1 //===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides C++ code generation targeting the Microsoft Visual C++ ABI.
11 // The class in this file generates structures that follow the Microsoft
12 // Visual C++ ABI, which is actually not very well documented at all outside
13 // of Microsoft.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "CGCXXABI.h"
18 #include "CGVTables.h"
19 #include "CodeGenModule.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/VTableBuilder.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/StringSet.h"
25 #include "llvm/IR/CallSite.h"
26 
27 using namespace clang;
28 using namespace CodeGen;
29 
30 namespace {
31 
32 /// Holds all the vbtable globals for a given class.
33 struct VBTableGlobals {
34   const VPtrInfoVector *VBTables;
35   SmallVector<llvm::GlobalVariable *, 2> Globals;
36 };
37 
38 class MicrosoftCXXABI : public CGCXXABI {
39 public:
MicrosoftCXXABI(CodeGenModule & CGM)40   MicrosoftCXXABI(CodeGenModule &CGM)
41       : CGCXXABI(CGM), BaseClassDescriptorType(nullptr),
42         ClassHierarchyDescriptorType(nullptr),
43         CompleteObjectLocatorType(nullptr) {}
44 
45   bool HasThisReturn(GlobalDecl GD) const override;
46   bool hasMostDerivedReturn(GlobalDecl GD) const override;
47 
48   bool classifyReturnType(CGFunctionInfo &FI) const override;
49 
50   RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override;
51 
isSRetParameterAfterThis() const52   bool isSRetParameterAfterThis() const override { return true; }
53 
getSrcArgforCopyCtor(const CXXConstructorDecl * CD,FunctionArgList & Args) const54   size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD,
55                               FunctionArgList &Args) const override {
56     assert(Args.size() >= 2 &&
57            "expected the arglist to have at least two args!");
58     // The 'most_derived' parameter goes second if the ctor is variadic and
59     // has v-bases.
60     if (CD->getParent()->getNumVBases() > 0 &&
61         CD->getType()->castAs<FunctionProtoType>()->isVariadic())
62       return 2;
63     return 1;
64   }
65 
GetPureVirtualCallName()66   StringRef GetPureVirtualCallName() override { return "_purecall"; }
GetDeletedVirtualCallName()67   StringRef GetDeletedVirtualCallName() override { return "_purecall"; }
68 
69   void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE,
70                                llvm::Value *Ptr, QualType ElementType,
71                                const CXXDestructorDecl *Dtor) override;
72 
73   void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override;
74 
75   llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD,
76                                                    const VPtrInfo *Info);
77 
78   llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override;
79 
80   bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override;
81   void EmitBadTypeidCall(CodeGenFunction &CGF) override;
82   llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy,
83                           llvm::Value *ThisPtr,
84                           llvm::Type *StdTypeInfoPtrTy) override;
85 
86   bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
87                                           QualType SrcRecordTy) override;
88 
89   llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value,
90                                    QualType SrcRecordTy, QualType DestTy,
91                                    QualType DestRecordTy,
92                                    llvm::BasicBlock *CastEnd) override;
93 
94   llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, llvm::Value *Value,
95                                      QualType SrcRecordTy,
96                                      QualType DestTy) override;
97 
98   bool EmitBadCastCall(CodeGenFunction &CGF) override;
99 
100   llvm::Value *
101   GetVirtualBaseClassOffset(CodeGenFunction &CGF, llvm::Value *This,
102                             const CXXRecordDecl *ClassDecl,
103                             const CXXRecordDecl *BaseClassDecl) override;
104 
105   llvm::BasicBlock *
106   EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
107                                 const CXXRecordDecl *RD) override;
108 
109   void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF,
110                                               const CXXRecordDecl *RD) override;
111 
112   void EmitCXXConstructors(const CXXConstructorDecl *D) override;
113 
114   // Background on MSVC destructors
115   // ==============================
116   //
117   // Both Itanium and MSVC ABIs have destructor variants.  The variant names
118   // roughly correspond in the following way:
119   //   Itanium       Microsoft
120   //   Base       -> no name, just ~Class
121   //   Complete   -> vbase destructor
122   //   Deleting   -> scalar deleting destructor
123   //                 vector deleting destructor
124   //
125   // The base and complete destructors are the same as in Itanium, although the
126   // complete destructor does not accept a VTT parameter when there are virtual
127   // bases.  A separate mechanism involving vtordisps is used to ensure that
128   // virtual methods of destroyed subobjects are not called.
129   //
130   // The deleting destructors accept an i32 bitfield as a second parameter.  Bit
131   // 1 indicates if the memory should be deleted.  Bit 2 indicates if the this
132   // pointer points to an array.  The scalar deleting destructor assumes that
133   // bit 2 is zero, and therefore does not contain a loop.
134   //
135   // For virtual destructors, only one entry is reserved in the vftable, and it
136   // always points to the vector deleting destructor.  The vector deleting
137   // destructor is the most general, so it can be used to destroy objects in
138   // place, delete single heap objects, or delete arrays.
139   //
140   // A TU defining a non-inline destructor is only guaranteed to emit a base
141   // destructor, and all of the other variants are emitted on an as-needed basis
142   // in COMDATs.  Because a non-base destructor can be emitted in a TU that
143   // lacks a definition for the destructor, non-base destructors must always
144   // delegate to or alias the base destructor.
145 
146   void buildStructorSignature(const CXXMethodDecl *MD, StructorType T,
147                               SmallVectorImpl<CanQualType> &ArgTys) override;
148 
149   /// Non-base dtors should be emitted as delegating thunks in this ABI.
useThunkForDtorVariant(const CXXDestructorDecl * Dtor,CXXDtorType DT) const150   bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor,
151                               CXXDtorType DT) const override {
152     return DT != Dtor_Base;
153   }
154 
155   void EmitCXXDestructors(const CXXDestructorDecl *D) override;
156 
157   const CXXRecordDecl *
getThisArgumentTypeForMethod(const CXXMethodDecl * MD)158   getThisArgumentTypeForMethod(const CXXMethodDecl *MD) override {
159     MD = MD->getCanonicalDecl();
160     if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD)) {
161       MicrosoftVTableContext::MethodVFTableLocation ML =
162           CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD);
163       // The vbases might be ordered differently in the final overrider object
164       // and the complete object, so the "this" argument may sometimes point to
165       // memory that has no particular type (e.g. past the complete object).
166       // In this case, we just use a generic pointer type.
167       // FIXME: might want to have a more precise type in the non-virtual
168       // multiple inheritance case.
169       if (ML.VBase || !ML.VFPtrOffset.isZero())
170         return nullptr;
171     }
172     return MD->getParent();
173   }
174 
175   llvm::Value *
176   adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD,
177                                            llvm::Value *This,
178                                            bool VirtualCall) override;
179 
180   void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy,
181                                  FunctionArgList &Params) override;
182 
183   llvm::Value *adjustThisParameterInVirtualFunctionPrologue(
184       CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) override;
185 
186   void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override;
187 
188   unsigned addImplicitConstructorArgs(CodeGenFunction &CGF,
189                                       const CXXConstructorDecl *D,
190                                       CXXCtorType Type, bool ForVirtualBase,
191                                       bool Delegating,
192                                       CallArgList &Args) override;
193 
194   void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD,
195                           CXXDtorType Type, bool ForVirtualBase,
196                           bool Delegating, llvm::Value *This) override;
197 
198   void emitVTableDefinitions(CodeGenVTables &CGVT,
199                              const CXXRecordDecl *RD) override;
200 
201   llvm::Value *getVTableAddressPointInStructor(
202       CodeGenFunction &CGF, const CXXRecordDecl *VTableClass,
203       BaseSubobject Base, const CXXRecordDecl *NearestVBase,
204       bool &NeedsVirtualOffset) override;
205 
206   llvm::Constant *
207   getVTableAddressPointForConstExpr(BaseSubobject Base,
208                                     const CXXRecordDecl *VTableClass) override;
209 
210   llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD,
211                                         CharUnits VPtrOffset) override;
212 
213   llvm::Value *getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD,
214                                          llvm::Value *This,
215                                          llvm::Type *Ty) override;
216 
217   llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF,
218                                          const CXXDestructorDecl *Dtor,
219                                          CXXDtorType DtorType,
220                                          llvm::Value *This,
221                                          const CXXMemberCallExpr *CE) override;
222 
adjustCallArgsForDestructorThunk(CodeGenFunction & CGF,GlobalDecl GD,CallArgList & CallArgs)223   void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD,
224                                         CallArgList &CallArgs) override {
225     assert(GD.getDtorType() == Dtor_Deleting &&
226            "Only deleting destructor thunks are available in this ABI");
227     CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)),
228                              CGM.getContext().IntTy);
229   }
230 
231   void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override;
232 
233   llvm::GlobalVariable *
234   getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
235                    llvm::GlobalVariable::LinkageTypes Linkage);
236 
237   void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD,
238                              llvm::GlobalVariable *GV) const;
239 
setThunkLinkage(llvm::Function * Thunk,bool ForVTable,GlobalDecl GD,bool ReturnAdjustment)240   void setThunkLinkage(llvm::Function *Thunk, bool ForVTable,
241                        GlobalDecl GD, bool ReturnAdjustment) override {
242     // Never dllimport/dllexport thunks.
243     Thunk->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
244 
245     GVALinkage Linkage =
246         getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl()));
247 
248     if (Linkage == GVA_Internal)
249       Thunk->setLinkage(llvm::GlobalValue::InternalLinkage);
250     else if (ReturnAdjustment)
251       Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage);
252     else
253       Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
254   }
255 
256   llvm::Value *performThisAdjustment(CodeGenFunction &CGF, llvm::Value *This,
257                                      const ThisAdjustment &TA) override;
258 
259   llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, llvm::Value *Ret,
260                                        const ReturnAdjustment &RA) override;
261 
262   void EmitThreadLocalInitFuncs(
263       CodeGenModule &CGM,
264       ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *>>
265           CXXThreadLocals,
266       ArrayRef<llvm::Function *> CXXThreadLocalInits,
267       ArrayRef<llvm::GlobalVariable *> CXXThreadLocalInitVars) override;
268 
usesThreadWrapperFunction() const269   bool usesThreadWrapperFunction() const override { return false; }
270   LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD,
271                                       QualType LValType) override;
272 
273   void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
274                        llvm::GlobalVariable *DeclPtr,
275                        bool PerformInit) override;
276   void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
277                           llvm::Constant *Dtor, llvm::Constant *Addr) override;
278 
279   // ==== Notes on array cookies =========
280   //
281   // MSVC seems to only use cookies when the class has a destructor; a
282   // two-argument usual array deallocation function isn't sufficient.
283   //
284   // For example, this code prints "100" and "1":
285   //   struct A {
286   //     char x;
287   //     void *operator new[](size_t sz) {
288   //       printf("%u\n", sz);
289   //       return malloc(sz);
290   //     }
291   //     void operator delete[](void *p, size_t sz) {
292   //       printf("%u\n", sz);
293   //       free(p);
294   //     }
295   //   };
296   //   int main() {
297   //     A *p = new A[100];
298   //     delete[] p;
299   //   }
300   // Whereas it prints "104" and "104" if you give A a destructor.
301 
302   bool requiresArrayCookie(const CXXDeleteExpr *expr,
303                            QualType elementType) override;
304   bool requiresArrayCookie(const CXXNewExpr *expr) override;
305   CharUnits getArrayCookieSizeImpl(QualType type) override;
306   llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
307                                      llvm::Value *NewPtr,
308                                      llvm::Value *NumElements,
309                                      const CXXNewExpr *expr,
310                                      QualType ElementType) override;
311   llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
312                                    llvm::Value *allocPtr,
313                                    CharUnits cookieSize) override;
314 
315   friend struct MSRTTIBuilder;
316 
isImageRelative() const317   bool isImageRelative() const {
318     return CGM.getTarget().getPointerWidth(/*AddressSpace=*/0) == 64;
319   }
320 
321   // 5 routines for constructing the llvm types for MS RTTI structs.
getTypeDescriptorType(StringRef TypeInfoString)322   llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) {
323     llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor");
324     TDTypeName += llvm::utostr(TypeInfoString.size());
325     llvm::StructType *&TypeDescriptorType =
326         TypeDescriptorTypeMap[TypeInfoString.size()];
327     if (TypeDescriptorType)
328       return TypeDescriptorType;
329     llvm::Type *FieldTypes[] = {
330         CGM.Int8PtrPtrTy,
331         CGM.Int8PtrTy,
332         llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)};
333     TypeDescriptorType =
334         llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName);
335     return TypeDescriptorType;
336   }
337 
getImageRelativeType(llvm::Type * PtrType)338   llvm::Type *getImageRelativeType(llvm::Type *PtrType) {
339     if (!isImageRelative())
340       return PtrType;
341     return CGM.IntTy;
342   }
343 
getBaseClassDescriptorType()344   llvm::StructType *getBaseClassDescriptorType() {
345     if (BaseClassDescriptorType)
346       return BaseClassDescriptorType;
347     llvm::Type *FieldTypes[] = {
348         getImageRelativeType(CGM.Int8PtrTy),
349         CGM.IntTy,
350         CGM.IntTy,
351         CGM.IntTy,
352         CGM.IntTy,
353         CGM.IntTy,
354         getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
355     };
356     BaseClassDescriptorType = llvm::StructType::create(
357         CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor");
358     return BaseClassDescriptorType;
359   }
360 
getClassHierarchyDescriptorType()361   llvm::StructType *getClassHierarchyDescriptorType() {
362     if (ClassHierarchyDescriptorType)
363       return ClassHierarchyDescriptorType;
364     // Forward-declare RTTIClassHierarchyDescriptor to break a cycle.
365     ClassHierarchyDescriptorType = llvm::StructType::create(
366         CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor");
367     llvm::Type *FieldTypes[] = {
368         CGM.IntTy,
369         CGM.IntTy,
370         CGM.IntTy,
371         getImageRelativeType(
372             getBaseClassDescriptorType()->getPointerTo()->getPointerTo()),
373     };
374     ClassHierarchyDescriptorType->setBody(FieldTypes);
375     return ClassHierarchyDescriptorType;
376   }
377 
getCompleteObjectLocatorType()378   llvm::StructType *getCompleteObjectLocatorType() {
379     if (CompleteObjectLocatorType)
380       return CompleteObjectLocatorType;
381     CompleteObjectLocatorType = llvm::StructType::create(
382         CGM.getLLVMContext(), "rtti.CompleteObjectLocator");
383     llvm::Type *FieldTypes[] = {
384         CGM.IntTy,
385         CGM.IntTy,
386         CGM.IntTy,
387         getImageRelativeType(CGM.Int8PtrTy),
388         getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
389         getImageRelativeType(CompleteObjectLocatorType),
390     };
391     llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes);
392     if (!isImageRelative())
393       FieldTypesRef = FieldTypesRef.drop_back();
394     CompleteObjectLocatorType->setBody(FieldTypesRef);
395     return CompleteObjectLocatorType;
396   }
397 
getImageBase()398   llvm::GlobalVariable *getImageBase() {
399     StringRef Name = "__ImageBase";
400     if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name))
401       return GV;
402 
403     return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty,
404                                     /*isConstant=*/true,
405                                     llvm::GlobalValue::ExternalLinkage,
406                                     /*Initializer=*/nullptr, Name);
407   }
408 
getImageRelativeConstant(llvm::Constant * PtrVal)409   llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) {
410     if (!isImageRelative())
411       return PtrVal;
412 
413     llvm::Constant *ImageBaseAsInt =
414         llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy);
415     llvm::Constant *PtrValAsInt =
416         llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy);
417     llvm::Constant *Diff =
418         llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt,
419                                    /*HasNUW=*/true, /*HasNSW=*/true);
420     return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy);
421   }
422 
423 private:
getMangleContext()424   MicrosoftMangleContext &getMangleContext() {
425     return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext());
426   }
427 
getZeroInt()428   llvm::Constant *getZeroInt() {
429     return llvm::ConstantInt::get(CGM.IntTy, 0);
430   }
431 
getAllOnesInt()432   llvm::Constant *getAllOnesInt() {
433     return  llvm::Constant::getAllOnesValue(CGM.IntTy);
434   }
435 
getConstantOrZeroInt(llvm::Constant * C)436   llvm::Constant *getConstantOrZeroInt(llvm::Constant *C) {
437     return C ? C : getZeroInt();
438   }
439 
getValueOrZeroInt(llvm::Value * C)440   llvm::Value *getValueOrZeroInt(llvm::Value *C) {
441     return C ? C : getZeroInt();
442   }
443 
444   CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD);
445 
446   void
447   GetNullMemberPointerFields(const MemberPointerType *MPT,
448                              llvm::SmallVectorImpl<llvm::Constant *> &fields);
449 
450   /// \brief Shared code for virtual base adjustment.  Returns the offset from
451   /// the vbptr to the virtual base.  Optionally returns the address of the
452   /// vbptr itself.
453   llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
454                                        llvm::Value *Base,
455                                        llvm::Value *VBPtrOffset,
456                                        llvm::Value *VBTableOffset,
457                                        llvm::Value **VBPtr = nullptr);
458 
GetVBaseOffsetFromVBPtr(CodeGenFunction & CGF,llvm::Value * Base,int32_t VBPtrOffset,int32_t VBTableOffset,llvm::Value ** VBPtr=nullptr)459   llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
460                                        llvm::Value *Base,
461                                        int32_t VBPtrOffset,
462                                        int32_t VBTableOffset,
463                                        llvm::Value **VBPtr = nullptr) {
464     assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s");
465     llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
466                 *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset);
467     return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr);
468   }
469 
470   /// \brief Performs a full virtual base adjustment.  Used to dereference
471   /// pointers to members of virtual bases.
472   llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E,
473                                  const CXXRecordDecl *RD, llvm::Value *Base,
474                                  llvm::Value *VirtualBaseAdjustmentOffset,
475                                  llvm::Value *VBPtrOffset /* optional */);
476 
477   /// \brief Emits a full member pointer with the fields common to data and
478   /// function member pointers.
479   llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField,
480                                         bool IsMemberFunction,
481                                         const CXXRecordDecl *RD,
482                                         CharUnits NonVirtualBaseAdjustment);
483 
484   llvm::Constant *BuildMemberPointer(const CXXRecordDecl *RD,
485                                      const CXXMethodDecl *MD,
486                                      CharUnits NonVirtualBaseAdjustment);
487 
488   bool MemberPointerConstantIsNull(const MemberPointerType *MPT,
489                                    llvm::Constant *MP);
490 
491   /// \brief - Initialize all vbptrs of 'this' with RD as the complete type.
492   void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD);
493 
494   /// \brief Caching wrapper around VBTableBuilder::enumerateVBTables().
495   const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD);
496 
497   /// \brief Generate a thunk for calling a virtual member function MD.
498   llvm::Function *EmitVirtualMemPtrThunk(
499       const CXXMethodDecl *MD,
500       const MicrosoftVTableContext::MethodVFTableLocation &ML);
501 
502 public:
503   llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override;
504 
505   bool isZeroInitializable(const MemberPointerType *MPT) override;
506 
isMemberPointerConvertible(const MemberPointerType * MPT) const507   bool isMemberPointerConvertible(const MemberPointerType *MPT) const override {
508     const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
509     return RD->hasAttr<MSInheritanceAttr>();
510   }
511 
isTypeInfoCalculable(QualType Ty) const512   bool isTypeInfoCalculable(QualType Ty) const override {
513     if (!CGCXXABI::isTypeInfoCalculable(Ty))
514       return false;
515     if (const auto *MPT = Ty->getAs<MemberPointerType>()) {
516       const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
517       if (!RD->hasAttr<MSInheritanceAttr>())
518         return false;
519     }
520     return true;
521   }
522 
523   llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override;
524 
525   llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
526                                         CharUnits offset) override;
527   llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD) override;
528   llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override;
529 
530   llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
531                                            llvm::Value *L,
532                                            llvm::Value *R,
533                                            const MemberPointerType *MPT,
534                                            bool Inequality) override;
535 
536   llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
537                                           llvm::Value *MemPtr,
538                                           const MemberPointerType *MPT) override;
539 
540   llvm::Value *
541   EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E,
542                                llvm::Value *Base, llvm::Value *MemPtr,
543                                const MemberPointerType *MPT) override;
544 
545   llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
546                                            const CastExpr *E,
547                                            llvm::Value *Src) override;
548 
549   llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
550                                               llvm::Constant *Src) override;
551 
552   llvm::Value *
553   EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E,
554                                   llvm::Value *&This, llvm::Value *MemPtr,
555                                   const MemberPointerType *MPT) override;
556 
557   void emitCXXStructor(const CXXMethodDecl *MD, StructorType Type) override;
558 
559 private:
560   typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy;
561   typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy;
562   typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy;
563   /// \brief All the vftables that have been referenced.
564   VFTablesMapTy VFTablesMap;
565   VTablesMapTy VTablesMap;
566 
567   /// \brief This set holds the record decls we've deferred vtable emission for.
568   llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables;
569 
570 
571   /// \brief All the vbtables which have been referenced.
572   llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap;
573 
574   /// Info on the global variable used to guard initialization of static locals.
575   /// The BitIndex field is only used for externally invisible declarations.
576   struct GuardInfo {
GuardInfo__anond02e9b3e0111::MicrosoftCXXABI::GuardInfo577     GuardInfo() : Guard(nullptr), BitIndex(0) {}
578     llvm::GlobalVariable *Guard;
579     unsigned BitIndex;
580   };
581 
582   /// Map from DeclContext to the current guard variable.  We assume that the
583   /// AST is visited in source code order.
584   llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap;
585 
586   llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap;
587   llvm::StructType *BaseClassDescriptorType;
588   llvm::StructType *ClassHierarchyDescriptorType;
589   llvm::StructType *CompleteObjectLocatorType;
590 };
591 
592 }
593 
594 CGCXXABI::RecordArgABI
getRecordArgABI(const CXXRecordDecl * RD) const595 MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const {
596   switch (CGM.getTarget().getTriple().getArch()) {
597   default:
598     // FIXME: Implement for other architectures.
599     return RAA_Default;
600 
601   case llvm::Triple::x86:
602     // All record arguments are passed in memory on x86.  Decide whether to
603     // construct the object directly in argument memory, or to construct the
604     // argument elsewhere and copy the bytes during the call.
605 
606     // If C++ prohibits us from making a copy, construct the arguments directly
607     // into argument memory.
608     if (!canCopyArgument(RD))
609       return RAA_DirectInMemory;
610 
611     // Otherwise, construct the argument into a temporary and copy the bytes
612     // into the outgoing argument memory.
613     return RAA_Default;
614 
615   case llvm::Triple::x86_64:
616     // Win64 passes objects with non-trivial copy ctors indirectly.
617     if (RD->hasNonTrivialCopyConstructor())
618       return RAA_Indirect;
619 
620     // If an object has a destructor, we'd really like to pass it indirectly
621     // because it allows us to elide copies.  Unfortunately, MSVC makes that
622     // impossible for small types, which it will pass in a single register or
623     // stack slot. Most objects with dtors are large-ish, so handle that early.
624     // We can't call out all large objects as being indirect because there are
625     // multiple x64 calling conventions and the C++ ABI code shouldn't dictate
626     // how we pass large POD types.
627     if (RD->hasNonTrivialDestructor() &&
628         getContext().getTypeSize(RD->getTypeForDecl()) > 64)
629       return RAA_Indirect;
630 
631     // We have a trivial copy constructor or no copy constructors, but we have
632     // to make sure it isn't deleted.
633     bool CopyDeleted = false;
634     for (const CXXConstructorDecl *CD : RD->ctors()) {
635       if (CD->isCopyConstructor()) {
636         assert(CD->isTrivial());
637         // We had at least one undeleted trivial copy ctor.  Return directly.
638         if (!CD->isDeleted())
639           return RAA_Default;
640         CopyDeleted = true;
641       }
642     }
643 
644     // The trivial copy constructor was deleted.  Return indirectly.
645     if (CopyDeleted)
646       return RAA_Indirect;
647 
648     // There were no copy ctors.  Return in RAX.
649     return RAA_Default;
650   }
651 
652   llvm_unreachable("invalid enum");
653 }
654 
emitVirtualObjectDelete(CodeGenFunction & CGF,const CXXDeleteExpr * DE,llvm::Value * Ptr,QualType ElementType,const CXXDestructorDecl * Dtor)655 void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF,
656                                               const CXXDeleteExpr *DE,
657                                               llvm::Value *Ptr,
658                                               QualType ElementType,
659                                               const CXXDestructorDecl *Dtor) {
660   // FIXME: Provide a source location here even though there's no
661   // CXXMemberCallExpr for dtor call.
662   bool UseGlobalDelete = DE->isGlobalDelete();
663   CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
664   llvm::Value *MDThis =
665       EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, /*CE=*/nullptr);
666   if (UseGlobalDelete)
667     CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType);
668 }
669 
getRethrowFn(CodeGenModule & CGM)670 static llvm::Function *getRethrowFn(CodeGenModule &CGM) {
671   // _CxxThrowException takes two pointer width arguments: a value and a context
672   // object which points to a TypeInfo object.
673   llvm::Type *ArgTypes[] = {CGM.Int8PtrTy, CGM.Int8PtrTy};
674   llvm::FunctionType *FTy =
675       llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
676   auto *Fn = cast<llvm::Function>(
677       CGM.CreateRuntimeFunction(FTy, "_CxxThrowException"));
678   // _CxxThrowException is stdcall on 32-bit x86 platforms.
679   if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86)
680     Fn->setCallingConv(llvm::CallingConv::X86_StdCall);
681   return Fn;
682 }
683 
emitRethrow(CodeGenFunction & CGF,bool isNoReturn)684 void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) {
685   llvm::Value *Args[] = {llvm::ConstantPointerNull::get(CGM.Int8PtrTy),
686                          llvm::ConstantPointerNull::get(CGM.Int8PtrTy)};
687   auto *Fn = getRethrowFn(CGM);
688   if (isNoReturn)
689     CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args);
690   else
691     CGF.EmitRuntimeCallOrInvoke(Fn, Args);
692 }
693 
694 /// \brief Gets the offset to the virtual base that contains the vfptr for
695 /// MS-ABI polymorphic types.
getPolymorphicOffset(CodeGenFunction & CGF,const CXXRecordDecl * RD,llvm::Value * Value)696 static llvm::Value *getPolymorphicOffset(CodeGenFunction &CGF,
697                                          const CXXRecordDecl *RD,
698                                          llvm::Value *Value) {
699   const ASTContext &Context = RD->getASTContext();
700   for (const CXXBaseSpecifier &Base : RD->vbases())
701     if (Context.getASTRecordLayout(Base.getType()->getAsCXXRecordDecl())
702             .hasExtendableVFPtr())
703       return CGF.CGM.getCXXABI().GetVirtualBaseClassOffset(
704           CGF, Value, RD, Base.getType()->getAsCXXRecordDecl());
705   llvm_unreachable("One of our vbases should be polymorphic.");
706 }
707 
708 static std::pair<llvm::Value *, llvm::Value *>
performBaseAdjustment(CodeGenFunction & CGF,llvm::Value * Value,QualType SrcRecordTy)709 performBaseAdjustment(CodeGenFunction &CGF, llvm::Value *Value,
710                       QualType SrcRecordTy) {
711   Value = CGF.Builder.CreateBitCast(Value, CGF.Int8PtrTy);
712   const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
713 
714   if (CGF.getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr())
715     return std::make_pair(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0));
716 
717   // Perform a base adjustment.
718   llvm::Value *Offset = getPolymorphicOffset(CGF, SrcDecl, Value);
719   Value = CGF.Builder.CreateInBoundsGEP(Value, Offset);
720   Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty);
721   return std::make_pair(Value, Offset);
722 }
723 
shouldTypeidBeNullChecked(bool IsDeref,QualType SrcRecordTy)724 bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref,
725                                                 QualType SrcRecordTy) {
726   const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
727   return IsDeref &&
728          !CGM.getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
729 }
730 
emitRTtypeidCall(CodeGenFunction & CGF,llvm::Value * Argument)731 static llvm::CallSite emitRTtypeidCall(CodeGenFunction &CGF,
732                                        llvm::Value *Argument) {
733   llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
734   llvm::FunctionType *FTy =
735       llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false);
736   llvm::Value *Args[] = {Argument};
737   llvm::Constant *Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid");
738   return CGF.EmitRuntimeCallOrInvoke(Fn, Args);
739 }
740 
EmitBadTypeidCall(CodeGenFunction & CGF)741 void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) {
742   llvm::CallSite Call =
743       emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy));
744   Call.setDoesNotReturn();
745   CGF.Builder.CreateUnreachable();
746 }
747 
EmitTypeid(CodeGenFunction & CGF,QualType SrcRecordTy,llvm::Value * ThisPtr,llvm::Type * StdTypeInfoPtrTy)748 llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF,
749                                          QualType SrcRecordTy,
750                                          llvm::Value *ThisPtr,
751                                          llvm::Type *StdTypeInfoPtrTy) {
752   llvm::Value *Offset;
753   std::tie(ThisPtr, Offset) = performBaseAdjustment(CGF, ThisPtr, SrcRecordTy);
754   return CGF.Builder.CreateBitCast(
755       emitRTtypeidCall(CGF, ThisPtr).getInstruction(), StdTypeInfoPtrTy);
756 }
757 
shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,QualType SrcRecordTy)758 bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
759                                                          QualType SrcRecordTy) {
760   const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
761   return SrcIsPtr &&
762          !CGM.getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
763 }
764 
EmitDynamicCastCall(CodeGenFunction & CGF,llvm::Value * Value,QualType SrcRecordTy,QualType DestTy,QualType DestRecordTy,llvm::BasicBlock * CastEnd)765 llvm::Value *MicrosoftCXXABI::EmitDynamicCastCall(
766     CodeGenFunction &CGF, llvm::Value *Value, QualType SrcRecordTy,
767     QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) {
768   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
769 
770   llvm::Value *SrcRTTI =
771       CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
772   llvm::Value *DestRTTI =
773       CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
774 
775   llvm::Value *Offset;
776   std::tie(Value, Offset) = performBaseAdjustment(CGF, Value, SrcRecordTy);
777 
778   // PVOID __RTDynamicCast(
779   //   PVOID inptr,
780   //   LONG VfDelta,
781   //   PVOID SrcType,
782   //   PVOID TargetType,
783   //   BOOL isReference)
784   llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy,
785                             CGF.Int8PtrTy, CGF.Int32Ty};
786   llvm::Constant *Function = CGF.CGM.CreateRuntimeFunction(
787       llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
788       "__RTDynamicCast");
789   llvm::Value *Args[] = {
790       Value, Offset, SrcRTTI, DestRTTI,
791       llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())};
792   Value = CGF.EmitRuntimeCallOrInvoke(Function, Args).getInstruction();
793   return CGF.Builder.CreateBitCast(Value, DestLTy);
794 }
795 
796 llvm::Value *
EmitDynamicCastToVoid(CodeGenFunction & CGF,llvm::Value * Value,QualType SrcRecordTy,QualType DestTy)797 MicrosoftCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, llvm::Value *Value,
798                                        QualType SrcRecordTy,
799                                        QualType DestTy) {
800   llvm::Value *Offset;
801   std::tie(Value, Offset) = performBaseAdjustment(CGF, Value, SrcRecordTy);
802 
803   // PVOID __RTCastToVoid(
804   //   PVOID inptr)
805   llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
806   llvm::Constant *Function = CGF.CGM.CreateRuntimeFunction(
807       llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
808       "__RTCastToVoid");
809   llvm::Value *Args[] = {Value};
810   return CGF.EmitRuntimeCall(Function, Args);
811 }
812 
EmitBadCastCall(CodeGenFunction & CGF)813 bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) {
814   return false;
815 }
816 
GetVirtualBaseClassOffset(CodeGenFunction & CGF,llvm::Value * This,const CXXRecordDecl * ClassDecl,const CXXRecordDecl * BaseClassDecl)817 llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset(
818     CodeGenFunction &CGF, llvm::Value *This, const CXXRecordDecl *ClassDecl,
819     const CXXRecordDecl *BaseClassDecl) {
820   int64_t VBPtrChars =
821       getContext().getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity();
822   llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars);
823   CharUnits IntSize = getContext().getTypeSizeInChars(getContext().IntTy);
824   CharUnits VBTableChars =
825       IntSize *
826       CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl);
827   llvm::Value *VBTableOffset =
828       llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity());
829 
830   llvm::Value *VBPtrToNewBase =
831       GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset);
832   VBPtrToNewBase =
833       CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy);
834   return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase);
835 }
836 
HasThisReturn(GlobalDecl GD) const837 bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const {
838   return isa<CXXConstructorDecl>(GD.getDecl());
839 }
840 
isDeletingDtor(GlobalDecl GD)841 static bool isDeletingDtor(GlobalDecl GD) {
842   return isa<CXXDestructorDecl>(GD.getDecl()) &&
843          GD.getDtorType() == Dtor_Deleting;
844 }
845 
hasMostDerivedReturn(GlobalDecl GD) const846 bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const {
847   return isDeletingDtor(GD);
848 }
849 
classifyReturnType(CGFunctionInfo & FI) const850 bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const {
851   const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl();
852   if (!RD)
853     return false;
854 
855   if (FI.isInstanceMethod()) {
856     // If it's an instance method, aggregates are always returned indirectly via
857     // the second parameter.
858     FI.getReturnInfo() = ABIArgInfo::getIndirect(0, /*ByVal=*/false);
859     FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod());
860     return true;
861   } else if (!RD->isPOD()) {
862     // If it's a free function, non-POD types are returned indirectly.
863     FI.getReturnInfo() = ABIArgInfo::getIndirect(0, /*ByVal=*/false);
864     return true;
865   }
866 
867   // Otherwise, use the C ABI rules.
868   return false;
869 }
870 
871 llvm::BasicBlock *
EmitCtorCompleteObjectHandler(CodeGenFunction & CGF,const CXXRecordDecl * RD)872 MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
873                                                const CXXRecordDecl *RD) {
874   llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
875   assert(IsMostDerivedClass &&
876          "ctor for a class with virtual bases must have an implicit parameter");
877   llvm::Value *IsCompleteObject =
878     CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");
879 
880   llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases");
881   llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases");
882   CGF.Builder.CreateCondBr(IsCompleteObject,
883                            CallVbaseCtorsBB, SkipVbaseCtorsBB);
884 
885   CGF.EmitBlock(CallVbaseCtorsBB);
886 
887   // Fill in the vbtable pointers here.
888   EmitVBPtrStores(CGF, RD);
889 
890   // CGF will put the base ctor calls in this basic block for us later.
891 
892   return SkipVbaseCtorsBB;
893 }
894 
initializeHiddenVirtualInheritanceMembers(CodeGenFunction & CGF,const CXXRecordDecl * RD)895 void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers(
896     CodeGenFunction &CGF, const CXXRecordDecl *RD) {
897   // In most cases, an override for a vbase virtual method can adjust
898   // the "this" parameter by applying a constant offset.
899   // However, this is not enough while a constructor or a destructor of some
900   // class X is being executed if all the following conditions are met:
901   //  - X has virtual bases, (1)
902   //  - X overrides a virtual method M of a vbase Y, (2)
903   //  - X itself is a vbase of the most derived class.
904   //
905   // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X
906   // which holds the extra amount of "this" adjustment we must do when we use
907   // the X vftables (i.e. during X ctor or dtor).
908   // Outside the ctors and dtors, the values of vtorDisps are zero.
909 
910   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
911   typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets;
912   const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap();
913   CGBuilderTy &Builder = CGF.Builder;
914 
915   unsigned AS =
916       cast<llvm::PointerType>(getThisValue(CGF)->getType())->getAddressSpace();
917   llvm::Value *Int8This = nullptr;  // Initialize lazily.
918 
919   for (VBOffsets::const_iterator I = VBaseMap.begin(), E = VBaseMap.end();
920         I != E; ++I) {
921     if (!I->second.hasVtorDisp())
922       continue;
923 
924     llvm::Value *VBaseOffset =
925         GetVirtualBaseClassOffset(CGF, getThisValue(CGF), RD, I->first);
926     // FIXME: it doesn't look right that we SExt in GetVirtualBaseClassOffset()
927     // just to Trunc back immediately.
928     VBaseOffset = Builder.CreateTruncOrBitCast(VBaseOffset, CGF.Int32Ty);
929     uint64_t ConstantVBaseOffset =
930         Layout.getVBaseClassOffset(I->first).getQuantity();
931 
932     // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase).
933     llvm::Value *VtorDispValue = Builder.CreateSub(
934         VBaseOffset, llvm::ConstantInt::get(CGM.Int32Ty, ConstantVBaseOffset),
935         "vtordisp.value");
936 
937     if (!Int8This)
938       Int8This = Builder.CreateBitCast(getThisValue(CGF),
939                                        CGF.Int8Ty->getPointerTo(AS));
940     llvm::Value *VtorDispPtr = Builder.CreateInBoundsGEP(Int8This, VBaseOffset);
941     // vtorDisp is always the 32-bits before the vbase in the class layout.
942     VtorDispPtr = Builder.CreateConstGEP1_32(VtorDispPtr, -4);
943     VtorDispPtr = Builder.CreateBitCast(
944         VtorDispPtr, CGF.Int32Ty->getPointerTo(AS), "vtordisp.ptr");
945 
946     Builder.CreateStore(VtorDispValue, VtorDispPtr);
947   }
948 }
949 
EmitCXXConstructors(const CXXConstructorDecl * D)950 void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) {
951   // There's only one constructor type in this ABI.
952   CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete));
953 }
954 
EmitVBPtrStores(CodeGenFunction & CGF,const CXXRecordDecl * RD)955 void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF,
956                                       const CXXRecordDecl *RD) {
957   llvm::Value *ThisInt8Ptr =
958     CGF.Builder.CreateBitCast(getThisValue(CGF), CGM.Int8PtrTy, "this.int8");
959   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
960 
961   const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
962   for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
963     const VPtrInfo *VBT = (*VBGlobals.VBTables)[I];
964     llvm::GlobalVariable *GV = VBGlobals.Globals[I];
965     const ASTRecordLayout &SubobjectLayout =
966         CGM.getContext().getASTRecordLayout(VBT->BaseWithVPtr);
967     CharUnits Offs = VBT->NonVirtualOffset;
968     Offs += SubobjectLayout.getVBPtrOffset();
969     if (VBT->getVBaseWithVPtr())
970       Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
971     llvm::Value *VBPtr =
972         CGF.Builder.CreateConstInBoundsGEP1_64(ThisInt8Ptr, Offs.getQuantity());
973     llvm::Value *GVPtr = CGF.Builder.CreateConstInBoundsGEP2_32(GV, 0, 0);
974     VBPtr = CGF.Builder.CreateBitCast(VBPtr, GVPtr->getType()->getPointerTo(0),
975                                       "vbptr." + VBT->ReusingBase->getName());
976     CGF.Builder.CreateStore(GVPtr, VBPtr);
977   }
978 }
979 
980 void
buildStructorSignature(const CXXMethodDecl * MD,StructorType T,SmallVectorImpl<CanQualType> & ArgTys)981 MicrosoftCXXABI::buildStructorSignature(const CXXMethodDecl *MD, StructorType T,
982                                         SmallVectorImpl<CanQualType> &ArgTys) {
983   // TODO: 'for base' flag
984   if (T == StructorType::Deleting) {
985     // The scalar deleting destructor takes an implicit int parameter.
986     ArgTys.push_back(CGM.getContext().IntTy);
987   }
988   auto *CD = dyn_cast<CXXConstructorDecl>(MD);
989   if (!CD)
990     return;
991 
992   // All parameters are already in place except is_most_derived, which goes
993   // after 'this' if it's variadic and last if it's not.
994 
995   const CXXRecordDecl *Class = CD->getParent();
996   const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>();
997   if (Class->getNumVBases()) {
998     if (FPT->isVariadic())
999       ArgTys.insert(ArgTys.begin() + 1, CGM.getContext().IntTy);
1000     else
1001       ArgTys.push_back(CGM.getContext().IntTy);
1002   }
1003 }
1004 
EmitCXXDestructors(const CXXDestructorDecl * D)1005 void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) {
1006   // The TU defining a dtor is only guaranteed to emit a base destructor.  All
1007   // other destructor variants are delegating thunks.
1008   CGM.EmitGlobal(GlobalDecl(D, Dtor_Base));
1009 }
1010 
1011 CharUnits
getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD)1012 MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) {
1013   GD = GD.getCanonicalDecl();
1014   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1015 
1016   GlobalDecl LookupGD = GD;
1017   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1018     // Complete destructors take a pointer to the complete object as a
1019     // parameter, thus don't need this adjustment.
1020     if (GD.getDtorType() == Dtor_Complete)
1021       return CharUnits();
1022 
1023     // There's no Dtor_Base in vftable but it shares the this adjustment with
1024     // the deleting one, so look it up instead.
1025     LookupGD = GlobalDecl(DD, Dtor_Deleting);
1026   }
1027 
1028   MicrosoftVTableContext::MethodVFTableLocation ML =
1029       CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
1030   CharUnits Adjustment = ML.VFPtrOffset;
1031 
1032   // Normal virtual instance methods need to adjust from the vfptr that first
1033   // defined the virtual method to the virtual base subobject, but destructors
1034   // do not.  The vector deleting destructor thunk applies this adjustment for
1035   // us if necessary.
1036   if (isa<CXXDestructorDecl>(MD))
1037     Adjustment = CharUnits::Zero();
1038 
1039   if (ML.VBase) {
1040     const ASTRecordLayout &DerivedLayout =
1041         CGM.getContext().getASTRecordLayout(MD->getParent());
1042     Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase);
1043   }
1044 
1045   return Adjustment;
1046 }
1047 
adjustThisArgumentForVirtualFunctionCall(CodeGenFunction & CGF,GlobalDecl GD,llvm::Value * This,bool VirtualCall)1048 llvm::Value *MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall(
1049     CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This, bool VirtualCall) {
1050   if (!VirtualCall) {
1051     // If the call of a virtual function is not virtual, we just have to
1052     // compensate for the adjustment the virtual function does in its prologue.
1053     CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
1054     if (Adjustment.isZero())
1055       return This;
1056 
1057     unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
1058     llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS);
1059     This = CGF.Builder.CreateBitCast(This, charPtrTy);
1060     assert(Adjustment.isPositive());
1061     return CGF.Builder.CreateConstGEP1_32(This, Adjustment.getQuantity());
1062   }
1063 
1064   GD = GD.getCanonicalDecl();
1065   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1066 
1067   GlobalDecl LookupGD = GD;
1068   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1069     // Complete dtors take a pointer to the complete object,
1070     // thus don't need adjustment.
1071     if (GD.getDtorType() == Dtor_Complete)
1072       return This;
1073 
1074     // There's only Dtor_Deleting in vftable but it shares the this adjustment
1075     // with the base one, so look up the deleting one instead.
1076     LookupGD = GlobalDecl(DD, Dtor_Deleting);
1077   }
1078   MicrosoftVTableContext::MethodVFTableLocation ML =
1079       CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
1080 
1081   unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
1082   llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS);
1083   CharUnits StaticOffset = ML.VFPtrOffset;
1084 
1085   // Base destructors expect 'this' to point to the beginning of the base
1086   // subobject, not the first vfptr that happens to contain the virtual dtor.
1087   // However, we still need to apply the virtual base adjustment.
1088   if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
1089     StaticOffset = CharUnits::Zero();
1090 
1091   if (ML.VBase) {
1092     This = CGF.Builder.CreateBitCast(This, charPtrTy);
1093     llvm::Value *VBaseOffset =
1094         GetVirtualBaseClassOffset(CGF, This, MD->getParent(), ML.VBase);
1095     This = CGF.Builder.CreateInBoundsGEP(This, VBaseOffset);
1096   }
1097   if (!StaticOffset.isZero()) {
1098     assert(StaticOffset.isPositive());
1099     This = CGF.Builder.CreateBitCast(This, charPtrTy);
1100     if (ML.VBase) {
1101       // Non-virtual adjustment might result in a pointer outside the allocated
1102       // object, e.g. if the final overrider class is laid out after the virtual
1103       // base that declares a method in the most derived class.
1104       // FIXME: Update the code that emits this adjustment in thunks prologues.
1105       This = CGF.Builder.CreateConstGEP1_32(This, StaticOffset.getQuantity());
1106     } else {
1107       This = CGF.Builder.CreateConstInBoundsGEP1_32(This,
1108                                                     StaticOffset.getQuantity());
1109     }
1110   }
1111   return This;
1112 }
1113 
addImplicitStructorParams(CodeGenFunction & CGF,QualType & ResTy,FunctionArgList & Params)1114 void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF,
1115                                                 QualType &ResTy,
1116                                                 FunctionArgList &Params) {
1117   ASTContext &Context = getContext();
1118   const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
1119   assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD));
1120   if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
1121     ImplicitParamDecl *IsMostDerived
1122       = ImplicitParamDecl::Create(Context, nullptr,
1123                                   CGF.CurGD.getDecl()->getLocation(),
1124                                   &Context.Idents.get("is_most_derived"),
1125                                   Context.IntTy);
1126     // The 'most_derived' parameter goes second if the ctor is variadic and last
1127     // if it's not.  Dtors can't be variadic.
1128     const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
1129     if (FPT->isVariadic())
1130       Params.insert(Params.begin() + 1, IsMostDerived);
1131     else
1132       Params.push_back(IsMostDerived);
1133     getStructorImplicitParamDecl(CGF) = IsMostDerived;
1134   } else if (isDeletingDtor(CGF.CurGD)) {
1135     ImplicitParamDecl *ShouldDelete
1136       = ImplicitParamDecl::Create(Context, nullptr,
1137                                   CGF.CurGD.getDecl()->getLocation(),
1138                                   &Context.Idents.get("should_call_delete"),
1139                                   Context.IntTy);
1140     Params.push_back(ShouldDelete);
1141     getStructorImplicitParamDecl(CGF) = ShouldDelete;
1142   }
1143 }
1144 
adjustThisParameterInVirtualFunctionPrologue(CodeGenFunction & CGF,GlobalDecl GD,llvm::Value * This)1145 llvm::Value *MicrosoftCXXABI::adjustThisParameterInVirtualFunctionPrologue(
1146     CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) {
1147   // In this ABI, every virtual function takes a pointer to one of the
1148   // subobjects that first defines it as the 'this' parameter, rather than a
1149   // pointer to the final overrider subobject. Thus, we need to adjust it back
1150   // to the final overrider subobject before use.
1151   // See comments in the MicrosoftVFTableContext implementation for the details.
1152   CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
1153   if (Adjustment.isZero())
1154     return This;
1155 
1156   unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
1157   llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS),
1158              *thisTy = This->getType();
1159 
1160   This = CGF.Builder.CreateBitCast(This, charPtrTy);
1161   assert(Adjustment.isPositive());
1162   This =
1163       CGF.Builder.CreateConstInBoundsGEP1_32(This, -Adjustment.getQuantity());
1164   return CGF.Builder.CreateBitCast(This, thisTy);
1165 }
1166 
EmitInstanceFunctionProlog(CodeGenFunction & CGF)1167 void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
1168   EmitThisParam(CGF);
1169 
1170   /// If this is a function that the ABI specifies returns 'this', initialize
1171   /// the return slot to 'this' at the start of the function.
1172   ///
1173   /// Unlike the setting of return types, this is done within the ABI
1174   /// implementation instead of by clients of CGCXXABI because:
1175   /// 1) getThisValue is currently protected
1176   /// 2) in theory, an ABI could implement 'this' returns some other way;
1177   ///    HasThisReturn only specifies a contract, not the implementation
1178   if (HasThisReturn(CGF.CurGD))
1179     CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
1180   else if (hasMostDerivedReturn(CGF.CurGD))
1181     CGF.Builder.CreateStore(CGF.EmitCastToVoidPtr(getThisValue(CGF)),
1182                             CGF.ReturnValue);
1183 
1184   const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
1185   if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
1186     assert(getStructorImplicitParamDecl(CGF) &&
1187            "no implicit parameter for a constructor with virtual bases?");
1188     getStructorImplicitParamValue(CGF)
1189       = CGF.Builder.CreateLoad(
1190           CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
1191           "is_most_derived");
1192   }
1193 
1194   if (isDeletingDtor(CGF.CurGD)) {
1195     assert(getStructorImplicitParamDecl(CGF) &&
1196            "no implicit parameter for a deleting destructor?");
1197     getStructorImplicitParamValue(CGF)
1198       = CGF.Builder.CreateLoad(
1199           CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
1200           "should_call_delete");
1201   }
1202 }
1203 
addImplicitConstructorArgs(CodeGenFunction & CGF,const CXXConstructorDecl * D,CXXCtorType Type,bool ForVirtualBase,bool Delegating,CallArgList & Args)1204 unsigned MicrosoftCXXABI::addImplicitConstructorArgs(
1205     CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type,
1206     bool ForVirtualBase, bool Delegating, CallArgList &Args) {
1207   assert(Type == Ctor_Complete || Type == Ctor_Base);
1208 
1209   // Check if we need a 'most_derived' parameter.
1210   if (!D->getParent()->getNumVBases())
1211     return 0;
1212 
1213   // Add the 'most_derived' argument second if we are variadic or last if not.
1214   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1215   llvm::Value *MostDerivedArg =
1216       llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete);
1217   RValue RV = RValue::get(MostDerivedArg);
1218   if (MostDerivedArg) {
1219     if (FPT->isVariadic())
1220       Args.insert(Args.begin() + 1,
1221                   CallArg(RV, getContext().IntTy, /*needscopy=*/false));
1222     else
1223       Args.add(RV, getContext().IntTy);
1224   }
1225 
1226   return 1;  // Added one arg.
1227 }
1228 
EmitDestructorCall(CodeGenFunction & CGF,const CXXDestructorDecl * DD,CXXDtorType Type,bool ForVirtualBase,bool Delegating,llvm::Value * This)1229 void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF,
1230                                          const CXXDestructorDecl *DD,
1231                                          CXXDtorType Type, bool ForVirtualBase,
1232                                          bool Delegating, llvm::Value *This) {
1233   llvm::Value *Callee = CGM.getAddrOfCXXStructor(DD, getFromDtorType(Type));
1234 
1235   if (DD->isVirtual()) {
1236     assert(Type != CXXDtorType::Dtor_Deleting &&
1237            "The deleting destructor should only be called via a virtual call");
1238     This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type),
1239                                                     This, false);
1240   }
1241 
1242   CGF.EmitCXXStructorCall(DD, Callee, ReturnValueSlot(), This,
1243                           /*ImplicitParam=*/nullptr,
1244                           /*ImplicitParamTy=*/QualType(), nullptr,
1245                           getFromDtorType(Type));
1246 }
1247 
emitVTableDefinitions(CodeGenVTables & CGVT,const CXXRecordDecl * RD)1248 void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT,
1249                                             const CXXRecordDecl *RD) {
1250   MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
1251   const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD);
1252 
1253   for (VPtrInfo *Info : VFPtrs) {
1254     llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC);
1255     if (VTable->hasInitializer())
1256       continue;
1257 
1258     llvm::Constant *RTTI = getContext().getLangOpts().RTTIData
1259                                ? getMSCompleteObjectLocator(RD, Info)
1260                                : nullptr;
1261 
1262     const VTableLayout &VTLayout =
1263       VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC);
1264     llvm::Constant *Init = CGVT.CreateVTableInitializer(
1265         RD, VTLayout.vtable_component_begin(),
1266         VTLayout.getNumVTableComponents(), VTLayout.vtable_thunk_begin(),
1267         VTLayout.getNumVTableThunks(), RTTI);
1268 
1269     VTable->setInitializer(Init);
1270   }
1271 }
1272 
getVTableAddressPointInStructor(CodeGenFunction & CGF,const CXXRecordDecl * VTableClass,BaseSubobject Base,const CXXRecordDecl * NearestVBase,bool & NeedsVirtualOffset)1273 llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor(
1274     CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base,
1275     const CXXRecordDecl *NearestVBase, bool &NeedsVirtualOffset) {
1276   NeedsVirtualOffset = (NearestVBase != nullptr);
1277 
1278   (void)getAddrOfVTable(VTableClass, Base.getBaseOffset());
1279   VFTableIdTy ID(VTableClass, Base.getBaseOffset());
1280   llvm::GlobalValue *VTableAddressPoint = VFTablesMap[ID];
1281   if (!VTableAddressPoint) {
1282     assert(Base.getBase()->getNumVBases() &&
1283            !CGM.getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr());
1284   }
1285   return VTableAddressPoint;
1286 }
1287 
mangleVFTableName(MicrosoftMangleContext & MangleContext,const CXXRecordDecl * RD,const VPtrInfo * VFPtr,SmallString<256> & Name)1288 static void mangleVFTableName(MicrosoftMangleContext &MangleContext,
1289                               const CXXRecordDecl *RD, const VPtrInfo *VFPtr,
1290                               SmallString<256> &Name) {
1291   llvm::raw_svector_ostream Out(Name);
1292   MangleContext.mangleCXXVFTable(RD, VFPtr->MangledPath, Out);
1293 }
1294 
getVTableAddressPointForConstExpr(BaseSubobject Base,const CXXRecordDecl * VTableClass)1295 llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr(
1296     BaseSubobject Base, const CXXRecordDecl *VTableClass) {
1297   (void)getAddrOfVTable(VTableClass, Base.getBaseOffset());
1298   VFTableIdTy ID(VTableClass, Base.getBaseOffset());
1299   llvm::GlobalValue *VFTable = VFTablesMap[ID];
1300   assert(VFTable && "Couldn't find a vftable for the given base?");
1301   return VFTable;
1302 }
1303 
getAddrOfVTable(const CXXRecordDecl * RD,CharUnits VPtrOffset)1304 llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD,
1305                                                        CharUnits VPtrOffset) {
1306   // getAddrOfVTable may return 0 if asked to get an address of a vtable which
1307   // shouldn't be used in the given record type. We want to cache this result in
1308   // VFTablesMap, thus a simple zero check is not sufficient.
1309   VFTableIdTy ID(RD, VPtrOffset);
1310   VTablesMapTy::iterator I;
1311   bool Inserted;
1312   std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr));
1313   if (!Inserted)
1314     return I->second;
1315 
1316   llvm::GlobalVariable *&VTable = I->second;
1317 
1318   MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
1319   const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD);
1320 
1321   if (DeferredVFTables.insert(RD).second) {
1322     // We haven't processed this record type before.
1323     // Queue up this v-table for possible deferred emission.
1324     CGM.addDeferredVTable(RD);
1325 
1326 #ifndef NDEBUG
1327     // Create all the vftables at once in order to make sure each vftable has
1328     // a unique mangled name.
1329     llvm::StringSet<> ObservedMangledNames;
1330     for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) {
1331       SmallString<256> Name;
1332       mangleVFTableName(getMangleContext(), RD, VFPtrs[J], Name);
1333       if (!ObservedMangledNames.insert(Name.str()).second)
1334         llvm_unreachable("Already saw this mangling before?");
1335     }
1336 #endif
1337   }
1338 
1339   for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) {
1340     if (VFPtrs[J]->FullOffsetInMDC != VPtrOffset)
1341       continue;
1342     SmallString<256> VFTableName;
1343     mangleVFTableName(getMangleContext(), RD, VFPtrs[J], VFTableName);
1344     StringRef VTableName = VFTableName;
1345 
1346     uint64_t NumVTableSlots =
1347         VTContext.getVFTableLayout(RD, VFPtrs[J]->FullOffsetInMDC)
1348             .getNumVTableComponents();
1349     llvm::GlobalValue::LinkageTypes VTableLinkage =
1350         llvm::GlobalValue::ExternalLinkage;
1351     llvm::ArrayType *VTableType =
1352         llvm::ArrayType::get(CGM.Int8PtrTy, NumVTableSlots);
1353     if (getContext().getLangOpts().RTTIData) {
1354       VTableLinkage = llvm::GlobalValue::PrivateLinkage;
1355       VTableName = "";
1356     }
1357 
1358     VTable = CGM.getModule().getNamedGlobal(VFTableName);
1359     if (!VTable) {
1360       // Create a backing variable for the contents of VTable.  The VTable may
1361       // or may not include space for a pointer to RTTI data.
1362       llvm::GlobalValue *VFTable = VTable = new llvm::GlobalVariable(
1363           CGM.getModule(), VTableType, /*isConstant=*/true, VTableLinkage,
1364           /*Initializer=*/nullptr, VTableName);
1365       VTable->setUnnamedAddr(true);
1366 
1367       // Only insert a pointer into the VFTable for RTTI data if we are not
1368       // importing it.  We never reference the RTTI data directly so there is no
1369       // need to make room for it.
1370       if (getContext().getLangOpts().RTTIData &&
1371           !RD->hasAttr<DLLImportAttr>()) {
1372         llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
1373                                      llvm::ConstantInt::get(CGM.IntTy, 1)};
1374         // Create a GEP which points just after the first entry in the VFTable,
1375         // this should be the location of the first virtual method.
1376         llvm::Constant *VTableGEP =
1377             llvm::ConstantExpr::getInBoundsGetElementPtr(VTable, GEPIndices);
1378         // The symbol for the VFTable is an alias to the GEP.  It is
1379         // transparent, to other modules, what the nature of this symbol is; all
1380         // that matters is that the alias be the address of the first virtual
1381         // method.
1382         VFTable = llvm::GlobalAlias::create(
1383             cast<llvm::SequentialType>(VTableGEP->getType())->getElementType(),
1384             /*AddressSpace=*/0, llvm::GlobalValue::ExternalLinkage,
1385             VFTableName.str(), VTableGEP, &CGM.getModule());
1386       } else {
1387         // We don't need a GlobalAlias to be a symbol for the VTable if we won't
1388         // be referencing any RTTI data.  The GlobalVariable will end up being
1389         // an appropriate definition of the VFTable.
1390         VTable->setName(VFTableName.str());
1391       }
1392 
1393       VFTable->setUnnamedAddr(true);
1394       if (RD->hasAttr<DLLImportAttr>())
1395         VFTable->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1396       else if (RD->hasAttr<DLLExportAttr>())
1397         VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1398 
1399       llvm::GlobalValue::LinkageTypes VFTableLinkage = CGM.getVTableLinkage(RD);
1400       if (VFTable != VTable) {
1401         if (llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage)) {
1402           // AvailableExternally implies that we grabbed the data from another
1403           // executable.  No need to stick the alias in a Comdat.
1404         } else if (llvm::GlobalValue::isInternalLinkage(VFTableLinkage) ||
1405                    llvm::GlobalValue::isWeakODRLinkage(VFTableLinkage) ||
1406                    llvm::GlobalValue::isLinkOnceODRLinkage(VFTableLinkage)) {
1407           // The alias is going to be dropped into a Comdat, no need to make it
1408           // weak.
1409           if (!llvm::GlobalValue::isInternalLinkage(VFTableLinkage))
1410             VFTableLinkage = llvm::GlobalValue::ExternalLinkage;
1411           llvm::Comdat *C =
1412               CGM.getModule().getOrInsertComdat(VFTable->getName());
1413           // We must indicate which VFTable is larger to support linking between
1414           // translation units which do and do not have RTTI data.  The largest
1415           // VFTable contains the RTTI data; translation units which reference
1416           // the smaller VFTable always reference it relative to the first
1417           // virtual method.
1418           C->setSelectionKind(llvm::Comdat::Largest);
1419           VTable->setComdat(C);
1420         } else {
1421           llvm_unreachable("unexpected linkage for vftable!");
1422         }
1423       }
1424       VFTable->setLinkage(VFTableLinkage);
1425       CGM.setGlobalVisibility(VFTable, RD);
1426       VFTablesMap[ID] = VFTable;
1427     }
1428     break;
1429   }
1430 
1431   return VTable;
1432 }
1433 
getVirtualFunctionPointer(CodeGenFunction & CGF,GlobalDecl GD,llvm::Value * This,llvm::Type * Ty)1434 llvm::Value *MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF,
1435                                                         GlobalDecl GD,
1436                                                         llvm::Value *This,
1437                                                         llvm::Type *Ty) {
1438   GD = GD.getCanonicalDecl();
1439   CGBuilderTy &Builder = CGF.Builder;
1440 
1441   Ty = Ty->getPointerTo()->getPointerTo();
1442   llvm::Value *VPtr =
1443       adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
1444   llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty);
1445 
1446   MicrosoftVTableContext::MethodVFTableLocation ML =
1447       CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD);
1448   llvm::Value *VFuncPtr =
1449       Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
1450   return Builder.CreateLoad(VFuncPtr);
1451 }
1452 
EmitVirtualDestructorCall(CodeGenFunction & CGF,const CXXDestructorDecl * Dtor,CXXDtorType DtorType,llvm::Value * This,const CXXMemberCallExpr * CE)1453 llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall(
1454     CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType,
1455     llvm::Value *This, const CXXMemberCallExpr *CE) {
1456   assert(CE == nullptr || CE->arg_begin() == CE->arg_end());
1457   assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);
1458 
1459   // We have only one destructor in the vftable but can get both behaviors
1460   // by passing an implicit int parameter.
1461   GlobalDecl GD(Dtor, Dtor_Deleting);
1462   const CGFunctionInfo *FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
1463       Dtor, StructorType::Deleting);
1464   llvm::Type *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
1465   llvm::Value *Callee = getVirtualFunctionPointer(CGF, GD, This, Ty);
1466 
1467   ASTContext &Context = CGF.getContext();
1468   llvm::Value *ImplicitParam = llvm::ConstantInt::get(
1469       llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()),
1470       DtorType == Dtor_Deleting);
1471 
1472   This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
1473   RValue RV = CGF.EmitCXXStructorCall(Dtor, Callee, ReturnValueSlot(), This,
1474                                       ImplicitParam, Context.IntTy, CE,
1475                                       StructorType::Deleting);
1476   return RV.getScalarVal();
1477 }
1478 
1479 const VBTableGlobals &
enumerateVBTables(const CXXRecordDecl * RD)1480 MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) {
1481   // At this layer, we can key the cache off of a single class, which is much
1482   // easier than caching each vbtable individually.
1483   llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry;
1484   bool Added;
1485   std::tie(Entry, Added) =
1486       VBTablesMap.insert(std::make_pair(RD, VBTableGlobals()));
1487   VBTableGlobals &VBGlobals = Entry->second;
1488   if (!Added)
1489     return VBGlobals;
1490 
1491   MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
1492   VBGlobals.VBTables = &Context.enumerateVBTables(RD);
1493 
1494   // Cache the globals for all vbtables so we don't have to recompute the
1495   // mangled names.
1496   llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD);
1497   for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(),
1498                                       E = VBGlobals.VBTables->end();
1499        I != E; ++I) {
1500     VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage));
1501   }
1502 
1503   return VBGlobals;
1504 }
1505 
EmitVirtualMemPtrThunk(const CXXMethodDecl * MD,const MicrosoftVTableContext::MethodVFTableLocation & ML)1506 llvm::Function *MicrosoftCXXABI::EmitVirtualMemPtrThunk(
1507     const CXXMethodDecl *MD,
1508     const MicrosoftVTableContext::MethodVFTableLocation &ML) {
1509   assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) &&
1510          "can't form pointers to ctors or virtual dtors");
1511 
1512   // Calculate the mangled name.
1513   SmallString<256> ThunkName;
1514   llvm::raw_svector_ostream Out(ThunkName);
1515   getMangleContext().mangleVirtualMemPtrThunk(MD, Out);
1516   Out.flush();
1517 
1518   // If the thunk has been generated previously, just return it.
1519   if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
1520     return cast<llvm::Function>(GV);
1521 
1522   // Create the llvm::Function.
1523   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSMemberPointerThunk(MD);
1524   llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
1525   llvm::Function *ThunkFn =
1526       llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage,
1527                              ThunkName.str(), &CGM.getModule());
1528   assert(ThunkFn->getName() == ThunkName && "name was uniqued!");
1529 
1530   ThunkFn->setLinkage(MD->isExternallyVisible()
1531                           ? llvm::GlobalValue::LinkOnceODRLinkage
1532                           : llvm::GlobalValue::InternalLinkage);
1533 
1534   CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn);
1535   CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn);
1536 
1537   // Add the "thunk" attribute so that LLVM knows that the return type is
1538   // meaningless. These thunks can be used to call functions with differing
1539   // return types, and the caller is required to cast the prototype
1540   // appropriately to extract the correct value.
1541   ThunkFn->addFnAttr("thunk");
1542 
1543   // These thunks can be compared, so they are not unnamed.
1544   ThunkFn->setUnnamedAddr(false);
1545 
1546   // Start codegen.
1547   CodeGenFunction CGF(CGM);
1548   CGF.CurGD = GlobalDecl(MD);
1549   CGF.CurFuncIsThunk = true;
1550 
1551   // Build FunctionArgs, but only include the implicit 'this' parameter
1552   // declaration.
1553   FunctionArgList FunctionArgs;
1554   buildThisParam(CGF, FunctionArgs);
1555 
1556   // Start defining the function.
1557   CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
1558                     FunctionArgs, MD->getLocation(), SourceLocation());
1559   EmitThisParam(CGF);
1560 
1561   // Load the vfptr and then callee from the vftable.  The callee should have
1562   // adjusted 'this' so that the vfptr is at offset zero.
1563   llvm::Value *VTable = CGF.GetVTablePtr(
1564       getThisValue(CGF), ThunkTy->getPointerTo()->getPointerTo());
1565   llvm::Value *VFuncPtr =
1566       CGF.Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
1567   llvm::Value *Callee = CGF.Builder.CreateLoad(VFuncPtr);
1568 
1569   CGF.EmitMustTailThunk(MD, getThisValue(CGF), Callee);
1570 
1571   return ThunkFn;
1572 }
1573 
emitVirtualInheritanceTables(const CXXRecordDecl * RD)1574 void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) {
1575   const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
1576   for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
1577     const VPtrInfo *VBT = (*VBGlobals.VBTables)[I];
1578     llvm::GlobalVariable *GV = VBGlobals.Globals[I];
1579     emitVBTableDefinition(*VBT, RD, GV);
1580   }
1581 }
1582 
1583 llvm::GlobalVariable *
getAddrOfVBTable(const VPtrInfo & VBT,const CXXRecordDecl * RD,llvm::GlobalVariable::LinkageTypes Linkage)1584 MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
1585                                   llvm::GlobalVariable::LinkageTypes Linkage) {
1586   SmallString<256> OutName;
1587   llvm::raw_svector_ostream Out(OutName);
1588   getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out);
1589   Out.flush();
1590   StringRef Name = OutName.str();
1591 
1592   llvm::ArrayType *VBTableType =
1593       llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ReusingBase->getNumVBases());
1594 
1595   assert(!CGM.getModule().getNamedGlobal(Name) &&
1596          "vbtable with this name already exists: mangling bug?");
1597   llvm::GlobalVariable *GV =
1598       CGM.CreateOrReplaceCXXRuntimeVariable(Name, VBTableType, Linkage);
1599   GV->setUnnamedAddr(true);
1600 
1601   if (RD->hasAttr<DLLImportAttr>())
1602     GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1603   else if (RD->hasAttr<DLLExportAttr>())
1604     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1605 
1606   return GV;
1607 }
1608 
emitVBTableDefinition(const VPtrInfo & VBT,const CXXRecordDecl * RD,llvm::GlobalVariable * GV) const1609 void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT,
1610                                             const CXXRecordDecl *RD,
1611                                             llvm::GlobalVariable *GV) const {
1612   const CXXRecordDecl *ReusingBase = VBT.ReusingBase;
1613 
1614   assert(RD->getNumVBases() && ReusingBase->getNumVBases() &&
1615          "should only emit vbtables for classes with vbtables");
1616 
1617   const ASTRecordLayout &BaseLayout =
1618       CGM.getContext().getASTRecordLayout(VBT.BaseWithVPtr);
1619   const ASTRecordLayout &DerivedLayout =
1620     CGM.getContext().getASTRecordLayout(RD);
1621 
1622   SmallVector<llvm::Constant *, 4> Offsets(1 + ReusingBase->getNumVBases(),
1623                                            nullptr);
1624 
1625   // The offset from ReusingBase's vbptr to itself always leads.
1626   CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset();
1627   Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity());
1628 
1629   MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
1630   for (const auto &I : ReusingBase->vbases()) {
1631     const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
1632     CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase);
1633     assert(!Offset.isNegative());
1634 
1635     // Make it relative to the subobject vbptr.
1636     CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset;
1637     if (VBT.getVBaseWithVPtr())
1638       CompleteVBPtrOffset +=
1639           DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr());
1640     Offset -= CompleteVBPtrOffset;
1641 
1642     unsigned VBIndex = Context.getVBTableIndex(ReusingBase, VBase);
1643     assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?");
1644     Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity());
1645   }
1646 
1647   assert(Offsets.size() ==
1648          cast<llvm::ArrayType>(cast<llvm::PointerType>(GV->getType())
1649                                ->getElementType())->getNumElements());
1650   llvm::ArrayType *VBTableType =
1651     llvm::ArrayType::get(CGM.IntTy, Offsets.size());
1652   llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets);
1653   GV->setInitializer(Init);
1654 
1655   // Set the right visibility.
1656   CGM.setGlobalVisibility(GV, RD);
1657 }
1658 
performThisAdjustment(CodeGenFunction & CGF,llvm::Value * This,const ThisAdjustment & TA)1659 llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF,
1660                                                     llvm::Value *This,
1661                                                     const ThisAdjustment &TA) {
1662   if (TA.isEmpty())
1663     return This;
1664 
1665   llvm::Value *V = CGF.Builder.CreateBitCast(This, CGF.Int8PtrTy);
1666 
1667   if (!TA.Virtual.isEmpty()) {
1668     assert(TA.Virtual.Microsoft.VtordispOffset < 0);
1669     // Adjust the this argument based on the vtordisp value.
1670     llvm::Value *VtorDispPtr =
1671         CGF.Builder.CreateConstGEP1_32(V, TA.Virtual.Microsoft.VtordispOffset);
1672     VtorDispPtr =
1673         CGF.Builder.CreateBitCast(VtorDispPtr, CGF.Int32Ty->getPointerTo());
1674     llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp");
1675     V = CGF.Builder.CreateGEP(V, CGF.Builder.CreateNeg(VtorDisp));
1676 
1677     if (TA.Virtual.Microsoft.VBPtrOffset) {
1678       // If the final overrider is defined in a virtual base other than the one
1679       // that holds the vfptr, we have to use a vtordispex thunk which looks up
1680       // the vbtable of the derived class.
1681       assert(TA.Virtual.Microsoft.VBPtrOffset > 0);
1682       assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0);
1683       llvm::Value *VBPtr;
1684       llvm::Value *VBaseOffset =
1685           GetVBaseOffsetFromVBPtr(CGF, V, -TA.Virtual.Microsoft.VBPtrOffset,
1686                                   TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr);
1687       V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
1688     }
1689   }
1690 
1691   if (TA.NonVirtual) {
1692     // Non-virtual adjustment might result in a pointer outside the allocated
1693     // object, e.g. if the final overrider class is laid out after the virtual
1694     // base that declares a method in the most derived class.
1695     V = CGF.Builder.CreateConstGEP1_32(V, TA.NonVirtual);
1696   }
1697 
1698   // Don't need to bitcast back, the call CodeGen will handle this.
1699   return V;
1700 }
1701 
1702 llvm::Value *
performReturnAdjustment(CodeGenFunction & CGF,llvm::Value * Ret,const ReturnAdjustment & RA)1703 MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, llvm::Value *Ret,
1704                                          const ReturnAdjustment &RA) {
1705   if (RA.isEmpty())
1706     return Ret;
1707 
1708   llvm::Value *V = CGF.Builder.CreateBitCast(Ret, CGF.Int8PtrTy);
1709 
1710   if (RA.Virtual.Microsoft.VBIndex) {
1711     assert(RA.Virtual.Microsoft.VBIndex > 0);
1712     int32_t IntSize =
1713         getContext().getTypeSizeInChars(getContext().IntTy).getQuantity();
1714     llvm::Value *VBPtr;
1715     llvm::Value *VBaseOffset =
1716         GetVBaseOffsetFromVBPtr(CGF, V, RA.Virtual.Microsoft.VBPtrOffset,
1717                                 IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr);
1718     V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
1719   }
1720 
1721   if (RA.NonVirtual)
1722     V = CGF.Builder.CreateConstInBoundsGEP1_32(V, RA.NonVirtual);
1723 
1724   // Cast back to the original type.
1725   return CGF.Builder.CreateBitCast(V, Ret->getType());
1726 }
1727 
requiresArrayCookie(const CXXDeleteExpr * expr,QualType elementType)1728 bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr,
1729                                    QualType elementType) {
1730   // Microsoft seems to completely ignore the possibility of a
1731   // two-argument usual deallocation function.
1732   return elementType.isDestructedType();
1733 }
1734 
requiresArrayCookie(const CXXNewExpr * expr)1735 bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) {
1736   // Microsoft seems to completely ignore the possibility of a
1737   // two-argument usual deallocation function.
1738   return expr->getAllocatedType().isDestructedType();
1739 }
1740 
getArrayCookieSizeImpl(QualType type)1741 CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) {
1742   // The array cookie is always a size_t; we then pad that out to the
1743   // alignment of the element type.
1744   ASTContext &Ctx = getContext();
1745   return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()),
1746                   Ctx.getTypeAlignInChars(type));
1747 }
1748 
readArrayCookieImpl(CodeGenFunction & CGF,llvm::Value * allocPtr,CharUnits cookieSize)1749 llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
1750                                                   llvm::Value *allocPtr,
1751                                                   CharUnits cookieSize) {
1752   unsigned AS = allocPtr->getType()->getPointerAddressSpace();
1753   llvm::Value *numElementsPtr =
1754     CGF.Builder.CreateBitCast(allocPtr, CGF.SizeTy->getPointerTo(AS));
1755   return CGF.Builder.CreateLoad(numElementsPtr);
1756 }
1757 
InitializeArrayCookie(CodeGenFunction & CGF,llvm::Value * newPtr,llvm::Value * numElements,const CXXNewExpr * expr,QualType elementType)1758 llvm::Value* MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
1759                                                     llvm::Value *newPtr,
1760                                                     llvm::Value *numElements,
1761                                                     const CXXNewExpr *expr,
1762                                                     QualType elementType) {
1763   assert(requiresArrayCookie(expr));
1764 
1765   // The size of the cookie.
1766   CharUnits cookieSize = getArrayCookieSizeImpl(elementType);
1767 
1768   // Compute an offset to the cookie.
1769   llvm::Value *cookiePtr = newPtr;
1770 
1771   // Write the number of elements into the appropriate slot.
1772   unsigned AS = newPtr->getType()->getPointerAddressSpace();
1773   llvm::Value *numElementsPtr
1774     = CGF.Builder.CreateBitCast(cookiePtr, CGF.SizeTy->getPointerTo(AS));
1775   CGF.Builder.CreateStore(numElements, numElementsPtr);
1776 
1777   // Finally, compute a pointer to the actual data buffer by skipping
1778   // over the cookie completely.
1779   return CGF.Builder.CreateConstInBoundsGEP1_64(newPtr,
1780                                                 cookieSize.getQuantity());
1781 }
1782 
emitGlobalDtorWithTLRegDtor(CodeGenFunction & CGF,const VarDecl & VD,llvm::Constant * Dtor,llvm::Constant * Addr)1783 static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD,
1784                                         llvm::Constant *Dtor,
1785                                         llvm::Constant *Addr) {
1786   // Create a function which calls the destructor.
1787   llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr);
1788 
1789   // extern "C" int __tlregdtor(void (*f)(void));
1790   llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get(
1791       CGF.IntTy, DtorStub->getType(), /*IsVarArg=*/false);
1792 
1793   llvm::Constant *TLRegDtor =
1794       CGF.CGM.CreateRuntimeFunction(TLRegDtorTy, "__tlregdtor");
1795   if (llvm::Function *TLRegDtorFn = dyn_cast<llvm::Function>(TLRegDtor))
1796     TLRegDtorFn->setDoesNotThrow();
1797 
1798   CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub);
1799 }
1800 
registerGlobalDtor(CodeGenFunction & CGF,const VarDecl & D,llvm::Constant * Dtor,llvm::Constant * Addr)1801 void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
1802                                          llvm::Constant *Dtor,
1803                                          llvm::Constant *Addr) {
1804   if (D.getTLSKind())
1805     return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr);
1806 
1807   // The default behavior is to use atexit.
1808   CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr);
1809 }
1810 
EmitThreadLocalInitFuncs(CodeGenModule & CGM,ArrayRef<std::pair<const VarDecl *,llvm::GlobalVariable * >> CXXThreadLocals,ArrayRef<llvm::Function * > CXXThreadLocalInits,ArrayRef<llvm::GlobalVariable * > CXXThreadLocalInitVars)1811 void MicrosoftCXXABI::EmitThreadLocalInitFuncs(
1812     CodeGenModule &CGM,
1813     ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *>>
1814         CXXThreadLocals,
1815     ArrayRef<llvm::Function *> CXXThreadLocalInits,
1816     ArrayRef<llvm::GlobalVariable *> CXXThreadLocalInitVars) {
1817   // This will create a GV in the .CRT$XDU section.  It will point to our
1818   // initialization function.  The CRT will call all of these function
1819   // pointers at start-up time and, eventually, at thread-creation time.
1820   auto AddToXDU = [&CGM](llvm::Function *InitFunc) {
1821     llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable(
1822         CGM.getModule(), InitFunc->getType(), /*IsConstant=*/true,
1823         llvm::GlobalVariable::InternalLinkage, InitFunc,
1824         Twine(InitFunc->getName(), "$initializer$"));
1825     InitFuncPtr->setSection(".CRT$XDU");
1826     // This variable has discardable linkage, we have to add it to @llvm.used to
1827     // ensure it won't get discarded.
1828     CGM.addUsedGlobal(InitFuncPtr);
1829     return InitFuncPtr;
1830   };
1831 
1832   std::vector<llvm::Function *> NonComdatInits;
1833   for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) {
1834     llvm::GlobalVariable *GV = CXXThreadLocalInitVars[I];
1835     llvm::Function *F = CXXThreadLocalInits[I];
1836 
1837     // If the GV is already in a comdat group, then we have to join it.
1838     llvm::Comdat *C = GV->getComdat();
1839 
1840     // LinkOnce and Weak linkage are lowered down to a single-member comdat
1841     // group.
1842     // Make an explicit group so we can join it.
1843     if (!C && (GV->hasWeakLinkage() || GV->hasLinkOnceLinkage())) {
1844       C = CGM.getModule().getOrInsertComdat(GV->getName());
1845       GV->setComdat(C);
1846       AddToXDU(F)->setComdat(C);
1847     } else {
1848       NonComdatInits.push_back(F);
1849     }
1850   }
1851 
1852   if (!NonComdatInits.empty()) {
1853     llvm::FunctionType *FTy =
1854         llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
1855     llvm::Function *InitFunc = CGM.CreateGlobalInitOrDestructFunction(
1856         FTy, "__tls_init", SourceLocation(),
1857         /*TLS=*/true);
1858     CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits);
1859 
1860     AddToXDU(InitFunc);
1861   }
1862 }
1863 
EmitThreadLocalVarDeclLValue(CodeGenFunction & CGF,const VarDecl * VD,QualType LValType)1864 LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF,
1865                                                      const VarDecl *VD,
1866                                                      QualType LValType) {
1867   CGF.CGM.ErrorUnsupported(VD, "thread wrappers");
1868   return LValue();
1869 }
1870 
EmitGuardedInit(CodeGenFunction & CGF,const VarDecl & D,llvm::GlobalVariable * GV,bool PerformInit)1871 void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
1872                                       llvm::GlobalVariable *GV,
1873                                       bool PerformInit) {
1874   // MSVC only uses guards for static locals.
1875   if (!D.isStaticLocal()) {
1876     assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage());
1877     // GlobalOpt is allowed to discard the initializer, so use linkonce_odr.
1878     CGF.CurFn->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
1879     CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
1880     return;
1881   }
1882 
1883   // MSVC always uses an i32 bitfield to guard initialization, which is *not*
1884   // threadsafe.  Since the user may be linking in inline functions compiled by
1885   // cl.exe, there's no reason to provide a false sense of security by using
1886   // critical sections here.
1887 
1888   if (D.getTLSKind())
1889     CGM.ErrorUnsupported(&D, "dynamic TLS initialization");
1890 
1891   CGBuilderTy &Builder = CGF.Builder;
1892   llvm::IntegerType *GuardTy = CGF.Int32Ty;
1893   llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0);
1894 
1895   // Get the guard variable for this function if we have one already.
1896   GuardInfo *GI = &GuardVariableMap[D.getDeclContext()];
1897 
1898   unsigned BitIndex;
1899   if (D.isStaticLocal() && D.isExternallyVisible()) {
1900     // Externally visible variables have to be numbered in Sema to properly
1901     // handle unreachable VarDecls.
1902     BitIndex = getContext().getStaticLocalNumber(&D);
1903     assert(BitIndex > 0);
1904     BitIndex--;
1905   } else {
1906     // Non-externally visible variables are numbered here in CodeGen.
1907     BitIndex = GI->BitIndex++;
1908   }
1909 
1910   if (BitIndex >= 32) {
1911     if (D.isExternallyVisible())
1912       ErrorUnsupportedABI(CGF, "more than 32 guarded initializations");
1913     BitIndex %= 32;
1914     GI->Guard = nullptr;
1915   }
1916 
1917   // Lazily create the i32 bitfield for this function.
1918   if (!GI->Guard) {
1919     // Mangle the name for the guard.
1920     SmallString<256> GuardName;
1921     {
1922       llvm::raw_svector_ostream Out(GuardName);
1923       getMangleContext().mangleStaticGuardVariable(&D, Out);
1924       Out.flush();
1925     }
1926 
1927     // Create the guard variable with a zero-initializer. Just absorb linkage,
1928     // visibility and dll storage class from the guarded variable.
1929     GI->Guard =
1930         new llvm::GlobalVariable(CGM.getModule(), GuardTy, false,
1931                                  GV->getLinkage(), Zero, GuardName.str());
1932     GI->Guard->setVisibility(GV->getVisibility());
1933     GI->Guard->setDLLStorageClass(GV->getDLLStorageClass());
1934   } else {
1935     assert(GI->Guard->getLinkage() == GV->getLinkage() &&
1936            "static local from the same function had different linkage");
1937   }
1938 
1939   // Pseudo code for the test:
1940   // if (!(GuardVar & MyGuardBit)) {
1941   //   GuardVar |= MyGuardBit;
1942   //   ... initialize the object ...;
1943   // }
1944 
1945   // Test our bit from the guard variable.
1946   llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1U << BitIndex);
1947   llvm::LoadInst *LI = Builder.CreateLoad(GI->Guard);
1948   llvm::Value *IsInitialized =
1949       Builder.CreateICmpNE(Builder.CreateAnd(LI, Bit), Zero);
1950   llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
1951   llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
1952   Builder.CreateCondBr(IsInitialized, EndBlock, InitBlock);
1953 
1954   // Set our bit in the guard variable and emit the initializer and add a global
1955   // destructor if appropriate.
1956   CGF.EmitBlock(InitBlock);
1957   Builder.CreateStore(Builder.CreateOr(LI, Bit), GI->Guard);
1958   CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
1959   Builder.CreateBr(EndBlock);
1960 
1961   // Continue.
1962   CGF.EmitBlock(EndBlock);
1963 }
1964 
isZeroInitializable(const MemberPointerType * MPT)1965 bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
1966   // Null-ness for function memptrs only depends on the first field, which is
1967   // the function pointer.  The rest don't matter, so we can zero initialize.
1968   if (MPT->isMemberFunctionPointer())
1969     return true;
1970 
1971   // The virtual base adjustment field is always -1 for null, so if we have one
1972   // we can't zero initialize.  The field offset is sometimes also -1 if 0 is a
1973   // valid field offset.
1974   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
1975   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
1976   return (!MSInheritanceAttr::hasVBTableOffsetField(Inheritance) &&
1977           RD->nullFieldOffsetIsZero());
1978 }
1979 
1980 llvm::Type *
ConvertMemberPointerType(const MemberPointerType * MPT)1981 MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
1982   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
1983   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
1984   llvm::SmallVector<llvm::Type *, 4> fields;
1985   if (MPT->isMemberFunctionPointer())
1986     fields.push_back(CGM.VoidPtrTy);  // FunctionPointerOrVirtualThunk
1987   else
1988     fields.push_back(CGM.IntTy);  // FieldOffset
1989 
1990   if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(),
1991                                           Inheritance))
1992     fields.push_back(CGM.IntTy);
1993   if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
1994     fields.push_back(CGM.IntTy);
1995   if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
1996     fields.push_back(CGM.IntTy);  // VirtualBaseAdjustmentOffset
1997 
1998   if (fields.size() == 1)
1999     return fields[0];
2000   return llvm::StructType::get(CGM.getLLVMContext(), fields);
2001 }
2002 
2003 void MicrosoftCXXABI::
GetNullMemberPointerFields(const MemberPointerType * MPT,llvm::SmallVectorImpl<llvm::Constant * > & fields)2004 GetNullMemberPointerFields(const MemberPointerType *MPT,
2005                            llvm::SmallVectorImpl<llvm::Constant *> &fields) {
2006   assert(fields.empty());
2007   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2008   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2009   if (MPT->isMemberFunctionPointer()) {
2010     // FunctionPointerOrVirtualThunk
2011     fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
2012   } else {
2013     if (RD->nullFieldOffsetIsZero())
2014       fields.push_back(getZeroInt());  // FieldOffset
2015     else
2016       fields.push_back(getAllOnesInt());  // FieldOffset
2017   }
2018 
2019   if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(),
2020                                           Inheritance))
2021     fields.push_back(getZeroInt());
2022   if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
2023     fields.push_back(getZeroInt());
2024   if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2025     fields.push_back(getAllOnesInt());
2026 }
2027 
2028 llvm::Constant *
EmitNullMemberPointer(const MemberPointerType * MPT)2029 MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
2030   llvm::SmallVector<llvm::Constant *, 4> fields;
2031   GetNullMemberPointerFields(MPT, fields);
2032   if (fields.size() == 1)
2033     return fields[0];
2034   llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields);
2035   assert(Res->getType() == ConvertMemberPointerType(MPT));
2036   return Res;
2037 }
2038 
2039 llvm::Constant *
EmitFullMemberPointer(llvm::Constant * FirstField,bool IsMemberFunction,const CXXRecordDecl * RD,CharUnits NonVirtualBaseAdjustment)2040 MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField,
2041                                        bool IsMemberFunction,
2042                                        const CXXRecordDecl *RD,
2043                                        CharUnits NonVirtualBaseAdjustment)
2044 {
2045   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2046 
2047   // Single inheritance class member pointer are represented as scalars instead
2048   // of aggregates.
2049   if (MSInheritanceAttr::hasOnlyOneField(IsMemberFunction, Inheritance))
2050     return FirstField;
2051 
2052   llvm::SmallVector<llvm::Constant *, 4> fields;
2053   fields.push_back(FirstField);
2054 
2055   if (MSInheritanceAttr::hasNVOffsetField(IsMemberFunction, Inheritance))
2056     fields.push_back(llvm::ConstantInt::get(
2057       CGM.IntTy, NonVirtualBaseAdjustment.getQuantity()));
2058 
2059   if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) {
2060     CharUnits Offs = CharUnits::Zero();
2061     if (RD->getNumVBases())
2062       Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
2063     fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity()));
2064   }
2065 
2066   // The rest of the fields are adjusted by conversions to a more derived class.
2067   if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2068     fields.push_back(getZeroInt());
2069 
2070   return llvm::ConstantStruct::getAnon(fields);
2071 }
2072 
2073 llvm::Constant *
EmitMemberDataPointer(const MemberPointerType * MPT,CharUnits offset)2074 MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
2075                                        CharUnits offset) {
2076   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2077   llvm::Constant *FirstField =
2078     llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity());
2079   return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD,
2080                                CharUnits::Zero());
2081 }
2082 
EmitMemberPointer(const CXXMethodDecl * MD)2083 llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) {
2084   return BuildMemberPointer(MD->getParent(), MD, CharUnits::Zero());
2085 }
2086 
EmitMemberPointer(const APValue & MP,QualType MPType)2087 llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP,
2088                                                    QualType MPType) {
2089   const MemberPointerType *MPT = MPType->castAs<MemberPointerType>();
2090   const ValueDecl *MPD = MP.getMemberPointerDecl();
2091   if (!MPD)
2092     return EmitNullMemberPointer(MPT);
2093 
2094   CharUnits ThisAdjustment = getMemberPointerPathAdjustment(MP);
2095 
2096   // FIXME PR15713: Support virtual inheritance paths.
2097 
2098   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD))
2099     return BuildMemberPointer(MPT->getMostRecentCXXRecordDecl(), MD,
2100                               ThisAdjustment);
2101 
2102   CharUnits FieldOffset =
2103     getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD));
2104   return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset);
2105 }
2106 
2107 llvm::Constant *
BuildMemberPointer(const CXXRecordDecl * RD,const CXXMethodDecl * MD,CharUnits NonVirtualBaseAdjustment)2108 MicrosoftCXXABI::BuildMemberPointer(const CXXRecordDecl *RD,
2109                                     const CXXMethodDecl *MD,
2110                                     CharUnits NonVirtualBaseAdjustment) {
2111   assert(MD->isInstance() && "Member function must not be static!");
2112   MD = MD->getCanonicalDecl();
2113   RD = RD->getMostRecentDecl();
2114   CodeGenTypes &Types = CGM.getTypes();
2115 
2116   llvm::Constant *FirstField;
2117   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
2118   if (!MD->isVirtual()) {
2119     llvm::Type *Ty;
2120     // Check whether the function has a computable LLVM signature.
2121     if (Types.isFuncTypeConvertible(FPT)) {
2122       // The function has a computable LLVM signature; use the correct type.
2123       Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
2124     } else {
2125       // Use an arbitrary non-function type to tell GetAddrOfFunction that the
2126       // function type is incomplete.
2127       Ty = CGM.PtrDiffTy;
2128     }
2129     FirstField = CGM.GetAddrOfFunction(MD, Ty);
2130     FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy);
2131   } else {
2132     MicrosoftVTableContext::MethodVFTableLocation ML =
2133         CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD);
2134     if (!CGM.getTypes().isFuncTypeConvertible(
2135             MD->getType()->castAs<FunctionType>())) {
2136       CGM.ErrorUnsupported(MD, "pointer to virtual member function with "
2137                                "incomplete return or parameter type");
2138       FirstField = llvm::Constant::getNullValue(CGM.VoidPtrTy);
2139     } else if (FPT->getCallConv() == CC_X86FastCall) {
2140       CGM.ErrorUnsupported(MD, "pointer to fastcall virtual member function");
2141       FirstField = llvm::Constant::getNullValue(CGM.VoidPtrTy);
2142     } else if (ML.VBase) {
2143       CGM.ErrorUnsupported(MD, "pointer to virtual member function overriding "
2144                                "member function in virtual base class");
2145       FirstField = llvm::Constant::getNullValue(CGM.VoidPtrTy);
2146     } else {
2147       llvm::Function *Thunk = EmitVirtualMemPtrThunk(MD, ML);
2148       FirstField = llvm::ConstantExpr::getBitCast(Thunk, CGM.VoidPtrTy);
2149       // Include the vfptr adjustment if the method is in a non-primary vftable.
2150       NonVirtualBaseAdjustment += ML.VFPtrOffset;
2151     }
2152   }
2153 
2154   // The rest of the fields are common with data member pointers.
2155   return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD,
2156                                NonVirtualBaseAdjustment);
2157 }
2158 
2159 /// Member pointers are the same if they're either bitwise identical *or* both
2160 /// null.  Null-ness for function members is determined by the first field,
2161 /// while for data member pointers we must compare all fields.
2162 llvm::Value *
EmitMemberPointerComparison(CodeGenFunction & CGF,llvm::Value * L,llvm::Value * R,const MemberPointerType * MPT,bool Inequality)2163 MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
2164                                              llvm::Value *L,
2165                                              llvm::Value *R,
2166                                              const MemberPointerType *MPT,
2167                                              bool Inequality) {
2168   CGBuilderTy &Builder = CGF.Builder;
2169 
2170   // Handle != comparisons by switching the sense of all boolean operations.
2171   llvm::ICmpInst::Predicate Eq;
2172   llvm::Instruction::BinaryOps And, Or;
2173   if (Inequality) {
2174     Eq = llvm::ICmpInst::ICMP_NE;
2175     And = llvm::Instruction::Or;
2176     Or = llvm::Instruction::And;
2177   } else {
2178     Eq = llvm::ICmpInst::ICMP_EQ;
2179     And = llvm::Instruction::And;
2180     Or = llvm::Instruction::Or;
2181   }
2182 
2183   // If this is a single field member pointer (single inheritance), this is a
2184   // single icmp.
2185   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2186   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2187   if (MSInheritanceAttr::hasOnlyOneField(MPT->isMemberFunctionPointer(),
2188                                          Inheritance))
2189     return Builder.CreateICmp(Eq, L, R);
2190 
2191   // Compare the first field.
2192   llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0");
2193   llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0");
2194   llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first");
2195 
2196   // Compare everything other than the first field.
2197   llvm::Value *Res = nullptr;
2198   llvm::StructType *LType = cast<llvm::StructType>(L->getType());
2199   for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) {
2200     llvm::Value *LF = Builder.CreateExtractValue(L, I);
2201     llvm::Value *RF = Builder.CreateExtractValue(R, I);
2202     llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest");
2203     if (Res)
2204       Res = Builder.CreateBinOp(And, Res, Cmp);
2205     else
2206       Res = Cmp;
2207   }
2208 
2209   // Check if the first field is 0 if this is a function pointer.
2210   if (MPT->isMemberFunctionPointer()) {
2211     // (l1 == r1 && ...) || l0 == 0
2212     llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType());
2213     llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero");
2214     Res = Builder.CreateBinOp(Or, Res, IsZero);
2215   }
2216 
2217   // Combine the comparison of the first field, which must always be true for
2218   // this comparison to succeeed.
2219   return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp");
2220 }
2221 
2222 llvm::Value *
EmitMemberPointerIsNotNull(CodeGenFunction & CGF,llvm::Value * MemPtr,const MemberPointerType * MPT)2223 MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
2224                                             llvm::Value *MemPtr,
2225                                             const MemberPointerType *MPT) {
2226   CGBuilderTy &Builder = CGF.Builder;
2227   llvm::SmallVector<llvm::Constant *, 4> fields;
2228   // We only need one field for member functions.
2229   if (MPT->isMemberFunctionPointer())
2230     fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
2231   else
2232     GetNullMemberPointerFields(MPT, fields);
2233   assert(!fields.empty());
2234   llvm::Value *FirstField = MemPtr;
2235   if (MemPtr->getType()->isStructTy())
2236     FirstField = Builder.CreateExtractValue(MemPtr, 0);
2237   llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0");
2238 
2239   // For function member pointers, we only need to test the function pointer
2240   // field.  The other fields if any can be garbage.
2241   if (MPT->isMemberFunctionPointer())
2242     return Res;
2243 
2244   // Otherwise, emit a series of compares and combine the results.
2245   for (int I = 1, E = fields.size(); I < E; ++I) {
2246     llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I);
2247     llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp");
2248     Res = Builder.CreateOr(Res, Next, "memptr.tobool");
2249   }
2250   return Res;
2251 }
2252 
MemberPointerConstantIsNull(const MemberPointerType * MPT,llvm::Constant * Val)2253 bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT,
2254                                                   llvm::Constant *Val) {
2255   // Function pointers are null if the pointer in the first field is null.
2256   if (MPT->isMemberFunctionPointer()) {
2257     llvm::Constant *FirstField = Val->getType()->isStructTy() ?
2258       Val->getAggregateElement(0U) : Val;
2259     return FirstField->isNullValue();
2260   }
2261 
2262   // If it's not a function pointer and it's zero initializable, we can easily
2263   // check zero.
2264   if (isZeroInitializable(MPT) && Val->isNullValue())
2265     return true;
2266 
2267   // Otherwise, break down all the fields for comparison.  Hopefully these
2268   // little Constants are reused, while a big null struct might not be.
2269   llvm::SmallVector<llvm::Constant *, 4> Fields;
2270   GetNullMemberPointerFields(MPT, Fields);
2271   if (Fields.size() == 1) {
2272     assert(Val->getType()->isIntegerTy());
2273     return Val == Fields[0];
2274   }
2275 
2276   unsigned I, E;
2277   for (I = 0, E = Fields.size(); I != E; ++I) {
2278     if (Val->getAggregateElement(I) != Fields[I])
2279       break;
2280   }
2281   return I == E;
2282 }
2283 
2284 llvm::Value *
GetVBaseOffsetFromVBPtr(CodeGenFunction & CGF,llvm::Value * This,llvm::Value * VBPtrOffset,llvm::Value * VBTableOffset,llvm::Value ** VBPtrOut)2285 MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
2286                                          llvm::Value *This,
2287                                          llvm::Value *VBPtrOffset,
2288                                          llvm::Value *VBTableOffset,
2289                                          llvm::Value **VBPtrOut) {
2290   CGBuilderTy &Builder = CGF.Builder;
2291   // Load the vbtable pointer from the vbptr in the instance.
2292   This = Builder.CreateBitCast(This, CGM.Int8PtrTy);
2293   llvm::Value *VBPtr =
2294     Builder.CreateInBoundsGEP(This, VBPtrOffset, "vbptr");
2295   if (VBPtrOut) *VBPtrOut = VBPtr;
2296   VBPtr = Builder.CreateBitCast(VBPtr,
2297                                 CGM.Int32Ty->getPointerTo(0)->getPointerTo(0));
2298   llvm::Value *VBTable = Builder.CreateLoad(VBPtr, "vbtable");
2299 
2300   // Translate from byte offset to table index. It improves analyzability.
2301   llvm::Value *VBTableIndex = Builder.CreateAShr(
2302       VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2),
2303       "vbtindex", /*isExact=*/true);
2304 
2305   // Load an i32 offset from the vb-table.
2306   llvm::Value *VBaseOffs = Builder.CreateInBoundsGEP(VBTable, VBTableIndex);
2307   VBaseOffs = Builder.CreateBitCast(VBaseOffs, CGM.Int32Ty->getPointerTo(0));
2308   return Builder.CreateLoad(VBaseOffs, "vbase_offs");
2309 }
2310 
2311 // Returns an adjusted base cast to i8*, since we do more address arithmetic on
2312 // it.
AdjustVirtualBase(CodeGenFunction & CGF,const Expr * E,const CXXRecordDecl * RD,llvm::Value * Base,llvm::Value * VBTableOffset,llvm::Value * VBPtrOffset)2313 llvm::Value *MicrosoftCXXABI::AdjustVirtualBase(
2314     CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD,
2315     llvm::Value *Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) {
2316   CGBuilderTy &Builder = CGF.Builder;
2317   Base = Builder.CreateBitCast(Base, CGM.Int8PtrTy);
2318   llvm::BasicBlock *OriginalBB = nullptr;
2319   llvm::BasicBlock *SkipAdjustBB = nullptr;
2320   llvm::BasicBlock *VBaseAdjustBB = nullptr;
2321 
2322   // In the unspecified inheritance model, there might not be a vbtable at all,
2323   // in which case we need to skip the virtual base lookup.  If there is a
2324   // vbtable, the first entry is a no-op entry that gives back the original
2325   // base, so look for a virtual base adjustment offset of zero.
2326   if (VBPtrOffset) {
2327     OriginalBB = Builder.GetInsertBlock();
2328     VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust");
2329     SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust");
2330     llvm::Value *IsVirtual =
2331       Builder.CreateICmpNE(VBTableOffset, getZeroInt(),
2332                            "memptr.is_vbase");
2333     Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB);
2334     CGF.EmitBlock(VBaseAdjustBB);
2335   }
2336 
2337   // If we weren't given a dynamic vbptr offset, RD should be complete and we'll
2338   // know the vbptr offset.
2339   if (!VBPtrOffset) {
2340     CharUnits offs = CharUnits::Zero();
2341     if (!RD->hasDefinition()) {
2342       DiagnosticsEngine &Diags = CGF.CGM.getDiags();
2343       unsigned DiagID = Diags.getCustomDiagID(
2344           DiagnosticsEngine::Error,
2345           "member pointer representation requires a "
2346           "complete class type for %0 to perform this expression");
2347       Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange();
2348     } else if (RD->getNumVBases())
2349       offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
2350     VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity());
2351   }
2352   llvm::Value *VBPtr = nullptr;
2353   llvm::Value *VBaseOffs =
2354     GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr);
2355   llvm::Value *AdjustedBase = Builder.CreateInBoundsGEP(VBPtr, VBaseOffs);
2356 
2357   // Merge control flow with the case where we didn't have to adjust.
2358   if (VBaseAdjustBB) {
2359     Builder.CreateBr(SkipAdjustBB);
2360     CGF.EmitBlock(SkipAdjustBB);
2361     llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base");
2362     Phi->addIncoming(Base, OriginalBB);
2363     Phi->addIncoming(AdjustedBase, VBaseAdjustBB);
2364     return Phi;
2365   }
2366   return AdjustedBase;
2367 }
2368 
EmitMemberDataPointerAddress(CodeGenFunction & CGF,const Expr * E,llvm::Value * Base,llvm::Value * MemPtr,const MemberPointerType * MPT)2369 llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress(
2370     CodeGenFunction &CGF, const Expr *E, llvm::Value *Base, llvm::Value *MemPtr,
2371     const MemberPointerType *MPT) {
2372   assert(MPT->isMemberDataPointer());
2373   unsigned AS = Base->getType()->getPointerAddressSpace();
2374   llvm::Type *PType =
2375       CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
2376   CGBuilderTy &Builder = CGF.Builder;
2377   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2378   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2379 
2380   // Extract the fields we need, regardless of model.  We'll apply them if we
2381   // have them.
2382   llvm::Value *FieldOffset = MemPtr;
2383   llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
2384   llvm::Value *VBPtrOffset = nullptr;
2385   if (MemPtr->getType()->isStructTy()) {
2386     // We need to extract values.
2387     unsigned I = 0;
2388     FieldOffset = Builder.CreateExtractValue(MemPtr, I++);
2389     if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
2390       VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
2391     if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2392       VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
2393   }
2394 
2395   if (VirtualBaseAdjustmentOffset) {
2396     Base = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset,
2397                              VBPtrOffset);
2398   }
2399 
2400   // Cast to char*.
2401   Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS));
2402 
2403   // Apply the offset, which we assume is non-null.
2404   llvm::Value *Addr =
2405     Builder.CreateInBoundsGEP(Base, FieldOffset, "memptr.offset");
2406 
2407   // Cast the address to the appropriate pointer type, adopting the address
2408   // space of the base pointer.
2409   return Builder.CreateBitCast(Addr, PType);
2410 }
2411 
2412 static MSInheritanceAttr::Spelling
getInheritanceFromMemptr(const MemberPointerType * MPT)2413 getInheritanceFromMemptr(const MemberPointerType *MPT) {
2414   return MPT->getMostRecentCXXRecordDecl()->getMSInheritanceModel();
2415 }
2416 
2417 llvm::Value *
EmitMemberPointerConversion(CodeGenFunction & CGF,const CastExpr * E,llvm::Value * Src)2418 MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
2419                                              const CastExpr *E,
2420                                              llvm::Value *Src) {
2421   assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
2422          E->getCastKind() == CK_BaseToDerivedMemberPointer ||
2423          E->getCastKind() == CK_ReinterpretMemberPointer);
2424 
2425   // Use constant emission if we can.
2426   if (isa<llvm::Constant>(Src))
2427     return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src));
2428 
2429   // We may be adding or dropping fields from the member pointer, so we need
2430   // both types and the inheritance models of both records.
2431   const MemberPointerType *SrcTy =
2432     E->getSubExpr()->getType()->castAs<MemberPointerType>();
2433   const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
2434   bool IsFunc = SrcTy->isMemberFunctionPointer();
2435 
2436   // If the classes use the same null representation, reinterpret_cast is a nop.
2437   bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer;
2438   if (IsReinterpret && IsFunc)
2439     return Src;
2440 
2441   CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
2442   CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
2443   if (IsReinterpret &&
2444       SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero())
2445     return Src;
2446 
2447   CGBuilderTy &Builder = CGF.Builder;
2448 
2449   // Branch past the conversion if Src is null.
2450   llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy);
2451   llvm::Constant *DstNull = EmitNullMemberPointer(DstTy);
2452 
2453   // C++ 5.2.10p9: The null member pointer value is converted to the null member
2454   //   pointer value of the destination type.
2455   if (IsReinterpret) {
2456     // For reinterpret casts, sema ensures that src and dst are both functions
2457     // or data and have the same size, which means the LLVM types should match.
2458     assert(Src->getType() == DstNull->getType());
2459     return Builder.CreateSelect(IsNotNull, Src, DstNull);
2460   }
2461 
2462   llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock();
2463   llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert");
2464   llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted");
2465   Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB);
2466   CGF.EmitBlock(ConvertBB);
2467 
2468   // Decompose src.
2469   llvm::Value *FirstField = Src;
2470   llvm::Value *NonVirtualBaseAdjustment = nullptr;
2471   llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
2472   llvm::Value *VBPtrOffset = nullptr;
2473   MSInheritanceAttr::Spelling SrcInheritance = SrcRD->getMSInheritanceModel();
2474   if (!MSInheritanceAttr::hasOnlyOneField(IsFunc, SrcInheritance)) {
2475     // We need to extract values.
2476     unsigned I = 0;
2477     FirstField = Builder.CreateExtractValue(Src, I++);
2478     if (MSInheritanceAttr::hasNVOffsetField(IsFunc, SrcInheritance))
2479       NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++);
2480     if (MSInheritanceAttr::hasVBPtrOffsetField(SrcInheritance))
2481       VBPtrOffset = Builder.CreateExtractValue(Src, I++);
2482     if (MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance))
2483       VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++);
2484   }
2485 
2486   // For data pointers, we adjust the field offset directly.  For functions, we
2487   // have a separate field.
2488   llvm::Constant *Adj = getMemberPointerAdjustment(E);
2489   if (Adj) {
2490     Adj = llvm::ConstantExpr::getTruncOrBitCast(Adj, CGM.IntTy);
2491     llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField;
2492     bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
2493     if (!NVAdjustField)  // If this field didn't exist in src, it's zero.
2494       NVAdjustField = getZeroInt();
2495     if (isDerivedToBase)
2496       NVAdjustField = Builder.CreateNSWSub(NVAdjustField, Adj, "adj");
2497     else
2498       NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, Adj, "adj");
2499   }
2500 
2501   // FIXME PR15713: Support conversions through virtually derived classes.
2502 
2503   // Recompose dst from the null struct and the adjusted fields from src.
2504   MSInheritanceAttr::Spelling DstInheritance = DstRD->getMSInheritanceModel();
2505   llvm::Value *Dst;
2506   if (MSInheritanceAttr::hasOnlyOneField(IsFunc, DstInheritance)) {
2507     Dst = FirstField;
2508   } else {
2509     Dst = llvm::UndefValue::get(DstNull->getType());
2510     unsigned Idx = 0;
2511     Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++);
2512     if (MSInheritanceAttr::hasNVOffsetField(IsFunc, DstInheritance))
2513       Dst = Builder.CreateInsertValue(
2514         Dst, getValueOrZeroInt(NonVirtualBaseAdjustment), Idx++);
2515     if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance))
2516       Dst = Builder.CreateInsertValue(
2517         Dst, getValueOrZeroInt(VBPtrOffset), Idx++);
2518     if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance))
2519       Dst = Builder.CreateInsertValue(
2520         Dst, getValueOrZeroInt(VirtualBaseAdjustmentOffset), Idx++);
2521   }
2522   Builder.CreateBr(ContinueBB);
2523 
2524   // In the continuation, choose between DstNull and Dst.
2525   CGF.EmitBlock(ContinueBB);
2526   llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted");
2527   Phi->addIncoming(DstNull, OriginalBB);
2528   Phi->addIncoming(Dst, ConvertBB);
2529   return Phi;
2530 }
2531 
2532 llvm::Constant *
EmitMemberPointerConversion(const CastExpr * E,llvm::Constant * Src)2533 MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E,
2534                                              llvm::Constant *Src) {
2535   const MemberPointerType *SrcTy =
2536     E->getSubExpr()->getType()->castAs<MemberPointerType>();
2537   const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
2538 
2539   // If src is null, emit a new null for dst.  We can't return src because dst
2540   // might have a new representation.
2541   if (MemberPointerConstantIsNull(SrcTy, Src))
2542     return EmitNullMemberPointer(DstTy);
2543 
2544   // We don't need to do anything for reinterpret_casts of non-null member
2545   // pointers.  We should only get here when the two type representations have
2546   // the same size.
2547   if (E->getCastKind() == CK_ReinterpretMemberPointer)
2548     return Src;
2549 
2550   MSInheritanceAttr::Spelling SrcInheritance = getInheritanceFromMemptr(SrcTy);
2551   MSInheritanceAttr::Spelling DstInheritance = getInheritanceFromMemptr(DstTy);
2552 
2553   // Decompose src.
2554   llvm::Constant *FirstField = Src;
2555   llvm::Constant *NonVirtualBaseAdjustment = nullptr;
2556   llvm::Constant *VirtualBaseAdjustmentOffset = nullptr;
2557   llvm::Constant *VBPtrOffset = nullptr;
2558   bool IsFunc = SrcTy->isMemberFunctionPointer();
2559   if (!MSInheritanceAttr::hasOnlyOneField(IsFunc, SrcInheritance)) {
2560     // We need to extract values.
2561     unsigned I = 0;
2562     FirstField = Src->getAggregateElement(I++);
2563     if (MSInheritanceAttr::hasNVOffsetField(IsFunc, SrcInheritance))
2564       NonVirtualBaseAdjustment = Src->getAggregateElement(I++);
2565     if (MSInheritanceAttr::hasVBPtrOffsetField(SrcInheritance))
2566       VBPtrOffset = Src->getAggregateElement(I++);
2567     if (MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance))
2568       VirtualBaseAdjustmentOffset = Src->getAggregateElement(I++);
2569   }
2570 
2571   // For data pointers, we adjust the field offset directly.  For functions, we
2572   // have a separate field.
2573   llvm::Constant *Adj = getMemberPointerAdjustment(E);
2574   if (Adj) {
2575     Adj = llvm::ConstantExpr::getTruncOrBitCast(Adj, CGM.IntTy);
2576     llvm::Constant *&NVAdjustField =
2577       IsFunc ? NonVirtualBaseAdjustment : FirstField;
2578     bool IsDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
2579     if (!NVAdjustField)  // If this field didn't exist in src, it's zero.
2580       NVAdjustField = getZeroInt();
2581     if (IsDerivedToBase)
2582       NVAdjustField = llvm::ConstantExpr::getNSWSub(NVAdjustField, Adj);
2583     else
2584       NVAdjustField = llvm::ConstantExpr::getNSWAdd(NVAdjustField, Adj);
2585   }
2586 
2587   // FIXME PR15713: Support conversions through virtually derived classes.
2588 
2589   // Recompose dst from the null struct and the adjusted fields from src.
2590   if (MSInheritanceAttr::hasOnlyOneField(IsFunc, DstInheritance))
2591     return FirstField;
2592 
2593   llvm::SmallVector<llvm::Constant *, 4> Fields;
2594   Fields.push_back(FirstField);
2595   if (MSInheritanceAttr::hasNVOffsetField(IsFunc, DstInheritance))
2596     Fields.push_back(getConstantOrZeroInt(NonVirtualBaseAdjustment));
2597   if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance))
2598     Fields.push_back(getConstantOrZeroInt(VBPtrOffset));
2599   if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance))
2600     Fields.push_back(getConstantOrZeroInt(VirtualBaseAdjustmentOffset));
2601   return llvm::ConstantStruct::getAnon(Fields);
2602 }
2603 
EmitLoadOfMemberFunctionPointer(CodeGenFunction & CGF,const Expr * E,llvm::Value * & This,llvm::Value * MemPtr,const MemberPointerType * MPT)2604 llvm::Value *MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer(
2605     CodeGenFunction &CGF, const Expr *E, llvm::Value *&This,
2606     llvm::Value *MemPtr, const MemberPointerType *MPT) {
2607   assert(MPT->isMemberFunctionPointer());
2608   const FunctionProtoType *FPT =
2609     MPT->getPointeeType()->castAs<FunctionProtoType>();
2610   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2611   llvm::FunctionType *FTy =
2612     CGM.getTypes().GetFunctionType(
2613       CGM.getTypes().arrangeCXXMethodType(RD, FPT));
2614   CGBuilderTy &Builder = CGF.Builder;
2615 
2616   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2617 
2618   // Extract the fields we need, regardless of model.  We'll apply them if we
2619   // have them.
2620   llvm::Value *FunctionPointer = MemPtr;
2621   llvm::Value *NonVirtualBaseAdjustment = nullptr;
2622   llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
2623   llvm::Value *VBPtrOffset = nullptr;
2624   if (MemPtr->getType()->isStructTy()) {
2625     // We need to extract values.
2626     unsigned I = 0;
2627     FunctionPointer = Builder.CreateExtractValue(MemPtr, I++);
2628     if (MSInheritanceAttr::hasNVOffsetField(MPT, Inheritance))
2629       NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++);
2630     if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
2631       VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
2632     if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2633       VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
2634   }
2635 
2636   if (VirtualBaseAdjustmentOffset) {
2637     This = AdjustVirtualBase(CGF, E, RD, This, VirtualBaseAdjustmentOffset,
2638                              VBPtrOffset);
2639   }
2640 
2641   if (NonVirtualBaseAdjustment) {
2642     // Apply the adjustment and cast back to the original struct type.
2643     llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy());
2644     Ptr = Builder.CreateInBoundsGEP(Ptr, NonVirtualBaseAdjustment);
2645     This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted");
2646   }
2647 
2648   return Builder.CreateBitCast(FunctionPointer, FTy->getPointerTo());
2649 }
2650 
CreateMicrosoftCXXABI(CodeGenModule & CGM)2651 CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) {
2652   return new MicrosoftCXXABI(CGM);
2653 }
2654 
2655 // MS RTTI Overview:
2656 // The run time type information emitted by cl.exe contains 5 distinct types of
2657 // structures.  Many of them reference each other.
2658 //
2659 // TypeInfo:  Static classes that are returned by typeid.
2660 //
2661 // CompleteObjectLocator:  Referenced by vftables.  They contain information
2662 //   required for dynamic casting, including OffsetFromTop.  They also contain
2663 //   a reference to the TypeInfo for the type and a reference to the
2664 //   CompleteHierarchyDescriptor for the type.
2665 //
2666 // ClassHieararchyDescriptor: Contains information about a class hierarchy.
2667 //   Used during dynamic_cast to walk a class hierarchy.  References a base
2668 //   class array and the size of said array.
2669 //
2670 // BaseClassArray: Contains a list of classes in a hierarchy.  BaseClassArray is
2671 //   somewhat of a misnomer because the most derived class is also in the list
2672 //   as well as multiple copies of virtual bases (if they occur multiple times
2673 //   in the hiearchy.)  The BaseClassArray contains one BaseClassDescriptor for
2674 //   every path in the hierarchy, in pre-order depth first order.  Note, we do
2675 //   not declare a specific llvm type for BaseClassArray, it's merely an array
2676 //   of BaseClassDescriptor pointers.
2677 //
2678 // BaseClassDescriptor: Contains information about a class in a class hierarchy.
2679 //   BaseClassDescriptor is also somewhat of a misnomer for the same reason that
2680 //   BaseClassArray is.  It contains information about a class within a
2681 //   hierarchy such as: is this base is ambiguous and what is its offset in the
2682 //   vbtable.  The names of the BaseClassDescriptors have all of their fields
2683 //   mangled into them so they can be aggressively deduplicated by the linker.
2684 
getTypeInfoVTable(CodeGenModule & CGM)2685 static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) {
2686   StringRef MangledName("\01??_7type_info@@6B@");
2687   if (auto VTable = CGM.getModule().getNamedGlobal(MangledName))
2688     return VTable;
2689   return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy,
2690                                   /*Constant=*/true,
2691                                   llvm::GlobalVariable::ExternalLinkage,
2692                                   /*Initializer=*/nullptr, MangledName);
2693 }
2694 
2695 namespace {
2696 
2697 /// \brief A Helper struct that stores information about a class in a class
2698 /// hierarchy.  The information stored in these structs struct is used during
2699 /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors.
2700 // During RTTI creation, MSRTTIClasses are stored in a contiguous array with
2701 // implicit depth first pre-order tree connectivity.  getFirstChild and
2702 // getNextSibling allow us to walk the tree efficiently.
2703 struct MSRTTIClass {
2704   enum {
2705     IsPrivateOnPath = 1 | 8,
2706     IsAmbiguous = 2,
2707     IsPrivate = 4,
2708     IsVirtual = 16,
2709     HasHierarchyDescriptor = 64
2710   };
MSRTTIClass__anond02e9b3e0311::MSRTTIClass2711   MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {}
2712   uint32_t initialize(const MSRTTIClass *Parent,
2713                       const CXXBaseSpecifier *Specifier);
2714 
getFirstChild__anond02e9b3e0311::MSRTTIClass2715   MSRTTIClass *getFirstChild() { return this + 1; }
getNextChild__anond02e9b3e0311::MSRTTIClass2716   static MSRTTIClass *getNextChild(MSRTTIClass *Child) {
2717     return Child + 1 + Child->NumBases;
2718   }
2719 
2720   const CXXRecordDecl *RD, *VirtualRoot;
2721   uint32_t Flags, NumBases, OffsetInVBase;
2722 };
2723 
2724 /// \brief Recursively initialize the base class array.
initialize(const MSRTTIClass * Parent,const CXXBaseSpecifier * Specifier)2725 uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent,
2726                                  const CXXBaseSpecifier *Specifier) {
2727   Flags = HasHierarchyDescriptor;
2728   if (!Parent) {
2729     VirtualRoot = nullptr;
2730     OffsetInVBase = 0;
2731   } else {
2732     if (Specifier->getAccessSpecifier() != AS_public)
2733       Flags |= IsPrivate | IsPrivateOnPath;
2734     if (Specifier->isVirtual()) {
2735       Flags |= IsVirtual;
2736       VirtualRoot = RD;
2737       OffsetInVBase = 0;
2738     } else {
2739       if (Parent->Flags & IsPrivateOnPath)
2740         Flags |= IsPrivateOnPath;
2741       VirtualRoot = Parent->VirtualRoot;
2742       OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext()
2743           .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity();
2744     }
2745   }
2746   NumBases = 0;
2747   MSRTTIClass *Child = getFirstChild();
2748   for (const CXXBaseSpecifier &Base : RD->bases()) {
2749     NumBases += Child->initialize(this, &Base) + 1;
2750     Child = getNextChild(Child);
2751   }
2752   return NumBases;
2753 }
2754 
getLinkageForRTTI(QualType Ty)2755 static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) {
2756   switch (Ty->getLinkage()) {
2757   case NoLinkage:
2758   case InternalLinkage:
2759   case UniqueExternalLinkage:
2760     return llvm::GlobalValue::InternalLinkage;
2761 
2762   case VisibleNoLinkage:
2763   case ExternalLinkage:
2764     return llvm::GlobalValue::LinkOnceODRLinkage;
2765   }
2766   llvm_unreachable("Invalid linkage!");
2767 }
2768 
2769 /// \brief An ephemeral helper class for building MS RTTI types.  It caches some
2770 /// calls to the module and information about the most derived class in a
2771 /// hierarchy.
2772 struct MSRTTIBuilder {
2773   enum {
2774     HasBranchingHierarchy = 1,
2775     HasVirtualBranchingHierarchy = 2,
2776     HasAmbiguousBases = 4
2777   };
2778 
MSRTTIBuilder__anond02e9b3e0311::MSRTTIBuilder2779   MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD)
2780       : CGM(ABI.CGM), Context(CGM.getContext()),
2781         VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD),
2782         Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))),
2783         ABI(ABI) {}
2784 
2785   llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes);
2786   llvm::GlobalVariable *
2787   getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes);
2788   llvm::GlobalVariable *getClassHierarchyDescriptor();
2789   llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo *Info);
2790 
2791   CodeGenModule &CGM;
2792   ASTContext &Context;
2793   llvm::LLVMContext &VMContext;
2794   llvm::Module &Module;
2795   const CXXRecordDecl *RD;
2796   llvm::GlobalVariable::LinkageTypes Linkage;
2797   MicrosoftCXXABI &ABI;
2798 };
2799 
2800 } // namespace
2801 
2802 /// \brief Recursively serializes a class hierarchy in pre-order depth first
2803 /// order.
serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> & Classes,const CXXRecordDecl * RD)2804 static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes,
2805                                     const CXXRecordDecl *RD) {
2806   Classes.push_back(MSRTTIClass(RD));
2807   for (const CXXBaseSpecifier &Base : RD->bases())
2808     serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl());
2809 }
2810 
2811 /// \brief Find ambiguity among base classes.
2812 static void
detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> & Classes)2813 detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) {
2814   llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases;
2815   llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases;
2816   llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases;
2817   for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) {
2818     if ((Class->Flags & MSRTTIClass::IsVirtual) &&
2819         !VirtualBases.insert(Class->RD).second) {
2820       Class = MSRTTIClass::getNextChild(Class);
2821       continue;
2822     }
2823     if (!UniqueBases.insert(Class->RD).second)
2824       AmbiguousBases.insert(Class->RD);
2825     Class++;
2826   }
2827   if (AmbiguousBases.empty())
2828     return;
2829   for (MSRTTIClass &Class : Classes)
2830     if (AmbiguousBases.count(Class.RD))
2831       Class.Flags |= MSRTTIClass::IsAmbiguous;
2832 }
2833 
getClassHierarchyDescriptor()2834 llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() {
2835   SmallString<256> MangledName;
2836   {
2837     llvm::raw_svector_ostream Out(MangledName);
2838     ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out);
2839   }
2840 
2841   // Check to see if we've already declared this ClassHierarchyDescriptor.
2842   if (auto CHD = Module.getNamedGlobal(MangledName))
2843     return CHD;
2844 
2845   // Serialize the class hierarchy and initialize the CHD Fields.
2846   SmallVector<MSRTTIClass, 8> Classes;
2847   serializeClassHierarchy(Classes, RD);
2848   Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
2849   detectAmbiguousBases(Classes);
2850   int Flags = 0;
2851   for (auto Class : Classes) {
2852     if (Class.RD->getNumBases() > 1)
2853       Flags |= HasBranchingHierarchy;
2854     // Note: cl.exe does not calculate "HasAmbiguousBases" correctly.  We
2855     // believe the field isn't actually used.
2856     if (Class.Flags & MSRTTIClass::IsAmbiguous)
2857       Flags |= HasAmbiguousBases;
2858   }
2859   if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0)
2860     Flags |= HasVirtualBranchingHierarchy;
2861   // These gep indices are used to get the address of the first element of the
2862   // base class array.
2863   llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
2864                                llvm::ConstantInt::get(CGM.IntTy, 0)};
2865 
2866   // Forward-declare the class hierarchy descriptor
2867   auto Type = ABI.getClassHierarchyDescriptorType();
2868   auto CHD = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
2869                                       /*Initializer=*/nullptr,
2870                                       MangledName.c_str());
2871 
2872   // Initialize the base class ClassHierarchyDescriptor.
2873   llvm::Constant *Fields[] = {
2874       llvm::ConstantInt::get(CGM.IntTy, 0), // Unknown
2875       llvm::ConstantInt::get(CGM.IntTy, Flags),
2876       llvm::ConstantInt::get(CGM.IntTy, Classes.size()),
2877       ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr(
2878           getBaseClassArray(Classes),
2879           llvm::ArrayRef<llvm::Value *>(GEPIndices))),
2880   };
2881   CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
2882   return CHD;
2883 }
2884 
2885 llvm::GlobalVariable *
getBaseClassArray(SmallVectorImpl<MSRTTIClass> & Classes)2886 MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) {
2887   SmallString<256> MangledName;
2888   {
2889     llvm::raw_svector_ostream Out(MangledName);
2890     ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out);
2891   }
2892 
2893   // Forward-declare the base class array.
2894   // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit
2895   // mode) bytes of padding.  We provide a pointer sized amount of padding by
2896   // adding +1 to Classes.size().  The sections have pointer alignment and are
2897   // marked pick-any so it shouldn't matter.
2898   llvm::Type *PtrType = ABI.getImageRelativeType(
2899       ABI.getBaseClassDescriptorType()->getPointerTo());
2900   auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1);
2901   auto *BCA = new llvm::GlobalVariable(
2902       Module, ArrType,
2903       /*Constant=*/true, Linkage, /*Initializer=*/nullptr, MangledName.c_str());
2904 
2905   // Initialize the BaseClassArray.
2906   SmallVector<llvm::Constant *, 8> BaseClassArrayData;
2907   for (MSRTTIClass &Class : Classes)
2908     BaseClassArrayData.push_back(
2909         ABI.getImageRelativeConstant(getBaseClassDescriptor(Class)));
2910   BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType));
2911   BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData));
2912   return BCA;
2913 }
2914 
2915 llvm::GlobalVariable *
getBaseClassDescriptor(const MSRTTIClass & Class)2916 MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) {
2917   // Compute the fields for the BaseClassDescriptor.  They are computed up front
2918   // because they are mangled into the name of the object.
2919   uint32_t OffsetInVBTable = 0;
2920   int32_t VBPtrOffset = -1;
2921   if (Class.VirtualRoot) {
2922     auto &VTableContext = CGM.getMicrosoftVTableContext();
2923     OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4;
2924     VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity();
2925   }
2926 
2927   SmallString<256> MangledName;
2928   {
2929     llvm::raw_svector_ostream Out(MangledName);
2930     ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor(
2931         Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable,
2932         Class.Flags, Out);
2933   }
2934 
2935   // Check to see if we've already declared this object.
2936   if (auto BCD = Module.getNamedGlobal(MangledName))
2937     return BCD;
2938 
2939   // Forward-declare the base class descriptor.
2940   auto Type = ABI.getBaseClassDescriptorType();
2941   auto BCD = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
2942                                       /*Initializer=*/nullptr,
2943                                       MangledName.c_str());
2944 
2945   // Initialize the BaseClassDescriptor.
2946   llvm::Constant *Fields[] = {
2947       ABI.getImageRelativeConstant(
2948           ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))),
2949       llvm::ConstantInt::get(CGM.IntTy, Class.NumBases),
2950       llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase),
2951       llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
2952       llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable),
2953       llvm::ConstantInt::get(CGM.IntTy, Class.Flags),
2954       ABI.getImageRelativeConstant(
2955           MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()),
2956   };
2957   BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
2958   return BCD;
2959 }
2960 
2961 llvm::GlobalVariable *
getCompleteObjectLocator(const VPtrInfo * Info)2962 MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo *Info) {
2963   SmallString<256> MangledName;
2964   {
2965     llvm::raw_svector_ostream Out(MangledName);
2966     ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info->MangledPath, Out);
2967   }
2968 
2969   // Check to see if we've already computed this complete object locator.
2970   if (auto COL = Module.getNamedGlobal(MangledName))
2971     return COL;
2972 
2973   // Compute the fields of the complete object locator.
2974   int OffsetToTop = Info->FullOffsetInMDC.getQuantity();
2975   int VFPtrOffset = 0;
2976   // The offset includes the vtordisp if one exists.
2977   if (const CXXRecordDecl *VBase = Info->getVBaseWithVPtr())
2978     if (Context.getASTRecordLayout(RD)
2979       .getVBaseOffsetsMap()
2980       .find(VBase)
2981       ->second.hasVtorDisp())
2982       VFPtrOffset = Info->NonVirtualOffset.getQuantity() + 4;
2983 
2984   // Forward-declare the complete object locator.
2985   llvm::StructType *Type = ABI.getCompleteObjectLocatorType();
2986   auto COL = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
2987     /*Initializer=*/nullptr, MangledName.c_str());
2988 
2989   // Initialize the CompleteObjectLocator.
2990   llvm::Constant *Fields[] = {
2991       llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()),
2992       llvm::ConstantInt::get(CGM.IntTy, OffsetToTop),
2993       llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset),
2994       ABI.getImageRelativeConstant(
2995           CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))),
2996       ABI.getImageRelativeConstant(getClassHierarchyDescriptor()),
2997       ABI.getImageRelativeConstant(COL),
2998   };
2999   llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields);
3000   if (!ABI.isImageRelative())
3001     FieldsRef = FieldsRef.drop_back();
3002   COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef));
3003   return COL;
3004 }
3005 
3006 /// \brief Gets a TypeDescriptor.  Returns a llvm::Constant * rather than a
3007 /// llvm::GlobalVariable * because different type descriptors have different
3008 /// types, and need to be abstracted.  They are abstracting by casting the
3009 /// address to an Int8PtrTy.
getAddrOfRTTIDescriptor(QualType Type)3010 llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) {
3011   SmallString<256> MangledName, TypeInfoString;
3012   {
3013     llvm::raw_svector_ostream Out(MangledName);
3014     getMangleContext().mangleCXXRTTI(Type, Out);
3015   }
3016 
3017   // Check to see if we've already declared this TypeDescriptor.
3018   if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
3019     return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
3020 
3021   // Compute the fields for the TypeDescriptor.
3022   {
3023     llvm::raw_svector_ostream Out(TypeInfoString);
3024     getMangleContext().mangleCXXRTTIName(Type, Out);
3025   }
3026 
3027   // Declare and initialize the TypeDescriptor.
3028   llvm::Constant *Fields[] = {
3029     getTypeInfoVTable(CGM),                        // VFPtr
3030     llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data
3031     llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)};
3032   llvm::StructType *TypeDescriptorType =
3033       getTypeDescriptorType(TypeInfoString);
3034   return llvm::ConstantExpr::getBitCast(
3035       new llvm::GlobalVariable(
3036           CGM.getModule(), TypeDescriptorType, /*Constant=*/false,
3037           getLinkageForRTTI(Type),
3038           llvm::ConstantStruct::get(TypeDescriptorType, Fields),
3039           MangledName.c_str()),
3040       CGM.Int8PtrTy);
3041 }
3042 
3043 /// \brief Gets or a creates a Microsoft CompleteObjectLocator.
3044 llvm::GlobalVariable *
getMSCompleteObjectLocator(const CXXRecordDecl * RD,const VPtrInfo * Info)3045 MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD,
3046                                             const VPtrInfo *Info) {
3047   return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info);
3048 }
3049 
emitCXXConstructor(CodeGenModule & CGM,const CXXConstructorDecl * ctor,StructorType ctorType)3050 static void emitCXXConstructor(CodeGenModule &CGM,
3051                                const CXXConstructorDecl *ctor,
3052                                StructorType ctorType) {
3053   // There are no constructor variants, always emit the complete destructor.
3054   CGM.codegenCXXStructor(ctor, StructorType::Complete);
3055 }
3056 
emitCXXDestructor(CodeGenModule & CGM,const CXXDestructorDecl * dtor,StructorType dtorType)3057 static void emitCXXDestructor(CodeGenModule &CGM, const CXXDestructorDecl *dtor,
3058                               StructorType dtorType) {
3059   // The complete destructor is equivalent to the base destructor for
3060   // classes with no virtual bases, so try to emit it as an alias.
3061   if (!dtor->getParent()->getNumVBases() &&
3062       (dtorType == StructorType::Complete || dtorType == StructorType::Base)) {
3063     bool ProducedAlias = !CGM.TryEmitDefinitionAsAlias(
3064         GlobalDecl(dtor, Dtor_Complete), GlobalDecl(dtor, Dtor_Base), true);
3065     if (ProducedAlias) {
3066       if (dtorType == StructorType::Complete)
3067         return;
3068       if (dtor->isVirtual())
3069         CGM.getVTables().EmitThunks(GlobalDecl(dtor, Dtor_Complete));
3070     }
3071   }
3072 
3073   // The base destructor is equivalent to the base destructor of its
3074   // base class if there is exactly one non-virtual base class with a
3075   // non-trivial destructor, there are no fields with a non-trivial
3076   // destructor, and the body of the destructor is trivial.
3077   if (dtorType == StructorType::Base && !CGM.TryEmitBaseDestructorAsAlias(dtor))
3078     return;
3079 
3080   CGM.codegenCXXStructor(dtor, dtorType);
3081 }
3082 
emitCXXStructor(const CXXMethodDecl * MD,StructorType Type)3083 void MicrosoftCXXABI::emitCXXStructor(const CXXMethodDecl *MD,
3084                                       StructorType Type) {
3085   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
3086     emitCXXConstructor(CGM, CD, Type);
3087     return;
3088   }
3089   emitCXXDestructor(CGM, cast<CXXDestructorDecl>(MD), Type);
3090 }
3091