1 //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements C++ semantic analysis for scope specifiers.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/NestedNameSpecifier.h"
20 #include "clang/Basic/PartialDiagnostic.h"
21 #include "clang/Sema/DeclSpec.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/Template.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/Support/raw_ostream.h"
26 using namespace clang;
27 
28 /// \brief Find the current instantiation that associated with the given type.
getCurrentInstantiationOf(QualType T,DeclContext * CurContext)29 static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
30                                                 DeclContext *CurContext) {
31   if (T.isNull())
32     return nullptr;
33 
34   const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
35   if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
36     CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
37     if (!Record->isDependentContext() ||
38         Record->isCurrentInstantiation(CurContext))
39       return Record;
40 
41     return nullptr;
42   } else if (isa<InjectedClassNameType>(Ty))
43     return cast<InjectedClassNameType>(Ty)->getDecl();
44   else
45     return nullptr;
46 }
47 
48 /// \brief Compute the DeclContext that is associated with the given type.
49 ///
50 /// \param T the type for which we are attempting to find a DeclContext.
51 ///
52 /// \returns the declaration context represented by the type T,
53 /// or NULL if the declaration context cannot be computed (e.g., because it is
54 /// dependent and not the current instantiation).
computeDeclContext(QualType T)55 DeclContext *Sema::computeDeclContext(QualType T) {
56   if (!T->isDependentType())
57     if (const TagType *Tag = T->getAs<TagType>())
58       return Tag->getDecl();
59 
60   return ::getCurrentInstantiationOf(T, CurContext);
61 }
62 
63 /// \brief Compute the DeclContext that is associated with the given
64 /// scope specifier.
65 ///
66 /// \param SS the C++ scope specifier as it appears in the source
67 ///
68 /// \param EnteringContext when true, we will be entering the context of
69 /// this scope specifier, so we can retrieve the declaration context of a
70 /// class template or class template partial specialization even if it is
71 /// not the current instantiation.
72 ///
73 /// \returns the declaration context represented by the scope specifier @p SS,
74 /// or NULL if the declaration context cannot be computed (e.g., because it is
75 /// dependent and not the current instantiation).
computeDeclContext(const CXXScopeSpec & SS,bool EnteringContext)76 DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
77                                       bool EnteringContext) {
78   if (!SS.isSet() || SS.isInvalid())
79     return nullptr;
80 
81   NestedNameSpecifier *NNS = SS.getScopeRep();
82   if (NNS->isDependent()) {
83     // If this nested-name-specifier refers to the current
84     // instantiation, return its DeclContext.
85     if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
86       return Record;
87 
88     if (EnteringContext) {
89       const Type *NNSType = NNS->getAsType();
90       if (!NNSType) {
91         return nullptr;
92       }
93 
94       // Look through type alias templates, per C++0x [temp.dep.type]p1.
95       NNSType = Context.getCanonicalType(NNSType);
96       if (const TemplateSpecializationType *SpecType
97             = NNSType->getAs<TemplateSpecializationType>()) {
98         // We are entering the context of the nested name specifier, so try to
99         // match the nested name specifier to either a primary class template
100         // or a class template partial specialization.
101         if (ClassTemplateDecl *ClassTemplate
102               = dyn_cast_or_null<ClassTemplateDecl>(
103                             SpecType->getTemplateName().getAsTemplateDecl())) {
104           QualType ContextType
105             = Context.getCanonicalType(QualType(SpecType, 0));
106 
107           // If the type of the nested name specifier is the same as the
108           // injected class name of the named class template, we're entering
109           // into that class template definition.
110           QualType Injected
111             = ClassTemplate->getInjectedClassNameSpecialization();
112           if (Context.hasSameType(Injected, ContextType))
113             return ClassTemplate->getTemplatedDecl();
114 
115           // If the type of the nested name specifier is the same as the
116           // type of one of the class template's class template partial
117           // specializations, we're entering into the definition of that
118           // class template partial specialization.
119           if (ClassTemplatePartialSpecializationDecl *PartialSpec
120                 = ClassTemplate->findPartialSpecialization(ContextType))
121             return PartialSpec;
122         }
123       } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
124         // The nested name specifier refers to a member of a class template.
125         return RecordT->getDecl();
126       }
127     }
128 
129     return nullptr;
130   }
131 
132   switch (NNS->getKind()) {
133   case NestedNameSpecifier::Identifier:
134     llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
135 
136   case NestedNameSpecifier::Namespace:
137     return NNS->getAsNamespace();
138 
139   case NestedNameSpecifier::NamespaceAlias:
140     return NNS->getAsNamespaceAlias()->getNamespace();
141 
142   case NestedNameSpecifier::TypeSpec:
143   case NestedNameSpecifier::TypeSpecWithTemplate: {
144     const TagType *Tag = NNS->getAsType()->getAs<TagType>();
145     assert(Tag && "Non-tag type in nested-name-specifier");
146     return Tag->getDecl();
147   }
148 
149   case NestedNameSpecifier::Global:
150     return Context.getTranslationUnitDecl();
151 
152   case NestedNameSpecifier::Super:
153     return NNS->getAsRecordDecl();
154   }
155 
156   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
157 }
158 
isDependentScopeSpecifier(const CXXScopeSpec & SS)159 bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
160   if (!SS.isSet() || SS.isInvalid())
161     return false;
162 
163   return SS.getScopeRep()->isDependent();
164 }
165 
166 /// \brief If the given nested name specifier refers to the current
167 /// instantiation, return the declaration that corresponds to that
168 /// current instantiation (C++0x [temp.dep.type]p1).
169 ///
170 /// \param NNS a dependent nested name specifier.
getCurrentInstantiationOf(NestedNameSpecifier * NNS)171 CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
172   assert(getLangOpts().CPlusPlus && "Only callable in C++");
173   assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
174 
175   if (!NNS->getAsType())
176     return nullptr;
177 
178   QualType T = QualType(NNS->getAsType(), 0);
179   return ::getCurrentInstantiationOf(T, CurContext);
180 }
181 
182 /// \brief Require that the context specified by SS be complete.
183 ///
184 /// If SS refers to a type, this routine checks whether the type is
185 /// complete enough (or can be made complete enough) for name lookup
186 /// into the DeclContext. A type that is not yet completed can be
187 /// considered "complete enough" if it is a class/struct/union/enum
188 /// that is currently being defined. Or, if we have a type that names
189 /// a class template specialization that is not a complete type, we
190 /// will attempt to instantiate that class template.
RequireCompleteDeclContext(CXXScopeSpec & SS,DeclContext * DC)191 bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
192                                       DeclContext *DC) {
193   assert(DC && "given null context");
194 
195   TagDecl *tag = dyn_cast<TagDecl>(DC);
196 
197   // If this is a dependent type, then we consider it complete.
198   if (!tag || tag->isDependentContext())
199     return false;
200 
201   // If we're currently defining this type, then lookup into the
202   // type is okay: don't complain that it isn't complete yet.
203   QualType type = Context.getTypeDeclType(tag);
204   const TagType *tagType = type->getAs<TagType>();
205   if (tagType && tagType->isBeingDefined())
206     return false;
207 
208   SourceLocation loc = SS.getLastQualifierNameLoc();
209   if (loc.isInvalid()) loc = SS.getRange().getBegin();
210 
211   // The type must be complete.
212   if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
213                           SS.getRange())) {
214     SS.SetInvalid(SS.getRange());
215     return true;
216   }
217 
218   // Fixed enum types are complete, but they aren't valid as scopes
219   // until we see a definition, so awkwardly pull out this special
220   // case.
221   const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType);
222   if (!enumType || enumType->getDecl()->isCompleteDefinition())
223     return false;
224 
225   // Try to instantiate the definition, if this is a specialization of an
226   // enumeration temploid.
227   EnumDecl *ED = enumType->getDecl();
228   if (EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
229     MemberSpecializationInfo *MSI = ED->getMemberSpecializationInfo();
230     if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
231       if (InstantiateEnum(loc, ED, Pattern, getTemplateInstantiationArgs(ED),
232                           TSK_ImplicitInstantiation)) {
233         SS.SetInvalid(SS.getRange());
234         return true;
235       }
236       return false;
237     }
238   }
239 
240   Diag(loc, diag::err_incomplete_nested_name_spec)
241     << type << SS.getRange();
242   SS.SetInvalid(SS.getRange());
243   return true;
244 }
245 
ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc,CXXScopeSpec & SS)246 bool Sema::ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc,
247                                         CXXScopeSpec &SS) {
248   SS.MakeGlobal(Context, CCLoc);
249   return false;
250 }
251 
ActOnSuperScopeSpecifier(SourceLocation SuperLoc,SourceLocation ColonColonLoc,CXXScopeSpec & SS)252 bool Sema::ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
253                                     SourceLocation ColonColonLoc,
254                                     CXXScopeSpec &SS) {
255   CXXRecordDecl *RD = nullptr;
256   for (Scope *S = getCurScope(); S; S = S->getParent()) {
257     if (S->isFunctionScope()) {
258       if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(S->getEntity()))
259         RD = MD->getParent();
260       break;
261     }
262     if (S->isClassScope()) {
263       RD = cast<CXXRecordDecl>(S->getEntity());
264       break;
265     }
266   }
267 
268   if (!RD) {
269     Diag(SuperLoc, diag::err_invalid_super_scope);
270     return true;
271   } else if (RD->isLambda()) {
272     Diag(SuperLoc, diag::err_super_in_lambda_unsupported);
273     return true;
274   } else if (RD->getNumBases() == 0) {
275     Diag(SuperLoc, diag::err_no_base_classes) << RD->getName();
276     return true;
277   }
278 
279   SS.MakeSuper(Context, RD, SuperLoc, ColonColonLoc);
280   return false;
281 }
282 
283 /// \brief Determines whether the given declaration is an valid acceptable
284 /// result for name lookup of a nested-name-specifier.
isAcceptableNestedNameSpecifier(const NamedDecl * SD)285 bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD) {
286   if (!SD)
287     return false;
288 
289   // Namespace and namespace aliases are fine.
290   if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
291     return true;
292 
293   if (!isa<TypeDecl>(SD))
294     return false;
295 
296   // Determine whether we have a class (or, in C++11, an enum) or
297   // a typedef thereof. If so, build the nested-name-specifier.
298   QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
299   if (T->isDependentType())
300     return true;
301   else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
302     if (TD->getUnderlyingType()->isRecordType() ||
303         (Context.getLangOpts().CPlusPlus11 &&
304          TD->getUnderlyingType()->isEnumeralType()))
305       return true;
306   } else if (isa<RecordDecl>(SD) ||
307              (Context.getLangOpts().CPlusPlus11 && isa<EnumDecl>(SD)))
308     return true;
309 
310   return false;
311 }
312 
313 /// \brief If the given nested-name-specifier begins with a bare identifier
314 /// (e.g., Base::), perform name lookup for that identifier as a
315 /// nested-name-specifier within the given scope, and return the result of that
316 /// name lookup.
FindFirstQualifierInScope(Scope * S,NestedNameSpecifier * NNS)317 NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
318   if (!S || !NNS)
319     return nullptr;
320 
321   while (NNS->getPrefix())
322     NNS = NNS->getPrefix();
323 
324   if (NNS->getKind() != NestedNameSpecifier::Identifier)
325     return nullptr;
326 
327   LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
328                      LookupNestedNameSpecifierName);
329   LookupName(Found, S);
330   assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
331 
332   if (!Found.isSingleResult())
333     return nullptr;
334 
335   NamedDecl *Result = Found.getFoundDecl();
336   if (isAcceptableNestedNameSpecifier(Result))
337     return Result;
338 
339   return nullptr;
340 }
341 
isNonTypeNestedNameSpecifier(Scope * S,CXXScopeSpec & SS,SourceLocation IdLoc,IdentifierInfo & II,ParsedType ObjectTypePtr)342 bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
343                                         SourceLocation IdLoc,
344                                         IdentifierInfo &II,
345                                         ParsedType ObjectTypePtr) {
346   QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
347   LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
348 
349   // Determine where to perform name lookup
350   DeclContext *LookupCtx = nullptr;
351   bool isDependent = false;
352   if (!ObjectType.isNull()) {
353     // This nested-name-specifier occurs in a member access expression, e.g.,
354     // x->B::f, and we are looking into the type of the object.
355     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
356     LookupCtx = computeDeclContext(ObjectType);
357     isDependent = ObjectType->isDependentType();
358   } else if (SS.isSet()) {
359     // This nested-name-specifier occurs after another nested-name-specifier,
360     // so long into the context associated with the prior nested-name-specifier.
361     LookupCtx = computeDeclContext(SS, false);
362     isDependent = isDependentScopeSpecifier(SS);
363     Found.setContextRange(SS.getRange());
364   }
365 
366   if (LookupCtx) {
367     // Perform "qualified" name lookup into the declaration context we
368     // computed, which is either the type of the base of a member access
369     // expression or the declaration context associated with a prior
370     // nested-name-specifier.
371 
372     // The declaration context must be complete.
373     if (!LookupCtx->isDependentContext() &&
374         RequireCompleteDeclContext(SS, LookupCtx))
375       return false;
376 
377     LookupQualifiedName(Found, LookupCtx);
378   } else if (isDependent) {
379     return false;
380   } else {
381     LookupName(Found, S);
382   }
383   Found.suppressDiagnostics();
384 
385   if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
386     return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
387 
388   return false;
389 }
390 
391 namespace {
392 
393 // Callback to only accept typo corrections that can be a valid C++ member
394 // intializer: either a non-static field member or a base class.
395 class NestedNameSpecifierValidatorCCC : public CorrectionCandidateCallback {
396  public:
NestedNameSpecifierValidatorCCC(Sema & SRef)397   explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
398       : SRef(SRef) {}
399 
ValidateCandidate(const TypoCorrection & candidate)400   bool ValidateCandidate(const TypoCorrection &candidate) override {
401     return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
402   }
403 
404  private:
405   Sema &SRef;
406 };
407 
408 }
409 
410 /// \brief Build a new nested-name-specifier for "identifier::", as described
411 /// by ActOnCXXNestedNameSpecifier.
412 ///
413 /// \param S Scope in which the nested-name-specifier occurs.
414 /// \param Identifier Identifier in the sequence "identifier" "::".
415 /// \param IdentifierLoc Location of the \p Identifier.
416 /// \param CCLoc Location of "::" following Identifier.
417 /// \param ObjectType Type of postfix expression if the nested-name-specifier
418 ///        occurs in construct like: <tt>ptr->nns::f</tt>.
419 /// \param EnteringContext If true, enter the context specified by the
420 ///        nested-name-specifier.
421 /// \param SS Optional nested name specifier preceding the identifier.
422 /// \param ScopeLookupResult Provides the result of name lookup within the
423 ///        scope of the nested-name-specifier that was computed at template
424 ///        definition time.
425 /// \param ErrorRecoveryLookup Specifies if the method is called to improve
426 ///        error recovery and what kind of recovery is performed.
427 /// \param IsCorrectedToColon If not null, suggestion of replace '::' -> ':'
428 ///        are allowed.  The bool value pointed by this parameter is set to
429 ///       'true' if the identifier is treated as if it was followed by ':',
430 ///        not '::'.
431 ///
432 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
433 /// that it contains an extra parameter \p ScopeLookupResult, which provides
434 /// the result of name lookup within the scope of the nested-name-specifier
435 /// that was computed at template definition time.
436 ///
437 /// If ErrorRecoveryLookup is true, then this call is used to improve error
438 /// recovery.  This means that it should not emit diagnostics, it should
439 /// just return true on failure.  It also means it should only return a valid
440 /// scope if it *knows* that the result is correct.  It should not return in a
441 /// dependent context, for example. Nor will it extend \p SS with the scope
442 /// specifier.
BuildCXXNestedNameSpecifier(Scope * S,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation CCLoc,QualType ObjectType,bool EnteringContext,CXXScopeSpec & SS,NamedDecl * ScopeLookupResult,bool ErrorRecoveryLookup,bool * IsCorrectedToColon)443 bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
444                                        IdentifierInfo &Identifier,
445                                        SourceLocation IdentifierLoc,
446                                        SourceLocation CCLoc,
447                                        QualType ObjectType,
448                                        bool EnteringContext,
449                                        CXXScopeSpec &SS,
450                                        NamedDecl *ScopeLookupResult,
451                                        bool ErrorRecoveryLookup,
452                                        bool *IsCorrectedToColon) {
453   LookupResult Found(*this, &Identifier, IdentifierLoc,
454                      LookupNestedNameSpecifierName);
455 
456   // Determine where to perform name lookup
457   DeclContext *LookupCtx = nullptr;
458   bool isDependent = false;
459   if (IsCorrectedToColon)
460     *IsCorrectedToColon = false;
461   if (!ObjectType.isNull()) {
462     // This nested-name-specifier occurs in a member access expression, e.g.,
463     // x->B::f, and we are looking into the type of the object.
464     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
465     LookupCtx = computeDeclContext(ObjectType);
466     isDependent = ObjectType->isDependentType();
467   } else if (SS.isSet()) {
468     // This nested-name-specifier occurs after another nested-name-specifier,
469     // so look into the context associated with the prior nested-name-specifier.
470     LookupCtx = computeDeclContext(SS, EnteringContext);
471     isDependent = isDependentScopeSpecifier(SS);
472     Found.setContextRange(SS.getRange());
473   }
474 
475   bool ObjectTypeSearchedInScope = false;
476   if (LookupCtx) {
477     // Perform "qualified" name lookup into the declaration context we
478     // computed, which is either the type of the base of a member access
479     // expression or the declaration context associated with a prior
480     // nested-name-specifier.
481 
482     // The declaration context must be complete.
483     if (!LookupCtx->isDependentContext() &&
484         RequireCompleteDeclContext(SS, LookupCtx))
485       return true;
486 
487     LookupQualifiedName(Found, LookupCtx);
488 
489     if (!ObjectType.isNull() && Found.empty()) {
490       // C++ [basic.lookup.classref]p4:
491       //   If the id-expression in a class member access is a qualified-id of
492       //   the form
493       //
494       //        class-name-or-namespace-name::...
495       //
496       //   the class-name-or-namespace-name following the . or -> operator is
497       //   looked up both in the context of the entire postfix-expression and in
498       //   the scope of the class of the object expression. If the name is found
499       //   only in the scope of the class of the object expression, the name
500       //   shall refer to a class-name. If the name is found only in the
501       //   context of the entire postfix-expression, the name shall refer to a
502       //   class-name or namespace-name. [...]
503       //
504       // Qualified name lookup into a class will not find a namespace-name,
505       // so we do not need to diagnose that case specifically. However,
506       // this qualified name lookup may find nothing. In that case, perform
507       // unqualified name lookup in the given scope (if available) or
508       // reconstruct the result from when name lookup was performed at template
509       // definition time.
510       if (S)
511         LookupName(Found, S);
512       else if (ScopeLookupResult)
513         Found.addDecl(ScopeLookupResult);
514 
515       ObjectTypeSearchedInScope = true;
516     }
517   } else if (!isDependent) {
518     // Perform unqualified name lookup in the current scope.
519     LookupName(Found, S);
520   }
521 
522   // If we performed lookup into a dependent context and did not find anything,
523   // that's fine: just build a dependent nested-name-specifier.
524   if (Found.empty() && isDependent &&
525       !(LookupCtx && LookupCtx->isRecord() &&
526         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
527          !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
528     // Don't speculate if we're just trying to improve error recovery.
529     if (ErrorRecoveryLookup)
530       return true;
531 
532     // We were not able to compute the declaration context for a dependent
533     // base object type or prior nested-name-specifier, so this
534     // nested-name-specifier refers to an unknown specialization. Just build
535     // a dependent nested-name-specifier.
536     SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
537     return false;
538   }
539 
540   // FIXME: Deal with ambiguities cleanly.
541 
542   if (Found.empty() && !ErrorRecoveryLookup) {
543     // If identifier is not found as class-name-or-namespace-name, but is found
544     // as other entity, don't look for typos.
545     LookupResult R(*this, Found.getLookupNameInfo(), LookupOrdinaryName);
546     if (LookupCtx)
547       LookupQualifiedName(R, LookupCtx);
548     else if (S && !isDependent)
549       LookupName(R, S);
550     if (!R.empty()) {
551       // The identifier is found in ordinary lookup. If correction to colon is
552       // allowed, suggest replacement to ':'.
553       if (IsCorrectedToColon) {
554         *IsCorrectedToColon = true;
555         Diag(CCLoc, diag::err_nested_name_spec_is_not_class)
556             << &Identifier << getLangOpts().CPlusPlus
557             << FixItHint::CreateReplacement(CCLoc, ":");
558         if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
559           Diag(ND->getLocation(), diag::note_declared_at);
560         return true;
561       }
562       // Replacement '::' -> ':' is not allowed, just issue respective error.
563       Diag(R.getNameLoc(), diag::err_expected_class_or_namespace)
564           << &Identifier << getLangOpts().CPlusPlus;
565       if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
566         Diag(ND->getLocation(), diag::note_entity_declared_at) << &Identifier;
567       return true;
568     }
569   }
570 
571   if (Found.empty() && !ErrorRecoveryLookup && !getLangOpts().MSVCCompat) {
572     // We haven't found anything, and we're not recovering from a
573     // different kind of error, so look for typos.
574     DeclarationName Name = Found.getLookupName();
575     Found.clear();
576     if (TypoCorrection Corrected = CorrectTypo(
577             Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS,
578             llvm::make_unique<NestedNameSpecifierValidatorCCC>(*this),
579             CTK_ErrorRecovery, LookupCtx, EnteringContext)) {
580       if (LookupCtx) {
581         bool DroppedSpecifier =
582             Corrected.WillReplaceSpecifier() &&
583             Name.getAsString() == Corrected.getAsString(getLangOpts());
584         if (DroppedSpecifier)
585           SS.clear();
586         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
587                                   << Name << LookupCtx << DroppedSpecifier
588                                   << SS.getRange());
589       } else
590         diagnoseTypo(Corrected, PDiag(diag::err_undeclared_var_use_suggest)
591                                   << Name);
592 
593       if (NamedDecl *ND = Corrected.getCorrectionDecl())
594         Found.addDecl(ND);
595       Found.setLookupName(Corrected.getCorrection());
596     } else {
597       Found.setLookupName(&Identifier);
598     }
599   }
600 
601   NamedDecl *SD = Found.getAsSingle<NamedDecl>();
602   if (isAcceptableNestedNameSpecifier(SD)) {
603     if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
604         !getLangOpts().CPlusPlus11) {
605       // C++03 [basic.lookup.classref]p4:
606       //   [...] If the name is found in both contexts, the
607       //   class-name-or-namespace-name shall refer to the same entity.
608       //
609       // We already found the name in the scope of the object. Now, look
610       // into the current scope (the scope of the postfix-expression) to
611       // see if we can find the same name there. As above, if there is no
612       // scope, reconstruct the result from the template instantiation itself.
613       //
614       // Note that C++11 does *not* perform this redundant lookup.
615       NamedDecl *OuterDecl;
616       if (S) {
617         LookupResult FoundOuter(*this, &Identifier, IdentifierLoc,
618                                 LookupNestedNameSpecifierName);
619         LookupName(FoundOuter, S);
620         OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
621       } else
622         OuterDecl = ScopeLookupResult;
623 
624       if (isAcceptableNestedNameSpecifier(OuterDecl) &&
625           OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
626           (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
627            !Context.hasSameType(
628                             Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
629                                Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
630         if (ErrorRecoveryLookup)
631           return true;
632 
633          Diag(IdentifierLoc,
634               diag::err_nested_name_member_ref_lookup_ambiguous)
635            << &Identifier;
636          Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
637            << ObjectType;
638          Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
639 
640          // Fall through so that we'll pick the name we found in the object
641          // type, since that's probably what the user wanted anyway.
642        }
643     }
644 
645     if (auto *TD = dyn_cast_or_null<TypedefNameDecl>(SD))
646       MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
647 
648     // If we're just performing this lookup for error-recovery purposes,
649     // don't extend the nested-name-specifier. Just return now.
650     if (ErrorRecoveryLookup)
651       return false;
652 
653     // The use of a nested name specifier may trigger deprecation warnings.
654     DiagnoseUseOfDecl(SD, CCLoc);
655 
656 
657     if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
658       SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
659       return false;
660     }
661 
662     if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
663       SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
664       return false;
665     }
666 
667     QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
668     TypeLocBuilder TLB;
669     if (isa<InjectedClassNameType>(T)) {
670       InjectedClassNameTypeLoc InjectedTL
671         = TLB.push<InjectedClassNameTypeLoc>(T);
672       InjectedTL.setNameLoc(IdentifierLoc);
673     } else if (isa<RecordType>(T)) {
674       RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
675       RecordTL.setNameLoc(IdentifierLoc);
676     } else if (isa<TypedefType>(T)) {
677       TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
678       TypedefTL.setNameLoc(IdentifierLoc);
679     } else if (isa<EnumType>(T)) {
680       EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
681       EnumTL.setNameLoc(IdentifierLoc);
682     } else if (isa<TemplateTypeParmType>(T)) {
683       TemplateTypeParmTypeLoc TemplateTypeTL
684         = TLB.push<TemplateTypeParmTypeLoc>(T);
685       TemplateTypeTL.setNameLoc(IdentifierLoc);
686     } else if (isa<UnresolvedUsingType>(T)) {
687       UnresolvedUsingTypeLoc UnresolvedTL
688         = TLB.push<UnresolvedUsingTypeLoc>(T);
689       UnresolvedTL.setNameLoc(IdentifierLoc);
690     } else if (isa<SubstTemplateTypeParmType>(T)) {
691       SubstTemplateTypeParmTypeLoc TL
692         = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
693       TL.setNameLoc(IdentifierLoc);
694     } else if (isa<SubstTemplateTypeParmPackType>(T)) {
695       SubstTemplateTypeParmPackTypeLoc TL
696         = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
697       TL.setNameLoc(IdentifierLoc);
698     } else {
699       llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
700     }
701 
702     if (T->isEnumeralType())
703       Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
704 
705     SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
706               CCLoc);
707     return false;
708   }
709 
710   // Otherwise, we have an error case.  If we don't want diagnostics, just
711   // return an error now.
712   if (ErrorRecoveryLookup)
713     return true;
714 
715   // If we didn't find anything during our lookup, try again with
716   // ordinary name lookup, which can help us produce better error
717   // messages.
718   if (Found.empty()) {
719     Found.clear(LookupOrdinaryName);
720     LookupName(Found, S);
721   }
722 
723   // In Microsoft mode, if we are within a templated function and we can't
724   // resolve Identifier, then extend the SS with Identifier. This will have
725   // the effect of resolving Identifier during template instantiation.
726   // The goal is to be able to resolve a function call whose
727   // nested-name-specifier is located inside a dependent base class.
728   // Example:
729   //
730   // class C {
731   // public:
732   //    static void foo2() {  }
733   // };
734   // template <class T> class A { public: typedef C D; };
735   //
736   // template <class T> class B : public A<T> {
737   // public:
738   //   void foo() { D::foo2(); }
739   // };
740   if (getLangOpts().MSVCCompat) {
741     DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
742     if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
743       CXXRecordDecl *ContainingClass = dyn_cast<CXXRecordDecl>(DC->getParent());
744       if (ContainingClass && ContainingClass->hasAnyDependentBases()) {
745         Diag(IdentifierLoc, diag::ext_undeclared_unqual_id_with_dependent_base)
746             << &Identifier << ContainingClass;
747         SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
748         return false;
749       }
750     }
751   }
752 
753   if (!Found.empty()) {
754     if (TypeDecl *TD = Found.getAsSingle<TypeDecl>())
755       Diag(IdentifierLoc, diag::err_expected_class_or_namespace)
756           << QualType(TD->getTypeForDecl(), 0) << getLangOpts().CPlusPlus;
757     else {
758       Diag(IdentifierLoc, diag::err_expected_class_or_namespace)
759           << &Identifier << getLangOpts().CPlusPlus;
760       if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
761         Diag(ND->getLocation(), diag::note_entity_declared_at) << &Identifier;
762     }
763   } else if (SS.isSet())
764     Diag(IdentifierLoc, diag::err_no_member) << &Identifier << LookupCtx
765                                              << SS.getRange();
766   else
767     Diag(IdentifierLoc, diag::err_undeclared_var_use) << &Identifier;
768 
769   return true;
770 }
771 
ActOnCXXNestedNameSpecifier(Scope * S,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation CCLoc,ParsedType ObjectType,bool EnteringContext,CXXScopeSpec & SS,bool ErrorRecoveryLookup,bool * IsCorrectedToColon)772 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
773                                        IdentifierInfo &Identifier,
774                                        SourceLocation IdentifierLoc,
775                                        SourceLocation CCLoc,
776                                        ParsedType ObjectType,
777                                        bool EnteringContext,
778                                        CXXScopeSpec &SS,
779                                        bool ErrorRecoveryLookup,
780                                        bool *IsCorrectedToColon) {
781   if (SS.isInvalid())
782     return true;
783 
784   return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
785                                      GetTypeFromParser(ObjectType),
786                                      EnteringContext, SS,
787                                      /*ScopeLookupResult=*/nullptr, false,
788                                      IsCorrectedToColon);
789 }
790 
ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec & SS,const DeclSpec & DS,SourceLocation ColonColonLoc)791 bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
792                                                const DeclSpec &DS,
793                                                SourceLocation ColonColonLoc) {
794   if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
795     return true;
796 
797   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
798 
799   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
800   if (!T->isDependentType() && !T->getAs<TagType>()) {
801     Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class_or_namespace)
802       << T << getLangOpts().CPlusPlus;
803     return true;
804   }
805 
806   TypeLocBuilder TLB;
807   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
808   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
809   SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
810             ColonColonLoc);
811   return false;
812 }
813 
814 /// IsInvalidUnlessNestedName - This method is used for error recovery
815 /// purposes to determine whether the specified identifier is only valid as
816 /// a nested name specifier, for example a namespace name.  It is
817 /// conservatively correct to always return false from this method.
818 ///
819 /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
IsInvalidUnlessNestedName(Scope * S,CXXScopeSpec & SS,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation ColonLoc,ParsedType ObjectType,bool EnteringContext)820 bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
821                                      IdentifierInfo &Identifier,
822                                      SourceLocation IdentifierLoc,
823                                      SourceLocation ColonLoc,
824                                      ParsedType ObjectType,
825                                      bool EnteringContext) {
826   if (SS.isInvalid())
827     return false;
828 
829   return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
830                                       GetTypeFromParser(ObjectType),
831                                       EnteringContext, SS,
832                                       /*ScopeLookupResult=*/nullptr, true);
833 }
834 
ActOnCXXNestedNameSpecifier(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy Template,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,SourceLocation CCLoc,bool EnteringContext)835 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
836                                        CXXScopeSpec &SS,
837                                        SourceLocation TemplateKWLoc,
838                                        TemplateTy Template,
839                                        SourceLocation TemplateNameLoc,
840                                        SourceLocation LAngleLoc,
841                                        ASTTemplateArgsPtr TemplateArgsIn,
842                                        SourceLocation RAngleLoc,
843                                        SourceLocation CCLoc,
844                                        bool EnteringContext) {
845   if (SS.isInvalid())
846     return true;
847 
848   // Translate the parser's template argument list in our AST format.
849   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
850   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
851 
852   DependentTemplateName *DTN = Template.get().getAsDependentTemplateName();
853   if (DTN && DTN->isIdentifier()) {
854     // Handle a dependent template specialization for which we cannot resolve
855     // the template name.
856     assert(DTN->getQualifier() == SS.getScopeRep());
857     QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
858                                                           DTN->getQualifier(),
859                                                           DTN->getIdentifier(),
860                                                                 TemplateArgs);
861 
862     // Create source-location information for this type.
863     TypeLocBuilder Builder;
864     DependentTemplateSpecializationTypeLoc SpecTL
865       = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
866     SpecTL.setElaboratedKeywordLoc(SourceLocation());
867     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
868     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
869     SpecTL.setTemplateNameLoc(TemplateNameLoc);
870     SpecTL.setLAngleLoc(LAngleLoc);
871     SpecTL.setRAngleLoc(RAngleLoc);
872     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
873       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
874 
875     SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
876               CCLoc);
877     return false;
878   }
879 
880   TemplateDecl *TD = Template.get().getAsTemplateDecl();
881   if (Template.get().getAsOverloadedTemplate() || DTN ||
882       isa<FunctionTemplateDecl>(TD) || isa<VarTemplateDecl>(TD)) {
883     SourceRange R(TemplateNameLoc, RAngleLoc);
884     if (SS.getRange().isValid())
885       R.setBegin(SS.getRange().getBegin());
886 
887     Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
888       << (TD && isa<VarTemplateDecl>(TD)) << Template.get() << R;
889     NoteAllFoundTemplates(Template.get());
890     return true;
891   }
892 
893   // We were able to resolve the template name to an actual template.
894   // Build an appropriate nested-name-specifier.
895   QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc,
896                                    TemplateArgs);
897   if (T.isNull())
898     return true;
899 
900   // Alias template specializations can produce types which are not valid
901   // nested name specifiers.
902   if (!T->isDependentType() && !T->getAs<TagType>()) {
903     Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
904     NoteAllFoundTemplates(Template.get());
905     return true;
906   }
907 
908   // Provide source-location information for the template specialization type.
909   TypeLocBuilder Builder;
910   TemplateSpecializationTypeLoc SpecTL
911     = Builder.push<TemplateSpecializationTypeLoc>(T);
912   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
913   SpecTL.setTemplateNameLoc(TemplateNameLoc);
914   SpecTL.setLAngleLoc(LAngleLoc);
915   SpecTL.setRAngleLoc(RAngleLoc);
916   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
917     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
918 
919 
920   SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
921             CCLoc);
922   return false;
923 }
924 
925 namespace {
926   /// \brief A structure that stores a nested-name-specifier annotation,
927   /// including both the nested-name-specifier
928   struct NestedNameSpecifierAnnotation {
929     NestedNameSpecifier *NNS;
930   };
931 }
932 
SaveNestedNameSpecifierAnnotation(CXXScopeSpec & SS)933 void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
934   if (SS.isEmpty() || SS.isInvalid())
935     return nullptr;
936 
937   void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
938                                                         SS.location_size()),
939                                llvm::alignOf<NestedNameSpecifierAnnotation>());
940   NestedNameSpecifierAnnotation *Annotation
941     = new (Mem) NestedNameSpecifierAnnotation;
942   Annotation->NNS = SS.getScopeRep();
943   memcpy(Annotation + 1, SS.location_data(), SS.location_size());
944   return Annotation;
945 }
946 
RestoreNestedNameSpecifierAnnotation(void * AnnotationPtr,SourceRange AnnotationRange,CXXScopeSpec & SS)947 void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
948                                                 SourceRange AnnotationRange,
949                                                 CXXScopeSpec &SS) {
950   if (!AnnotationPtr) {
951     SS.SetInvalid(AnnotationRange);
952     return;
953   }
954 
955   NestedNameSpecifierAnnotation *Annotation
956     = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
957   SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
958 }
959 
ShouldEnterDeclaratorScope(Scope * S,const CXXScopeSpec & SS)960 bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
961   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
962 
963   NestedNameSpecifier *Qualifier = SS.getScopeRep();
964 
965   // There are only two places a well-formed program may qualify a
966   // declarator: first, when defining a namespace or class member
967   // out-of-line, and second, when naming an explicitly-qualified
968   // friend function.  The latter case is governed by
969   // C++03 [basic.lookup.unqual]p10:
970   //   In a friend declaration naming a member function, a name used
971   //   in the function declarator and not part of a template-argument
972   //   in a template-id is first looked up in the scope of the member
973   //   function's class. If it is not found, or if the name is part of
974   //   a template-argument in a template-id, the look up is as
975   //   described for unqualified names in the definition of the class
976   //   granting friendship.
977   // i.e. we don't push a scope unless it's a class member.
978 
979   switch (Qualifier->getKind()) {
980   case NestedNameSpecifier::Global:
981   case NestedNameSpecifier::Namespace:
982   case NestedNameSpecifier::NamespaceAlias:
983     // These are always namespace scopes.  We never want to enter a
984     // namespace scope from anything but a file context.
985     return CurContext->getRedeclContext()->isFileContext();
986 
987   case NestedNameSpecifier::Identifier:
988   case NestedNameSpecifier::TypeSpec:
989   case NestedNameSpecifier::TypeSpecWithTemplate:
990   case NestedNameSpecifier::Super:
991     // These are never namespace scopes.
992     return true;
993   }
994 
995   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
996 }
997 
998 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
999 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
1000 /// After this method is called, according to [C++ 3.4.3p3], names should be
1001 /// looked up in the declarator-id's scope, until the declarator is parsed and
1002 /// ActOnCXXExitDeclaratorScope is called.
1003 /// The 'SS' should be a non-empty valid CXXScopeSpec.
ActOnCXXEnterDeclaratorScope(Scope * S,CXXScopeSpec & SS)1004 bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
1005   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1006 
1007   if (SS.isInvalid()) return true;
1008 
1009   DeclContext *DC = computeDeclContext(SS, true);
1010   if (!DC) return true;
1011 
1012   // Before we enter a declarator's context, we need to make sure that
1013   // it is a complete declaration context.
1014   if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
1015     return true;
1016 
1017   EnterDeclaratorContext(S, DC);
1018 
1019   // Rebuild the nested name specifier for the new scope.
1020   if (DC->isDependentContext())
1021     RebuildNestedNameSpecifierInCurrentInstantiation(SS);
1022 
1023   return false;
1024 }
1025 
1026 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
1027 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
1028 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
1029 /// Used to indicate that names should revert to being looked up in the
1030 /// defining scope.
ActOnCXXExitDeclaratorScope(Scope * S,const CXXScopeSpec & SS)1031 void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
1032   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1033   if (SS.isInvalid())
1034     return;
1035   assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
1036          "exiting declarator scope we never really entered");
1037   ExitDeclaratorContext(S);
1038 }
1039