1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of virtual tables.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CodeGenModule.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "clang/Frontend/CodeGenOptions.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/Format.h"
25 #include "llvm/Transforms/Utils/Cloning.h"
26 #include <algorithm>
27 #include <cstdio>
28 
29 using namespace clang;
30 using namespace CodeGen;
31 
32 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM)
33   : CGM(CGM), ItaniumVTContext(CGM.getContext()) {
34   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
35     // FIXME: Eventually, we should only have one of V*TContexts available.
36     // Today we use both in the Microsoft ABI as MicrosoftVFTableContext
37     // is not completely supported in CodeGen yet.
38     MicrosoftVTContext.reset(new MicrosoftVTableContext(CGM.getContext()));
39   }
40 }
41 
42 llvm::Constant *CodeGenModule::GetAddrOfThunk(GlobalDecl GD,
43                                               const ThunkInfo &Thunk) {
44   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
45 
46   // Compute the mangled name.
47   SmallString<256> Name;
48   llvm::raw_svector_ostream Out(Name);
49   if (const CXXDestructorDecl* DD = dyn_cast<CXXDestructorDecl>(MD))
50     getCXXABI().getMangleContext().mangleCXXDtorThunk(DD, GD.getDtorType(),
51                                                       Thunk.This, Out);
52   else
53     getCXXABI().getMangleContext().mangleThunk(MD, Thunk, Out);
54   Out.flush();
55 
56   llvm::Type *Ty = getTypes().GetFunctionTypeForVTable(GD);
57   return GetOrCreateLLVMFunction(Name, Ty, GD, /*ForVTable=*/true);
58 }
59 
60 static void setThunkVisibility(CodeGenModule &CGM, const CXXMethodDecl *MD,
61                                const ThunkInfo &Thunk, llvm::Function *Fn) {
62   CGM.setGlobalVisibility(Fn, MD);
63 
64   if (!CGM.getCodeGenOpts().HiddenWeakVTables)
65     return;
66 
67   // If the thunk has weak/linkonce linkage, but the function must be
68   // emitted in every translation unit that references it, then we can
69   // emit its thunks with hidden visibility, since its thunks must be
70   // emitted when the function is.
71 
72   // This follows CodeGenModule::setTypeVisibility; see the comments
73   // there for explanation.
74 
75   if ((Fn->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage &&
76        Fn->getLinkage() != llvm::GlobalVariable::WeakODRLinkage) ||
77       Fn->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
78     return;
79 
80   if (MD->getExplicitVisibility(ValueDecl::VisibilityForValue))
81     return;
82 
83   switch (MD->getTemplateSpecializationKind()) {
84   case TSK_ExplicitInstantiationDefinition:
85   case TSK_ExplicitInstantiationDeclaration:
86     return;
87 
88   case TSK_Undeclared:
89     break;
90 
91   case TSK_ExplicitSpecialization:
92   case TSK_ImplicitInstantiation:
93     return;
94     break;
95   }
96 
97   // If there's an explicit definition, and that definition is
98   // out-of-line, then we can't assume that all users will have a
99   // definition to emit.
100   const FunctionDecl *Def = 0;
101   if (MD->hasBody(Def) && Def->isOutOfLine())
102     return;
103 
104   Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
105 }
106 
107 #ifndef NDEBUG
108 static bool similar(const ABIArgInfo &infoL, CanQualType typeL,
109                     const ABIArgInfo &infoR, CanQualType typeR) {
110   return (infoL.getKind() == infoR.getKind() &&
111           (typeL == typeR ||
112            (isa<PointerType>(typeL) && isa<PointerType>(typeR)) ||
113            (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR))));
114 }
115 #endif
116 
117 static RValue PerformReturnAdjustment(CodeGenFunction &CGF,
118                                       QualType ResultType, RValue RV,
119                                       const ThunkInfo &Thunk) {
120   // Emit the return adjustment.
121   bool NullCheckValue = !ResultType->isReferenceType();
122 
123   llvm::BasicBlock *AdjustNull = 0;
124   llvm::BasicBlock *AdjustNotNull = 0;
125   llvm::BasicBlock *AdjustEnd = 0;
126 
127   llvm::Value *ReturnValue = RV.getScalarVal();
128 
129   if (NullCheckValue) {
130     AdjustNull = CGF.createBasicBlock("adjust.null");
131     AdjustNotNull = CGF.createBasicBlock("adjust.notnull");
132     AdjustEnd = CGF.createBasicBlock("adjust.end");
133 
134     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue);
135     CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull);
136     CGF.EmitBlock(AdjustNotNull);
137   }
138 
139   ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF, ReturnValue,
140                                                             Thunk.Return);
141 
142   if (NullCheckValue) {
143     CGF.Builder.CreateBr(AdjustEnd);
144     CGF.EmitBlock(AdjustNull);
145     CGF.Builder.CreateBr(AdjustEnd);
146     CGF.EmitBlock(AdjustEnd);
147 
148     llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2);
149     PHI->addIncoming(ReturnValue, AdjustNotNull);
150     PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()),
151                      AdjustNull);
152     ReturnValue = PHI;
153   }
154 
155   return RValue::get(ReturnValue);
156 }
157 
158 // This function does roughly the same thing as GenerateThunk, but in a
159 // very different way, so that va_start and va_end work correctly.
160 // FIXME: This function assumes "this" is the first non-sret LLVM argument of
161 //        a function, and that there is an alloca built in the entry block
162 //        for all accesses to "this".
163 // FIXME: This function assumes there is only one "ret" statement per function.
164 // FIXME: Cloning isn't correct in the presence of indirect goto!
165 // FIXME: This implementation of thunks bloats codesize by duplicating the
166 //        function definition.  There are alternatives:
167 //        1. Add some sort of stub support to LLVM for cases where we can
168 //           do a this adjustment, then a sibcall.
169 //        2. We could transform the definition to take a va_list instead of an
170 //           actual variable argument list, then have the thunks (including a
171 //           no-op thunk for the regular definition) call va_start/va_end.
172 //           There's a bit of per-call overhead for this solution, but it's
173 //           better for codesize if the definition is long.
174 void CodeGenFunction::GenerateVarArgsThunk(
175                                       llvm::Function *Fn,
176                                       const CGFunctionInfo &FnInfo,
177                                       GlobalDecl GD, const ThunkInfo &Thunk) {
178   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
179   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
180   QualType ResultType = FPT->getResultType();
181 
182   // Get the original function
183   assert(FnInfo.isVariadic());
184   llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo);
185   llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
186   llvm::Function *BaseFn = cast<llvm::Function>(Callee);
187 
188   // Clone to thunk.
189   llvm::ValueToValueMapTy VMap;
190   llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap,
191                                               /*ModuleLevelChanges=*/false);
192   CGM.getModule().getFunctionList().push_back(NewFn);
193   Fn->replaceAllUsesWith(NewFn);
194   NewFn->takeName(Fn);
195   Fn->eraseFromParent();
196   Fn = NewFn;
197 
198   // "Initialize" CGF (minimally).
199   CurFn = Fn;
200 
201   // Get the "this" value
202   llvm::Function::arg_iterator AI = Fn->arg_begin();
203   if (CGM.ReturnTypeUsesSRet(FnInfo))
204     ++AI;
205 
206   // Find the first store of "this", which will be to the alloca associated
207   // with "this".
208   llvm::Value *ThisPtr = &*AI;
209   llvm::BasicBlock *EntryBB = Fn->begin();
210   llvm::Instruction *ThisStore = 0;
211   for (llvm::BasicBlock::iterator I = EntryBB->begin(), E = EntryBB->end();
212        I != E; I++) {
213     if (isa<llvm::StoreInst>(I) && I->getOperand(0) == ThisPtr) {
214       ThisStore = cast<llvm::StoreInst>(I);
215       break;
216     }
217   }
218   assert(ThisStore && "Store of this should be in entry block?");
219   // Adjust "this", if necessary.
220   Builder.SetInsertPoint(ThisStore);
221   llvm::Value *AdjustedThisPtr =
222       CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This);
223   ThisStore->setOperand(0, AdjustedThisPtr);
224 
225   if (!Thunk.Return.isEmpty()) {
226     // Fix up the returned value, if necessary.
227     for (llvm::Function::iterator I = Fn->begin(), E = Fn->end(); I != E; I++) {
228       llvm::Instruction *T = I->getTerminator();
229       if (isa<llvm::ReturnInst>(T)) {
230         RValue RV = RValue::get(T->getOperand(0));
231         T->eraseFromParent();
232         Builder.SetInsertPoint(&*I);
233         RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk);
234         Builder.CreateRet(RV.getScalarVal());
235         break;
236       }
237     }
238   }
239 }
240 
241 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD,
242                                  const CGFunctionInfo &FnInfo) {
243   assert(!CurGD.getDecl() && "CurGD was already set!");
244   CurGD = GD;
245 
246   // Build FunctionArgs.
247   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
248   QualType ThisType = MD->getThisType(getContext());
249   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
250   QualType ResultType =
251     CGM.getCXXABI().HasThisReturn(GD) ? ThisType : FPT->getResultType();
252   FunctionArgList FunctionArgs;
253 
254   // Create the implicit 'this' parameter declaration.
255   CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResultType, FunctionArgs);
256 
257   // Add the rest of the parameters.
258   for (FunctionDecl::param_const_iterator I = MD->param_begin(),
259                                           E = MD->param_end();
260        I != E; ++I)
261     FunctionArgs.push_back(*I);
262 
263   // Start defining the function.
264   StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs,
265                 SourceLocation());
266 
267   // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves.
268   CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
269   CXXThisValue = CXXABIThisValue;
270 }
271 
272 void CodeGenFunction::EmitCallAndReturnForThunk(GlobalDecl GD,
273                                                 llvm::Value *Callee,
274                                                 const ThunkInfo *Thunk) {
275   assert(isa<CXXMethodDecl>(CurGD.getDecl()) &&
276          "Please use a new CGF for this thunk");
277   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
278 
279   // Adjust the 'this' pointer if necessary
280   llvm::Value *AdjustedThisPtr = Thunk ? CGM.getCXXABI().performThisAdjustment(
281                                              *this, LoadCXXThis(), Thunk->This)
282                                        : LoadCXXThis();
283 
284   // Start building CallArgs.
285   CallArgList CallArgs;
286   QualType ThisType = MD->getThisType(getContext());
287   CallArgs.add(RValue::get(AdjustedThisPtr), ThisType);
288 
289   if (isa<CXXDestructorDecl>(MD))
290     CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, GD, CallArgs);
291 
292   // Add the rest of the arguments.
293   for (FunctionDecl::param_const_iterator I = MD->param_begin(),
294        E = MD->param_end(); I != E; ++I)
295     EmitDelegateCallArg(CallArgs, *I, (*I)->getLocStart());
296 
297   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
298 
299 #ifndef NDEBUG
300   const CGFunctionInfo &CallFnInfo =
301     CGM.getTypes().arrangeCXXMethodCall(CallArgs, FPT,
302                                        RequiredArgs::forPrototypePlus(FPT, 1));
303   assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() &&
304          CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() &&
305          CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention());
306   assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types
307          similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(),
308                  CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType()));
309   assert(CallFnInfo.arg_size() == CurFnInfo->arg_size());
310   for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i)
311     assert(similar(CallFnInfo.arg_begin()[i].info,
312                    CallFnInfo.arg_begin()[i].type,
313                    CurFnInfo->arg_begin()[i].info,
314                    CurFnInfo->arg_begin()[i].type));
315 #endif
316 
317   // Determine whether we have a return value slot to use.
318   QualType ResultType =
319     CGM.getCXXABI().HasThisReturn(GD) ? ThisType : FPT->getResultType();
320   ReturnValueSlot Slot;
321   if (!ResultType->isVoidType() &&
322       CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
323       !hasScalarEvaluationKind(CurFnInfo->getReturnType()))
324     Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified());
325 
326   // Now emit our call.
327   RValue RV = EmitCall(*CurFnInfo, Callee, Slot, CallArgs, MD);
328 
329   // Consider return adjustment if we have ThunkInfo.
330   if (Thunk && !Thunk->Return.isEmpty())
331     RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk);
332 
333   // Emit return.
334   if (!ResultType->isVoidType() && Slot.isNull())
335     CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType);
336 
337   // Disable the final ARC autorelease.
338   AutoreleaseResult = false;
339 
340   FinishFunction();
341 }
342 
343 void CodeGenFunction::GenerateThunk(llvm::Function *Fn,
344                                     const CGFunctionInfo &FnInfo,
345                                     GlobalDecl GD, const ThunkInfo &Thunk) {
346   StartThunk(Fn, GD, FnInfo);
347 
348   // Get our callee.
349   llvm::Type *Ty =
350     CGM.getTypes().GetFunctionType(CGM.getTypes().arrangeGlobalDeclaration(GD));
351   llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
352 
353   // Make the call and return the result.
354   EmitCallAndReturnForThunk(GD, Callee, &Thunk);
355 
356   // Set the right linkage.
357   CGM.setFunctionLinkage(GD, Fn);
358 
359   // Set the right visibility.
360   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
361   setThunkVisibility(CGM, MD, Thunk, Fn);
362 }
363 
364 void CodeGenVTables::emitThunk(GlobalDecl GD, const ThunkInfo &Thunk,
365                                bool ForVTable) {
366   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(GD);
367 
368   // FIXME: re-use FnInfo in this computation.
369   llvm::Constant *Entry = CGM.GetAddrOfThunk(GD, Thunk);
370 
371   // Strip off a bitcast if we got one back.
372   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
373     assert(CE->getOpcode() == llvm::Instruction::BitCast);
374     Entry = CE->getOperand(0);
375   }
376 
377   // There's already a declaration with the same name, check if it has the same
378   // type or if we need to replace it.
379   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() !=
380       CGM.getTypes().GetFunctionTypeForVTable(GD)) {
381     llvm::GlobalValue *OldThunkFn = cast<llvm::GlobalValue>(Entry);
382 
383     // If the types mismatch then we have to rewrite the definition.
384     assert(OldThunkFn->isDeclaration() &&
385            "Shouldn't replace non-declaration");
386 
387     // Remove the name from the old thunk function and get a new thunk.
388     OldThunkFn->setName(StringRef());
389     Entry = CGM.GetAddrOfThunk(GD, Thunk);
390 
391     // If needed, replace the old thunk with a bitcast.
392     if (!OldThunkFn->use_empty()) {
393       llvm::Constant *NewPtrForOldDecl =
394         llvm::ConstantExpr::getBitCast(Entry, OldThunkFn->getType());
395       OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl);
396     }
397 
398     // Remove the old thunk.
399     OldThunkFn->eraseFromParent();
400   }
401 
402   llvm::Function *ThunkFn = cast<llvm::Function>(Entry);
403   bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions();
404   bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions;
405 
406   if (!ThunkFn->isDeclaration()) {
407     if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) {
408       // There is already a thunk emitted for this function, do nothing.
409       return;
410     }
411 
412     // Change the linkage.
413     CGM.setFunctionLinkage(GD, ThunkFn);
414     return;
415   }
416 
417   CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn);
418 
419   if (ThunkFn->isVarArg()) {
420     // Varargs thunks are special; we can't just generate a call because
421     // we can't copy the varargs.  Our implementation is rather
422     // expensive/sucky at the moment, so don't generate the thunk unless
423     // we have to.
424     // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly.
425     if (!UseAvailableExternallyLinkage)
426       CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, Thunk);
427   } else {
428     // Normal thunk body generation.
429     CodeGenFunction(CGM).GenerateThunk(ThunkFn, FnInfo, GD, Thunk);
430   }
431 
432   CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable);
433 }
434 
435 void CodeGenVTables::maybeEmitThunkForVTable(GlobalDecl GD,
436                                              const ThunkInfo &Thunk) {
437   // If the ABI has key functions, only the TU with the key function should emit
438   // the thunk. However, we can allow inlining of thunks if we emit them with
439   // available_externally linkage together with vtables when optimizations are
440   // enabled.
441   if (CGM.getTarget().getCXXABI().hasKeyFunctions() &&
442       !CGM.getCodeGenOpts().OptimizationLevel)
443     return;
444 
445   // We can't emit thunks for member functions with incomplete types.
446   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
447   if (!CGM.getTypes().isFuncTypeConvertible(
448            MD->getType()->castAs<FunctionType>()))
449     return;
450 
451   emitThunk(GD, Thunk, /*ForVTable=*/true);
452 }
453 
454 void CodeGenVTables::EmitThunks(GlobalDecl GD)
455 {
456   const CXXMethodDecl *MD =
457     cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl();
458 
459   // We don't need to generate thunks for the base destructor.
460   if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
461     return;
462 
463   const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector;
464   if (MicrosoftVTContext.isValid()) {
465     ThunkInfoVector = MicrosoftVTContext->getThunkInfo(GD);
466   } else {
467     ThunkInfoVector = ItaniumVTContext.getThunkInfo(GD);
468   }
469 
470   if (!ThunkInfoVector)
471     return;
472 
473   for (unsigned I = 0, E = ThunkInfoVector->size(); I != E; ++I)
474     emitThunk(GD, (*ThunkInfoVector)[I], /*ForVTable=*/false);
475 }
476 
477 llvm::Constant *
478 CodeGenVTables::CreateVTableInitializer(const CXXRecordDecl *RD,
479                                         const VTableComponent *Components,
480                                         unsigned NumComponents,
481                                 const VTableLayout::VTableThunkTy *VTableThunks,
482                                         unsigned NumVTableThunks) {
483   SmallVector<llvm::Constant *, 64> Inits;
484 
485   llvm::Type *Int8PtrTy = CGM.Int8PtrTy;
486 
487   llvm::Type *PtrDiffTy =
488     CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType());
489 
490   QualType ClassType = CGM.getContext().getTagDeclType(RD);
491   llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(ClassType);
492 
493   unsigned NextVTableThunkIndex = 0;
494 
495   llvm::Constant *PureVirtualFn = 0, *DeletedVirtualFn = 0;
496 
497   for (unsigned I = 0; I != NumComponents; ++I) {
498     VTableComponent Component = Components[I];
499 
500     llvm::Constant *Init = 0;
501 
502     switch (Component.getKind()) {
503     case VTableComponent::CK_VCallOffset:
504       Init = llvm::ConstantInt::get(PtrDiffTy,
505                                     Component.getVCallOffset().getQuantity());
506       Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
507       break;
508     case VTableComponent::CK_VBaseOffset:
509       Init = llvm::ConstantInt::get(PtrDiffTy,
510                                     Component.getVBaseOffset().getQuantity());
511       Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
512       break;
513     case VTableComponent::CK_OffsetToTop:
514       Init = llvm::ConstantInt::get(PtrDiffTy,
515                                     Component.getOffsetToTop().getQuantity());
516       Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
517       break;
518     case VTableComponent::CK_RTTI:
519       Init = llvm::ConstantExpr::getBitCast(RTTI, Int8PtrTy);
520       break;
521     case VTableComponent::CK_FunctionPointer:
522     case VTableComponent::CK_CompleteDtorPointer:
523     case VTableComponent::CK_DeletingDtorPointer: {
524       GlobalDecl GD;
525 
526       // Get the right global decl.
527       switch (Component.getKind()) {
528       default:
529         llvm_unreachable("Unexpected vtable component kind");
530       case VTableComponent::CK_FunctionPointer:
531         GD = Component.getFunctionDecl();
532         break;
533       case VTableComponent::CK_CompleteDtorPointer:
534         GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Complete);
535         break;
536       case VTableComponent::CK_DeletingDtorPointer:
537         GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Deleting);
538         break;
539       }
540 
541       if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) {
542         // We have a pure virtual member function.
543         if (!PureVirtualFn) {
544           llvm::FunctionType *Ty =
545             llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
546           StringRef PureCallName = CGM.getCXXABI().GetPureVirtualCallName();
547           PureVirtualFn = CGM.CreateRuntimeFunction(Ty, PureCallName);
548           PureVirtualFn = llvm::ConstantExpr::getBitCast(PureVirtualFn,
549                                                          CGM.Int8PtrTy);
550         }
551         Init = PureVirtualFn;
552       } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) {
553         if (!DeletedVirtualFn) {
554           llvm::FunctionType *Ty =
555             llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
556           StringRef DeletedCallName =
557             CGM.getCXXABI().GetDeletedVirtualCallName();
558           DeletedVirtualFn = CGM.CreateRuntimeFunction(Ty, DeletedCallName);
559           DeletedVirtualFn = llvm::ConstantExpr::getBitCast(DeletedVirtualFn,
560                                                          CGM.Int8PtrTy);
561         }
562         Init = DeletedVirtualFn;
563       } else {
564         // Check if we should use a thunk.
565         if (NextVTableThunkIndex < NumVTableThunks &&
566             VTableThunks[NextVTableThunkIndex].first == I) {
567           const ThunkInfo &Thunk = VTableThunks[NextVTableThunkIndex].second;
568 
569           maybeEmitThunkForVTable(GD, Thunk);
570           Init = CGM.GetAddrOfThunk(GD, Thunk);
571 
572           NextVTableThunkIndex++;
573         } else {
574           llvm::Type *Ty = CGM.getTypes().GetFunctionTypeForVTable(GD);
575 
576           Init = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
577         }
578 
579         Init = llvm::ConstantExpr::getBitCast(Init, Int8PtrTy);
580       }
581       break;
582     }
583 
584     case VTableComponent::CK_UnusedFunctionPointer:
585       Init = llvm::ConstantExpr::getNullValue(Int8PtrTy);
586       break;
587     };
588 
589     Inits.push_back(Init);
590   }
591 
592   llvm::ArrayType *ArrayType = llvm::ArrayType::get(Int8PtrTy, NumComponents);
593   return llvm::ConstantArray::get(ArrayType, Inits);
594 }
595 
596 llvm::GlobalVariable *
597 CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD,
598                                       const BaseSubobject &Base,
599                                       bool BaseIsVirtual,
600                                    llvm::GlobalVariable::LinkageTypes Linkage,
601                                       VTableAddressPointsMapTy& AddressPoints) {
602   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
603     DI->completeClassData(Base.getBase());
604 
605   OwningPtr<VTableLayout> VTLayout(
606       ItaniumVTContext.createConstructionVTableLayout(
607           Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD));
608 
609   // Add the address points.
610   AddressPoints = VTLayout->getAddressPoints();
611 
612   // Get the mangled construction vtable name.
613   SmallString<256> OutName;
614   llvm::raw_svector_ostream Out(OutName);
615   cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext())
616       .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(),
617                            Base.getBase(), Out);
618   Out.flush();
619   StringRef Name = OutName.str();
620 
621   llvm::ArrayType *ArrayType =
622     llvm::ArrayType::get(CGM.Int8PtrTy, VTLayout->getNumVTableComponents());
623 
624   // Construction vtable symbols are not part of the Itanium ABI, so we cannot
625   // guarantee that they actually will be available externally. Instead, when
626   // emitting an available_externally VTT, we provide references to an internal
627   // linkage construction vtable. The ABI only requires complete-object vtables
628   // to be the same for all instances of a type, not construction vtables.
629   if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage)
630     Linkage = llvm::GlobalVariable::InternalLinkage;
631 
632   // Create the variable that will hold the construction vtable.
633   llvm::GlobalVariable *VTable =
634     CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, Linkage);
635   CGM.setTypeVisibility(VTable, RD, CodeGenModule::TVK_ForConstructionVTable);
636 
637   // V-tables are always unnamed_addr.
638   VTable->setUnnamedAddr(true);
639 
640   // Create and set the initializer.
641   llvm::Constant *Init =
642     CreateVTableInitializer(Base.getBase(),
643                             VTLayout->vtable_component_begin(),
644                             VTLayout->getNumVTableComponents(),
645                             VTLayout->vtable_thunk_begin(),
646                             VTLayout->getNumVTableThunks());
647   VTable->setInitializer(Init);
648 
649   return VTable;
650 }
651 
652 /// Compute the required linkage of the v-table for the given class.
653 ///
654 /// Note that we only call this at the end of the translation unit.
655 llvm::GlobalVariable::LinkageTypes
656 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
657   if (!RD->isExternallyVisible())
658     return llvm::GlobalVariable::InternalLinkage;
659 
660   // We're at the end of the translation unit, so the current key
661   // function is fully correct.
662   if (const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD)) {
663     // If this class has a key function, use that to determine the
664     // linkage of the vtable.
665     const FunctionDecl *def = 0;
666     if (keyFunction->hasBody(def))
667       keyFunction = cast<CXXMethodDecl>(def);
668 
669     switch (keyFunction->getTemplateSpecializationKind()) {
670       case TSK_Undeclared:
671       case TSK_ExplicitSpecialization:
672         assert(def && "Should not have been asked to emit this");
673         if (keyFunction->isInlined())
674           return !Context.getLangOpts().AppleKext ?
675                    llvm::GlobalVariable::LinkOnceODRLinkage :
676                    llvm::Function::InternalLinkage;
677 
678         return llvm::GlobalVariable::ExternalLinkage;
679 
680       case TSK_ImplicitInstantiation:
681         return !Context.getLangOpts().AppleKext ?
682                  llvm::GlobalVariable::LinkOnceODRLinkage :
683                  llvm::Function::InternalLinkage;
684 
685       case TSK_ExplicitInstantiationDefinition:
686         return !Context.getLangOpts().AppleKext ?
687                  llvm::GlobalVariable::WeakODRLinkage :
688                  llvm::Function::InternalLinkage;
689 
690       case TSK_ExplicitInstantiationDeclaration:
691         llvm_unreachable("Should not have been asked to emit this");
692     }
693   }
694 
695   // -fapple-kext mode does not support weak linkage, so we must use
696   // internal linkage.
697   if (Context.getLangOpts().AppleKext)
698     return llvm::Function::InternalLinkage;
699 
700   switch (RD->getTemplateSpecializationKind()) {
701   case TSK_Undeclared:
702   case TSK_ExplicitSpecialization:
703   case TSK_ImplicitInstantiation:
704     return llvm::GlobalVariable::LinkOnceODRLinkage;
705 
706   case TSK_ExplicitInstantiationDeclaration:
707     llvm_unreachable("Should not have been asked to emit this");
708 
709   case TSK_ExplicitInstantiationDefinition:
710       return llvm::GlobalVariable::WeakODRLinkage;
711   }
712 
713   llvm_unreachable("Invalid TemplateSpecializationKind!");
714 }
715 
716 /// This is a callback from Sema to tell us that it believes that a
717 /// particular v-table is required to be emitted in this translation
718 /// unit.
719 ///
720 /// The reason we don't simply trust this callback is because Sema
721 /// will happily report that something is used even when it's used
722 /// only in code that we don't actually have to emit.
723 ///
724 /// \param isRequired - if true, the v-table is mandatory, e.g.
725 ///   because the translation unit defines the key function
726 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass, bool isRequired) {
727   if (!isRequired) return;
728 
729   VTables.GenerateClassData(theClass);
730 }
731 
732 void
733 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) {
734   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
735     DI->completeClassData(RD);
736 
737   if (RD->getNumVBases())
738     CGM.getCXXABI().emitVirtualInheritanceTables(RD);
739 
740   CGM.getCXXABI().emitVTableDefinitions(*this, RD);
741 }
742 
743 /// At this point in the translation unit, does it appear that can we
744 /// rely on the vtable being defined elsewhere in the program?
745 ///
746 /// The response is really only definitive when called at the end of
747 /// the translation unit.
748 ///
749 /// The only semantic restriction here is that the object file should
750 /// not contain a v-table definition when that v-table is defined
751 /// strongly elsewhere.  Otherwise, we'd just like to avoid emitting
752 /// v-tables when unnecessary.
753 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) {
754   assert(RD->isDynamicClass() && "Non dynamic classes have no VTable.");
755 
756   // If we have an explicit instantiation declaration (and not a
757   // definition), the v-table is defined elsewhere.
758   TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
759   if (TSK == TSK_ExplicitInstantiationDeclaration)
760     return true;
761 
762   // Otherwise, if the class is an instantiated template, the
763   // v-table must be defined here.
764   if (TSK == TSK_ImplicitInstantiation ||
765       TSK == TSK_ExplicitInstantiationDefinition)
766     return false;
767 
768   // Otherwise, if the class doesn't have a key function (possibly
769   // anymore), the v-table must be defined here.
770   const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD);
771   if (!keyFunction)
772     return false;
773 
774   // Otherwise, if we don't have a definition of the key function, the
775   // v-table must be defined somewhere else.
776   return !keyFunction->hasBody();
777 }
778 
779 /// Given that we're currently at the end of the translation unit, and
780 /// we've emitted a reference to the v-table for this class, should
781 /// we define that v-table?
782 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM,
783                                                    const CXXRecordDecl *RD) {
784   return !CGM.getVTables().isVTableExternal(RD);
785 }
786 
787 /// Given that at some point we emitted a reference to one or more
788 /// v-tables, and that we are now at the end of the translation unit,
789 /// decide whether we should emit them.
790 void CodeGenModule::EmitDeferredVTables() {
791 #ifndef NDEBUG
792   // Remember the size of DeferredVTables, because we're going to assume
793   // that this entire operation doesn't modify it.
794   size_t savedSize = DeferredVTables.size();
795 #endif
796 
797   typedef std::vector<const CXXRecordDecl *>::const_iterator const_iterator;
798   for (const_iterator i = DeferredVTables.begin(),
799                       e = DeferredVTables.end(); i != e; ++i) {
800     const CXXRecordDecl *RD = *i;
801     if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD))
802       VTables.GenerateClassData(RD);
803   }
804 
805   assert(savedSize == DeferredVTables.size() &&
806          "deferred extra v-tables during v-table emission?");
807   DeferredVTables.clear();
808 }
809