1 //===--- CodeGenTypes.h - Type translation for LLVM CodeGen -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the code that handles AST -> LLVM type lowering.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H
16 
17 #include "CGCall.h"
18 #include "clang/AST/GlobalDecl.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/IR/Module.h"
22 #include <vector>
23 
24 namespace llvm {
25 class FunctionType;
26 class Module;
27 class DataLayout;
28 class Type;
29 class LLVMContext;
30 class StructType;
31 }
32 
33 namespace clang {
34 class ABIInfo;
35 class ASTContext;
36 template <typename> class CanQual;
37 class CXXConstructorDecl;
38 class CXXDestructorDecl;
39 class CXXMethodDecl;
40 class CodeGenOptions;
41 class FieldDecl;
42 class FunctionProtoType;
43 class ObjCInterfaceDecl;
44 class ObjCIvarDecl;
45 class PointerType;
46 class QualType;
47 class RecordDecl;
48 class TagDecl;
49 class TargetInfo;
50 class Type;
51 typedef CanQual<Type> CanQualType;
52 
53 namespace CodeGen {
54 class CGCXXABI;
55 class CGRecordLayout;
56 class CodeGenModule;
57 class RequiredArgs;
58 
59 enum class StructorType {
60   Complete, // constructor or destructor
61   Base,     // constructor or destructor
62   Deleting  // destructor only
63 };
64 
toCXXCtorType(StructorType T)65 inline CXXCtorType toCXXCtorType(StructorType T) {
66   switch (T) {
67   case StructorType::Complete:
68     return Ctor_Complete;
69   case StructorType::Base:
70     return Ctor_Base;
71   case StructorType::Deleting:
72     llvm_unreachable("cannot have a deleting ctor");
73   }
74   llvm_unreachable("not a StructorType");
75 }
76 
getFromCtorType(CXXCtorType T)77 inline StructorType getFromCtorType(CXXCtorType T) {
78   switch (T) {
79   case Ctor_Complete:
80     return StructorType::Complete;
81   case Ctor_Base:
82     return StructorType::Base;
83   case Ctor_Comdat:
84     llvm_unreachable("not expecting a COMDAT");
85   }
86   llvm_unreachable("not a CXXCtorType");
87 }
88 
toCXXDtorType(StructorType T)89 inline CXXDtorType toCXXDtorType(StructorType T) {
90   switch (T) {
91   case StructorType::Complete:
92     return Dtor_Complete;
93   case StructorType::Base:
94     return Dtor_Base;
95   case StructorType::Deleting:
96     return Dtor_Deleting;
97   }
98   llvm_unreachable("not a StructorType");
99 }
100 
getFromDtorType(CXXDtorType T)101 inline StructorType getFromDtorType(CXXDtorType T) {
102   switch (T) {
103   case Dtor_Deleting:
104     return StructorType::Deleting;
105   case Dtor_Complete:
106     return StructorType::Complete;
107   case Dtor_Base:
108     return StructorType::Base;
109   case Dtor_Comdat:
110     llvm_unreachable("not expecting a COMDAT");
111   }
112   llvm_unreachable("not a CXXDtorType");
113 }
114 
115 /// CodeGenTypes - This class organizes the cross-module state that is used
116 /// while lowering AST types to LLVM types.
117 class CodeGenTypes {
118   CodeGenModule &CGM;
119   // Some of this stuff should probably be left on the CGM.
120   ASTContext &Context;
121   llvm::Module &TheModule;
122   const llvm::DataLayout &TheDataLayout;
123   const TargetInfo &Target;
124   CGCXXABI &TheCXXABI;
125 
126   // This should not be moved earlier, since its initialization depends on some
127   // of the previous reference members being already initialized
128   const ABIInfo &TheABIInfo;
129 
130   /// The opaque type map for Objective-C interfaces. All direct
131   /// manipulation is done by the runtime interfaces, which are
132   /// responsible for coercing to the appropriate type; these opaque
133   /// types are never refined.
134   llvm::DenseMap<const ObjCInterfaceType*, llvm::Type *> InterfaceTypes;
135 
136   /// CGRecordLayouts - This maps llvm struct type with corresponding
137   /// record layout info.
138   llvm::DenseMap<const Type*, CGRecordLayout *> CGRecordLayouts;
139 
140   /// RecordDeclTypes - This contains the LLVM IR type for any converted
141   /// RecordDecl.
142   llvm::DenseMap<const Type*, llvm::StructType *> RecordDeclTypes;
143 
144   /// FunctionInfos - Hold memoized CGFunctionInfo results.
145   llvm::FoldingSet<CGFunctionInfo> FunctionInfos;
146 
147   /// RecordsBeingLaidOut - This set keeps track of records that we're currently
148   /// converting to an IR type.  For example, when converting:
149   /// struct A { struct B { int x; } } when processing 'x', the 'A' and 'B'
150   /// types will be in this set.
151   llvm::SmallPtrSet<const Type*, 4> RecordsBeingLaidOut;
152 
153   llvm::SmallPtrSet<const CGFunctionInfo*, 4> FunctionsBeingProcessed;
154 
155   /// SkippedLayout - True if we didn't layout a function due to a being inside
156   /// a recursive struct conversion, set this to true.
157   bool SkippedLayout;
158 
159   SmallVector<const RecordDecl *, 8> DeferredRecords;
160 
161 private:
162   /// TypeCache - This map keeps cache of llvm::Types
163   /// and maps clang::Type to corresponding llvm::Type.
164   llvm::DenseMap<const Type *, llvm::Type *> TypeCache;
165 
166 public:
167   CodeGenTypes(CodeGenModule &cgm);
168   ~CodeGenTypes();
169 
getDataLayout()170   const llvm::DataLayout &getDataLayout() const { return TheDataLayout; }
getContext()171   ASTContext &getContext() const { return Context; }
getABIInfo()172   const ABIInfo &getABIInfo() const { return TheABIInfo; }
getTarget()173   const TargetInfo &getTarget() const { return Target; }
getCXXABI()174   CGCXXABI &getCXXABI() const { return TheCXXABI; }
getLLVMContext()175   llvm::LLVMContext &getLLVMContext() { return TheModule.getContext(); }
176 
177   /// ConvertType - Convert type T into a llvm::Type.
178   llvm::Type *ConvertType(QualType T);
179 
180   /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
181   /// ConvertType in that it is used to convert to the memory representation for
182   /// a type.  For example, the scalar representation for _Bool is i1, but the
183   /// memory representation is usually i8 or i32, depending on the target.
184   llvm::Type *ConvertTypeForMem(QualType T);
185 
186   /// GetFunctionType - Get the LLVM function type for \arg Info.
187   llvm::FunctionType *GetFunctionType(const CGFunctionInfo &Info);
188 
189   llvm::FunctionType *GetFunctionType(GlobalDecl GD);
190 
191   /// isFuncTypeConvertible - Utility to check whether a function type can
192   /// be converted to an LLVM type (i.e. doesn't depend on an incomplete tag
193   /// type).
194   bool isFuncTypeConvertible(const FunctionType *FT);
195   bool isFuncParamTypeConvertible(QualType Ty);
196 
197   /// GetFunctionTypeForVTable - Get the LLVM function type for use in a vtable,
198   /// given a CXXMethodDecl. If the method to has an incomplete return type,
199   /// and/or incomplete argument types, this will return the opaque type.
200   llvm::Type *GetFunctionTypeForVTable(GlobalDecl GD);
201 
202   const CGRecordLayout &getCGRecordLayout(const RecordDecl*);
203 
204   /// UpdateCompletedType - When we find the full definition for a TagDecl,
205   /// replace the 'opaque' type we previously made for it if applicable.
206   void UpdateCompletedType(const TagDecl *TD);
207 
208   /// getNullaryFunctionInfo - Get the function info for a void()
209   /// function with standard CC.
210   const CGFunctionInfo &arrangeNullaryFunction();
211 
212   // The arrangement methods are split into three families:
213   //   - those meant to drive the signature and prologue/epilogue
214   //     of a function declaration or definition,
215   //   - those meant for the computation of the LLVM type for an abstract
216   //     appearance of a function, and
217   //   - those meant for performing the IR-generation of a call.
218   // They differ mainly in how they deal with optional (i.e. variadic)
219   // arguments, as well as unprototyped functions.
220   //
221   // Key points:
222   // - The CGFunctionInfo for emitting a specific call site must include
223   //   entries for the optional arguments.
224   // - The function type used at the call site must reflect the formal
225   //   signature of the declaration being called, or else the call will
226   //   go awry.
227   // - For the most part, unprototyped functions are called by casting to
228   //   a formal signature inferred from the specific argument types used
229   //   at the call-site.  However, some targets (e.g. x86-64) screw with
230   //   this for compatibility reasons.
231 
232   const CGFunctionInfo &arrangeGlobalDeclaration(GlobalDecl GD);
233   const CGFunctionInfo &arrangeFunctionDeclaration(const FunctionDecl *FD);
234   const CGFunctionInfo &
235   arrangeFreeFunctionDeclaration(QualType ResTy, const FunctionArgList &Args,
236                                  const FunctionType::ExtInfo &Info,
237                                  bool isVariadic);
238 
239   const CGFunctionInfo &arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD);
240   const CGFunctionInfo &arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
241                                                         QualType receiverType);
242 
243   const CGFunctionInfo &arrangeCXXMethodDeclaration(const CXXMethodDecl *MD);
244   const CGFunctionInfo &arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
245                                                       StructorType Type);
246   const CGFunctionInfo &arrangeCXXConstructorCall(const CallArgList &Args,
247                                                   const CXXConstructorDecl *D,
248                                                   CXXCtorType CtorKind,
249                                                   unsigned ExtraArgs);
250   const CGFunctionInfo &arrangeFreeFunctionCall(const CallArgList &Args,
251                                                 const FunctionType *Ty,
252                                                 bool ChainCall);
253   const CGFunctionInfo &arrangeFreeFunctionCall(QualType ResTy,
254                                                 const CallArgList &args,
255                                                 FunctionType::ExtInfo info,
256                                                 RequiredArgs required);
257   const CGFunctionInfo &arrangeBlockFunctionCall(const CallArgList &args,
258                                                  const FunctionType *type);
259 
260   const CGFunctionInfo &arrangeCXXMethodCall(const CallArgList &args,
261                                              const FunctionProtoType *type,
262                                              RequiredArgs required);
263   const CGFunctionInfo &arrangeMSMemberPointerThunk(const CXXMethodDecl *MD);
264 
265   const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionProtoType> Ty);
266   const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionNoProtoType> Ty);
267   const CGFunctionInfo &arrangeCXXMethodType(const CXXRecordDecl *RD,
268                                              const FunctionProtoType *FTP);
269 
270   /// "Arrange" the LLVM information for a call or type with the given
271   /// signature.  This is largely an internal method; other clients
272   /// should use one of the above routines, which ultimately defer to
273   /// this.
274   ///
275   /// \param argTypes - must all actually be canonical as params
276   const CGFunctionInfo &arrangeLLVMFunctionInfo(CanQualType returnType,
277                                                 bool instanceMethod,
278                                                 bool chainCall,
279                                                 ArrayRef<CanQualType> argTypes,
280                                                 FunctionType::ExtInfo info,
281                                                 RequiredArgs args);
282 
283   /// \brief Compute a new LLVM record layout object for the given record.
284   CGRecordLayout *ComputeRecordLayout(const RecordDecl *D,
285                                       llvm::StructType *Ty);
286 
287   /// addRecordTypeName - Compute a name from the given record decl with an
288   /// optional suffix and name the given LLVM type using it.
289   void addRecordTypeName(const RecordDecl *RD, llvm::StructType *Ty,
290                          StringRef suffix);
291 
292 
293 public:  // These are internal details of CGT that shouldn't be used externally.
294   /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
295   llvm::StructType *ConvertRecordDeclType(const RecordDecl *TD);
296 
297   /// getExpandedTypes - Expand the type \arg Ty into the LLVM
298   /// argument types it would be passed as. See ABIArgInfo::Expand.
299   void getExpandedTypes(QualType Ty,
300                         SmallVectorImpl<llvm::Type *>::iterator &TI);
301 
302   /// IsZeroInitializable - Return whether a type can be
303   /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
304   bool isZeroInitializable(QualType T);
305 
306   /// IsZeroInitializable - Return whether a record type can be
307   /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
308   bool isZeroInitializable(const CXXRecordDecl *RD);
309 
310   bool isRecordLayoutComplete(const Type *Ty) const;
noRecordsBeingLaidOut()311   bool noRecordsBeingLaidOut() const {
312     return RecordsBeingLaidOut.empty();
313   }
isRecordBeingLaidOut(const Type * Ty)314   bool isRecordBeingLaidOut(const Type *Ty) const {
315     return RecordsBeingLaidOut.count(Ty);
316   }
317 
318 };
319 
320 }  // end namespace CodeGen
321 }  // end namespace clang
322 
323 #endif
324