861   QualType Ty = PID->getPropertyIvarDecl()->getType();
2862   if (!Ty->isRecordType())
2863     return 0;
2864   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2865   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2866     return 0;
2867   llvm::Constant * HelperFn = 0;
2868   if (hasTrivialSetExpr(PID))
2869     return 0;
2870   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
2871   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
2872     return HelperFn;
2873 
2874   ASTContext &C = getContext();
2875   IdentifierInfo *II
2876     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
2877   FunctionDecl *FD = FunctionDecl::Create(C,
2878                                           C.getTranslationUnitDecl(),
2879                                           SourceLocation(),
2880                                           SourceLocation(), II, C.VoidTy, 0,
2881                                           SC_Static,
2882                                           false,
2883                                           false);
2884 
2885   QualType DestTy = C.getPointerType(Ty);
2886   QualType SrcTy = Ty;
2887   SrcTy.addConst();
2888   SrcTy = C.getPointerType(SrcTy);
2889 
2890   FunctionArgList args;
2891   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2892   args.push_back(&dstDecl);
2893   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2894   args.push_back(&srcDecl);
2895 
2896   const CGFunctionInfo &FI =
2897     CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2898                                               FunctionType::ExtInfo(),
2899                                               RequiredArgs::All);
2900 
2901   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2902 
2903   llvm::Function *Fn =
2904     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2905                            "__assign_helper_atomic_property_",
2906                            &CGM.getModule());
2907 
2908   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2909 
2910   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2911                       VK_RValue, SourceLocation());
2912   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
2913                     VK_LValue, OK_Ordinary, SourceLocation());
2914 
2915   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2916                       VK_RValue, SourceLocation());
2917   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2918                     VK_LValue, OK_Ordinary, SourceLocation());
2919 
2920   Expr *Args[2] = { &DST, &SRC };
2921   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
2922   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
2923                               Args, DestTy->getPointeeType(),
2924                               VK_LValue, SourceLocation(), false);
2925 
2926   EmitStmt(&TheCall);
2927 
2928   FinishFunction();
2929   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2930   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
2931   return HelperFn;
2932 }
2933 
2934 llvm::Constant *
2935 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
2936                                             const ObjCPropertyImplDecl *PID) {
2937   if (!getLangOpts().CPlusPlus ||
2938       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2939     return 0;
2940   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2941   QualType Ty = PD->getType();
2942   if (!Ty->isRecordType())
2943     return 0;
2944   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2945     return 0;
2946   llvm::Constant * HelperFn = 0;
2947 
2948   if (hasTrivialGetExpr(PID))
2949     return 0;
2950   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
2951   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
2952     return HelperFn;
2953 
2954 
2955   ASTContext &C = getContext();
2956   IdentifierInfo *II
2957   = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
2958   FunctionDecl *FD = FunctionDecl::Create(C,
2959                                           C.getTranslationUnitDecl(),
2960                                           SourceLocation(),
2961                                           SourceLocation(), II, C.VoidTy, 0,
2962                                           SC_Static,
2963                                           false,
2964                                           false);
2965 
2966   QualType DestTy = C.getPointerType(Ty);
2967   QualType SrcTy = Ty;
2968   SrcTy.addConst();
2969   SrcTy = C.getPointerType(SrcTy);
2970 
2971   FunctionArgList args;
2972   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2973   args.push_back(&dstDecl);
2974   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2975   args.push_back(&srcDecl);
2976 
2977   const CGFunctionInfo &FI =
2978   CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2979                                             FunctionType::ExtInfo(),
2980                                             RequiredArgs::All);
2981 
2982   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2983 
2984   llvm::Function *Fn =
2985   llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2986                          "__copy_helper_atomic_property_", &CGM.getModule());
2987 
2988   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2989 
2990   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2991                       VK_RValue, SourceLocation());
2992 
2993   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2994                     VK_LValue, OK_Ordinary, SourceLocation());
2995 
2996   CXXConstructExpr *CXXConstExpr =
2997     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
2998 
2999   SmallVector<Expr*, 4> ConstructorArgs;
3000   ConstructorArgs.push_back(&SRC);
3001   CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin();
3002   ++A;
3003 
3004   for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end();
3005        A != AEnd; ++A)
3006     ConstructorArgs.push_back(*A);
3007 
3008   CXXConstructExpr *TheCXXConstructExpr =
3009     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3010                              CXXConstExpr->getConstructor(),
3011                              CXXConstExpr->isElidable(),
3012                              ConstructorArgs,
3013                              CXXConstExpr->hadMultipleCandidates(),
3014                              CXXConstExpr->isListInitialization(),
3015                              CXXConstExpr->requiresZeroInitialization(),
3016                              CXXConstExpr->getConstructionKind(),
3017                              SourceRange());
3018 
3019   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
3020                       VK_RValue, SourceLocation());
3021 
3022   RValue DV = EmitAnyExpr(&DstExpr);
3023   CharUnits Alignment
3024     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3025   EmitAggExpr(TheCXXConstructExpr,
3026               AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(),
3027                                     AggValueSlot::IsDestructed,
3028                                     AggValueSlot::DoesNotNeedGCBarriers,
3029                                     AggValueSlot::IsNotAliased));
3030 
3031   FinishFunction();
3032   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3033   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3034   return HelperFn;
3035 }
3036 
3037 llvm::Value *
3038 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3039   // Get selectors for retain/autorelease.
3040   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3041   Selector CopySelector =
3042       getContext().Selectors.getNullarySelector(CopyID);
3043   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3044   Selector AutoreleaseSelector =
3045       getContext().Selectors.getNullarySelector(AutoreleaseID);
3046 
3047   // Emit calls to retain/autorelease.
3048   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3049   llvm::Value *Val = Block;
3050   RValue Result;
3051   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3052                                        Ty, CopySelector,
3053                                        Val, CallArgList(), 0, 0);
3054   Val = Result.getScalarVal();
3055   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3056                                        Ty, AutoreleaseSelector,
3057                                        Val, CallArgList(), 0, 0);
3058   Val = Result.getScalarVal();
3059   return Val;
3060 }
3061 
3062 
3063 CGObjCRuntime::~CGObjCRuntime() {}
3064