1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for declarations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTConsumer.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTLambda.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/AST/CommentDiagnostic.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclTemplate.h"
25 #include "clang/AST/EvaluatedExprVisitor.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
33 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
34 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
35 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
36 #include "clang/Parse/ParseDiagnostic.h"
37 #include "clang/Sema/CXXFieldCollector.h"
38 #include "clang/Sema/DeclSpec.h"
39 #include "clang/Sema/DelayedDiagnostic.h"
40 #include "clang/Sema/Initialization.h"
41 #include "clang/Sema/Lookup.h"
42 #include "clang/Sema/ParsedTemplate.h"
43 #include "clang/Sema/Scope.h"
44 #include "clang/Sema/ScopeInfo.h"
45 #include "clang/Sema/Template.h"
46 #include "llvm/ADT/SmallString.h"
47 #include "llvm/ADT/Triple.h"
48 #include <algorithm>
49 #include <cstring>
50 #include <functional>
51 using namespace clang;
52 using namespace sema;
53 
ConvertDeclToDeclGroup(Decl * Ptr,Decl * OwnedType)54 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
55   if (OwnedType) {
56     Decl *Group[2] = { OwnedType, Ptr };
57     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
58   }
59 
60   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
61 }
62 
63 namespace {
64 
65 class TypeNameValidatorCCC : public CorrectionCandidateCallback {
66  public:
TypeNameValidatorCCC(bool AllowInvalid,bool WantClass=false,bool AllowTemplates=false)67   TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false,
68                        bool AllowTemplates=false)
69       : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
70         AllowClassTemplates(AllowTemplates) {
71     WantExpressionKeywords = false;
72     WantCXXNamedCasts = false;
73     WantRemainingKeywords = false;
74   }
75 
ValidateCandidate(const TypoCorrection & candidate)76   bool ValidateCandidate(const TypoCorrection &candidate) override {
77     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
78       bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
79       bool AllowedTemplate = AllowClassTemplates && isa<ClassTemplateDecl>(ND);
80       return (IsType || AllowedTemplate) &&
81              (AllowInvalidDecl || !ND->isInvalidDecl());
82     }
83     return !WantClassName && candidate.isKeyword();
84   }
85 
86  private:
87   bool AllowInvalidDecl;
88   bool WantClassName;
89   bool AllowClassTemplates;
90 };
91 
92 }
93 
94 /// \brief Determine whether the token kind starts a simple-type-specifier.
isSimpleTypeSpecifier(tok::TokenKind Kind) const95 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
96   switch (Kind) {
97   // FIXME: Take into account the current language when deciding whether a
98   // token kind is a valid type specifier
99   case tok::kw_short:
100   case tok::kw_long:
101   case tok::kw___int64:
102   case tok::kw___int128:
103   case tok::kw_signed:
104   case tok::kw_unsigned:
105   case tok::kw_void:
106   case tok::kw_char:
107   case tok::kw_int:
108   case tok::kw_half:
109   case tok::kw_float:
110   case tok::kw_double:
111   case tok::kw_wchar_t:
112   case tok::kw_bool:
113   case tok::kw___underlying_type:
114     return true;
115 
116   case tok::annot_typename:
117   case tok::kw_char16_t:
118   case tok::kw_char32_t:
119   case tok::kw_typeof:
120   case tok::annot_decltype:
121   case tok::kw_decltype:
122     return getLangOpts().CPlusPlus;
123 
124   default:
125     break;
126   }
127 
128   return false;
129 }
130 
recoverFromTypeInKnownDependentBase(Sema & S,const IdentifierInfo & II,SourceLocation NameLoc)131 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
132                                                       const IdentifierInfo &II,
133                                                       SourceLocation NameLoc) {
134   // Find the first parent class template context, if any.
135   // FIXME: Perform the lookup in all enclosing class templates.
136   const CXXRecordDecl *RD = nullptr;
137   for (DeclContext *DC = S.CurContext; DC; DC = DC->getParent()) {
138     RD = dyn_cast<CXXRecordDecl>(DC);
139     if (RD && RD->getDescribedClassTemplate())
140       break;
141   }
142   if (!RD)
143     return ParsedType();
144 
145   // Look for type decls in dependent base classes that have known primary
146   // templates.
147   bool FoundTypeDecl = false;
148   for (const auto &Base : RD->bases()) {
149     auto *TST = Base.getType()->getAs<TemplateSpecializationType>();
150     if (!TST || !TST->isDependentType())
151       continue;
152     auto *TD = TST->getTemplateName().getAsTemplateDecl();
153     if (!TD)
154       continue;
155     auto *BasePrimaryTemplate =
156         dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl());
157     if (!BasePrimaryTemplate)
158       continue;
159     // FIXME: Allow lookup into non-dependent bases of dependent bases, possibly
160     // by calling or integrating with the main LookupQualifiedName mechanism.
161     for (NamedDecl *ND : BasePrimaryTemplate->lookup(&II)) {
162       if (FoundTypeDecl)
163         return ParsedType();
164       FoundTypeDecl = isa<TypeDecl>(ND);
165       if (!FoundTypeDecl)
166         return ParsedType();
167     }
168   }
169   if (!FoundTypeDecl)
170     return ParsedType();
171 
172   // We found some types in dependent base classes.  Recover as if the user
173   // wrote 'typename MyClass::II' instead of 'II'.  We'll fully resolve the
174   // lookup during template instantiation.
175   S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
176 
177   ASTContext &Context = S.Context;
178   auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
179                                           cast<Type>(Context.getRecordType(RD)));
180   QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
181 
182   CXXScopeSpec SS;
183   SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
184 
185   TypeLocBuilder Builder;
186   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
187   DepTL.setNameLoc(NameLoc);
188   DepTL.setElaboratedKeywordLoc(SourceLocation());
189   DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
190   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
191 }
192 
193 /// \brief If the identifier refers to a type name within this scope,
194 /// return the declaration of that type.
195 ///
196 /// This routine performs ordinary name lookup of the identifier II
197 /// within the given scope, with optional C++ scope specifier SS, to
198 /// determine whether the name refers to a type. If so, returns an
199 /// opaque pointer (actually a QualType) corresponding to that
200 /// type. Otherwise, returns NULL.
getTypeName(const IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec * SS,bool isClassName,bool HasTrailingDot,ParsedType ObjectTypePtr,bool IsCtorOrDtorName,bool WantNontrivialTypeSourceInfo,IdentifierInfo ** CorrectedII)201 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
202                              Scope *S, CXXScopeSpec *SS,
203                              bool isClassName, bool HasTrailingDot,
204                              ParsedType ObjectTypePtr,
205                              bool IsCtorOrDtorName,
206                              bool WantNontrivialTypeSourceInfo,
207                              IdentifierInfo **CorrectedII) {
208   // Determine where we will perform name lookup.
209   DeclContext *LookupCtx = nullptr;
210   if (ObjectTypePtr) {
211     QualType ObjectType = ObjectTypePtr.get();
212     if (ObjectType->isRecordType())
213       LookupCtx = computeDeclContext(ObjectType);
214   } else if (SS && SS->isNotEmpty()) {
215     LookupCtx = computeDeclContext(*SS, false);
216 
217     if (!LookupCtx) {
218       if (isDependentScopeSpecifier(*SS)) {
219         // C++ [temp.res]p3:
220         //   A qualified-id that refers to a type and in which the
221         //   nested-name-specifier depends on a template-parameter (14.6.2)
222         //   shall be prefixed by the keyword typename to indicate that the
223         //   qualified-id denotes a type, forming an
224         //   elaborated-type-specifier (7.1.5.3).
225         //
226         // We therefore do not perform any name lookup if the result would
227         // refer to a member of an unknown specialization.
228         if (!isClassName && !IsCtorOrDtorName)
229           return ParsedType();
230 
231         // We know from the grammar that this name refers to a type,
232         // so build a dependent node to describe the type.
233         if (WantNontrivialTypeSourceInfo)
234           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
235 
236         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
237         QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
238                                        II, NameLoc);
239         return ParsedType::make(T);
240       }
241 
242       return ParsedType();
243     }
244 
245     if (!LookupCtx->isDependentContext() &&
246         RequireCompleteDeclContext(*SS, LookupCtx))
247       return ParsedType();
248   }
249 
250   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
251   // lookup for class-names.
252   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
253                                       LookupOrdinaryName;
254   LookupResult Result(*this, &II, NameLoc, Kind);
255   if (LookupCtx) {
256     // Perform "qualified" name lookup into the declaration context we
257     // computed, which is either the type of the base of a member access
258     // expression or the declaration context associated with a prior
259     // nested-name-specifier.
260     LookupQualifiedName(Result, LookupCtx);
261 
262     if (ObjectTypePtr && Result.empty()) {
263       // C++ [basic.lookup.classref]p3:
264       //   If the unqualified-id is ~type-name, the type-name is looked up
265       //   in the context of the entire postfix-expression. If the type T of
266       //   the object expression is of a class type C, the type-name is also
267       //   looked up in the scope of class C. At least one of the lookups shall
268       //   find a name that refers to (possibly cv-qualified) T.
269       LookupName(Result, S);
270     }
271   } else {
272     // Perform unqualified name lookup.
273     LookupName(Result, S);
274 
275     // For unqualified lookup in a class template in MSVC mode, look into
276     // dependent base classes where the primary class template is known.
277     if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
278       if (ParsedType TypeInBase =
279               recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
280         return TypeInBase;
281     }
282   }
283 
284   NamedDecl *IIDecl = nullptr;
285   switch (Result.getResultKind()) {
286   case LookupResult::NotFound:
287   case LookupResult::NotFoundInCurrentInstantiation:
288     if (CorrectedII) {
289       TypoCorrection Correction = CorrectTypo(
290           Result.getLookupNameInfo(), Kind, S, SS,
291           llvm::make_unique<TypeNameValidatorCCC>(true, isClassName),
292           CTK_ErrorRecovery);
293       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
294       TemplateTy Template;
295       bool MemberOfUnknownSpecialization;
296       UnqualifiedId TemplateName;
297       TemplateName.setIdentifier(NewII, NameLoc);
298       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
299       CXXScopeSpec NewSS, *NewSSPtr = SS;
300       if (SS && NNS) {
301         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
302         NewSSPtr = &NewSS;
303       }
304       if (Correction && (NNS || NewII != &II) &&
305           // Ignore a correction to a template type as the to-be-corrected
306           // identifier is not a template (typo correction for template names
307           // is handled elsewhere).
308           !(getLangOpts().CPlusPlus && NewSSPtr &&
309             isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
310                            false, Template, MemberOfUnknownSpecialization))) {
311         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
312                                     isClassName, HasTrailingDot, ObjectTypePtr,
313                                     IsCtorOrDtorName,
314                                     WantNontrivialTypeSourceInfo);
315         if (Ty) {
316           diagnoseTypo(Correction,
317                        PDiag(diag::err_unknown_type_or_class_name_suggest)
318                          << Result.getLookupName() << isClassName);
319           if (SS && NNS)
320             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
321           *CorrectedII = NewII;
322           return Ty;
323         }
324       }
325     }
326     // If typo correction failed or was not performed, fall through
327   case LookupResult::FoundOverloaded:
328   case LookupResult::FoundUnresolvedValue:
329     Result.suppressDiagnostics();
330     return ParsedType();
331 
332   case LookupResult::Ambiguous:
333     // Recover from type-hiding ambiguities by hiding the type.  We'll
334     // do the lookup again when looking for an object, and we can
335     // diagnose the error then.  If we don't do this, then the error
336     // about hiding the type will be immediately followed by an error
337     // that only makes sense if the identifier was treated like a type.
338     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
339       Result.suppressDiagnostics();
340       return ParsedType();
341     }
342 
343     // Look to see if we have a type anywhere in the list of results.
344     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
345          Res != ResEnd; ++Res) {
346       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
347         if (!IIDecl ||
348             (*Res)->getLocation().getRawEncoding() <
349               IIDecl->getLocation().getRawEncoding())
350           IIDecl = *Res;
351       }
352     }
353 
354     if (!IIDecl) {
355       // None of the entities we found is a type, so there is no way
356       // to even assume that the result is a type. In this case, don't
357       // complain about the ambiguity. The parser will either try to
358       // perform this lookup again (e.g., as an object name), which
359       // will produce the ambiguity, or will complain that it expected
360       // a type name.
361       Result.suppressDiagnostics();
362       return ParsedType();
363     }
364 
365     // We found a type within the ambiguous lookup; diagnose the
366     // ambiguity and then return that type. This might be the right
367     // answer, or it might not be, but it suppresses any attempt to
368     // perform the name lookup again.
369     break;
370 
371   case LookupResult::Found:
372     IIDecl = Result.getFoundDecl();
373     break;
374   }
375 
376   assert(IIDecl && "Didn't find decl");
377 
378   QualType T;
379   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
380     DiagnoseUseOfDecl(IIDecl, NameLoc);
381 
382     T = Context.getTypeDeclType(TD);
383     MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
384 
385     // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
386     // constructor or destructor name (in such a case, the scope specifier
387     // will be attached to the enclosing Expr or Decl node).
388     if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
389       if (WantNontrivialTypeSourceInfo) {
390         // Construct a type with type-source information.
391         TypeLocBuilder Builder;
392         Builder.pushTypeSpec(T).setNameLoc(NameLoc);
393 
394         T = getElaboratedType(ETK_None, *SS, T);
395         ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
396         ElabTL.setElaboratedKeywordLoc(SourceLocation());
397         ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
398         return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
399       } else {
400         T = getElaboratedType(ETK_None, *SS, T);
401       }
402     }
403   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
404     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
405     if (!HasTrailingDot)
406       T = Context.getObjCInterfaceType(IDecl);
407   }
408 
409   if (T.isNull()) {
410     // If it's not plausibly a type, suppress diagnostics.
411     Result.suppressDiagnostics();
412     return ParsedType();
413   }
414   return ParsedType::make(T);
415 }
416 
417 // Builds a fake NNS for the given decl context.
418 static NestedNameSpecifier *
synthesizeCurrentNestedNameSpecifier(ASTContext & Context,DeclContext * DC)419 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
420   for (;; DC = DC->getLookupParent()) {
421     DC = DC->getPrimaryContext();
422     auto *ND = dyn_cast<NamespaceDecl>(DC);
423     if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
424       return NestedNameSpecifier::Create(Context, nullptr, ND);
425     else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
426       return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
427                                          RD->getTypeForDecl());
428     else if (isa<TranslationUnitDecl>(DC))
429       return NestedNameSpecifier::GlobalSpecifier(Context);
430   }
431   llvm_unreachable("something isn't in TU scope?");
432 }
433 
ActOnDelayedDefaultTemplateArg(const IdentifierInfo & II,SourceLocation NameLoc)434 ParsedType Sema::ActOnDelayedDefaultTemplateArg(const IdentifierInfo &II,
435                                                 SourceLocation NameLoc) {
436   // Accepting an undeclared identifier as a default argument for a template
437   // type parameter is a Microsoft extension.
438   Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
439 
440   // Build a fake DependentNameType that will perform lookup into CurContext at
441   // instantiation time.  The name specifier isn't dependent, so template
442   // instantiation won't transform it.  It will retry the lookup, however.
443   NestedNameSpecifier *NNS =
444       synthesizeCurrentNestedNameSpecifier(Context, CurContext);
445   QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
446 
447   // Build type location information.  We synthesized the qualifier, so we have
448   // to build a fake NestedNameSpecifierLoc.
449   NestedNameSpecifierLocBuilder NNSLocBuilder;
450   NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
451   NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
452 
453   TypeLocBuilder Builder;
454   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
455   DepTL.setNameLoc(NameLoc);
456   DepTL.setElaboratedKeywordLoc(SourceLocation());
457   DepTL.setQualifierLoc(QualifierLoc);
458   return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
459 }
460 
461 /// isTagName() - This method is called *for error recovery purposes only*
462 /// to determine if the specified name is a valid tag name ("struct foo").  If
463 /// so, this returns the TST for the tag corresponding to it (TST_enum,
464 /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
465 /// cases in C where the user forgot to specify the tag.
isTagName(IdentifierInfo & II,Scope * S)466 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
467   // Do a tag name lookup in this scope.
468   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
469   LookupName(R, S, false);
470   R.suppressDiagnostics();
471   if (R.getResultKind() == LookupResult::Found)
472     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
473       switch (TD->getTagKind()) {
474       case TTK_Struct: return DeclSpec::TST_struct;
475       case TTK_Interface: return DeclSpec::TST_interface;
476       case TTK_Union:  return DeclSpec::TST_union;
477       case TTK_Class:  return DeclSpec::TST_class;
478       case TTK_Enum:   return DeclSpec::TST_enum;
479       }
480     }
481 
482   return DeclSpec::TST_unspecified;
483 }
484 
485 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
486 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
487 /// then downgrade the missing typename error to a warning.
488 /// This is needed for MSVC compatibility; Example:
489 /// @code
490 /// template<class T> class A {
491 /// public:
492 ///   typedef int TYPE;
493 /// };
494 /// template<class T> class B : public A<T> {
495 /// public:
496 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
497 /// };
498 /// @endcode
isMicrosoftMissingTypename(const CXXScopeSpec * SS,Scope * S)499 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
500   if (CurContext->isRecord()) {
501     if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
502       return true;
503 
504     const Type *Ty = SS->getScopeRep()->getAsType();
505 
506     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
507     for (const auto &Base : RD->bases())
508       if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
509         return true;
510     return S->isFunctionPrototypeScope();
511   }
512   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
513 }
514 
DiagnoseUnknownTypeName(IdentifierInfo * & II,SourceLocation IILoc,Scope * S,CXXScopeSpec * SS,ParsedType & SuggestedType,bool AllowClassTemplates)515 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
516                                    SourceLocation IILoc,
517                                    Scope *S,
518                                    CXXScopeSpec *SS,
519                                    ParsedType &SuggestedType,
520                                    bool AllowClassTemplates) {
521   // We don't have anything to suggest (yet).
522   SuggestedType = ParsedType();
523 
524   // There may have been a typo in the name of the type. Look up typo
525   // results, in case we have something that we can suggest.
526   if (TypoCorrection Corrected =
527           CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
528                       llvm::make_unique<TypeNameValidatorCCC>(
529                           false, false, AllowClassTemplates),
530                       CTK_ErrorRecovery)) {
531     if (Corrected.isKeyword()) {
532       // We corrected to a keyword.
533       diagnoseTypo(Corrected, PDiag(diag::err_unknown_typename_suggest) << II);
534       II = Corrected.getCorrectionAsIdentifierInfo();
535     } else {
536       // We found a similarly-named type or interface; suggest that.
537       if (!SS || !SS->isSet()) {
538         diagnoseTypo(Corrected,
539                      PDiag(diag::err_unknown_typename_suggest) << II);
540       } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
541         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
542         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
543                                 II->getName().equals(CorrectedStr);
544         diagnoseTypo(Corrected,
545                      PDiag(diag::err_unknown_nested_typename_suggest)
546                        << II << DC << DroppedSpecifier << SS->getRange());
547       } else {
548         llvm_unreachable("could not have corrected a typo here");
549       }
550 
551       CXXScopeSpec tmpSS;
552       if (Corrected.getCorrectionSpecifier())
553         tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
554                           SourceRange(IILoc));
555       SuggestedType = getTypeName(*Corrected.getCorrectionAsIdentifierInfo(),
556                                   IILoc, S, tmpSS.isSet() ? &tmpSS : SS, false,
557                                   false, ParsedType(),
558                                   /*IsCtorOrDtorName=*/false,
559                                   /*NonTrivialTypeSourceInfo=*/true);
560     }
561     return;
562   }
563 
564   if (getLangOpts().CPlusPlus) {
565     // See if II is a class template that the user forgot to pass arguments to.
566     UnqualifiedId Name;
567     Name.setIdentifier(II, IILoc);
568     CXXScopeSpec EmptySS;
569     TemplateTy TemplateResult;
570     bool MemberOfUnknownSpecialization;
571     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
572                        Name, ParsedType(), true, TemplateResult,
573                        MemberOfUnknownSpecialization) == TNK_Type_template) {
574       TemplateName TplName = TemplateResult.get();
575       Diag(IILoc, diag::err_template_missing_args) << TplName;
576       if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
577         Diag(TplDecl->getLocation(), diag::note_template_decl_here)
578           << TplDecl->getTemplateParameters()->getSourceRange();
579       }
580       return;
581     }
582   }
583 
584   // FIXME: Should we move the logic that tries to recover from a missing tag
585   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
586 
587   if (!SS || (!SS->isSet() && !SS->isInvalid()))
588     Diag(IILoc, diag::err_unknown_typename) << II;
589   else if (DeclContext *DC = computeDeclContext(*SS, false))
590     Diag(IILoc, diag::err_typename_nested_not_found)
591       << II << DC << SS->getRange();
592   else if (isDependentScopeSpecifier(*SS)) {
593     unsigned DiagID = diag::err_typename_missing;
594     if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
595       DiagID = diag::ext_typename_missing;
596 
597     Diag(SS->getRange().getBegin(), DiagID)
598       << SS->getScopeRep() << II->getName()
599       << SourceRange(SS->getRange().getBegin(), IILoc)
600       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
601     SuggestedType = ActOnTypenameType(S, SourceLocation(),
602                                       *SS, *II, IILoc).get();
603   } else {
604     assert(SS && SS->isInvalid() &&
605            "Invalid scope specifier has already been diagnosed");
606   }
607 }
608 
609 /// \brief Determine whether the given result set contains either a type name
610 /// or
isResultTypeOrTemplate(LookupResult & R,const Token & NextToken)611 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
612   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
613                        NextToken.is(tok::less);
614 
615   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
616     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
617       return true;
618 
619     if (CheckTemplate && isa<TemplateDecl>(*I))
620       return true;
621   }
622 
623   return false;
624 }
625 
isTagTypeWithMissingTag(Sema & SemaRef,LookupResult & Result,Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc)626 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
627                                     Scope *S, CXXScopeSpec &SS,
628                                     IdentifierInfo *&Name,
629                                     SourceLocation NameLoc) {
630   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
631   SemaRef.LookupParsedName(R, S, &SS);
632   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
633     StringRef FixItTagName;
634     switch (Tag->getTagKind()) {
635       case TTK_Class:
636         FixItTagName = "class ";
637         break;
638 
639       case TTK_Enum:
640         FixItTagName = "enum ";
641         break;
642 
643       case TTK_Struct:
644         FixItTagName = "struct ";
645         break;
646 
647       case TTK_Interface:
648         FixItTagName = "__interface ";
649         break;
650 
651       case TTK_Union:
652         FixItTagName = "union ";
653         break;
654     }
655 
656     StringRef TagName = FixItTagName.drop_back();
657     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
658       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
659       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
660 
661     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
662          I != IEnd; ++I)
663       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
664         << Name << TagName;
665 
666     // Replace lookup results with just the tag decl.
667     Result.clear(Sema::LookupTagName);
668     SemaRef.LookupParsedName(Result, S, &SS);
669     return true;
670   }
671 
672   return false;
673 }
674 
675 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
buildNestedType(Sema & S,CXXScopeSpec & SS,QualType T,SourceLocation NameLoc)676 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
677                                   QualType T, SourceLocation NameLoc) {
678   ASTContext &Context = S.Context;
679 
680   TypeLocBuilder Builder;
681   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
682 
683   T = S.getElaboratedType(ETK_None, SS, T);
684   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
685   ElabTL.setElaboratedKeywordLoc(SourceLocation());
686   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
687   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
688 }
689 
690 Sema::NameClassification
ClassifyName(Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc,const Token & NextToken,bool IsAddressOfOperand,std::unique_ptr<CorrectionCandidateCallback> CCC)691 Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name,
692                    SourceLocation NameLoc, const Token &NextToken,
693                    bool IsAddressOfOperand,
694                    std::unique_ptr<CorrectionCandidateCallback> CCC) {
695   DeclarationNameInfo NameInfo(Name, NameLoc);
696   ObjCMethodDecl *CurMethod = getCurMethodDecl();
697 
698   if (NextToken.is(tok::coloncolon)) {
699     BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
700                                 QualType(), false, SS, nullptr, false);
701   }
702 
703   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
704   LookupParsedName(Result, S, &SS, !CurMethod);
705 
706   // For unqualified lookup in a class template in MSVC mode, look into
707   // dependent base classes where the primary class template is known.
708   if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
709     if (ParsedType TypeInBase =
710             recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
711       return TypeInBase;
712   }
713 
714   // Perform lookup for Objective-C instance variables (including automatically
715   // synthesized instance variables), if we're in an Objective-C method.
716   // FIXME: This lookup really, really needs to be folded in to the normal
717   // unqualified lookup mechanism.
718   if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
719     ExprResult E = LookupInObjCMethod(Result, S, Name, true);
720     if (E.get() || E.isInvalid())
721       return E;
722   }
723 
724   bool SecondTry = false;
725   bool IsFilteredTemplateName = false;
726 
727 Corrected:
728   switch (Result.getResultKind()) {
729   case LookupResult::NotFound:
730     // If an unqualified-id is followed by a '(', then we have a function
731     // call.
732     if (!SS.isSet() && NextToken.is(tok::l_paren)) {
733       // In C++, this is an ADL-only call.
734       // FIXME: Reference?
735       if (getLangOpts().CPlusPlus)
736         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
737 
738       // C90 6.3.2.2:
739       //   If the expression that precedes the parenthesized argument list in a
740       //   function call consists solely of an identifier, and if no
741       //   declaration is visible for this identifier, the identifier is
742       //   implicitly declared exactly as if, in the innermost block containing
743       //   the function call, the declaration
744       //
745       //     extern int identifier ();
746       //
747       //   appeared.
748       //
749       // We also allow this in C99 as an extension.
750       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
751         Result.addDecl(D);
752         Result.resolveKind();
753         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
754       }
755     }
756 
757     // In C, we first see whether there is a tag type by the same name, in
758     // which case it's likely that the user just forget to write "enum",
759     // "struct", or "union".
760     if (!getLangOpts().CPlusPlus && !SecondTry &&
761         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
762       break;
763     }
764 
765     // Perform typo correction to determine if there is another name that is
766     // close to this name.
767     if (!SecondTry && CCC) {
768       SecondTry = true;
769       if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
770                                                  Result.getLookupKind(), S,
771                                                  &SS, std::move(CCC),
772                                                  CTK_ErrorRecovery)) {
773         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
774         unsigned QualifiedDiag = diag::err_no_member_suggest;
775 
776         NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
777         NamedDecl *UnderlyingFirstDecl
778           = FirstDecl? FirstDecl->getUnderlyingDecl() : nullptr;
779         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
780             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
781           UnqualifiedDiag = diag::err_no_template_suggest;
782           QualifiedDiag = diag::err_no_member_template_suggest;
783         } else if (UnderlyingFirstDecl &&
784                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
785                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
786                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
787           UnqualifiedDiag = diag::err_unknown_typename_suggest;
788           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
789         }
790 
791         if (SS.isEmpty()) {
792           diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
793         } else {// FIXME: is this even reachable? Test it.
794           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
795           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
796                                   Name->getName().equals(CorrectedStr);
797           diagnoseTypo(Corrected, PDiag(QualifiedDiag)
798                                     << Name << computeDeclContext(SS, false)
799                                     << DroppedSpecifier << SS.getRange());
800         }
801 
802         // Update the name, so that the caller has the new name.
803         Name = Corrected.getCorrectionAsIdentifierInfo();
804 
805         // Typo correction corrected to a keyword.
806         if (Corrected.isKeyword())
807           return Name;
808 
809         // Also update the LookupResult...
810         // FIXME: This should probably go away at some point
811         Result.clear();
812         Result.setLookupName(Corrected.getCorrection());
813         if (FirstDecl)
814           Result.addDecl(FirstDecl);
815 
816         // If we found an Objective-C instance variable, let
817         // LookupInObjCMethod build the appropriate expression to
818         // reference the ivar.
819         // FIXME: This is a gross hack.
820         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
821           Result.clear();
822           ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
823           return E;
824         }
825 
826         goto Corrected;
827       }
828     }
829 
830     // We failed to correct; just fall through and let the parser deal with it.
831     Result.suppressDiagnostics();
832     return NameClassification::Unknown();
833 
834   case LookupResult::NotFoundInCurrentInstantiation: {
835     // We performed name lookup into the current instantiation, and there were
836     // dependent bases, so we treat this result the same way as any other
837     // dependent nested-name-specifier.
838 
839     // C++ [temp.res]p2:
840     //   A name used in a template declaration or definition and that is
841     //   dependent on a template-parameter is assumed not to name a type
842     //   unless the applicable name lookup finds a type name or the name is
843     //   qualified by the keyword typename.
844     //
845     // FIXME: If the next token is '<', we might want to ask the parser to
846     // perform some heroics to see if we actually have a
847     // template-argument-list, which would indicate a missing 'template'
848     // keyword here.
849     return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
850                                       NameInfo, IsAddressOfOperand,
851                                       /*TemplateArgs=*/nullptr);
852   }
853 
854   case LookupResult::Found:
855   case LookupResult::FoundOverloaded:
856   case LookupResult::FoundUnresolvedValue:
857     break;
858 
859   case LookupResult::Ambiguous:
860     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
861         hasAnyAcceptableTemplateNames(Result)) {
862       // C++ [temp.local]p3:
863       //   A lookup that finds an injected-class-name (10.2) can result in an
864       //   ambiguity in certain cases (for example, if it is found in more than
865       //   one base class). If all of the injected-class-names that are found
866       //   refer to specializations of the same class template, and if the name
867       //   is followed by a template-argument-list, the reference refers to the
868       //   class template itself and not a specialization thereof, and is not
869       //   ambiguous.
870       //
871       // This filtering can make an ambiguous result into an unambiguous one,
872       // so try again after filtering out template names.
873       FilterAcceptableTemplateNames(Result);
874       if (!Result.isAmbiguous()) {
875         IsFilteredTemplateName = true;
876         break;
877       }
878     }
879 
880     // Diagnose the ambiguity and return an error.
881     return NameClassification::Error();
882   }
883 
884   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
885       (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
886     // C++ [temp.names]p3:
887     //   After name lookup (3.4) finds that a name is a template-name or that
888     //   an operator-function-id or a literal- operator-id refers to a set of
889     //   overloaded functions any member of which is a function template if
890     //   this is followed by a <, the < is always taken as the delimiter of a
891     //   template-argument-list and never as the less-than operator.
892     if (!IsFilteredTemplateName)
893       FilterAcceptableTemplateNames(Result);
894 
895     if (!Result.empty()) {
896       bool IsFunctionTemplate;
897       bool IsVarTemplate;
898       TemplateName Template;
899       if (Result.end() - Result.begin() > 1) {
900         IsFunctionTemplate = true;
901         Template = Context.getOverloadedTemplateName(Result.begin(),
902                                                      Result.end());
903       } else {
904         TemplateDecl *TD
905           = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
906         IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
907         IsVarTemplate = isa<VarTemplateDecl>(TD);
908 
909         if (SS.isSet() && !SS.isInvalid())
910           Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
911                                                     /*TemplateKeyword=*/false,
912                                                       TD);
913         else
914           Template = TemplateName(TD);
915       }
916 
917       if (IsFunctionTemplate) {
918         // Function templates always go through overload resolution, at which
919         // point we'll perform the various checks (e.g., accessibility) we need
920         // to based on which function we selected.
921         Result.suppressDiagnostics();
922 
923         return NameClassification::FunctionTemplate(Template);
924       }
925 
926       return IsVarTemplate ? NameClassification::VarTemplate(Template)
927                            : NameClassification::TypeTemplate(Template);
928     }
929   }
930 
931   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
932   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
933     DiagnoseUseOfDecl(Type, NameLoc);
934     MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
935     QualType T = Context.getTypeDeclType(Type);
936     if (SS.isNotEmpty())
937       return buildNestedType(*this, SS, T, NameLoc);
938     return ParsedType::make(T);
939   }
940 
941   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
942   if (!Class) {
943     // FIXME: It's unfortunate that we don't have a Type node for handling this.
944     if (ObjCCompatibleAliasDecl *Alias =
945             dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
946       Class = Alias->getClassInterface();
947   }
948 
949   if (Class) {
950     DiagnoseUseOfDecl(Class, NameLoc);
951 
952     if (NextToken.is(tok::period)) {
953       // Interface. <something> is parsed as a property reference expression.
954       // Just return "unknown" as a fall-through for now.
955       Result.suppressDiagnostics();
956       return NameClassification::Unknown();
957     }
958 
959     QualType T = Context.getObjCInterfaceType(Class);
960     return ParsedType::make(T);
961   }
962 
963   // We can have a type template here if we're classifying a template argument.
964   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
965     return NameClassification::TypeTemplate(
966         TemplateName(cast<TemplateDecl>(FirstDecl)));
967 
968   // Check for a tag type hidden by a non-type decl in a few cases where it
969   // seems likely a type is wanted instead of the non-type that was found.
970   bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
971   if ((NextToken.is(tok::identifier) ||
972        (NextIsOp &&
973         FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
974       isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
975     TypeDecl *Type = Result.getAsSingle<TypeDecl>();
976     DiagnoseUseOfDecl(Type, NameLoc);
977     QualType T = Context.getTypeDeclType(Type);
978     if (SS.isNotEmpty())
979       return buildNestedType(*this, SS, T, NameLoc);
980     return ParsedType::make(T);
981   }
982 
983   if (FirstDecl->isCXXClassMember())
984     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
985                                            nullptr);
986 
987   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
988   return BuildDeclarationNameExpr(SS, Result, ADL);
989 }
990 
991 // Determines the context to return to after temporarily entering a
992 // context.  This depends in an unnecessarily complicated way on the
993 // exact ordering of callbacks from the parser.
getContainingDC(DeclContext * DC)994 DeclContext *Sema::getContainingDC(DeclContext *DC) {
995 
996   // Functions defined inline within classes aren't parsed until we've
997   // finished parsing the top-level class, so the top-level class is
998   // the context we'll need to return to.
999   // A Lambda call operator whose parent is a class must not be treated
1000   // as an inline member function.  A Lambda can be used legally
1001   // either as an in-class member initializer or a default argument.  These
1002   // are parsed once the class has been marked complete and so the containing
1003   // context would be the nested class (when the lambda is defined in one);
1004   // If the class is not complete, then the lambda is being used in an
1005   // ill-formed fashion (such as to specify the width of a bit-field, or
1006   // in an array-bound) - in which case we still want to return the
1007   // lexically containing DC (which could be a nested class).
1008   if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
1009     DC = DC->getLexicalParent();
1010 
1011     // A function not defined within a class will always return to its
1012     // lexical context.
1013     if (!isa<CXXRecordDecl>(DC))
1014       return DC;
1015 
1016     // A C++ inline method/friend is parsed *after* the topmost class
1017     // it was declared in is fully parsed ("complete");  the topmost
1018     // class is the context we need to return to.
1019     while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
1020       DC = RD;
1021 
1022     // Return the declaration context of the topmost class the inline method is
1023     // declared in.
1024     return DC;
1025   }
1026 
1027   return DC->getLexicalParent();
1028 }
1029 
PushDeclContext(Scope * S,DeclContext * DC)1030 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1031   assert(getContainingDC(DC) == CurContext &&
1032       "The next DeclContext should be lexically contained in the current one.");
1033   CurContext = DC;
1034   S->setEntity(DC);
1035 }
1036 
PopDeclContext()1037 void Sema::PopDeclContext() {
1038   assert(CurContext && "DeclContext imbalance!");
1039 
1040   CurContext = getContainingDC(CurContext);
1041   assert(CurContext && "Popped translation unit!");
1042 }
1043 
1044 /// EnterDeclaratorContext - Used when we must lookup names in the context
1045 /// of a declarator's nested name specifier.
1046 ///
EnterDeclaratorContext(Scope * S,DeclContext * DC)1047 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1048   // C++0x [basic.lookup.unqual]p13:
1049   //   A name used in the definition of a static data member of class
1050   //   X (after the qualified-id of the static member) is looked up as
1051   //   if the name was used in a member function of X.
1052   // C++0x [basic.lookup.unqual]p14:
1053   //   If a variable member of a namespace is defined outside of the
1054   //   scope of its namespace then any name used in the definition of
1055   //   the variable member (after the declarator-id) is looked up as
1056   //   if the definition of the variable member occurred in its
1057   //   namespace.
1058   // Both of these imply that we should push a scope whose context
1059   // is the semantic context of the declaration.  We can't use
1060   // PushDeclContext here because that context is not necessarily
1061   // lexically contained in the current context.  Fortunately,
1062   // the containing scope should have the appropriate information.
1063 
1064   assert(!S->getEntity() && "scope already has entity");
1065 
1066 #ifndef NDEBUG
1067   Scope *Ancestor = S->getParent();
1068   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1069   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1070 #endif
1071 
1072   CurContext = DC;
1073   S->setEntity(DC);
1074 }
1075 
ExitDeclaratorContext(Scope * S)1076 void Sema::ExitDeclaratorContext(Scope *S) {
1077   assert(S->getEntity() == CurContext && "Context imbalance!");
1078 
1079   // Switch back to the lexical context.  The safety of this is
1080   // enforced by an assert in EnterDeclaratorContext.
1081   Scope *Ancestor = S->getParent();
1082   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1083   CurContext = Ancestor->getEntity();
1084 
1085   // We don't need to do anything with the scope, which is going to
1086   // disappear.
1087 }
1088 
1089 
ActOnReenterFunctionContext(Scope * S,Decl * D)1090 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1091   // We assume that the caller has already called
1092   // ActOnReenterTemplateScope so getTemplatedDecl() works.
1093   FunctionDecl *FD = D->getAsFunction();
1094   if (!FD)
1095     return;
1096 
1097   // Same implementation as PushDeclContext, but enters the context
1098   // from the lexical parent, rather than the top-level class.
1099   assert(CurContext == FD->getLexicalParent() &&
1100     "The next DeclContext should be lexically contained in the current one.");
1101   CurContext = FD;
1102   S->setEntity(CurContext);
1103 
1104   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1105     ParmVarDecl *Param = FD->getParamDecl(P);
1106     // If the parameter has an identifier, then add it to the scope
1107     if (Param->getIdentifier()) {
1108       S->AddDecl(Param);
1109       IdResolver.AddDecl(Param);
1110     }
1111   }
1112 }
1113 
1114 
ActOnExitFunctionContext()1115 void Sema::ActOnExitFunctionContext() {
1116   // Same implementation as PopDeclContext, but returns to the lexical parent,
1117   // rather than the top-level class.
1118   assert(CurContext && "DeclContext imbalance!");
1119   CurContext = CurContext->getLexicalParent();
1120   assert(CurContext && "Popped translation unit!");
1121 }
1122 
1123 
1124 /// \brief Determine whether we allow overloading of the function
1125 /// PrevDecl with another declaration.
1126 ///
1127 /// This routine determines whether overloading is possible, not
1128 /// whether some new function is actually an overload. It will return
1129 /// true in C++ (where we can always provide overloads) or, as an
1130 /// extension, in C when the previous function is already an
1131 /// overloaded function declaration or has the "overloadable"
1132 /// attribute.
AllowOverloadingOfFunction(LookupResult & Previous,ASTContext & Context)1133 static bool AllowOverloadingOfFunction(LookupResult &Previous,
1134                                        ASTContext &Context) {
1135   if (Context.getLangOpts().CPlusPlus)
1136     return true;
1137 
1138   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1139     return true;
1140 
1141   return (Previous.getResultKind() == LookupResult::Found
1142           && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1143 }
1144 
1145 /// Add this decl to the scope shadowed decl chains.
PushOnScopeChains(NamedDecl * D,Scope * S,bool AddToContext)1146 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1147   // Move up the scope chain until we find the nearest enclosing
1148   // non-transparent context. The declaration will be introduced into this
1149   // scope.
1150   while (S->getEntity() && S->getEntity()->isTransparentContext())
1151     S = S->getParent();
1152 
1153   // Add scoped declarations into their context, so that they can be
1154   // found later. Declarations without a context won't be inserted
1155   // into any context.
1156   if (AddToContext)
1157     CurContext->addDecl(D);
1158 
1159   // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1160   // are function-local declarations.
1161   if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
1162       !D->getDeclContext()->getRedeclContext()->Equals(
1163         D->getLexicalDeclContext()->getRedeclContext()) &&
1164       !D->getLexicalDeclContext()->isFunctionOrMethod())
1165     return;
1166 
1167   // Template instantiations should also not be pushed into scope.
1168   if (isa<FunctionDecl>(D) &&
1169       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1170     return;
1171 
1172   // If this replaces anything in the current scope,
1173   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1174                                IEnd = IdResolver.end();
1175   for (; I != IEnd; ++I) {
1176     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1177       S->RemoveDecl(*I);
1178       IdResolver.RemoveDecl(*I);
1179 
1180       // Should only need to replace one decl.
1181       break;
1182     }
1183   }
1184 
1185   S->AddDecl(D);
1186 
1187   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1188     // Implicitly-generated labels may end up getting generated in an order that
1189     // isn't strictly lexical, which breaks name lookup. Be careful to insert
1190     // the label at the appropriate place in the identifier chain.
1191     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1192       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1193       if (IDC == CurContext) {
1194         if (!S->isDeclScope(*I))
1195           continue;
1196       } else if (IDC->Encloses(CurContext))
1197         break;
1198     }
1199 
1200     IdResolver.InsertDeclAfter(I, D);
1201   } else {
1202     IdResolver.AddDecl(D);
1203   }
1204 }
1205 
pushExternalDeclIntoScope(NamedDecl * D,DeclarationName Name)1206 void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1207   if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1208     TUScope->AddDecl(D);
1209 }
1210 
isDeclInScope(NamedDecl * D,DeclContext * Ctx,Scope * S,bool AllowInlineNamespace)1211 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1212                          bool AllowInlineNamespace) {
1213   return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1214 }
1215 
getScopeForDeclContext(Scope * S,DeclContext * DC)1216 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1217   DeclContext *TargetDC = DC->getPrimaryContext();
1218   do {
1219     if (DeclContext *ScopeDC = S->getEntity())
1220       if (ScopeDC->getPrimaryContext() == TargetDC)
1221         return S;
1222   } while ((S = S->getParent()));
1223 
1224   return nullptr;
1225 }
1226 
1227 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1228                                             DeclContext*,
1229                                             ASTContext&);
1230 
1231 /// Filters out lookup results that don't fall within the given scope
1232 /// as determined by isDeclInScope.
FilterLookupForScope(LookupResult & R,DeclContext * Ctx,Scope * S,bool ConsiderLinkage,bool AllowInlineNamespace)1233 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1234                                 bool ConsiderLinkage,
1235                                 bool AllowInlineNamespace) {
1236   LookupResult::Filter F = R.makeFilter();
1237   while (F.hasNext()) {
1238     NamedDecl *D = F.next();
1239 
1240     if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1241       continue;
1242 
1243     if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1244       continue;
1245 
1246     F.erase();
1247   }
1248 
1249   F.done();
1250 }
1251 
isUsingDecl(NamedDecl * D)1252 static bool isUsingDecl(NamedDecl *D) {
1253   return isa<UsingShadowDecl>(D) ||
1254          isa<UnresolvedUsingTypenameDecl>(D) ||
1255          isa<UnresolvedUsingValueDecl>(D);
1256 }
1257 
1258 /// Removes using shadow declarations from the lookup results.
RemoveUsingDecls(LookupResult & R)1259 static void RemoveUsingDecls(LookupResult &R) {
1260   LookupResult::Filter F = R.makeFilter();
1261   while (F.hasNext())
1262     if (isUsingDecl(F.next()))
1263       F.erase();
1264 
1265   F.done();
1266 }
1267 
1268 /// \brief Check for this common pattern:
1269 /// @code
1270 /// class S {
1271 ///   S(const S&); // DO NOT IMPLEMENT
1272 ///   void operator=(const S&); // DO NOT IMPLEMENT
1273 /// };
1274 /// @endcode
IsDisallowedCopyOrAssign(const CXXMethodDecl * D)1275 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1276   // FIXME: Should check for private access too but access is set after we get
1277   // the decl here.
1278   if (D->doesThisDeclarationHaveABody())
1279     return false;
1280 
1281   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1282     return CD->isCopyConstructor();
1283   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1284     return Method->isCopyAssignmentOperator();
1285   return false;
1286 }
1287 
1288 // We need this to handle
1289 //
1290 // typedef struct {
1291 //   void *foo() { return 0; }
1292 // } A;
1293 //
1294 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1295 // for example. If 'A', foo will have external linkage. If we have '*A',
1296 // foo will have no linkage. Since we can't know until we get to the end
1297 // of the typedef, this function finds out if D might have non-external linkage.
1298 // Callers should verify at the end of the TU if it D has external linkage or
1299 // not.
mightHaveNonExternalLinkage(const DeclaratorDecl * D)1300 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1301   const DeclContext *DC = D->getDeclContext();
1302   while (!DC->isTranslationUnit()) {
1303     if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1304       if (!RD->hasNameForLinkage())
1305         return true;
1306     }
1307     DC = DC->getParent();
1308   }
1309 
1310   return !D->isExternallyVisible();
1311 }
1312 
1313 // FIXME: This needs to be refactored; some other isInMainFile users want
1314 // these semantics.
isMainFileLoc(const Sema & S,SourceLocation Loc)1315 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1316   if (S.TUKind != TU_Complete)
1317     return false;
1318   return S.SourceMgr.isInMainFile(Loc);
1319 }
1320 
ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl * D) const1321 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1322   assert(D);
1323 
1324   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1325     return false;
1326 
1327   // Ignore all entities declared within templates, and out-of-line definitions
1328   // of members of class templates.
1329   if (D->getDeclContext()->isDependentContext() ||
1330       D->getLexicalDeclContext()->isDependentContext())
1331     return false;
1332 
1333   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1334     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1335       return false;
1336 
1337     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1338       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1339         return false;
1340     } else {
1341       // 'static inline' functions are defined in headers; don't warn.
1342       if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1343         return false;
1344     }
1345 
1346     if (FD->doesThisDeclarationHaveABody() &&
1347         Context.DeclMustBeEmitted(FD))
1348       return false;
1349   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1350     // Constants and utility variables are defined in headers with internal
1351     // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
1352     // like "inline".)
1353     if (!isMainFileLoc(*this, VD->getLocation()))
1354       return false;
1355 
1356     if (Context.DeclMustBeEmitted(VD))
1357       return false;
1358 
1359     if (VD->isStaticDataMember() &&
1360         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1361       return false;
1362   } else {
1363     return false;
1364   }
1365 
1366   // Only warn for unused decls internal to the translation unit.
1367   // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1368   // for inline functions defined in the main source file, for instance.
1369   return mightHaveNonExternalLinkage(D);
1370 }
1371 
MarkUnusedFileScopedDecl(const DeclaratorDecl * D)1372 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1373   if (!D)
1374     return;
1375 
1376   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1377     const FunctionDecl *First = FD->getFirstDecl();
1378     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1379       return; // First should already be in the vector.
1380   }
1381 
1382   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1383     const VarDecl *First = VD->getFirstDecl();
1384     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1385       return; // First should already be in the vector.
1386   }
1387 
1388   if (ShouldWarnIfUnusedFileScopedDecl(D))
1389     UnusedFileScopedDecls.push_back(D);
1390 }
1391 
ShouldDiagnoseUnusedDecl(const NamedDecl * D)1392 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1393   if (D->isInvalidDecl())
1394     return false;
1395 
1396   if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>() ||
1397       D->hasAttr<ObjCPreciseLifetimeAttr>())
1398     return false;
1399 
1400   if (isa<LabelDecl>(D))
1401     return true;
1402 
1403   // Except for labels, we only care about unused decls that are local to
1404   // functions.
1405   bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1406   if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1407     // For dependent types, the diagnostic is deferred.
1408     WithinFunction =
1409         WithinFunction || (R->isLocalClass() && !R->isDependentType());
1410   if (!WithinFunction)
1411     return false;
1412 
1413   if (isa<TypedefNameDecl>(D))
1414     return true;
1415 
1416   // White-list anything that isn't a local variable.
1417   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1418     return false;
1419 
1420   // Types of valid local variables should be complete, so this should succeed.
1421   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1422 
1423     // White-list anything with an __attribute__((unused)) type.
1424     QualType Ty = VD->getType();
1425 
1426     // Only look at the outermost level of typedef.
1427     if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1428       if (TT->getDecl()->hasAttr<UnusedAttr>())
1429         return false;
1430     }
1431 
1432     // If we failed to complete the type for some reason, or if the type is
1433     // dependent, don't diagnose the variable.
1434     if (Ty->isIncompleteType() || Ty->isDependentType())
1435       return false;
1436 
1437     if (const TagType *TT = Ty->getAs<TagType>()) {
1438       const TagDecl *Tag = TT->getDecl();
1439       if (Tag->hasAttr<UnusedAttr>())
1440         return false;
1441 
1442       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1443         if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1444           return false;
1445 
1446         if (const Expr *Init = VD->getInit()) {
1447           if (const ExprWithCleanups *Cleanups =
1448                   dyn_cast<ExprWithCleanups>(Init))
1449             Init = Cleanups->getSubExpr();
1450           const CXXConstructExpr *Construct =
1451             dyn_cast<CXXConstructExpr>(Init);
1452           if (Construct && !Construct->isElidable()) {
1453             CXXConstructorDecl *CD = Construct->getConstructor();
1454             if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>())
1455               return false;
1456           }
1457         }
1458       }
1459     }
1460 
1461     // TODO: __attribute__((unused)) templates?
1462   }
1463 
1464   return true;
1465 }
1466 
GenerateFixForUnusedDecl(const NamedDecl * D,ASTContext & Ctx,FixItHint & Hint)1467 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1468                                      FixItHint &Hint) {
1469   if (isa<LabelDecl>(D)) {
1470     SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1471                 tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1472     if (AfterColon.isInvalid())
1473       return;
1474     Hint = FixItHint::CreateRemoval(CharSourceRange::
1475                                     getCharRange(D->getLocStart(), AfterColon));
1476   }
1477   return;
1478 }
1479 
DiagnoseUnusedNestedTypedefs(const RecordDecl * D)1480 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1481   if (D->getTypeForDecl()->isDependentType())
1482     return;
1483 
1484   for (auto *TmpD : D->decls()) {
1485     if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1486       DiagnoseUnusedDecl(T);
1487     else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1488       DiagnoseUnusedNestedTypedefs(R);
1489   }
1490 }
1491 
1492 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1493 /// unless they are marked attr(unused).
DiagnoseUnusedDecl(const NamedDecl * D)1494 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1495   if (!ShouldDiagnoseUnusedDecl(D))
1496     return;
1497 
1498   if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1499     // typedefs can be referenced later on, so the diagnostics are emitted
1500     // at end-of-translation-unit.
1501     UnusedLocalTypedefNameCandidates.insert(TD);
1502     return;
1503   }
1504 
1505   FixItHint Hint;
1506   GenerateFixForUnusedDecl(D, Context, Hint);
1507 
1508   unsigned DiagID;
1509   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1510     DiagID = diag::warn_unused_exception_param;
1511   else if (isa<LabelDecl>(D))
1512     DiagID = diag::warn_unused_label;
1513   else
1514     DiagID = diag::warn_unused_variable;
1515 
1516   Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1517 }
1518 
CheckPoppedLabel(LabelDecl * L,Sema & S)1519 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1520   // Verify that we have no forward references left.  If so, there was a goto
1521   // or address of a label taken, but no definition of it.  Label fwd
1522   // definitions are indicated with a null substmt which is also not a resolved
1523   // MS inline assembly label name.
1524   bool Diagnose = false;
1525   if (L->isMSAsmLabel())
1526     Diagnose = !L->isResolvedMSAsmLabel();
1527   else
1528     Diagnose = L->getStmt() == nullptr;
1529   if (Diagnose)
1530     S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1531 }
1532 
ActOnPopScope(SourceLocation Loc,Scope * S)1533 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1534   S->mergeNRVOIntoParent();
1535 
1536   if (S->decl_empty()) return;
1537   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1538          "Scope shouldn't contain decls!");
1539 
1540   for (auto *TmpD : S->decls()) {
1541     assert(TmpD && "This decl didn't get pushed??");
1542 
1543     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1544     NamedDecl *D = cast<NamedDecl>(TmpD);
1545 
1546     if (!D->getDeclName()) continue;
1547 
1548     // Diagnose unused variables in this scope.
1549     if (!S->hasUnrecoverableErrorOccurred()) {
1550       DiagnoseUnusedDecl(D);
1551       if (const auto *RD = dyn_cast<RecordDecl>(D))
1552         DiagnoseUnusedNestedTypedefs(RD);
1553     }
1554 
1555     // If this was a forward reference to a label, verify it was defined.
1556     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1557       CheckPoppedLabel(LD, *this);
1558 
1559     // Remove this name from our lexical scope.
1560     IdResolver.RemoveDecl(D);
1561   }
1562 }
1563 
1564 /// \brief Look for an Objective-C class in the translation unit.
1565 ///
1566 /// \param Id The name of the Objective-C class we're looking for. If
1567 /// typo-correction fixes this name, the Id will be updated
1568 /// to the fixed name.
1569 ///
1570 /// \param IdLoc The location of the name in the translation unit.
1571 ///
1572 /// \param DoTypoCorrection If true, this routine will attempt typo correction
1573 /// if there is no class with the given name.
1574 ///
1575 /// \returns The declaration of the named Objective-C class, or NULL if the
1576 /// class could not be found.
getObjCInterfaceDecl(IdentifierInfo * & Id,SourceLocation IdLoc,bool DoTypoCorrection)1577 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1578                                               SourceLocation IdLoc,
1579                                               bool DoTypoCorrection) {
1580   // The third "scope" argument is 0 since we aren't enabling lazy built-in
1581   // creation from this context.
1582   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1583 
1584   if (!IDecl && DoTypoCorrection) {
1585     // Perform typo correction at the given location, but only if we
1586     // find an Objective-C class name.
1587     if (TypoCorrection C = CorrectTypo(
1588             DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, TUScope, nullptr,
1589             llvm::make_unique<DeclFilterCCC<ObjCInterfaceDecl>>(),
1590             CTK_ErrorRecovery)) {
1591       diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1592       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1593       Id = IDecl->getIdentifier();
1594     }
1595   }
1596   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1597   // This routine must always return a class definition, if any.
1598   if (Def && Def->getDefinition())
1599       Def = Def->getDefinition();
1600   return Def;
1601 }
1602 
1603 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
1604 /// from S, where a non-field would be declared. This routine copes
1605 /// with the difference between C and C++ scoping rules in structs and
1606 /// unions. For example, the following code is well-formed in C but
1607 /// ill-formed in C++:
1608 /// @code
1609 /// struct S6 {
1610 ///   enum { BAR } e;
1611 /// };
1612 ///
1613 /// void test_S6() {
1614 ///   struct S6 a;
1615 ///   a.e = BAR;
1616 /// }
1617 /// @endcode
1618 /// For the declaration of BAR, this routine will return a different
1619 /// scope. The scope S will be the scope of the unnamed enumeration
1620 /// within S6. In C++, this routine will return the scope associated
1621 /// with S6, because the enumeration's scope is a transparent
1622 /// context but structures can contain non-field names. In C, this
1623 /// routine will return the translation unit scope, since the
1624 /// enumeration's scope is a transparent context and structures cannot
1625 /// contain non-field names.
getNonFieldDeclScope(Scope * S)1626 Scope *Sema::getNonFieldDeclScope(Scope *S) {
1627   while (((S->getFlags() & Scope::DeclScope) == 0) ||
1628          (S->getEntity() && S->getEntity()->isTransparentContext()) ||
1629          (S->isClassScope() && !getLangOpts().CPlusPlus))
1630     S = S->getParent();
1631   return S;
1632 }
1633 
1634 /// \brief Looks up the declaration of "struct objc_super" and
1635 /// saves it for later use in building builtin declaration of
1636 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1637 /// pre-existing declaration exists no action takes place.
LookupPredefedObjCSuperType(Sema & ThisSema,Scope * S,IdentifierInfo * II)1638 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1639                                         IdentifierInfo *II) {
1640   if (!II->isStr("objc_msgSendSuper"))
1641     return;
1642   ASTContext &Context = ThisSema.Context;
1643 
1644   LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1645                       SourceLocation(), Sema::LookupTagName);
1646   ThisSema.LookupName(Result, S);
1647   if (Result.getResultKind() == LookupResult::Found)
1648     if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1649       Context.setObjCSuperType(Context.getTagDeclType(TD));
1650 }
1651 
getHeaderName(ASTContext::GetBuiltinTypeError Error)1652 static StringRef getHeaderName(ASTContext::GetBuiltinTypeError Error) {
1653   switch (Error) {
1654   case ASTContext::GE_None:
1655     return "";
1656   case ASTContext::GE_Missing_stdio:
1657     return "stdio.h";
1658   case ASTContext::GE_Missing_setjmp:
1659     return "setjmp.h";
1660   case ASTContext::GE_Missing_ucontext:
1661     return "ucontext.h";
1662   }
1663   llvm_unreachable("unhandled error kind");
1664 }
1665 
1666 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1667 /// file scope.  lazily create a decl for it. ForRedeclaration is true
1668 /// if we're creating this built-in in anticipation of redeclaring the
1669 /// built-in.
LazilyCreateBuiltin(IdentifierInfo * II,unsigned ID,Scope * S,bool ForRedeclaration,SourceLocation Loc)1670 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
1671                                      Scope *S, bool ForRedeclaration,
1672                                      SourceLocation Loc) {
1673   LookupPredefedObjCSuperType(*this, S, II);
1674 
1675   ASTContext::GetBuiltinTypeError Error;
1676   QualType R = Context.GetBuiltinType(ID, Error);
1677   if (Error) {
1678     if (ForRedeclaration)
1679       Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
1680           << getHeaderName(Error)
1681           << Context.BuiltinInfo.GetName(ID);
1682     return nullptr;
1683   }
1684 
1685   if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(ID)) {
1686     Diag(Loc, diag::ext_implicit_lib_function_decl)
1687       << Context.BuiltinInfo.GetName(ID)
1688       << R;
1689     if (Context.BuiltinInfo.getHeaderName(ID) &&
1690         !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
1691       Diag(Loc, diag::note_include_header_or_declare)
1692           << Context.BuiltinInfo.getHeaderName(ID)
1693           << Context.BuiltinInfo.GetName(ID);
1694   }
1695 
1696   DeclContext *Parent = Context.getTranslationUnitDecl();
1697   if (getLangOpts().CPlusPlus) {
1698     LinkageSpecDecl *CLinkageDecl =
1699         LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
1700                                 LinkageSpecDecl::lang_c, false);
1701     CLinkageDecl->setImplicit();
1702     Parent->addDecl(CLinkageDecl);
1703     Parent = CLinkageDecl;
1704   }
1705 
1706   FunctionDecl *New = FunctionDecl::Create(Context,
1707                                            Parent,
1708                                            Loc, Loc, II, R, /*TInfo=*/nullptr,
1709                                            SC_Extern,
1710                                            false,
1711                                            /*hasPrototype=*/true);
1712   New->setImplicit();
1713 
1714   // Create Decl objects for each parameter, adding them to the
1715   // FunctionDecl.
1716   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1717     SmallVector<ParmVarDecl*, 16> Params;
1718     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1719       ParmVarDecl *parm =
1720           ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
1721                               nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
1722                               SC_None, nullptr);
1723       parm->setScopeInfo(0, i);
1724       Params.push_back(parm);
1725     }
1726     New->setParams(Params);
1727   }
1728 
1729   AddKnownFunctionAttributes(New);
1730   RegisterLocallyScopedExternCDecl(New, S);
1731 
1732   // TUScope is the translation-unit scope to insert this function into.
1733   // FIXME: This is hideous. We need to teach PushOnScopeChains to
1734   // relate Scopes to DeclContexts, and probably eliminate CurContext
1735   // entirely, but we're not there yet.
1736   DeclContext *SavedContext = CurContext;
1737   CurContext = Parent;
1738   PushOnScopeChains(New, TUScope);
1739   CurContext = SavedContext;
1740   return New;
1741 }
1742 
1743 /// \brief Filter out any previous declarations that the given declaration
1744 /// should not consider because they are not permitted to conflict, e.g.,
1745 /// because they come from hidden sub-modules and do not refer to the same
1746 /// entity.
filterNonConflictingPreviousDecls(ASTContext & context,NamedDecl * decl,LookupResult & previous)1747 static void filterNonConflictingPreviousDecls(ASTContext &context,
1748                                               NamedDecl *decl,
1749                                               LookupResult &previous){
1750   // This is only interesting when modules are enabled.
1751   if (!context.getLangOpts().Modules)
1752     return;
1753 
1754   // Empty sets are uninteresting.
1755   if (previous.empty())
1756     return;
1757 
1758   LookupResult::Filter filter = previous.makeFilter();
1759   while (filter.hasNext()) {
1760     NamedDecl *old = filter.next();
1761 
1762     // Non-hidden declarations are never ignored.
1763     if (!old->isHidden())
1764       continue;
1765 
1766     if (!old->isExternallyVisible())
1767       filter.erase();
1768   }
1769 
1770   filter.done();
1771 }
1772 
1773 /// Typedef declarations don't have linkage, but they still denote the same
1774 /// entity if their types are the same.
1775 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
1776 /// isSameEntity.
filterNonConflictingPreviousTypedefDecls(ASTContext & Context,TypedefNameDecl * Decl,LookupResult & Previous)1777 static void filterNonConflictingPreviousTypedefDecls(ASTContext &Context,
1778                                                      TypedefNameDecl *Decl,
1779                                                      LookupResult &Previous) {
1780   // This is only interesting when modules are enabled.
1781   if (!Context.getLangOpts().Modules)
1782     return;
1783 
1784   // Empty sets are uninteresting.
1785   if (Previous.empty())
1786     return;
1787 
1788   LookupResult::Filter Filter = Previous.makeFilter();
1789   while (Filter.hasNext()) {
1790     NamedDecl *Old = Filter.next();
1791 
1792     // Non-hidden declarations are never ignored.
1793     if (!Old->isHidden())
1794       continue;
1795 
1796     // Declarations of the same entity are not ignored, even if they have
1797     // different linkages.
1798     if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old))
1799       if (Context.hasSameType(OldTD->getUnderlyingType(),
1800                               Decl->getUnderlyingType()))
1801         continue;
1802 
1803     if (!Old->isExternallyVisible())
1804       Filter.erase();
1805   }
1806 
1807   Filter.done();
1808 }
1809 
isIncompatibleTypedef(TypeDecl * Old,TypedefNameDecl * New)1810 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1811   QualType OldType;
1812   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1813     OldType = OldTypedef->getUnderlyingType();
1814   else
1815     OldType = Context.getTypeDeclType(Old);
1816   QualType NewType = New->getUnderlyingType();
1817 
1818   if (NewType->isVariablyModifiedType()) {
1819     // Must not redefine a typedef with a variably-modified type.
1820     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1821     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1822       << Kind << NewType;
1823     if (Old->getLocation().isValid())
1824       Diag(Old->getLocation(), diag::note_previous_definition);
1825     New->setInvalidDecl();
1826     return true;
1827   }
1828 
1829   if (OldType != NewType &&
1830       !OldType->isDependentType() &&
1831       !NewType->isDependentType() &&
1832       !Context.hasSameType(OldType, NewType)) {
1833     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1834     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1835       << Kind << NewType << OldType;
1836     if (Old->getLocation().isValid())
1837       Diag(Old->getLocation(), diag::note_previous_definition);
1838     New->setInvalidDecl();
1839     return true;
1840   }
1841   return false;
1842 }
1843 
1844 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1845 /// same name and scope as a previous declaration 'Old'.  Figure out
1846 /// how to resolve this situation, merging decls or emitting
1847 /// diagnostics as appropriate. If there was an error, set New to be invalid.
1848 ///
MergeTypedefNameDecl(TypedefNameDecl * New,LookupResult & OldDecls)1849 void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1850   // If the new decl is known invalid already, don't bother doing any
1851   // merging checks.
1852   if (New->isInvalidDecl()) return;
1853 
1854   // Allow multiple definitions for ObjC built-in typedefs.
1855   // FIXME: Verify the underlying types are equivalent!
1856   if (getLangOpts().ObjC1) {
1857     const IdentifierInfo *TypeID = New->getIdentifier();
1858     switch (TypeID->getLength()) {
1859     default: break;
1860     case 2:
1861       {
1862         if (!TypeID->isStr("id"))
1863           break;
1864         QualType T = New->getUnderlyingType();
1865         if (!T->isPointerType())
1866           break;
1867         if (!T->isVoidPointerType()) {
1868           QualType PT = T->getAs<PointerType>()->getPointeeType();
1869           if (!PT->isStructureType())
1870             break;
1871         }
1872         Context.setObjCIdRedefinitionType(T);
1873         // Install the built-in type for 'id', ignoring the current definition.
1874         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1875         return;
1876       }
1877     case 5:
1878       if (!TypeID->isStr("Class"))
1879         break;
1880       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1881       // Install the built-in type for 'Class', ignoring the current definition.
1882       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1883       return;
1884     case 3:
1885       if (!TypeID->isStr("SEL"))
1886         break;
1887       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1888       // Install the built-in type for 'SEL', ignoring the current definition.
1889       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1890       return;
1891     }
1892     // Fall through - the typedef name was not a builtin type.
1893   }
1894 
1895   // Verify the old decl was also a type.
1896   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1897   if (!Old) {
1898     Diag(New->getLocation(), diag::err_redefinition_different_kind)
1899       << New->getDeclName();
1900 
1901     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1902     if (OldD->getLocation().isValid())
1903       Diag(OldD->getLocation(), diag::note_previous_definition);
1904 
1905     return New->setInvalidDecl();
1906   }
1907 
1908   // If the old declaration is invalid, just give up here.
1909   if (Old->isInvalidDecl())
1910     return New->setInvalidDecl();
1911 
1912   // If the typedef types are not identical, reject them in all languages and
1913   // with any extensions enabled.
1914   if (isIncompatibleTypedef(Old, New))
1915     return;
1916 
1917   // The types match.  Link up the redeclaration chain and merge attributes if
1918   // the old declaration was a typedef.
1919   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
1920     New->setPreviousDecl(Typedef);
1921     mergeDeclAttributes(New, Old);
1922   }
1923 
1924   if (getLangOpts().MicrosoftExt)
1925     return;
1926 
1927   if (getLangOpts().CPlusPlus) {
1928     // C++ [dcl.typedef]p2:
1929     //   In a given non-class scope, a typedef specifier can be used to
1930     //   redefine the name of any type declared in that scope to refer
1931     //   to the type to which it already refers.
1932     if (!isa<CXXRecordDecl>(CurContext))
1933       return;
1934 
1935     // C++0x [dcl.typedef]p4:
1936     //   In a given class scope, a typedef specifier can be used to redefine
1937     //   any class-name declared in that scope that is not also a typedef-name
1938     //   to refer to the type to which it already refers.
1939     //
1940     // This wording came in via DR424, which was a correction to the
1941     // wording in DR56, which accidentally banned code like:
1942     //
1943     //   struct S {
1944     //     typedef struct A { } A;
1945     //   };
1946     //
1947     // in the C++03 standard. We implement the C++0x semantics, which
1948     // allow the above but disallow
1949     //
1950     //   struct S {
1951     //     typedef int I;
1952     //     typedef int I;
1953     //   };
1954     //
1955     // since that was the intent of DR56.
1956     if (!isa<TypedefNameDecl>(Old))
1957       return;
1958 
1959     Diag(New->getLocation(), diag::err_redefinition)
1960       << New->getDeclName();
1961     Diag(Old->getLocation(), diag::note_previous_definition);
1962     return New->setInvalidDecl();
1963   }
1964 
1965   // Modules always permit redefinition of typedefs, as does C11.
1966   if (getLangOpts().Modules || getLangOpts().C11)
1967     return;
1968 
1969   // If we have a redefinition of a typedef in C, emit a warning.  This warning
1970   // is normally mapped to an error, but can be controlled with
1971   // -Wtypedef-redefinition.  If either the original or the redefinition is
1972   // in a system header, don't emit this for compatibility with GCC.
1973   if (getDiagnostics().getSuppressSystemWarnings() &&
1974       (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1975        Context.getSourceManager().isInSystemHeader(New->getLocation())))
1976     return;
1977 
1978   Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
1979     << New->getDeclName();
1980   Diag(Old->getLocation(), diag::note_previous_definition);
1981   return;
1982 }
1983 
1984 /// DeclhasAttr - returns true if decl Declaration already has the target
1985 /// attribute.
DeclHasAttr(const Decl * D,const Attr * A)1986 static bool DeclHasAttr(const Decl *D, const Attr *A) {
1987   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1988   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1989   for (const auto *i : D->attrs())
1990     if (i->getKind() == A->getKind()) {
1991       if (Ann) {
1992         if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
1993           return true;
1994         continue;
1995       }
1996       // FIXME: Don't hardcode this check
1997       if (OA && isa<OwnershipAttr>(i))
1998         return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
1999       return true;
2000     }
2001 
2002   return false;
2003 }
2004 
isAttributeTargetADefinition(Decl * D)2005 static bool isAttributeTargetADefinition(Decl *D) {
2006   if (VarDecl *VD = dyn_cast<VarDecl>(D))
2007     return VD->isThisDeclarationADefinition();
2008   if (TagDecl *TD = dyn_cast<TagDecl>(D))
2009     return TD->isCompleteDefinition() || TD->isBeingDefined();
2010   return true;
2011 }
2012 
2013 /// Merge alignment attributes from \p Old to \p New, taking into account the
2014 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2015 ///
2016 /// \return \c true if any attributes were added to \p New.
mergeAlignedAttrs(Sema & S,NamedDecl * New,Decl * Old)2017 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2018   // Look for alignas attributes on Old, and pick out whichever attribute
2019   // specifies the strictest alignment requirement.
2020   AlignedAttr *OldAlignasAttr = nullptr;
2021   AlignedAttr *OldStrictestAlignAttr = nullptr;
2022   unsigned OldAlign = 0;
2023   for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2024     // FIXME: We have no way of representing inherited dependent alignments
2025     // in a case like:
2026     //   template<int A, int B> struct alignas(A) X;
2027     //   template<int A, int B> struct alignas(B) X {};
2028     // For now, we just ignore any alignas attributes which are not on the
2029     // definition in such a case.
2030     if (I->isAlignmentDependent())
2031       return false;
2032 
2033     if (I->isAlignas())
2034       OldAlignasAttr = I;
2035 
2036     unsigned Align = I->getAlignment(S.Context);
2037     if (Align > OldAlign) {
2038       OldAlign = Align;
2039       OldStrictestAlignAttr = I;
2040     }
2041   }
2042 
2043   // Look for alignas attributes on New.
2044   AlignedAttr *NewAlignasAttr = nullptr;
2045   unsigned NewAlign = 0;
2046   for (auto *I : New->specific_attrs<AlignedAttr>()) {
2047     if (I->isAlignmentDependent())
2048       return false;
2049 
2050     if (I->isAlignas())
2051       NewAlignasAttr = I;
2052 
2053     unsigned Align = I->getAlignment(S.Context);
2054     if (Align > NewAlign)
2055       NewAlign = Align;
2056   }
2057 
2058   if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2059     // Both declarations have 'alignas' attributes. We require them to match.
2060     // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2061     // fall short. (If two declarations both have alignas, they must both match
2062     // every definition, and so must match each other if there is a definition.)
2063 
2064     // If either declaration only contains 'alignas(0)' specifiers, then it
2065     // specifies the natural alignment for the type.
2066     if (OldAlign == 0 || NewAlign == 0) {
2067       QualType Ty;
2068       if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2069         Ty = VD->getType();
2070       else
2071         Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2072 
2073       if (OldAlign == 0)
2074         OldAlign = S.Context.getTypeAlign(Ty);
2075       if (NewAlign == 0)
2076         NewAlign = S.Context.getTypeAlign(Ty);
2077     }
2078 
2079     if (OldAlign != NewAlign) {
2080       S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2081         << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2082         << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2083       S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2084     }
2085   }
2086 
2087   if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2088     // C++11 [dcl.align]p6:
2089     //   if any declaration of an entity has an alignment-specifier,
2090     //   every defining declaration of that entity shall specify an
2091     //   equivalent alignment.
2092     // C11 6.7.5/7:
2093     //   If the definition of an object does not have an alignment
2094     //   specifier, any other declaration of that object shall also
2095     //   have no alignment specifier.
2096     S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2097       << OldAlignasAttr;
2098     S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2099       << OldAlignasAttr;
2100   }
2101 
2102   bool AnyAdded = false;
2103 
2104   // Ensure we have an attribute representing the strictest alignment.
2105   if (OldAlign > NewAlign) {
2106     AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2107     Clone->setInherited(true);
2108     New->addAttr(Clone);
2109     AnyAdded = true;
2110   }
2111 
2112   // Ensure we have an alignas attribute if the old declaration had one.
2113   if (OldAlignasAttr && !NewAlignasAttr &&
2114       !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2115     AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2116     Clone->setInherited(true);
2117     New->addAttr(Clone);
2118     AnyAdded = true;
2119   }
2120 
2121   return AnyAdded;
2122 }
2123 
mergeDeclAttribute(Sema & S,NamedDecl * D,const InheritableAttr * Attr,bool Override)2124 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2125                                const InheritableAttr *Attr, bool Override) {
2126   InheritableAttr *NewAttr = nullptr;
2127   unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
2128   if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2129     NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
2130                                       AA->getIntroduced(), AA->getDeprecated(),
2131                                       AA->getObsoleted(), AA->getUnavailable(),
2132                                       AA->getMessage(), Override,
2133                                       AttrSpellingListIndex);
2134   else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2135     NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2136                                     AttrSpellingListIndex);
2137   else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2138     NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2139                                         AttrSpellingListIndex);
2140   else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2141     NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
2142                                    AttrSpellingListIndex);
2143   else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2144     NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
2145                                    AttrSpellingListIndex);
2146   else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2147     NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
2148                                 FA->getFormatIdx(), FA->getFirstArg(),
2149                                 AttrSpellingListIndex);
2150   else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2151     NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
2152                                  AttrSpellingListIndex);
2153   else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2154     NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(),
2155                                        AttrSpellingListIndex,
2156                                        IA->getSemanticSpelling());
2157   else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2158     NewAttr = S.mergeAlwaysInlineAttr(D, AA->getRange(),
2159                                       &S.Context.Idents.get(AA->getSpelling()),
2160                                       AttrSpellingListIndex);
2161   else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2162     NewAttr = S.mergeMinSizeAttr(D, MA->getRange(), AttrSpellingListIndex);
2163   else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2164     NewAttr = S.mergeOptimizeNoneAttr(D, OA->getRange(), AttrSpellingListIndex);
2165   else if (isa<AlignedAttr>(Attr))
2166     // AlignedAttrs are handled separately, because we need to handle all
2167     // such attributes on a declaration at the same time.
2168     NewAttr = nullptr;
2169   else if (isa<DeprecatedAttr>(Attr) && Override)
2170     NewAttr = nullptr;
2171   else if (Attr->duplicatesAllowed() || !DeclHasAttr(D, Attr))
2172     NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2173 
2174   if (NewAttr) {
2175     NewAttr->setInherited(true);
2176     D->addAttr(NewAttr);
2177     return true;
2178   }
2179 
2180   return false;
2181 }
2182 
getDefinition(const Decl * D)2183 static const Decl *getDefinition(const Decl *D) {
2184   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2185     return TD->getDefinition();
2186   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2187     const VarDecl *Def = VD->getDefinition();
2188     if (Def)
2189       return Def;
2190     return VD->getActingDefinition();
2191   }
2192   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2193     const FunctionDecl* Def;
2194     if (FD->isDefined(Def))
2195       return Def;
2196   }
2197   return nullptr;
2198 }
2199 
hasAttribute(const Decl * D,attr::Kind Kind)2200 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2201   for (const auto *Attribute : D->attrs())
2202     if (Attribute->getKind() == Kind)
2203       return true;
2204   return false;
2205 }
2206 
2207 /// checkNewAttributesAfterDef - If we already have a definition, check that
2208 /// there are no new attributes in this declaration.
checkNewAttributesAfterDef(Sema & S,Decl * New,const Decl * Old)2209 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2210   if (!New->hasAttrs())
2211     return;
2212 
2213   const Decl *Def = getDefinition(Old);
2214   if (!Def || Def == New)
2215     return;
2216 
2217   AttrVec &NewAttributes = New->getAttrs();
2218   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2219     const Attr *NewAttribute = NewAttributes[I];
2220 
2221     if (isa<AliasAttr>(NewAttribute)) {
2222       if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New))
2223         S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def));
2224       else {
2225         VarDecl *VD = cast<VarDecl>(New);
2226         unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2227                                 VarDecl::TentativeDefinition
2228                             ? diag::err_alias_after_tentative
2229                             : diag::err_redefinition;
2230         S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2231         S.Diag(Def->getLocation(), diag::note_previous_definition);
2232         VD->setInvalidDecl();
2233       }
2234       ++I;
2235       continue;
2236     }
2237 
2238     if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2239       // Tentative definitions are only interesting for the alias check above.
2240       if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2241         ++I;
2242         continue;
2243       }
2244     }
2245 
2246     if (hasAttribute(Def, NewAttribute->getKind())) {
2247       ++I;
2248       continue; // regular attr merging will take care of validating this.
2249     }
2250 
2251     if (isa<C11NoReturnAttr>(NewAttribute)) {
2252       // C's _Noreturn is allowed to be added to a function after it is defined.
2253       ++I;
2254       continue;
2255     } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2256       if (AA->isAlignas()) {
2257         // C++11 [dcl.align]p6:
2258         //   if any declaration of an entity has an alignment-specifier,
2259         //   every defining declaration of that entity shall specify an
2260         //   equivalent alignment.
2261         // C11 6.7.5/7:
2262         //   If the definition of an object does not have an alignment
2263         //   specifier, any other declaration of that object shall also
2264         //   have no alignment specifier.
2265         S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2266           << AA;
2267         S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2268           << AA;
2269         NewAttributes.erase(NewAttributes.begin() + I);
2270         --E;
2271         continue;
2272       }
2273     }
2274 
2275     S.Diag(NewAttribute->getLocation(),
2276            diag::warn_attribute_precede_definition);
2277     S.Diag(Def->getLocation(), diag::note_previous_definition);
2278     NewAttributes.erase(NewAttributes.begin() + I);
2279     --E;
2280   }
2281 }
2282 
2283 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
mergeDeclAttributes(NamedDecl * New,Decl * Old,AvailabilityMergeKind AMK)2284 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2285                                AvailabilityMergeKind AMK) {
2286   if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2287     UsedAttr *NewAttr = OldAttr->clone(Context);
2288     NewAttr->setInherited(true);
2289     New->addAttr(NewAttr);
2290   }
2291 
2292   if (!Old->hasAttrs() && !New->hasAttrs())
2293     return;
2294 
2295   // attributes declared post-definition are currently ignored
2296   checkNewAttributesAfterDef(*this, New, Old);
2297 
2298   if (!Old->hasAttrs())
2299     return;
2300 
2301   bool foundAny = New->hasAttrs();
2302 
2303   // Ensure that any moving of objects within the allocated map is done before
2304   // we process them.
2305   if (!foundAny) New->setAttrs(AttrVec());
2306 
2307   for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2308     bool Override = false;
2309     // Ignore deprecated/unavailable/availability attributes if requested.
2310     if (isa<DeprecatedAttr>(I) ||
2311         isa<UnavailableAttr>(I) ||
2312         isa<AvailabilityAttr>(I)) {
2313       switch (AMK) {
2314       case AMK_None:
2315         continue;
2316 
2317       case AMK_Redeclaration:
2318         break;
2319 
2320       case AMK_Override:
2321         Override = true;
2322         break;
2323       }
2324     }
2325 
2326     // Already handled.
2327     if (isa<UsedAttr>(I))
2328       continue;
2329 
2330     if (mergeDeclAttribute(*this, New, I, Override))
2331       foundAny = true;
2332   }
2333 
2334   if (mergeAlignedAttrs(*this, New, Old))
2335     foundAny = true;
2336 
2337   if (!foundAny) New->dropAttrs();
2338 }
2339 
2340 /// mergeParamDeclAttributes - Copy attributes from the old parameter
2341 /// to the new one.
mergeParamDeclAttributes(ParmVarDecl * newDecl,const ParmVarDecl * oldDecl,Sema & S)2342 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2343                                      const ParmVarDecl *oldDecl,
2344                                      Sema &S) {
2345   // C++11 [dcl.attr.depend]p2:
2346   //   The first declaration of a function shall specify the
2347   //   carries_dependency attribute for its declarator-id if any declaration
2348   //   of the function specifies the carries_dependency attribute.
2349   const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2350   if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2351     S.Diag(CDA->getLocation(),
2352            diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2353     // Find the first declaration of the parameter.
2354     // FIXME: Should we build redeclaration chains for function parameters?
2355     const FunctionDecl *FirstFD =
2356       cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2357     const ParmVarDecl *FirstVD =
2358       FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2359     S.Diag(FirstVD->getLocation(),
2360            diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2361   }
2362 
2363   if (!oldDecl->hasAttrs())
2364     return;
2365 
2366   bool foundAny = newDecl->hasAttrs();
2367 
2368   // Ensure that any moving of objects within the allocated map is
2369   // done before we process them.
2370   if (!foundAny) newDecl->setAttrs(AttrVec());
2371 
2372   for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
2373     if (!DeclHasAttr(newDecl, I)) {
2374       InheritableAttr *newAttr =
2375         cast<InheritableParamAttr>(I->clone(S.Context));
2376       newAttr->setInherited(true);
2377       newDecl->addAttr(newAttr);
2378       foundAny = true;
2379     }
2380   }
2381 
2382   if (!foundAny) newDecl->dropAttrs();
2383 }
2384 
2385 namespace {
2386 
2387 /// Used in MergeFunctionDecl to keep track of function parameters in
2388 /// C.
2389 struct GNUCompatibleParamWarning {
2390   ParmVarDecl *OldParm;
2391   ParmVarDecl *NewParm;
2392   QualType PromotedType;
2393 };
2394 
2395 }
2396 
2397 /// getSpecialMember - get the special member enum for a method.
getSpecialMember(const CXXMethodDecl * MD)2398 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2399   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2400     if (Ctor->isDefaultConstructor())
2401       return Sema::CXXDefaultConstructor;
2402 
2403     if (Ctor->isCopyConstructor())
2404       return Sema::CXXCopyConstructor;
2405 
2406     if (Ctor->isMoveConstructor())
2407       return Sema::CXXMoveConstructor;
2408   } else if (isa<CXXDestructorDecl>(MD)) {
2409     return Sema::CXXDestructor;
2410   } else if (MD->isCopyAssignmentOperator()) {
2411     return Sema::CXXCopyAssignment;
2412   } else if (MD->isMoveAssignmentOperator()) {
2413     return Sema::CXXMoveAssignment;
2414   }
2415 
2416   return Sema::CXXInvalid;
2417 }
2418 
2419 // Determine whether the previous declaration was a definition, implicit
2420 // declaration, or a declaration.
2421 template <typename T>
2422 static std::pair<diag::kind, SourceLocation>
getNoteDiagForInvalidRedeclaration(const T * Old,const T * New)2423 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
2424   diag::kind PrevDiag;
2425   SourceLocation OldLocation = Old->getLocation();
2426   if (Old->isThisDeclarationADefinition())
2427     PrevDiag = diag::note_previous_definition;
2428   else if (Old->isImplicit()) {
2429     PrevDiag = diag::note_previous_implicit_declaration;
2430     if (OldLocation.isInvalid())
2431       OldLocation = New->getLocation();
2432   } else
2433     PrevDiag = diag::note_previous_declaration;
2434   return std::make_pair(PrevDiag, OldLocation);
2435 }
2436 
2437 /// canRedefineFunction - checks if a function can be redefined. Currently,
2438 /// only extern inline functions can be redefined, and even then only in
2439 /// GNU89 mode.
canRedefineFunction(const FunctionDecl * FD,const LangOptions & LangOpts)2440 static bool canRedefineFunction(const FunctionDecl *FD,
2441                                 const LangOptions& LangOpts) {
2442   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2443           !LangOpts.CPlusPlus &&
2444           FD->isInlineSpecified() &&
2445           FD->getStorageClass() == SC_Extern);
2446 }
2447 
getCallingConvAttributedType(QualType T) const2448 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
2449   const AttributedType *AT = T->getAs<AttributedType>();
2450   while (AT && !AT->isCallingConv())
2451     AT = AT->getModifiedType()->getAs<AttributedType>();
2452   return AT;
2453 }
2454 
2455 template <typename T>
haveIncompatibleLanguageLinkages(const T * Old,const T * New)2456 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2457   const DeclContext *DC = Old->getDeclContext();
2458   if (DC->isRecord())
2459     return false;
2460 
2461   LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2462   if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2463     return true;
2464   if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2465     return true;
2466   return false;
2467 }
2468 
2469 /// MergeFunctionDecl - We just parsed a function 'New' from
2470 /// declarator D which has the same name and scope as a previous
2471 /// declaration 'Old'.  Figure out how to resolve this situation,
2472 /// merging decls or emitting diagnostics as appropriate.
2473 ///
2474 /// In C++, New and Old must be declarations that are not
2475 /// overloaded. Use IsOverload to determine whether New and Old are
2476 /// overloaded, and to select the Old declaration that New should be
2477 /// merged with.
2478 ///
2479 /// Returns true if there was an error, false otherwise.
MergeFunctionDecl(FunctionDecl * New,NamedDecl * & OldD,Scope * S,bool MergeTypeWithOld)2480 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
2481                              Scope *S, bool MergeTypeWithOld) {
2482   // Verify the old decl was also a function.
2483   FunctionDecl *Old = OldD->getAsFunction();
2484   if (!Old) {
2485     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2486       if (New->getFriendObjectKind()) {
2487         Diag(New->getLocation(), diag::err_using_decl_friend);
2488         Diag(Shadow->getTargetDecl()->getLocation(),
2489              diag::note_using_decl_target);
2490         Diag(Shadow->getUsingDecl()->getLocation(),
2491              diag::note_using_decl) << 0;
2492         return true;
2493       }
2494 
2495       // C++11 [namespace.udecl]p14:
2496       //   If a function declaration in namespace scope or block scope has the
2497       //   same name and the same parameter-type-list as a function introduced
2498       //   by a using-declaration, and the declarations do not declare the same
2499       //   function, the program is ill-formed.
2500 
2501       // Check whether the two declarations might declare the same function.
2502       Old = dyn_cast<FunctionDecl>(Shadow->getTargetDecl());
2503       if (Old &&
2504           !Old->getDeclContext()->getRedeclContext()->Equals(
2505               New->getDeclContext()->getRedeclContext()) &&
2506           !(Old->isExternC() && New->isExternC()))
2507         Old = nullptr;
2508 
2509       if (!Old) {
2510         Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2511         Diag(Shadow->getTargetDecl()->getLocation(),
2512              diag::note_using_decl_target);
2513         Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
2514         return true;
2515       }
2516       OldD = Old;
2517     } else {
2518       Diag(New->getLocation(), diag::err_redefinition_different_kind)
2519         << New->getDeclName();
2520       Diag(OldD->getLocation(), diag::note_previous_definition);
2521       return true;
2522     }
2523   }
2524 
2525   // If the old declaration is invalid, just give up here.
2526   if (Old->isInvalidDecl())
2527     return true;
2528 
2529   diag::kind PrevDiag;
2530   SourceLocation OldLocation;
2531   std::tie(PrevDiag, OldLocation) =
2532       getNoteDiagForInvalidRedeclaration(Old, New);
2533 
2534   // Don't complain about this if we're in GNU89 mode and the old function
2535   // is an extern inline function.
2536   // Don't complain about specializations. They are not supposed to have
2537   // storage classes.
2538   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2539       New->getStorageClass() == SC_Static &&
2540       Old->hasExternalFormalLinkage() &&
2541       !New->getTemplateSpecializationInfo() &&
2542       !canRedefineFunction(Old, getLangOpts())) {
2543     if (getLangOpts().MicrosoftExt) {
2544       Diag(New->getLocation(), diag::ext_static_non_static) << New;
2545       Diag(OldLocation, PrevDiag);
2546     } else {
2547       Diag(New->getLocation(), diag::err_static_non_static) << New;
2548       Diag(OldLocation, PrevDiag);
2549       return true;
2550     }
2551   }
2552 
2553 
2554   // If a function is first declared with a calling convention, but is later
2555   // declared or defined without one, all following decls assume the calling
2556   // convention of the first.
2557   //
2558   // It's OK if a function is first declared without a calling convention,
2559   // but is later declared or defined with the default calling convention.
2560   //
2561   // To test if either decl has an explicit calling convention, we look for
2562   // AttributedType sugar nodes on the type as written.  If they are missing or
2563   // were canonicalized away, we assume the calling convention was implicit.
2564   //
2565   // Note also that we DO NOT return at this point, because we still have
2566   // other tests to run.
2567   QualType OldQType = Context.getCanonicalType(Old->getType());
2568   QualType NewQType = Context.getCanonicalType(New->getType());
2569   const FunctionType *OldType = cast<FunctionType>(OldQType);
2570   const FunctionType *NewType = cast<FunctionType>(NewQType);
2571   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2572   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2573   bool RequiresAdjustment = false;
2574 
2575   if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
2576     FunctionDecl *First = Old->getFirstDecl();
2577     const FunctionType *FT =
2578         First->getType().getCanonicalType()->castAs<FunctionType>();
2579     FunctionType::ExtInfo FI = FT->getExtInfo();
2580     bool NewCCExplicit = getCallingConvAttributedType(New->getType());
2581     if (!NewCCExplicit) {
2582       // Inherit the CC from the previous declaration if it was specified
2583       // there but not here.
2584       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2585       RequiresAdjustment = true;
2586     } else {
2587       // Calling conventions aren't compatible, so complain.
2588       bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
2589       Diag(New->getLocation(), diag::err_cconv_change)
2590         << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2591         << !FirstCCExplicit
2592         << (!FirstCCExplicit ? "" :
2593             FunctionType::getNameForCallConv(FI.getCC()));
2594 
2595       // Put the note on the first decl, since it is the one that matters.
2596       Diag(First->getLocation(), diag::note_previous_declaration);
2597       return true;
2598     }
2599   }
2600 
2601   // FIXME: diagnose the other way around?
2602   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2603     NewTypeInfo = NewTypeInfo.withNoReturn(true);
2604     RequiresAdjustment = true;
2605   }
2606 
2607   // Merge regparm attribute.
2608   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2609       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2610     if (NewTypeInfo.getHasRegParm()) {
2611       Diag(New->getLocation(), diag::err_regparm_mismatch)
2612         << NewType->getRegParmType()
2613         << OldType->getRegParmType();
2614       Diag(OldLocation, diag::note_previous_declaration);
2615       return true;
2616     }
2617 
2618     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2619     RequiresAdjustment = true;
2620   }
2621 
2622   // Merge ns_returns_retained attribute.
2623   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2624     if (NewTypeInfo.getProducesResult()) {
2625       Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2626       Diag(OldLocation, diag::note_previous_declaration);
2627       return true;
2628     }
2629 
2630     NewTypeInfo = NewTypeInfo.withProducesResult(true);
2631     RequiresAdjustment = true;
2632   }
2633 
2634   if (RequiresAdjustment) {
2635     const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
2636     AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
2637     New->setType(QualType(AdjustedType, 0));
2638     NewQType = Context.getCanonicalType(New->getType());
2639     NewType = cast<FunctionType>(NewQType);
2640   }
2641 
2642   // If this redeclaration makes the function inline, we may need to add it to
2643   // UndefinedButUsed.
2644   if (!Old->isInlined() && New->isInlined() &&
2645       !New->hasAttr<GNUInlineAttr>() &&
2646       (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
2647       Old->isUsed(false) &&
2648       !Old->isDefined() && !New->isThisDeclarationADefinition())
2649     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2650                                            SourceLocation()));
2651 
2652   // If this redeclaration makes it newly gnu_inline, we don't want to warn
2653   // about it.
2654   if (New->hasAttr<GNUInlineAttr>() &&
2655       Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2656     UndefinedButUsed.erase(Old->getCanonicalDecl());
2657   }
2658 
2659   if (getLangOpts().CPlusPlus) {
2660     // (C++98 13.1p2):
2661     //   Certain function declarations cannot be overloaded:
2662     //     -- Function declarations that differ only in the return type
2663     //        cannot be overloaded.
2664 
2665     // Go back to the type source info to compare the declared return types,
2666     // per C++1y [dcl.type.auto]p13:
2667     //   Redeclarations or specializations of a function or function template
2668     //   with a declared return type that uses a placeholder type shall also
2669     //   use that placeholder, not a deduced type.
2670     QualType OldDeclaredReturnType =
2671         (Old->getTypeSourceInfo()
2672              ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2673              : OldType)->getReturnType();
2674     QualType NewDeclaredReturnType =
2675         (New->getTypeSourceInfo()
2676              ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2677              : NewType)->getReturnType();
2678     QualType ResQT;
2679     if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
2680         !((NewQType->isDependentType() || OldQType->isDependentType()) &&
2681           New->isLocalExternDecl())) {
2682       if (NewDeclaredReturnType->isObjCObjectPointerType() &&
2683           OldDeclaredReturnType->isObjCObjectPointerType())
2684         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2685       if (ResQT.isNull()) {
2686         if (New->isCXXClassMember() && New->isOutOfLine())
2687           Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
2688               << New << New->getReturnTypeSourceRange();
2689         else
2690           Diag(New->getLocation(), diag::err_ovl_diff_return_type)
2691               << New->getReturnTypeSourceRange();
2692         Diag(OldLocation, PrevDiag) << Old << Old->getType()
2693                                     << Old->getReturnTypeSourceRange();
2694         return true;
2695       }
2696       else
2697         NewQType = ResQT;
2698     }
2699 
2700     QualType OldReturnType = OldType->getReturnType();
2701     QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
2702     if (OldReturnType != NewReturnType) {
2703       // If this function has a deduced return type and has already been
2704       // defined, copy the deduced value from the old declaration.
2705       AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
2706       if (OldAT && OldAT->isDeduced()) {
2707         New->setType(
2708             SubstAutoType(New->getType(),
2709                           OldAT->isDependentType() ? Context.DependentTy
2710                                                    : OldAT->getDeducedType()));
2711         NewQType = Context.getCanonicalType(
2712             SubstAutoType(NewQType,
2713                           OldAT->isDependentType() ? Context.DependentTy
2714                                                    : OldAT->getDeducedType()));
2715       }
2716     }
2717 
2718     const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
2719     CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
2720     if (OldMethod && NewMethod) {
2721       // Preserve triviality.
2722       NewMethod->setTrivial(OldMethod->isTrivial());
2723 
2724       // MSVC allows explicit template specialization at class scope:
2725       // 2 CXXMethodDecls referring to the same function will be injected.
2726       // We don't want a redeclaration error.
2727       bool IsClassScopeExplicitSpecialization =
2728                               OldMethod->isFunctionTemplateSpecialization() &&
2729                               NewMethod->isFunctionTemplateSpecialization();
2730       bool isFriend = NewMethod->getFriendObjectKind();
2731 
2732       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2733           !IsClassScopeExplicitSpecialization) {
2734         //    -- Member function declarations with the same name and the
2735         //       same parameter types cannot be overloaded if any of them
2736         //       is a static member function declaration.
2737         if (OldMethod->isStatic() != NewMethod->isStatic()) {
2738           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2739           Diag(OldLocation, PrevDiag) << Old << Old->getType();
2740           return true;
2741         }
2742 
2743         // C++ [class.mem]p1:
2744         //   [...] A member shall not be declared twice in the
2745         //   member-specification, except that a nested class or member
2746         //   class template can be declared and then later defined.
2747         if (ActiveTemplateInstantiations.empty()) {
2748           unsigned NewDiag;
2749           if (isa<CXXConstructorDecl>(OldMethod))
2750             NewDiag = diag::err_constructor_redeclared;
2751           else if (isa<CXXDestructorDecl>(NewMethod))
2752             NewDiag = diag::err_destructor_redeclared;
2753           else if (isa<CXXConversionDecl>(NewMethod))
2754             NewDiag = diag::err_conv_function_redeclared;
2755           else
2756             NewDiag = diag::err_member_redeclared;
2757 
2758           Diag(New->getLocation(), NewDiag);
2759         } else {
2760           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2761             << New << New->getType();
2762         }
2763         Diag(OldLocation, PrevDiag) << Old << Old->getType();
2764 
2765       // Complain if this is an explicit declaration of a special
2766       // member that was initially declared implicitly.
2767       //
2768       // As an exception, it's okay to befriend such methods in order
2769       // to permit the implicit constructor/destructor/operator calls.
2770       } else if (OldMethod->isImplicit()) {
2771         if (isFriend) {
2772           NewMethod->setImplicit();
2773         } else {
2774           Diag(NewMethod->getLocation(),
2775                diag::err_definition_of_implicitly_declared_member)
2776             << New << getSpecialMember(OldMethod);
2777           return true;
2778         }
2779       } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2780         Diag(NewMethod->getLocation(),
2781              diag::err_definition_of_explicitly_defaulted_member)
2782           << getSpecialMember(OldMethod);
2783         return true;
2784       }
2785     }
2786 
2787     // C++11 [dcl.attr.noreturn]p1:
2788     //   The first declaration of a function shall specify the noreturn
2789     //   attribute if any declaration of that function specifies the noreturn
2790     //   attribute.
2791     const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
2792     if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
2793       Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
2794       Diag(Old->getFirstDecl()->getLocation(),
2795            diag::note_noreturn_missing_first_decl);
2796     }
2797 
2798     // C++11 [dcl.attr.depend]p2:
2799     //   The first declaration of a function shall specify the
2800     //   carries_dependency attribute for its declarator-id if any declaration
2801     //   of the function specifies the carries_dependency attribute.
2802     const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
2803     if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
2804       Diag(CDA->getLocation(),
2805            diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2806       Diag(Old->getFirstDecl()->getLocation(),
2807            diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2808     }
2809 
2810     // (C++98 8.3.5p3):
2811     //   All declarations for a function shall agree exactly in both the
2812     //   return type and the parameter-type-list.
2813     // We also want to respect all the extended bits except noreturn.
2814 
2815     // noreturn should now match unless the old type info didn't have it.
2816     QualType OldQTypeForComparison = OldQType;
2817     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2818       assert(OldQType == QualType(OldType, 0));
2819       const FunctionType *OldTypeForComparison
2820         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2821       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2822       assert(OldQTypeForComparison.isCanonical());
2823     }
2824 
2825     if (haveIncompatibleLanguageLinkages(Old, New)) {
2826       // As a special case, retain the language linkage from previous
2827       // declarations of a friend function as an extension.
2828       //
2829       // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
2830       // and is useful because there's otherwise no way to specify language
2831       // linkage within class scope.
2832       //
2833       // Check cautiously as the friend object kind isn't yet complete.
2834       if (New->getFriendObjectKind() != Decl::FOK_None) {
2835         Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
2836         Diag(OldLocation, PrevDiag);
2837       } else {
2838         Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2839         Diag(OldLocation, PrevDiag);
2840         return true;
2841       }
2842     }
2843 
2844     if (OldQTypeForComparison == NewQType)
2845       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2846 
2847     if ((NewQType->isDependentType() || OldQType->isDependentType()) &&
2848         New->isLocalExternDecl()) {
2849       // It's OK if we couldn't merge types for a local function declaraton
2850       // if either the old or new type is dependent. We'll merge the types
2851       // when we instantiate the function.
2852       return false;
2853     }
2854 
2855     // Fall through for conflicting redeclarations and redefinitions.
2856   }
2857 
2858   // C: Function types need to be compatible, not identical. This handles
2859   // duplicate function decls like "void f(int); void f(enum X);" properly.
2860   if (!getLangOpts().CPlusPlus &&
2861       Context.typesAreCompatible(OldQType, NewQType)) {
2862     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2863     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2864     const FunctionProtoType *OldProto = nullptr;
2865     if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
2866         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2867       // The old declaration provided a function prototype, but the
2868       // new declaration does not. Merge in the prototype.
2869       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2870       SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
2871       NewQType =
2872           Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
2873                                   OldProto->getExtProtoInfo());
2874       New->setType(NewQType);
2875       New->setHasInheritedPrototype();
2876 
2877       // Synthesize parameters with the same types.
2878       SmallVector<ParmVarDecl*, 16> Params;
2879       for (const auto &ParamType : OldProto->param_types()) {
2880         ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
2881                                                  SourceLocation(), nullptr,
2882                                                  ParamType, /*TInfo=*/nullptr,
2883                                                  SC_None, nullptr);
2884         Param->setScopeInfo(0, Params.size());
2885         Param->setImplicit();
2886         Params.push_back(Param);
2887       }
2888 
2889       New->setParams(Params);
2890     }
2891 
2892     return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2893   }
2894 
2895   // GNU C permits a K&R definition to follow a prototype declaration
2896   // if the declared types of the parameters in the K&R definition
2897   // match the types in the prototype declaration, even when the
2898   // promoted types of the parameters from the K&R definition differ
2899   // from the types in the prototype. GCC then keeps the types from
2900   // the prototype.
2901   //
2902   // If a variadic prototype is followed by a non-variadic K&R definition,
2903   // the K&R definition becomes variadic.  This is sort of an edge case, but
2904   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2905   // C99 6.9.1p8.
2906   if (!getLangOpts().CPlusPlus &&
2907       Old->hasPrototype() && !New->hasPrototype() &&
2908       New->getType()->getAs<FunctionProtoType>() &&
2909       Old->getNumParams() == New->getNumParams()) {
2910     SmallVector<QualType, 16> ArgTypes;
2911     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2912     const FunctionProtoType *OldProto
2913       = Old->getType()->getAs<FunctionProtoType>();
2914     const FunctionProtoType *NewProto
2915       = New->getType()->getAs<FunctionProtoType>();
2916 
2917     // Determine whether this is the GNU C extension.
2918     QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
2919                                                NewProto->getReturnType());
2920     bool LooseCompatible = !MergedReturn.isNull();
2921     for (unsigned Idx = 0, End = Old->getNumParams();
2922          LooseCompatible && Idx != End; ++Idx) {
2923       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2924       ParmVarDecl *NewParm = New->getParamDecl(Idx);
2925       if (Context.typesAreCompatible(OldParm->getType(),
2926                                      NewProto->getParamType(Idx))) {
2927         ArgTypes.push_back(NewParm->getType());
2928       } else if (Context.typesAreCompatible(OldParm->getType(),
2929                                             NewParm->getType(),
2930                                             /*CompareUnqualified=*/true)) {
2931         GNUCompatibleParamWarning Warn = { OldParm, NewParm,
2932                                            NewProto->getParamType(Idx) };
2933         Warnings.push_back(Warn);
2934         ArgTypes.push_back(NewParm->getType());
2935       } else
2936         LooseCompatible = false;
2937     }
2938 
2939     if (LooseCompatible) {
2940       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2941         Diag(Warnings[Warn].NewParm->getLocation(),
2942              diag::ext_param_promoted_not_compatible_with_prototype)
2943           << Warnings[Warn].PromotedType
2944           << Warnings[Warn].OldParm->getType();
2945         if (Warnings[Warn].OldParm->getLocation().isValid())
2946           Diag(Warnings[Warn].OldParm->getLocation(),
2947                diag::note_previous_declaration);
2948       }
2949 
2950       if (MergeTypeWithOld)
2951         New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
2952                                              OldProto->getExtProtoInfo()));
2953       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2954     }
2955 
2956     // Fall through to diagnose conflicting types.
2957   }
2958 
2959   // A function that has already been declared has been redeclared or
2960   // defined with a different type; show an appropriate diagnostic.
2961 
2962   // If the previous declaration was an implicitly-generated builtin
2963   // declaration, then at the very least we should use a specialized note.
2964   unsigned BuiltinID;
2965   if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
2966     // If it's actually a library-defined builtin function like 'malloc'
2967     // or 'printf', just warn about the incompatible redeclaration.
2968     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2969       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2970       Diag(OldLocation, diag::note_previous_builtin_declaration)
2971         << Old << Old->getType();
2972 
2973       // If this is a global redeclaration, just forget hereafter
2974       // about the "builtin-ness" of the function.
2975       //
2976       // Doing this for local extern declarations is problematic.  If
2977       // the builtin declaration remains visible, a second invalid
2978       // local declaration will produce a hard error; if it doesn't
2979       // remain visible, a single bogus local redeclaration (which is
2980       // actually only a warning) could break all the downstream code.
2981       if (!New->getLexicalDeclContext()->isFunctionOrMethod())
2982         New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2983 
2984       return false;
2985     }
2986 
2987     PrevDiag = diag::note_previous_builtin_declaration;
2988   }
2989 
2990   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2991   Diag(OldLocation, PrevDiag) << Old << Old->getType();
2992   return true;
2993 }
2994 
2995 /// \brief Completes the merge of two function declarations that are
2996 /// known to be compatible.
2997 ///
2998 /// This routine handles the merging of attributes and other
2999 /// properties of function declarations from the old declaration to
3000 /// the new declaration, once we know that New is in fact a
3001 /// redeclaration of Old.
3002 ///
3003 /// \returns false
MergeCompatibleFunctionDecls(FunctionDecl * New,FunctionDecl * Old,Scope * S,bool MergeTypeWithOld)3004 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3005                                         Scope *S, bool MergeTypeWithOld) {
3006   // Merge the attributes
3007   mergeDeclAttributes(New, Old);
3008 
3009   // Merge "pure" flag.
3010   if (Old->isPure())
3011     New->setPure();
3012 
3013   // Merge "used" flag.
3014   if (Old->getMostRecentDecl()->isUsed(false))
3015     New->setIsUsed();
3016 
3017   // Merge attributes from the parameters.  These can mismatch with K&R
3018   // declarations.
3019   if (New->getNumParams() == Old->getNumParams())
3020     for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
3021       mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
3022                                *this);
3023 
3024   if (getLangOpts().CPlusPlus)
3025     return MergeCXXFunctionDecl(New, Old, S);
3026 
3027   // Merge the function types so the we get the composite types for the return
3028   // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3029   // was visible.
3030   QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3031   if (!Merged.isNull() && MergeTypeWithOld)
3032     New->setType(Merged);
3033 
3034   return false;
3035 }
3036 
3037 
mergeObjCMethodDecls(ObjCMethodDecl * newMethod,ObjCMethodDecl * oldMethod)3038 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
3039                                 ObjCMethodDecl *oldMethod) {
3040 
3041   // Merge the attributes, including deprecated/unavailable
3042   AvailabilityMergeKind MergeKind =
3043     isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3044                                                    : AMK_Override;
3045   mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3046 
3047   // Merge attributes from the parameters.
3048   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
3049                                        oe = oldMethod->param_end();
3050   for (ObjCMethodDecl::param_iterator
3051          ni = newMethod->param_begin(), ne = newMethod->param_end();
3052        ni != ne && oi != oe; ++ni, ++oi)
3053     mergeParamDeclAttributes(*ni, *oi, *this);
3054 
3055   CheckObjCMethodOverride(newMethod, oldMethod);
3056 }
3057 
3058 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3059 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
3060 /// emitting diagnostics as appropriate.
3061 ///
3062 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3063 /// to here in AddInitializerToDecl. We can't check them before the initializer
3064 /// is attached.
MergeVarDeclTypes(VarDecl * New,VarDecl * Old,bool MergeTypeWithOld)3065 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
3066                              bool MergeTypeWithOld) {
3067   if (New->isInvalidDecl() || Old->isInvalidDecl())
3068     return;
3069 
3070   QualType MergedT;
3071   if (getLangOpts().CPlusPlus) {
3072     if (New->getType()->isUndeducedType()) {
3073       // We don't know what the new type is until the initializer is attached.
3074       return;
3075     } else if (Context.hasSameType(New->getType(), Old->getType())) {
3076       // These could still be something that needs exception specs checked.
3077       return MergeVarDeclExceptionSpecs(New, Old);
3078     }
3079     // C++ [basic.link]p10:
3080     //   [...] the types specified by all declarations referring to a given
3081     //   object or function shall be identical, except that declarations for an
3082     //   array object can specify array types that differ by the presence or
3083     //   absence of a major array bound (8.3.4).
3084     else if (Old->getType()->isIncompleteArrayType() &&
3085              New->getType()->isArrayType()) {
3086       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3087       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3088       if (Context.hasSameType(OldArray->getElementType(),
3089                               NewArray->getElementType()))
3090         MergedT = New->getType();
3091     } else if (Old->getType()->isArrayType() &&
3092                New->getType()->isIncompleteArrayType()) {
3093       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3094       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3095       if (Context.hasSameType(OldArray->getElementType(),
3096                               NewArray->getElementType()))
3097         MergedT = Old->getType();
3098     } else if (New->getType()->isObjCObjectPointerType() &&
3099                Old->getType()->isObjCObjectPointerType()) {
3100       MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3101                                               Old->getType());
3102     }
3103   } else {
3104     // C 6.2.7p2:
3105     //   All declarations that refer to the same object or function shall have
3106     //   compatible type.
3107     MergedT = Context.mergeTypes(New->getType(), Old->getType());
3108   }
3109   if (MergedT.isNull()) {
3110     // It's OK if we couldn't merge types if either type is dependent, for a
3111     // block-scope variable. In other cases (static data members of class
3112     // templates, variable templates, ...), we require the types to be
3113     // equivalent.
3114     // FIXME: The C++ standard doesn't say anything about this.
3115     if ((New->getType()->isDependentType() ||
3116          Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3117       // If the old type was dependent, we can't merge with it, so the new type
3118       // becomes dependent for now. We'll reproduce the original type when we
3119       // instantiate the TypeSourceInfo for the variable.
3120       if (!New->getType()->isDependentType() && MergeTypeWithOld)
3121         New->setType(Context.DependentTy);
3122       return;
3123     }
3124 
3125     // FIXME: Even if this merging succeeds, some other non-visible declaration
3126     // of this variable might have an incompatible type. For instance:
3127     //
3128     //   extern int arr[];
3129     //   void f() { extern int arr[2]; }
3130     //   void g() { extern int arr[3]; }
3131     //
3132     // Neither C nor C++ requires a diagnostic for this, but we should still try
3133     // to diagnose it.
3134     Diag(New->getLocation(), diag::err_redefinition_different_type)
3135       << New->getDeclName() << New->getType() << Old->getType();
3136     Diag(Old->getLocation(), diag::note_previous_definition);
3137     return New->setInvalidDecl();
3138   }
3139 
3140   // Don't actually update the type on the new declaration if the old
3141   // declaration was an extern declaration in a different scope.
3142   if (MergeTypeWithOld)
3143     New->setType(MergedT);
3144 }
3145 
mergeTypeWithPrevious(Sema & S,VarDecl * NewVD,VarDecl * OldVD,LookupResult & Previous)3146 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3147                                   LookupResult &Previous) {
3148   // C11 6.2.7p4:
3149   //   For an identifier with internal or external linkage declared
3150   //   in a scope in which a prior declaration of that identifier is
3151   //   visible, if the prior declaration specifies internal or
3152   //   external linkage, the type of the identifier at the later
3153   //   declaration becomes the composite type.
3154   //
3155   // If the variable isn't visible, we do not merge with its type.
3156   if (Previous.isShadowed())
3157     return false;
3158 
3159   if (S.getLangOpts().CPlusPlus) {
3160     // C++11 [dcl.array]p3:
3161     //   If there is a preceding declaration of the entity in the same
3162     //   scope in which the bound was specified, an omitted array bound
3163     //   is taken to be the same as in that earlier declaration.
3164     return NewVD->isPreviousDeclInSameBlockScope() ||
3165            (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
3166             !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
3167   } else {
3168     // If the old declaration was function-local, don't merge with its
3169     // type unless we're in the same function.
3170     return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
3171            OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
3172   }
3173 }
3174 
3175 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
3176 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
3177 /// situation, merging decls or emitting diagnostics as appropriate.
3178 ///
3179 /// Tentative definition rules (C99 6.9.2p2) are checked by
3180 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
3181 /// definitions here, since the initializer hasn't been attached.
3182 ///
MergeVarDecl(VarDecl * New,LookupResult & Previous)3183 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
3184   // If the new decl is already invalid, don't do any other checking.
3185   if (New->isInvalidDecl())
3186     return;
3187 
3188   VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
3189 
3190   // Verify the old decl was also a variable or variable template.
3191   VarDecl *Old = nullptr;
3192   VarTemplateDecl *OldTemplate = nullptr;
3193   if (Previous.isSingleResult()) {
3194     if (NewTemplate) {
3195       OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
3196       Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
3197     } else
3198       Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
3199   }
3200   if (!Old) {
3201     Diag(New->getLocation(), diag::err_redefinition_different_kind)
3202       << New->getDeclName();
3203     Diag(Previous.getRepresentativeDecl()->getLocation(),
3204          diag::note_previous_definition);
3205     return New->setInvalidDecl();
3206   }
3207 
3208   if (!shouldLinkPossiblyHiddenDecl(Old, New))
3209     return;
3210 
3211   // Ensure the template parameters are compatible.
3212   if (NewTemplate &&
3213       !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
3214                                       OldTemplate->getTemplateParameters(),
3215                                       /*Complain=*/true, TPL_TemplateMatch))
3216     return;
3217 
3218   // C++ [class.mem]p1:
3219   //   A member shall not be declared twice in the member-specification [...]
3220   //
3221   // Here, we need only consider static data members.
3222   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
3223     Diag(New->getLocation(), diag::err_duplicate_member)
3224       << New->getIdentifier();
3225     Diag(Old->getLocation(), diag::note_previous_declaration);
3226     New->setInvalidDecl();
3227   }
3228 
3229   mergeDeclAttributes(New, Old);
3230   // Warn if an already-declared variable is made a weak_import in a subsequent
3231   // declaration
3232   if (New->hasAttr<WeakImportAttr>() &&
3233       Old->getStorageClass() == SC_None &&
3234       !Old->hasAttr<WeakImportAttr>()) {
3235     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
3236     Diag(Old->getLocation(), diag::note_previous_definition);
3237     // Remove weak_import attribute on new declaration.
3238     New->dropAttr<WeakImportAttr>();
3239   }
3240 
3241   // Merge the types.
3242   VarDecl *MostRecent = Old->getMostRecentDecl();
3243   if (MostRecent != Old) {
3244     MergeVarDeclTypes(New, MostRecent,
3245                       mergeTypeWithPrevious(*this, New, MostRecent, Previous));
3246     if (New->isInvalidDecl())
3247       return;
3248   }
3249 
3250   MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
3251   if (New->isInvalidDecl())
3252     return;
3253 
3254   diag::kind PrevDiag;
3255   SourceLocation OldLocation;
3256   std::tie(PrevDiag, OldLocation) =
3257       getNoteDiagForInvalidRedeclaration(Old, New);
3258 
3259   // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
3260   if (New->getStorageClass() == SC_Static &&
3261       !New->isStaticDataMember() &&
3262       Old->hasExternalFormalLinkage()) {
3263     if (getLangOpts().MicrosoftExt) {
3264       Diag(New->getLocation(), diag::ext_static_non_static)
3265           << New->getDeclName();
3266       Diag(OldLocation, PrevDiag);
3267     } else {
3268       Diag(New->getLocation(), diag::err_static_non_static)
3269           << New->getDeclName();
3270       Diag(OldLocation, PrevDiag);
3271       return New->setInvalidDecl();
3272     }
3273   }
3274   // C99 6.2.2p4:
3275   //   For an identifier declared with the storage-class specifier
3276   //   extern in a scope in which a prior declaration of that
3277   //   identifier is visible,23) if the prior declaration specifies
3278   //   internal or external linkage, the linkage of the identifier at
3279   //   the later declaration is the same as the linkage specified at
3280   //   the prior declaration. If no prior declaration is visible, or
3281   //   if the prior declaration specifies no linkage, then the
3282   //   identifier has external linkage.
3283   if (New->hasExternalStorage() && Old->hasLinkage())
3284     /* Okay */;
3285   else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
3286            !New->isStaticDataMember() &&
3287            Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
3288     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
3289     Diag(OldLocation, PrevDiag);
3290     return New->setInvalidDecl();
3291   }
3292 
3293   // Check if extern is followed by non-extern and vice-versa.
3294   if (New->hasExternalStorage() &&
3295       !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
3296     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
3297     Diag(OldLocation, PrevDiag);
3298     return New->setInvalidDecl();
3299   }
3300   if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
3301       !New->hasExternalStorage()) {
3302     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
3303     Diag(OldLocation, PrevDiag);
3304     return New->setInvalidDecl();
3305   }
3306 
3307   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
3308 
3309   // FIXME: The test for external storage here seems wrong? We still
3310   // need to check for mismatches.
3311   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
3312       // Don't complain about out-of-line definitions of static members.
3313       !(Old->getLexicalDeclContext()->isRecord() &&
3314         !New->getLexicalDeclContext()->isRecord())) {
3315     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
3316     Diag(OldLocation, PrevDiag);
3317     return New->setInvalidDecl();
3318   }
3319 
3320   if (New->getTLSKind() != Old->getTLSKind()) {
3321     if (!Old->getTLSKind()) {
3322       Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
3323       Diag(OldLocation, PrevDiag);
3324     } else if (!New->getTLSKind()) {
3325       Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
3326       Diag(OldLocation, PrevDiag);
3327     } else {
3328       // Do not allow redeclaration to change the variable between requiring
3329       // static and dynamic initialization.
3330       // FIXME: GCC allows this, but uses the TLS keyword on the first
3331       // declaration to determine the kind. Do we need to be compatible here?
3332       Diag(New->getLocation(), diag::err_thread_thread_different_kind)
3333         << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
3334       Diag(OldLocation, PrevDiag);
3335     }
3336   }
3337 
3338   // C++ doesn't have tentative definitions, so go right ahead and check here.
3339   const VarDecl *Def;
3340   if (getLangOpts().CPlusPlus &&
3341       New->isThisDeclarationADefinition() == VarDecl::Definition &&
3342       (Def = Old->getDefinition())) {
3343     Diag(New->getLocation(), diag::err_redefinition) << New;
3344     Diag(Def->getLocation(), diag::note_previous_definition);
3345     New->setInvalidDecl();
3346     return;
3347   }
3348 
3349   if (haveIncompatibleLanguageLinkages(Old, New)) {
3350     Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3351     Diag(OldLocation, PrevDiag);
3352     New->setInvalidDecl();
3353     return;
3354   }
3355 
3356   // Merge "used" flag.
3357   if (Old->getMostRecentDecl()->isUsed(false))
3358     New->setIsUsed();
3359 
3360   // Keep a chain of previous declarations.
3361   New->setPreviousDecl(Old);
3362   if (NewTemplate)
3363     NewTemplate->setPreviousDecl(OldTemplate);
3364 
3365   // Inherit access appropriately.
3366   New->setAccess(Old->getAccess());
3367   if (NewTemplate)
3368     NewTemplate->setAccess(New->getAccess());
3369 }
3370 
3371 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3372 /// no declarator (e.g. "struct foo;") is parsed.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS)3373 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3374                                        DeclSpec &DS) {
3375   return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
3376 }
3377 
HandleTagNumbering(Sema & S,const TagDecl * Tag,Scope * TagScope)3378 static void HandleTagNumbering(Sema &S, const TagDecl *Tag, Scope *TagScope) {
3379   if (!S.Context.getLangOpts().CPlusPlus)
3380     return;
3381 
3382   if (isa<CXXRecordDecl>(Tag->getParent())) {
3383     // If this tag is the direct child of a class, number it if
3384     // it is anonymous.
3385     if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
3386       return;
3387     MangleNumberingContext &MCtx =
3388         S.Context.getManglingNumberContext(Tag->getParent());
3389     S.Context.setManglingNumber(
3390         Tag, MCtx.getManglingNumber(Tag, TagScope->getMSLocalManglingNumber()));
3391     return;
3392   }
3393 
3394   // If this tag isn't a direct child of a class, number it if it is local.
3395   Decl *ManglingContextDecl;
3396   if (MangleNumberingContext *MCtx =
3397           S.getCurrentMangleNumberContext(Tag->getDeclContext(),
3398                                           ManglingContextDecl)) {
3399     S.Context.setManglingNumber(
3400         Tag,
3401         MCtx->getManglingNumber(Tag, TagScope->getMSLocalManglingNumber()));
3402   }
3403 }
3404 
3405 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3406 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
3407 /// parameters to cope with template friend declarations.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS,MultiTemplateParamsArg TemplateParams,bool IsExplicitInstantiation)3408 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3409                                        DeclSpec &DS,
3410                                        MultiTemplateParamsArg TemplateParams,
3411                                        bool IsExplicitInstantiation) {
3412   Decl *TagD = nullptr;
3413   TagDecl *Tag = nullptr;
3414   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
3415       DS.getTypeSpecType() == DeclSpec::TST_struct ||
3416       DS.getTypeSpecType() == DeclSpec::TST_interface ||
3417       DS.getTypeSpecType() == DeclSpec::TST_union ||
3418       DS.getTypeSpecType() == DeclSpec::TST_enum) {
3419     TagD = DS.getRepAsDecl();
3420 
3421     if (!TagD) // We probably had an error
3422       return nullptr;
3423 
3424     // Note that the above type specs guarantee that the
3425     // type rep is a Decl, whereas in many of the others
3426     // it's a Type.
3427     if (isa<TagDecl>(TagD))
3428       Tag = cast<TagDecl>(TagD);
3429     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3430       Tag = CTD->getTemplatedDecl();
3431   }
3432 
3433   if (Tag) {
3434     HandleTagNumbering(*this, Tag, S);
3435     Tag->setFreeStanding();
3436     if (Tag->isInvalidDecl())
3437       return Tag;
3438   }
3439 
3440   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3441     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3442     // or incomplete types shall not be restrict-qualified."
3443     if (TypeQuals & DeclSpec::TQ_restrict)
3444       Diag(DS.getRestrictSpecLoc(),
3445            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3446            << DS.getSourceRange();
3447   }
3448 
3449   if (DS.isConstexprSpecified()) {
3450     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3451     // and definitions of functions and variables.
3452     if (Tag)
3453       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3454         << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3455             DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3456             DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3457             DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
3458     else
3459       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3460     // Don't emit warnings after this error.
3461     return TagD;
3462   }
3463 
3464   DiagnoseFunctionSpecifiers(DS);
3465 
3466   if (DS.isFriendSpecified()) {
3467     // If we're dealing with a decl but not a TagDecl, assume that
3468     // whatever routines created it handled the friendship aspect.
3469     if (TagD && !Tag)
3470       return nullptr;
3471     return ActOnFriendTypeDecl(S, DS, TemplateParams);
3472   }
3473 
3474   CXXScopeSpec &SS = DS.getTypeSpecScope();
3475   bool IsExplicitSpecialization =
3476     !TemplateParams.empty() && TemplateParams.back()->size() == 0;
3477   if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
3478       !IsExplicitInstantiation && !IsExplicitSpecialization) {
3479     // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
3480     // nested-name-specifier unless it is an explicit instantiation
3481     // or an explicit specialization.
3482     // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
3483     Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
3484       << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3485           DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3486           DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3487           DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
3488       << SS.getRange();
3489     return nullptr;
3490   }
3491 
3492   // Track whether this decl-specifier declares anything.
3493   bool DeclaresAnything = true;
3494 
3495   // Handle anonymous struct definitions.
3496   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3497     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3498         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3499       if (getLangOpts().CPlusPlus ||
3500           Record->getDeclContext()->isRecord())
3501         return BuildAnonymousStructOrUnion(S, DS, AS, Record, Context.getPrintingPolicy());
3502 
3503       DeclaresAnything = false;
3504     }
3505   }
3506 
3507   // C11 6.7.2.1p2:
3508   //   A struct-declaration that does not declare an anonymous structure or
3509   //   anonymous union shall contain a struct-declarator-list.
3510   //
3511   // This rule also existed in C89 and C99; the grammar for struct-declaration
3512   // did not permit a struct-declaration without a struct-declarator-list.
3513   if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
3514       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3515     // Check for Microsoft C extension: anonymous struct/union member.
3516     // Handle 2 kinds of anonymous struct/union:
3517     //   struct STRUCT;
3518     //   union UNION;
3519     // and
3520     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
3521     //   UNION_TYPE;   <- where UNION_TYPE is a typedef union.
3522     if ((Tag && Tag->getDeclName()) ||
3523         DS.getTypeSpecType() == DeclSpec::TST_typename) {
3524       RecordDecl *Record = nullptr;
3525       if (Tag)
3526         Record = dyn_cast<RecordDecl>(Tag);
3527       else if (const RecordType *RT =
3528                    DS.getRepAsType().get()->getAsStructureType())
3529         Record = RT->getDecl();
3530       else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
3531         Record = UT->getDecl();
3532 
3533       if (Record && getLangOpts().MicrosoftExt) {
3534         Diag(DS.getLocStart(), diag::ext_ms_anonymous_record)
3535           << Record->isUnion() << DS.getSourceRange();
3536         return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3537       }
3538 
3539       DeclaresAnything = false;
3540     }
3541   }
3542 
3543   // Skip all the checks below if we have a type error.
3544   if (DS.getTypeSpecType() == DeclSpec::TST_error ||
3545       (TagD && TagD->isInvalidDecl()))
3546     return TagD;
3547 
3548   if (getLangOpts().CPlusPlus &&
3549       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3550     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3551       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3552           !Enum->getIdentifier() && !Enum->isInvalidDecl())
3553         DeclaresAnything = false;
3554 
3555   if (!DS.isMissingDeclaratorOk()) {
3556     // Customize diagnostic for a typedef missing a name.
3557     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
3558       Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3559         << DS.getSourceRange();
3560     else
3561       DeclaresAnything = false;
3562   }
3563 
3564   if (DS.isModulePrivateSpecified() &&
3565       Tag && Tag->getDeclContext()->isFunctionOrMethod())
3566     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3567       << Tag->getTagKind()
3568       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3569 
3570   ActOnDocumentableDecl(TagD);
3571 
3572   // C 6.7/2:
3573   //   A declaration [...] shall declare at least a declarator [...], a tag,
3574   //   or the members of an enumeration.
3575   // C++ [dcl.dcl]p3:
3576   //   [If there are no declarators], and except for the declaration of an
3577   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
3578   //   names into the program, or shall redeclare a name introduced by a
3579   //   previous declaration.
3580   if (!DeclaresAnything) {
3581     // In C, we allow this as a (popular) extension / bug. Don't bother
3582     // producing further diagnostics for redundant qualifiers after this.
3583     Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
3584     return TagD;
3585   }
3586 
3587   // C++ [dcl.stc]p1:
3588   //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
3589   //   init-declarator-list of the declaration shall not be empty.
3590   // C++ [dcl.fct.spec]p1:
3591   //   If a cv-qualifier appears in a decl-specifier-seq, the
3592   //   init-declarator-list of the declaration shall not be empty.
3593   //
3594   // Spurious qualifiers here appear to be valid in C.
3595   unsigned DiagID = diag::warn_standalone_specifier;
3596   if (getLangOpts().CPlusPlus)
3597     DiagID = diag::ext_standalone_specifier;
3598 
3599   // Note that a linkage-specification sets a storage class, but
3600   // 'extern "C" struct foo;' is actually valid and not theoretically
3601   // useless.
3602   if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
3603     if (SCS == DeclSpec::SCS_mutable)
3604       // Since mutable is not a viable storage class specifier in C, there is
3605       // no reason to treat it as an extension. Instead, diagnose as an error.
3606       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
3607     else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
3608       Diag(DS.getStorageClassSpecLoc(), DiagID)
3609         << DeclSpec::getSpecifierName(SCS);
3610   }
3611 
3612   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
3613     Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
3614       << DeclSpec::getSpecifierName(TSCS);
3615   if (DS.getTypeQualifiers()) {
3616     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3617       Diag(DS.getConstSpecLoc(), DiagID) << "const";
3618     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3619       Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
3620     // Restrict is covered above.
3621     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3622       Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
3623   }
3624 
3625   // Warn about ignored type attributes, for example:
3626   // __attribute__((aligned)) struct A;
3627   // Attributes should be placed after tag to apply to type declaration.
3628   if (!DS.getAttributes().empty()) {
3629     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3630     if (TypeSpecType == DeclSpec::TST_class ||
3631         TypeSpecType == DeclSpec::TST_struct ||
3632         TypeSpecType == DeclSpec::TST_interface ||
3633         TypeSpecType == DeclSpec::TST_union ||
3634         TypeSpecType == DeclSpec::TST_enum) {
3635       AttributeList* attrs = DS.getAttributes().getList();
3636       while (attrs) {
3637         Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3638         << attrs->getName()
3639         << (TypeSpecType == DeclSpec::TST_class ? 0 :
3640             TypeSpecType == DeclSpec::TST_struct ? 1 :
3641             TypeSpecType == DeclSpec::TST_union ? 2 :
3642             TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
3643         attrs = attrs->getNext();
3644       }
3645     }
3646   }
3647 
3648   return TagD;
3649 }
3650 
3651 /// We are trying to inject an anonymous member into the given scope;
3652 /// check if there's an existing declaration that can't be overloaded.
3653 ///
3654 /// \return true if this is a forbidden redeclaration
CheckAnonMemberRedeclaration(Sema & SemaRef,Scope * S,DeclContext * Owner,DeclarationName Name,SourceLocation NameLoc,unsigned diagnostic)3655 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3656                                          Scope *S,
3657                                          DeclContext *Owner,
3658                                          DeclarationName Name,
3659                                          SourceLocation NameLoc,
3660                                          unsigned diagnostic) {
3661   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3662                  Sema::ForRedeclaration);
3663   if (!SemaRef.LookupName(R, S)) return false;
3664 
3665   if (R.getAsSingle<TagDecl>())
3666     return false;
3667 
3668   // Pick a representative declaration.
3669   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3670   assert(PrevDecl && "Expected a non-null Decl");
3671 
3672   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3673     return false;
3674 
3675   SemaRef.Diag(NameLoc, diagnostic) << Name;
3676   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3677 
3678   return true;
3679 }
3680 
3681 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
3682 /// anonymous struct or union AnonRecord into the owning context Owner
3683 /// and scope S. This routine will be invoked just after we realize
3684 /// that an unnamed union or struct is actually an anonymous union or
3685 /// struct, e.g.,
3686 ///
3687 /// @code
3688 /// union {
3689 ///   int i;
3690 ///   float f;
3691 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3692 ///    // f into the surrounding scope.x
3693 /// @endcode
3694 ///
3695 /// This routine is recursive, injecting the names of nested anonymous
3696 /// structs/unions into the owning context and scope as well.
InjectAnonymousStructOrUnionMembers(Sema & SemaRef,Scope * S,DeclContext * Owner,RecordDecl * AnonRecord,AccessSpecifier AS,SmallVectorImpl<NamedDecl * > & Chaining,bool MSAnonStruct)3697 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3698                                          DeclContext *Owner,
3699                                          RecordDecl *AnonRecord,
3700                                          AccessSpecifier AS,
3701                                          SmallVectorImpl<NamedDecl *> &Chaining,
3702                                          bool MSAnonStruct) {
3703   unsigned diagKind
3704     = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3705                             : diag::err_anonymous_struct_member_redecl;
3706 
3707   bool Invalid = false;
3708 
3709   // Look every FieldDecl and IndirectFieldDecl with a name.
3710   for (auto *D : AnonRecord->decls()) {
3711     if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
3712         cast<NamedDecl>(D)->getDeclName()) {
3713       ValueDecl *VD = cast<ValueDecl>(D);
3714       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3715                                        VD->getLocation(), diagKind)) {
3716         // C++ [class.union]p2:
3717         //   The names of the members of an anonymous union shall be
3718         //   distinct from the names of any other entity in the
3719         //   scope in which the anonymous union is declared.
3720         Invalid = true;
3721       } else {
3722         // C++ [class.union]p2:
3723         //   For the purpose of name lookup, after the anonymous union
3724         //   definition, the members of the anonymous union are
3725         //   considered to have been defined in the scope in which the
3726         //   anonymous union is declared.
3727         unsigned OldChainingSize = Chaining.size();
3728         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3729           for (auto *PI : IF->chain())
3730             Chaining.push_back(PI);
3731         else
3732           Chaining.push_back(VD);
3733 
3734         assert(Chaining.size() >= 2);
3735         NamedDecl **NamedChain =
3736           new (SemaRef.Context)NamedDecl*[Chaining.size()];
3737         for (unsigned i = 0; i < Chaining.size(); i++)
3738           NamedChain[i] = Chaining[i];
3739 
3740         IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
3741             SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
3742             VD->getType(), NamedChain, Chaining.size());
3743 
3744         for (const auto *Attr : VD->attrs())
3745           IndirectField->addAttr(Attr->clone(SemaRef.Context));
3746 
3747         IndirectField->setAccess(AS);
3748         IndirectField->setImplicit();
3749         SemaRef.PushOnScopeChains(IndirectField, S);
3750 
3751         // That includes picking up the appropriate access specifier.
3752         if (AS != AS_none) IndirectField->setAccess(AS);
3753 
3754         Chaining.resize(OldChainingSize);
3755       }
3756     }
3757   }
3758 
3759   return Invalid;
3760 }
3761 
3762 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3763 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
3764 /// illegal input values are mapped to SC_None.
3765 static StorageClass
StorageClassSpecToVarDeclStorageClass(const DeclSpec & DS)3766 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
3767   DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
3768   assert(StorageClassSpec != DeclSpec::SCS_typedef &&
3769          "Parser allowed 'typedef' as storage class VarDecl.");
3770   switch (StorageClassSpec) {
3771   case DeclSpec::SCS_unspecified:    return SC_None;
3772   case DeclSpec::SCS_extern:
3773     if (DS.isExternInLinkageSpec())
3774       return SC_None;
3775     return SC_Extern;
3776   case DeclSpec::SCS_static:         return SC_Static;
3777   case DeclSpec::SCS_auto:           return SC_Auto;
3778   case DeclSpec::SCS_register:       return SC_Register;
3779   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3780     // Illegal SCSs map to None: error reporting is up to the caller.
3781   case DeclSpec::SCS_mutable:        // Fall through.
3782   case DeclSpec::SCS_typedef:        return SC_None;
3783   }
3784   llvm_unreachable("unknown storage class specifier");
3785 }
3786 
findDefaultInitializer(const CXXRecordDecl * Record)3787 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
3788   assert(Record->hasInClassInitializer());
3789 
3790   for (const auto *I : Record->decls()) {
3791     const auto *FD = dyn_cast<FieldDecl>(I);
3792     if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
3793       FD = IFD->getAnonField();
3794     if (FD && FD->hasInClassInitializer())
3795       return FD->getLocation();
3796   }
3797 
3798   llvm_unreachable("couldn't find in-class initializer");
3799 }
3800 
checkDuplicateDefaultInit(Sema & S,CXXRecordDecl * Parent,SourceLocation DefaultInitLoc)3801 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
3802                                       SourceLocation DefaultInitLoc) {
3803   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
3804     return;
3805 
3806   S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
3807   S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
3808 }
3809 
checkDuplicateDefaultInit(Sema & S,CXXRecordDecl * Parent,CXXRecordDecl * AnonUnion)3810 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
3811                                       CXXRecordDecl *AnonUnion) {
3812   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
3813     return;
3814 
3815   checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
3816 }
3817 
3818 /// BuildAnonymousStructOrUnion - Handle the declaration of an
3819 /// anonymous structure or union. Anonymous unions are a C++ feature
3820 /// (C++ [class.union]) and a C11 feature; anonymous structures
3821 /// are a C11 feature and GNU C++ extension.
BuildAnonymousStructOrUnion(Scope * S,DeclSpec & DS,AccessSpecifier AS,RecordDecl * Record,const PrintingPolicy & Policy)3822 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3823                                         AccessSpecifier AS,
3824                                         RecordDecl *Record,
3825                                         const PrintingPolicy &Policy) {
3826   DeclContext *Owner = Record->getDeclContext();
3827 
3828   // Diagnose whether this anonymous struct/union is an extension.
3829   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3830     Diag(Record->getLocation(), diag::ext_anonymous_union);
3831   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3832     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3833   else if (!Record->isUnion() && !getLangOpts().C11)
3834     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3835 
3836   // C and C++ require different kinds of checks for anonymous
3837   // structs/unions.
3838   bool Invalid = false;
3839   if (getLangOpts().CPlusPlus) {
3840     const char *PrevSpec = nullptr;
3841     unsigned DiagID;
3842     if (Record->isUnion()) {
3843       // C++ [class.union]p6:
3844       //   Anonymous unions declared in a named namespace or in the
3845       //   global namespace shall be declared static.
3846       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3847           (isa<TranslationUnitDecl>(Owner) ||
3848            (isa<NamespaceDecl>(Owner) &&
3849             cast<NamespaceDecl>(Owner)->getDeclName()))) {
3850         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3851           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3852 
3853         // Recover by adding 'static'.
3854         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3855                                PrevSpec, DiagID, Policy);
3856       }
3857       // C++ [class.union]p6:
3858       //   A storage class is not allowed in a declaration of an
3859       //   anonymous union in a class scope.
3860       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3861                isa<RecordDecl>(Owner)) {
3862         Diag(DS.getStorageClassSpecLoc(),
3863              diag::err_anonymous_union_with_storage_spec)
3864           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3865 
3866         // Recover by removing the storage specifier.
3867         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3868                                SourceLocation(),
3869                                PrevSpec, DiagID, Context.getPrintingPolicy());
3870       }
3871     }
3872 
3873     // Ignore const/volatile/restrict qualifiers.
3874     if (DS.getTypeQualifiers()) {
3875       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3876         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3877           << Record->isUnion() << "const"
3878           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3879       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3880         Diag(DS.getVolatileSpecLoc(),
3881              diag::ext_anonymous_struct_union_qualified)
3882           << Record->isUnion() << "volatile"
3883           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3884       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3885         Diag(DS.getRestrictSpecLoc(),
3886              diag::ext_anonymous_struct_union_qualified)
3887           << Record->isUnion() << "restrict"
3888           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3889       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3890         Diag(DS.getAtomicSpecLoc(),
3891              diag::ext_anonymous_struct_union_qualified)
3892           << Record->isUnion() << "_Atomic"
3893           << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
3894 
3895       DS.ClearTypeQualifiers();
3896     }
3897 
3898     // C++ [class.union]p2:
3899     //   The member-specification of an anonymous union shall only
3900     //   define non-static data members. [Note: nested types and
3901     //   functions cannot be declared within an anonymous union. ]
3902     for (auto *Mem : Record->decls()) {
3903       if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
3904         // C++ [class.union]p3:
3905         //   An anonymous union shall not have private or protected
3906         //   members (clause 11).
3907         assert(FD->getAccess() != AS_none);
3908         if (FD->getAccess() != AS_public) {
3909           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3910             << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3911           Invalid = true;
3912         }
3913 
3914         // C++ [class.union]p1
3915         //   An object of a class with a non-trivial constructor, a non-trivial
3916         //   copy constructor, a non-trivial destructor, or a non-trivial copy
3917         //   assignment operator cannot be a member of a union, nor can an
3918         //   array of such objects.
3919         if (CheckNontrivialField(FD))
3920           Invalid = true;
3921       } else if (Mem->isImplicit()) {
3922         // Any implicit members are fine.
3923       } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
3924         // This is a type that showed up in an
3925         // elaborated-type-specifier inside the anonymous struct or
3926         // union, but which actually declares a type outside of the
3927         // anonymous struct or union. It's okay.
3928       } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
3929         if (!MemRecord->isAnonymousStructOrUnion() &&
3930             MemRecord->getDeclName()) {
3931           // Visual C++ allows type definition in anonymous struct or union.
3932           if (getLangOpts().MicrosoftExt)
3933             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3934               << (int)Record->isUnion();
3935           else {
3936             // This is a nested type declaration.
3937             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3938               << (int)Record->isUnion();
3939             Invalid = true;
3940           }
3941         } else {
3942           // This is an anonymous type definition within another anonymous type.
3943           // This is a popular extension, provided by Plan9, MSVC and GCC, but
3944           // not part of standard C++.
3945           Diag(MemRecord->getLocation(),
3946                diag::ext_anonymous_record_with_anonymous_type)
3947             << (int)Record->isUnion();
3948         }
3949       } else if (isa<AccessSpecDecl>(Mem)) {
3950         // Any access specifier is fine.
3951       } else if (isa<StaticAssertDecl>(Mem)) {
3952         // In C++1z, static_assert declarations are also fine.
3953       } else {
3954         // We have something that isn't a non-static data
3955         // member. Complain about it.
3956         unsigned DK = diag::err_anonymous_record_bad_member;
3957         if (isa<TypeDecl>(Mem))
3958           DK = diag::err_anonymous_record_with_type;
3959         else if (isa<FunctionDecl>(Mem))
3960           DK = diag::err_anonymous_record_with_function;
3961         else if (isa<VarDecl>(Mem))
3962           DK = diag::err_anonymous_record_with_static;
3963 
3964         // Visual C++ allows type definition in anonymous struct or union.
3965         if (getLangOpts().MicrosoftExt &&
3966             DK == diag::err_anonymous_record_with_type)
3967           Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
3968             << (int)Record->isUnion();
3969         else {
3970           Diag(Mem->getLocation(), DK)
3971               << (int)Record->isUnion();
3972           Invalid = true;
3973         }
3974       }
3975     }
3976 
3977     // C++11 [class.union]p8 (DR1460):
3978     //   At most one variant member of a union may have a
3979     //   brace-or-equal-initializer.
3980     if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
3981         Owner->isRecord())
3982       checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
3983                                 cast<CXXRecordDecl>(Record));
3984   }
3985 
3986   if (!Record->isUnion() && !Owner->isRecord()) {
3987     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3988       << (int)getLangOpts().CPlusPlus;
3989     Invalid = true;
3990   }
3991 
3992   // Mock up a declarator.
3993   Declarator Dc(DS, Declarator::MemberContext);
3994   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3995   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3996 
3997   // Create a declaration for this anonymous struct/union.
3998   NamedDecl *Anon = nullptr;
3999   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
4000     Anon = FieldDecl::Create(Context, OwningClass,
4001                              DS.getLocStart(),
4002                              Record->getLocation(),
4003                              /*IdentifierInfo=*/nullptr,
4004                              Context.getTypeDeclType(Record),
4005                              TInfo,
4006                              /*BitWidth=*/nullptr, /*Mutable=*/false,
4007                              /*InitStyle=*/ICIS_NoInit);
4008     Anon->setAccess(AS);
4009     if (getLangOpts().CPlusPlus)
4010       FieldCollector->Add(cast<FieldDecl>(Anon));
4011   } else {
4012     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
4013     StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
4014     if (SCSpec == DeclSpec::SCS_mutable) {
4015       // mutable can only appear on non-static class members, so it's always
4016       // an error here
4017       Diag(Record->getLocation(), diag::err_mutable_nonmember);
4018       Invalid = true;
4019       SC = SC_None;
4020     }
4021 
4022     Anon = VarDecl::Create(Context, Owner,
4023                            DS.getLocStart(),
4024                            Record->getLocation(), /*IdentifierInfo=*/nullptr,
4025                            Context.getTypeDeclType(Record),
4026                            TInfo, SC);
4027 
4028     // Default-initialize the implicit variable. This initialization will be
4029     // trivial in almost all cases, except if a union member has an in-class
4030     // initializer:
4031     //   union { int n = 0; };
4032     ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
4033   }
4034   Anon->setImplicit();
4035 
4036   // Mark this as an anonymous struct/union type.
4037   Record->setAnonymousStructOrUnion(true);
4038 
4039   // Add the anonymous struct/union object to the current
4040   // context. We'll be referencing this object when we refer to one of
4041   // its members.
4042   Owner->addDecl(Anon);
4043 
4044   // Inject the members of the anonymous struct/union into the owning
4045   // context and into the identifier resolver chain for name lookup
4046   // purposes.
4047   SmallVector<NamedDecl*, 2> Chain;
4048   Chain.push_back(Anon);
4049 
4050   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
4051                                           Chain, false))
4052     Invalid = true;
4053 
4054   if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
4055     if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
4056       Decl *ManglingContextDecl;
4057       if (MangleNumberingContext *MCtx =
4058               getCurrentMangleNumberContext(NewVD->getDeclContext(),
4059                                             ManglingContextDecl)) {
4060         Context.setManglingNumber(NewVD, MCtx->getManglingNumber(NewVD, S->getMSLocalManglingNumber()));
4061         Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
4062       }
4063     }
4064   }
4065 
4066   if (Invalid)
4067     Anon->setInvalidDecl();
4068 
4069   return Anon;
4070 }
4071 
4072 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
4073 /// Microsoft C anonymous structure.
4074 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
4075 /// Example:
4076 ///
4077 /// struct A { int a; };
4078 /// struct B { struct A; int b; };
4079 ///
4080 /// void foo() {
4081 ///   B var;
4082 ///   var.a = 3;
4083 /// }
4084 ///
BuildMicrosoftCAnonymousStruct(Scope * S,DeclSpec & DS,RecordDecl * Record)4085 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
4086                                            RecordDecl *Record) {
4087   assert(Record && "expected a record!");
4088 
4089   // Mock up a declarator.
4090   Declarator Dc(DS, Declarator::TypeNameContext);
4091   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4092   assert(TInfo && "couldn't build declarator info for anonymous struct");
4093 
4094   auto *ParentDecl = cast<RecordDecl>(CurContext);
4095   QualType RecTy = Context.getTypeDeclType(Record);
4096 
4097   // Create a declaration for this anonymous struct.
4098   NamedDecl *Anon = FieldDecl::Create(Context,
4099                              ParentDecl,
4100                              DS.getLocStart(),
4101                              DS.getLocStart(),
4102                              /*IdentifierInfo=*/nullptr,
4103                              RecTy,
4104                              TInfo,
4105                              /*BitWidth=*/nullptr, /*Mutable=*/false,
4106                              /*InitStyle=*/ICIS_NoInit);
4107   Anon->setImplicit();
4108 
4109   // Add the anonymous struct object to the current context.
4110   CurContext->addDecl(Anon);
4111 
4112   // Inject the members of the anonymous struct into the current
4113   // context and into the identifier resolver chain for name lookup
4114   // purposes.
4115   SmallVector<NamedDecl*, 2> Chain;
4116   Chain.push_back(Anon);
4117 
4118   RecordDecl *RecordDef = Record->getDefinition();
4119   if (RequireCompleteType(Anon->getLocation(), RecTy,
4120                           diag::err_field_incomplete) ||
4121       InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
4122                                           AS_none, Chain, true)) {
4123     Anon->setInvalidDecl();
4124     ParentDecl->setInvalidDecl();
4125   }
4126 
4127   return Anon;
4128 }
4129 
4130 /// GetNameForDeclarator - Determine the full declaration name for the
4131 /// given Declarator.
GetNameForDeclarator(Declarator & D)4132 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
4133   return GetNameFromUnqualifiedId(D.getName());
4134 }
4135 
4136 /// \brief Retrieves the declaration name from a parsed unqualified-id.
4137 DeclarationNameInfo
GetNameFromUnqualifiedId(const UnqualifiedId & Name)4138 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
4139   DeclarationNameInfo NameInfo;
4140   NameInfo.setLoc(Name.StartLocation);
4141 
4142   switch (Name.getKind()) {
4143 
4144   case UnqualifiedId::IK_ImplicitSelfParam:
4145   case UnqualifiedId::IK_Identifier:
4146     NameInfo.setName(Name.Identifier);
4147     NameInfo.setLoc(Name.StartLocation);
4148     return NameInfo;
4149 
4150   case UnqualifiedId::IK_OperatorFunctionId:
4151     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
4152                                            Name.OperatorFunctionId.Operator));
4153     NameInfo.setLoc(Name.StartLocation);
4154     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
4155       = Name.OperatorFunctionId.SymbolLocations[0];
4156     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
4157       = Name.EndLocation.getRawEncoding();
4158     return NameInfo;
4159 
4160   case UnqualifiedId::IK_LiteralOperatorId:
4161     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
4162                                                            Name.Identifier));
4163     NameInfo.setLoc(Name.StartLocation);
4164     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
4165     return NameInfo;
4166 
4167   case UnqualifiedId::IK_ConversionFunctionId: {
4168     TypeSourceInfo *TInfo;
4169     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
4170     if (Ty.isNull())
4171       return DeclarationNameInfo();
4172     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
4173                                                Context.getCanonicalType(Ty)));
4174     NameInfo.setLoc(Name.StartLocation);
4175     NameInfo.setNamedTypeInfo(TInfo);
4176     return NameInfo;
4177   }
4178 
4179   case UnqualifiedId::IK_ConstructorName: {
4180     TypeSourceInfo *TInfo;
4181     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
4182     if (Ty.isNull())
4183       return DeclarationNameInfo();
4184     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
4185                                               Context.getCanonicalType(Ty)));
4186     NameInfo.setLoc(Name.StartLocation);
4187     NameInfo.setNamedTypeInfo(TInfo);
4188     return NameInfo;
4189   }
4190 
4191   case UnqualifiedId::IK_ConstructorTemplateId: {
4192     // In well-formed code, we can only have a constructor
4193     // template-id that refers to the current context, so go there
4194     // to find the actual type being constructed.
4195     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
4196     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
4197       return DeclarationNameInfo();
4198 
4199     // Determine the type of the class being constructed.
4200     QualType CurClassType = Context.getTypeDeclType(CurClass);
4201 
4202     // FIXME: Check two things: that the template-id names the same type as
4203     // CurClassType, and that the template-id does not occur when the name
4204     // was qualified.
4205 
4206     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
4207                                     Context.getCanonicalType(CurClassType)));
4208     NameInfo.setLoc(Name.StartLocation);
4209     // FIXME: should we retrieve TypeSourceInfo?
4210     NameInfo.setNamedTypeInfo(nullptr);
4211     return NameInfo;
4212   }
4213 
4214   case UnqualifiedId::IK_DestructorName: {
4215     TypeSourceInfo *TInfo;
4216     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
4217     if (Ty.isNull())
4218       return DeclarationNameInfo();
4219     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
4220                                               Context.getCanonicalType(Ty)));
4221     NameInfo.setLoc(Name.StartLocation);
4222     NameInfo.setNamedTypeInfo(TInfo);
4223     return NameInfo;
4224   }
4225 
4226   case UnqualifiedId::IK_TemplateId: {
4227     TemplateName TName = Name.TemplateId->Template.get();
4228     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
4229     return Context.getNameForTemplate(TName, TNameLoc);
4230   }
4231 
4232   } // switch (Name.getKind())
4233 
4234   llvm_unreachable("Unknown name kind");
4235 }
4236 
getCoreType(QualType Ty)4237 static QualType getCoreType(QualType Ty) {
4238   do {
4239     if (Ty->isPointerType() || Ty->isReferenceType())
4240       Ty = Ty->getPointeeType();
4241     else if (Ty->isArrayType())
4242       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
4243     else
4244       return Ty.withoutLocalFastQualifiers();
4245   } while (true);
4246 }
4247 
4248 /// hasSimilarParameters - Determine whether the C++ functions Declaration
4249 /// and Definition have "nearly" matching parameters. This heuristic is
4250 /// used to improve diagnostics in the case where an out-of-line function
4251 /// definition doesn't match any declaration within the class or namespace.
4252 /// Also sets Params to the list of indices to the parameters that differ
4253 /// between the declaration and the definition. If hasSimilarParameters
4254 /// returns true and Params is empty, then all of the parameters match.
hasSimilarParameters(ASTContext & Context,FunctionDecl * Declaration,FunctionDecl * Definition,SmallVectorImpl<unsigned> & Params)4255 static bool hasSimilarParameters(ASTContext &Context,
4256                                      FunctionDecl *Declaration,
4257                                      FunctionDecl *Definition,
4258                                      SmallVectorImpl<unsigned> &Params) {
4259   Params.clear();
4260   if (Declaration->param_size() != Definition->param_size())
4261     return false;
4262   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
4263     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
4264     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
4265 
4266     // The parameter types are identical
4267     if (Context.hasSameType(DefParamTy, DeclParamTy))
4268       continue;
4269 
4270     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
4271     QualType DefParamBaseTy = getCoreType(DefParamTy);
4272     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
4273     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
4274 
4275     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
4276         (DeclTyName && DeclTyName == DefTyName))
4277       Params.push_back(Idx);
4278     else  // The two parameters aren't even close
4279       return false;
4280   }
4281 
4282   return true;
4283 }
4284 
4285 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
4286 /// declarator needs to be rebuilt in the current instantiation.
4287 /// Any bits of declarator which appear before the name are valid for
4288 /// consideration here.  That's specifically the type in the decl spec
4289 /// and the base type in any member-pointer chunks.
RebuildDeclaratorInCurrentInstantiation(Sema & S,Declarator & D,DeclarationName Name)4290 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
4291                                                     DeclarationName Name) {
4292   // The types we specifically need to rebuild are:
4293   //   - typenames, typeofs, and decltypes
4294   //   - types which will become injected class names
4295   // Of course, we also need to rebuild any type referencing such a
4296   // type.  It's safest to just say "dependent", but we call out a
4297   // few cases here.
4298 
4299   DeclSpec &DS = D.getMutableDeclSpec();
4300   switch (DS.getTypeSpecType()) {
4301   case DeclSpec::TST_typename:
4302   case DeclSpec::TST_typeofType:
4303   case DeclSpec::TST_underlyingType:
4304   case DeclSpec::TST_atomic: {
4305     // Grab the type from the parser.
4306     TypeSourceInfo *TSI = nullptr;
4307     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
4308     if (T.isNull() || !T->isDependentType()) break;
4309 
4310     // Make sure there's a type source info.  This isn't really much
4311     // of a waste; most dependent types should have type source info
4312     // attached already.
4313     if (!TSI)
4314       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
4315 
4316     // Rebuild the type in the current instantiation.
4317     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
4318     if (!TSI) return true;
4319 
4320     // Store the new type back in the decl spec.
4321     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
4322     DS.UpdateTypeRep(LocType);
4323     break;
4324   }
4325 
4326   case DeclSpec::TST_decltype:
4327   case DeclSpec::TST_typeofExpr: {
4328     Expr *E = DS.getRepAsExpr();
4329     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
4330     if (Result.isInvalid()) return true;
4331     DS.UpdateExprRep(Result.get());
4332     break;
4333   }
4334 
4335   default:
4336     // Nothing to do for these decl specs.
4337     break;
4338   }
4339 
4340   // It doesn't matter what order we do this in.
4341   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4342     DeclaratorChunk &Chunk = D.getTypeObject(I);
4343 
4344     // The only type information in the declarator which can come
4345     // before the declaration name is the base type of a member
4346     // pointer.
4347     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
4348       continue;
4349 
4350     // Rebuild the scope specifier in-place.
4351     CXXScopeSpec &SS = Chunk.Mem.Scope();
4352     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
4353       return true;
4354   }
4355 
4356   return false;
4357 }
4358 
ActOnDeclarator(Scope * S,Declarator & D)4359 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
4360   D.setFunctionDefinitionKind(FDK_Declaration);
4361   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
4362 
4363   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
4364       Dcl && Dcl->getDeclContext()->isFileContext())
4365     Dcl->setTopLevelDeclInObjCContainer();
4366 
4367   return Dcl;
4368 }
4369 
4370 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
4371 ///   If T is the name of a class, then each of the following shall have a
4372 ///   name different from T:
4373 ///     - every static data member of class T;
4374 ///     - every member function of class T
4375 ///     - every member of class T that is itself a type;
4376 /// \returns true if the declaration name violates these rules.
DiagnoseClassNameShadow(DeclContext * DC,DeclarationNameInfo NameInfo)4377 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
4378                                    DeclarationNameInfo NameInfo) {
4379   DeclarationName Name = NameInfo.getName();
4380 
4381   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
4382     if (Record->getIdentifier() && Record->getDeclName() == Name) {
4383       Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
4384       return true;
4385     }
4386 
4387   return false;
4388 }
4389 
4390 /// \brief Diagnose a declaration whose declarator-id has the given
4391 /// nested-name-specifier.
4392 ///
4393 /// \param SS The nested-name-specifier of the declarator-id.
4394 ///
4395 /// \param DC The declaration context to which the nested-name-specifier
4396 /// resolves.
4397 ///
4398 /// \param Name The name of the entity being declared.
4399 ///
4400 /// \param Loc The location of the name of the entity being declared.
4401 ///
4402 /// \returns true if we cannot safely recover from this error, false otherwise.
diagnoseQualifiedDeclaration(CXXScopeSpec & SS,DeclContext * DC,DeclarationName Name,SourceLocation Loc)4403 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
4404                                         DeclarationName Name,
4405                                         SourceLocation Loc) {
4406   DeclContext *Cur = CurContext;
4407   while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
4408     Cur = Cur->getParent();
4409 
4410   // If the user provided a superfluous scope specifier that refers back to the
4411   // class in which the entity is already declared, diagnose and ignore it.
4412   //
4413   // class X {
4414   //   void X::f();
4415   // };
4416   //
4417   // Note, it was once ill-formed to give redundant qualification in all
4418   // contexts, but that rule was removed by DR482.
4419   if (Cur->Equals(DC)) {
4420     if (Cur->isRecord()) {
4421       Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
4422                                       : diag::err_member_extra_qualification)
4423         << Name << FixItHint::CreateRemoval(SS.getRange());
4424       SS.clear();
4425     } else {
4426       Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
4427     }
4428     return false;
4429   }
4430 
4431   // Check whether the qualifying scope encloses the scope of the original
4432   // declaration.
4433   if (!Cur->Encloses(DC)) {
4434     if (Cur->isRecord())
4435       Diag(Loc, diag::err_member_qualification)
4436         << Name << SS.getRange();
4437     else if (isa<TranslationUnitDecl>(DC))
4438       Diag(Loc, diag::err_invalid_declarator_global_scope)
4439         << Name << SS.getRange();
4440     else if (isa<FunctionDecl>(Cur))
4441       Diag(Loc, diag::err_invalid_declarator_in_function)
4442         << Name << SS.getRange();
4443     else if (isa<BlockDecl>(Cur))
4444       Diag(Loc, diag::err_invalid_declarator_in_block)
4445         << Name << SS.getRange();
4446     else
4447       Diag(Loc, diag::err_invalid_declarator_scope)
4448       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
4449 
4450     return true;
4451   }
4452 
4453   if (Cur->isRecord()) {
4454     // Cannot qualify members within a class.
4455     Diag(Loc, diag::err_member_qualification)
4456       << Name << SS.getRange();
4457     SS.clear();
4458 
4459     // C++ constructors and destructors with incorrect scopes can break
4460     // our AST invariants by having the wrong underlying types. If
4461     // that's the case, then drop this declaration entirely.
4462     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
4463          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
4464         !Context.hasSameType(Name.getCXXNameType(),
4465                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
4466       return true;
4467 
4468     return false;
4469   }
4470 
4471   // C++11 [dcl.meaning]p1:
4472   //   [...] "The nested-name-specifier of the qualified declarator-id shall
4473   //   not begin with a decltype-specifer"
4474   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
4475   while (SpecLoc.getPrefix())
4476     SpecLoc = SpecLoc.getPrefix();
4477   if (dyn_cast_or_null<DecltypeType>(
4478         SpecLoc.getNestedNameSpecifier()->getAsType()))
4479     Diag(Loc, diag::err_decltype_in_declarator)
4480       << SpecLoc.getTypeLoc().getSourceRange();
4481 
4482   return false;
4483 }
4484 
HandleDeclarator(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParamLists)4485 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
4486                                   MultiTemplateParamsArg TemplateParamLists) {
4487   // TODO: consider using NameInfo for diagnostic.
4488   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4489   DeclarationName Name = NameInfo.getName();
4490 
4491   // All of these full declarators require an identifier.  If it doesn't have
4492   // one, the ParsedFreeStandingDeclSpec action should be used.
4493   if (!Name) {
4494     if (!D.isInvalidType())  // Reject this if we think it is valid.
4495       Diag(D.getDeclSpec().getLocStart(),
4496            diag::err_declarator_need_ident)
4497         << D.getDeclSpec().getSourceRange() << D.getSourceRange();
4498     return nullptr;
4499   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
4500     return nullptr;
4501 
4502   // The scope passed in may not be a decl scope.  Zip up the scope tree until
4503   // we find one that is.
4504   while ((S->getFlags() & Scope::DeclScope) == 0 ||
4505          (S->getFlags() & Scope::TemplateParamScope) != 0)
4506     S = S->getParent();
4507 
4508   DeclContext *DC = CurContext;
4509   if (D.getCXXScopeSpec().isInvalid())
4510     D.setInvalidType();
4511   else if (D.getCXXScopeSpec().isSet()) {
4512     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4513                                         UPPC_DeclarationQualifier))
4514       return nullptr;
4515 
4516     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4517     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4518     if (!DC || isa<EnumDecl>(DC)) {
4519       // If we could not compute the declaration context, it's because the
4520       // declaration context is dependent but does not refer to a class,
4521       // class template, or class template partial specialization. Complain
4522       // and return early, to avoid the coming semantic disaster.
4523       Diag(D.getIdentifierLoc(),
4524            diag::err_template_qualified_declarator_no_match)
4525         << D.getCXXScopeSpec().getScopeRep()
4526         << D.getCXXScopeSpec().getRange();
4527       return nullptr;
4528     }
4529     bool IsDependentContext = DC->isDependentContext();
4530 
4531     if (!IsDependentContext &&
4532         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4533       return nullptr;
4534 
4535     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4536       Diag(D.getIdentifierLoc(),
4537            diag::err_member_def_undefined_record)
4538         << Name << DC << D.getCXXScopeSpec().getRange();
4539       D.setInvalidType();
4540     } else if (!D.getDeclSpec().isFriendSpecified()) {
4541       if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4542                                       Name, D.getIdentifierLoc())) {
4543         if (DC->isRecord())
4544           return nullptr;
4545 
4546         D.setInvalidType();
4547       }
4548     }
4549 
4550     // Check whether we need to rebuild the type of the given
4551     // declaration in the current instantiation.
4552     if (EnteringContext && IsDependentContext &&
4553         TemplateParamLists.size() != 0) {
4554       ContextRAII SavedContext(*this, DC);
4555       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4556         D.setInvalidType();
4557     }
4558   }
4559 
4560   if (DiagnoseClassNameShadow(DC, NameInfo))
4561     // If this is a typedef, we'll end up spewing multiple diagnostics.
4562     // Just return early; it's safer.
4563     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4564       return nullptr;
4565 
4566   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4567   QualType R = TInfo->getType();
4568 
4569   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4570                                       UPPC_DeclarationType))
4571     D.setInvalidType();
4572 
4573   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4574                         ForRedeclaration);
4575 
4576   // See if this is a redefinition of a variable in the same scope.
4577   if (!D.getCXXScopeSpec().isSet()) {
4578     bool IsLinkageLookup = false;
4579     bool CreateBuiltins = false;
4580 
4581     // If the declaration we're planning to build will be a function
4582     // or object with linkage, then look for another declaration with
4583     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4584     //
4585     // If the declaration we're planning to build will be declared with
4586     // external linkage in the translation unit, create any builtin with
4587     // the same name.
4588     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4589       /* Do nothing*/;
4590     else if (CurContext->isFunctionOrMethod() &&
4591              (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
4592               R->isFunctionType())) {
4593       IsLinkageLookup = true;
4594       CreateBuiltins =
4595           CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
4596     } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4597                D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4598       CreateBuiltins = true;
4599 
4600     if (IsLinkageLookup)
4601       Previous.clear(LookupRedeclarationWithLinkage);
4602 
4603     LookupName(Previous, S, CreateBuiltins);
4604   } else { // Something like "int foo::x;"
4605     LookupQualifiedName(Previous, DC);
4606 
4607     // C++ [dcl.meaning]p1:
4608     //   When the declarator-id is qualified, the declaration shall refer to a
4609     //  previously declared member of the class or namespace to which the
4610     //  qualifier refers (or, in the case of a namespace, of an element of the
4611     //  inline namespace set of that namespace (7.3.1)) or to a specialization
4612     //  thereof; [...]
4613     //
4614     // Note that we already checked the context above, and that we do not have
4615     // enough information to make sure that Previous contains the declaration
4616     // we want to match. For example, given:
4617     //
4618     //   class X {
4619     //     void f();
4620     //     void f(float);
4621     //   };
4622     //
4623     //   void X::f(int) { } // ill-formed
4624     //
4625     // In this case, Previous will point to the overload set
4626     // containing the two f's declared in X, but neither of them
4627     // matches.
4628 
4629     // C++ [dcl.meaning]p1:
4630     //   [...] the member shall not merely have been introduced by a
4631     //   using-declaration in the scope of the class or namespace nominated by
4632     //   the nested-name-specifier of the declarator-id.
4633     RemoveUsingDecls(Previous);
4634   }
4635 
4636   if (Previous.isSingleResult() &&
4637       Previous.getFoundDecl()->isTemplateParameter()) {
4638     // Maybe we will complain about the shadowed template parameter.
4639     if (!D.isInvalidType())
4640       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4641                                       Previous.getFoundDecl());
4642 
4643     // Just pretend that we didn't see the previous declaration.
4644     Previous.clear();
4645   }
4646 
4647   // In C++, the previous declaration we find might be a tag type
4648   // (class or enum). In this case, the new declaration will hide the
4649   // tag type. Note that this does does not apply if we're declaring a
4650   // typedef (C++ [dcl.typedef]p4).
4651   if (Previous.isSingleTagDecl() &&
4652       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4653     Previous.clear();
4654 
4655   // Check that there are no default arguments other than in the parameters
4656   // of a function declaration (C++ only).
4657   if (getLangOpts().CPlusPlus)
4658     CheckExtraCXXDefaultArguments(D);
4659 
4660   NamedDecl *New;
4661 
4662   bool AddToScope = true;
4663   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4664     if (TemplateParamLists.size()) {
4665       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4666       return nullptr;
4667     }
4668 
4669     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4670   } else if (R->isFunctionType()) {
4671     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4672                                   TemplateParamLists,
4673                                   AddToScope);
4674   } else {
4675     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
4676                                   AddToScope);
4677   }
4678 
4679   if (!New)
4680     return nullptr;
4681 
4682   // If this has an identifier and is not an invalid redeclaration or
4683   // function template specialization, add it to the scope stack.
4684   if (New->getDeclName() && AddToScope &&
4685        !(D.isRedeclaration() && New->isInvalidDecl())) {
4686     // Only make a locally-scoped extern declaration visible if it is the first
4687     // declaration of this entity. Qualified lookup for such an entity should
4688     // only find this declaration if there is no visible declaration of it.
4689     bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl();
4690     PushOnScopeChains(New, S, AddToContext);
4691     if (!AddToContext)
4692       CurContext->addHiddenDecl(New);
4693   }
4694 
4695   return New;
4696 }
4697 
4698 /// Helper method to turn variable array types into constant array
4699 /// types in certain situations which would otherwise be errors (for
4700 /// GCC compatibility).
TryToFixInvalidVariablyModifiedType(QualType T,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)4701 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
4702                                                     ASTContext &Context,
4703                                                     bool &SizeIsNegative,
4704                                                     llvm::APSInt &Oversized) {
4705   // This method tries to turn a variable array into a constant
4706   // array even when the size isn't an ICE.  This is necessary
4707   // for compatibility with code that depends on gcc's buggy
4708   // constant expression folding, like struct {char x[(int)(char*)2];}
4709   SizeIsNegative = false;
4710   Oversized = 0;
4711 
4712   if (T->isDependentType())
4713     return QualType();
4714 
4715   QualifierCollector Qs;
4716   const Type *Ty = Qs.strip(T);
4717 
4718   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4719     QualType Pointee = PTy->getPointeeType();
4720     QualType FixedType =
4721         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4722                                             Oversized);
4723     if (FixedType.isNull()) return FixedType;
4724     FixedType = Context.getPointerType(FixedType);
4725     return Qs.apply(Context, FixedType);
4726   }
4727   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4728     QualType Inner = PTy->getInnerType();
4729     QualType FixedType =
4730         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4731                                             Oversized);
4732     if (FixedType.isNull()) return FixedType;
4733     FixedType = Context.getParenType(FixedType);
4734     return Qs.apply(Context, FixedType);
4735   }
4736 
4737   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4738   if (!VLATy)
4739     return QualType();
4740   // FIXME: We should probably handle this case
4741   if (VLATy->getElementType()->isVariablyModifiedType())
4742     return QualType();
4743 
4744   llvm::APSInt Res;
4745   if (!VLATy->getSizeExpr() ||
4746       !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4747     return QualType();
4748 
4749   // Check whether the array size is negative.
4750   if (Res.isSigned() && Res.isNegative()) {
4751     SizeIsNegative = true;
4752     return QualType();
4753   }
4754 
4755   // Check whether the array is too large to be addressed.
4756   unsigned ActiveSizeBits
4757     = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4758                                               Res);
4759   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4760     Oversized = Res;
4761     return QualType();
4762   }
4763 
4764   return Context.getConstantArrayType(VLATy->getElementType(),
4765                                       Res, ArrayType::Normal, 0);
4766 }
4767 
4768 static void
FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL,TypeLoc DstTL)4769 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4770   if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
4771     PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
4772     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
4773                                       DstPTL.getPointeeLoc());
4774     DstPTL.setStarLoc(SrcPTL.getStarLoc());
4775     return;
4776   }
4777   if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
4778     ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
4779     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
4780                                       DstPTL.getInnerLoc());
4781     DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
4782     DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
4783     return;
4784   }
4785   ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
4786   ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
4787   TypeLoc SrcElemTL = SrcATL.getElementLoc();
4788   TypeLoc DstElemTL = DstATL.getElementLoc();
4789   DstElemTL.initializeFullCopy(SrcElemTL);
4790   DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
4791   DstATL.setSizeExpr(SrcATL.getSizeExpr());
4792   DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
4793 }
4794 
4795 /// Helper method to turn variable array types into constant array
4796 /// types in certain situations which would otherwise be errors (for
4797 /// GCC compatibility).
4798 static TypeSourceInfo*
TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo * TInfo,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)4799 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4800                                               ASTContext &Context,
4801                                               bool &SizeIsNegative,
4802                                               llvm::APSInt &Oversized) {
4803   QualType FixedTy
4804     = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4805                                           SizeIsNegative, Oversized);
4806   if (FixedTy.isNull())
4807     return nullptr;
4808   TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4809   FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4810                                     FixedTInfo->getTypeLoc());
4811   return FixedTInfo;
4812 }
4813 
4814 /// \brief Register the given locally-scoped extern "C" declaration so
4815 /// that it can be found later for redeclarations. We include any extern "C"
4816 /// declaration that is not visible in the translation unit here, not just
4817 /// function-scope declarations.
4818 void
RegisterLocallyScopedExternCDecl(NamedDecl * ND,Scope * S)4819 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
4820   if (!getLangOpts().CPlusPlus &&
4821       ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
4822     // Don't need to track declarations in the TU in C.
4823     return;
4824 
4825   // Note that we have a locally-scoped external with this name.
4826   // FIXME: There can be multiple such declarations if they are functions marked
4827   // __attribute__((overloadable)) declared in function scope in C.
4828   LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4829 }
4830 
findLocallyScopedExternCDecl(DeclarationName Name)4831 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4832   if (ExternalSource) {
4833     // Load locally-scoped external decls from the external source.
4834     // FIXME: This is inefficient. Maybe add a DeclContext for extern "C" decls?
4835     SmallVector<NamedDecl *, 4> Decls;
4836     ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4837     for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4838       llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4839         = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4840       if (Pos == LocallyScopedExternCDecls.end())
4841         LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4842     }
4843   }
4844 
4845   NamedDecl *D = LocallyScopedExternCDecls.lookup(Name);
4846   return D ? D->getMostRecentDecl() : nullptr;
4847 }
4848 
4849 /// \brief Diagnose function specifiers on a declaration of an identifier that
4850 /// does not identify a function.
DiagnoseFunctionSpecifiers(const DeclSpec & DS)4851 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
4852   // FIXME: We should probably indicate the identifier in question to avoid
4853   // confusion for constructs like "inline int a(), b;"
4854   if (DS.isInlineSpecified())
4855     Diag(DS.getInlineSpecLoc(),
4856          diag::err_inline_non_function);
4857 
4858   if (DS.isVirtualSpecified())
4859     Diag(DS.getVirtualSpecLoc(),
4860          diag::err_virtual_non_function);
4861 
4862   if (DS.isExplicitSpecified())
4863     Diag(DS.getExplicitSpecLoc(),
4864          diag::err_explicit_non_function);
4865 
4866   if (DS.isNoreturnSpecified())
4867     Diag(DS.getNoreturnSpecLoc(),
4868          diag::err_noreturn_non_function);
4869 }
4870 
4871 NamedDecl*
ActOnTypedefDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous)4872 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4873                              TypeSourceInfo *TInfo, LookupResult &Previous) {
4874   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4875   if (D.getCXXScopeSpec().isSet()) {
4876     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4877       << D.getCXXScopeSpec().getRange();
4878     D.setInvalidType();
4879     // Pretend we didn't see the scope specifier.
4880     DC = CurContext;
4881     Previous.clear();
4882   }
4883 
4884   DiagnoseFunctionSpecifiers(D.getDeclSpec());
4885 
4886   if (D.getDeclSpec().isConstexprSpecified())
4887     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4888       << 1;
4889 
4890   if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4891     Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4892       << D.getName().getSourceRange();
4893     return nullptr;
4894   }
4895 
4896   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4897   if (!NewTD) return nullptr;
4898 
4899   // Handle attributes prior to checking for duplicates in MergeVarDecl
4900   ProcessDeclAttributes(S, NewTD, D);
4901 
4902   CheckTypedefForVariablyModifiedType(S, NewTD);
4903 
4904   bool Redeclaration = D.isRedeclaration();
4905   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4906   D.setRedeclaration(Redeclaration);
4907   return ND;
4908 }
4909 
4910 void
CheckTypedefForVariablyModifiedType(Scope * S,TypedefNameDecl * NewTD)4911 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4912   // C99 6.7.7p2: If a typedef name specifies a variably modified type
4913   // then it shall have block scope.
4914   // Note that variably modified types must be fixed before merging the decl so
4915   // that redeclarations will match.
4916   TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4917   QualType T = TInfo->getType();
4918   if (T->isVariablyModifiedType()) {
4919     getCurFunction()->setHasBranchProtectedScope();
4920 
4921     if (S->getFnParent() == nullptr) {
4922       bool SizeIsNegative;
4923       llvm::APSInt Oversized;
4924       TypeSourceInfo *FixedTInfo =
4925         TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4926                                                       SizeIsNegative,
4927                                                       Oversized);
4928       if (FixedTInfo) {
4929         Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4930         NewTD->setTypeSourceInfo(FixedTInfo);
4931       } else {
4932         if (SizeIsNegative)
4933           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4934         else if (T->isVariableArrayType())
4935           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4936         else if (Oversized.getBoolValue())
4937           Diag(NewTD->getLocation(), diag::err_array_too_large)
4938             << Oversized.toString(10);
4939         else
4940           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4941         NewTD->setInvalidDecl();
4942       }
4943     }
4944   }
4945 }
4946 
4947 
4948 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4949 /// declares a typedef-name, either using the 'typedef' type specifier or via
4950 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4951 NamedDecl*
ActOnTypedefNameDecl(Scope * S,DeclContext * DC,TypedefNameDecl * NewTD,LookupResult & Previous,bool & Redeclaration)4952 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4953                            LookupResult &Previous, bool &Redeclaration) {
4954   // Merge the decl with the existing one if appropriate. If the decl is
4955   // in an outer scope, it isn't the same thing.
4956   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
4957                        /*AllowInlineNamespace*/false);
4958   filterNonConflictingPreviousTypedefDecls(Context, NewTD, Previous);
4959   if (!Previous.empty()) {
4960     Redeclaration = true;
4961     MergeTypedefNameDecl(NewTD, Previous);
4962   }
4963 
4964   // If this is the C FILE type, notify the AST context.
4965   if (IdentifierInfo *II = NewTD->getIdentifier())
4966     if (!NewTD->isInvalidDecl() &&
4967         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4968       if (II->isStr("FILE"))
4969         Context.setFILEDecl(NewTD);
4970       else if (II->isStr("jmp_buf"))
4971         Context.setjmp_bufDecl(NewTD);
4972       else if (II->isStr("sigjmp_buf"))
4973         Context.setsigjmp_bufDecl(NewTD);
4974       else if (II->isStr("ucontext_t"))
4975         Context.setucontext_tDecl(NewTD);
4976     }
4977 
4978   return NewTD;
4979 }
4980 
4981 /// \brief Determines whether the given declaration is an out-of-scope
4982 /// previous declaration.
4983 ///
4984 /// This routine should be invoked when name lookup has found a
4985 /// previous declaration (PrevDecl) that is not in the scope where a
4986 /// new declaration by the same name is being introduced. If the new
4987 /// declaration occurs in a local scope, previous declarations with
4988 /// linkage may still be considered previous declarations (C99
4989 /// 6.2.2p4-5, C++ [basic.link]p6).
4990 ///
4991 /// \param PrevDecl the previous declaration found by name
4992 /// lookup
4993 ///
4994 /// \param DC the context in which the new declaration is being
4995 /// declared.
4996 ///
4997 /// \returns true if PrevDecl is an out-of-scope previous declaration
4998 /// for a new delcaration with the same name.
4999 static bool
isOutOfScopePreviousDeclaration(NamedDecl * PrevDecl,DeclContext * DC,ASTContext & Context)5000 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
5001                                 ASTContext &Context) {
5002   if (!PrevDecl)
5003     return false;
5004 
5005   if (!PrevDecl->hasLinkage())
5006     return false;
5007 
5008   if (Context.getLangOpts().CPlusPlus) {
5009     // C++ [basic.link]p6:
5010     //   If there is a visible declaration of an entity with linkage
5011     //   having the same name and type, ignoring entities declared
5012     //   outside the innermost enclosing namespace scope, the block
5013     //   scope declaration declares that same entity and receives the
5014     //   linkage of the previous declaration.
5015     DeclContext *OuterContext = DC->getRedeclContext();
5016     if (!OuterContext->isFunctionOrMethod())
5017       // This rule only applies to block-scope declarations.
5018       return false;
5019 
5020     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
5021     if (PrevOuterContext->isRecord())
5022       // We found a member function: ignore it.
5023       return false;
5024 
5025     // Find the innermost enclosing namespace for the new and
5026     // previous declarations.
5027     OuterContext = OuterContext->getEnclosingNamespaceContext();
5028     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
5029 
5030     // The previous declaration is in a different namespace, so it
5031     // isn't the same function.
5032     if (!OuterContext->Equals(PrevOuterContext))
5033       return false;
5034   }
5035 
5036   return true;
5037 }
5038 
SetNestedNameSpecifier(DeclaratorDecl * DD,Declarator & D)5039 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
5040   CXXScopeSpec &SS = D.getCXXScopeSpec();
5041   if (!SS.isSet()) return;
5042   DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
5043 }
5044 
inferObjCARCLifetime(ValueDecl * decl)5045 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
5046   QualType type = decl->getType();
5047   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
5048   if (lifetime == Qualifiers::OCL_Autoreleasing) {
5049     // Various kinds of declaration aren't allowed to be __autoreleasing.
5050     unsigned kind = -1U;
5051     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5052       if (var->hasAttr<BlocksAttr>())
5053         kind = 0; // __block
5054       else if (!var->hasLocalStorage())
5055         kind = 1; // global
5056     } else if (isa<ObjCIvarDecl>(decl)) {
5057       kind = 3; // ivar
5058     } else if (isa<FieldDecl>(decl)) {
5059       kind = 2; // field
5060     }
5061 
5062     if (kind != -1U) {
5063       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
5064         << kind;
5065     }
5066   } else if (lifetime == Qualifiers::OCL_None) {
5067     // Try to infer lifetime.
5068     if (!type->isObjCLifetimeType())
5069       return false;
5070 
5071     lifetime = type->getObjCARCImplicitLifetime();
5072     type = Context.getLifetimeQualifiedType(type, lifetime);
5073     decl->setType(type);
5074   }
5075 
5076   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5077     // Thread-local variables cannot have lifetime.
5078     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
5079         var->getTLSKind()) {
5080       Diag(var->getLocation(), diag::err_arc_thread_ownership)
5081         << var->getType();
5082       return true;
5083     }
5084   }
5085 
5086   return false;
5087 }
5088 
checkAttributesAfterMerging(Sema & S,NamedDecl & ND)5089 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
5090   // Ensure that an auto decl is deduced otherwise the checks below might cache
5091   // the wrong linkage.
5092   assert(S.ParsingInitForAutoVars.count(&ND) == 0);
5093 
5094   // 'weak' only applies to declarations with external linkage.
5095   if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
5096     if (!ND.isExternallyVisible()) {
5097       S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
5098       ND.dropAttr<WeakAttr>();
5099     }
5100   }
5101   if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
5102     if (ND.isExternallyVisible()) {
5103       S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
5104       ND.dropAttr<WeakRefAttr>();
5105     }
5106   }
5107 
5108   // 'selectany' only applies to externally visible varable declarations.
5109   // It does not apply to functions.
5110   if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
5111     if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
5112       S.Diag(Attr->getLocation(), diag::err_attribute_selectany_non_extern_data);
5113       ND.dropAttr<SelectAnyAttr>();
5114     }
5115   }
5116 
5117   // dll attributes require external linkage.
5118   if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
5119     if (!ND.isExternallyVisible()) {
5120       S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
5121         << &ND << Attr;
5122       ND.setInvalidDecl();
5123     }
5124   }
5125 }
5126 
checkDLLAttributeRedeclaration(Sema & S,NamedDecl * OldDecl,NamedDecl * NewDecl,bool IsSpecialization)5127 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
5128                                            NamedDecl *NewDecl,
5129                                            bool IsSpecialization) {
5130   if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl))
5131     OldDecl = OldTD->getTemplatedDecl();
5132   if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl))
5133     NewDecl = NewTD->getTemplatedDecl();
5134 
5135   if (!OldDecl || !NewDecl)
5136     return;
5137 
5138   const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
5139   const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
5140   const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
5141   const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
5142 
5143   // dllimport and dllexport are inheritable attributes so we have to exclude
5144   // inherited attribute instances.
5145   bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
5146                     (NewExportAttr && !NewExportAttr->isInherited());
5147 
5148   // A redeclaration is not allowed to add a dllimport or dllexport attribute,
5149   // the only exception being explicit specializations.
5150   // Implicitly generated declarations are also excluded for now because there
5151   // is no other way to switch these to use dllimport or dllexport.
5152   bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
5153 
5154   if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
5155     // If the declaration hasn't been used yet, allow with a warning for
5156     // free functions and global variables.
5157     bool JustWarn = false;
5158     if (!OldDecl->isUsed() && !OldDecl->isCXXClassMember()) {
5159       auto *VD = dyn_cast<VarDecl>(OldDecl);
5160       if (VD && !VD->getDescribedVarTemplate())
5161         JustWarn = true;
5162       auto *FD = dyn_cast<FunctionDecl>(OldDecl);
5163       if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
5164         JustWarn = true;
5165     }
5166 
5167     unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
5168                                : diag::err_attribute_dll_redeclaration;
5169     S.Diag(NewDecl->getLocation(), DiagID)
5170         << NewDecl
5171         << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
5172     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
5173     if (!JustWarn) {
5174       NewDecl->setInvalidDecl();
5175       return;
5176     }
5177   }
5178 
5179   // A redeclaration is not allowed to drop a dllimport attribute, the only
5180   // exceptions being inline function definitions, local extern declarations,
5181   // and qualified friend declarations.
5182   // NB: MSVC converts such a declaration to dllexport.
5183   bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
5184   if (const auto *VD = dyn_cast<VarDecl>(NewDecl))
5185     // Ignore static data because out-of-line definitions are diagnosed
5186     // separately.
5187     IsStaticDataMember = VD->isStaticDataMember();
5188   else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
5189     IsInline = FD->isInlined();
5190     IsQualifiedFriend = FD->getQualifier() &&
5191                         FD->getFriendObjectKind() == Decl::FOK_Declared;
5192   }
5193 
5194   if (OldImportAttr && !HasNewAttr && !IsInline && !IsStaticDataMember &&
5195       !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
5196     S.Diag(NewDecl->getLocation(),
5197            diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5198       << NewDecl << OldImportAttr;
5199     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
5200     S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
5201     OldDecl->dropAttr<DLLImportAttr>();
5202     NewDecl->dropAttr<DLLImportAttr>();
5203   } else if (IsInline && OldImportAttr &&
5204              !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5205     // In MinGW, seeing a function declared inline drops the dllimport attribute.
5206     OldDecl->dropAttr<DLLImportAttr>();
5207     NewDecl->dropAttr<DLLImportAttr>();
5208     S.Diag(NewDecl->getLocation(),
5209            diag::warn_dllimport_dropped_from_inline_function)
5210         << NewDecl << OldImportAttr;
5211   }
5212 }
5213 
5214 /// Given that we are within the definition of the given function,
5215 /// will that definition behave like C99's 'inline', where the
5216 /// definition is discarded except for optimization purposes?
isFunctionDefinitionDiscarded(Sema & S,FunctionDecl * FD)5217 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
5218   // Try to avoid calling GetGVALinkageForFunction.
5219 
5220   // All cases of this require the 'inline' keyword.
5221   if (!FD->isInlined()) return false;
5222 
5223   // This is only possible in C++ with the gnu_inline attribute.
5224   if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
5225     return false;
5226 
5227   // Okay, go ahead and call the relatively-more-expensive function.
5228 
5229 #ifndef NDEBUG
5230   // AST quite reasonably asserts that it's working on a function
5231   // definition.  We don't really have a way to tell it that we're
5232   // currently defining the function, so just lie to it in +Asserts
5233   // builds.  This is an awful hack.
5234   FD->setLazyBody(1);
5235 #endif
5236 
5237   bool isC99Inline =
5238       S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
5239 
5240 #ifndef NDEBUG
5241   FD->setLazyBody(0);
5242 #endif
5243 
5244   return isC99Inline;
5245 }
5246 
5247 /// Determine whether a variable is extern "C" prior to attaching
5248 /// an initializer. We can't just call isExternC() here, because that
5249 /// will also compute and cache whether the declaration is externally
5250 /// visible, which might change when we attach the initializer.
5251 ///
5252 /// This can only be used if the declaration is known to not be a
5253 /// redeclaration of an internal linkage declaration.
5254 ///
5255 /// For instance:
5256 ///
5257 ///   auto x = []{};
5258 ///
5259 /// Attaching the initializer here makes this declaration not externally
5260 /// visible, because its type has internal linkage.
5261 ///
5262 /// FIXME: This is a hack.
5263 template<typename T>
isIncompleteDeclExternC(Sema & S,const T * D)5264 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
5265   if (S.getLangOpts().CPlusPlus) {
5266     // In C++, the overloadable attribute negates the effects of extern "C".
5267     if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
5268       return false;
5269   }
5270   return D->isExternC();
5271 }
5272 
shouldConsiderLinkage(const VarDecl * VD)5273 static bool shouldConsiderLinkage(const VarDecl *VD) {
5274   const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
5275   if (DC->isFunctionOrMethod())
5276     return VD->hasExternalStorage();
5277   if (DC->isFileContext())
5278     return true;
5279   if (DC->isRecord())
5280     return false;
5281   llvm_unreachable("Unexpected context");
5282 }
5283 
shouldConsiderLinkage(const FunctionDecl * FD)5284 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
5285   const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
5286   if (DC->isFileContext() || DC->isFunctionOrMethod())
5287     return true;
5288   if (DC->isRecord())
5289     return false;
5290   llvm_unreachable("Unexpected context");
5291 }
5292 
hasParsedAttr(Scope * S,const AttributeList * AttrList,AttributeList::Kind Kind)5293 static bool hasParsedAttr(Scope *S, const AttributeList *AttrList,
5294                           AttributeList::Kind Kind) {
5295   for (const AttributeList *L = AttrList; L; L = L->getNext())
5296     if (L->getKind() == Kind)
5297       return true;
5298   return false;
5299 }
5300 
hasParsedAttr(Scope * S,const Declarator & PD,AttributeList::Kind Kind)5301 static bool hasParsedAttr(Scope *S, const Declarator &PD,
5302                           AttributeList::Kind Kind) {
5303   // Check decl attributes on the DeclSpec.
5304   if (hasParsedAttr(S, PD.getDeclSpec().getAttributes().getList(), Kind))
5305     return true;
5306 
5307   // Walk the declarator structure, checking decl attributes that were in a type
5308   // position to the decl itself.
5309   for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
5310     if (hasParsedAttr(S, PD.getTypeObject(I).getAttrs(), Kind))
5311       return true;
5312   }
5313 
5314   // Finally, check attributes on the decl itself.
5315   return hasParsedAttr(S, PD.getAttributes(), Kind);
5316 }
5317 
5318 /// Adjust the \c DeclContext for a function or variable that might be a
5319 /// function-local external declaration.
adjustContextForLocalExternDecl(DeclContext * & DC)5320 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
5321   if (!DC->isFunctionOrMethod())
5322     return false;
5323 
5324   // If this is a local extern function or variable declared within a function
5325   // template, don't add it into the enclosing namespace scope until it is
5326   // instantiated; it might have a dependent type right now.
5327   if (DC->isDependentContext())
5328     return true;
5329 
5330   // C++11 [basic.link]p7:
5331   //   When a block scope declaration of an entity with linkage is not found to
5332   //   refer to some other declaration, then that entity is a member of the
5333   //   innermost enclosing namespace.
5334   //
5335   // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
5336   // semantically-enclosing namespace, not a lexically-enclosing one.
5337   while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
5338     DC = DC->getParent();
5339   return true;
5340 }
5341 
5342 NamedDecl *
ActOnVariableDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists,bool & AddToScope)5343 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5344                               TypeSourceInfo *TInfo, LookupResult &Previous,
5345                               MultiTemplateParamsArg TemplateParamLists,
5346                               bool &AddToScope) {
5347   QualType R = TInfo->getType();
5348   DeclarationName Name = GetNameForDeclarator(D).getName();
5349 
5350   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
5351   StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
5352 
5353   // dllimport globals without explicit storage class are treated as extern. We
5354   // have to change the storage class this early to get the right DeclContext.
5355   if (SC == SC_None && !DC->isRecord() &&
5356       hasParsedAttr(S, D, AttributeList::AT_DLLImport) &&
5357       !hasParsedAttr(S, D, AttributeList::AT_DLLExport))
5358     SC = SC_Extern;
5359 
5360   DeclContext *OriginalDC = DC;
5361   bool IsLocalExternDecl = SC == SC_Extern &&
5362                            adjustContextForLocalExternDecl(DC);
5363 
5364   if (getLangOpts().OpenCL) {
5365     // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
5366     QualType NR = R;
5367     while (NR->isPointerType()) {
5368       if (NR->isFunctionPointerType()) {
5369         Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer_variable);
5370         D.setInvalidType();
5371         break;
5372       }
5373       NR = NR->getPointeeType();
5374     }
5375 
5376     if (!getOpenCLOptions().cl_khr_fp16) {
5377       // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
5378       // half array type (unless the cl_khr_fp16 extension is enabled).
5379       if (Context.getBaseElementType(R)->isHalfType()) {
5380         Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
5381         D.setInvalidType();
5382       }
5383     }
5384   }
5385 
5386   if (SCSpec == DeclSpec::SCS_mutable) {
5387     // mutable can only appear on non-static class members, so it's always
5388     // an error here
5389     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
5390     D.setInvalidType();
5391     SC = SC_None;
5392   }
5393 
5394   if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
5395       !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
5396                               D.getDeclSpec().getStorageClassSpecLoc())) {
5397     // In C++11, the 'register' storage class specifier is deprecated.
5398     // Suppress the warning in system macros, it's used in macros in some
5399     // popular C system headers, such as in glibc's htonl() macro.
5400     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5401          diag::warn_deprecated_register)
5402       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5403   }
5404 
5405   IdentifierInfo *II = Name.getAsIdentifierInfo();
5406   if (!II) {
5407     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
5408       << Name;
5409     return nullptr;
5410   }
5411 
5412   DiagnoseFunctionSpecifiers(D.getDeclSpec());
5413 
5414   if (!DC->isRecord() && S->getFnParent() == nullptr) {
5415     // C99 6.9p2: The storage-class specifiers auto and register shall not
5416     // appear in the declaration specifiers in an external declaration.
5417     // Global Register+Asm is a GNU extension we support.
5418     if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
5419       Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
5420       D.setInvalidType();
5421     }
5422   }
5423 
5424   if (getLangOpts().OpenCL) {
5425     // Set up the special work-group-local storage class for variables in the
5426     // OpenCL __local address space.
5427     if (R.getAddressSpace() == LangAS::opencl_local) {
5428       SC = SC_OpenCLWorkGroupLocal;
5429     }
5430 
5431     // OpenCL v1.2 s6.9.b p4:
5432     // The sampler type cannot be used with the __local and __global address
5433     // space qualifiers.
5434     if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
5435       R.getAddressSpace() == LangAS::opencl_global)) {
5436       Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
5437     }
5438 
5439     // OpenCL 1.2 spec, p6.9 r:
5440     // The event type cannot be used to declare a program scope variable.
5441     // The event type cannot be used with the __local, __constant and __global
5442     // address space qualifiers.
5443     if (R->isEventT()) {
5444       if (S->getParent() == nullptr) {
5445         Diag(D.getLocStart(), diag::err_event_t_global_var);
5446         D.setInvalidType();
5447       }
5448 
5449       if (R.getAddressSpace()) {
5450         Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
5451         D.setInvalidType();
5452       }
5453     }
5454   }
5455 
5456   bool IsExplicitSpecialization = false;
5457   bool IsVariableTemplateSpecialization = false;
5458   bool IsPartialSpecialization = false;
5459   bool IsVariableTemplate = false;
5460   VarDecl *NewVD = nullptr;
5461   VarTemplateDecl *NewTemplate = nullptr;
5462   TemplateParameterList *TemplateParams = nullptr;
5463   if (!getLangOpts().CPlusPlus) {
5464     NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5465                             D.getIdentifierLoc(), II,
5466                             R, TInfo, SC);
5467 
5468     if (D.isInvalidType())
5469       NewVD->setInvalidDecl();
5470   } else {
5471     bool Invalid = false;
5472 
5473     if (DC->isRecord() && !CurContext->isRecord()) {
5474       // This is an out-of-line definition of a static data member.
5475       switch (SC) {
5476       case SC_None:
5477         break;
5478       case SC_Static:
5479         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5480              diag::err_static_out_of_line)
5481           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5482         break;
5483       case SC_Auto:
5484       case SC_Register:
5485       case SC_Extern:
5486         // [dcl.stc] p2: The auto or register specifiers shall be applied only
5487         // to names of variables declared in a block or to function parameters.
5488         // [dcl.stc] p6: The extern specifier cannot be used in the declaration
5489         // of class members
5490 
5491         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5492              diag::err_storage_class_for_static_member)
5493           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5494         break;
5495       case SC_PrivateExtern:
5496         llvm_unreachable("C storage class in c++!");
5497       case SC_OpenCLWorkGroupLocal:
5498         llvm_unreachable("OpenCL storage class in c++!");
5499       }
5500     }
5501 
5502     if (SC == SC_Static && CurContext->isRecord()) {
5503       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
5504         if (RD->isLocalClass())
5505           Diag(D.getIdentifierLoc(),
5506                diag::err_static_data_member_not_allowed_in_local_class)
5507             << Name << RD->getDeclName();
5508 
5509         // C++98 [class.union]p1: If a union contains a static data member,
5510         // the program is ill-formed. C++11 drops this restriction.
5511         if (RD->isUnion())
5512           Diag(D.getIdentifierLoc(),
5513                getLangOpts().CPlusPlus11
5514                  ? diag::warn_cxx98_compat_static_data_member_in_union
5515                  : diag::ext_static_data_member_in_union) << Name;
5516         // We conservatively disallow static data members in anonymous structs.
5517         else if (!RD->getDeclName())
5518           Diag(D.getIdentifierLoc(),
5519                diag::err_static_data_member_not_allowed_in_anon_struct)
5520             << Name << RD->isUnion();
5521       }
5522     }
5523 
5524     // Match up the template parameter lists with the scope specifier, then
5525     // determine whether we have a template or a template specialization.
5526     TemplateParams = MatchTemplateParametersToScopeSpecifier(
5527         D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
5528         D.getCXXScopeSpec(),
5529         D.getName().getKind() == UnqualifiedId::IK_TemplateId
5530             ? D.getName().TemplateId
5531             : nullptr,
5532         TemplateParamLists,
5533         /*never a friend*/ false, IsExplicitSpecialization, Invalid);
5534 
5535     if (TemplateParams) {
5536       if (!TemplateParams->size() &&
5537           D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5538         // There is an extraneous 'template<>' for this variable. Complain
5539         // about it, but allow the declaration of the variable.
5540         Diag(TemplateParams->getTemplateLoc(),
5541              diag::err_template_variable_noparams)
5542           << II
5543           << SourceRange(TemplateParams->getTemplateLoc(),
5544                          TemplateParams->getRAngleLoc());
5545         TemplateParams = nullptr;
5546       } else {
5547         if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5548           // This is an explicit specialization or a partial specialization.
5549           // FIXME: Check that we can declare a specialization here.
5550           IsVariableTemplateSpecialization = true;
5551           IsPartialSpecialization = TemplateParams->size() > 0;
5552         } else { // if (TemplateParams->size() > 0)
5553           // This is a template declaration.
5554           IsVariableTemplate = true;
5555 
5556           // Check that we can declare a template here.
5557           if (CheckTemplateDeclScope(S, TemplateParams))
5558             return nullptr;
5559 
5560           // Only C++1y supports variable templates (N3651).
5561           Diag(D.getIdentifierLoc(),
5562                getLangOpts().CPlusPlus14
5563                    ? diag::warn_cxx11_compat_variable_template
5564                    : diag::ext_variable_template);
5565         }
5566       }
5567     } else {
5568       assert(D.getName().getKind() != UnqualifiedId::IK_TemplateId &&
5569              "should have a 'template<>' for this decl");
5570     }
5571 
5572     if (IsVariableTemplateSpecialization) {
5573       SourceLocation TemplateKWLoc =
5574           TemplateParamLists.size() > 0
5575               ? TemplateParamLists[0]->getTemplateLoc()
5576               : SourceLocation();
5577       DeclResult Res = ActOnVarTemplateSpecialization(
5578           S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
5579           IsPartialSpecialization);
5580       if (Res.isInvalid())
5581         return nullptr;
5582       NewVD = cast<VarDecl>(Res.get());
5583       AddToScope = false;
5584     } else
5585       NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5586                               D.getIdentifierLoc(), II, R, TInfo, SC);
5587 
5588     // If this is supposed to be a variable template, create it as such.
5589     if (IsVariableTemplate) {
5590       NewTemplate =
5591           VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
5592                                   TemplateParams, NewVD);
5593       NewVD->setDescribedVarTemplate(NewTemplate);
5594     }
5595 
5596     // If this decl has an auto type in need of deduction, make a note of the
5597     // Decl so we can diagnose uses of it in its own initializer.
5598     if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
5599       ParsingInitForAutoVars.insert(NewVD);
5600 
5601     if (D.isInvalidType() || Invalid) {
5602       NewVD->setInvalidDecl();
5603       if (NewTemplate)
5604         NewTemplate->setInvalidDecl();
5605     }
5606 
5607     SetNestedNameSpecifier(NewVD, D);
5608 
5609     // If we have any template parameter lists that don't directly belong to
5610     // the variable (matching the scope specifier), store them.
5611     unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
5612     if (TemplateParamLists.size() > VDTemplateParamLists)
5613       NewVD->setTemplateParameterListsInfo(
5614           Context, TemplateParamLists.size() - VDTemplateParamLists,
5615           TemplateParamLists.data());
5616 
5617     if (D.getDeclSpec().isConstexprSpecified())
5618       NewVD->setConstexpr(true);
5619   }
5620 
5621   // Set the lexical context. If the declarator has a C++ scope specifier, the
5622   // lexical context will be different from the semantic context.
5623   NewVD->setLexicalDeclContext(CurContext);
5624   if (NewTemplate)
5625     NewTemplate->setLexicalDeclContext(CurContext);
5626 
5627   if (IsLocalExternDecl)
5628     NewVD->setLocalExternDecl();
5629 
5630   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
5631     // C++11 [dcl.stc]p4:
5632     //   When thread_local is applied to a variable of block scope the
5633     //   storage-class-specifier static is implied if it does not appear
5634     //   explicitly.
5635     // Core issue: 'static' is not implied if the variable is declared
5636     //   'extern'.
5637     if (NewVD->hasLocalStorage() &&
5638         (SCSpec != DeclSpec::SCS_unspecified ||
5639          TSCS != DeclSpec::TSCS_thread_local ||
5640          !DC->isFunctionOrMethod()))
5641       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5642            diag::err_thread_non_global)
5643         << DeclSpec::getSpecifierName(TSCS);
5644     else if (!Context.getTargetInfo().isTLSSupported())
5645       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5646            diag::err_thread_unsupported);
5647     else
5648       NewVD->setTSCSpec(TSCS);
5649   }
5650 
5651   // C99 6.7.4p3
5652   //   An inline definition of a function with external linkage shall
5653   //   not contain a definition of a modifiable object with static or
5654   //   thread storage duration...
5655   // We only apply this when the function is required to be defined
5656   // elsewhere, i.e. when the function is not 'extern inline'.  Note
5657   // that a local variable with thread storage duration still has to
5658   // be marked 'static'.  Also note that it's possible to get these
5659   // semantics in C++ using __attribute__((gnu_inline)).
5660   if (SC == SC_Static && S->getFnParent() != nullptr &&
5661       !NewVD->getType().isConstQualified()) {
5662     FunctionDecl *CurFD = getCurFunctionDecl();
5663     if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
5664       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5665            diag::warn_static_local_in_extern_inline);
5666       MaybeSuggestAddingStaticToDecl(CurFD);
5667     }
5668   }
5669 
5670   if (D.getDeclSpec().isModulePrivateSpecified()) {
5671     if (IsVariableTemplateSpecialization)
5672       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5673           << (IsPartialSpecialization ? 1 : 0)
5674           << FixItHint::CreateRemoval(
5675                  D.getDeclSpec().getModulePrivateSpecLoc());
5676     else if (IsExplicitSpecialization)
5677       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5678         << 2
5679         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5680     else if (NewVD->hasLocalStorage())
5681       Diag(NewVD->getLocation(), diag::err_module_private_local)
5682         << 0 << NewVD->getDeclName()
5683         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
5684         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5685     else {
5686       NewVD->setModulePrivate();
5687       if (NewTemplate)
5688         NewTemplate->setModulePrivate();
5689     }
5690   }
5691 
5692   // Handle attributes prior to checking for duplicates in MergeVarDecl
5693   ProcessDeclAttributes(S, NewVD, D);
5694 
5695   if (getLangOpts().CUDA) {
5696     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
5697     // storage [duration]."
5698     if (SC == SC_None && S->getFnParent() != nullptr &&
5699         (NewVD->hasAttr<CUDASharedAttr>() ||
5700          NewVD->hasAttr<CUDAConstantAttr>())) {
5701       NewVD->setStorageClass(SC_Static);
5702     }
5703   }
5704 
5705   // Ensure that dllimport globals without explicit storage class are treated as
5706   // extern. The storage class is set above using parsed attributes. Now we can
5707   // check the VarDecl itself.
5708   assert(!NewVD->hasAttr<DLLImportAttr>() ||
5709          NewVD->getAttr<DLLImportAttr>()->isInherited() ||
5710          NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
5711 
5712   // In auto-retain/release, infer strong retension for variables of
5713   // retainable type.
5714   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
5715     NewVD->setInvalidDecl();
5716 
5717   // Handle GNU asm-label extension (encoded as an attribute).
5718   if (Expr *E = (Expr*)D.getAsmLabel()) {
5719     // The parser guarantees this is a string.
5720     StringLiteral *SE = cast<StringLiteral>(E);
5721     StringRef Label = SE->getString();
5722     if (S->getFnParent() != nullptr) {
5723       switch (SC) {
5724       case SC_None:
5725       case SC_Auto:
5726         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
5727         break;
5728       case SC_Register:
5729         // Local Named register
5730         if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
5731           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
5732         break;
5733       case SC_Static:
5734       case SC_Extern:
5735       case SC_PrivateExtern:
5736       case SC_OpenCLWorkGroupLocal:
5737         break;
5738       }
5739     } else if (SC == SC_Register) {
5740       // Global Named register
5741       if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
5742         Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
5743       if (!R->isIntegralType(Context) && !R->isPointerType()) {
5744         Diag(D.getLocStart(), diag::err_asm_bad_register_type);
5745         NewVD->setInvalidDecl(true);
5746       }
5747     }
5748 
5749     NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
5750                                                 Context, Label, 0));
5751   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5752     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5753       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
5754     if (I != ExtnameUndeclaredIdentifiers.end()) {
5755       NewVD->addAttr(I->second);
5756       ExtnameUndeclaredIdentifiers.erase(I);
5757     }
5758   }
5759 
5760   // Diagnose shadowed variables before filtering for scope.
5761   if (D.getCXXScopeSpec().isEmpty())
5762     CheckShadow(S, NewVD, Previous);
5763 
5764   // Don't consider existing declarations that are in a different
5765   // scope and are out-of-semantic-context declarations (if the new
5766   // declaration has linkage).
5767   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
5768                        D.getCXXScopeSpec().isNotEmpty() ||
5769                        IsExplicitSpecialization ||
5770                        IsVariableTemplateSpecialization);
5771 
5772   // Check whether the previous declaration is in the same block scope. This
5773   // affects whether we merge types with it, per C++11 [dcl.array]p3.
5774   if (getLangOpts().CPlusPlus &&
5775       NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
5776     NewVD->setPreviousDeclInSameBlockScope(
5777         Previous.isSingleResult() && !Previous.isShadowed() &&
5778         isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
5779 
5780   if (!getLangOpts().CPlusPlus) {
5781     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5782   } else {
5783     // If this is an explicit specialization of a static data member, check it.
5784     if (IsExplicitSpecialization && !NewVD->isInvalidDecl() &&
5785         CheckMemberSpecialization(NewVD, Previous))
5786       NewVD->setInvalidDecl();
5787 
5788     // Merge the decl with the existing one if appropriate.
5789     if (!Previous.empty()) {
5790       if (Previous.isSingleResult() &&
5791           isa<FieldDecl>(Previous.getFoundDecl()) &&
5792           D.getCXXScopeSpec().isSet()) {
5793         // The user tried to define a non-static data member
5794         // out-of-line (C++ [dcl.meaning]p1).
5795         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
5796           << D.getCXXScopeSpec().getRange();
5797         Previous.clear();
5798         NewVD->setInvalidDecl();
5799       }
5800     } else if (D.getCXXScopeSpec().isSet()) {
5801       // No previous declaration in the qualifying scope.
5802       Diag(D.getIdentifierLoc(), diag::err_no_member)
5803         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
5804         << D.getCXXScopeSpec().getRange();
5805       NewVD->setInvalidDecl();
5806     }
5807 
5808     if (!IsVariableTemplateSpecialization)
5809       D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5810 
5811     if (NewTemplate) {
5812       VarTemplateDecl *PrevVarTemplate =
5813           NewVD->getPreviousDecl()
5814               ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
5815               : nullptr;
5816 
5817       // Check the template parameter list of this declaration, possibly
5818       // merging in the template parameter list from the previous variable
5819       // template declaration.
5820       if (CheckTemplateParameterList(
5821               TemplateParams,
5822               PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
5823                               : nullptr,
5824               (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
5825                DC->isDependentContext())
5826                   ? TPC_ClassTemplateMember
5827                   : TPC_VarTemplate))
5828         NewVD->setInvalidDecl();
5829 
5830       // If we are providing an explicit specialization of a static variable
5831       // template, make a note of that.
5832       if (PrevVarTemplate &&
5833           PrevVarTemplate->getInstantiatedFromMemberTemplate())
5834         PrevVarTemplate->setMemberSpecialization();
5835     }
5836   }
5837 
5838   ProcessPragmaWeak(S, NewVD);
5839 
5840   // If this is the first declaration of an extern C variable, update
5841   // the map of such variables.
5842   if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
5843       isIncompleteDeclExternC(*this, NewVD))
5844     RegisterLocallyScopedExternCDecl(NewVD, S);
5845 
5846   if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
5847     Decl *ManglingContextDecl;
5848     if (MangleNumberingContext *MCtx =
5849             getCurrentMangleNumberContext(NewVD->getDeclContext(),
5850                                           ManglingContextDecl)) {
5851       Context.setManglingNumber(
5852           NewVD, MCtx->getManglingNumber(NewVD, S->getMSLocalManglingNumber()));
5853       Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
5854     }
5855   }
5856 
5857   if (D.isRedeclaration() && !Previous.empty()) {
5858     checkDLLAttributeRedeclaration(
5859         *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewVD,
5860         IsExplicitSpecialization);
5861   }
5862 
5863   if (NewTemplate) {
5864     if (NewVD->isInvalidDecl())
5865       NewTemplate->setInvalidDecl();
5866     ActOnDocumentableDecl(NewTemplate);
5867     return NewTemplate;
5868   }
5869 
5870   return NewVD;
5871 }
5872 
5873 /// \brief Diagnose variable or built-in function shadowing.  Implements
5874 /// -Wshadow.
5875 ///
5876 /// This method is called whenever a VarDecl is added to a "useful"
5877 /// scope.
5878 ///
5879 /// \param S the scope in which the shadowing name is being declared
5880 /// \param R the lookup of the name
5881 ///
CheckShadow(Scope * S,VarDecl * D,const LookupResult & R)5882 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
5883   // Return if warning is ignored.
5884   if (Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc()))
5885     return;
5886 
5887   // Don't diagnose declarations at file scope.
5888   if (D->hasGlobalStorage())
5889     return;
5890 
5891   DeclContext *NewDC = D->getDeclContext();
5892 
5893   // Only diagnose if we're shadowing an unambiguous field or variable.
5894   if (R.getResultKind() != LookupResult::Found)
5895     return;
5896 
5897   NamedDecl* ShadowedDecl = R.getFoundDecl();
5898   if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
5899     return;
5900 
5901   // Fields are not shadowed by variables in C++ static methods.
5902   if (isa<FieldDecl>(ShadowedDecl))
5903     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
5904       if (MD->isStatic())
5905         return;
5906 
5907   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
5908     if (shadowedVar->isExternC()) {
5909       // For shadowing external vars, make sure that we point to the global
5910       // declaration, not a locally scoped extern declaration.
5911       for (auto I : shadowedVar->redecls())
5912         if (I->isFileVarDecl()) {
5913           ShadowedDecl = I;
5914           break;
5915         }
5916     }
5917 
5918   DeclContext *OldDC = ShadowedDecl->getDeclContext();
5919 
5920   // Only warn about certain kinds of shadowing for class members.
5921   if (NewDC && NewDC->isRecord()) {
5922     // In particular, don't warn about shadowing non-class members.
5923     if (!OldDC->isRecord())
5924       return;
5925 
5926     // TODO: should we warn about static data members shadowing
5927     // static data members from base classes?
5928 
5929     // TODO: don't diagnose for inaccessible shadowed members.
5930     // This is hard to do perfectly because we might friend the
5931     // shadowing context, but that's just a false negative.
5932   }
5933 
5934   // Determine what kind of declaration we're shadowing.
5935   unsigned Kind;
5936   if (isa<RecordDecl>(OldDC)) {
5937     if (isa<FieldDecl>(ShadowedDecl))
5938       Kind = 3; // field
5939     else
5940       Kind = 2; // static data member
5941   } else if (OldDC->isFileContext())
5942     Kind = 1; // global
5943   else
5944     Kind = 0; // local
5945 
5946   DeclarationName Name = R.getLookupName();
5947 
5948   // Emit warning and note.
5949   if (getSourceManager().isInSystemMacro(R.getNameLoc()))
5950     return;
5951   Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
5952   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
5953 }
5954 
5955 /// \brief Check -Wshadow without the advantage of a previous lookup.
CheckShadow(Scope * S,VarDecl * D)5956 void Sema::CheckShadow(Scope *S, VarDecl *D) {
5957   if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
5958     return;
5959 
5960   LookupResult R(*this, D->getDeclName(), D->getLocation(),
5961                  Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5962   LookupName(R, S);
5963   CheckShadow(S, D, R);
5964 }
5965 
5966 /// Check for conflict between this global or extern "C" declaration and
5967 /// previous global or extern "C" declarations. This is only used in C++.
5968 template<typename T>
checkGlobalOrExternCConflict(Sema & S,const T * ND,bool IsGlobal,LookupResult & Previous)5969 static bool checkGlobalOrExternCConflict(
5970     Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
5971   assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
5972   NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
5973 
5974   if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
5975     // The common case: this global doesn't conflict with any extern "C"
5976     // declaration.
5977     return false;
5978   }
5979 
5980   if (Prev) {
5981     if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
5982       // Both the old and new declarations have C language linkage. This is a
5983       // redeclaration.
5984       Previous.clear();
5985       Previous.addDecl(Prev);
5986       return true;
5987     }
5988 
5989     // This is a global, non-extern "C" declaration, and there is a previous
5990     // non-global extern "C" declaration. Diagnose if this is a variable
5991     // declaration.
5992     if (!isa<VarDecl>(ND))
5993       return false;
5994   } else {
5995     // The declaration is extern "C". Check for any declaration in the
5996     // translation unit which might conflict.
5997     if (IsGlobal) {
5998       // We have already performed the lookup into the translation unit.
5999       IsGlobal = false;
6000       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6001            I != E; ++I) {
6002         if (isa<VarDecl>(*I)) {
6003           Prev = *I;
6004           break;
6005         }
6006       }
6007     } else {
6008       DeclContext::lookup_result R =
6009           S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
6010       for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
6011            I != E; ++I) {
6012         if (isa<VarDecl>(*I)) {
6013           Prev = *I;
6014           break;
6015         }
6016         // FIXME: If we have any other entity with this name in global scope,
6017         // the declaration is ill-formed, but that is a defect: it breaks the
6018         // 'stat' hack, for instance. Only variables can have mangled name
6019         // clashes with extern "C" declarations, so only they deserve a
6020         // diagnostic.
6021       }
6022     }
6023 
6024     if (!Prev)
6025       return false;
6026   }
6027 
6028   // Use the first declaration's location to ensure we point at something which
6029   // is lexically inside an extern "C" linkage-spec.
6030   assert(Prev && "should have found a previous declaration to diagnose");
6031   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
6032     Prev = FD->getFirstDecl();
6033   else
6034     Prev = cast<VarDecl>(Prev)->getFirstDecl();
6035 
6036   S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
6037     << IsGlobal << ND;
6038   S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
6039     << IsGlobal;
6040   return false;
6041 }
6042 
6043 /// Apply special rules for handling extern "C" declarations. Returns \c true
6044 /// if we have found that this is a redeclaration of some prior entity.
6045 ///
6046 /// Per C++ [dcl.link]p6:
6047 ///   Two declarations [for a function or variable] with C language linkage
6048 ///   with the same name that appear in different scopes refer to the same
6049 ///   [entity]. An entity with C language linkage shall not be declared with
6050 ///   the same name as an entity in global scope.
6051 template<typename T>
checkForConflictWithNonVisibleExternC(Sema & S,const T * ND,LookupResult & Previous)6052 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
6053                                                   LookupResult &Previous) {
6054   if (!S.getLangOpts().CPlusPlus) {
6055     // In C, when declaring a global variable, look for a corresponding 'extern'
6056     // variable declared in function scope. We don't need this in C++, because
6057     // we find local extern decls in the surrounding file-scope DeclContext.
6058     if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6059       if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
6060         Previous.clear();
6061         Previous.addDecl(Prev);
6062         return true;
6063       }
6064     }
6065     return false;
6066   }
6067 
6068   // A declaration in the translation unit can conflict with an extern "C"
6069   // declaration.
6070   if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
6071     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
6072 
6073   // An extern "C" declaration can conflict with a declaration in the
6074   // translation unit or can be a redeclaration of an extern "C" declaration
6075   // in another scope.
6076   if (isIncompleteDeclExternC(S,ND))
6077     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
6078 
6079   // Neither global nor extern "C": nothing to do.
6080   return false;
6081 }
6082 
CheckVariableDeclarationType(VarDecl * NewVD)6083 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
6084   // If the decl is already known invalid, don't check it.
6085   if (NewVD->isInvalidDecl())
6086     return;
6087 
6088   TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
6089   QualType T = TInfo->getType();
6090 
6091   // Defer checking an 'auto' type until its initializer is attached.
6092   if (T->isUndeducedType())
6093     return;
6094 
6095   if (NewVD->hasAttrs())
6096     CheckAlignasUnderalignment(NewVD);
6097 
6098   if (T->isObjCObjectType()) {
6099     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
6100       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
6101     T = Context.getObjCObjectPointerType(T);
6102     NewVD->setType(T);
6103   }
6104 
6105   // Emit an error if an address space was applied to decl with local storage.
6106   // This includes arrays of objects with address space qualifiers, but not
6107   // automatic variables that point to other address spaces.
6108   // ISO/IEC TR 18037 S5.1.2
6109   if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
6110     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
6111     NewVD->setInvalidDecl();
6112     return;
6113   }
6114 
6115   // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
6116   // __constant address space.
6117   if (getLangOpts().OpenCL && NewVD->isFileVarDecl()
6118       && T.getAddressSpace() != LangAS::opencl_constant
6119       && !T->isSamplerT()){
6120     Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space);
6121     NewVD->setInvalidDecl();
6122     return;
6123   }
6124 
6125   // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
6126   // scope.
6127   if ((getLangOpts().OpenCLVersion >= 120)
6128       && NewVD->isStaticLocal()) {
6129     Diag(NewVD->getLocation(), diag::err_static_function_scope);
6130     NewVD->setInvalidDecl();
6131     return;
6132   }
6133 
6134   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
6135       && !NewVD->hasAttr<BlocksAttr>()) {
6136     if (getLangOpts().getGC() != LangOptions::NonGC)
6137       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
6138     else {
6139       assert(!getLangOpts().ObjCAutoRefCount);
6140       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
6141     }
6142   }
6143 
6144   bool isVM = T->isVariablyModifiedType();
6145   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
6146       NewVD->hasAttr<BlocksAttr>())
6147     getCurFunction()->setHasBranchProtectedScope();
6148 
6149   if ((isVM && NewVD->hasLinkage()) ||
6150       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
6151     bool SizeIsNegative;
6152     llvm::APSInt Oversized;
6153     TypeSourceInfo *FixedTInfo =
6154       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
6155                                                     SizeIsNegative, Oversized);
6156     if (!FixedTInfo && T->isVariableArrayType()) {
6157       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
6158       // FIXME: This won't give the correct result for
6159       // int a[10][n];
6160       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
6161 
6162       if (NewVD->isFileVarDecl())
6163         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
6164         << SizeRange;
6165       else if (NewVD->isStaticLocal())
6166         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
6167         << SizeRange;
6168       else
6169         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
6170         << SizeRange;
6171       NewVD->setInvalidDecl();
6172       return;
6173     }
6174 
6175     if (!FixedTInfo) {
6176       if (NewVD->isFileVarDecl())
6177         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
6178       else
6179         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
6180       NewVD->setInvalidDecl();
6181       return;
6182     }
6183 
6184     Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
6185     NewVD->setType(FixedTInfo->getType());
6186     NewVD->setTypeSourceInfo(FixedTInfo);
6187   }
6188 
6189   if (T->isVoidType()) {
6190     // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
6191     //                    of objects and functions.
6192     if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
6193       Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
6194         << T;
6195       NewVD->setInvalidDecl();
6196       return;
6197     }
6198   }
6199 
6200   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
6201     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
6202     NewVD->setInvalidDecl();
6203     return;
6204   }
6205 
6206   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
6207     Diag(NewVD->getLocation(), diag::err_block_on_vm);
6208     NewVD->setInvalidDecl();
6209     return;
6210   }
6211 
6212   if (NewVD->isConstexpr() && !T->isDependentType() &&
6213       RequireLiteralType(NewVD->getLocation(), T,
6214                          diag::err_constexpr_var_non_literal)) {
6215     NewVD->setInvalidDecl();
6216     return;
6217   }
6218 }
6219 
6220 /// \brief Perform semantic checking on a newly-created variable
6221 /// declaration.
6222 ///
6223 /// This routine performs all of the type-checking required for a
6224 /// variable declaration once it has been built. It is used both to
6225 /// check variables after they have been parsed and their declarators
6226 /// have been translated into a declaration, and to check variables
6227 /// that have been instantiated from a template.
6228 ///
6229 /// Sets NewVD->isInvalidDecl() if an error was encountered.
6230 ///
6231 /// Returns true if the variable declaration is a redeclaration.
CheckVariableDeclaration(VarDecl * NewVD,LookupResult & Previous)6232 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
6233   CheckVariableDeclarationType(NewVD);
6234 
6235   // If the decl is already known invalid, don't check it.
6236   if (NewVD->isInvalidDecl())
6237     return false;
6238 
6239   // If we did not find anything by this name, look for a non-visible
6240   // extern "C" declaration with the same name.
6241   if (Previous.empty() &&
6242       checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
6243     Previous.setShadowed();
6244 
6245   // Filter out any non-conflicting previous declarations.
6246   filterNonConflictingPreviousDecls(Context, NewVD, Previous);
6247 
6248   if (!Previous.empty()) {
6249     MergeVarDecl(NewVD, Previous);
6250     return true;
6251   }
6252   return false;
6253 }
6254 
6255 /// \brief Data used with FindOverriddenMethod
6256 struct FindOverriddenMethodData {
6257   Sema *S;
6258   CXXMethodDecl *Method;
6259 };
6260 
6261 /// \brief Member lookup function that determines whether a given C++
6262 /// method overrides a method in a base class, to be used with
6263 /// CXXRecordDecl::lookupInBases().
FindOverriddenMethod(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * UserData)6264 static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
6265                                  CXXBasePath &Path,
6266                                  void *UserData) {
6267   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
6268 
6269   FindOverriddenMethodData *Data
6270     = reinterpret_cast<FindOverriddenMethodData*>(UserData);
6271 
6272   DeclarationName Name = Data->Method->getDeclName();
6273 
6274   // FIXME: Do we care about other names here too?
6275   if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6276     // We really want to find the base class destructor here.
6277     QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
6278     CanQualType CT = Data->S->Context.getCanonicalType(T);
6279 
6280     Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
6281   }
6282 
6283   for (Path.Decls = BaseRecord->lookup(Name);
6284        !Path.Decls.empty();
6285        Path.Decls = Path.Decls.slice(1)) {
6286     NamedDecl *D = Path.Decls.front();
6287     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
6288       if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
6289         return true;
6290     }
6291   }
6292 
6293   return false;
6294 }
6295 
6296 namespace {
6297   enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
6298 }
6299 /// \brief Report an error regarding overriding, along with any relevant
6300 /// overriden methods.
6301 ///
6302 /// \param DiagID the primary error to report.
6303 /// \param MD the overriding method.
6304 /// \param OEK which overrides to include as notes.
ReportOverrides(Sema & S,unsigned DiagID,const CXXMethodDecl * MD,OverrideErrorKind OEK=OEK_All)6305 static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
6306                             OverrideErrorKind OEK = OEK_All) {
6307   S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
6308   for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
6309                                       E = MD->end_overridden_methods();
6310        I != E; ++I) {
6311     // This check (& the OEK parameter) could be replaced by a predicate, but
6312     // without lambdas that would be overkill. This is still nicer than writing
6313     // out the diag loop 3 times.
6314     if ((OEK == OEK_All) ||
6315         (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
6316         (OEK == OEK_Deleted && (*I)->isDeleted()))
6317       S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
6318   }
6319 }
6320 
6321 /// AddOverriddenMethods - See if a method overrides any in the base classes,
6322 /// and if so, check that it's a valid override and remember it.
AddOverriddenMethods(CXXRecordDecl * DC,CXXMethodDecl * MD)6323 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
6324   // Look for methods in base classes that this method might override.
6325   CXXBasePaths Paths;
6326   FindOverriddenMethodData Data;
6327   Data.Method = MD;
6328   Data.S = this;
6329   bool hasDeletedOverridenMethods = false;
6330   bool hasNonDeletedOverridenMethods = false;
6331   bool AddedAny = false;
6332   if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
6333     for (auto *I : Paths.found_decls()) {
6334       if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
6335         MD->addOverriddenMethod(OldMD->getCanonicalDecl());
6336         if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
6337             !CheckOverridingFunctionAttributes(MD, OldMD) &&
6338             !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
6339             !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
6340           hasDeletedOverridenMethods |= OldMD->isDeleted();
6341           hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
6342           AddedAny = true;
6343         }
6344       }
6345     }
6346   }
6347 
6348   if (hasDeletedOverridenMethods && !MD->isDeleted()) {
6349     ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
6350   }
6351   if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
6352     ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
6353   }
6354 
6355   return AddedAny;
6356 }
6357 
6358 namespace {
6359   // Struct for holding all of the extra arguments needed by
6360   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
6361   struct ActOnFDArgs {
6362     Scope *S;
6363     Declarator &D;
6364     MultiTemplateParamsArg TemplateParamLists;
6365     bool AddToScope;
6366   };
6367 }
6368 
6369 namespace {
6370 
6371 // Callback to only accept typo corrections that have a non-zero edit distance.
6372 // Also only accept corrections that have the same parent decl.
6373 class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
6374  public:
DifferentNameValidatorCCC(ASTContext & Context,FunctionDecl * TypoFD,CXXRecordDecl * Parent)6375   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
6376                             CXXRecordDecl *Parent)
6377       : Context(Context), OriginalFD(TypoFD),
6378         ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
6379 
ValidateCandidate(const TypoCorrection & candidate)6380   bool ValidateCandidate(const TypoCorrection &candidate) override {
6381     if (candidate.getEditDistance() == 0)
6382       return false;
6383 
6384     SmallVector<unsigned, 1> MismatchedParams;
6385     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
6386                                           CDeclEnd = candidate.end();
6387          CDecl != CDeclEnd; ++CDecl) {
6388       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
6389 
6390       if (FD && !FD->hasBody() &&
6391           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
6392         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6393           CXXRecordDecl *Parent = MD->getParent();
6394           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
6395             return true;
6396         } else if (!ExpectedParent) {
6397           return true;
6398         }
6399       }
6400     }
6401 
6402     return false;
6403   }
6404 
6405  private:
6406   ASTContext &Context;
6407   FunctionDecl *OriginalFD;
6408   CXXRecordDecl *ExpectedParent;
6409 };
6410 
6411 }
6412 
6413 /// \brief Generate diagnostics for an invalid function redeclaration.
6414 ///
6415 /// This routine handles generating the diagnostic messages for an invalid
6416 /// function redeclaration, including finding possible similar declarations
6417 /// or performing typo correction if there are no previous declarations with
6418 /// the same name.
6419 ///
6420 /// Returns a NamedDecl iff typo correction was performed and substituting in
6421 /// the new declaration name does not cause new errors.
DiagnoseInvalidRedeclaration(Sema & SemaRef,LookupResult & Previous,FunctionDecl * NewFD,ActOnFDArgs & ExtraArgs,bool IsLocalFriend,Scope * S)6422 static NamedDecl *DiagnoseInvalidRedeclaration(
6423     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
6424     ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
6425   DeclarationName Name = NewFD->getDeclName();
6426   DeclContext *NewDC = NewFD->getDeclContext();
6427   SmallVector<unsigned, 1> MismatchedParams;
6428   SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
6429   TypoCorrection Correction;
6430   bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
6431   unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend
6432                                    : diag::err_member_decl_does_not_match;
6433   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
6434                     IsLocalFriend ? Sema::LookupLocalFriendName
6435                                   : Sema::LookupOrdinaryName,
6436                     Sema::ForRedeclaration);
6437 
6438   NewFD->setInvalidDecl();
6439   if (IsLocalFriend)
6440     SemaRef.LookupName(Prev, S);
6441   else
6442     SemaRef.LookupQualifiedName(Prev, NewDC);
6443   assert(!Prev.isAmbiguous() &&
6444          "Cannot have an ambiguity in previous-declaration lookup");
6445   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6446   if (!Prev.empty()) {
6447     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
6448          Func != FuncEnd; ++Func) {
6449       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
6450       if (FD &&
6451           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6452         // Add 1 to the index so that 0 can mean the mismatch didn't
6453         // involve a parameter
6454         unsigned ParamNum =
6455             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
6456         NearMatches.push_back(std::make_pair(FD, ParamNum));
6457       }
6458     }
6459   // If the qualified name lookup yielded nothing, try typo correction
6460   } else if ((Correction = SemaRef.CorrectTypo(
6461                   Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
6462                   &ExtraArgs.D.getCXXScopeSpec(),
6463                   llvm::make_unique<DifferentNameValidatorCCC>(
6464                       SemaRef.Context, NewFD, MD ? MD->getParent() : nullptr),
6465                   Sema::CTK_ErrorRecovery, IsLocalFriend ? nullptr : NewDC))) {
6466     // Set up everything for the call to ActOnFunctionDeclarator
6467     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
6468                               ExtraArgs.D.getIdentifierLoc());
6469     Previous.clear();
6470     Previous.setLookupName(Correction.getCorrection());
6471     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
6472                                     CDeclEnd = Correction.end();
6473          CDecl != CDeclEnd; ++CDecl) {
6474       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
6475       if (FD && !FD->hasBody() &&
6476           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6477         Previous.addDecl(FD);
6478       }
6479     }
6480     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
6481 
6482     NamedDecl *Result;
6483     // Retry building the function declaration with the new previous
6484     // declarations, and with errors suppressed.
6485     {
6486       // Trap errors.
6487       Sema::SFINAETrap Trap(SemaRef);
6488 
6489       // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
6490       // pieces need to verify the typo-corrected C++ declaration and hopefully
6491       // eliminate the need for the parameter pack ExtraArgs.
6492       Result = SemaRef.ActOnFunctionDeclarator(
6493           ExtraArgs.S, ExtraArgs.D,
6494           Correction.getCorrectionDecl()->getDeclContext(),
6495           NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
6496           ExtraArgs.AddToScope);
6497 
6498       if (Trap.hasErrorOccurred())
6499         Result = nullptr;
6500     }
6501 
6502     if (Result) {
6503       // Determine which correction we picked.
6504       Decl *Canonical = Result->getCanonicalDecl();
6505       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6506            I != E; ++I)
6507         if ((*I)->getCanonicalDecl() == Canonical)
6508           Correction.setCorrectionDecl(*I);
6509 
6510       SemaRef.diagnoseTypo(
6511           Correction,
6512           SemaRef.PDiag(IsLocalFriend
6513                           ? diag::err_no_matching_local_friend_suggest
6514                           : diag::err_member_decl_does_not_match_suggest)
6515             << Name << NewDC << IsDefinition);
6516       return Result;
6517     }
6518 
6519     // Pretend the typo correction never occurred
6520     ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
6521                               ExtraArgs.D.getIdentifierLoc());
6522     ExtraArgs.D.setRedeclaration(wasRedeclaration);
6523     Previous.clear();
6524     Previous.setLookupName(Name);
6525   }
6526 
6527   SemaRef.Diag(NewFD->getLocation(), DiagMsg)
6528       << Name << NewDC << IsDefinition << NewFD->getLocation();
6529 
6530   bool NewFDisConst = false;
6531   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
6532     NewFDisConst = NewMD->isConst();
6533 
6534   for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
6535        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
6536        NearMatch != NearMatchEnd; ++NearMatch) {
6537     FunctionDecl *FD = NearMatch->first;
6538     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
6539     bool FDisConst = MD && MD->isConst();
6540     bool IsMember = MD || !IsLocalFriend;
6541 
6542     // FIXME: These notes are poorly worded for the local friend case.
6543     if (unsigned Idx = NearMatch->second) {
6544       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
6545       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
6546       if (Loc.isInvalid()) Loc = FD->getLocation();
6547       SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
6548                                  : diag::note_local_decl_close_param_match)
6549         << Idx << FDParam->getType()
6550         << NewFD->getParamDecl(Idx - 1)->getType();
6551     } else if (FDisConst != NewFDisConst) {
6552       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
6553           << NewFDisConst << FD->getSourceRange().getEnd();
6554     } else
6555       SemaRef.Diag(FD->getLocation(),
6556                    IsMember ? diag::note_member_def_close_match
6557                             : diag::note_local_decl_close_match);
6558   }
6559   return nullptr;
6560 }
6561 
getFunctionStorageClass(Sema & SemaRef,Declarator & D)6562 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
6563   switch (D.getDeclSpec().getStorageClassSpec()) {
6564   default: llvm_unreachable("Unknown storage class!");
6565   case DeclSpec::SCS_auto:
6566   case DeclSpec::SCS_register:
6567   case DeclSpec::SCS_mutable:
6568     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6569                  diag::err_typecheck_sclass_func);
6570     D.setInvalidType();
6571     break;
6572   case DeclSpec::SCS_unspecified: break;
6573   case DeclSpec::SCS_extern:
6574     if (D.getDeclSpec().isExternInLinkageSpec())
6575       return SC_None;
6576     return SC_Extern;
6577   case DeclSpec::SCS_static: {
6578     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
6579       // C99 6.7.1p5:
6580       //   The declaration of an identifier for a function that has
6581       //   block scope shall have no explicit storage-class specifier
6582       //   other than extern
6583       // See also (C++ [dcl.stc]p4).
6584       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6585                    diag::err_static_block_func);
6586       break;
6587     } else
6588       return SC_Static;
6589   }
6590   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
6591   }
6592 
6593   // No explicit storage class has already been returned
6594   return SC_None;
6595 }
6596 
CreateNewFunctionDecl(Sema & SemaRef,Declarator & D,DeclContext * DC,QualType & R,TypeSourceInfo * TInfo,StorageClass SC,bool & IsVirtualOkay)6597 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
6598                                            DeclContext *DC, QualType &R,
6599                                            TypeSourceInfo *TInfo,
6600                                            StorageClass SC,
6601                                            bool &IsVirtualOkay) {
6602   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
6603   DeclarationName Name = NameInfo.getName();
6604 
6605   FunctionDecl *NewFD = nullptr;
6606   bool isInline = D.getDeclSpec().isInlineSpecified();
6607 
6608   if (!SemaRef.getLangOpts().CPlusPlus) {
6609     // Determine whether the function was written with a
6610     // prototype. This true when:
6611     //   - there is a prototype in the declarator, or
6612     //   - the type R of the function is some kind of typedef or other reference
6613     //     to a type name (which eventually refers to a function type).
6614     bool HasPrototype =
6615       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
6616       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
6617 
6618     NewFD = FunctionDecl::Create(SemaRef.Context, DC,
6619                                  D.getLocStart(), NameInfo, R,
6620                                  TInfo, SC, isInline,
6621                                  HasPrototype, false);
6622     if (D.isInvalidType())
6623       NewFD->setInvalidDecl();
6624 
6625     return NewFD;
6626   }
6627 
6628   bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6629   bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6630 
6631   // Check that the return type is not an abstract class type.
6632   // For record types, this is done by the AbstractClassUsageDiagnoser once
6633   // the class has been completely parsed.
6634   if (!DC->isRecord() &&
6635       SemaRef.RequireNonAbstractType(
6636           D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(),
6637           diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
6638     D.setInvalidType();
6639 
6640   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
6641     // This is a C++ constructor declaration.
6642     assert(DC->isRecord() &&
6643            "Constructors can only be declared in a member context");
6644 
6645     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
6646     return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
6647                                       D.getLocStart(), NameInfo,
6648                                       R, TInfo, isExplicit, isInline,
6649                                       /*isImplicitlyDeclared=*/false,
6650                                       isConstexpr);
6651 
6652   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6653     // This is a C++ destructor declaration.
6654     if (DC->isRecord()) {
6655       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
6656       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
6657       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
6658                                         SemaRef.Context, Record,
6659                                         D.getLocStart(),
6660                                         NameInfo, R, TInfo, isInline,
6661                                         /*isImplicitlyDeclared=*/false);
6662 
6663       // If the class is complete, then we now create the implicit exception
6664       // specification. If the class is incomplete or dependent, we can't do
6665       // it yet.
6666       if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
6667           Record->getDefinition() && !Record->isBeingDefined() &&
6668           R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
6669         SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
6670       }
6671 
6672       IsVirtualOkay = true;
6673       return NewDD;
6674 
6675     } else {
6676       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
6677       D.setInvalidType();
6678 
6679       // Create a FunctionDecl to satisfy the function definition parsing
6680       // code path.
6681       return FunctionDecl::Create(SemaRef.Context, DC,
6682                                   D.getLocStart(),
6683                                   D.getIdentifierLoc(), Name, R, TInfo,
6684                                   SC, isInline,
6685                                   /*hasPrototype=*/true, isConstexpr);
6686     }
6687 
6688   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
6689     if (!DC->isRecord()) {
6690       SemaRef.Diag(D.getIdentifierLoc(),
6691            diag::err_conv_function_not_member);
6692       return nullptr;
6693     }
6694 
6695     SemaRef.CheckConversionDeclarator(D, R, SC);
6696     IsVirtualOkay = true;
6697     return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
6698                                      D.getLocStart(), NameInfo,
6699                                      R, TInfo, isInline, isExplicit,
6700                                      isConstexpr, SourceLocation());
6701 
6702   } else if (DC->isRecord()) {
6703     // If the name of the function is the same as the name of the record,
6704     // then this must be an invalid constructor that has a return type.
6705     // (The parser checks for a return type and makes the declarator a
6706     // constructor if it has no return type).
6707     if (Name.getAsIdentifierInfo() &&
6708         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
6709       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
6710         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6711         << SourceRange(D.getIdentifierLoc());
6712       return nullptr;
6713     }
6714 
6715     // This is a C++ method declaration.
6716     CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
6717                                                cast<CXXRecordDecl>(DC),
6718                                                D.getLocStart(), NameInfo, R,
6719                                                TInfo, SC, isInline,
6720                                                isConstexpr, SourceLocation());
6721     IsVirtualOkay = !Ret->isStatic();
6722     return Ret;
6723   } else {
6724     bool isFriend =
6725         SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
6726     if (!isFriend && SemaRef.CurContext->isRecord())
6727       return nullptr;
6728 
6729     // Determine whether the function was written with a
6730     // prototype. This true when:
6731     //   - we're in C++ (where every function has a prototype),
6732     return FunctionDecl::Create(SemaRef.Context, DC,
6733                                 D.getLocStart(),
6734                                 NameInfo, R, TInfo, SC, isInline,
6735                                 true/*HasPrototype*/, isConstexpr);
6736   }
6737 }
6738 
6739 enum OpenCLParamType {
6740   ValidKernelParam,
6741   PtrPtrKernelParam,
6742   PtrKernelParam,
6743   PrivatePtrKernelParam,
6744   InvalidKernelParam,
6745   RecordKernelParam
6746 };
6747 
getOpenCLKernelParameterType(QualType PT)6748 static OpenCLParamType getOpenCLKernelParameterType(QualType PT) {
6749   if (PT->isPointerType()) {
6750     QualType PointeeType = PT->getPointeeType();
6751     if (PointeeType->isPointerType())
6752       return PtrPtrKernelParam;
6753     return PointeeType.getAddressSpace() == 0 ? PrivatePtrKernelParam
6754                                               : PtrKernelParam;
6755   }
6756 
6757   // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can
6758   // be used as builtin types.
6759 
6760   if (PT->isImageType())
6761     return PtrKernelParam;
6762 
6763   if (PT->isBooleanType())
6764     return InvalidKernelParam;
6765 
6766   if (PT->isEventT())
6767     return InvalidKernelParam;
6768 
6769   if (PT->isHalfType())
6770     return InvalidKernelParam;
6771 
6772   if (PT->isRecordType())
6773     return RecordKernelParam;
6774 
6775   return ValidKernelParam;
6776 }
6777 
checkIsValidOpenCLKernelParameter(Sema & S,Declarator & D,ParmVarDecl * Param,llvm::SmallPtrSetImpl<const Type * > & ValidTypes)6778 static void checkIsValidOpenCLKernelParameter(
6779   Sema &S,
6780   Declarator &D,
6781   ParmVarDecl *Param,
6782   llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
6783   QualType PT = Param->getType();
6784 
6785   // Cache the valid types we encounter to avoid rechecking structs that are
6786   // used again
6787   if (ValidTypes.count(PT.getTypePtr()))
6788     return;
6789 
6790   switch (getOpenCLKernelParameterType(PT)) {
6791   case PtrPtrKernelParam:
6792     // OpenCL v1.2 s6.9.a:
6793     // A kernel function argument cannot be declared as a
6794     // pointer to a pointer type.
6795     S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
6796     D.setInvalidType();
6797     return;
6798 
6799   case PrivatePtrKernelParam:
6800     // OpenCL v1.2 s6.9.a:
6801     // A kernel function argument cannot be declared as a
6802     // pointer to the private address space.
6803     S.Diag(Param->getLocation(), diag::err_opencl_private_ptr_kernel_param);
6804     D.setInvalidType();
6805     return;
6806 
6807     // OpenCL v1.2 s6.9.k:
6808     // Arguments to kernel functions in a program cannot be declared with the
6809     // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
6810     // uintptr_t or a struct and/or union that contain fields declared to be
6811     // one of these built-in scalar types.
6812 
6813   case InvalidKernelParam:
6814     // OpenCL v1.2 s6.8 n:
6815     // A kernel function argument cannot be declared
6816     // of event_t type.
6817     S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
6818     D.setInvalidType();
6819     return;
6820 
6821   case PtrKernelParam:
6822   case ValidKernelParam:
6823     ValidTypes.insert(PT.getTypePtr());
6824     return;
6825 
6826   case RecordKernelParam:
6827     break;
6828   }
6829 
6830   // Track nested structs we will inspect
6831   SmallVector<const Decl *, 4> VisitStack;
6832 
6833   // Track where we are in the nested structs. Items will migrate from
6834   // VisitStack to HistoryStack as we do the DFS for bad field.
6835   SmallVector<const FieldDecl *, 4> HistoryStack;
6836   HistoryStack.push_back(nullptr);
6837 
6838   const RecordDecl *PD = PT->castAs<RecordType>()->getDecl();
6839   VisitStack.push_back(PD);
6840 
6841   assert(VisitStack.back() && "First decl null?");
6842 
6843   do {
6844     const Decl *Next = VisitStack.pop_back_val();
6845     if (!Next) {
6846       assert(!HistoryStack.empty());
6847       // Found a marker, we have gone up a level
6848       if (const FieldDecl *Hist = HistoryStack.pop_back_val())
6849         ValidTypes.insert(Hist->getType().getTypePtr());
6850 
6851       continue;
6852     }
6853 
6854     // Adds everything except the original parameter declaration (which is not a
6855     // field itself) to the history stack.
6856     const RecordDecl *RD;
6857     if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
6858       HistoryStack.push_back(Field);
6859       RD = Field->getType()->castAs<RecordType>()->getDecl();
6860     } else {
6861       RD = cast<RecordDecl>(Next);
6862     }
6863 
6864     // Add a null marker so we know when we've gone back up a level
6865     VisitStack.push_back(nullptr);
6866 
6867     for (const auto *FD : RD->fields()) {
6868       QualType QT = FD->getType();
6869 
6870       if (ValidTypes.count(QT.getTypePtr()))
6871         continue;
6872 
6873       OpenCLParamType ParamType = getOpenCLKernelParameterType(QT);
6874       if (ParamType == ValidKernelParam)
6875         continue;
6876 
6877       if (ParamType == RecordKernelParam) {
6878         VisitStack.push_back(FD);
6879         continue;
6880       }
6881 
6882       // OpenCL v1.2 s6.9.p:
6883       // Arguments to kernel functions that are declared to be a struct or union
6884       // do not allow OpenCL objects to be passed as elements of the struct or
6885       // union.
6886       if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
6887           ParamType == PrivatePtrKernelParam) {
6888         S.Diag(Param->getLocation(),
6889                diag::err_record_with_pointers_kernel_param)
6890           << PT->isUnionType()
6891           << PT;
6892       } else {
6893         S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
6894       }
6895 
6896       S.Diag(PD->getLocation(), diag::note_within_field_of_type)
6897         << PD->getDeclName();
6898 
6899       // We have an error, now let's go back up through history and show where
6900       // the offending field came from
6901       for (ArrayRef<const FieldDecl *>::const_iterator I = HistoryStack.begin() + 1,
6902              E = HistoryStack.end(); I != E; ++I) {
6903         const FieldDecl *OuterField = *I;
6904         S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
6905           << OuterField->getType();
6906       }
6907 
6908       S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
6909         << QT->isPointerType()
6910         << QT;
6911       D.setInvalidType();
6912       return;
6913     }
6914   } while (!VisitStack.empty());
6915 }
6916 
6917 NamedDecl*
ActOnFunctionDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists,bool & AddToScope)6918 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
6919                               TypeSourceInfo *TInfo, LookupResult &Previous,
6920                               MultiTemplateParamsArg TemplateParamLists,
6921                               bool &AddToScope) {
6922   QualType R = TInfo->getType();
6923 
6924   assert(R.getTypePtr()->isFunctionType());
6925 
6926   // TODO: consider using NameInfo for diagnostic.
6927   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6928   DeclarationName Name = NameInfo.getName();
6929   StorageClass SC = getFunctionStorageClass(*this, D);
6930 
6931   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
6932     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6933          diag::err_invalid_thread)
6934       << DeclSpec::getSpecifierName(TSCS);
6935 
6936   if (D.isFirstDeclarationOfMember())
6937     adjustMemberFunctionCC(R, D.isStaticMember());
6938 
6939   bool isFriend = false;
6940   FunctionTemplateDecl *FunctionTemplate = nullptr;
6941   bool isExplicitSpecialization = false;
6942   bool isFunctionTemplateSpecialization = false;
6943 
6944   bool isDependentClassScopeExplicitSpecialization = false;
6945   bool HasExplicitTemplateArgs = false;
6946   TemplateArgumentListInfo TemplateArgs;
6947 
6948   bool isVirtualOkay = false;
6949 
6950   DeclContext *OriginalDC = DC;
6951   bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
6952 
6953   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
6954                                               isVirtualOkay);
6955   if (!NewFD) return nullptr;
6956 
6957   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
6958     NewFD->setTopLevelDeclInObjCContainer();
6959 
6960   // Set the lexical context. If this is a function-scope declaration, or has a
6961   // C++ scope specifier, or is the object of a friend declaration, the lexical
6962   // context will be different from the semantic context.
6963   NewFD->setLexicalDeclContext(CurContext);
6964 
6965   if (IsLocalExternDecl)
6966     NewFD->setLocalExternDecl();
6967 
6968   if (getLangOpts().CPlusPlus) {
6969     bool isInline = D.getDeclSpec().isInlineSpecified();
6970     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
6971     bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6972     bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6973     isFriend = D.getDeclSpec().isFriendSpecified();
6974     if (isFriend && !isInline && D.isFunctionDefinition()) {
6975       // C++ [class.friend]p5
6976       //   A function can be defined in a friend declaration of a
6977       //   class . . . . Such a function is implicitly inline.
6978       NewFD->setImplicitlyInline();
6979     }
6980 
6981     // If this is a method defined in an __interface, and is not a constructor
6982     // or an overloaded operator, then set the pure flag (isVirtual will already
6983     // return true).
6984     if (const CXXRecordDecl *Parent =
6985           dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
6986       if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
6987         NewFD->setPure(true);
6988     }
6989 
6990     SetNestedNameSpecifier(NewFD, D);
6991     isExplicitSpecialization = false;
6992     isFunctionTemplateSpecialization = false;
6993     if (D.isInvalidType())
6994       NewFD->setInvalidDecl();
6995 
6996     // Match up the template parameter lists with the scope specifier, then
6997     // determine whether we have a template or a template specialization.
6998     bool Invalid = false;
6999     if (TemplateParameterList *TemplateParams =
7000             MatchTemplateParametersToScopeSpecifier(
7001                 D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
7002                 D.getCXXScopeSpec(),
7003                 D.getName().getKind() == UnqualifiedId::IK_TemplateId
7004                     ? D.getName().TemplateId
7005                     : nullptr,
7006                 TemplateParamLists, isFriend, isExplicitSpecialization,
7007                 Invalid)) {
7008       if (TemplateParams->size() > 0) {
7009         // This is a function template
7010 
7011         // Check that we can declare a template here.
7012         if (CheckTemplateDeclScope(S, TemplateParams))
7013           return nullptr;
7014 
7015         // A destructor cannot be a template.
7016         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
7017           Diag(NewFD->getLocation(), diag::err_destructor_template);
7018           return nullptr;
7019         }
7020 
7021         // If we're adding a template to a dependent context, we may need to
7022         // rebuilding some of the types used within the template parameter list,
7023         // now that we know what the current instantiation is.
7024         if (DC->isDependentContext()) {
7025           ContextRAII SavedContext(*this, DC);
7026           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
7027             Invalid = true;
7028         }
7029 
7030 
7031         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
7032                                                         NewFD->getLocation(),
7033                                                         Name, TemplateParams,
7034                                                         NewFD);
7035         FunctionTemplate->setLexicalDeclContext(CurContext);
7036         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
7037 
7038         // For source fidelity, store the other template param lists.
7039         if (TemplateParamLists.size() > 1) {
7040           NewFD->setTemplateParameterListsInfo(Context,
7041                                                TemplateParamLists.size() - 1,
7042                                                TemplateParamLists.data());
7043         }
7044       } else {
7045         // This is a function template specialization.
7046         isFunctionTemplateSpecialization = true;
7047         // For source fidelity, store all the template param lists.
7048         if (TemplateParamLists.size() > 0)
7049           NewFD->setTemplateParameterListsInfo(Context,
7050                                                TemplateParamLists.size(),
7051                                                TemplateParamLists.data());
7052 
7053         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
7054         if (isFriend) {
7055           // We want to remove the "template<>", found here.
7056           SourceRange RemoveRange = TemplateParams->getSourceRange();
7057 
7058           // If we remove the template<> and the name is not a
7059           // template-id, we're actually silently creating a problem:
7060           // the friend declaration will refer to an untemplated decl,
7061           // and clearly the user wants a template specialization.  So
7062           // we need to insert '<>' after the name.
7063           SourceLocation InsertLoc;
7064           if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
7065             InsertLoc = D.getName().getSourceRange().getEnd();
7066             InsertLoc = getLocForEndOfToken(InsertLoc);
7067           }
7068 
7069           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
7070             << Name << RemoveRange
7071             << FixItHint::CreateRemoval(RemoveRange)
7072             << FixItHint::CreateInsertion(InsertLoc, "<>");
7073         }
7074       }
7075     }
7076     else {
7077       // All template param lists were matched against the scope specifier:
7078       // this is NOT (an explicit specialization of) a template.
7079       if (TemplateParamLists.size() > 0)
7080         // For source fidelity, store all the template param lists.
7081         NewFD->setTemplateParameterListsInfo(Context,
7082                                              TemplateParamLists.size(),
7083                                              TemplateParamLists.data());
7084     }
7085 
7086     if (Invalid) {
7087       NewFD->setInvalidDecl();
7088       if (FunctionTemplate)
7089         FunctionTemplate->setInvalidDecl();
7090     }
7091 
7092     // C++ [dcl.fct.spec]p5:
7093     //   The virtual specifier shall only be used in declarations of
7094     //   nonstatic class member functions that appear within a
7095     //   member-specification of a class declaration; see 10.3.
7096     //
7097     if (isVirtual && !NewFD->isInvalidDecl()) {
7098       if (!isVirtualOkay) {
7099         Diag(D.getDeclSpec().getVirtualSpecLoc(),
7100              diag::err_virtual_non_function);
7101       } else if (!CurContext->isRecord()) {
7102         // 'virtual' was specified outside of the class.
7103         Diag(D.getDeclSpec().getVirtualSpecLoc(),
7104              diag::err_virtual_out_of_class)
7105           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
7106       } else if (NewFD->getDescribedFunctionTemplate()) {
7107         // C++ [temp.mem]p3:
7108         //  A member function template shall not be virtual.
7109         Diag(D.getDeclSpec().getVirtualSpecLoc(),
7110              diag::err_virtual_member_function_template)
7111           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
7112       } else {
7113         // Okay: Add virtual to the method.
7114         NewFD->setVirtualAsWritten(true);
7115       }
7116 
7117       if (getLangOpts().CPlusPlus14 &&
7118           NewFD->getReturnType()->isUndeducedType())
7119         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
7120     }
7121 
7122     if (getLangOpts().CPlusPlus14 &&
7123         (NewFD->isDependentContext() ||
7124          (isFriend && CurContext->isDependentContext())) &&
7125         NewFD->getReturnType()->isUndeducedType()) {
7126       // If the function template is referenced directly (for instance, as a
7127       // member of the current instantiation), pretend it has a dependent type.
7128       // This is not really justified by the standard, but is the only sane
7129       // thing to do.
7130       // FIXME: For a friend function, we have not marked the function as being
7131       // a friend yet, so 'isDependentContext' on the FD doesn't work.
7132       const FunctionProtoType *FPT =
7133           NewFD->getType()->castAs<FunctionProtoType>();
7134       QualType Result =
7135           SubstAutoType(FPT->getReturnType(), Context.DependentTy);
7136       NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
7137                                              FPT->getExtProtoInfo()));
7138     }
7139 
7140     // C++ [dcl.fct.spec]p3:
7141     //  The inline specifier shall not appear on a block scope function
7142     //  declaration.
7143     if (isInline && !NewFD->isInvalidDecl()) {
7144       if (CurContext->isFunctionOrMethod()) {
7145         // 'inline' is not allowed on block scope function declaration.
7146         Diag(D.getDeclSpec().getInlineSpecLoc(),
7147              diag::err_inline_declaration_block_scope) << Name
7148           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7149       }
7150     }
7151 
7152     // C++ [dcl.fct.spec]p6:
7153     //  The explicit specifier shall be used only in the declaration of a
7154     //  constructor or conversion function within its class definition;
7155     //  see 12.3.1 and 12.3.2.
7156     if (isExplicit && !NewFD->isInvalidDecl()) {
7157       if (!CurContext->isRecord()) {
7158         // 'explicit' was specified outside of the class.
7159         Diag(D.getDeclSpec().getExplicitSpecLoc(),
7160              diag::err_explicit_out_of_class)
7161           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
7162       } else if (!isa<CXXConstructorDecl>(NewFD) &&
7163                  !isa<CXXConversionDecl>(NewFD)) {
7164         // 'explicit' was specified on a function that wasn't a constructor
7165         // or conversion function.
7166         Diag(D.getDeclSpec().getExplicitSpecLoc(),
7167              diag::err_explicit_non_ctor_or_conv_function)
7168           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
7169       }
7170     }
7171 
7172     if (isConstexpr) {
7173       // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
7174       // are implicitly inline.
7175       NewFD->setImplicitlyInline();
7176 
7177       // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
7178       // be either constructors or to return a literal type. Therefore,
7179       // destructors cannot be declared constexpr.
7180       if (isa<CXXDestructorDecl>(NewFD))
7181         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
7182     }
7183 
7184     // If __module_private__ was specified, mark the function accordingly.
7185     if (D.getDeclSpec().isModulePrivateSpecified()) {
7186       if (isFunctionTemplateSpecialization) {
7187         SourceLocation ModulePrivateLoc
7188           = D.getDeclSpec().getModulePrivateSpecLoc();
7189         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
7190           << 0
7191           << FixItHint::CreateRemoval(ModulePrivateLoc);
7192       } else {
7193         NewFD->setModulePrivate();
7194         if (FunctionTemplate)
7195           FunctionTemplate->setModulePrivate();
7196       }
7197     }
7198 
7199     if (isFriend) {
7200       if (FunctionTemplate) {
7201         FunctionTemplate->setObjectOfFriendDecl();
7202         FunctionTemplate->setAccess(AS_public);
7203       }
7204       NewFD->setObjectOfFriendDecl();
7205       NewFD->setAccess(AS_public);
7206     }
7207 
7208     // If a function is defined as defaulted or deleted, mark it as such now.
7209     // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function
7210     // definition kind to FDK_Definition.
7211     switch (D.getFunctionDefinitionKind()) {
7212       case FDK_Declaration:
7213       case FDK_Definition:
7214         break;
7215 
7216       case FDK_Defaulted:
7217         NewFD->setDefaulted();
7218         break;
7219 
7220       case FDK_Deleted:
7221         NewFD->setDeletedAsWritten();
7222         break;
7223     }
7224 
7225     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
7226         D.isFunctionDefinition()) {
7227       // C++ [class.mfct]p2:
7228       //   A member function may be defined (8.4) in its class definition, in
7229       //   which case it is an inline member function (7.1.2)
7230       NewFD->setImplicitlyInline();
7231     }
7232 
7233     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
7234         !CurContext->isRecord()) {
7235       // C++ [class.static]p1:
7236       //   A data or function member of a class may be declared static
7237       //   in a class definition, in which case it is a static member of
7238       //   the class.
7239 
7240       // Complain about the 'static' specifier if it's on an out-of-line
7241       // member function definition.
7242       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7243            diag::err_static_out_of_line)
7244         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7245     }
7246 
7247     // C++11 [except.spec]p15:
7248     //   A deallocation function with no exception-specification is treated
7249     //   as if it were specified with noexcept(true).
7250     const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
7251     if ((Name.getCXXOverloadedOperator() == OO_Delete ||
7252          Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
7253         getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
7254       NewFD->setType(Context.getFunctionType(
7255           FPT->getReturnType(), FPT->getParamTypes(),
7256           FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
7257   }
7258 
7259   // Filter out previous declarations that don't match the scope.
7260   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
7261                        D.getCXXScopeSpec().isNotEmpty() ||
7262                        isExplicitSpecialization ||
7263                        isFunctionTemplateSpecialization);
7264 
7265   // Handle GNU asm-label extension (encoded as an attribute).
7266   if (Expr *E = (Expr*) D.getAsmLabel()) {
7267     // The parser guarantees this is a string.
7268     StringLiteral *SE = cast<StringLiteral>(E);
7269     NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
7270                                                 SE->getString(), 0));
7271   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
7272     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
7273       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
7274     if (I != ExtnameUndeclaredIdentifiers.end()) {
7275       NewFD->addAttr(I->second);
7276       ExtnameUndeclaredIdentifiers.erase(I);
7277     }
7278   }
7279 
7280   // Copy the parameter declarations from the declarator D to the function
7281   // declaration NewFD, if they are available.  First scavenge them into Params.
7282   SmallVector<ParmVarDecl*, 16> Params;
7283   if (D.isFunctionDeclarator()) {
7284     DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7285 
7286     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
7287     // function that takes no arguments, not a function that takes a
7288     // single void argument.
7289     // We let through "const void" here because Sema::GetTypeForDeclarator
7290     // already checks for that case.
7291     if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
7292       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
7293         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
7294         assert(Param->getDeclContext() != NewFD && "Was set before ?");
7295         Param->setDeclContext(NewFD);
7296         Params.push_back(Param);
7297 
7298         if (Param->isInvalidDecl())
7299           NewFD->setInvalidDecl();
7300       }
7301     }
7302 
7303   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
7304     // When we're declaring a function with a typedef, typeof, etc as in the
7305     // following example, we'll need to synthesize (unnamed)
7306     // parameters for use in the declaration.
7307     //
7308     // @code
7309     // typedef void fn(int);
7310     // fn f;
7311     // @endcode
7312 
7313     // Synthesize a parameter for each argument type.
7314     for (const auto &AI : FT->param_types()) {
7315       ParmVarDecl *Param =
7316           BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
7317       Param->setScopeInfo(0, Params.size());
7318       Params.push_back(Param);
7319     }
7320   } else {
7321     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
7322            "Should not need args for typedef of non-prototype fn");
7323   }
7324 
7325   // Finally, we know we have the right number of parameters, install them.
7326   NewFD->setParams(Params);
7327 
7328   // Find all anonymous symbols defined during the declaration of this function
7329   // and add to NewFD. This lets us track decls such 'enum Y' in:
7330   //
7331   //   void f(enum Y {AA} x) {}
7332   //
7333   // which would otherwise incorrectly end up in the translation unit scope.
7334   NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
7335   DeclsInPrototypeScope.clear();
7336 
7337   if (D.getDeclSpec().isNoreturnSpecified())
7338     NewFD->addAttr(
7339         ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
7340                                        Context, 0));
7341 
7342   // Functions returning a variably modified type violate C99 6.7.5.2p2
7343   // because all functions have linkage.
7344   if (!NewFD->isInvalidDecl() &&
7345       NewFD->getReturnType()->isVariablyModifiedType()) {
7346     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
7347     NewFD->setInvalidDecl();
7348   }
7349 
7350   if (D.isFunctionDefinition() && CodeSegStack.CurrentValue &&
7351       !NewFD->hasAttr<SectionAttr>()) {
7352     NewFD->addAttr(
7353         SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
7354                                     CodeSegStack.CurrentValue->getString(),
7355                                     CodeSegStack.CurrentPragmaLocation));
7356     if (UnifySection(CodeSegStack.CurrentValue->getString(),
7357                      ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
7358                          ASTContext::PSF_Read,
7359                      NewFD))
7360       NewFD->dropAttr<SectionAttr>();
7361   }
7362 
7363   // Handle attributes.
7364   ProcessDeclAttributes(S, NewFD, D);
7365 
7366   QualType RetType = NewFD->getReturnType();
7367   const CXXRecordDecl *Ret = RetType->isRecordType() ?
7368       RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
7369   if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
7370       Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
7371     const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
7372     // Attach WarnUnusedResult to functions returning types with that attribute.
7373     // Don't apply the attribute to that type's own non-static member functions
7374     // (to avoid warning on things like assignment operators)
7375     if (!MD || MD->getParent() != Ret)
7376       NewFD->addAttr(WarnUnusedResultAttr::CreateImplicit(Context));
7377   }
7378 
7379   if (getLangOpts().OpenCL) {
7380     // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
7381     // type declaration will generate a compilation error.
7382     unsigned AddressSpace = RetType.getAddressSpace();
7383     if (AddressSpace == LangAS::opencl_local ||
7384         AddressSpace == LangAS::opencl_global ||
7385         AddressSpace == LangAS::opencl_constant) {
7386       Diag(NewFD->getLocation(),
7387            diag::err_opencl_return_value_with_address_space);
7388       NewFD->setInvalidDecl();
7389     }
7390   }
7391 
7392   if (!getLangOpts().CPlusPlus) {
7393     // Perform semantic checking on the function declaration.
7394     bool isExplicitSpecialization=false;
7395     if (!NewFD->isInvalidDecl() && NewFD->isMain())
7396       CheckMain(NewFD, D.getDeclSpec());
7397 
7398     if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
7399       CheckMSVCRTEntryPoint(NewFD);
7400 
7401     if (!NewFD->isInvalidDecl())
7402       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
7403                                                   isExplicitSpecialization));
7404     else if (!Previous.empty())
7405       // Make graceful recovery from an invalid redeclaration.
7406       D.setRedeclaration(true);
7407     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
7408             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
7409            "previous declaration set still overloaded");
7410 
7411     // Diagnose no-prototype function declarations with calling conventions that
7412     // don't support variadic calls. Only do this in C and do it after merging
7413     // possibly prototyped redeclarations.
7414     const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
7415     if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
7416       CallingConv CC = FT->getExtInfo().getCC();
7417       if (!supportsVariadicCall(CC)) {
7418         // Windows system headers sometimes accidentally use stdcall without
7419         // (void) parameters, so we relax this to a warning.
7420         int DiagID =
7421             CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
7422         Diag(NewFD->getLocation(), DiagID)
7423             << FunctionType::getNameForCallConv(CC);
7424       }
7425     }
7426   } else {
7427     // C++11 [replacement.functions]p3:
7428     //  The program's definitions shall not be specified as inline.
7429     //
7430     // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
7431     //
7432     // Suppress the diagnostic if the function is __attribute__((used)), since
7433     // that forces an external definition to be emitted.
7434     if (D.getDeclSpec().isInlineSpecified() &&
7435         NewFD->isReplaceableGlobalAllocationFunction() &&
7436         !NewFD->hasAttr<UsedAttr>())
7437       Diag(D.getDeclSpec().getInlineSpecLoc(),
7438            diag::ext_operator_new_delete_declared_inline)
7439         << NewFD->getDeclName();
7440 
7441     // If the declarator is a template-id, translate the parser's template
7442     // argument list into our AST format.
7443     if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7444       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
7445       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
7446       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
7447       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7448                                          TemplateId->NumArgs);
7449       translateTemplateArguments(TemplateArgsPtr,
7450                                  TemplateArgs);
7451 
7452       HasExplicitTemplateArgs = true;
7453 
7454       if (NewFD->isInvalidDecl()) {
7455         HasExplicitTemplateArgs = false;
7456       } else if (FunctionTemplate) {
7457         // Function template with explicit template arguments.
7458         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
7459           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
7460 
7461         HasExplicitTemplateArgs = false;
7462       } else {
7463         assert((isFunctionTemplateSpecialization ||
7464                 D.getDeclSpec().isFriendSpecified()) &&
7465                "should have a 'template<>' for this decl");
7466         // "friend void foo<>(int);" is an implicit specialization decl.
7467         isFunctionTemplateSpecialization = true;
7468       }
7469     } else if (isFriend && isFunctionTemplateSpecialization) {
7470       // This combination is only possible in a recovery case;  the user
7471       // wrote something like:
7472       //   template <> friend void foo(int);
7473       // which we're recovering from as if the user had written:
7474       //   friend void foo<>(int);
7475       // Go ahead and fake up a template id.
7476       HasExplicitTemplateArgs = true;
7477       TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
7478       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
7479     }
7480 
7481     // If it's a friend (and only if it's a friend), it's possible
7482     // that either the specialized function type or the specialized
7483     // template is dependent, and therefore matching will fail.  In
7484     // this case, don't check the specialization yet.
7485     bool InstantiationDependent = false;
7486     if (isFunctionTemplateSpecialization && isFriend &&
7487         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
7488          TemplateSpecializationType::anyDependentTemplateArguments(
7489             TemplateArgs.getArgumentArray(), TemplateArgs.size(),
7490             InstantiationDependent))) {
7491       assert(HasExplicitTemplateArgs &&
7492              "friend function specialization without template args");
7493       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
7494                                                        Previous))
7495         NewFD->setInvalidDecl();
7496     } else if (isFunctionTemplateSpecialization) {
7497       if (CurContext->isDependentContext() && CurContext->isRecord()
7498           && !isFriend) {
7499         isDependentClassScopeExplicitSpecialization = true;
7500         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
7501           diag::ext_function_specialization_in_class :
7502           diag::err_function_specialization_in_class)
7503           << NewFD->getDeclName();
7504       } else if (CheckFunctionTemplateSpecialization(NewFD,
7505                                   (HasExplicitTemplateArgs ? &TemplateArgs
7506                                                            : nullptr),
7507                                                      Previous))
7508         NewFD->setInvalidDecl();
7509 
7510       // C++ [dcl.stc]p1:
7511       //   A storage-class-specifier shall not be specified in an explicit
7512       //   specialization (14.7.3)
7513       FunctionTemplateSpecializationInfo *Info =
7514           NewFD->getTemplateSpecializationInfo();
7515       if (Info && SC != SC_None) {
7516         if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
7517           Diag(NewFD->getLocation(),
7518                diag::err_explicit_specialization_inconsistent_storage_class)
7519             << SC
7520             << FixItHint::CreateRemoval(
7521                                       D.getDeclSpec().getStorageClassSpecLoc());
7522 
7523         else
7524           Diag(NewFD->getLocation(),
7525                diag::ext_explicit_specialization_storage_class)
7526             << FixItHint::CreateRemoval(
7527                                       D.getDeclSpec().getStorageClassSpecLoc());
7528       }
7529 
7530     } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
7531       if (CheckMemberSpecialization(NewFD, Previous))
7532           NewFD->setInvalidDecl();
7533     }
7534 
7535     // Perform semantic checking on the function declaration.
7536     if (!isDependentClassScopeExplicitSpecialization) {
7537       if (!NewFD->isInvalidDecl() && NewFD->isMain())
7538         CheckMain(NewFD, D.getDeclSpec());
7539 
7540       if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
7541         CheckMSVCRTEntryPoint(NewFD);
7542 
7543       if (!NewFD->isInvalidDecl())
7544         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
7545                                                     isExplicitSpecialization));
7546     }
7547 
7548     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
7549             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
7550            "previous declaration set still overloaded");
7551 
7552     NamedDecl *PrincipalDecl = (FunctionTemplate
7553                                 ? cast<NamedDecl>(FunctionTemplate)
7554                                 : NewFD);
7555 
7556     if (isFriend && D.isRedeclaration()) {
7557       AccessSpecifier Access = AS_public;
7558       if (!NewFD->isInvalidDecl())
7559         Access = NewFD->getPreviousDecl()->getAccess();
7560 
7561       NewFD->setAccess(Access);
7562       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
7563     }
7564 
7565     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
7566         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
7567       PrincipalDecl->setNonMemberOperator();
7568 
7569     // If we have a function template, check the template parameter
7570     // list. This will check and merge default template arguments.
7571     if (FunctionTemplate) {
7572       FunctionTemplateDecl *PrevTemplate =
7573                                      FunctionTemplate->getPreviousDecl();
7574       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
7575                        PrevTemplate ? PrevTemplate->getTemplateParameters()
7576                                     : nullptr,
7577                             D.getDeclSpec().isFriendSpecified()
7578                               ? (D.isFunctionDefinition()
7579                                    ? TPC_FriendFunctionTemplateDefinition
7580                                    : TPC_FriendFunctionTemplate)
7581                               : (D.getCXXScopeSpec().isSet() &&
7582                                  DC && DC->isRecord() &&
7583                                  DC->isDependentContext())
7584                                   ? TPC_ClassTemplateMember
7585                                   : TPC_FunctionTemplate);
7586     }
7587 
7588     if (NewFD->isInvalidDecl()) {
7589       // Ignore all the rest of this.
7590     } else if (!D.isRedeclaration()) {
7591       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
7592                                        AddToScope };
7593       // Fake up an access specifier if it's supposed to be a class member.
7594       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
7595         NewFD->setAccess(AS_public);
7596 
7597       // Qualified decls generally require a previous declaration.
7598       if (D.getCXXScopeSpec().isSet()) {
7599         // ...with the major exception of templated-scope or
7600         // dependent-scope friend declarations.
7601 
7602         // TODO: we currently also suppress this check in dependent
7603         // contexts because (1) the parameter depth will be off when
7604         // matching friend templates and (2) we might actually be
7605         // selecting a friend based on a dependent factor.  But there
7606         // are situations where these conditions don't apply and we
7607         // can actually do this check immediately.
7608         if (isFriend &&
7609             (TemplateParamLists.size() ||
7610              D.getCXXScopeSpec().getScopeRep()->isDependent() ||
7611              CurContext->isDependentContext())) {
7612           // ignore these
7613         } else {
7614           // The user tried to provide an out-of-line definition for a
7615           // function that is a member of a class or namespace, but there
7616           // was no such member function declared (C++ [class.mfct]p2,
7617           // C++ [namespace.memdef]p2). For example:
7618           //
7619           // class X {
7620           //   void f() const;
7621           // };
7622           //
7623           // void X::f() { } // ill-formed
7624           //
7625           // Complain about this problem, and attempt to suggest close
7626           // matches (e.g., those that differ only in cv-qualifiers and
7627           // whether the parameter types are references).
7628 
7629           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
7630                   *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
7631             AddToScope = ExtraArgs.AddToScope;
7632             return Result;
7633           }
7634         }
7635 
7636         // Unqualified local friend declarations are required to resolve
7637         // to something.
7638       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
7639         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
7640                 *this, Previous, NewFD, ExtraArgs, true, S)) {
7641           AddToScope = ExtraArgs.AddToScope;
7642           return Result;
7643         }
7644       }
7645 
7646     } else if (!D.isFunctionDefinition() &&
7647                isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
7648                !isFriend && !isFunctionTemplateSpecialization &&
7649                !isExplicitSpecialization) {
7650       // An out-of-line member function declaration must also be a
7651       // definition (C++ [class.mfct]p2).
7652       // Note that this is not the case for explicit specializations of
7653       // function templates or member functions of class templates, per
7654       // C++ [temp.expl.spec]p2. We also allow these declarations as an
7655       // extension for compatibility with old SWIG code which likes to
7656       // generate them.
7657       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
7658         << D.getCXXScopeSpec().getRange();
7659     }
7660   }
7661 
7662   ProcessPragmaWeak(S, NewFD);
7663   checkAttributesAfterMerging(*this, *NewFD);
7664 
7665   AddKnownFunctionAttributes(NewFD);
7666 
7667   if (NewFD->hasAttr<OverloadableAttr>() &&
7668       !NewFD->getType()->getAs<FunctionProtoType>()) {
7669     Diag(NewFD->getLocation(),
7670          diag::err_attribute_overloadable_no_prototype)
7671       << NewFD;
7672 
7673     // Turn this into a variadic function with no parameters.
7674     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
7675     FunctionProtoType::ExtProtoInfo EPI(
7676         Context.getDefaultCallingConvention(true, false));
7677     EPI.Variadic = true;
7678     EPI.ExtInfo = FT->getExtInfo();
7679 
7680     QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
7681     NewFD->setType(R);
7682   }
7683 
7684   // If there's a #pragma GCC visibility in scope, and this isn't a class
7685   // member, set the visibility of this function.
7686   if (!DC->isRecord() && NewFD->isExternallyVisible())
7687     AddPushedVisibilityAttribute(NewFD);
7688 
7689   // If there's a #pragma clang arc_cf_code_audited in scope, consider
7690   // marking the function.
7691   AddCFAuditedAttribute(NewFD);
7692 
7693   // If this is a function definition, check if we have to apply optnone due to
7694   // a pragma.
7695   if(D.isFunctionDefinition())
7696     AddRangeBasedOptnone(NewFD);
7697 
7698   // If this is the first declaration of an extern C variable, update
7699   // the map of such variables.
7700   if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
7701       isIncompleteDeclExternC(*this, NewFD))
7702     RegisterLocallyScopedExternCDecl(NewFD, S);
7703 
7704   // Set this FunctionDecl's range up to the right paren.
7705   NewFD->setRangeEnd(D.getSourceRange().getEnd());
7706 
7707   if (D.isRedeclaration() && !Previous.empty()) {
7708     checkDLLAttributeRedeclaration(
7709         *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewFD,
7710         isExplicitSpecialization || isFunctionTemplateSpecialization);
7711   }
7712 
7713   if (getLangOpts().CPlusPlus) {
7714     if (FunctionTemplate) {
7715       if (NewFD->isInvalidDecl())
7716         FunctionTemplate->setInvalidDecl();
7717       return FunctionTemplate;
7718     }
7719   }
7720 
7721   if (NewFD->hasAttr<OpenCLKernelAttr>()) {
7722     // OpenCL v1.2 s6.8 static is invalid for kernel functions.
7723     if ((getLangOpts().OpenCLVersion >= 120)
7724         && (SC == SC_Static)) {
7725       Diag(D.getIdentifierLoc(), diag::err_static_kernel);
7726       D.setInvalidType();
7727     }
7728 
7729     // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
7730     if (!NewFD->getReturnType()->isVoidType()) {
7731       SourceRange RTRange = NewFD->getReturnTypeSourceRange();
7732       Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
7733           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
7734                                 : FixItHint());
7735       D.setInvalidType();
7736     }
7737 
7738     llvm::SmallPtrSet<const Type *, 16> ValidTypes;
7739     for (auto Param : NewFD->params())
7740       checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
7741   }
7742 
7743   MarkUnusedFileScopedDecl(NewFD);
7744 
7745   if (getLangOpts().CUDA)
7746     if (IdentifierInfo *II = NewFD->getIdentifier())
7747       if (!NewFD->isInvalidDecl() &&
7748           NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7749         if (II->isStr("cudaConfigureCall")) {
7750           if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
7751             Diag(NewFD->getLocation(), diag::err_config_scalar_return);
7752 
7753           Context.setcudaConfigureCallDecl(NewFD);
7754         }
7755       }
7756 
7757   // Here we have an function template explicit specialization at class scope.
7758   // The actually specialization will be postponed to template instatiation
7759   // time via the ClassScopeFunctionSpecializationDecl node.
7760   if (isDependentClassScopeExplicitSpecialization) {
7761     ClassScopeFunctionSpecializationDecl *NewSpec =
7762                          ClassScopeFunctionSpecializationDecl::Create(
7763                                 Context, CurContext, SourceLocation(),
7764                                 cast<CXXMethodDecl>(NewFD),
7765                                 HasExplicitTemplateArgs, TemplateArgs);
7766     CurContext->addDecl(NewSpec);
7767     AddToScope = false;
7768   }
7769 
7770   return NewFD;
7771 }
7772 
7773 /// \brief Perform semantic checking of a new function declaration.
7774 ///
7775 /// Performs semantic analysis of the new function declaration
7776 /// NewFD. This routine performs all semantic checking that does not
7777 /// require the actual declarator involved in the declaration, and is
7778 /// used both for the declaration of functions as they are parsed
7779 /// (called via ActOnDeclarator) and for the declaration of functions
7780 /// that have been instantiated via C++ template instantiation (called
7781 /// via InstantiateDecl).
7782 ///
7783 /// \param IsExplicitSpecialization whether this new function declaration is
7784 /// an explicit specialization of the previous declaration.
7785 ///
7786 /// This sets NewFD->isInvalidDecl() to true if there was an error.
7787 ///
7788 /// \returns true if the function declaration is a redeclaration.
CheckFunctionDeclaration(Scope * S,FunctionDecl * NewFD,LookupResult & Previous,bool IsExplicitSpecialization)7789 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
7790                                     LookupResult &Previous,
7791                                     bool IsExplicitSpecialization) {
7792   assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
7793          "Variably modified return types are not handled here");
7794 
7795   // Determine whether the type of this function should be merged with
7796   // a previous visible declaration. This never happens for functions in C++,
7797   // and always happens in C if the previous declaration was visible.
7798   bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
7799                                !Previous.isShadowed();
7800 
7801   // Filter out any non-conflicting previous declarations.
7802   filterNonConflictingPreviousDecls(Context, NewFD, Previous);
7803 
7804   bool Redeclaration = false;
7805   NamedDecl *OldDecl = nullptr;
7806 
7807   // Merge or overload the declaration with an existing declaration of
7808   // the same name, if appropriate.
7809   if (!Previous.empty()) {
7810     // Determine whether NewFD is an overload of PrevDecl or
7811     // a declaration that requires merging. If it's an overload,
7812     // there's no more work to do here; we'll just add the new
7813     // function to the scope.
7814     if (!AllowOverloadingOfFunction(Previous, Context)) {
7815       NamedDecl *Candidate = Previous.getFoundDecl();
7816       if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
7817         Redeclaration = true;
7818         OldDecl = Candidate;
7819       }
7820     } else {
7821       switch (CheckOverload(S, NewFD, Previous, OldDecl,
7822                             /*NewIsUsingDecl*/ false)) {
7823       case Ovl_Match:
7824         Redeclaration = true;
7825         break;
7826 
7827       case Ovl_NonFunction:
7828         Redeclaration = true;
7829         break;
7830 
7831       case Ovl_Overload:
7832         Redeclaration = false;
7833         break;
7834       }
7835 
7836       if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
7837         // If a function name is overloadable in C, then every function
7838         // with that name must be marked "overloadable".
7839         Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
7840           << Redeclaration << NewFD;
7841         NamedDecl *OverloadedDecl = nullptr;
7842         if (Redeclaration)
7843           OverloadedDecl = OldDecl;
7844         else if (!Previous.empty())
7845           OverloadedDecl = Previous.getRepresentativeDecl();
7846         if (OverloadedDecl)
7847           Diag(OverloadedDecl->getLocation(),
7848                diag::note_attribute_overloadable_prev_overload);
7849         NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
7850       }
7851     }
7852   }
7853 
7854   // Check for a previous extern "C" declaration with this name.
7855   if (!Redeclaration &&
7856       checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
7857     filterNonConflictingPreviousDecls(Context, NewFD, Previous);
7858     if (!Previous.empty()) {
7859       // This is an extern "C" declaration with the same name as a previous
7860       // declaration, and thus redeclares that entity...
7861       Redeclaration = true;
7862       OldDecl = Previous.getFoundDecl();
7863       MergeTypeWithPrevious = false;
7864 
7865       // ... except in the presence of __attribute__((overloadable)).
7866       if (OldDecl->hasAttr<OverloadableAttr>()) {
7867         if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
7868           Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
7869             << Redeclaration << NewFD;
7870           Diag(Previous.getFoundDecl()->getLocation(),
7871                diag::note_attribute_overloadable_prev_overload);
7872           NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
7873         }
7874         if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
7875           Redeclaration = false;
7876           OldDecl = nullptr;
7877         }
7878       }
7879     }
7880   }
7881 
7882   // C++11 [dcl.constexpr]p8:
7883   //   A constexpr specifier for a non-static member function that is not
7884   //   a constructor declares that member function to be const.
7885   //
7886   // This needs to be delayed until we know whether this is an out-of-line
7887   // definition of a static member function.
7888   //
7889   // This rule is not present in C++1y, so we produce a backwards
7890   // compatibility warning whenever it happens in C++11.
7891   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
7892   if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
7893       !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
7894       (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
7895     CXXMethodDecl *OldMD = nullptr;
7896     if (OldDecl)
7897       OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
7898     if (!OldMD || !OldMD->isStatic()) {
7899       const FunctionProtoType *FPT =
7900         MD->getType()->castAs<FunctionProtoType>();
7901       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7902       EPI.TypeQuals |= Qualifiers::Const;
7903       MD->setType(Context.getFunctionType(FPT->getReturnType(),
7904                                           FPT->getParamTypes(), EPI));
7905 
7906       // Warn that we did this, if we're not performing template instantiation.
7907       // In that case, we'll have warned already when the template was defined.
7908       if (ActiveTemplateInstantiations.empty()) {
7909         SourceLocation AddConstLoc;
7910         if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
7911                 .IgnoreParens().getAs<FunctionTypeLoc>())
7912           AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
7913 
7914         Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
7915           << FixItHint::CreateInsertion(AddConstLoc, " const");
7916       }
7917     }
7918   }
7919 
7920   if (Redeclaration) {
7921     // NewFD and OldDecl represent declarations that need to be
7922     // merged.
7923     if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
7924       NewFD->setInvalidDecl();
7925       return Redeclaration;
7926     }
7927 
7928     Previous.clear();
7929     Previous.addDecl(OldDecl);
7930 
7931     if (FunctionTemplateDecl *OldTemplateDecl
7932                                   = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
7933       NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
7934       FunctionTemplateDecl *NewTemplateDecl
7935         = NewFD->getDescribedFunctionTemplate();
7936       assert(NewTemplateDecl && "Template/non-template mismatch");
7937       if (CXXMethodDecl *Method
7938             = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
7939         Method->setAccess(OldTemplateDecl->getAccess());
7940         NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
7941       }
7942 
7943       // If this is an explicit specialization of a member that is a function
7944       // template, mark it as a member specialization.
7945       if (IsExplicitSpecialization &&
7946           NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
7947         NewTemplateDecl->setMemberSpecialization();
7948         assert(OldTemplateDecl->isMemberSpecialization());
7949       }
7950 
7951     } else {
7952       // This needs to happen first so that 'inline' propagates.
7953       NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
7954 
7955       if (isa<CXXMethodDecl>(NewFD)) {
7956         // A valid redeclaration of a C++ method must be out-of-line,
7957         // but (unfortunately) it's not necessarily a definition
7958         // because of templates, which means that the previous
7959         // declaration is not necessarily from the class definition.
7960 
7961         // For just setting the access, that doesn't matter.
7962         CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
7963         NewFD->setAccess(oldMethod->getAccess());
7964 
7965         // Update the key-function state if necessary for this ABI.
7966         if (NewFD->isInlined() &&
7967             !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7968           // setNonKeyFunction needs to work with the original
7969           // declaration from the class definition, and isVirtual() is
7970           // just faster in that case, so map back to that now.
7971           oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDecl());
7972           if (oldMethod->isVirtual()) {
7973             Context.setNonKeyFunction(oldMethod);
7974           }
7975         }
7976       }
7977     }
7978   }
7979 
7980   // Semantic checking for this function declaration (in isolation).
7981 
7982   if (getLangOpts().CPlusPlus) {
7983     // C++-specific checks.
7984     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
7985       CheckConstructor(Constructor);
7986     } else if (CXXDestructorDecl *Destructor =
7987                 dyn_cast<CXXDestructorDecl>(NewFD)) {
7988       CXXRecordDecl *Record = Destructor->getParent();
7989       QualType ClassType = Context.getTypeDeclType(Record);
7990 
7991       // FIXME: Shouldn't we be able to perform this check even when the class
7992       // type is dependent? Both gcc and edg can handle that.
7993       if (!ClassType->isDependentType()) {
7994         DeclarationName Name
7995           = Context.DeclarationNames.getCXXDestructorName(
7996                                         Context.getCanonicalType(ClassType));
7997         if (NewFD->getDeclName() != Name) {
7998           Diag(NewFD->getLocation(), diag::err_destructor_name);
7999           NewFD->setInvalidDecl();
8000           return Redeclaration;
8001         }
8002       }
8003     } else if (CXXConversionDecl *Conversion
8004                = dyn_cast<CXXConversionDecl>(NewFD)) {
8005       ActOnConversionDeclarator(Conversion);
8006     }
8007 
8008     // Find any virtual functions that this function overrides.
8009     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
8010       if (!Method->isFunctionTemplateSpecialization() &&
8011           !Method->getDescribedFunctionTemplate() &&
8012           Method->isCanonicalDecl()) {
8013         if (AddOverriddenMethods(Method->getParent(), Method)) {
8014           // If the function was marked as "static", we have a problem.
8015           if (NewFD->getStorageClass() == SC_Static) {
8016             ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
8017           }
8018         }
8019       }
8020 
8021       if (Method->isStatic())
8022         checkThisInStaticMemberFunctionType(Method);
8023     }
8024 
8025     // Extra checking for C++ overloaded operators (C++ [over.oper]).
8026     if (NewFD->isOverloadedOperator() &&
8027         CheckOverloadedOperatorDeclaration(NewFD)) {
8028       NewFD->setInvalidDecl();
8029       return Redeclaration;
8030     }
8031 
8032     // Extra checking for C++0x literal operators (C++0x [over.literal]).
8033     if (NewFD->getLiteralIdentifier() &&
8034         CheckLiteralOperatorDeclaration(NewFD)) {
8035       NewFD->setInvalidDecl();
8036       return Redeclaration;
8037     }
8038 
8039     // In C++, check default arguments now that we have merged decls. Unless
8040     // the lexical context is the class, because in this case this is done
8041     // during delayed parsing anyway.
8042     if (!CurContext->isRecord())
8043       CheckCXXDefaultArguments(NewFD);
8044 
8045     // If this function declares a builtin function, check the type of this
8046     // declaration against the expected type for the builtin.
8047     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
8048       ASTContext::GetBuiltinTypeError Error;
8049       LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
8050       QualType T = Context.GetBuiltinType(BuiltinID, Error);
8051       if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
8052         // The type of this function differs from the type of the builtin,
8053         // so forget about the builtin entirely.
8054         Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
8055       }
8056     }
8057 
8058     // If this function is declared as being extern "C", then check to see if
8059     // the function returns a UDT (class, struct, or union type) that is not C
8060     // compatible, and if it does, warn the user.
8061     // But, issue any diagnostic on the first declaration only.
8062     if (Previous.empty() && NewFD->isExternC()) {
8063       QualType R = NewFD->getReturnType();
8064       if (R->isIncompleteType() && !R->isVoidType())
8065         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
8066             << NewFD << R;
8067       else if (!R.isPODType(Context) && !R->isVoidType() &&
8068                !R->isObjCObjectPointerType())
8069         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
8070     }
8071   }
8072   return Redeclaration;
8073 }
8074 
CheckMain(FunctionDecl * FD,const DeclSpec & DS)8075 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
8076   // C++11 [basic.start.main]p3:
8077   //   A program that [...] declares main to be inline, static or
8078   //   constexpr is ill-formed.
8079   // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
8080   //   appear in a declaration of main.
8081   // static main is not an error under C99, but we should warn about it.
8082   // We accept _Noreturn main as an extension.
8083   if (FD->getStorageClass() == SC_Static)
8084     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
8085          ? diag::err_static_main : diag::warn_static_main)
8086       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
8087   if (FD->isInlineSpecified())
8088     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
8089       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
8090   if (DS.isNoreturnSpecified()) {
8091     SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
8092     SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
8093     Diag(NoreturnLoc, diag::ext_noreturn_main);
8094     Diag(NoreturnLoc, diag::note_main_remove_noreturn)
8095       << FixItHint::CreateRemoval(NoreturnRange);
8096   }
8097   if (FD->isConstexpr()) {
8098     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
8099       << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
8100     FD->setConstexpr(false);
8101   }
8102 
8103   if (getLangOpts().OpenCL) {
8104     Diag(FD->getLocation(), diag::err_opencl_no_main)
8105         << FD->hasAttr<OpenCLKernelAttr>();
8106     FD->setInvalidDecl();
8107     return;
8108   }
8109 
8110   QualType T = FD->getType();
8111   assert(T->isFunctionType() && "function decl is not of function type");
8112   const FunctionType* FT = T->castAs<FunctionType>();
8113 
8114   if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
8115     // In C with GNU extensions we allow main() to have non-integer return
8116     // type, but we should warn about the extension, and we disable the
8117     // implicit-return-zero rule.
8118 
8119     // GCC in C mode accepts qualified 'int'.
8120     if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
8121       FD->setHasImplicitReturnZero(true);
8122     else {
8123       Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
8124       SourceRange RTRange = FD->getReturnTypeSourceRange();
8125       if (RTRange.isValid())
8126         Diag(RTRange.getBegin(), diag::note_main_change_return_type)
8127             << FixItHint::CreateReplacement(RTRange, "int");
8128     }
8129   } else {
8130     // In C and C++, main magically returns 0 if you fall off the end;
8131     // set the flag which tells us that.
8132     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
8133 
8134     // All the standards say that main() should return 'int'.
8135     if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
8136       FD->setHasImplicitReturnZero(true);
8137     else {
8138       // Otherwise, this is just a flat-out error.
8139       SourceRange RTRange = FD->getReturnTypeSourceRange();
8140       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
8141           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
8142                                 : FixItHint());
8143       FD->setInvalidDecl(true);
8144     }
8145   }
8146 
8147   // Treat protoless main() as nullary.
8148   if (isa<FunctionNoProtoType>(FT)) return;
8149 
8150   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
8151   unsigned nparams = FTP->getNumParams();
8152   assert(FD->getNumParams() == nparams);
8153 
8154   bool HasExtraParameters = (nparams > 3);
8155 
8156   // Darwin passes an undocumented fourth argument of type char**.  If
8157   // other platforms start sprouting these, the logic below will start
8158   // getting shifty.
8159   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
8160     HasExtraParameters = false;
8161 
8162   if (HasExtraParameters) {
8163     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
8164     FD->setInvalidDecl(true);
8165     nparams = 3;
8166   }
8167 
8168   // FIXME: a lot of the following diagnostics would be improved
8169   // if we had some location information about types.
8170 
8171   QualType CharPP =
8172     Context.getPointerType(Context.getPointerType(Context.CharTy));
8173   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
8174 
8175   for (unsigned i = 0; i < nparams; ++i) {
8176     QualType AT = FTP->getParamType(i);
8177 
8178     bool mismatch = true;
8179 
8180     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
8181       mismatch = false;
8182     else if (Expected[i] == CharPP) {
8183       // As an extension, the following forms are okay:
8184       //   char const **
8185       //   char const * const *
8186       //   char * const *
8187 
8188       QualifierCollector qs;
8189       const PointerType* PT;
8190       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
8191           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
8192           Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
8193                               Context.CharTy)) {
8194         qs.removeConst();
8195         mismatch = !qs.empty();
8196       }
8197     }
8198 
8199     if (mismatch) {
8200       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
8201       // TODO: suggest replacing given type with expected type
8202       FD->setInvalidDecl(true);
8203     }
8204   }
8205 
8206   if (nparams == 1 && !FD->isInvalidDecl()) {
8207     Diag(FD->getLocation(), diag::warn_main_one_arg);
8208   }
8209 
8210   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
8211     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
8212     FD->setInvalidDecl();
8213   }
8214 }
8215 
CheckMSVCRTEntryPoint(FunctionDecl * FD)8216 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
8217   QualType T = FD->getType();
8218   assert(T->isFunctionType() && "function decl is not of function type");
8219   const FunctionType *FT = T->castAs<FunctionType>();
8220 
8221   // Set an implicit return of 'zero' if the function can return some integral,
8222   // enumeration, pointer or nullptr type.
8223   if (FT->getReturnType()->isIntegralOrEnumerationType() ||
8224       FT->getReturnType()->isAnyPointerType() ||
8225       FT->getReturnType()->isNullPtrType())
8226     // DllMain is exempt because a return value of zero means it failed.
8227     if (FD->getName() != "DllMain")
8228       FD->setHasImplicitReturnZero(true);
8229 
8230   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
8231     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
8232     FD->setInvalidDecl();
8233   }
8234 }
8235 
CheckForConstantInitializer(Expr * Init,QualType DclT)8236 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
8237   // FIXME: Need strict checking.  In C89, we need to check for
8238   // any assignment, increment, decrement, function-calls, or
8239   // commas outside of a sizeof.  In C99, it's the same list,
8240   // except that the aforementioned are allowed in unevaluated
8241   // expressions.  Everything else falls under the
8242   // "may accept other forms of constant expressions" exception.
8243   // (We never end up here for C++, so the constant expression
8244   // rules there don't matter.)
8245   const Expr *Culprit;
8246   if (Init->isConstantInitializer(Context, false, &Culprit))
8247     return false;
8248   Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
8249     << Culprit->getSourceRange();
8250   return true;
8251 }
8252 
8253 namespace {
8254   // Visits an initialization expression to see if OrigDecl is evaluated in
8255   // its own initialization and throws a warning if it does.
8256   class SelfReferenceChecker
8257       : public EvaluatedExprVisitor<SelfReferenceChecker> {
8258     Sema &S;
8259     Decl *OrigDecl;
8260     bool isRecordType;
8261     bool isPODType;
8262     bool isReferenceType;
8263 
8264     bool isInitList;
8265     llvm::SmallVector<unsigned, 4> InitFieldIndex;
8266   public:
8267     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
8268 
SelfReferenceChecker(Sema & S,Decl * OrigDecl)8269     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
8270                                                     S(S), OrigDecl(OrigDecl) {
8271       isPODType = false;
8272       isRecordType = false;
8273       isReferenceType = false;
8274       isInitList = false;
8275       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
8276         isPODType = VD->getType().isPODType(S.Context);
8277         isRecordType = VD->getType()->isRecordType();
8278         isReferenceType = VD->getType()->isReferenceType();
8279       }
8280     }
8281 
8282     // For most expressions, just call the visitor.  For initializer lists,
8283     // track the index of the field being initialized since fields are
8284     // initialized in order allowing use of previously initialized fields.
CheckExpr(Expr * E)8285     void CheckExpr(Expr *E) {
8286       InitListExpr *InitList = dyn_cast<InitListExpr>(E);
8287       if (!InitList) {
8288         Visit(E);
8289         return;
8290       }
8291 
8292       // Track and increment the index here.
8293       isInitList = true;
8294       InitFieldIndex.push_back(0);
8295       for (auto Child : InitList->children()) {
8296         CheckExpr(cast<Expr>(Child));
8297         ++InitFieldIndex.back();
8298       }
8299       InitFieldIndex.pop_back();
8300     }
8301 
8302     // Returns true if MemberExpr is checked and no futher checking is needed.
8303     // Returns false if additional checking is required.
CheckInitListMemberExpr(MemberExpr * E,bool CheckReference)8304     bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
8305       llvm::SmallVector<FieldDecl*, 4> Fields;
8306       Expr *Base = E;
8307       bool ReferenceField = false;
8308 
8309       // Get the field memebers used.
8310       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
8311         FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
8312         if (!FD)
8313           return false;
8314         Fields.push_back(FD);
8315         if (FD->getType()->isReferenceType())
8316           ReferenceField = true;
8317         Base = ME->getBase()->IgnoreParenImpCasts();
8318       }
8319 
8320       // Keep checking only if the base Decl is the same.
8321       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
8322       if (!DRE || DRE->getDecl() != OrigDecl)
8323         return false;
8324 
8325       // A reference field can be bound to an unininitialized field.
8326       if (CheckReference && !ReferenceField)
8327         return true;
8328 
8329       // Convert FieldDecls to their index number.
8330       llvm::SmallVector<unsigned, 4> UsedFieldIndex;
8331       for (auto I = Fields.rbegin(), E = Fields.rend(); I != E; ++I) {
8332         UsedFieldIndex.push_back((*I)->getFieldIndex());
8333       }
8334 
8335       // See if a warning is needed by checking the first difference in index
8336       // numbers.  If field being used has index less than the field being
8337       // initialized, then the use is safe.
8338       for (auto UsedIter = UsedFieldIndex.begin(),
8339                 UsedEnd = UsedFieldIndex.end(),
8340                 OrigIter = InitFieldIndex.begin(),
8341                 OrigEnd = InitFieldIndex.end();
8342            UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
8343         if (*UsedIter < *OrigIter)
8344           return true;
8345         if (*UsedIter > *OrigIter)
8346           break;
8347       }
8348 
8349       // TODO: Add a different warning which will print the field names.
8350       HandleDeclRefExpr(DRE);
8351       return true;
8352     }
8353 
8354     // For most expressions, the cast is directly above the DeclRefExpr.
8355     // For conditional operators, the cast can be outside the conditional
8356     // operator if both expressions are DeclRefExpr's.
HandleValue(Expr * E)8357     void HandleValue(Expr *E) {
8358       E = E->IgnoreParens();
8359       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
8360         HandleDeclRefExpr(DRE);
8361         return;
8362       }
8363 
8364       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
8365         Visit(CO->getCond());
8366         HandleValue(CO->getTrueExpr());
8367         HandleValue(CO->getFalseExpr());
8368         return;
8369       }
8370 
8371       if (BinaryConditionalOperator *BCO =
8372               dyn_cast<BinaryConditionalOperator>(E)) {
8373         Visit(BCO->getCond());
8374         HandleValue(BCO->getFalseExpr());
8375         return;
8376       }
8377 
8378       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
8379         HandleValue(OVE->getSourceExpr());
8380         return;
8381       }
8382 
8383       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
8384         if (BO->getOpcode() == BO_Comma) {
8385           Visit(BO->getLHS());
8386           HandleValue(BO->getRHS());
8387           return;
8388         }
8389       }
8390 
8391       if (isa<MemberExpr>(E)) {
8392         if (isInitList) {
8393           if (CheckInitListMemberExpr(cast<MemberExpr>(E),
8394                                       false /*CheckReference*/))
8395             return;
8396         }
8397 
8398         Expr *Base = E->IgnoreParenImpCasts();
8399         while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
8400           // Check for static member variables and don't warn on them.
8401           if (!isa<FieldDecl>(ME->getMemberDecl()))
8402             return;
8403           Base = ME->getBase()->IgnoreParenImpCasts();
8404         }
8405         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
8406           HandleDeclRefExpr(DRE);
8407         return;
8408       }
8409 
8410       Visit(E);
8411     }
8412 
8413     // Reference types not handled in HandleValue are handled here since all
8414     // uses of references are bad, not just r-value uses.
VisitDeclRefExpr(DeclRefExpr * E)8415     void VisitDeclRefExpr(DeclRefExpr *E) {
8416       if (isReferenceType)
8417         HandleDeclRefExpr(E);
8418     }
8419 
VisitImplicitCastExpr(ImplicitCastExpr * E)8420     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
8421       if (E->getCastKind() == CK_LValueToRValue) {
8422         HandleValue(E->getSubExpr());
8423         return;
8424       }
8425 
8426       Inherited::VisitImplicitCastExpr(E);
8427     }
8428 
VisitMemberExpr(MemberExpr * E)8429     void VisitMemberExpr(MemberExpr *E) {
8430       if (isInitList) {
8431         if (CheckInitListMemberExpr(E, true /*CheckReference*/))
8432           return;
8433       }
8434 
8435       // Don't warn on arrays since they can be treated as pointers.
8436       if (E->getType()->canDecayToPointerType()) return;
8437 
8438       // Warn when a non-static method call is followed by non-static member
8439       // field accesses, which is followed by a DeclRefExpr.
8440       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
8441       bool Warn = (MD && !MD->isStatic());
8442       Expr *Base = E->getBase()->IgnoreParenImpCasts();
8443       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
8444         if (!isa<FieldDecl>(ME->getMemberDecl()))
8445           Warn = false;
8446         Base = ME->getBase()->IgnoreParenImpCasts();
8447       }
8448 
8449       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
8450         if (Warn)
8451           HandleDeclRefExpr(DRE);
8452         return;
8453       }
8454 
8455       // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
8456       // Visit that expression.
8457       Visit(Base);
8458     }
8459 
VisitCXXOperatorCallExpr(CXXOperatorCallExpr * E)8460     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
8461       Expr *Callee = E->getCallee();
8462 
8463       if (isa<UnresolvedLookupExpr>(Callee))
8464         return Inherited::VisitCXXOperatorCallExpr(E);
8465 
8466       Visit(Callee);
8467       for (auto Arg: E->arguments())
8468         HandleValue(Arg->IgnoreParenImpCasts());
8469     }
8470 
VisitUnaryOperator(UnaryOperator * E)8471     void VisitUnaryOperator(UnaryOperator *E) {
8472       // For POD record types, addresses of its own members are well-defined.
8473       if (E->getOpcode() == UO_AddrOf && isRecordType &&
8474           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
8475         if (!isPODType)
8476           HandleValue(E->getSubExpr());
8477         return;
8478       }
8479 
8480       if (E->isIncrementDecrementOp()) {
8481         HandleValue(E->getSubExpr());
8482         return;
8483       }
8484 
8485       Inherited::VisitUnaryOperator(E);
8486     }
8487 
VisitObjCMessageExpr(ObjCMessageExpr * E)8488     void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
8489 
VisitCXXConstructExpr(CXXConstructExpr * E)8490     void VisitCXXConstructExpr(CXXConstructExpr *E) {
8491       if (E->getConstructor()->isCopyConstructor()) {
8492         Expr *ArgExpr = E->getArg(0);
8493         if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
8494           if (ILE->getNumInits() == 1)
8495             ArgExpr = ILE->getInit(0);
8496         if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
8497           if (ICE->getCastKind() == CK_NoOp)
8498             ArgExpr = ICE->getSubExpr();
8499         HandleValue(ArgExpr);
8500         return;
8501       }
8502       Inherited::VisitCXXConstructExpr(E);
8503     }
8504 
VisitCallExpr(CallExpr * E)8505     void VisitCallExpr(CallExpr *E) {
8506       // Treat std::move as a use.
8507       if (E->getNumArgs() == 1) {
8508         if (FunctionDecl *FD = E->getDirectCallee()) {
8509           if (FD->isInStdNamespace() && FD->getIdentifier() &&
8510               FD->getIdentifier()->isStr("move")) {
8511             HandleValue(E->getArg(0));
8512             return;
8513           }
8514         }
8515       }
8516 
8517       Inherited::VisitCallExpr(E);
8518     }
8519 
VisitBinaryOperator(BinaryOperator * E)8520     void VisitBinaryOperator(BinaryOperator *E) {
8521       if (E->isCompoundAssignmentOp()) {
8522         HandleValue(E->getLHS());
8523         Visit(E->getRHS());
8524         return;
8525       }
8526 
8527       Inherited::VisitBinaryOperator(E);
8528     }
8529 
8530     // A custom visitor for BinaryConditionalOperator is needed because the
8531     // regular visitor would check the condition and true expression separately
8532     // but both point to the same place giving duplicate diagnostics.
VisitBinaryConditionalOperator(BinaryConditionalOperator * E)8533     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
8534       Visit(E->getCond());
8535       Visit(E->getFalseExpr());
8536     }
8537 
HandleDeclRefExpr(DeclRefExpr * DRE)8538     void HandleDeclRefExpr(DeclRefExpr *DRE) {
8539       Decl* ReferenceDecl = DRE->getDecl();
8540       if (OrigDecl != ReferenceDecl) return;
8541       unsigned diag;
8542       if (isReferenceType) {
8543         diag = diag::warn_uninit_self_reference_in_reference_init;
8544       } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
8545         diag = diag::warn_static_self_reference_in_init;
8546       } else {
8547         diag = diag::warn_uninit_self_reference_in_init;
8548       }
8549 
8550       S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
8551                             S.PDiag(diag)
8552                               << DRE->getNameInfo().getName()
8553                               << OrigDecl->getLocation()
8554                               << DRE->getSourceRange());
8555     }
8556   };
8557 
8558   /// CheckSelfReference - Warns if OrigDecl is used in expression E.
CheckSelfReference(Sema & S,Decl * OrigDecl,Expr * E,bool DirectInit)8559   static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
8560                                  bool DirectInit) {
8561     // Parameters arguments are occassionially constructed with itself,
8562     // for instance, in recursive functions.  Skip them.
8563     if (isa<ParmVarDecl>(OrigDecl))
8564       return;
8565 
8566     E = E->IgnoreParens();
8567 
8568     // Skip checking T a = a where T is not a record or reference type.
8569     // Doing so is a way to silence uninitialized warnings.
8570     if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
8571       if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
8572         if (ICE->getCastKind() == CK_LValueToRValue)
8573           if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
8574             if (DRE->getDecl() == OrigDecl)
8575               return;
8576 
8577     SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
8578   }
8579 }
8580 
8581 /// AddInitializerToDecl - Adds the initializer Init to the
8582 /// declaration dcl. If DirectInit is true, this is C++ direct
8583 /// initialization rather than copy initialization.
AddInitializerToDecl(Decl * RealDecl,Expr * Init,bool DirectInit,bool TypeMayContainAuto)8584 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
8585                                 bool DirectInit, bool TypeMayContainAuto) {
8586   // If there is no declaration, there was an error parsing it.  Just ignore
8587   // the initializer.
8588   if (!RealDecl || RealDecl->isInvalidDecl()) {
8589     CorrectDelayedTyposInExpr(Init);
8590     return;
8591   }
8592 
8593   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
8594     // With declarators parsed the way they are, the parser cannot
8595     // distinguish between a normal initializer and a pure-specifier.
8596     // Thus this grotesque test.
8597     IntegerLiteral *IL;
8598     if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
8599         Context.getCanonicalType(IL->getType()) == Context.IntTy)
8600       CheckPureMethod(Method, Init->getSourceRange());
8601     else {
8602       Diag(Method->getLocation(), diag::err_member_function_initialization)
8603         << Method->getDeclName() << Init->getSourceRange();
8604       Method->setInvalidDecl();
8605     }
8606     return;
8607   }
8608 
8609   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
8610   if (!VDecl) {
8611     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
8612     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
8613     RealDecl->setInvalidDecl();
8614     return;
8615   }
8616   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
8617 
8618   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
8619   if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
8620     Expr *DeduceInit = Init;
8621     // Initializer could be a C++ direct-initializer. Deduction only works if it
8622     // contains exactly one expression.
8623     if (CXXDirectInit) {
8624       if (CXXDirectInit->getNumExprs() == 0) {
8625         // It isn't possible to write this directly, but it is possible to
8626         // end up in this situation with "auto x(some_pack...);"
8627         Diag(CXXDirectInit->getLocStart(),
8628              VDecl->isInitCapture() ? diag::err_init_capture_no_expression
8629                                     : diag::err_auto_var_init_no_expression)
8630           << VDecl->getDeclName() << VDecl->getType()
8631           << VDecl->getSourceRange();
8632         RealDecl->setInvalidDecl();
8633         return;
8634       } else if (CXXDirectInit->getNumExprs() > 1) {
8635         Diag(CXXDirectInit->getExpr(1)->getLocStart(),
8636              VDecl->isInitCapture()
8637                  ? diag::err_init_capture_multiple_expressions
8638                  : diag::err_auto_var_init_multiple_expressions)
8639           << VDecl->getDeclName() << VDecl->getType()
8640           << VDecl->getSourceRange();
8641         RealDecl->setInvalidDecl();
8642         return;
8643       } else {
8644         DeduceInit = CXXDirectInit->getExpr(0);
8645         if (isa<InitListExpr>(DeduceInit))
8646           Diag(CXXDirectInit->getLocStart(),
8647                diag::err_auto_var_init_paren_braces)
8648             << VDecl->getDeclName() << VDecl->getType()
8649             << VDecl->getSourceRange();
8650       }
8651     }
8652 
8653     // Expressions default to 'id' when we're in a debugger.
8654     bool DefaultedToAuto = false;
8655     if (getLangOpts().DebuggerCastResultToId &&
8656         Init->getType() == Context.UnknownAnyTy) {
8657       ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
8658       if (Result.isInvalid()) {
8659         VDecl->setInvalidDecl();
8660         return;
8661       }
8662       Init = Result.get();
8663       DefaultedToAuto = true;
8664     }
8665 
8666     QualType DeducedType;
8667     if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
8668             DAR_Failed)
8669       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
8670     if (DeducedType.isNull()) {
8671       RealDecl->setInvalidDecl();
8672       return;
8673     }
8674     VDecl->setType(DeducedType);
8675     assert(VDecl->isLinkageValid());
8676 
8677     // In ARC, infer lifetime.
8678     if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
8679       VDecl->setInvalidDecl();
8680 
8681     // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
8682     // 'id' instead of a specific object type prevents most of our usual checks.
8683     // We only want to warn outside of template instantiations, though:
8684     // inside a template, the 'id' could have come from a parameter.
8685     if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
8686         DeducedType->isObjCIdType()) {
8687       SourceLocation Loc =
8688           VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
8689       Diag(Loc, diag::warn_auto_var_is_id)
8690         << VDecl->getDeclName() << DeduceInit->getSourceRange();
8691     }
8692 
8693     // If this is a redeclaration, check that the type we just deduced matches
8694     // the previously declared type.
8695     if (VarDecl *Old = VDecl->getPreviousDecl()) {
8696       // We never need to merge the type, because we cannot form an incomplete
8697       // array of auto, nor deduce such a type.
8698       MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/false);
8699     }
8700 
8701     // Check the deduced type is valid for a variable declaration.
8702     CheckVariableDeclarationType(VDecl);
8703     if (VDecl->isInvalidDecl())
8704       return;
8705 
8706     // If all looks well, warn if this is a case that will change meaning when
8707     // we implement N3922.
8708     if (DirectInit && !CXXDirectInit && isa<InitListExpr>(Init)) {
8709       Diag(Init->getLocStart(),
8710            diag::warn_auto_var_direct_list_init)
8711         << FixItHint::CreateInsertion(Init->getLocStart(), "=");
8712     }
8713   }
8714 
8715   // dllimport cannot be used on variable definitions.
8716   if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
8717     Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
8718     VDecl->setInvalidDecl();
8719     return;
8720   }
8721 
8722   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
8723     // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
8724     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
8725     VDecl->setInvalidDecl();
8726     return;
8727   }
8728 
8729   if (!VDecl->getType()->isDependentType()) {
8730     // A definition must end up with a complete type, which means it must be
8731     // complete with the restriction that an array type might be completed by
8732     // the initializer; note that later code assumes this restriction.
8733     QualType BaseDeclType = VDecl->getType();
8734     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
8735       BaseDeclType = Array->getElementType();
8736     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
8737                             diag::err_typecheck_decl_incomplete_type)) {
8738       RealDecl->setInvalidDecl();
8739       return;
8740     }
8741 
8742     // The variable can not have an abstract class type.
8743     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
8744                                diag::err_abstract_type_in_decl,
8745                                AbstractVariableType))
8746       VDecl->setInvalidDecl();
8747   }
8748 
8749   const VarDecl *Def;
8750   if ((Def = VDecl->getDefinition()) && Def != VDecl) {
8751     Diag(VDecl->getLocation(), diag::err_redefinition)
8752       << VDecl->getDeclName();
8753     Diag(Def->getLocation(), diag::note_previous_definition);
8754     VDecl->setInvalidDecl();
8755     return;
8756   }
8757 
8758   const VarDecl *PrevInit = nullptr;
8759   if (getLangOpts().CPlusPlus) {
8760     // C++ [class.static.data]p4
8761     //   If a static data member is of const integral or const
8762     //   enumeration type, its declaration in the class definition can
8763     //   specify a constant-initializer which shall be an integral
8764     //   constant expression (5.19). In that case, the member can appear
8765     //   in integral constant expressions. The member shall still be
8766     //   defined in a namespace scope if it is used in the program and the
8767     //   namespace scope definition shall not contain an initializer.
8768     //
8769     // We already performed a redefinition check above, but for static
8770     // data members we also need to check whether there was an in-class
8771     // declaration with an initializer.
8772     if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
8773       Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
8774           << VDecl->getDeclName();
8775       Diag(PrevInit->getInit()->getExprLoc(), diag::note_previous_initializer) << 0;
8776       return;
8777     }
8778 
8779     if (VDecl->hasLocalStorage())
8780       getCurFunction()->setHasBranchProtectedScope();
8781 
8782     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
8783       VDecl->setInvalidDecl();
8784       return;
8785     }
8786   }
8787 
8788   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
8789   // a kernel function cannot be initialized."
8790   if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
8791     Diag(VDecl->getLocation(), diag::err_local_cant_init);
8792     VDecl->setInvalidDecl();
8793     return;
8794   }
8795 
8796   // Get the decls type and save a reference for later, since
8797   // CheckInitializerTypes may change it.
8798   QualType DclT = VDecl->getType(), SavT = DclT;
8799 
8800   // Expressions default to 'id' when we're in a debugger
8801   // and we are assigning it to a variable of Objective-C pointer type.
8802   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
8803       Init->getType() == Context.UnknownAnyTy) {
8804     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
8805     if (Result.isInvalid()) {
8806       VDecl->setInvalidDecl();
8807       return;
8808     }
8809     Init = Result.get();
8810   }
8811 
8812   // Perform the initialization.
8813   if (!VDecl->isInvalidDecl()) {
8814     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
8815     InitializationKind Kind
8816       = DirectInit ?
8817           CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
8818                                                            Init->getLocStart(),
8819                                                            Init->getLocEnd())
8820                         : InitializationKind::CreateDirectList(
8821                                                           VDecl->getLocation())
8822                    : InitializationKind::CreateCopy(VDecl->getLocation(),
8823                                                     Init->getLocStart());
8824 
8825     MultiExprArg Args = Init;
8826     if (CXXDirectInit)
8827       Args = MultiExprArg(CXXDirectInit->getExprs(),
8828                           CXXDirectInit->getNumExprs());
8829 
8830     // Try to correct any TypoExprs in the initialization arguments.
8831     for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
8832       ExprResult Res =
8833           CorrectDelayedTyposInExpr(Args[Idx], [this, Entity, Kind](Expr *E) {
8834             InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
8835             return Init.Failed() ? ExprError() : E;
8836           });
8837       if (Res.isInvalid()) {
8838         VDecl->setInvalidDecl();
8839       } else if (Res.get() != Args[Idx]) {
8840         Args[Idx] = Res.get();
8841       }
8842     }
8843     if (VDecl->isInvalidDecl())
8844       return;
8845 
8846     InitializationSequence InitSeq(*this, Entity, Kind, Args);
8847     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
8848     if (Result.isInvalid()) {
8849       VDecl->setInvalidDecl();
8850       return;
8851     }
8852 
8853     Init = Result.getAs<Expr>();
8854   }
8855 
8856   // Check for self-references within variable initializers.
8857   // Variables declared within a function/method body (except for references)
8858   // are handled by a dataflow analysis.
8859   if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
8860       VDecl->getType()->isReferenceType()) {
8861     CheckSelfReference(*this, RealDecl, Init, DirectInit);
8862   }
8863 
8864   // If the type changed, it means we had an incomplete type that was
8865   // completed by the initializer. For example:
8866   //   int ary[] = { 1, 3, 5 };
8867   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
8868   if (!VDecl->isInvalidDecl() && (DclT != SavT))
8869     VDecl->setType(DclT);
8870 
8871   if (!VDecl->isInvalidDecl()) {
8872     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
8873 
8874     if (VDecl->hasAttr<BlocksAttr>())
8875       checkRetainCycles(VDecl, Init);
8876 
8877     // It is safe to assign a weak reference into a strong variable.
8878     // Although this code can still have problems:
8879     //   id x = self.weakProp;
8880     //   id y = self.weakProp;
8881     // we do not warn to warn spuriously when 'x' and 'y' are on separate
8882     // paths through the function. This should be revisited if
8883     // -Wrepeated-use-of-weak is made flow-sensitive.
8884     if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong &&
8885         !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
8886                          Init->getLocStart()))
8887         getCurFunction()->markSafeWeakUse(Init);
8888   }
8889 
8890   // The initialization is usually a full-expression.
8891   //
8892   // FIXME: If this is a braced initialization of an aggregate, it is not
8893   // an expression, and each individual field initializer is a separate
8894   // full-expression. For instance, in:
8895   //
8896   //   struct Temp { ~Temp(); };
8897   //   struct S { S(Temp); };
8898   //   struct T { S a, b; } t = { Temp(), Temp() }
8899   //
8900   // we should destroy the first Temp before constructing the second.
8901   ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
8902                                           false,
8903                                           VDecl->isConstexpr());
8904   if (Result.isInvalid()) {
8905     VDecl->setInvalidDecl();
8906     return;
8907   }
8908   Init = Result.get();
8909 
8910   // Attach the initializer to the decl.
8911   VDecl->setInit(Init);
8912 
8913   if (VDecl->isLocalVarDecl()) {
8914     // C99 6.7.8p4: All the expressions in an initializer for an object that has
8915     // static storage duration shall be constant expressions or string literals.
8916     // C++ does not have this restriction.
8917     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) {
8918       const Expr *Culprit;
8919       if (VDecl->getStorageClass() == SC_Static)
8920         CheckForConstantInitializer(Init, DclT);
8921       // C89 is stricter than C99 for non-static aggregate types.
8922       // C89 6.5.7p3: All the expressions [...] in an initializer list
8923       // for an object that has aggregate or union type shall be
8924       // constant expressions.
8925       else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
8926                isa<InitListExpr>(Init) &&
8927                !Init->isConstantInitializer(Context, false, &Culprit))
8928         Diag(Culprit->getExprLoc(),
8929              diag::ext_aggregate_init_not_constant)
8930           << Culprit->getSourceRange();
8931     }
8932   } else if (VDecl->isStaticDataMember() &&
8933              VDecl->getLexicalDeclContext()->isRecord()) {
8934     // This is an in-class initialization for a static data member, e.g.,
8935     //
8936     // struct S {
8937     //   static const int value = 17;
8938     // };
8939 
8940     // C++ [class.mem]p4:
8941     //   A member-declarator can contain a constant-initializer only
8942     //   if it declares a static member (9.4) of const integral or
8943     //   const enumeration type, see 9.4.2.
8944     //
8945     // C++11 [class.static.data]p3:
8946     //   If a non-volatile const static data member is of integral or
8947     //   enumeration type, its declaration in the class definition can
8948     //   specify a brace-or-equal-initializer in which every initalizer-clause
8949     //   that is an assignment-expression is a constant expression. A static
8950     //   data member of literal type can be declared in the class definition
8951     //   with the constexpr specifier; if so, its declaration shall specify a
8952     //   brace-or-equal-initializer in which every initializer-clause that is
8953     //   an assignment-expression is a constant expression.
8954 
8955     // Do nothing on dependent types.
8956     if (DclT->isDependentType()) {
8957 
8958     // Allow any 'static constexpr' members, whether or not they are of literal
8959     // type. We separately check that every constexpr variable is of literal
8960     // type.
8961     } else if (VDecl->isConstexpr()) {
8962 
8963     // Require constness.
8964     } else if (!DclT.isConstQualified()) {
8965       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
8966         << Init->getSourceRange();
8967       VDecl->setInvalidDecl();
8968 
8969     // We allow integer constant expressions in all cases.
8970     } else if (DclT->isIntegralOrEnumerationType()) {
8971       // Check whether the expression is a constant expression.
8972       SourceLocation Loc;
8973       if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
8974         // In C++11, a non-constexpr const static data member with an
8975         // in-class initializer cannot be volatile.
8976         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
8977       else if (Init->isValueDependent())
8978         ; // Nothing to check.
8979       else if (Init->isIntegerConstantExpr(Context, &Loc))
8980         ; // Ok, it's an ICE!
8981       else if (Init->isEvaluatable(Context)) {
8982         // If we can constant fold the initializer through heroics, accept it,
8983         // but report this as a use of an extension for -pedantic.
8984         Diag(Loc, diag::ext_in_class_initializer_non_constant)
8985           << Init->getSourceRange();
8986       } else {
8987         // Otherwise, this is some crazy unknown case.  Report the issue at the
8988         // location provided by the isIntegerConstantExpr failed check.
8989         Diag(Loc, diag::err_in_class_initializer_non_constant)
8990           << Init->getSourceRange();
8991         VDecl->setInvalidDecl();
8992       }
8993 
8994     // We allow foldable floating-point constants as an extension.
8995     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
8996       // In C++98, this is a GNU extension. In C++11, it is not, but we support
8997       // it anyway and provide a fixit to add the 'constexpr'.
8998       if (getLangOpts().CPlusPlus11) {
8999         Diag(VDecl->getLocation(),
9000              diag::ext_in_class_initializer_float_type_cxx11)
9001             << DclT << Init->getSourceRange();
9002         Diag(VDecl->getLocStart(),
9003              diag::note_in_class_initializer_float_type_cxx11)
9004             << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
9005       } else {
9006         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
9007           << DclT << Init->getSourceRange();
9008 
9009         if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
9010           Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
9011             << Init->getSourceRange();
9012           VDecl->setInvalidDecl();
9013         }
9014       }
9015 
9016     // Suggest adding 'constexpr' in C++11 for literal types.
9017     } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
9018       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
9019         << DclT << Init->getSourceRange()
9020         << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
9021       VDecl->setConstexpr(true);
9022 
9023     } else {
9024       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
9025         << DclT << Init->getSourceRange();
9026       VDecl->setInvalidDecl();
9027     }
9028   } else if (VDecl->isFileVarDecl()) {
9029     if (VDecl->getStorageClass() == SC_Extern &&
9030         (!getLangOpts().CPlusPlus ||
9031          !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
9032            VDecl->isExternC())) &&
9033         !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
9034       Diag(VDecl->getLocation(), diag::warn_extern_init);
9035 
9036     // C99 6.7.8p4. All file scoped initializers need to be constant.
9037     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
9038       CheckForConstantInitializer(Init, DclT);
9039   }
9040 
9041   // We will represent direct-initialization similarly to copy-initialization:
9042   //    int x(1);  -as-> int x = 1;
9043   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
9044   //
9045   // Clients that want to distinguish between the two forms, can check for
9046   // direct initializer using VarDecl::getInitStyle().
9047   // A major benefit is that clients that don't particularly care about which
9048   // exactly form was it (like the CodeGen) can handle both cases without
9049   // special case code.
9050 
9051   // C++ 8.5p11:
9052   // The form of initialization (using parentheses or '=') is generally
9053   // insignificant, but does matter when the entity being initialized has a
9054   // class type.
9055   if (CXXDirectInit) {
9056     assert(DirectInit && "Call-style initializer must be direct init.");
9057     VDecl->setInitStyle(VarDecl::CallInit);
9058   } else if (DirectInit) {
9059     // This must be list-initialization. No other way is direct-initialization.
9060     VDecl->setInitStyle(VarDecl::ListInit);
9061   }
9062 
9063   CheckCompleteVariableDeclaration(VDecl);
9064 }
9065 
9066 /// ActOnInitializerError - Given that there was an error parsing an
9067 /// initializer for the given declaration, try to return to some form
9068 /// of sanity.
ActOnInitializerError(Decl * D)9069 void Sema::ActOnInitializerError(Decl *D) {
9070   // Our main concern here is re-establishing invariants like "a
9071   // variable's type is either dependent or complete".
9072   if (!D || D->isInvalidDecl()) return;
9073 
9074   VarDecl *VD = dyn_cast<VarDecl>(D);
9075   if (!VD) return;
9076 
9077   // Auto types are meaningless if we can't make sense of the initializer.
9078   if (ParsingInitForAutoVars.count(D)) {
9079     D->setInvalidDecl();
9080     return;
9081   }
9082 
9083   QualType Ty = VD->getType();
9084   if (Ty->isDependentType()) return;
9085 
9086   // Require a complete type.
9087   if (RequireCompleteType(VD->getLocation(),
9088                           Context.getBaseElementType(Ty),
9089                           diag::err_typecheck_decl_incomplete_type)) {
9090     VD->setInvalidDecl();
9091     return;
9092   }
9093 
9094   // Require a non-abstract type.
9095   if (RequireNonAbstractType(VD->getLocation(), Ty,
9096                              diag::err_abstract_type_in_decl,
9097                              AbstractVariableType)) {
9098     VD->setInvalidDecl();
9099     return;
9100   }
9101 
9102   // Don't bother complaining about constructors or destructors,
9103   // though.
9104 }
9105 
ActOnUninitializedDecl(Decl * RealDecl,bool TypeMayContainAuto)9106 void Sema::ActOnUninitializedDecl(Decl *RealDecl,
9107                                   bool TypeMayContainAuto) {
9108   // If there is no declaration, there was an error parsing it. Just ignore it.
9109   if (!RealDecl)
9110     return;
9111 
9112   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
9113     QualType Type = Var->getType();
9114 
9115     // C++11 [dcl.spec.auto]p3
9116     if (TypeMayContainAuto && Type->getContainedAutoType()) {
9117       Diag(Var->getLocation(), diag::err_auto_var_requires_init)
9118         << Var->getDeclName() << Type;
9119       Var->setInvalidDecl();
9120       return;
9121     }
9122 
9123     // C++11 [class.static.data]p3: A static data member can be declared with
9124     // the constexpr specifier; if so, its declaration shall specify
9125     // a brace-or-equal-initializer.
9126     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
9127     // the definition of a variable [...] or the declaration of a static data
9128     // member.
9129     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
9130       if (Var->isStaticDataMember())
9131         Diag(Var->getLocation(),
9132              diag::err_constexpr_static_mem_var_requires_init)
9133           << Var->getDeclName();
9134       else
9135         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
9136       Var->setInvalidDecl();
9137       return;
9138     }
9139 
9140     // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
9141     // be initialized.
9142     if (!Var->isInvalidDecl() &&
9143         Var->getType().getAddressSpace() == LangAS::opencl_constant &&
9144         Var->getStorageClass() != SC_Extern && !Var->getInit()) {
9145       Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
9146       Var->setInvalidDecl();
9147       return;
9148     }
9149 
9150     switch (Var->isThisDeclarationADefinition()) {
9151     case VarDecl::Definition:
9152       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
9153         break;
9154 
9155       // We have an out-of-line definition of a static data member
9156       // that has an in-class initializer, so we type-check this like
9157       // a declaration.
9158       //
9159       // Fall through
9160 
9161     case VarDecl::DeclarationOnly:
9162       // It's only a declaration.
9163 
9164       // Block scope. C99 6.7p7: If an identifier for an object is
9165       // declared with no linkage (C99 6.2.2p6), the type for the
9166       // object shall be complete.
9167       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
9168           !Var->hasLinkage() && !Var->isInvalidDecl() &&
9169           RequireCompleteType(Var->getLocation(), Type,
9170                               diag::err_typecheck_decl_incomplete_type))
9171         Var->setInvalidDecl();
9172 
9173       // Make sure that the type is not abstract.
9174       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
9175           RequireNonAbstractType(Var->getLocation(), Type,
9176                                  diag::err_abstract_type_in_decl,
9177                                  AbstractVariableType))
9178         Var->setInvalidDecl();
9179       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
9180           Var->getStorageClass() == SC_PrivateExtern) {
9181         Diag(Var->getLocation(), diag::warn_private_extern);
9182         Diag(Var->getLocation(), diag::note_private_extern);
9183       }
9184 
9185       return;
9186 
9187     case VarDecl::TentativeDefinition:
9188       // File scope. C99 6.9.2p2: A declaration of an identifier for an
9189       // object that has file scope without an initializer, and without a
9190       // storage-class specifier or with the storage-class specifier "static",
9191       // constitutes a tentative definition. Note: A tentative definition with
9192       // external linkage is valid (C99 6.2.2p5).
9193       if (!Var->isInvalidDecl()) {
9194         if (const IncompleteArrayType *ArrayT
9195                                     = Context.getAsIncompleteArrayType(Type)) {
9196           if (RequireCompleteType(Var->getLocation(),
9197                                   ArrayT->getElementType(),
9198                                   diag::err_illegal_decl_array_incomplete_type))
9199             Var->setInvalidDecl();
9200         } else if (Var->getStorageClass() == SC_Static) {
9201           // C99 6.9.2p3: If the declaration of an identifier for an object is
9202           // a tentative definition and has internal linkage (C99 6.2.2p3), the
9203           // declared type shall not be an incomplete type.
9204           // NOTE: code such as the following
9205           //     static struct s;
9206           //     struct s { int a; };
9207           // is accepted by gcc. Hence here we issue a warning instead of
9208           // an error and we do not invalidate the static declaration.
9209           // NOTE: to avoid multiple warnings, only check the first declaration.
9210           if (Var->isFirstDecl())
9211             RequireCompleteType(Var->getLocation(), Type,
9212                                 diag::ext_typecheck_decl_incomplete_type);
9213         }
9214       }
9215 
9216       // Record the tentative definition; we're done.
9217       if (!Var->isInvalidDecl())
9218         TentativeDefinitions.push_back(Var);
9219       return;
9220     }
9221 
9222     // Provide a specific diagnostic for uninitialized variable
9223     // definitions with incomplete array type.
9224     if (Type->isIncompleteArrayType()) {
9225       Diag(Var->getLocation(),
9226            diag::err_typecheck_incomplete_array_needs_initializer);
9227       Var->setInvalidDecl();
9228       return;
9229     }
9230 
9231     // Provide a specific diagnostic for uninitialized variable
9232     // definitions with reference type.
9233     if (Type->isReferenceType()) {
9234       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
9235         << Var->getDeclName()
9236         << SourceRange(Var->getLocation(), Var->getLocation());
9237       Var->setInvalidDecl();
9238       return;
9239     }
9240 
9241     // Do not attempt to type-check the default initializer for a
9242     // variable with dependent type.
9243     if (Type->isDependentType())
9244       return;
9245 
9246     if (Var->isInvalidDecl())
9247       return;
9248 
9249     if (!Var->hasAttr<AliasAttr>()) {
9250       if (RequireCompleteType(Var->getLocation(),
9251                               Context.getBaseElementType(Type),
9252                               diag::err_typecheck_decl_incomplete_type)) {
9253         Var->setInvalidDecl();
9254         return;
9255       }
9256     }
9257 
9258     // The variable can not have an abstract class type.
9259     if (RequireNonAbstractType(Var->getLocation(), Type,
9260                                diag::err_abstract_type_in_decl,
9261                                AbstractVariableType)) {
9262       Var->setInvalidDecl();
9263       return;
9264     }
9265 
9266     // Check for jumps past the implicit initializer.  C++0x
9267     // clarifies that this applies to a "variable with automatic
9268     // storage duration", not a "local variable".
9269     // C++11 [stmt.dcl]p3
9270     //   A program that jumps from a point where a variable with automatic
9271     //   storage duration is not in scope to a point where it is in scope is
9272     //   ill-formed unless the variable has scalar type, class type with a
9273     //   trivial default constructor and a trivial destructor, a cv-qualified
9274     //   version of one of these types, or an array of one of the preceding
9275     //   types and is declared without an initializer.
9276     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
9277       if (const RecordType *Record
9278             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
9279         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
9280         // Mark the function for further checking even if the looser rules of
9281         // C++11 do not require such checks, so that we can diagnose
9282         // incompatibilities with C++98.
9283         if (!CXXRecord->isPOD())
9284           getCurFunction()->setHasBranchProtectedScope();
9285       }
9286     }
9287 
9288     // C++03 [dcl.init]p9:
9289     //   If no initializer is specified for an object, and the
9290     //   object is of (possibly cv-qualified) non-POD class type (or
9291     //   array thereof), the object shall be default-initialized; if
9292     //   the object is of const-qualified type, the underlying class
9293     //   type shall have a user-declared default
9294     //   constructor. Otherwise, if no initializer is specified for
9295     //   a non- static object, the object and its subobjects, if
9296     //   any, have an indeterminate initial value); if the object
9297     //   or any of its subobjects are of const-qualified type, the
9298     //   program is ill-formed.
9299     // C++0x [dcl.init]p11:
9300     //   If no initializer is specified for an object, the object is
9301     //   default-initialized; [...].
9302     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
9303     InitializationKind Kind
9304       = InitializationKind::CreateDefault(Var->getLocation());
9305 
9306     InitializationSequence InitSeq(*this, Entity, Kind, None);
9307     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
9308     if (Init.isInvalid())
9309       Var->setInvalidDecl();
9310     else if (Init.get()) {
9311       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
9312       // This is important for template substitution.
9313       Var->setInitStyle(VarDecl::CallInit);
9314     }
9315 
9316     CheckCompleteVariableDeclaration(Var);
9317   }
9318 }
9319 
ActOnCXXForRangeDecl(Decl * D)9320 void Sema::ActOnCXXForRangeDecl(Decl *D) {
9321   VarDecl *VD = dyn_cast<VarDecl>(D);
9322   if (!VD) {
9323     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
9324     D->setInvalidDecl();
9325     return;
9326   }
9327 
9328   VD->setCXXForRangeDecl(true);
9329 
9330   // for-range-declaration cannot be given a storage class specifier.
9331   int Error = -1;
9332   switch (VD->getStorageClass()) {
9333   case SC_None:
9334     break;
9335   case SC_Extern:
9336     Error = 0;
9337     break;
9338   case SC_Static:
9339     Error = 1;
9340     break;
9341   case SC_PrivateExtern:
9342     Error = 2;
9343     break;
9344   case SC_Auto:
9345     Error = 3;
9346     break;
9347   case SC_Register:
9348     Error = 4;
9349     break;
9350   case SC_OpenCLWorkGroupLocal:
9351     llvm_unreachable("Unexpected storage class");
9352   }
9353   if (VD->isConstexpr())
9354     Error = 5;
9355   if (Error != -1) {
9356     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
9357       << VD->getDeclName() << Error;
9358     D->setInvalidDecl();
9359   }
9360 }
9361 
9362 StmtResult
ActOnCXXForRangeIdentifier(Scope * S,SourceLocation IdentLoc,IdentifierInfo * Ident,ParsedAttributes & Attrs,SourceLocation AttrEnd)9363 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
9364                                  IdentifierInfo *Ident,
9365                                  ParsedAttributes &Attrs,
9366                                  SourceLocation AttrEnd) {
9367   // C++1y [stmt.iter]p1:
9368   //   A range-based for statement of the form
9369   //      for ( for-range-identifier : for-range-initializer ) statement
9370   //   is equivalent to
9371   //      for ( auto&& for-range-identifier : for-range-initializer ) statement
9372   DeclSpec DS(Attrs.getPool().getFactory());
9373 
9374   const char *PrevSpec;
9375   unsigned DiagID;
9376   DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
9377                      getPrintingPolicy());
9378 
9379   Declarator D(DS, Declarator::ForContext);
9380   D.SetIdentifier(Ident, IdentLoc);
9381   D.takeAttributes(Attrs, AttrEnd);
9382 
9383   ParsedAttributes EmptyAttrs(Attrs.getPool().getFactory());
9384   D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/false),
9385                 EmptyAttrs, IdentLoc);
9386   Decl *Var = ActOnDeclarator(S, D);
9387   cast<VarDecl>(Var)->setCXXForRangeDecl(true);
9388   FinalizeDeclaration(Var);
9389   return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
9390                        AttrEnd.isValid() ? AttrEnd : IdentLoc);
9391 }
9392 
CheckCompleteVariableDeclaration(VarDecl * var)9393 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
9394   if (var->isInvalidDecl()) return;
9395 
9396   // In ARC, don't allow jumps past the implicit initialization of a
9397   // local retaining variable.
9398   if (getLangOpts().ObjCAutoRefCount &&
9399       var->hasLocalStorage()) {
9400     switch (var->getType().getObjCLifetime()) {
9401     case Qualifiers::OCL_None:
9402     case Qualifiers::OCL_ExplicitNone:
9403     case Qualifiers::OCL_Autoreleasing:
9404       break;
9405 
9406     case Qualifiers::OCL_Weak:
9407     case Qualifiers::OCL_Strong:
9408       getCurFunction()->setHasBranchProtectedScope();
9409       break;
9410     }
9411   }
9412 
9413   // Warn about externally-visible variables being defined without a
9414   // prior declaration.  We only want to do this for global
9415   // declarations, but we also specifically need to avoid doing it for
9416   // class members because the linkage of an anonymous class can
9417   // change if it's later given a typedef name.
9418   if (var->isThisDeclarationADefinition() &&
9419       var->getDeclContext()->getRedeclContext()->isFileContext() &&
9420       var->isExternallyVisible() && var->hasLinkage() &&
9421       !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
9422                                   var->getLocation())) {
9423     // Find a previous declaration that's not a definition.
9424     VarDecl *prev = var->getPreviousDecl();
9425     while (prev && prev->isThisDeclarationADefinition())
9426       prev = prev->getPreviousDecl();
9427 
9428     if (!prev)
9429       Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
9430   }
9431 
9432   if (var->getTLSKind() == VarDecl::TLS_Static) {
9433     const Expr *Culprit;
9434     if (var->getType().isDestructedType()) {
9435       // GNU C++98 edits for __thread, [basic.start.term]p3:
9436       //   The type of an object with thread storage duration shall not
9437       //   have a non-trivial destructor.
9438       Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
9439       if (getLangOpts().CPlusPlus11)
9440         Diag(var->getLocation(), diag::note_use_thread_local);
9441     } else if (getLangOpts().CPlusPlus && var->hasInit() &&
9442                !var->getInit()->isConstantInitializer(
9443                    Context, var->getType()->isReferenceType(), &Culprit)) {
9444       // GNU C++98 edits for __thread, [basic.start.init]p4:
9445       //   An object of thread storage duration shall not require dynamic
9446       //   initialization.
9447       // FIXME: Need strict checking here.
9448       Diag(Culprit->getExprLoc(), diag::err_thread_dynamic_init)
9449         << Culprit->getSourceRange();
9450       if (getLangOpts().CPlusPlus11)
9451         Diag(var->getLocation(), diag::note_use_thread_local);
9452     }
9453 
9454   }
9455 
9456   if (var->isThisDeclarationADefinition() &&
9457       ActiveTemplateInstantiations.empty()) {
9458     PragmaStack<StringLiteral *> *Stack = nullptr;
9459     int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read;
9460     if (var->getType().isConstQualified())
9461       Stack = &ConstSegStack;
9462     else if (!var->getInit()) {
9463       Stack = &BSSSegStack;
9464       SectionFlags |= ASTContext::PSF_Write;
9465     } else {
9466       Stack = &DataSegStack;
9467       SectionFlags |= ASTContext::PSF_Write;
9468     }
9469     if (!var->hasAttr<SectionAttr>() && Stack->CurrentValue)
9470       var->addAttr(
9471           SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
9472                                       Stack->CurrentValue->getString(),
9473                                       Stack->CurrentPragmaLocation));
9474     if (const SectionAttr *SA = var->getAttr<SectionAttr>())
9475       if (UnifySection(SA->getName(), SectionFlags, var))
9476         var->dropAttr<SectionAttr>();
9477 
9478     // Apply the init_seg attribute if this has an initializer.  If the
9479     // initializer turns out to not be dynamic, we'll end up ignoring this
9480     // attribute.
9481     if (CurInitSeg && var->getInit())
9482       var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
9483                                                CurInitSegLoc));
9484   }
9485 
9486   // All the following checks are C++ only.
9487   if (!getLangOpts().CPlusPlus) return;
9488 
9489   QualType type = var->getType();
9490   if (type->isDependentType()) return;
9491 
9492   // __block variables might require us to capture a copy-initializer.
9493   if (var->hasAttr<BlocksAttr>()) {
9494     // It's currently invalid to ever have a __block variable with an
9495     // array type; should we diagnose that here?
9496 
9497     // Regardless, we don't want to ignore array nesting when
9498     // constructing this copy.
9499     if (type->isStructureOrClassType()) {
9500       EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
9501       SourceLocation poi = var->getLocation();
9502       Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
9503       ExprResult result
9504         = PerformMoveOrCopyInitialization(
9505             InitializedEntity::InitializeBlock(poi, type, false),
9506             var, var->getType(), varRef, /*AllowNRVO=*/true);
9507       if (!result.isInvalid()) {
9508         result = MaybeCreateExprWithCleanups(result);
9509         Expr *init = result.getAs<Expr>();
9510         Context.setBlockVarCopyInits(var, init);
9511       }
9512     }
9513   }
9514 
9515   Expr *Init = var->getInit();
9516   bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
9517   QualType baseType = Context.getBaseElementType(type);
9518 
9519   if (!var->getDeclContext()->isDependentContext() &&
9520       Init && !Init->isValueDependent()) {
9521     if (IsGlobal && !var->isConstexpr() &&
9522         !getDiagnostics().isIgnored(diag::warn_global_constructor,
9523                                     var->getLocation())) {
9524       // Warn about globals which don't have a constant initializer.  Don't
9525       // warn about globals with a non-trivial destructor because we already
9526       // warned about them.
9527       CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
9528       if (!(RD && !RD->hasTrivialDestructor()) &&
9529           !Init->isConstantInitializer(Context, baseType->isReferenceType()))
9530         Diag(var->getLocation(), diag::warn_global_constructor)
9531           << Init->getSourceRange();
9532     }
9533 
9534     if (var->isConstexpr()) {
9535       SmallVector<PartialDiagnosticAt, 8> Notes;
9536       if (!var->evaluateValue(Notes) || !var->isInitICE()) {
9537         SourceLocation DiagLoc = var->getLocation();
9538         // If the note doesn't add any useful information other than a source
9539         // location, fold it into the primary diagnostic.
9540         if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
9541               diag::note_invalid_subexpr_in_const_expr) {
9542           DiagLoc = Notes[0].first;
9543           Notes.clear();
9544         }
9545         Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
9546           << var << Init->getSourceRange();
9547         for (unsigned I = 0, N = Notes.size(); I != N; ++I)
9548           Diag(Notes[I].first, Notes[I].second);
9549       }
9550     } else if (var->isUsableInConstantExpressions(Context)) {
9551       // Check whether the initializer of a const variable of integral or
9552       // enumeration type is an ICE now, since we can't tell whether it was
9553       // initialized by a constant expression if we check later.
9554       var->checkInitIsICE();
9555     }
9556   }
9557 
9558   // Require the destructor.
9559   if (const RecordType *recordType = baseType->getAs<RecordType>())
9560     FinalizeVarWithDestructor(var, recordType);
9561 }
9562 
9563 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
9564 /// any semantic actions necessary after any initializer has been attached.
9565 void
FinalizeDeclaration(Decl * ThisDecl)9566 Sema::FinalizeDeclaration(Decl *ThisDecl) {
9567   // Note that we are no longer parsing the initializer for this declaration.
9568   ParsingInitForAutoVars.erase(ThisDecl);
9569 
9570   VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
9571   if (!VD)
9572     return;
9573 
9574   checkAttributesAfterMerging(*this, *VD);
9575 
9576   // Static locals inherit dll attributes from their function.
9577   if (VD->isStaticLocal()) {
9578     if (FunctionDecl *FD =
9579             dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) {
9580       if (Attr *A = getDLLAttr(FD)) {
9581         auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
9582         NewAttr->setInherited(true);
9583         VD->addAttr(NewAttr);
9584       }
9585     }
9586   }
9587 
9588   // Grab the dllimport or dllexport attribute off of the VarDecl.
9589   const InheritableAttr *DLLAttr = getDLLAttr(VD);
9590 
9591   // Imported static data members cannot be defined out-of-line.
9592   if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
9593     if (VD->isStaticDataMember() && VD->isOutOfLine() &&
9594         VD->isThisDeclarationADefinition()) {
9595       // We allow definitions of dllimport class template static data members
9596       // with a warning.
9597       CXXRecordDecl *Context =
9598         cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
9599       bool IsClassTemplateMember =
9600           isa<ClassTemplatePartialSpecializationDecl>(Context) ||
9601           Context->getDescribedClassTemplate();
9602 
9603       Diag(VD->getLocation(),
9604            IsClassTemplateMember
9605                ? diag::warn_attribute_dllimport_static_field_definition
9606                : diag::err_attribute_dllimport_static_field_definition);
9607       Diag(IA->getLocation(), diag::note_attribute);
9608       if (!IsClassTemplateMember)
9609         VD->setInvalidDecl();
9610     }
9611   }
9612 
9613   // dllimport/dllexport variables cannot be thread local, their TLS index
9614   // isn't exported with the variable.
9615   if (DLLAttr && VD->getTLSKind()) {
9616     Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
9617                                                                   << DLLAttr;
9618     VD->setInvalidDecl();
9619   }
9620 
9621   if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
9622     if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
9623       Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
9624       VD->dropAttr<UsedAttr>();
9625     }
9626   }
9627 
9628   if (!VD->isInvalidDecl() &&
9629       VD->isThisDeclarationADefinition() == VarDecl::TentativeDefinition) {
9630     if (const VarDecl *Def = VD->getDefinition()) {
9631       if (Def->hasAttr<AliasAttr>()) {
9632         Diag(VD->getLocation(), diag::err_tentative_after_alias)
9633             << VD->getDeclName();
9634         Diag(Def->getLocation(), diag::note_previous_definition);
9635         VD->setInvalidDecl();
9636       }
9637     }
9638   }
9639 
9640   const DeclContext *DC = VD->getDeclContext();
9641   // If there's a #pragma GCC visibility in scope, and this isn't a class
9642   // member, set the visibility of this variable.
9643   if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
9644     AddPushedVisibilityAttribute(VD);
9645 
9646   // FIXME: Warn on unused templates.
9647   if (VD->isFileVarDecl() && !VD->getDescribedVarTemplate() &&
9648       !isa<VarTemplatePartialSpecializationDecl>(VD))
9649     MarkUnusedFileScopedDecl(VD);
9650 
9651   // Now we have parsed the initializer and can update the table of magic
9652   // tag values.
9653   if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
9654       !VD->getType()->isIntegralOrEnumerationType())
9655     return;
9656 
9657   for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
9658     const Expr *MagicValueExpr = VD->getInit();
9659     if (!MagicValueExpr) {
9660       continue;
9661     }
9662     llvm::APSInt MagicValueInt;
9663     if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
9664       Diag(I->getRange().getBegin(),
9665            diag::err_type_tag_for_datatype_not_ice)
9666         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
9667       continue;
9668     }
9669     if (MagicValueInt.getActiveBits() > 64) {
9670       Diag(I->getRange().getBegin(),
9671            diag::err_type_tag_for_datatype_too_large)
9672         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
9673       continue;
9674     }
9675     uint64_t MagicValue = MagicValueInt.getZExtValue();
9676     RegisterTypeTagForDatatype(I->getArgumentKind(),
9677                                MagicValue,
9678                                I->getMatchingCType(),
9679                                I->getLayoutCompatible(),
9680                                I->getMustBeNull());
9681   }
9682 }
9683 
FinalizeDeclaratorGroup(Scope * S,const DeclSpec & DS,ArrayRef<Decl * > Group)9684 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
9685                                                    ArrayRef<Decl *> Group) {
9686   SmallVector<Decl*, 8> Decls;
9687 
9688   if (DS.isTypeSpecOwned())
9689     Decls.push_back(DS.getRepAsDecl());
9690 
9691   DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
9692   for (unsigned i = 0, e = Group.size(); i != e; ++i)
9693     if (Decl *D = Group[i]) {
9694       if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D))
9695         if (!FirstDeclaratorInGroup)
9696           FirstDeclaratorInGroup = DD;
9697       Decls.push_back(D);
9698     }
9699 
9700   if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
9701     if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
9702       HandleTagNumbering(*this, Tag, S);
9703       if (!Tag->hasNameForLinkage() && !Tag->hasDeclaratorForAnonDecl())
9704         Tag->setDeclaratorForAnonDecl(FirstDeclaratorInGroup);
9705     }
9706   }
9707 
9708   return BuildDeclaratorGroup(Decls, DS.containsPlaceholderType());
9709 }
9710 
9711 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
9712 /// group, performing any necessary semantic checking.
9713 Sema::DeclGroupPtrTy
BuildDeclaratorGroup(MutableArrayRef<Decl * > Group,bool TypeMayContainAuto)9714 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group,
9715                            bool TypeMayContainAuto) {
9716   // C++0x [dcl.spec.auto]p7:
9717   //   If the type deduced for the template parameter U is not the same in each
9718   //   deduction, the program is ill-formed.
9719   // FIXME: When initializer-list support is added, a distinction is needed
9720   // between the deduced type U and the deduced type which 'auto' stands for.
9721   //   auto a = 0, b = { 1, 2, 3 };
9722   // is legal because the deduced type U is 'int' in both cases.
9723   if (TypeMayContainAuto && Group.size() > 1) {
9724     QualType Deduced;
9725     CanQualType DeducedCanon;
9726     VarDecl *DeducedDecl = nullptr;
9727     for (unsigned i = 0, e = Group.size(); i != e; ++i) {
9728       if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
9729         AutoType *AT = D->getType()->getContainedAutoType();
9730         // Don't reissue diagnostics when instantiating a template.
9731         if (AT && D->isInvalidDecl())
9732           break;
9733         QualType U = AT ? AT->getDeducedType() : QualType();
9734         if (!U.isNull()) {
9735           CanQualType UCanon = Context.getCanonicalType(U);
9736           if (Deduced.isNull()) {
9737             Deduced = U;
9738             DeducedCanon = UCanon;
9739             DeducedDecl = D;
9740           } else if (DeducedCanon != UCanon) {
9741             Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
9742                  diag::err_auto_different_deductions)
9743               << (AT->isDecltypeAuto() ? 1 : 0)
9744               << Deduced << DeducedDecl->getDeclName()
9745               << U << D->getDeclName()
9746               << DeducedDecl->getInit()->getSourceRange()
9747               << D->getInit()->getSourceRange();
9748             D->setInvalidDecl();
9749             break;
9750           }
9751         }
9752       }
9753     }
9754   }
9755 
9756   ActOnDocumentableDecls(Group);
9757 
9758   return DeclGroupPtrTy::make(
9759       DeclGroupRef::Create(Context, Group.data(), Group.size()));
9760 }
9761 
ActOnDocumentableDecl(Decl * D)9762 void Sema::ActOnDocumentableDecl(Decl *D) {
9763   ActOnDocumentableDecls(D);
9764 }
9765 
ActOnDocumentableDecls(ArrayRef<Decl * > Group)9766 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
9767   // Don't parse the comment if Doxygen diagnostics are ignored.
9768   if (Group.empty() || !Group[0])
9769    return;
9770 
9771   if (Diags.isIgnored(diag::warn_doc_param_not_found, Group[0]->getLocation()))
9772     return;
9773 
9774   if (Group.size() >= 2) {
9775     // This is a decl group.  Normally it will contain only declarations
9776     // produced from declarator list.  But in case we have any definitions or
9777     // additional declaration references:
9778     //   'typedef struct S {} S;'
9779     //   'typedef struct S *S;'
9780     //   'struct S *pS;'
9781     // FinalizeDeclaratorGroup adds these as separate declarations.
9782     Decl *MaybeTagDecl = Group[0];
9783     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
9784       Group = Group.slice(1);
9785     }
9786   }
9787 
9788   // See if there are any new comments that are not attached to a decl.
9789   ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
9790   if (!Comments.empty() &&
9791       !Comments.back()->isAttached()) {
9792     // There is at least one comment that not attached to a decl.
9793     // Maybe it should be attached to one of these decls?
9794     //
9795     // Note that this way we pick up not only comments that precede the
9796     // declaration, but also comments that *follow* the declaration -- thanks to
9797     // the lookahead in the lexer: we've consumed the semicolon and looked
9798     // ahead through comments.
9799     for (unsigned i = 0, e = Group.size(); i != e; ++i)
9800       Context.getCommentForDecl(Group[i], &PP);
9801   }
9802 }
9803 
9804 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
9805 /// to introduce parameters into function prototype scope.
ActOnParamDeclarator(Scope * S,Declarator & D)9806 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
9807   const DeclSpec &DS = D.getDeclSpec();
9808 
9809   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
9810 
9811   // C++03 [dcl.stc]p2 also permits 'auto'.
9812   StorageClass SC = SC_None;
9813   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
9814     SC = SC_Register;
9815   } else if (getLangOpts().CPlusPlus &&
9816              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
9817     SC = SC_Auto;
9818   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
9819     Diag(DS.getStorageClassSpecLoc(),
9820          diag::err_invalid_storage_class_in_func_decl);
9821     D.getMutableDeclSpec().ClearStorageClassSpecs();
9822   }
9823 
9824   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
9825     Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
9826       << DeclSpec::getSpecifierName(TSCS);
9827   if (DS.isConstexprSpecified())
9828     Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
9829       << 0;
9830 
9831   DiagnoseFunctionSpecifiers(DS);
9832 
9833   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9834   QualType parmDeclType = TInfo->getType();
9835 
9836   if (getLangOpts().CPlusPlus) {
9837     // Check that there are no default arguments inside the type of this
9838     // parameter.
9839     CheckExtraCXXDefaultArguments(D);
9840 
9841     // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
9842     if (D.getCXXScopeSpec().isSet()) {
9843       Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
9844         << D.getCXXScopeSpec().getRange();
9845       D.getCXXScopeSpec().clear();
9846     }
9847   }
9848 
9849   // Ensure we have a valid name
9850   IdentifierInfo *II = nullptr;
9851   if (D.hasName()) {
9852     II = D.getIdentifier();
9853     if (!II) {
9854       Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
9855         << GetNameForDeclarator(D).getName();
9856       D.setInvalidType(true);
9857     }
9858   }
9859 
9860   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
9861   if (II) {
9862     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
9863                    ForRedeclaration);
9864     LookupName(R, S);
9865     if (R.isSingleResult()) {
9866       NamedDecl *PrevDecl = R.getFoundDecl();
9867       if (PrevDecl->isTemplateParameter()) {
9868         // Maybe we will complain about the shadowed template parameter.
9869         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9870         // Just pretend that we didn't see the previous declaration.
9871         PrevDecl = nullptr;
9872       } else if (S->isDeclScope(PrevDecl)) {
9873         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
9874         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9875 
9876         // Recover by removing the name
9877         II = nullptr;
9878         D.SetIdentifier(nullptr, D.getIdentifierLoc());
9879         D.setInvalidType(true);
9880       }
9881     }
9882   }
9883 
9884   // Temporarily put parameter variables in the translation unit, not
9885   // the enclosing context.  This prevents them from accidentally
9886   // looking like class members in C++.
9887   ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
9888                                     D.getLocStart(),
9889                                     D.getIdentifierLoc(), II,
9890                                     parmDeclType, TInfo,
9891                                     SC);
9892 
9893   if (D.isInvalidType())
9894     New->setInvalidDecl();
9895 
9896   assert(S->isFunctionPrototypeScope());
9897   assert(S->getFunctionPrototypeDepth() >= 1);
9898   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
9899                     S->getNextFunctionPrototypeIndex());
9900 
9901   // Add the parameter declaration into this scope.
9902   S->AddDecl(New);
9903   if (II)
9904     IdResolver.AddDecl(New);
9905 
9906   ProcessDeclAttributes(S, New, D);
9907 
9908   if (D.getDeclSpec().isModulePrivateSpecified())
9909     Diag(New->getLocation(), diag::err_module_private_local)
9910       << 1 << New->getDeclName()
9911       << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
9912       << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
9913 
9914   if (New->hasAttr<BlocksAttr>()) {
9915     Diag(New->getLocation(), diag::err_block_on_nonlocal);
9916   }
9917   return New;
9918 }
9919 
9920 /// \brief Synthesizes a variable for a parameter arising from a
9921 /// typedef.
BuildParmVarDeclForTypedef(DeclContext * DC,SourceLocation Loc,QualType T)9922 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
9923                                               SourceLocation Loc,
9924                                               QualType T) {
9925   /* FIXME: setting StartLoc == Loc.
9926      Would it be worth to modify callers so as to provide proper source
9927      location for the unnamed parameters, embedding the parameter's type? */
9928   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
9929                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
9930                                            SC_None, nullptr);
9931   Param->setImplicit();
9932   return Param;
9933 }
9934 
DiagnoseUnusedParameters(ParmVarDecl * const * Param,ParmVarDecl * const * ParamEnd)9935 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
9936                                     ParmVarDecl * const *ParamEnd) {
9937   // Don't diagnose unused-parameter errors in template instantiations; we
9938   // will already have done so in the template itself.
9939   if (!ActiveTemplateInstantiations.empty())
9940     return;
9941 
9942   for (; Param != ParamEnd; ++Param) {
9943     if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
9944         !(*Param)->hasAttr<UnusedAttr>()) {
9945       Diag((*Param)->getLocation(), diag::warn_unused_parameter)
9946         << (*Param)->getDeclName();
9947     }
9948   }
9949 }
9950 
DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const * Param,ParmVarDecl * const * ParamEnd,QualType ReturnTy,NamedDecl * D)9951 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
9952                                                   ParmVarDecl * const *ParamEnd,
9953                                                   QualType ReturnTy,
9954                                                   NamedDecl *D) {
9955   if (LangOpts.NumLargeByValueCopy == 0) // No check.
9956     return;
9957 
9958   // Warn if the return value is pass-by-value and larger than the specified
9959   // threshold.
9960   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
9961     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
9962     if (Size > LangOpts.NumLargeByValueCopy)
9963       Diag(D->getLocation(), diag::warn_return_value_size)
9964           << D->getDeclName() << Size;
9965   }
9966 
9967   // Warn if any parameter is pass-by-value and larger than the specified
9968   // threshold.
9969   for (; Param != ParamEnd; ++Param) {
9970     QualType T = (*Param)->getType();
9971     if (T->isDependentType() || !T.isPODType(Context))
9972       continue;
9973     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
9974     if (Size > LangOpts.NumLargeByValueCopy)
9975       Diag((*Param)->getLocation(), diag::warn_parameter_size)
9976           << (*Param)->getDeclName() << Size;
9977   }
9978 }
9979 
CheckParameter(DeclContext * DC,SourceLocation StartLoc,SourceLocation NameLoc,IdentifierInfo * Name,QualType T,TypeSourceInfo * TSInfo,StorageClass SC)9980 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
9981                                   SourceLocation NameLoc, IdentifierInfo *Name,
9982                                   QualType T, TypeSourceInfo *TSInfo,
9983                                   StorageClass SC) {
9984   // In ARC, infer a lifetime qualifier for appropriate parameter types.
9985   if (getLangOpts().ObjCAutoRefCount &&
9986       T.getObjCLifetime() == Qualifiers::OCL_None &&
9987       T->isObjCLifetimeType()) {
9988 
9989     Qualifiers::ObjCLifetime lifetime;
9990 
9991     // Special cases for arrays:
9992     //   - if it's const, use __unsafe_unretained
9993     //   - otherwise, it's an error
9994     if (T->isArrayType()) {
9995       if (!T.isConstQualified()) {
9996         DelayedDiagnostics.add(
9997             sema::DelayedDiagnostic::makeForbiddenType(
9998             NameLoc, diag::err_arc_array_param_no_ownership, T, false));
9999       }
10000       lifetime = Qualifiers::OCL_ExplicitNone;
10001     } else {
10002       lifetime = T->getObjCARCImplicitLifetime();
10003     }
10004     T = Context.getLifetimeQualifiedType(T, lifetime);
10005   }
10006 
10007   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
10008                                          Context.getAdjustedParameterType(T),
10009                                          TSInfo, SC, nullptr);
10010 
10011   // Parameters can not be abstract class types.
10012   // For record types, this is done by the AbstractClassUsageDiagnoser once
10013   // the class has been completely parsed.
10014   if (!CurContext->isRecord() &&
10015       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
10016                              AbstractParamType))
10017     New->setInvalidDecl();
10018 
10019   // Parameter declarators cannot be interface types. All ObjC objects are
10020   // passed by reference.
10021   if (T->isObjCObjectType()) {
10022     SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
10023     Diag(NameLoc,
10024          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
10025       << FixItHint::CreateInsertion(TypeEndLoc, "*");
10026     T = Context.getObjCObjectPointerType(T);
10027     New->setType(T);
10028   }
10029 
10030   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
10031   // duration shall not be qualified by an address-space qualifier."
10032   // Since all parameters have automatic store duration, they can not have
10033   // an address space.
10034   if (T.getAddressSpace() != 0) {
10035     // OpenCL allows function arguments declared to be an array of a type
10036     // to be qualified with an address space.
10037     if (!(getLangOpts().OpenCL && T->isArrayType())) {
10038       Diag(NameLoc, diag::err_arg_with_address_space);
10039       New->setInvalidDecl();
10040     }
10041   }
10042 
10043   return New;
10044 }
10045 
ActOnFinishKNRParamDeclarations(Scope * S,Declarator & D,SourceLocation LocAfterDecls)10046 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
10047                                            SourceLocation LocAfterDecls) {
10048   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10049 
10050   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
10051   // for a K&R function.
10052   if (!FTI.hasPrototype) {
10053     for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
10054       --i;
10055       if (FTI.Params[i].Param == nullptr) {
10056         SmallString<256> Code;
10057         llvm::raw_svector_ostream(Code)
10058             << "  int " << FTI.Params[i].Ident->getName() << ";\n";
10059         Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
10060             << FTI.Params[i].Ident
10061             << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
10062 
10063         // Implicitly declare the argument as type 'int' for lack of a better
10064         // type.
10065         AttributeFactory attrs;
10066         DeclSpec DS(attrs);
10067         const char* PrevSpec; // unused
10068         unsigned DiagID; // unused
10069         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
10070                            DiagID, Context.getPrintingPolicy());
10071         // Use the identifier location for the type source range.
10072         DS.SetRangeStart(FTI.Params[i].IdentLoc);
10073         DS.SetRangeEnd(FTI.Params[i].IdentLoc);
10074         Declarator ParamD(DS, Declarator::KNRTypeListContext);
10075         ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
10076         FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
10077       }
10078     }
10079   }
10080 }
10081 
ActOnStartOfFunctionDef(Scope * FnBodyScope,Declarator & D)10082 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
10083   assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
10084   assert(D.isFunctionDeclarator() && "Not a function declarator!");
10085   Scope *ParentScope = FnBodyScope->getParent();
10086 
10087   D.setFunctionDefinitionKind(FDK_Definition);
10088   Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
10089   return ActOnStartOfFunctionDef(FnBodyScope, DP);
10090 }
10091 
ActOnFinishInlineMethodDef(CXXMethodDecl * D)10092 void Sema::ActOnFinishInlineMethodDef(CXXMethodDecl *D) {
10093   Consumer.HandleInlineMethodDefinition(D);
10094 }
10095 
ShouldWarnAboutMissingPrototype(const FunctionDecl * FD,const FunctionDecl * & PossibleZeroParamPrototype)10096 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
10097                              const FunctionDecl*& PossibleZeroParamPrototype) {
10098   // Don't warn about invalid declarations.
10099   if (FD->isInvalidDecl())
10100     return false;
10101 
10102   // Or declarations that aren't global.
10103   if (!FD->isGlobal())
10104     return false;
10105 
10106   // Don't warn about C++ member functions.
10107   if (isa<CXXMethodDecl>(FD))
10108     return false;
10109 
10110   // Don't warn about 'main'.
10111   if (FD->isMain())
10112     return false;
10113 
10114   // Don't warn about inline functions.
10115   if (FD->isInlined())
10116     return false;
10117 
10118   // Don't warn about function templates.
10119   if (FD->getDescribedFunctionTemplate())
10120     return false;
10121 
10122   // Don't warn about function template specializations.
10123   if (FD->isFunctionTemplateSpecialization())
10124     return false;
10125 
10126   // Don't warn for OpenCL kernels.
10127   if (FD->hasAttr<OpenCLKernelAttr>())
10128     return false;
10129 
10130   bool MissingPrototype = true;
10131   for (const FunctionDecl *Prev = FD->getPreviousDecl();
10132        Prev; Prev = Prev->getPreviousDecl()) {
10133     // Ignore any declarations that occur in function or method
10134     // scope, because they aren't visible from the header.
10135     if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
10136       continue;
10137 
10138     MissingPrototype = !Prev->getType()->isFunctionProtoType();
10139     if (FD->getNumParams() == 0)
10140       PossibleZeroParamPrototype = Prev;
10141     break;
10142   }
10143 
10144   return MissingPrototype;
10145 }
10146 
10147 void
CheckForFunctionRedefinition(FunctionDecl * FD,const FunctionDecl * EffectiveDefinition)10148 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
10149                                    const FunctionDecl *EffectiveDefinition) {
10150   // Don't complain if we're in GNU89 mode and the previous definition
10151   // was an extern inline function.
10152   const FunctionDecl *Definition = EffectiveDefinition;
10153   if (!Definition)
10154     if (!FD->isDefined(Definition))
10155       return;
10156 
10157   if (canRedefineFunction(Definition, getLangOpts()))
10158     return;
10159 
10160   if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
10161       Definition->getStorageClass() == SC_Extern)
10162     Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
10163         << FD->getDeclName() << getLangOpts().CPlusPlus;
10164   else
10165     Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
10166 
10167   Diag(Definition->getLocation(), diag::note_previous_definition);
10168   FD->setInvalidDecl();
10169 }
10170 
10171 
RebuildLambdaScopeInfo(CXXMethodDecl * CallOperator,Sema & S)10172 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
10173                                    Sema &S) {
10174   CXXRecordDecl *const LambdaClass = CallOperator->getParent();
10175 
10176   LambdaScopeInfo *LSI = S.PushLambdaScope();
10177   LSI->CallOperator = CallOperator;
10178   LSI->Lambda = LambdaClass;
10179   LSI->ReturnType = CallOperator->getReturnType();
10180   const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
10181 
10182   if (LCD == LCD_None)
10183     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
10184   else if (LCD == LCD_ByCopy)
10185     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
10186   else if (LCD == LCD_ByRef)
10187     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
10188   DeclarationNameInfo DNI = CallOperator->getNameInfo();
10189 
10190   LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
10191   LSI->Mutable = !CallOperator->isConst();
10192 
10193   // Add the captures to the LSI so they can be noted as already
10194   // captured within tryCaptureVar.
10195   auto I = LambdaClass->field_begin();
10196   for (const auto &C : LambdaClass->captures()) {
10197     if (C.capturesVariable()) {
10198       VarDecl *VD = C.getCapturedVar();
10199       if (VD->isInitCapture())
10200         S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
10201       QualType CaptureType = VD->getType();
10202       const bool ByRef = C.getCaptureKind() == LCK_ByRef;
10203       LSI->addCapture(VD, /*IsBlock*/false, ByRef,
10204           /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
10205           /*EllipsisLoc*/C.isPackExpansion()
10206                          ? C.getEllipsisLoc() : SourceLocation(),
10207           CaptureType, /*Expr*/ nullptr);
10208 
10209     } else if (C.capturesThis()) {
10210       LSI->addThisCapture(/*Nested*/ false, C.getLocation(),
10211                               S.getCurrentThisType(), /*Expr*/ nullptr);
10212     } else {
10213       LSI->addVLATypeCapture(C.getLocation(), I->getType());
10214     }
10215     ++I;
10216   }
10217 }
10218 
ActOnStartOfFunctionDef(Scope * FnBodyScope,Decl * D)10219 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
10220   // Clear the last template instantiation error context.
10221   LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
10222 
10223   if (!D)
10224     return D;
10225   FunctionDecl *FD = nullptr;
10226 
10227   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
10228     FD = FunTmpl->getTemplatedDecl();
10229   else
10230     FD = cast<FunctionDecl>(D);
10231   // If we are instantiating a generic lambda call operator, push
10232   // a LambdaScopeInfo onto the function stack.  But use the information
10233   // that's already been calculated (ActOnLambdaExpr) to prime the current
10234   // LambdaScopeInfo.
10235   // When the template operator is being specialized, the LambdaScopeInfo,
10236   // has to be properly restored so that tryCaptureVariable doesn't try
10237   // and capture any new variables. In addition when calculating potential
10238   // captures during transformation of nested lambdas, it is necessary to
10239   // have the LSI properly restored.
10240   if (isGenericLambdaCallOperatorSpecialization(FD)) {
10241     assert(ActiveTemplateInstantiations.size() &&
10242       "There should be an active template instantiation on the stack "
10243       "when instantiating a generic lambda!");
10244     RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
10245   }
10246   else
10247     // Enter a new function scope
10248     PushFunctionScope();
10249 
10250   // See if this is a redefinition.
10251   if (!FD->isLateTemplateParsed())
10252     CheckForFunctionRedefinition(FD);
10253 
10254   // Builtin functions cannot be defined.
10255   if (unsigned BuiltinID = FD->getBuiltinID()) {
10256     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
10257         !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
10258       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
10259       FD->setInvalidDecl();
10260     }
10261   }
10262 
10263   // The return type of a function definition must be complete
10264   // (C99 6.9.1p3, C++ [dcl.fct]p6).
10265   QualType ResultType = FD->getReturnType();
10266   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
10267       !FD->isInvalidDecl() &&
10268       RequireCompleteType(FD->getLocation(), ResultType,
10269                           diag::err_func_def_incomplete_result))
10270     FD->setInvalidDecl();
10271 
10272   // GNU warning -Wmissing-prototypes:
10273   //   Warn if a global function is defined without a previous
10274   //   prototype declaration. This warning is issued even if the
10275   //   definition itself provides a prototype. The aim is to detect
10276   //   global functions that fail to be declared in header files.
10277   const FunctionDecl *PossibleZeroParamPrototype = nullptr;
10278   if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
10279     Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
10280 
10281     if (PossibleZeroParamPrototype) {
10282       // We found a declaration that is not a prototype,
10283       // but that could be a zero-parameter prototype
10284       if (TypeSourceInfo *TI =
10285               PossibleZeroParamPrototype->getTypeSourceInfo()) {
10286         TypeLoc TL = TI->getTypeLoc();
10287         if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
10288           Diag(PossibleZeroParamPrototype->getLocation(),
10289                diag::note_declaration_not_a_prototype)
10290             << PossibleZeroParamPrototype
10291             << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
10292       }
10293     }
10294   }
10295 
10296   if (FnBodyScope)
10297     PushDeclContext(FnBodyScope, FD);
10298 
10299   // Check the validity of our function parameters
10300   CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
10301                            /*CheckParameterNames=*/true);
10302 
10303   // Introduce our parameters into the function scope
10304   for (auto Param : FD->params()) {
10305     Param->setOwningFunction(FD);
10306 
10307     // If this has an identifier, add it to the scope stack.
10308     if (Param->getIdentifier() && FnBodyScope) {
10309       CheckShadow(FnBodyScope, Param);
10310 
10311       PushOnScopeChains(Param, FnBodyScope);
10312     }
10313   }
10314 
10315   // If we had any tags defined in the function prototype,
10316   // introduce them into the function scope.
10317   if (FnBodyScope) {
10318     for (ArrayRef<NamedDecl *>::iterator
10319              I = FD->getDeclsInPrototypeScope().begin(),
10320              E = FD->getDeclsInPrototypeScope().end();
10321          I != E; ++I) {
10322       NamedDecl *D = *I;
10323 
10324       // Some of these decls (like enums) may have been pinned to the translation unit
10325       // for lack of a real context earlier. If so, remove from the translation unit
10326       // and reattach to the current context.
10327       if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
10328         // Is the decl actually in the context?
10329         for (const auto *DI : Context.getTranslationUnitDecl()->decls()) {
10330           if (DI == D) {
10331             Context.getTranslationUnitDecl()->removeDecl(D);
10332             break;
10333           }
10334         }
10335         // Either way, reassign the lexical decl context to our FunctionDecl.
10336         D->setLexicalDeclContext(CurContext);
10337       }
10338 
10339       // If the decl has a non-null name, make accessible in the current scope.
10340       if (!D->getName().empty())
10341         PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
10342 
10343       // Similarly, dive into enums and fish their constants out, making them
10344       // accessible in this scope.
10345       if (auto *ED = dyn_cast<EnumDecl>(D)) {
10346         for (auto *EI : ED->enumerators())
10347           PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
10348       }
10349     }
10350   }
10351 
10352   // Ensure that the function's exception specification is instantiated.
10353   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
10354     ResolveExceptionSpec(D->getLocation(), FPT);
10355 
10356   // dllimport cannot be applied to non-inline function definitions.
10357   if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
10358       !FD->isTemplateInstantiation()) {
10359     assert(!FD->hasAttr<DLLExportAttr>());
10360     Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
10361     FD->setInvalidDecl();
10362     return D;
10363   }
10364   // We want to attach documentation to original Decl (which might be
10365   // a function template).
10366   ActOnDocumentableDecl(D);
10367   if (getCurLexicalContext()->isObjCContainer() &&
10368       getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
10369       getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
10370     Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
10371 
10372   return D;
10373 }
10374 
10375 /// \brief Given the set of return statements within a function body,
10376 /// compute the variables that are subject to the named return value
10377 /// optimization.
10378 ///
10379 /// Each of the variables that is subject to the named return value
10380 /// optimization will be marked as NRVO variables in the AST, and any
10381 /// return statement that has a marked NRVO variable as its NRVO candidate can
10382 /// use the named return value optimization.
10383 ///
10384 /// This function applies a very simplistic algorithm for NRVO: if every return
10385 /// statement in the scope of a variable has the same NRVO candidate, that
10386 /// candidate is an NRVO variable.
computeNRVO(Stmt * Body,FunctionScopeInfo * Scope)10387 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
10388   ReturnStmt **Returns = Scope->Returns.data();
10389 
10390   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
10391     if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
10392       if (!NRVOCandidate->isNRVOVariable())
10393         Returns[I]->setNRVOCandidate(nullptr);
10394     }
10395   }
10396 }
10397 
canDelayFunctionBody(const Declarator & D)10398 bool Sema::canDelayFunctionBody(const Declarator &D) {
10399   // We can't delay parsing the body of a constexpr function template (yet).
10400   if (D.getDeclSpec().isConstexprSpecified())
10401     return false;
10402 
10403   // We can't delay parsing the body of a function template with a deduced
10404   // return type (yet).
10405   if (D.getDeclSpec().containsPlaceholderType()) {
10406     // If the placeholder introduces a non-deduced trailing return type,
10407     // we can still delay parsing it.
10408     if (D.getNumTypeObjects()) {
10409       const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
10410       if (Outer.Kind == DeclaratorChunk::Function &&
10411           Outer.Fun.hasTrailingReturnType()) {
10412         QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
10413         return Ty.isNull() || !Ty->isUndeducedType();
10414       }
10415     }
10416     return false;
10417   }
10418 
10419   return true;
10420 }
10421 
canSkipFunctionBody(Decl * D)10422 bool Sema::canSkipFunctionBody(Decl *D) {
10423   // We cannot skip the body of a function (or function template) which is
10424   // constexpr, since we may need to evaluate its body in order to parse the
10425   // rest of the file.
10426   // We cannot skip the body of a function with an undeduced return type,
10427   // because any callers of that function need to know the type.
10428   if (const FunctionDecl *FD = D->getAsFunction())
10429     if (FD->isConstexpr() || FD->getReturnType()->isUndeducedType())
10430       return false;
10431   return Consumer.shouldSkipFunctionBody(D);
10432 }
10433 
ActOnSkippedFunctionBody(Decl * Decl)10434 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
10435   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
10436     FD->setHasSkippedBody();
10437   else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
10438     MD->setHasSkippedBody();
10439   return ActOnFinishFunctionBody(Decl, nullptr);
10440 }
10441 
ActOnFinishFunctionBody(Decl * D,Stmt * BodyArg)10442 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
10443   return ActOnFinishFunctionBody(D, BodyArg, false);
10444 }
10445 
ActOnFinishFunctionBody(Decl * dcl,Stmt * Body,bool IsInstantiation)10446 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
10447                                     bool IsInstantiation) {
10448   FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
10449 
10450   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
10451   sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
10452 
10453   if (FD) {
10454     FD->setBody(Body);
10455 
10456     if (getLangOpts().CPlusPlus14 && !FD->isInvalidDecl() && Body &&
10457         !FD->isDependentContext() && FD->getReturnType()->isUndeducedType()) {
10458       // If the function has a deduced result type but contains no 'return'
10459       // statements, the result type as written must be exactly 'auto', and
10460       // the deduced result type is 'void'.
10461       if (!FD->getReturnType()->getAs<AutoType>()) {
10462         Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
10463             << FD->getReturnType();
10464         FD->setInvalidDecl();
10465       } else {
10466         // Substitute 'void' for the 'auto' in the type.
10467         TypeLoc ResultType = getReturnTypeLoc(FD);
10468         Context.adjustDeducedFunctionResultType(
10469             FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
10470       }
10471     }
10472 
10473     // The only way to be included in UndefinedButUsed is if there is an
10474     // ODR use before the definition. Avoid the expensive map lookup if this
10475     // is the first declaration.
10476     if (!FD->isFirstDecl() && FD->getPreviousDecl()->isUsed()) {
10477       if (!FD->isExternallyVisible())
10478         UndefinedButUsed.erase(FD);
10479       else if (FD->isInlined() &&
10480                (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
10481                (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
10482         UndefinedButUsed.erase(FD);
10483     }
10484 
10485     // If the function implicitly returns zero (like 'main') or is naked,
10486     // don't complain about missing return statements.
10487     if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
10488       WP.disableCheckFallThrough();
10489 
10490     // MSVC permits the use of pure specifier (=0) on function definition,
10491     // defined at class scope, warn about this non-standard construct.
10492     if (getLangOpts().MicrosoftExt && FD->isPure() && FD->isCanonicalDecl())
10493       Diag(FD->getLocation(), diag::ext_pure_function_definition);
10494 
10495     if (!FD->isInvalidDecl()) {
10496       // Don't diagnose unused parameters of defaulted or deleted functions.
10497       if (Body)
10498         DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
10499       DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
10500                                              FD->getReturnType(), FD);
10501 
10502       // If this is a structor, we need a vtable.
10503       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
10504         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
10505       else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
10506         MarkVTableUsed(FD->getLocation(), Destructor->getParent());
10507 
10508       // Try to apply the named return value optimization. We have to check
10509       // if we can do this here because lambdas keep return statements around
10510       // to deduce an implicit return type.
10511       if (getLangOpts().CPlusPlus && FD->getReturnType()->isRecordType() &&
10512           !FD->isDependentContext())
10513         computeNRVO(Body, getCurFunction());
10514     }
10515 
10516     assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
10517            "Function parsing confused");
10518   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
10519     assert(MD == getCurMethodDecl() && "Method parsing confused");
10520     MD->setBody(Body);
10521     if (!MD->isInvalidDecl()) {
10522       DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
10523       DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
10524                                              MD->getReturnType(), MD);
10525 
10526       if (Body)
10527         computeNRVO(Body, getCurFunction());
10528     }
10529     if (getCurFunction()->ObjCShouldCallSuper) {
10530       Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
10531         << MD->getSelector().getAsString();
10532       getCurFunction()->ObjCShouldCallSuper = false;
10533     }
10534     if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
10535       const ObjCMethodDecl *InitMethod = nullptr;
10536       bool isDesignated =
10537           MD->isDesignatedInitializerForTheInterface(&InitMethod);
10538       assert(isDesignated && InitMethod);
10539       (void)isDesignated;
10540 
10541       auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
10542         auto IFace = MD->getClassInterface();
10543         if (!IFace)
10544           return false;
10545         auto SuperD = IFace->getSuperClass();
10546         if (!SuperD)
10547           return false;
10548         return SuperD->getIdentifier() ==
10549             NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
10550       };
10551       // Don't issue this warning for unavailable inits or direct subclasses
10552       // of NSObject.
10553       if (!MD->isUnavailable() && !superIsNSObject(MD)) {
10554         Diag(MD->getLocation(),
10555              diag::warn_objc_designated_init_missing_super_call);
10556         Diag(InitMethod->getLocation(),
10557              diag::note_objc_designated_init_marked_here);
10558       }
10559       getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
10560     }
10561     if (getCurFunction()->ObjCWarnForNoInitDelegation) {
10562       // Don't issue this warning for unavaialable inits.
10563       if (!MD->isUnavailable())
10564         Diag(MD->getLocation(), diag::warn_objc_secondary_init_missing_init_call);
10565       getCurFunction()->ObjCWarnForNoInitDelegation = false;
10566     }
10567   } else {
10568     return nullptr;
10569   }
10570 
10571   assert(!getCurFunction()->ObjCShouldCallSuper &&
10572          "This should only be set for ObjC methods, which should have been "
10573          "handled in the block above.");
10574 
10575   // Verify and clean out per-function state.
10576   if (Body) {
10577     // C++ constructors that have function-try-blocks can't have return
10578     // statements in the handlers of that block. (C++ [except.handle]p14)
10579     // Verify this.
10580     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
10581       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
10582 
10583     // Verify that gotos and switch cases don't jump into scopes illegally.
10584     if (getCurFunction()->NeedsScopeChecking() &&
10585         !PP.isCodeCompletionEnabled())
10586       DiagnoseInvalidJumps(Body);
10587 
10588     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
10589       if (!Destructor->getParent()->isDependentType())
10590         CheckDestructor(Destructor);
10591 
10592       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
10593                                              Destructor->getParent());
10594     }
10595 
10596     // If any errors have occurred, clear out any temporaries that may have
10597     // been leftover. This ensures that these temporaries won't be picked up for
10598     // deletion in some later function.
10599     if (getDiagnostics().hasErrorOccurred() ||
10600         getDiagnostics().getSuppressAllDiagnostics()) {
10601       DiscardCleanupsInEvaluationContext();
10602     }
10603     if (!getDiagnostics().hasUncompilableErrorOccurred() &&
10604         !isa<FunctionTemplateDecl>(dcl)) {
10605       // Since the body is valid, issue any analysis-based warnings that are
10606       // enabled.
10607       ActivePolicy = &WP;
10608     }
10609 
10610     if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
10611         (!CheckConstexprFunctionDecl(FD) ||
10612          !CheckConstexprFunctionBody(FD, Body)))
10613       FD->setInvalidDecl();
10614 
10615     if (FD && FD->hasAttr<NakedAttr>()) {
10616       for (const Stmt *S : Body->children()) {
10617         if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
10618           Diag(S->getLocStart(), diag::err_non_asm_stmt_in_naked_function);
10619           Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
10620           FD->setInvalidDecl();
10621           break;
10622         }
10623       }
10624     }
10625 
10626     assert(ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects
10627            && "Leftover temporaries in function");
10628     assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
10629     assert(MaybeODRUseExprs.empty() &&
10630            "Leftover expressions for odr-use checking");
10631   }
10632 
10633   if (!IsInstantiation)
10634     PopDeclContext();
10635 
10636   PopFunctionScopeInfo(ActivePolicy, dcl);
10637   // If any errors have occurred, clear out any temporaries that may have
10638   // been leftover. This ensures that these temporaries won't be picked up for
10639   // deletion in some later function.
10640   if (getDiagnostics().hasErrorOccurred()) {
10641     DiscardCleanupsInEvaluationContext();
10642   }
10643 
10644   return dcl;
10645 }
10646 
10647 
10648 /// When we finish delayed parsing of an attribute, we must attach it to the
10649 /// relevant Decl.
ActOnFinishDelayedAttribute(Scope * S,Decl * D,ParsedAttributes & Attrs)10650 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
10651                                        ParsedAttributes &Attrs) {
10652   // Always attach attributes to the underlying decl.
10653   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
10654     D = TD->getTemplatedDecl();
10655   ProcessDeclAttributeList(S, D, Attrs.getList());
10656 
10657   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
10658     if (Method->isStatic())
10659       checkThisInStaticMemberFunctionAttributes(Method);
10660 }
10661 
10662 
10663 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
10664 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
ImplicitlyDefineFunction(SourceLocation Loc,IdentifierInfo & II,Scope * S)10665 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
10666                                           IdentifierInfo &II, Scope *S) {
10667   // Before we produce a declaration for an implicitly defined
10668   // function, see whether there was a locally-scoped declaration of
10669   // this name as a function or variable. If so, use that
10670   // (non-visible) declaration, and complain about it.
10671   if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) {
10672     Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev;
10673     Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
10674     return ExternCPrev;
10675   }
10676 
10677   // Extension in C99.  Legal in C90, but warn about it.
10678   unsigned diag_id;
10679   if (II.getName().startswith("__builtin_"))
10680     diag_id = diag::warn_builtin_unknown;
10681   else if (getLangOpts().C99)
10682     diag_id = diag::ext_implicit_function_decl;
10683   else
10684     diag_id = diag::warn_implicit_function_decl;
10685   Diag(Loc, diag_id) << &II;
10686 
10687   // Because typo correction is expensive, only do it if the implicit
10688   // function declaration is going to be treated as an error.
10689   if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
10690     TypoCorrection Corrected;
10691     if (S &&
10692         (Corrected = CorrectTypo(
10693              DeclarationNameInfo(&II, Loc), LookupOrdinaryName, S, nullptr,
10694              llvm::make_unique<DeclFilterCCC<FunctionDecl>>(), CTK_NonError)))
10695       diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
10696                    /*ErrorRecovery*/false);
10697   }
10698 
10699   // Set a Declarator for the implicit definition: int foo();
10700   const char *Dummy;
10701   AttributeFactory attrFactory;
10702   DeclSpec DS(attrFactory);
10703   unsigned DiagID;
10704   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
10705                                   Context.getPrintingPolicy());
10706   (void)Error; // Silence warning.
10707   assert(!Error && "Error setting up implicit decl!");
10708   SourceLocation NoLoc;
10709   Declarator D(DS, Declarator::BlockContext);
10710   D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
10711                                              /*IsAmbiguous=*/false,
10712                                              /*LParenLoc=*/NoLoc,
10713                                              /*Params=*/nullptr,
10714                                              /*NumParams=*/0,
10715                                              /*EllipsisLoc=*/NoLoc,
10716                                              /*RParenLoc=*/NoLoc,
10717                                              /*TypeQuals=*/0,
10718                                              /*RefQualifierIsLvalueRef=*/true,
10719                                              /*RefQualifierLoc=*/NoLoc,
10720                                              /*ConstQualifierLoc=*/NoLoc,
10721                                              /*VolatileQualifierLoc=*/NoLoc,
10722                                              /*RestrictQualifierLoc=*/NoLoc,
10723                                              /*MutableLoc=*/NoLoc,
10724                                              EST_None,
10725                                              /*ESpecLoc=*/NoLoc,
10726                                              /*Exceptions=*/nullptr,
10727                                              /*ExceptionRanges=*/nullptr,
10728                                              /*NumExceptions=*/0,
10729                                              /*NoexceptExpr=*/nullptr,
10730                                              /*ExceptionSpecTokens=*/nullptr,
10731                                              Loc, Loc, D),
10732                 DS.getAttributes(),
10733                 SourceLocation());
10734   D.SetIdentifier(&II, Loc);
10735 
10736   // Insert this function into translation-unit scope.
10737 
10738   DeclContext *PrevDC = CurContext;
10739   CurContext = Context.getTranslationUnitDecl();
10740 
10741   FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
10742   FD->setImplicit();
10743 
10744   CurContext = PrevDC;
10745 
10746   AddKnownFunctionAttributes(FD);
10747 
10748   return FD;
10749 }
10750 
10751 /// \brief Adds any function attributes that we know a priori based on
10752 /// the declaration of this function.
10753 ///
10754 /// These attributes can apply both to implicitly-declared builtins
10755 /// (like __builtin___printf_chk) or to library-declared functions
10756 /// like NSLog or printf.
10757 ///
10758 /// We need to check for duplicate attributes both here and where user-written
10759 /// attributes are applied to declarations.
AddKnownFunctionAttributes(FunctionDecl * FD)10760 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
10761   if (FD->isInvalidDecl())
10762     return;
10763 
10764   // If this is a built-in function, map its builtin attributes to
10765   // actual attributes.
10766   if (unsigned BuiltinID = FD->getBuiltinID()) {
10767     // Handle printf-formatting attributes.
10768     unsigned FormatIdx;
10769     bool HasVAListArg;
10770     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
10771       if (!FD->hasAttr<FormatAttr>()) {
10772         const char *fmt = "printf";
10773         unsigned int NumParams = FD->getNumParams();
10774         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
10775             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
10776           fmt = "NSString";
10777         FD->addAttr(FormatAttr::CreateImplicit(Context,
10778                                                &Context.Idents.get(fmt),
10779                                                FormatIdx+1,
10780                                                HasVAListArg ? 0 : FormatIdx+2,
10781                                                FD->getLocation()));
10782       }
10783     }
10784     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
10785                                              HasVAListArg)) {
10786      if (!FD->hasAttr<FormatAttr>())
10787        FD->addAttr(FormatAttr::CreateImplicit(Context,
10788                                               &Context.Idents.get("scanf"),
10789                                               FormatIdx+1,
10790                                               HasVAListArg ? 0 : FormatIdx+2,
10791                                               FD->getLocation()));
10792     }
10793 
10794     // Mark const if we don't care about errno and that is the only
10795     // thing preventing the function from being const. This allows
10796     // IRgen to use LLVM intrinsics for such functions.
10797     if (!getLangOpts().MathErrno &&
10798         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
10799       if (!FD->hasAttr<ConstAttr>())
10800         FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
10801     }
10802 
10803     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
10804         !FD->hasAttr<ReturnsTwiceAttr>())
10805       FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
10806                                          FD->getLocation()));
10807     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
10808       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
10809     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
10810       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
10811   }
10812 
10813   IdentifierInfo *Name = FD->getIdentifier();
10814   if (!Name)
10815     return;
10816   if ((!getLangOpts().CPlusPlus &&
10817        FD->getDeclContext()->isTranslationUnit()) ||
10818       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
10819        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
10820        LinkageSpecDecl::lang_c)) {
10821     // Okay: this could be a libc/libm/Objective-C function we know
10822     // about.
10823   } else
10824     return;
10825 
10826   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
10827     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
10828     // target-specific builtins, perhaps?
10829     if (!FD->hasAttr<FormatAttr>())
10830       FD->addAttr(FormatAttr::CreateImplicit(Context,
10831                                              &Context.Idents.get("printf"), 2,
10832                                              Name->isStr("vasprintf") ? 0 : 3,
10833                                              FD->getLocation()));
10834   }
10835 
10836   if (Name->isStr("__CFStringMakeConstantString")) {
10837     // We already have a __builtin___CFStringMakeConstantString,
10838     // but builds that use -fno-constant-cfstrings don't go through that.
10839     if (!FD->hasAttr<FormatArgAttr>())
10840       FD->addAttr(FormatArgAttr::CreateImplicit(Context, 1,
10841                                                 FD->getLocation()));
10842   }
10843 }
10844 
ParseTypedefDecl(Scope * S,Declarator & D,QualType T,TypeSourceInfo * TInfo)10845 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
10846                                     TypeSourceInfo *TInfo) {
10847   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
10848   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
10849 
10850   if (!TInfo) {
10851     assert(D.isInvalidType() && "no declarator info for valid type");
10852     TInfo = Context.getTrivialTypeSourceInfo(T);
10853   }
10854 
10855   // Scope manipulation handled by caller.
10856   TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
10857                                            D.getLocStart(),
10858                                            D.getIdentifierLoc(),
10859                                            D.getIdentifier(),
10860                                            TInfo);
10861 
10862   // Bail out immediately if we have an invalid declaration.
10863   if (D.isInvalidType()) {
10864     NewTD->setInvalidDecl();
10865     return NewTD;
10866   }
10867 
10868   if (D.getDeclSpec().isModulePrivateSpecified()) {
10869     if (CurContext->isFunctionOrMethod())
10870       Diag(NewTD->getLocation(), diag::err_module_private_local)
10871         << 2 << NewTD->getDeclName()
10872         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
10873         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
10874     else
10875       NewTD->setModulePrivate();
10876   }
10877 
10878   // C++ [dcl.typedef]p8:
10879   //   If the typedef declaration defines an unnamed class (or
10880   //   enum), the first typedef-name declared by the declaration
10881   //   to be that class type (or enum type) is used to denote the
10882   //   class type (or enum type) for linkage purposes only.
10883   // We need to check whether the type was declared in the declaration.
10884   switch (D.getDeclSpec().getTypeSpecType()) {
10885   case TST_enum:
10886   case TST_struct:
10887   case TST_interface:
10888   case TST_union:
10889   case TST_class: {
10890     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
10891 
10892     // Do nothing if the tag is not anonymous or already has an
10893     // associated typedef (from an earlier typedef in this decl group).
10894     if (tagFromDeclSpec->getIdentifier()) break;
10895     if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
10896 
10897     // A well-formed anonymous tag must always be a TUK_Definition.
10898     assert(tagFromDeclSpec->isThisDeclarationADefinition());
10899 
10900     // The type must match the tag exactly;  no qualifiers allowed.
10901     if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
10902       break;
10903 
10904     // If we've already computed linkage for the anonymous tag, then
10905     // adding a typedef name for the anonymous decl can change that
10906     // linkage, which might be a serious problem.  Diagnose this as
10907     // unsupported and ignore the typedef name.  TODO: we should
10908     // pursue this as a language defect and establish a formal rule
10909     // for how to handle it.
10910     if (tagFromDeclSpec->hasLinkageBeenComputed()) {
10911       Diag(D.getIdentifierLoc(), diag::err_typedef_changes_linkage);
10912 
10913       SourceLocation tagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
10914       tagLoc = getLocForEndOfToken(tagLoc);
10915 
10916       llvm::SmallString<40> textToInsert;
10917       textToInsert += ' ';
10918       textToInsert += D.getIdentifier()->getName();
10919       Diag(tagLoc, diag::note_typedef_changes_linkage)
10920         << FixItHint::CreateInsertion(tagLoc, textToInsert);
10921       break;
10922     }
10923 
10924     // Otherwise, set this is the anon-decl typedef for the tag.
10925     tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
10926     break;
10927   }
10928 
10929   default:
10930     break;
10931   }
10932 
10933   return NewTD;
10934 }
10935 
10936 
10937 /// \brief Check that this is a valid underlying type for an enum declaration.
CheckEnumUnderlyingType(TypeSourceInfo * TI)10938 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
10939   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
10940   QualType T = TI->getType();
10941 
10942   if (T->isDependentType())
10943     return false;
10944 
10945   if (const BuiltinType *BT = T->getAs<BuiltinType>())
10946     if (BT->isInteger())
10947       return false;
10948 
10949   Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
10950   return true;
10951 }
10952 
10953 /// Check whether this is a valid redeclaration of a previous enumeration.
10954 /// \return true if the redeclaration was invalid.
CheckEnumRedeclaration(SourceLocation EnumLoc,bool IsScoped,QualType EnumUnderlyingTy,const EnumDecl * Prev)10955 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
10956                                   QualType EnumUnderlyingTy,
10957                                   const EnumDecl *Prev) {
10958   bool IsFixed = !EnumUnderlyingTy.isNull();
10959 
10960   if (IsScoped != Prev->isScoped()) {
10961     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
10962       << Prev->isScoped();
10963     Diag(Prev->getLocation(), diag::note_previous_declaration);
10964     return true;
10965   }
10966 
10967   if (IsFixed && Prev->isFixed()) {
10968     if (!EnumUnderlyingTy->isDependentType() &&
10969         !Prev->getIntegerType()->isDependentType() &&
10970         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
10971                                         Prev->getIntegerType())) {
10972       // TODO: Highlight the underlying type of the redeclaration.
10973       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
10974         << EnumUnderlyingTy << Prev->getIntegerType();
10975       Diag(Prev->getLocation(), diag::note_previous_declaration)
10976           << Prev->getIntegerTypeRange();
10977       return true;
10978     }
10979   } else if (IsFixed != Prev->isFixed()) {
10980     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
10981       << Prev->isFixed();
10982     Diag(Prev->getLocation(), diag::note_previous_declaration);
10983     return true;
10984   }
10985 
10986   return false;
10987 }
10988 
10989 /// \brief Get diagnostic %select index for tag kind for
10990 /// redeclaration diagnostic message.
10991 /// WARNING: Indexes apply to particular diagnostics only!
10992 ///
10993 /// \returns diagnostic %select index.
getRedeclDiagFromTagKind(TagTypeKind Tag)10994 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
10995   switch (Tag) {
10996   case TTK_Struct: return 0;
10997   case TTK_Interface: return 1;
10998   case TTK_Class:  return 2;
10999   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
11000   }
11001 }
11002 
11003 /// \brief Determine if tag kind is a class-key compatible with
11004 /// class for redeclaration (class, struct, or __interface).
11005 ///
11006 /// \returns true iff the tag kind is compatible.
isClassCompatTagKind(TagTypeKind Tag)11007 static bool isClassCompatTagKind(TagTypeKind Tag)
11008 {
11009   return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
11010 }
11011 
11012 /// \brief Determine whether a tag with a given kind is acceptable
11013 /// as a redeclaration of the given tag declaration.
11014 ///
11015 /// \returns true if the new tag kind is acceptable, false otherwise.
isAcceptableTagRedeclaration(const TagDecl * Previous,TagTypeKind NewTag,bool isDefinition,SourceLocation NewTagLoc,const IdentifierInfo & Name)11016 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
11017                                         TagTypeKind NewTag, bool isDefinition,
11018                                         SourceLocation NewTagLoc,
11019                                         const IdentifierInfo &Name) {
11020   // C++ [dcl.type.elab]p3:
11021   //   The class-key or enum keyword present in the
11022   //   elaborated-type-specifier shall agree in kind with the
11023   //   declaration to which the name in the elaborated-type-specifier
11024   //   refers. This rule also applies to the form of
11025   //   elaborated-type-specifier that declares a class-name or
11026   //   friend class since it can be construed as referring to the
11027   //   definition of the class. Thus, in any
11028   //   elaborated-type-specifier, the enum keyword shall be used to
11029   //   refer to an enumeration (7.2), the union class-key shall be
11030   //   used to refer to a union (clause 9), and either the class or
11031   //   struct class-key shall be used to refer to a class (clause 9)
11032   //   declared using the class or struct class-key.
11033   TagTypeKind OldTag = Previous->getTagKind();
11034   if (!isDefinition || !isClassCompatTagKind(NewTag))
11035     if (OldTag == NewTag)
11036       return true;
11037 
11038   if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
11039     // Warn about the struct/class tag mismatch.
11040     bool isTemplate = false;
11041     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
11042       isTemplate = Record->getDescribedClassTemplate();
11043 
11044     if (!ActiveTemplateInstantiations.empty()) {
11045       // In a template instantiation, do not offer fix-its for tag mismatches
11046       // since they usually mess up the template instead of fixing the problem.
11047       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
11048         << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
11049         << getRedeclDiagFromTagKind(OldTag);
11050       return true;
11051     }
11052 
11053     if (isDefinition) {
11054       // On definitions, check previous tags and issue a fix-it for each
11055       // one that doesn't match the current tag.
11056       if (Previous->getDefinition()) {
11057         // Don't suggest fix-its for redefinitions.
11058         return true;
11059       }
11060 
11061       bool previousMismatch = false;
11062       for (auto I : Previous->redecls()) {
11063         if (I->getTagKind() != NewTag) {
11064           if (!previousMismatch) {
11065             previousMismatch = true;
11066             Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
11067               << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
11068               << getRedeclDiagFromTagKind(I->getTagKind());
11069           }
11070           Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
11071             << getRedeclDiagFromTagKind(NewTag)
11072             << FixItHint::CreateReplacement(I->getInnerLocStart(),
11073                  TypeWithKeyword::getTagTypeKindName(NewTag));
11074         }
11075       }
11076       return true;
11077     }
11078 
11079     // Check for a previous definition.  If current tag and definition
11080     // are same type, do nothing.  If no definition, but disagree with
11081     // with previous tag type, give a warning, but no fix-it.
11082     const TagDecl *Redecl = Previous->getDefinition() ?
11083                             Previous->getDefinition() : Previous;
11084     if (Redecl->getTagKind() == NewTag) {
11085       return true;
11086     }
11087 
11088     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
11089       << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
11090       << getRedeclDiagFromTagKind(OldTag);
11091     Diag(Redecl->getLocation(), diag::note_previous_use);
11092 
11093     // If there is a previous definition, suggest a fix-it.
11094     if (Previous->getDefinition()) {
11095         Diag(NewTagLoc, diag::note_struct_class_suggestion)
11096           << getRedeclDiagFromTagKind(Redecl->getTagKind())
11097           << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
11098                TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
11099     }
11100 
11101     return true;
11102   }
11103   return false;
11104 }
11105 
11106 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
11107 /// from an outer enclosing namespace or file scope inside a friend declaration.
11108 /// This should provide the commented out code in the following snippet:
11109 ///   namespace N {
11110 ///     struct X;
11111 ///     namespace M {
11112 ///       struct Y { friend struct /*N::*/ X; };
11113 ///     }
11114 ///   }
createFriendTagNNSFixIt(Sema & SemaRef,NamedDecl * ND,Scope * S,SourceLocation NameLoc)11115 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
11116                                          SourceLocation NameLoc) {
11117   // While the decl is in a namespace, do repeated lookup of that name and see
11118   // if we get the same namespace back.  If we do not, continue until
11119   // translation unit scope, at which point we have a fully qualified NNS.
11120   SmallVector<IdentifierInfo *, 4> Namespaces;
11121   DeclContext *DC = ND->getDeclContext()->getRedeclContext();
11122   for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
11123     // This tag should be declared in a namespace, which can only be enclosed by
11124     // other namespaces.  Bail if there's an anonymous namespace in the chain.
11125     NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
11126     if (!Namespace || Namespace->isAnonymousNamespace())
11127       return FixItHint();
11128     IdentifierInfo *II = Namespace->getIdentifier();
11129     Namespaces.push_back(II);
11130     NamedDecl *Lookup = SemaRef.LookupSingleName(
11131         S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
11132     if (Lookup == Namespace)
11133       break;
11134   }
11135 
11136   // Once we have all the namespaces, reverse them to go outermost first, and
11137   // build an NNS.
11138   SmallString<64> Insertion;
11139   llvm::raw_svector_ostream OS(Insertion);
11140   if (DC->isTranslationUnit())
11141     OS << "::";
11142   std::reverse(Namespaces.begin(), Namespaces.end());
11143   for (auto *II : Namespaces)
11144     OS << II->getName() << "::";
11145   OS.flush();
11146   return FixItHint::CreateInsertion(NameLoc, Insertion);
11147 }
11148 
11149 /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
11150 /// former case, Name will be non-null.  In the later case, Name will be null.
11151 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
11152 /// reference/declaration/definition of a tag.
11153 ///
11154 /// IsTypeSpecifier is true if this is a type-specifier (or
11155 /// trailing-type-specifier) other than one in an alias-declaration.
ActOnTag(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,AccessSpecifier AS,SourceLocation ModulePrivateLoc,MultiTemplateParamsArg TemplateParameterLists,bool & OwnedDecl,bool & IsDependent,SourceLocation ScopedEnumKWLoc,bool ScopedEnumUsesClassTag,TypeResult UnderlyingType,bool IsTypeSpecifier)11156 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
11157                      SourceLocation KWLoc, CXXScopeSpec &SS,
11158                      IdentifierInfo *Name, SourceLocation NameLoc,
11159                      AttributeList *Attr, AccessSpecifier AS,
11160                      SourceLocation ModulePrivateLoc,
11161                      MultiTemplateParamsArg TemplateParameterLists,
11162                      bool &OwnedDecl, bool &IsDependent,
11163                      SourceLocation ScopedEnumKWLoc,
11164                      bool ScopedEnumUsesClassTag,
11165                      TypeResult UnderlyingType,
11166                      bool IsTypeSpecifier) {
11167   // If this is not a definition, it must have a name.
11168   IdentifierInfo *OrigName = Name;
11169   assert((Name != nullptr || TUK == TUK_Definition) &&
11170          "Nameless record must be a definition!");
11171   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
11172 
11173   OwnedDecl = false;
11174   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
11175   bool ScopedEnum = ScopedEnumKWLoc.isValid();
11176 
11177   // FIXME: Check explicit specializations more carefully.
11178   bool isExplicitSpecialization = false;
11179   bool Invalid = false;
11180 
11181   // We only need to do this matching if we have template parameters
11182   // or a scope specifier, which also conveniently avoids this work
11183   // for non-C++ cases.
11184   if (TemplateParameterLists.size() > 0 ||
11185       (SS.isNotEmpty() && TUK != TUK_Reference)) {
11186     if (TemplateParameterList *TemplateParams =
11187             MatchTemplateParametersToScopeSpecifier(
11188                 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
11189                 TUK == TUK_Friend, isExplicitSpecialization, Invalid)) {
11190       if (Kind == TTK_Enum) {
11191         Diag(KWLoc, diag::err_enum_template);
11192         return nullptr;
11193       }
11194 
11195       if (TemplateParams->size() > 0) {
11196         // This is a declaration or definition of a class template (which may
11197         // be a member of another template).
11198 
11199         if (Invalid)
11200           return nullptr;
11201 
11202         OwnedDecl = false;
11203         DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
11204                                                SS, Name, NameLoc, Attr,
11205                                                TemplateParams, AS,
11206                                                ModulePrivateLoc,
11207                                                /*FriendLoc*/SourceLocation(),
11208                                                TemplateParameterLists.size()-1,
11209                                                TemplateParameterLists.data());
11210         return Result.get();
11211       } else {
11212         // The "template<>" header is extraneous.
11213         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
11214           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
11215         isExplicitSpecialization = true;
11216       }
11217     }
11218   }
11219 
11220   // Figure out the underlying type if this a enum declaration. We need to do
11221   // this early, because it's needed to detect if this is an incompatible
11222   // redeclaration.
11223   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
11224 
11225   if (Kind == TTK_Enum) {
11226     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
11227       // No underlying type explicitly specified, or we failed to parse the
11228       // type, default to int.
11229       EnumUnderlying = Context.IntTy.getTypePtr();
11230     else if (UnderlyingType.get()) {
11231       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
11232       // integral type; any cv-qualification is ignored.
11233       TypeSourceInfo *TI = nullptr;
11234       GetTypeFromParser(UnderlyingType.get(), &TI);
11235       EnumUnderlying = TI;
11236 
11237       if (CheckEnumUnderlyingType(TI))
11238         // Recover by falling back to int.
11239         EnumUnderlying = Context.IntTy.getTypePtr();
11240 
11241       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
11242                                           UPPC_FixedUnderlyingType))
11243         EnumUnderlying = Context.IntTy.getTypePtr();
11244 
11245     } else if (getLangOpts().MSVCCompat)
11246       // Microsoft enums are always of int type.
11247       EnumUnderlying = Context.IntTy.getTypePtr();
11248   }
11249 
11250   DeclContext *SearchDC = CurContext;
11251   DeclContext *DC = CurContext;
11252   bool isStdBadAlloc = false;
11253 
11254   RedeclarationKind Redecl = ForRedeclaration;
11255   if (TUK == TUK_Friend || TUK == TUK_Reference)
11256     Redecl = NotForRedeclaration;
11257 
11258   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
11259   if (Name && SS.isNotEmpty()) {
11260     // We have a nested-name tag ('struct foo::bar').
11261 
11262     // Check for invalid 'foo::'.
11263     if (SS.isInvalid()) {
11264       Name = nullptr;
11265       goto CreateNewDecl;
11266     }
11267 
11268     // If this is a friend or a reference to a class in a dependent
11269     // context, don't try to make a decl for it.
11270     if (TUK == TUK_Friend || TUK == TUK_Reference) {
11271       DC = computeDeclContext(SS, false);
11272       if (!DC) {
11273         IsDependent = true;
11274         return nullptr;
11275       }
11276     } else {
11277       DC = computeDeclContext(SS, true);
11278       if (!DC) {
11279         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
11280           << SS.getRange();
11281         return nullptr;
11282       }
11283     }
11284 
11285     if (RequireCompleteDeclContext(SS, DC))
11286       return nullptr;
11287 
11288     SearchDC = DC;
11289     // Look-up name inside 'foo::'.
11290     LookupQualifiedName(Previous, DC);
11291 
11292     if (Previous.isAmbiguous())
11293       return nullptr;
11294 
11295     if (Previous.empty()) {
11296       // Name lookup did not find anything. However, if the
11297       // nested-name-specifier refers to the current instantiation,
11298       // and that current instantiation has any dependent base
11299       // classes, we might find something at instantiation time: treat
11300       // this as a dependent elaborated-type-specifier.
11301       // But this only makes any sense for reference-like lookups.
11302       if (Previous.wasNotFoundInCurrentInstantiation() &&
11303           (TUK == TUK_Reference || TUK == TUK_Friend)) {
11304         IsDependent = true;
11305         return nullptr;
11306       }
11307 
11308       // A tag 'foo::bar' must already exist.
11309       Diag(NameLoc, diag::err_not_tag_in_scope)
11310         << Kind << Name << DC << SS.getRange();
11311       Name = nullptr;
11312       Invalid = true;
11313       goto CreateNewDecl;
11314     }
11315   } else if (Name) {
11316     // If this is a named struct, check to see if there was a previous forward
11317     // declaration or definition.
11318     // FIXME: We're looking into outer scopes here, even when we
11319     // shouldn't be. Doing so can result in ambiguities that we
11320     // shouldn't be diagnosing.
11321     LookupName(Previous, S);
11322 
11323     // When declaring or defining a tag, ignore ambiguities introduced
11324     // by types using'ed into this scope.
11325     if (Previous.isAmbiguous() &&
11326         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
11327       LookupResult::Filter F = Previous.makeFilter();
11328       while (F.hasNext()) {
11329         NamedDecl *ND = F.next();
11330         if (ND->getDeclContext()->getRedeclContext() != SearchDC)
11331           F.erase();
11332       }
11333       F.done();
11334     }
11335 
11336     // C++11 [namespace.memdef]p3:
11337     //   If the name in a friend declaration is neither qualified nor
11338     //   a template-id and the declaration is a function or an
11339     //   elaborated-type-specifier, the lookup to determine whether
11340     //   the entity has been previously declared shall not consider
11341     //   any scopes outside the innermost enclosing namespace.
11342     //
11343     // MSVC doesn't implement the above rule for types, so a friend tag
11344     // declaration may be a redeclaration of a type declared in an enclosing
11345     // scope.  They do implement this rule for friend functions.
11346     //
11347     // Does it matter that this should be by scope instead of by
11348     // semantic context?
11349     if (!Previous.empty() && TUK == TUK_Friend) {
11350       DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
11351       LookupResult::Filter F = Previous.makeFilter();
11352       bool FriendSawTagOutsideEnclosingNamespace = false;
11353       while (F.hasNext()) {
11354         NamedDecl *ND = F.next();
11355         DeclContext *DC = ND->getDeclContext()->getRedeclContext();
11356         if (DC->isFileContext() &&
11357             !EnclosingNS->Encloses(ND->getDeclContext())) {
11358           if (getLangOpts().MSVCCompat)
11359             FriendSawTagOutsideEnclosingNamespace = true;
11360           else
11361             F.erase();
11362         }
11363       }
11364       F.done();
11365 
11366       // Diagnose this MSVC extension in the easy case where lookup would have
11367       // unambiguously found something outside the enclosing namespace.
11368       if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
11369         NamedDecl *ND = Previous.getFoundDecl();
11370         Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
11371             << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
11372       }
11373     }
11374 
11375     // Note:  there used to be some attempt at recovery here.
11376     if (Previous.isAmbiguous())
11377       return nullptr;
11378 
11379     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
11380       // FIXME: This makes sure that we ignore the contexts associated
11381       // with C structs, unions, and enums when looking for a matching
11382       // tag declaration or definition. See the similar lookup tweak
11383       // in Sema::LookupName; is there a better way to deal with this?
11384       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
11385         SearchDC = SearchDC->getParent();
11386     }
11387   }
11388 
11389   if (Previous.isSingleResult() &&
11390       Previous.getFoundDecl()->isTemplateParameter()) {
11391     // Maybe we will complain about the shadowed template parameter.
11392     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
11393     // Just pretend that we didn't see the previous declaration.
11394     Previous.clear();
11395   }
11396 
11397   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
11398       DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
11399     // This is a declaration of or a reference to "std::bad_alloc".
11400     isStdBadAlloc = true;
11401 
11402     if (Previous.empty() && StdBadAlloc) {
11403       // std::bad_alloc has been implicitly declared (but made invisible to
11404       // name lookup). Fill in this implicit declaration as the previous
11405       // declaration, so that the declarations get chained appropriately.
11406       Previous.addDecl(getStdBadAlloc());
11407     }
11408   }
11409 
11410   // If we didn't find a previous declaration, and this is a reference
11411   // (or friend reference), move to the correct scope.  In C++, we
11412   // also need to do a redeclaration lookup there, just in case
11413   // there's a shadow friend decl.
11414   if (Name && Previous.empty() &&
11415       (TUK == TUK_Reference || TUK == TUK_Friend)) {
11416     if (Invalid) goto CreateNewDecl;
11417     assert(SS.isEmpty());
11418 
11419     if (TUK == TUK_Reference) {
11420       // C++ [basic.scope.pdecl]p5:
11421       //   -- for an elaborated-type-specifier of the form
11422       //
11423       //          class-key identifier
11424       //
11425       //      if the elaborated-type-specifier is used in the
11426       //      decl-specifier-seq or parameter-declaration-clause of a
11427       //      function defined in namespace scope, the identifier is
11428       //      declared as a class-name in the namespace that contains
11429       //      the declaration; otherwise, except as a friend
11430       //      declaration, the identifier is declared in the smallest
11431       //      non-class, non-function-prototype scope that contains the
11432       //      declaration.
11433       //
11434       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
11435       // C structs and unions.
11436       //
11437       // It is an error in C++ to declare (rather than define) an enum
11438       // type, including via an elaborated type specifier.  We'll
11439       // diagnose that later; for now, declare the enum in the same
11440       // scope as we would have picked for any other tag type.
11441       //
11442       // GNU C also supports this behavior as part of its incomplete
11443       // enum types extension, while GNU C++ does not.
11444       //
11445       // Find the context where we'll be declaring the tag.
11446       // FIXME: We would like to maintain the current DeclContext as the
11447       // lexical context,
11448       while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
11449         SearchDC = SearchDC->getParent();
11450 
11451       // Find the scope where we'll be declaring the tag.
11452       while (S->isClassScope() ||
11453              (getLangOpts().CPlusPlus &&
11454               S->isFunctionPrototypeScope()) ||
11455              ((S->getFlags() & Scope::DeclScope) == 0) ||
11456              (S->getEntity() && S->getEntity()->isTransparentContext()))
11457         S = S->getParent();
11458     } else {
11459       assert(TUK == TUK_Friend);
11460       // C++ [namespace.memdef]p3:
11461       //   If a friend declaration in a non-local class first declares a
11462       //   class or function, the friend class or function is a member of
11463       //   the innermost enclosing namespace.
11464       SearchDC = SearchDC->getEnclosingNamespaceContext();
11465     }
11466 
11467     // In C++, we need to do a redeclaration lookup to properly
11468     // diagnose some problems.
11469     if (getLangOpts().CPlusPlus) {
11470       Previous.setRedeclarationKind(ForRedeclaration);
11471       LookupQualifiedName(Previous, SearchDC);
11472     }
11473   }
11474 
11475   if (!Previous.empty()) {
11476     NamedDecl *PrevDecl = Previous.getFoundDecl();
11477     NamedDecl *DirectPrevDecl =
11478         getLangOpts().MSVCCompat ? *Previous.begin() : PrevDecl;
11479 
11480     // It's okay to have a tag decl in the same scope as a typedef
11481     // which hides a tag decl in the same scope.  Finding this
11482     // insanity with a redeclaration lookup can only actually happen
11483     // in C++.
11484     //
11485     // This is also okay for elaborated-type-specifiers, which is
11486     // technically forbidden by the current standard but which is
11487     // okay according to the likely resolution of an open issue;
11488     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
11489     if (getLangOpts().CPlusPlus) {
11490       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
11491         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
11492           TagDecl *Tag = TT->getDecl();
11493           if (Tag->getDeclName() == Name &&
11494               Tag->getDeclContext()->getRedeclContext()
11495                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
11496             PrevDecl = Tag;
11497             Previous.clear();
11498             Previous.addDecl(Tag);
11499             Previous.resolveKind();
11500           }
11501         }
11502       }
11503     }
11504 
11505     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
11506       // If this is a use of a previous tag, or if the tag is already declared
11507       // in the same scope (so that the definition/declaration completes or
11508       // rementions the tag), reuse the decl.
11509       if (TUK == TUK_Reference || TUK == TUK_Friend ||
11510           isDeclInScope(DirectPrevDecl, SearchDC, S,
11511                         SS.isNotEmpty() || isExplicitSpecialization)) {
11512         // Make sure that this wasn't declared as an enum and now used as a
11513         // struct or something similar.
11514         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
11515                                           TUK == TUK_Definition, KWLoc,
11516                                           *Name)) {
11517           bool SafeToContinue
11518             = (PrevTagDecl->getTagKind() != TTK_Enum &&
11519                Kind != TTK_Enum);
11520           if (SafeToContinue)
11521             Diag(KWLoc, diag::err_use_with_wrong_tag)
11522               << Name
11523               << FixItHint::CreateReplacement(SourceRange(KWLoc),
11524                                               PrevTagDecl->getKindName());
11525           else
11526             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
11527           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
11528 
11529           if (SafeToContinue)
11530             Kind = PrevTagDecl->getTagKind();
11531           else {
11532             // Recover by making this an anonymous redefinition.
11533             Name = nullptr;
11534             Previous.clear();
11535             Invalid = true;
11536           }
11537         }
11538 
11539         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
11540           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
11541 
11542           // If this is an elaborated-type-specifier for a scoped enumeration,
11543           // the 'class' keyword is not necessary and not permitted.
11544           if (TUK == TUK_Reference || TUK == TUK_Friend) {
11545             if (ScopedEnum)
11546               Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
11547                 << PrevEnum->isScoped()
11548                 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
11549             return PrevTagDecl;
11550           }
11551 
11552           QualType EnumUnderlyingTy;
11553           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
11554             EnumUnderlyingTy = TI->getType().getUnqualifiedType();
11555           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
11556             EnumUnderlyingTy = QualType(T, 0);
11557 
11558           // All conflicts with previous declarations are recovered by
11559           // returning the previous declaration, unless this is a definition,
11560           // in which case we want the caller to bail out.
11561           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
11562                                      ScopedEnum, EnumUnderlyingTy, PrevEnum))
11563             return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
11564         }
11565 
11566         // C++11 [class.mem]p1:
11567         //   A member shall not be declared twice in the member-specification,
11568         //   except that a nested class or member class template can be declared
11569         //   and then later defined.
11570         if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
11571             S->isDeclScope(PrevDecl)) {
11572           Diag(NameLoc, diag::ext_member_redeclared);
11573           Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
11574         }
11575 
11576         if (!Invalid) {
11577           // If this is a use, just return the declaration we found, unless
11578           // we have attributes.
11579 
11580           // FIXME: In the future, return a variant or some other clue
11581           // for the consumer of this Decl to know it doesn't own it.
11582           // For our current ASTs this shouldn't be a problem, but will
11583           // need to be changed with DeclGroups.
11584           if (!Attr &&
11585               ((TUK == TUK_Reference &&
11586                 (!PrevTagDecl->getFriendObjectKind() || getLangOpts().MicrosoftExt))
11587                || TUK == TUK_Friend))
11588             return PrevTagDecl;
11589 
11590           // Diagnose attempts to redefine a tag.
11591           if (TUK == TUK_Definition) {
11592             if (TagDecl *Def = PrevTagDecl->getDefinition()) {
11593               // If we're defining a specialization and the previous definition
11594               // is from an implicit instantiation, don't emit an error
11595               // here; we'll catch this in the general case below.
11596               bool IsExplicitSpecializationAfterInstantiation = false;
11597               if (isExplicitSpecialization) {
11598                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
11599                   IsExplicitSpecializationAfterInstantiation =
11600                     RD->getTemplateSpecializationKind() !=
11601                     TSK_ExplicitSpecialization;
11602                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
11603                   IsExplicitSpecializationAfterInstantiation =
11604                     ED->getTemplateSpecializationKind() !=
11605                     TSK_ExplicitSpecialization;
11606               }
11607 
11608               if (!IsExplicitSpecializationAfterInstantiation) {
11609                 // A redeclaration in function prototype scope in C isn't
11610                 // visible elsewhere, so merely issue a warning.
11611                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
11612                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
11613                 else
11614                   Diag(NameLoc, diag::err_redefinition) << Name;
11615                 Diag(Def->getLocation(), diag::note_previous_definition);
11616                 // If this is a redefinition, recover by making this
11617                 // struct be anonymous, which will make any later
11618                 // references get the previous definition.
11619                 Name = nullptr;
11620                 Previous.clear();
11621                 Invalid = true;
11622               }
11623             } else {
11624               // If the type is currently being defined, complain
11625               // about a nested redefinition.
11626               auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
11627               if (TD->isBeingDefined()) {
11628                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
11629                 Diag(PrevTagDecl->getLocation(),
11630                      diag::note_previous_definition);
11631                 Name = nullptr;
11632                 Previous.clear();
11633                 Invalid = true;
11634               }
11635             }
11636 
11637             // Okay, this is definition of a previously declared or referenced
11638             // tag. We're going to create a new Decl for it.
11639           }
11640 
11641           // Okay, we're going to make a redeclaration.  If this is some kind
11642           // of reference, make sure we build the redeclaration in the same DC
11643           // as the original, and ignore the current access specifier.
11644           if (TUK == TUK_Friend || TUK == TUK_Reference) {
11645             SearchDC = PrevTagDecl->getDeclContext();
11646             AS = AS_none;
11647           }
11648         }
11649         // If we get here we have (another) forward declaration or we
11650         // have a definition.  Just create a new decl.
11651 
11652       } else {
11653         // If we get here, this is a definition of a new tag type in a nested
11654         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
11655         // new decl/type.  We set PrevDecl to NULL so that the entities
11656         // have distinct types.
11657         Previous.clear();
11658       }
11659       // If we get here, we're going to create a new Decl. If PrevDecl
11660       // is non-NULL, it's a definition of the tag declared by
11661       // PrevDecl. If it's NULL, we have a new definition.
11662 
11663 
11664     // Otherwise, PrevDecl is not a tag, but was found with tag
11665     // lookup.  This is only actually possible in C++, where a few
11666     // things like templates still live in the tag namespace.
11667     } else {
11668       // Use a better diagnostic if an elaborated-type-specifier
11669       // found the wrong kind of type on the first
11670       // (non-redeclaration) lookup.
11671       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
11672           !Previous.isForRedeclaration()) {
11673         unsigned Kind = 0;
11674         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
11675         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
11676         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
11677         Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
11678         Diag(PrevDecl->getLocation(), diag::note_declared_at);
11679         Invalid = true;
11680 
11681       // Otherwise, only diagnose if the declaration is in scope.
11682       } else if (!isDeclInScope(PrevDecl, SearchDC, S,
11683                                 SS.isNotEmpty() || isExplicitSpecialization)) {
11684         // do nothing
11685 
11686       // Diagnose implicit declarations introduced by elaborated types.
11687       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
11688         unsigned Kind = 0;
11689         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
11690         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
11691         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
11692         Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
11693         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
11694         Invalid = true;
11695 
11696       // Otherwise it's a declaration.  Call out a particularly common
11697       // case here.
11698       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
11699         unsigned Kind = 0;
11700         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
11701         Diag(NameLoc, diag::err_tag_definition_of_typedef)
11702           << Name << Kind << TND->getUnderlyingType();
11703         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
11704         Invalid = true;
11705 
11706       // Otherwise, diagnose.
11707       } else {
11708         // The tag name clashes with something else in the target scope,
11709         // issue an error and recover by making this tag be anonymous.
11710         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
11711         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
11712         Name = nullptr;
11713         Invalid = true;
11714       }
11715 
11716       // The existing declaration isn't relevant to us; we're in a
11717       // new scope, so clear out the previous declaration.
11718       Previous.clear();
11719     }
11720   }
11721 
11722 CreateNewDecl:
11723 
11724   TagDecl *PrevDecl = nullptr;
11725   if (Previous.isSingleResult())
11726     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
11727 
11728   // If there is an identifier, use the location of the identifier as the
11729   // location of the decl, otherwise use the location of the struct/union
11730   // keyword.
11731   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
11732 
11733   // Otherwise, create a new declaration. If there is a previous
11734   // declaration of the same entity, the two will be linked via
11735   // PrevDecl.
11736   TagDecl *New;
11737 
11738   bool IsForwardReference = false;
11739   if (Kind == TTK_Enum) {
11740     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
11741     // enum X { A, B, C } D;    D should chain to X.
11742     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
11743                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
11744                            ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
11745     // If this is an undefined enum, warn.
11746     if (TUK != TUK_Definition && !Invalid) {
11747       TagDecl *Def;
11748       if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
11749           cast<EnumDecl>(New)->isFixed()) {
11750         // C++0x: 7.2p2: opaque-enum-declaration.
11751         // Conflicts are diagnosed above. Do nothing.
11752       }
11753       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
11754         Diag(Loc, diag::ext_forward_ref_enum_def)
11755           << New;
11756         Diag(Def->getLocation(), diag::note_previous_definition);
11757       } else {
11758         unsigned DiagID = diag::ext_forward_ref_enum;
11759         if (getLangOpts().MSVCCompat)
11760           DiagID = diag::ext_ms_forward_ref_enum;
11761         else if (getLangOpts().CPlusPlus)
11762           DiagID = diag::err_forward_ref_enum;
11763         Diag(Loc, DiagID);
11764 
11765         // If this is a forward-declared reference to an enumeration, make a
11766         // note of it; we won't actually be introducing the declaration into
11767         // the declaration context.
11768         if (TUK == TUK_Reference)
11769           IsForwardReference = true;
11770       }
11771     }
11772 
11773     if (EnumUnderlying) {
11774       EnumDecl *ED = cast<EnumDecl>(New);
11775       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
11776         ED->setIntegerTypeSourceInfo(TI);
11777       else
11778         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
11779       ED->setPromotionType(ED->getIntegerType());
11780     }
11781 
11782   } else {
11783     // struct/union/class
11784 
11785     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
11786     // struct X { int A; } D;    D should chain to X.
11787     if (getLangOpts().CPlusPlus) {
11788       // FIXME: Look for a way to use RecordDecl for simple structs.
11789       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
11790                                   cast_or_null<CXXRecordDecl>(PrevDecl));
11791 
11792       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
11793         StdBadAlloc = cast<CXXRecordDecl>(New);
11794     } else
11795       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
11796                                cast_or_null<RecordDecl>(PrevDecl));
11797   }
11798 
11799   // C++11 [dcl.type]p3:
11800   //   A type-specifier-seq shall not define a class or enumeration [...].
11801   if (getLangOpts().CPlusPlus && IsTypeSpecifier && TUK == TUK_Definition) {
11802     Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
11803       << Context.getTagDeclType(New);
11804     Invalid = true;
11805   }
11806 
11807   // Maybe add qualifier info.
11808   if (SS.isNotEmpty()) {
11809     if (SS.isSet()) {
11810       // If this is either a declaration or a definition, check the
11811       // nested-name-specifier against the current context. We don't do this
11812       // for explicit specializations, because they have similar checking
11813       // (with more specific diagnostics) in the call to
11814       // CheckMemberSpecialization, below.
11815       if (!isExplicitSpecialization &&
11816           (TUK == TUK_Definition || TUK == TUK_Declaration) &&
11817           diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc))
11818         Invalid = true;
11819 
11820       New->setQualifierInfo(SS.getWithLocInContext(Context));
11821       if (TemplateParameterLists.size() > 0) {
11822         New->setTemplateParameterListsInfo(Context,
11823                                            TemplateParameterLists.size(),
11824                                            TemplateParameterLists.data());
11825       }
11826     }
11827     else
11828       Invalid = true;
11829   }
11830 
11831   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
11832     // Add alignment attributes if necessary; these attributes are checked when
11833     // the ASTContext lays out the structure.
11834     //
11835     // It is important for implementing the correct semantics that this
11836     // happen here (in act on tag decl). The #pragma pack stack is
11837     // maintained as a result of parser callbacks which can occur at
11838     // many points during the parsing of a struct declaration (because
11839     // the #pragma tokens are effectively skipped over during the
11840     // parsing of the struct).
11841     if (TUK == TUK_Definition) {
11842       AddAlignmentAttributesForRecord(RD);
11843       AddMsStructLayoutForRecord(RD);
11844     }
11845   }
11846 
11847   if (ModulePrivateLoc.isValid()) {
11848     if (isExplicitSpecialization)
11849       Diag(New->getLocation(), diag::err_module_private_specialization)
11850         << 2
11851         << FixItHint::CreateRemoval(ModulePrivateLoc);
11852     // __module_private__ does not apply to local classes. However, we only
11853     // diagnose this as an error when the declaration specifiers are
11854     // freestanding. Here, we just ignore the __module_private__.
11855     else if (!SearchDC->isFunctionOrMethod())
11856       New->setModulePrivate();
11857   }
11858 
11859   // If this is a specialization of a member class (of a class template),
11860   // check the specialization.
11861   if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
11862     Invalid = true;
11863 
11864   // If we're declaring or defining a tag in function prototype scope in C,
11865   // note that this type can only be used within the function and add it to
11866   // the list of decls to inject into the function definition scope.
11867   if ((Name || Kind == TTK_Enum) &&
11868       getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
11869     if (getLangOpts().CPlusPlus) {
11870       // C++ [dcl.fct]p6:
11871       //   Types shall not be defined in return or parameter types.
11872       if (TUK == TUK_Definition && !IsTypeSpecifier) {
11873         Diag(Loc, diag::err_type_defined_in_param_type)
11874             << Name;
11875         Invalid = true;
11876       }
11877     } else {
11878       Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
11879     }
11880     DeclsInPrototypeScope.push_back(New);
11881   }
11882 
11883   if (Invalid)
11884     New->setInvalidDecl();
11885 
11886   if (Attr)
11887     ProcessDeclAttributeList(S, New, Attr);
11888 
11889   // Set the lexical context. If the tag has a C++ scope specifier, the
11890   // lexical context will be different from the semantic context.
11891   New->setLexicalDeclContext(CurContext);
11892 
11893   // Mark this as a friend decl if applicable.
11894   // In Microsoft mode, a friend declaration also acts as a forward
11895   // declaration so we always pass true to setObjectOfFriendDecl to make
11896   // the tag name visible.
11897   if (TUK == TUK_Friend)
11898     New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
11899 
11900   // Set the access specifier.
11901   if (!Invalid && SearchDC->isRecord())
11902     SetMemberAccessSpecifier(New, PrevDecl, AS);
11903 
11904   if (TUK == TUK_Definition)
11905     New->startDefinition();
11906 
11907   // If this has an identifier, add it to the scope stack.
11908   if (TUK == TUK_Friend) {
11909     // We might be replacing an existing declaration in the lookup tables;
11910     // if so, borrow its access specifier.
11911     if (PrevDecl)
11912       New->setAccess(PrevDecl->getAccess());
11913 
11914     DeclContext *DC = New->getDeclContext()->getRedeclContext();
11915     DC->makeDeclVisibleInContext(New);
11916     if (Name) // can be null along some error paths
11917       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
11918         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
11919   } else if (Name) {
11920     S = getNonFieldDeclScope(S);
11921     PushOnScopeChains(New, S, !IsForwardReference);
11922     if (IsForwardReference)
11923       SearchDC->makeDeclVisibleInContext(New);
11924 
11925   } else {
11926     CurContext->addDecl(New);
11927   }
11928 
11929   // If this is the C FILE type, notify the AST context.
11930   if (IdentifierInfo *II = New->getIdentifier())
11931     if (!New->isInvalidDecl() &&
11932         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
11933         II->isStr("FILE"))
11934       Context.setFILEDecl(New);
11935 
11936   if (PrevDecl)
11937     mergeDeclAttributes(New, PrevDecl);
11938 
11939   // If there's a #pragma GCC visibility in scope, set the visibility of this
11940   // record.
11941   AddPushedVisibilityAttribute(New);
11942 
11943   OwnedDecl = true;
11944   // In C++, don't return an invalid declaration. We can't recover well from
11945   // the cases where we make the type anonymous.
11946   return (Invalid && getLangOpts().CPlusPlus) ? nullptr : New;
11947 }
11948 
ActOnTagStartDefinition(Scope * S,Decl * TagD)11949 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
11950   AdjustDeclIfTemplate(TagD);
11951   TagDecl *Tag = cast<TagDecl>(TagD);
11952 
11953   // Enter the tag context.
11954   PushDeclContext(S, Tag);
11955 
11956   ActOnDocumentableDecl(TagD);
11957 
11958   // If there's a #pragma GCC visibility in scope, set the visibility of this
11959   // record.
11960   AddPushedVisibilityAttribute(Tag);
11961 }
11962 
ActOnObjCContainerStartDefinition(Decl * IDecl)11963 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
11964   assert(isa<ObjCContainerDecl>(IDecl) &&
11965          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
11966   DeclContext *OCD = cast<DeclContext>(IDecl);
11967   assert(getContainingDC(OCD) == CurContext &&
11968       "The next DeclContext should be lexically contained in the current one.");
11969   CurContext = OCD;
11970   return IDecl;
11971 }
11972 
ActOnStartCXXMemberDeclarations(Scope * S,Decl * TagD,SourceLocation FinalLoc,bool IsFinalSpelledSealed,SourceLocation LBraceLoc)11973 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
11974                                            SourceLocation FinalLoc,
11975                                            bool IsFinalSpelledSealed,
11976                                            SourceLocation LBraceLoc) {
11977   AdjustDeclIfTemplate(TagD);
11978   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
11979 
11980   FieldCollector->StartClass();
11981 
11982   if (!Record->getIdentifier())
11983     return;
11984 
11985   if (FinalLoc.isValid())
11986     Record->addAttr(new (Context)
11987                     FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
11988 
11989   // C++ [class]p2:
11990   //   [...] The class-name is also inserted into the scope of the
11991   //   class itself; this is known as the injected-class-name. For
11992   //   purposes of access checking, the injected-class-name is treated
11993   //   as if it were a public member name.
11994   CXXRecordDecl *InjectedClassName
11995     = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
11996                             Record->getLocStart(), Record->getLocation(),
11997                             Record->getIdentifier(),
11998                             /*PrevDecl=*/nullptr,
11999                             /*DelayTypeCreation=*/true);
12000   Context.getTypeDeclType(InjectedClassName, Record);
12001   InjectedClassName->setImplicit();
12002   InjectedClassName->setAccess(AS_public);
12003   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
12004       InjectedClassName->setDescribedClassTemplate(Template);
12005   PushOnScopeChains(InjectedClassName, S);
12006   assert(InjectedClassName->isInjectedClassName() &&
12007          "Broken injected-class-name");
12008 }
12009 
ActOnTagFinishDefinition(Scope * S,Decl * TagD,SourceLocation RBraceLoc)12010 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
12011                                     SourceLocation RBraceLoc) {
12012   AdjustDeclIfTemplate(TagD);
12013   TagDecl *Tag = cast<TagDecl>(TagD);
12014   Tag->setRBraceLoc(RBraceLoc);
12015 
12016   // Make sure we "complete" the definition even it is invalid.
12017   if (Tag->isBeingDefined()) {
12018     assert(Tag->isInvalidDecl() && "We should already have completed it");
12019     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
12020       RD->completeDefinition();
12021   }
12022 
12023   if (isa<CXXRecordDecl>(Tag))
12024     FieldCollector->FinishClass();
12025 
12026   // Exit this scope of this tag's definition.
12027   PopDeclContext();
12028 
12029   if (getCurLexicalContext()->isObjCContainer() &&
12030       Tag->getDeclContext()->isFileContext())
12031     Tag->setTopLevelDeclInObjCContainer();
12032 
12033   // Notify the consumer that we've defined a tag.
12034   if (!Tag->isInvalidDecl())
12035     Consumer.HandleTagDeclDefinition(Tag);
12036 }
12037 
ActOnObjCContainerFinishDefinition()12038 void Sema::ActOnObjCContainerFinishDefinition() {
12039   // Exit this scope of this interface definition.
12040   PopDeclContext();
12041 }
12042 
ActOnObjCTemporaryExitContainerContext(DeclContext * DC)12043 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
12044   assert(DC == CurContext && "Mismatch of container contexts");
12045   OriginalLexicalContext = DC;
12046   ActOnObjCContainerFinishDefinition();
12047 }
12048 
ActOnObjCReenterContainerContext(DeclContext * DC)12049 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
12050   ActOnObjCContainerStartDefinition(cast<Decl>(DC));
12051   OriginalLexicalContext = nullptr;
12052 }
12053 
ActOnTagDefinitionError(Scope * S,Decl * TagD)12054 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
12055   AdjustDeclIfTemplate(TagD);
12056   TagDecl *Tag = cast<TagDecl>(TagD);
12057   Tag->setInvalidDecl();
12058 
12059   // Make sure we "complete" the definition even it is invalid.
12060   if (Tag->isBeingDefined()) {
12061     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
12062       RD->completeDefinition();
12063   }
12064 
12065   // We're undoing ActOnTagStartDefinition here, not
12066   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
12067   // the FieldCollector.
12068 
12069   PopDeclContext();
12070 }
12071 
12072 // Note that FieldName may be null for anonymous bitfields.
VerifyBitField(SourceLocation FieldLoc,IdentifierInfo * FieldName,QualType FieldTy,bool IsMsStruct,Expr * BitWidth,bool * ZeroWidth)12073 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
12074                                 IdentifierInfo *FieldName,
12075                                 QualType FieldTy, bool IsMsStruct,
12076                                 Expr *BitWidth, bool *ZeroWidth) {
12077   // Default to true; that shouldn't confuse checks for emptiness
12078   if (ZeroWidth)
12079     *ZeroWidth = true;
12080 
12081   // C99 6.7.2.1p4 - verify the field type.
12082   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
12083   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
12084     // Handle incomplete types with specific error.
12085     if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
12086       return ExprError();
12087     if (FieldName)
12088       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
12089         << FieldName << FieldTy << BitWidth->getSourceRange();
12090     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
12091       << FieldTy << BitWidth->getSourceRange();
12092   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
12093                                              UPPC_BitFieldWidth))
12094     return ExprError();
12095 
12096   // If the bit-width is type- or value-dependent, don't try to check
12097   // it now.
12098   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
12099     return BitWidth;
12100 
12101   llvm::APSInt Value;
12102   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
12103   if (ICE.isInvalid())
12104     return ICE;
12105   BitWidth = ICE.get();
12106 
12107   if (Value != 0 && ZeroWidth)
12108     *ZeroWidth = false;
12109 
12110   // Zero-width bitfield is ok for anonymous field.
12111   if (Value == 0 && FieldName)
12112     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
12113 
12114   if (Value.isSigned() && Value.isNegative()) {
12115     if (FieldName)
12116       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
12117                << FieldName << Value.toString(10);
12118     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
12119       << Value.toString(10);
12120   }
12121 
12122   if (!FieldTy->isDependentType()) {
12123     uint64_t TypeSize = Context.getTypeSize(FieldTy);
12124     if (Value.getZExtValue() > TypeSize) {
12125       if (!getLangOpts().CPlusPlus || IsMsStruct ||
12126           Context.getTargetInfo().getCXXABI().isMicrosoft()) {
12127         if (FieldName)
12128           return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
12129             << FieldName << (unsigned)Value.getZExtValue()
12130             << (unsigned)TypeSize;
12131 
12132         return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
12133           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
12134       }
12135 
12136       if (FieldName)
12137         Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
12138           << FieldName << (unsigned)Value.getZExtValue()
12139           << (unsigned)TypeSize;
12140       else
12141         Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
12142           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
12143     }
12144   }
12145 
12146   return BitWidth;
12147 }
12148 
12149 /// ActOnField - Each field of a C struct/union is passed into this in order
12150 /// to create a FieldDecl object for it.
ActOnField(Scope * S,Decl * TagD,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth)12151 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
12152                        Declarator &D, Expr *BitfieldWidth) {
12153   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
12154                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
12155                                /*InitStyle=*/ICIS_NoInit, AS_public);
12156   return Res;
12157 }
12158 
12159 /// HandleField - Analyze a field of a C struct or a C++ data member.
12160 ///
HandleField(Scope * S,RecordDecl * Record,SourceLocation DeclStart,Declarator & D,Expr * BitWidth,InClassInitStyle InitStyle,AccessSpecifier AS)12161 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
12162                              SourceLocation DeclStart,
12163                              Declarator &D, Expr *BitWidth,
12164                              InClassInitStyle InitStyle,
12165                              AccessSpecifier AS) {
12166   IdentifierInfo *II = D.getIdentifier();
12167   SourceLocation Loc = DeclStart;
12168   if (II) Loc = D.getIdentifierLoc();
12169 
12170   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12171   QualType T = TInfo->getType();
12172   if (getLangOpts().CPlusPlus) {
12173     CheckExtraCXXDefaultArguments(D);
12174 
12175     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
12176                                         UPPC_DataMemberType)) {
12177       D.setInvalidType();
12178       T = Context.IntTy;
12179       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
12180     }
12181   }
12182 
12183   // TR 18037 does not allow fields to be declared with address spaces.
12184   if (T.getQualifiers().hasAddressSpace()) {
12185     Diag(Loc, diag::err_field_with_address_space);
12186     D.setInvalidType();
12187   }
12188 
12189   // OpenCL 1.2 spec, s6.9 r:
12190   // The event type cannot be used to declare a structure or union field.
12191   if (LangOpts.OpenCL && T->isEventT()) {
12192     Diag(Loc, diag::err_event_t_struct_field);
12193     D.setInvalidType();
12194   }
12195 
12196   DiagnoseFunctionSpecifiers(D.getDeclSpec());
12197 
12198   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
12199     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
12200          diag::err_invalid_thread)
12201       << DeclSpec::getSpecifierName(TSCS);
12202 
12203   // Check to see if this name was declared as a member previously
12204   NamedDecl *PrevDecl = nullptr;
12205   LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
12206   LookupName(Previous, S);
12207   switch (Previous.getResultKind()) {
12208     case LookupResult::Found:
12209     case LookupResult::FoundUnresolvedValue:
12210       PrevDecl = Previous.getAsSingle<NamedDecl>();
12211       break;
12212 
12213     case LookupResult::FoundOverloaded:
12214       PrevDecl = Previous.getRepresentativeDecl();
12215       break;
12216 
12217     case LookupResult::NotFound:
12218     case LookupResult::NotFoundInCurrentInstantiation:
12219     case LookupResult::Ambiguous:
12220       break;
12221   }
12222   Previous.suppressDiagnostics();
12223 
12224   if (PrevDecl && PrevDecl->isTemplateParameter()) {
12225     // Maybe we will complain about the shadowed template parameter.
12226     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12227     // Just pretend that we didn't see the previous declaration.
12228     PrevDecl = nullptr;
12229   }
12230 
12231   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
12232     PrevDecl = nullptr;
12233 
12234   bool Mutable
12235     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
12236   SourceLocation TSSL = D.getLocStart();
12237   FieldDecl *NewFD
12238     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
12239                      TSSL, AS, PrevDecl, &D);
12240 
12241   if (NewFD->isInvalidDecl())
12242     Record->setInvalidDecl();
12243 
12244   if (D.getDeclSpec().isModulePrivateSpecified())
12245     NewFD->setModulePrivate();
12246 
12247   if (NewFD->isInvalidDecl() && PrevDecl) {
12248     // Don't introduce NewFD into scope; there's already something
12249     // with the same name in the same scope.
12250   } else if (II) {
12251     PushOnScopeChains(NewFD, S);
12252   } else
12253     Record->addDecl(NewFD);
12254 
12255   return NewFD;
12256 }
12257 
12258 /// \brief Build a new FieldDecl and check its well-formedness.
12259 ///
12260 /// This routine builds a new FieldDecl given the fields name, type,
12261 /// record, etc. \p PrevDecl should refer to any previous declaration
12262 /// with the same name and in the same scope as the field to be
12263 /// created.
12264 ///
12265 /// \returns a new FieldDecl.
12266 ///
12267 /// \todo The Declarator argument is a hack. It will be removed once
CheckFieldDecl(DeclarationName Name,QualType T,TypeSourceInfo * TInfo,RecordDecl * Record,SourceLocation Loc,bool Mutable,Expr * BitWidth,InClassInitStyle InitStyle,SourceLocation TSSL,AccessSpecifier AS,NamedDecl * PrevDecl,Declarator * D)12268 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
12269                                 TypeSourceInfo *TInfo,
12270                                 RecordDecl *Record, SourceLocation Loc,
12271                                 bool Mutable, Expr *BitWidth,
12272                                 InClassInitStyle InitStyle,
12273                                 SourceLocation TSSL,
12274                                 AccessSpecifier AS, NamedDecl *PrevDecl,
12275                                 Declarator *D) {
12276   IdentifierInfo *II = Name.getAsIdentifierInfo();
12277   bool InvalidDecl = false;
12278   if (D) InvalidDecl = D->isInvalidType();
12279 
12280   // If we receive a broken type, recover by assuming 'int' and
12281   // marking this declaration as invalid.
12282   if (T.isNull()) {
12283     InvalidDecl = true;
12284     T = Context.IntTy;
12285   }
12286 
12287   QualType EltTy = Context.getBaseElementType(T);
12288   if (!EltTy->isDependentType()) {
12289     if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
12290       // Fields of incomplete type force their record to be invalid.
12291       Record->setInvalidDecl();
12292       InvalidDecl = true;
12293     } else {
12294       NamedDecl *Def;
12295       EltTy->isIncompleteType(&Def);
12296       if (Def && Def->isInvalidDecl()) {
12297         Record->setInvalidDecl();
12298         InvalidDecl = true;
12299       }
12300     }
12301   }
12302 
12303   // OpenCL v1.2 s6.9.c: bitfields are not supported.
12304   if (BitWidth && getLangOpts().OpenCL) {
12305     Diag(Loc, diag::err_opencl_bitfields);
12306     InvalidDecl = true;
12307   }
12308 
12309   // C99 6.7.2.1p8: A member of a structure or union may have any type other
12310   // than a variably modified type.
12311   if (!InvalidDecl && T->isVariablyModifiedType()) {
12312     bool SizeIsNegative;
12313     llvm::APSInt Oversized;
12314 
12315     TypeSourceInfo *FixedTInfo =
12316       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
12317                                                     SizeIsNegative,
12318                                                     Oversized);
12319     if (FixedTInfo) {
12320       Diag(Loc, diag::warn_illegal_constant_array_size);
12321       TInfo = FixedTInfo;
12322       T = FixedTInfo->getType();
12323     } else {
12324       if (SizeIsNegative)
12325         Diag(Loc, diag::err_typecheck_negative_array_size);
12326       else if (Oversized.getBoolValue())
12327         Diag(Loc, diag::err_array_too_large)
12328           << Oversized.toString(10);
12329       else
12330         Diag(Loc, diag::err_typecheck_field_variable_size);
12331       InvalidDecl = true;
12332     }
12333   }
12334 
12335   // Fields can not have abstract class types
12336   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
12337                                              diag::err_abstract_type_in_decl,
12338                                              AbstractFieldType))
12339     InvalidDecl = true;
12340 
12341   bool ZeroWidth = false;
12342   // If this is declared as a bit-field, check the bit-field.
12343   if (!InvalidDecl && BitWidth) {
12344     BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
12345                               &ZeroWidth).get();
12346     if (!BitWidth) {
12347       InvalidDecl = true;
12348       BitWidth = nullptr;
12349       ZeroWidth = false;
12350     }
12351   }
12352 
12353   // Check that 'mutable' is consistent with the type of the declaration.
12354   if (!InvalidDecl && Mutable) {
12355     unsigned DiagID = 0;
12356     if (T->isReferenceType())
12357       DiagID = diag::err_mutable_reference;
12358     else if (T.isConstQualified())
12359       DiagID = diag::err_mutable_const;
12360 
12361     if (DiagID) {
12362       SourceLocation ErrLoc = Loc;
12363       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
12364         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
12365       Diag(ErrLoc, DiagID);
12366       Mutable = false;
12367       InvalidDecl = true;
12368     }
12369   }
12370 
12371   // C++11 [class.union]p8 (DR1460):
12372   //   At most one variant member of a union may have a
12373   //   brace-or-equal-initializer.
12374   if (InitStyle != ICIS_NoInit)
12375     checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
12376 
12377   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
12378                                        BitWidth, Mutable, InitStyle);
12379   if (InvalidDecl)
12380     NewFD->setInvalidDecl();
12381 
12382   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
12383     Diag(Loc, diag::err_duplicate_member) << II;
12384     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
12385     NewFD->setInvalidDecl();
12386   }
12387 
12388   if (!InvalidDecl && getLangOpts().CPlusPlus) {
12389     if (Record->isUnion()) {
12390       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
12391         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
12392         if (RDecl->getDefinition()) {
12393           // C++ [class.union]p1: An object of a class with a non-trivial
12394           // constructor, a non-trivial copy constructor, a non-trivial
12395           // destructor, or a non-trivial copy assignment operator
12396           // cannot be a member of a union, nor can an array of such
12397           // objects.
12398           if (CheckNontrivialField(NewFD))
12399             NewFD->setInvalidDecl();
12400         }
12401       }
12402 
12403       // C++ [class.union]p1: If a union contains a member of reference type,
12404       // the program is ill-formed, except when compiling with MSVC extensions
12405       // enabled.
12406       if (EltTy->isReferenceType()) {
12407         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
12408                                     diag::ext_union_member_of_reference_type :
12409                                     diag::err_union_member_of_reference_type)
12410           << NewFD->getDeclName() << EltTy;
12411         if (!getLangOpts().MicrosoftExt)
12412           NewFD->setInvalidDecl();
12413       }
12414     }
12415   }
12416 
12417   // FIXME: We need to pass in the attributes given an AST
12418   // representation, not a parser representation.
12419   if (D) {
12420     // FIXME: The current scope is almost... but not entirely... correct here.
12421     ProcessDeclAttributes(getCurScope(), NewFD, *D);
12422 
12423     if (NewFD->hasAttrs())
12424       CheckAlignasUnderalignment(NewFD);
12425   }
12426 
12427   // In auto-retain/release, infer strong retension for fields of
12428   // retainable type.
12429   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
12430     NewFD->setInvalidDecl();
12431 
12432   if (T.isObjCGCWeak())
12433     Diag(Loc, diag::warn_attribute_weak_on_field);
12434 
12435   NewFD->setAccess(AS);
12436   return NewFD;
12437 }
12438 
CheckNontrivialField(FieldDecl * FD)12439 bool Sema::CheckNontrivialField(FieldDecl *FD) {
12440   assert(FD);
12441   assert(getLangOpts().CPlusPlus && "valid check only for C++");
12442 
12443   if (FD->isInvalidDecl() || FD->getType()->isDependentType())
12444     return false;
12445 
12446   QualType EltTy = Context.getBaseElementType(FD->getType());
12447   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
12448     CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
12449     if (RDecl->getDefinition()) {
12450       // We check for copy constructors before constructors
12451       // because otherwise we'll never get complaints about
12452       // copy constructors.
12453 
12454       CXXSpecialMember member = CXXInvalid;
12455       // We're required to check for any non-trivial constructors. Since the
12456       // implicit default constructor is suppressed if there are any
12457       // user-declared constructors, we just need to check that there is a
12458       // trivial default constructor and a trivial copy constructor. (We don't
12459       // worry about move constructors here, since this is a C++98 check.)
12460       if (RDecl->hasNonTrivialCopyConstructor())
12461         member = CXXCopyConstructor;
12462       else if (!RDecl->hasTrivialDefaultConstructor())
12463         member = CXXDefaultConstructor;
12464       else if (RDecl->hasNonTrivialCopyAssignment())
12465         member = CXXCopyAssignment;
12466       else if (RDecl->hasNonTrivialDestructor())
12467         member = CXXDestructor;
12468 
12469       if (member != CXXInvalid) {
12470         if (!getLangOpts().CPlusPlus11 &&
12471             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
12472           // Objective-C++ ARC: it is an error to have a non-trivial field of
12473           // a union. However, system headers in Objective-C programs
12474           // occasionally have Objective-C lifetime objects within unions,
12475           // and rather than cause the program to fail, we make those
12476           // members unavailable.
12477           SourceLocation Loc = FD->getLocation();
12478           if (getSourceManager().isInSystemHeader(Loc)) {
12479             if (!FD->hasAttr<UnavailableAttr>())
12480               FD->addAttr(UnavailableAttr::CreateImplicit(Context,
12481                                   "this system field has retaining ownership",
12482                                   Loc));
12483             return false;
12484           }
12485         }
12486 
12487         Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
12488                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
12489                diag::err_illegal_union_or_anon_struct_member)
12490           << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
12491         DiagnoseNontrivial(RDecl, member);
12492         return !getLangOpts().CPlusPlus11;
12493       }
12494     }
12495   }
12496 
12497   return false;
12498 }
12499 
12500 /// TranslateIvarVisibility - Translate visibility from a token ID to an
12501 ///  AST enum value.
12502 static ObjCIvarDecl::AccessControl
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility)12503 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
12504   switch (ivarVisibility) {
12505   default: llvm_unreachable("Unknown visitibility kind");
12506   case tok::objc_private: return ObjCIvarDecl::Private;
12507   case tok::objc_public: return ObjCIvarDecl::Public;
12508   case tok::objc_protected: return ObjCIvarDecl::Protected;
12509   case tok::objc_package: return ObjCIvarDecl::Package;
12510   }
12511 }
12512 
12513 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
12514 /// in order to create an IvarDecl object for it.
ActOnIvar(Scope * S,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth,tok::ObjCKeywordKind Visibility)12515 Decl *Sema::ActOnIvar(Scope *S,
12516                                 SourceLocation DeclStart,
12517                                 Declarator &D, Expr *BitfieldWidth,
12518                                 tok::ObjCKeywordKind Visibility) {
12519 
12520   IdentifierInfo *II = D.getIdentifier();
12521   Expr *BitWidth = (Expr*)BitfieldWidth;
12522   SourceLocation Loc = DeclStart;
12523   if (II) Loc = D.getIdentifierLoc();
12524 
12525   // FIXME: Unnamed fields can be handled in various different ways, for
12526   // example, unnamed unions inject all members into the struct namespace!
12527 
12528   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12529   QualType T = TInfo->getType();
12530 
12531   if (BitWidth) {
12532     // 6.7.2.1p3, 6.7.2.1p4
12533     BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
12534     if (!BitWidth)
12535       D.setInvalidType();
12536   } else {
12537     // Not a bitfield.
12538 
12539     // validate II.
12540 
12541   }
12542   if (T->isReferenceType()) {
12543     Diag(Loc, diag::err_ivar_reference_type);
12544     D.setInvalidType();
12545   }
12546   // C99 6.7.2.1p8: A member of a structure or union may have any type other
12547   // than a variably modified type.
12548   else if (T->isVariablyModifiedType()) {
12549     Diag(Loc, diag::err_typecheck_ivar_variable_size);
12550     D.setInvalidType();
12551   }
12552 
12553   // Get the visibility (access control) for this ivar.
12554   ObjCIvarDecl::AccessControl ac =
12555     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
12556                                         : ObjCIvarDecl::None;
12557   // Must set ivar's DeclContext to its enclosing interface.
12558   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
12559   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
12560     return nullptr;
12561   ObjCContainerDecl *EnclosingContext;
12562   if (ObjCImplementationDecl *IMPDecl =
12563       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
12564     if (LangOpts.ObjCRuntime.isFragile()) {
12565     // Case of ivar declared in an implementation. Context is that of its class.
12566       EnclosingContext = IMPDecl->getClassInterface();
12567       assert(EnclosingContext && "Implementation has no class interface!");
12568     }
12569     else
12570       EnclosingContext = EnclosingDecl;
12571   } else {
12572     if (ObjCCategoryDecl *CDecl =
12573         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
12574       if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
12575         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
12576         return nullptr;
12577       }
12578     }
12579     EnclosingContext = EnclosingDecl;
12580   }
12581 
12582   // Construct the decl.
12583   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
12584                                              DeclStart, Loc, II, T,
12585                                              TInfo, ac, (Expr *)BitfieldWidth);
12586 
12587   if (II) {
12588     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
12589                                            ForRedeclaration);
12590     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
12591         && !isa<TagDecl>(PrevDecl)) {
12592       Diag(Loc, diag::err_duplicate_member) << II;
12593       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
12594       NewID->setInvalidDecl();
12595     }
12596   }
12597 
12598   // Process attributes attached to the ivar.
12599   ProcessDeclAttributes(S, NewID, D);
12600 
12601   if (D.isInvalidType())
12602     NewID->setInvalidDecl();
12603 
12604   // In ARC, infer 'retaining' for ivars of retainable type.
12605   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
12606     NewID->setInvalidDecl();
12607 
12608   if (D.getDeclSpec().isModulePrivateSpecified())
12609     NewID->setModulePrivate();
12610 
12611   if (II) {
12612     // FIXME: When interfaces are DeclContexts, we'll need to add
12613     // these to the interface.
12614     S->AddDecl(NewID);
12615     IdResolver.AddDecl(NewID);
12616   }
12617 
12618   if (LangOpts.ObjCRuntime.isNonFragile() &&
12619       !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
12620     Diag(Loc, diag::warn_ivars_in_interface);
12621 
12622   return NewID;
12623 }
12624 
12625 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
12626 /// class and class extensions. For every class \@interface and class
12627 /// extension \@interface, if the last ivar is a bitfield of any type,
12628 /// then add an implicit `char :0` ivar to the end of that interface.
ActOnLastBitfield(SourceLocation DeclLoc,SmallVectorImpl<Decl * > & AllIvarDecls)12629 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
12630                              SmallVectorImpl<Decl *> &AllIvarDecls) {
12631   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
12632     return;
12633 
12634   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
12635   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
12636 
12637   if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
12638     return;
12639   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
12640   if (!ID) {
12641     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
12642       if (!CD->IsClassExtension())
12643         return;
12644     }
12645     // No need to add this to end of @implementation.
12646     else
12647       return;
12648   }
12649   // All conditions are met. Add a new bitfield to the tail end of ivars.
12650   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
12651   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
12652 
12653   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
12654                               DeclLoc, DeclLoc, nullptr,
12655                               Context.CharTy,
12656                               Context.getTrivialTypeSourceInfo(Context.CharTy,
12657                                                                DeclLoc),
12658                               ObjCIvarDecl::Private, BW,
12659                               true);
12660   AllIvarDecls.push_back(Ivar);
12661 }
12662 
ActOnFields(Scope * S,SourceLocation RecLoc,Decl * EnclosingDecl,ArrayRef<Decl * > Fields,SourceLocation LBrac,SourceLocation RBrac,AttributeList * Attr)12663 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
12664                        ArrayRef<Decl *> Fields, SourceLocation LBrac,
12665                        SourceLocation RBrac, AttributeList *Attr) {
12666   assert(EnclosingDecl && "missing record or interface decl");
12667 
12668   // If this is an Objective-C @implementation or category and we have
12669   // new fields here we should reset the layout of the interface since
12670   // it will now change.
12671   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
12672     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
12673     switch (DC->getKind()) {
12674     default: break;
12675     case Decl::ObjCCategory:
12676       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
12677       break;
12678     case Decl::ObjCImplementation:
12679       Context.
12680         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
12681       break;
12682     }
12683   }
12684 
12685   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
12686 
12687   // Start counting up the number of named members; make sure to include
12688   // members of anonymous structs and unions in the total.
12689   unsigned NumNamedMembers = 0;
12690   if (Record) {
12691     for (const auto *I : Record->decls()) {
12692       if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
12693         if (IFD->getDeclName())
12694           ++NumNamedMembers;
12695     }
12696   }
12697 
12698   // Verify that all the fields are okay.
12699   SmallVector<FieldDecl*, 32> RecFields;
12700 
12701   bool ARCErrReported = false;
12702   for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
12703        i != end; ++i) {
12704     FieldDecl *FD = cast<FieldDecl>(*i);
12705 
12706     // Get the type for the field.
12707     const Type *FDTy = FD->getType().getTypePtr();
12708 
12709     if (!FD->isAnonymousStructOrUnion()) {
12710       // Remember all fields written by the user.
12711       RecFields.push_back(FD);
12712     }
12713 
12714     // If the field is already invalid for some reason, don't emit more
12715     // diagnostics about it.
12716     if (FD->isInvalidDecl()) {
12717       EnclosingDecl->setInvalidDecl();
12718       continue;
12719     }
12720 
12721     // C99 6.7.2.1p2:
12722     //   A structure or union shall not contain a member with
12723     //   incomplete or function type (hence, a structure shall not
12724     //   contain an instance of itself, but may contain a pointer to
12725     //   an instance of itself), except that the last member of a
12726     //   structure with more than one named member may have incomplete
12727     //   array type; such a structure (and any union containing,
12728     //   possibly recursively, a member that is such a structure)
12729     //   shall not be a member of a structure or an element of an
12730     //   array.
12731     if (FDTy->isFunctionType()) {
12732       // Field declared as a function.
12733       Diag(FD->getLocation(), diag::err_field_declared_as_function)
12734         << FD->getDeclName();
12735       FD->setInvalidDecl();
12736       EnclosingDecl->setInvalidDecl();
12737       continue;
12738     } else if (FDTy->isIncompleteArrayType() && Record &&
12739                ((i + 1 == Fields.end() && !Record->isUnion()) ||
12740                 ((getLangOpts().MicrosoftExt ||
12741                   getLangOpts().CPlusPlus) &&
12742                  (i + 1 == Fields.end() || Record->isUnion())))) {
12743       // Flexible array member.
12744       // Microsoft and g++ is more permissive regarding flexible array.
12745       // It will accept flexible array in union and also
12746       // as the sole element of a struct/class.
12747       unsigned DiagID = 0;
12748       if (Record->isUnion())
12749         DiagID = getLangOpts().MicrosoftExt
12750                      ? diag::ext_flexible_array_union_ms
12751                      : getLangOpts().CPlusPlus
12752                            ? diag::ext_flexible_array_union_gnu
12753                            : diag::err_flexible_array_union;
12754       else if (Fields.size() == 1)
12755         DiagID = getLangOpts().MicrosoftExt
12756                      ? diag::ext_flexible_array_empty_aggregate_ms
12757                      : getLangOpts().CPlusPlus
12758                            ? diag::ext_flexible_array_empty_aggregate_gnu
12759                            : NumNamedMembers < 1
12760                                  ? diag::err_flexible_array_empty_aggregate
12761                                  : 0;
12762 
12763       if (DiagID)
12764         Diag(FD->getLocation(), DiagID) << FD->getDeclName()
12765                                         << Record->getTagKind();
12766       // While the layout of types that contain virtual bases is not specified
12767       // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
12768       // virtual bases after the derived members.  This would make a flexible
12769       // array member declared at the end of an object not adjacent to the end
12770       // of the type.
12771       if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record))
12772         if (RD->getNumVBases() != 0)
12773           Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
12774             << FD->getDeclName() << Record->getTagKind();
12775       if (!getLangOpts().C99)
12776         Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
12777           << FD->getDeclName() << Record->getTagKind();
12778 
12779       // If the element type has a non-trivial destructor, we would not
12780       // implicitly destroy the elements, so disallow it for now.
12781       //
12782       // FIXME: GCC allows this. We should probably either implicitly delete
12783       // the destructor of the containing class, or just allow this.
12784       QualType BaseElem = Context.getBaseElementType(FD->getType());
12785       if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
12786         Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
12787           << FD->getDeclName() << FD->getType();
12788         FD->setInvalidDecl();
12789         EnclosingDecl->setInvalidDecl();
12790         continue;
12791       }
12792       // Okay, we have a legal flexible array member at the end of the struct.
12793       Record->setHasFlexibleArrayMember(true);
12794     } else if (!FDTy->isDependentType() &&
12795                RequireCompleteType(FD->getLocation(), FD->getType(),
12796                                    diag::err_field_incomplete)) {
12797       // Incomplete type
12798       FD->setInvalidDecl();
12799       EnclosingDecl->setInvalidDecl();
12800       continue;
12801     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
12802       if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
12803         // A type which contains a flexible array member is considered to be a
12804         // flexible array member.
12805         Record->setHasFlexibleArrayMember(true);
12806         if (!Record->isUnion()) {
12807           // If this is a struct/class and this is not the last element, reject
12808           // it.  Note that GCC supports variable sized arrays in the middle of
12809           // structures.
12810           if (i + 1 != Fields.end())
12811             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
12812               << FD->getDeclName() << FD->getType();
12813           else {
12814             // We support flexible arrays at the end of structs in
12815             // other structs as an extension.
12816             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
12817               << FD->getDeclName();
12818           }
12819         }
12820       }
12821       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
12822           RequireNonAbstractType(FD->getLocation(), FD->getType(),
12823                                  diag::err_abstract_type_in_decl,
12824                                  AbstractIvarType)) {
12825         // Ivars can not have abstract class types
12826         FD->setInvalidDecl();
12827       }
12828       if (Record && FDTTy->getDecl()->hasObjectMember())
12829         Record->setHasObjectMember(true);
12830       if (Record && FDTTy->getDecl()->hasVolatileMember())
12831         Record->setHasVolatileMember(true);
12832     } else if (FDTy->isObjCObjectType()) {
12833       /// A field cannot be an Objective-c object
12834       Diag(FD->getLocation(), diag::err_statically_allocated_object)
12835         << FixItHint::CreateInsertion(FD->getLocation(), "*");
12836       QualType T = Context.getObjCObjectPointerType(FD->getType());
12837       FD->setType(T);
12838     } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
12839                (!getLangOpts().CPlusPlus || Record->isUnion())) {
12840       // It's an error in ARC if a field has lifetime.
12841       // We don't want to report this in a system header, though,
12842       // so we just make the field unavailable.
12843       // FIXME: that's really not sufficient; we need to make the type
12844       // itself invalid to, say, initialize or copy.
12845       QualType T = FD->getType();
12846       Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
12847       if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
12848         SourceLocation loc = FD->getLocation();
12849         if (getSourceManager().isInSystemHeader(loc)) {
12850           if (!FD->hasAttr<UnavailableAttr>()) {
12851             FD->addAttr(UnavailableAttr::CreateImplicit(Context,
12852                               "this system field has retaining ownership",
12853                               loc));
12854           }
12855         } else {
12856           Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
12857             << T->isBlockPointerType() << Record->getTagKind();
12858         }
12859         ARCErrReported = true;
12860       }
12861     } else if (getLangOpts().ObjC1 &&
12862                getLangOpts().getGC() != LangOptions::NonGC &&
12863                Record && !Record->hasObjectMember()) {
12864       if (FD->getType()->isObjCObjectPointerType() ||
12865           FD->getType().isObjCGCStrong())
12866         Record->setHasObjectMember(true);
12867       else if (Context.getAsArrayType(FD->getType())) {
12868         QualType BaseType = Context.getBaseElementType(FD->getType());
12869         if (BaseType->isRecordType() &&
12870             BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
12871           Record->setHasObjectMember(true);
12872         else if (BaseType->isObjCObjectPointerType() ||
12873                  BaseType.isObjCGCStrong())
12874                Record->setHasObjectMember(true);
12875       }
12876     }
12877     if (Record && FD->getType().isVolatileQualified())
12878       Record->setHasVolatileMember(true);
12879     // Keep track of the number of named members.
12880     if (FD->getIdentifier())
12881       ++NumNamedMembers;
12882   }
12883 
12884   // Okay, we successfully defined 'Record'.
12885   if (Record) {
12886     bool Completed = false;
12887     if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
12888       if (!CXXRecord->isInvalidDecl()) {
12889         // Set access bits correctly on the directly-declared conversions.
12890         for (CXXRecordDecl::conversion_iterator
12891                I = CXXRecord->conversion_begin(),
12892                E = CXXRecord->conversion_end(); I != E; ++I)
12893           I.setAccess((*I)->getAccess());
12894 
12895         if (!CXXRecord->isDependentType()) {
12896           if (CXXRecord->hasUserDeclaredDestructor()) {
12897             // Adjust user-defined destructor exception spec.
12898             if (getLangOpts().CPlusPlus11)
12899               AdjustDestructorExceptionSpec(CXXRecord,
12900                                             CXXRecord->getDestructor());
12901           }
12902 
12903           // Add any implicitly-declared members to this class.
12904           AddImplicitlyDeclaredMembersToClass(CXXRecord);
12905 
12906           // If we have virtual base classes, we may end up finding multiple
12907           // final overriders for a given virtual function. Check for this
12908           // problem now.
12909           if (CXXRecord->getNumVBases()) {
12910             CXXFinalOverriderMap FinalOverriders;
12911             CXXRecord->getFinalOverriders(FinalOverriders);
12912 
12913             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
12914                                              MEnd = FinalOverriders.end();
12915                  M != MEnd; ++M) {
12916               for (OverridingMethods::iterator SO = M->second.begin(),
12917                                             SOEnd = M->second.end();
12918                    SO != SOEnd; ++SO) {
12919                 assert(SO->second.size() > 0 &&
12920                        "Virtual function without overridding functions?");
12921                 if (SO->second.size() == 1)
12922                   continue;
12923 
12924                 // C++ [class.virtual]p2:
12925                 //   In a derived class, if a virtual member function of a base
12926                 //   class subobject has more than one final overrider the
12927                 //   program is ill-formed.
12928                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
12929                   << (const NamedDecl *)M->first << Record;
12930                 Diag(M->first->getLocation(),
12931                      diag::note_overridden_virtual_function);
12932                 for (OverridingMethods::overriding_iterator
12933                           OM = SO->second.begin(),
12934                        OMEnd = SO->second.end();
12935                      OM != OMEnd; ++OM)
12936                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
12937                     << (const NamedDecl *)M->first << OM->Method->getParent();
12938 
12939                 Record->setInvalidDecl();
12940               }
12941             }
12942             CXXRecord->completeDefinition(&FinalOverriders);
12943             Completed = true;
12944           }
12945         }
12946       }
12947     }
12948 
12949     if (!Completed)
12950       Record->completeDefinition();
12951 
12952     if (Record->hasAttrs()) {
12953       CheckAlignasUnderalignment(Record);
12954 
12955       if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
12956         checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
12957                                            IA->getRange(), IA->getBestCase(),
12958                                            IA->getSemanticSpelling());
12959     }
12960 
12961     // Check if the structure/union declaration is a type that can have zero
12962     // size in C. For C this is a language extension, for C++ it may cause
12963     // compatibility problems.
12964     bool CheckForZeroSize;
12965     if (!getLangOpts().CPlusPlus) {
12966       CheckForZeroSize = true;
12967     } else {
12968       // For C++ filter out types that cannot be referenced in C code.
12969       CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
12970       CheckForZeroSize =
12971           CXXRecord->getLexicalDeclContext()->isExternCContext() &&
12972           !CXXRecord->isDependentType() &&
12973           CXXRecord->isCLike();
12974     }
12975     if (CheckForZeroSize) {
12976       bool ZeroSize = true;
12977       bool IsEmpty = true;
12978       unsigned NonBitFields = 0;
12979       for (RecordDecl::field_iterator I = Record->field_begin(),
12980                                       E = Record->field_end();
12981            (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
12982         IsEmpty = false;
12983         if (I->isUnnamedBitfield()) {
12984           if (I->getBitWidthValue(Context) > 0)
12985             ZeroSize = false;
12986         } else {
12987           ++NonBitFields;
12988           QualType FieldType = I->getType();
12989           if (FieldType->isIncompleteType() ||
12990               !Context.getTypeSizeInChars(FieldType).isZero())
12991             ZeroSize = false;
12992         }
12993       }
12994 
12995       // Empty structs are an extension in C (C99 6.7.2.1p7). They are
12996       // allowed in C++, but warn if its declaration is inside
12997       // extern "C" block.
12998       if (ZeroSize) {
12999         Diag(RecLoc, getLangOpts().CPlusPlus ?
13000                          diag::warn_zero_size_struct_union_in_extern_c :
13001                          diag::warn_zero_size_struct_union_compat)
13002           << IsEmpty << Record->isUnion() << (NonBitFields > 1);
13003       }
13004 
13005       // Structs without named members are extension in C (C99 6.7.2.1p7),
13006       // but are accepted by GCC.
13007       if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
13008         Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
13009                                diag::ext_no_named_members_in_struct_union)
13010           << Record->isUnion();
13011       }
13012     }
13013   } else {
13014     ObjCIvarDecl **ClsFields =
13015       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
13016     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
13017       ID->setEndOfDefinitionLoc(RBrac);
13018       // Add ivar's to class's DeclContext.
13019       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
13020         ClsFields[i]->setLexicalDeclContext(ID);
13021         ID->addDecl(ClsFields[i]);
13022       }
13023       // Must enforce the rule that ivars in the base classes may not be
13024       // duplicates.
13025       if (ID->getSuperClass())
13026         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
13027     } else if (ObjCImplementationDecl *IMPDecl =
13028                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
13029       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
13030       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
13031         // Ivar declared in @implementation never belongs to the implementation.
13032         // Only it is in implementation's lexical context.
13033         ClsFields[I]->setLexicalDeclContext(IMPDecl);
13034       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
13035       IMPDecl->setIvarLBraceLoc(LBrac);
13036       IMPDecl->setIvarRBraceLoc(RBrac);
13037     } else if (ObjCCategoryDecl *CDecl =
13038                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
13039       // case of ivars in class extension; all other cases have been
13040       // reported as errors elsewhere.
13041       // FIXME. Class extension does not have a LocEnd field.
13042       // CDecl->setLocEnd(RBrac);
13043       // Add ivar's to class extension's DeclContext.
13044       // Diagnose redeclaration of private ivars.
13045       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
13046       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
13047         if (IDecl) {
13048           if (const ObjCIvarDecl *ClsIvar =
13049               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
13050             Diag(ClsFields[i]->getLocation(),
13051                  diag::err_duplicate_ivar_declaration);
13052             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
13053             continue;
13054           }
13055           for (const auto *Ext : IDecl->known_extensions()) {
13056             if (const ObjCIvarDecl *ClsExtIvar
13057                   = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
13058               Diag(ClsFields[i]->getLocation(),
13059                    diag::err_duplicate_ivar_declaration);
13060               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
13061               continue;
13062             }
13063           }
13064         }
13065         ClsFields[i]->setLexicalDeclContext(CDecl);
13066         CDecl->addDecl(ClsFields[i]);
13067       }
13068       CDecl->setIvarLBraceLoc(LBrac);
13069       CDecl->setIvarRBraceLoc(RBrac);
13070     }
13071   }
13072 
13073   if (Attr)
13074     ProcessDeclAttributeList(S, Record, Attr);
13075 }
13076 
13077 /// \brief Determine whether the given integral value is representable within
13078 /// the given type T.
isRepresentableIntegerValue(ASTContext & Context,llvm::APSInt & Value,QualType T)13079 static bool isRepresentableIntegerValue(ASTContext &Context,
13080                                         llvm::APSInt &Value,
13081                                         QualType T) {
13082   assert(T->isIntegralType(Context) && "Integral type required!");
13083   unsigned BitWidth = Context.getIntWidth(T);
13084 
13085   if (Value.isUnsigned() || Value.isNonNegative()) {
13086     if (T->isSignedIntegerOrEnumerationType())
13087       --BitWidth;
13088     return Value.getActiveBits() <= BitWidth;
13089   }
13090   return Value.getMinSignedBits() <= BitWidth;
13091 }
13092 
13093 // \brief Given an integral type, return the next larger integral type
13094 // (or a NULL type of no such type exists).
getNextLargerIntegralType(ASTContext & Context,QualType T)13095 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
13096   // FIXME: Int128/UInt128 support, which also needs to be introduced into
13097   // enum checking below.
13098   assert(T->isIntegralType(Context) && "Integral type required!");
13099   const unsigned NumTypes = 4;
13100   QualType SignedIntegralTypes[NumTypes] = {
13101     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
13102   };
13103   QualType UnsignedIntegralTypes[NumTypes] = {
13104     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
13105     Context.UnsignedLongLongTy
13106   };
13107 
13108   unsigned BitWidth = Context.getTypeSize(T);
13109   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
13110                                                         : UnsignedIntegralTypes;
13111   for (unsigned I = 0; I != NumTypes; ++I)
13112     if (Context.getTypeSize(Types[I]) > BitWidth)
13113       return Types[I];
13114 
13115   return QualType();
13116 }
13117 
CheckEnumConstant(EnumDecl * Enum,EnumConstantDecl * LastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,Expr * Val)13118 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
13119                                           EnumConstantDecl *LastEnumConst,
13120                                           SourceLocation IdLoc,
13121                                           IdentifierInfo *Id,
13122                                           Expr *Val) {
13123   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
13124   llvm::APSInt EnumVal(IntWidth);
13125   QualType EltTy;
13126 
13127   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
13128     Val = nullptr;
13129 
13130   if (Val)
13131     Val = DefaultLvalueConversion(Val).get();
13132 
13133   if (Val) {
13134     if (Enum->isDependentType() || Val->isTypeDependent())
13135       EltTy = Context.DependentTy;
13136     else {
13137       SourceLocation ExpLoc;
13138       if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
13139           !getLangOpts().MSVCCompat) {
13140         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
13141         // constant-expression in the enumerator-definition shall be a converted
13142         // constant expression of the underlying type.
13143         EltTy = Enum->getIntegerType();
13144         ExprResult Converted =
13145           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
13146                                            CCEK_Enumerator);
13147         if (Converted.isInvalid())
13148           Val = nullptr;
13149         else
13150           Val = Converted.get();
13151       } else if (!Val->isValueDependent() &&
13152                  !(Val = VerifyIntegerConstantExpression(Val,
13153                                                          &EnumVal).get())) {
13154         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
13155       } else {
13156         if (Enum->isFixed()) {
13157           EltTy = Enum->getIntegerType();
13158 
13159           // In Obj-C and Microsoft mode, require the enumeration value to be
13160           // representable in the underlying type of the enumeration. In C++11,
13161           // we perform a non-narrowing conversion as part of converted constant
13162           // expression checking.
13163           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
13164             if (getLangOpts().MSVCCompat) {
13165               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
13166               Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
13167             } else
13168               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
13169           } else
13170             Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
13171         } else if (getLangOpts().CPlusPlus) {
13172           // C++11 [dcl.enum]p5:
13173           //   If the underlying type is not fixed, the type of each enumerator
13174           //   is the type of its initializing value:
13175           //     - If an initializer is specified for an enumerator, the
13176           //       initializing value has the same type as the expression.
13177           EltTy = Val->getType();
13178         } else {
13179           // C99 6.7.2.2p2:
13180           //   The expression that defines the value of an enumeration constant
13181           //   shall be an integer constant expression that has a value
13182           //   representable as an int.
13183 
13184           // Complain if the value is not representable in an int.
13185           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
13186             Diag(IdLoc, diag::ext_enum_value_not_int)
13187               << EnumVal.toString(10) << Val->getSourceRange()
13188               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
13189           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
13190             // Force the type of the expression to 'int'.
13191             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
13192           }
13193           EltTy = Val->getType();
13194         }
13195       }
13196     }
13197   }
13198 
13199   if (!Val) {
13200     if (Enum->isDependentType())
13201       EltTy = Context.DependentTy;
13202     else if (!LastEnumConst) {
13203       // C++0x [dcl.enum]p5:
13204       //   If the underlying type is not fixed, the type of each enumerator
13205       //   is the type of its initializing value:
13206       //     - If no initializer is specified for the first enumerator, the
13207       //       initializing value has an unspecified integral type.
13208       //
13209       // GCC uses 'int' for its unspecified integral type, as does
13210       // C99 6.7.2.2p3.
13211       if (Enum->isFixed()) {
13212         EltTy = Enum->getIntegerType();
13213       }
13214       else {
13215         EltTy = Context.IntTy;
13216       }
13217     } else {
13218       // Assign the last value + 1.
13219       EnumVal = LastEnumConst->getInitVal();
13220       ++EnumVal;
13221       EltTy = LastEnumConst->getType();
13222 
13223       // Check for overflow on increment.
13224       if (EnumVal < LastEnumConst->getInitVal()) {
13225         // C++0x [dcl.enum]p5:
13226         //   If the underlying type is not fixed, the type of each enumerator
13227         //   is the type of its initializing value:
13228         //
13229         //     - Otherwise the type of the initializing value is the same as
13230         //       the type of the initializing value of the preceding enumerator
13231         //       unless the incremented value is not representable in that type,
13232         //       in which case the type is an unspecified integral type
13233         //       sufficient to contain the incremented value. If no such type
13234         //       exists, the program is ill-formed.
13235         QualType T = getNextLargerIntegralType(Context, EltTy);
13236         if (T.isNull() || Enum->isFixed()) {
13237           // There is no integral type larger enough to represent this
13238           // value. Complain, then allow the value to wrap around.
13239           EnumVal = LastEnumConst->getInitVal();
13240           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
13241           ++EnumVal;
13242           if (Enum->isFixed())
13243             // When the underlying type is fixed, this is ill-formed.
13244             Diag(IdLoc, diag::err_enumerator_wrapped)
13245               << EnumVal.toString(10)
13246               << EltTy;
13247           else
13248             Diag(IdLoc, diag::ext_enumerator_increment_too_large)
13249               << EnumVal.toString(10);
13250         } else {
13251           EltTy = T;
13252         }
13253 
13254         // Retrieve the last enumerator's value, extent that type to the
13255         // type that is supposed to be large enough to represent the incremented
13256         // value, then increment.
13257         EnumVal = LastEnumConst->getInitVal();
13258         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
13259         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
13260         ++EnumVal;
13261 
13262         // If we're not in C++, diagnose the overflow of enumerator values,
13263         // which in C99 means that the enumerator value is not representable in
13264         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
13265         // permits enumerator values that are representable in some larger
13266         // integral type.
13267         if (!getLangOpts().CPlusPlus && !T.isNull())
13268           Diag(IdLoc, diag::warn_enum_value_overflow);
13269       } else if (!getLangOpts().CPlusPlus &&
13270                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
13271         // Enforce C99 6.7.2.2p2 even when we compute the next value.
13272         Diag(IdLoc, diag::ext_enum_value_not_int)
13273           << EnumVal.toString(10) << 1;
13274       }
13275     }
13276   }
13277 
13278   if (!EltTy->isDependentType()) {
13279     // Make the enumerator value match the signedness and size of the
13280     // enumerator's type.
13281     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
13282     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
13283   }
13284 
13285   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
13286                                   Val, EnumVal);
13287 }
13288 
13289 
ActOnEnumConstant(Scope * S,Decl * theEnumDecl,Decl * lastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,AttributeList * Attr,SourceLocation EqualLoc,Expr * Val)13290 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
13291                               SourceLocation IdLoc, IdentifierInfo *Id,
13292                               AttributeList *Attr,
13293                               SourceLocation EqualLoc, Expr *Val) {
13294   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
13295   EnumConstantDecl *LastEnumConst =
13296     cast_or_null<EnumConstantDecl>(lastEnumConst);
13297 
13298   // The scope passed in may not be a decl scope.  Zip up the scope tree until
13299   // we find one that is.
13300   S = getNonFieldDeclScope(S);
13301 
13302   // Verify that there isn't already something declared with this name in this
13303   // scope.
13304   NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
13305                                          ForRedeclaration);
13306   if (PrevDecl && PrevDecl->isTemplateParameter()) {
13307     // Maybe we will complain about the shadowed template parameter.
13308     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
13309     // Just pretend that we didn't see the previous declaration.
13310     PrevDecl = nullptr;
13311   }
13312 
13313   if (PrevDecl) {
13314     // When in C++, we may get a TagDecl with the same name; in this case the
13315     // enum constant will 'hide' the tag.
13316     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
13317            "Received TagDecl when not in C++!");
13318     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
13319       if (isa<EnumConstantDecl>(PrevDecl))
13320         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
13321       else
13322         Diag(IdLoc, diag::err_redefinition) << Id;
13323       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
13324       return nullptr;
13325     }
13326   }
13327 
13328   // C++ [class.mem]p15:
13329   // If T is the name of a class, then each of the following shall have a name
13330   // different from T:
13331   // - every enumerator of every member of class T that is an unscoped
13332   // enumerated type
13333   if (CXXRecordDecl *Record
13334                       = dyn_cast<CXXRecordDecl>(
13335                              TheEnumDecl->getDeclContext()->getRedeclContext()))
13336     if (!TheEnumDecl->isScoped() &&
13337         Record->getIdentifier() && Record->getIdentifier() == Id)
13338       Diag(IdLoc, diag::err_member_name_of_class) << Id;
13339 
13340   EnumConstantDecl *New =
13341     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
13342 
13343   if (New) {
13344     // Process attributes.
13345     if (Attr) ProcessDeclAttributeList(S, New, Attr);
13346 
13347     // Register this decl in the current scope stack.
13348     New->setAccess(TheEnumDecl->getAccess());
13349     PushOnScopeChains(New, S);
13350   }
13351 
13352   ActOnDocumentableDecl(New);
13353 
13354   return New;
13355 }
13356 
13357 // Returns true when the enum initial expression does not trigger the
13358 // duplicate enum warning.  A few common cases are exempted as follows:
13359 // Element2 = Element1
13360 // Element2 = Element1 + 1
13361 // Element2 = Element1 - 1
13362 // Where Element2 and Element1 are from the same enum.
ValidDuplicateEnum(EnumConstantDecl * ECD,EnumDecl * Enum)13363 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
13364   Expr *InitExpr = ECD->getInitExpr();
13365   if (!InitExpr)
13366     return true;
13367   InitExpr = InitExpr->IgnoreImpCasts();
13368 
13369   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
13370     if (!BO->isAdditiveOp())
13371       return true;
13372     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
13373     if (!IL)
13374       return true;
13375     if (IL->getValue() != 1)
13376       return true;
13377 
13378     InitExpr = BO->getLHS();
13379   }
13380 
13381   // This checks if the elements are from the same enum.
13382   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
13383   if (!DRE)
13384     return true;
13385 
13386   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
13387   if (!EnumConstant)
13388     return true;
13389 
13390   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
13391       Enum)
13392     return true;
13393 
13394   return false;
13395 }
13396 
13397 struct DupKey {
13398   int64_t val;
13399   bool isTombstoneOrEmptyKey;
DupKeyDupKey13400   DupKey(int64_t val, bool isTombstoneOrEmptyKey)
13401     : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
13402 };
13403 
GetDupKey(const llvm::APSInt & Val)13404 static DupKey GetDupKey(const llvm::APSInt& Val) {
13405   return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
13406                 false);
13407 }
13408 
13409 struct DenseMapInfoDupKey {
getEmptyKeyDenseMapInfoDupKey13410   static DupKey getEmptyKey() { return DupKey(0, true); }
getTombstoneKeyDenseMapInfoDupKey13411   static DupKey getTombstoneKey() { return DupKey(1, true); }
getHashValueDenseMapInfoDupKey13412   static unsigned getHashValue(const DupKey Key) {
13413     return (unsigned)(Key.val * 37);
13414   }
isEqualDenseMapInfoDupKey13415   static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
13416     return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
13417            LHS.val == RHS.val;
13418   }
13419 };
13420 
13421 // Emits a warning when an element is implicitly set a value that
13422 // a previous element has already been set to.
CheckForDuplicateEnumValues(Sema & S,ArrayRef<Decl * > Elements,EnumDecl * Enum,QualType EnumType)13423 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
13424                                         EnumDecl *Enum,
13425                                         QualType EnumType) {
13426   if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
13427     return;
13428   // Avoid anonymous enums
13429   if (!Enum->getIdentifier())
13430     return;
13431 
13432   // Only check for small enums.
13433   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
13434     return;
13435 
13436   typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
13437   typedef SmallVector<ECDVector *, 3> DuplicatesVector;
13438 
13439   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
13440   typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
13441           ValueToVectorMap;
13442 
13443   DuplicatesVector DupVector;
13444   ValueToVectorMap EnumMap;
13445 
13446   // Populate the EnumMap with all values represented by enum constants without
13447   // an initialier.
13448   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
13449     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
13450 
13451     // Null EnumConstantDecl means a previous diagnostic has been emitted for
13452     // this constant.  Skip this enum since it may be ill-formed.
13453     if (!ECD) {
13454       return;
13455     }
13456 
13457     if (ECD->getInitExpr())
13458       continue;
13459 
13460     DupKey Key = GetDupKey(ECD->getInitVal());
13461     DeclOrVector &Entry = EnumMap[Key];
13462 
13463     // First time encountering this value.
13464     if (Entry.isNull())
13465       Entry = ECD;
13466   }
13467 
13468   // Create vectors for any values that has duplicates.
13469   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
13470     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
13471     if (!ValidDuplicateEnum(ECD, Enum))
13472       continue;
13473 
13474     DupKey Key = GetDupKey(ECD->getInitVal());
13475 
13476     DeclOrVector& Entry = EnumMap[Key];
13477     if (Entry.isNull())
13478       continue;
13479 
13480     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
13481       // Ensure constants are different.
13482       if (D == ECD)
13483         continue;
13484 
13485       // Create new vector and push values onto it.
13486       ECDVector *Vec = new ECDVector();
13487       Vec->push_back(D);
13488       Vec->push_back(ECD);
13489 
13490       // Update entry to point to the duplicates vector.
13491       Entry = Vec;
13492 
13493       // Store the vector somewhere we can consult later for quick emission of
13494       // diagnostics.
13495       DupVector.push_back(Vec);
13496       continue;
13497     }
13498 
13499     ECDVector *Vec = Entry.get<ECDVector*>();
13500     // Make sure constants are not added more than once.
13501     if (*Vec->begin() == ECD)
13502       continue;
13503 
13504     Vec->push_back(ECD);
13505   }
13506 
13507   // Emit diagnostics.
13508   for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
13509                                   DupVectorEnd = DupVector.end();
13510        DupVectorIter != DupVectorEnd; ++DupVectorIter) {
13511     ECDVector *Vec = *DupVectorIter;
13512     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
13513 
13514     // Emit warning for one enum constant.
13515     ECDVector::iterator I = Vec->begin();
13516     S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
13517       << (*I)->getName() << (*I)->getInitVal().toString(10)
13518       << (*I)->getSourceRange();
13519     ++I;
13520 
13521     // Emit one note for each of the remaining enum constants with
13522     // the same value.
13523     for (ECDVector::iterator E = Vec->end(); I != E; ++I)
13524       S.Diag((*I)->getLocation(), diag::note_duplicate_element)
13525         << (*I)->getName() << (*I)->getInitVal().toString(10)
13526         << (*I)->getSourceRange();
13527     delete Vec;
13528   }
13529 }
13530 
ActOnEnumBody(SourceLocation EnumLoc,SourceLocation LBraceLoc,SourceLocation RBraceLoc,Decl * EnumDeclX,ArrayRef<Decl * > Elements,Scope * S,AttributeList * Attr)13531 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
13532                          SourceLocation RBraceLoc, Decl *EnumDeclX,
13533                          ArrayRef<Decl *> Elements,
13534                          Scope *S, AttributeList *Attr) {
13535   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
13536   QualType EnumType = Context.getTypeDeclType(Enum);
13537 
13538   if (Attr)
13539     ProcessDeclAttributeList(S, Enum, Attr);
13540 
13541   if (Enum->isDependentType()) {
13542     for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
13543       EnumConstantDecl *ECD =
13544         cast_or_null<EnumConstantDecl>(Elements[i]);
13545       if (!ECD) continue;
13546 
13547       ECD->setType(EnumType);
13548     }
13549 
13550     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
13551     return;
13552   }
13553 
13554   // TODO: If the result value doesn't fit in an int, it must be a long or long
13555   // long value.  ISO C does not support this, but GCC does as an extension,
13556   // emit a warning.
13557   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
13558   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
13559   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
13560 
13561   // Verify that all the values are okay, compute the size of the values, and
13562   // reverse the list.
13563   unsigned NumNegativeBits = 0;
13564   unsigned NumPositiveBits = 0;
13565 
13566   // Keep track of whether all elements have type int.
13567   bool AllElementsInt = true;
13568 
13569   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
13570     EnumConstantDecl *ECD =
13571       cast_or_null<EnumConstantDecl>(Elements[i]);
13572     if (!ECD) continue;  // Already issued a diagnostic.
13573 
13574     const llvm::APSInt &InitVal = ECD->getInitVal();
13575 
13576     // Keep track of the size of positive and negative values.
13577     if (InitVal.isUnsigned() || InitVal.isNonNegative())
13578       NumPositiveBits = std::max(NumPositiveBits,
13579                                  (unsigned)InitVal.getActiveBits());
13580     else
13581       NumNegativeBits = std::max(NumNegativeBits,
13582                                  (unsigned)InitVal.getMinSignedBits());
13583 
13584     // Keep track of whether every enum element has type int (very commmon).
13585     if (AllElementsInt)
13586       AllElementsInt = ECD->getType() == Context.IntTy;
13587   }
13588 
13589   // Figure out the type that should be used for this enum.
13590   QualType BestType;
13591   unsigned BestWidth;
13592 
13593   // C++0x N3000 [conv.prom]p3:
13594   //   An rvalue of an unscoped enumeration type whose underlying
13595   //   type is not fixed can be converted to an rvalue of the first
13596   //   of the following types that can represent all the values of
13597   //   the enumeration: int, unsigned int, long int, unsigned long
13598   //   int, long long int, or unsigned long long int.
13599   // C99 6.4.4.3p2:
13600   //   An identifier declared as an enumeration constant has type int.
13601   // The C99 rule is modified by a gcc extension
13602   QualType BestPromotionType;
13603 
13604   bool Packed = Enum->hasAttr<PackedAttr>();
13605   // -fshort-enums is the equivalent to specifying the packed attribute on all
13606   // enum definitions.
13607   if (LangOpts.ShortEnums)
13608     Packed = true;
13609 
13610   if (Enum->isFixed()) {
13611     BestType = Enum->getIntegerType();
13612     if (BestType->isPromotableIntegerType())
13613       BestPromotionType = Context.getPromotedIntegerType(BestType);
13614     else
13615       BestPromotionType = BestType;
13616     // We don't need to set BestWidth, because BestType is going to be the type
13617     // of the enumerators, but we do anyway because otherwise some compilers
13618     // warn that it might be used uninitialized.
13619     BestWidth = CharWidth;
13620   }
13621   else if (NumNegativeBits) {
13622     // If there is a negative value, figure out the smallest integer type (of
13623     // int/long/longlong) that fits.
13624     // If it's packed, check also if it fits a char or a short.
13625     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
13626       BestType = Context.SignedCharTy;
13627       BestWidth = CharWidth;
13628     } else if (Packed && NumNegativeBits <= ShortWidth &&
13629                NumPositiveBits < ShortWidth) {
13630       BestType = Context.ShortTy;
13631       BestWidth = ShortWidth;
13632     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
13633       BestType = Context.IntTy;
13634       BestWidth = IntWidth;
13635     } else {
13636       BestWidth = Context.getTargetInfo().getLongWidth();
13637 
13638       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
13639         BestType = Context.LongTy;
13640       } else {
13641         BestWidth = Context.getTargetInfo().getLongLongWidth();
13642 
13643         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
13644           Diag(Enum->getLocation(), diag::ext_enum_too_large);
13645         BestType = Context.LongLongTy;
13646       }
13647     }
13648     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
13649   } else {
13650     // If there is no negative value, figure out the smallest type that fits
13651     // all of the enumerator values.
13652     // If it's packed, check also if it fits a char or a short.
13653     if (Packed && NumPositiveBits <= CharWidth) {
13654       BestType = Context.UnsignedCharTy;
13655       BestPromotionType = Context.IntTy;
13656       BestWidth = CharWidth;
13657     } else if (Packed && NumPositiveBits <= ShortWidth) {
13658       BestType = Context.UnsignedShortTy;
13659       BestPromotionType = Context.IntTy;
13660       BestWidth = ShortWidth;
13661     } else if (NumPositiveBits <= IntWidth) {
13662       BestType = Context.UnsignedIntTy;
13663       BestWidth = IntWidth;
13664       BestPromotionType
13665         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
13666                            ? Context.UnsignedIntTy : Context.IntTy;
13667     } else if (NumPositiveBits <=
13668                (BestWidth = Context.getTargetInfo().getLongWidth())) {
13669       BestType = Context.UnsignedLongTy;
13670       BestPromotionType
13671         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
13672                            ? Context.UnsignedLongTy : Context.LongTy;
13673     } else {
13674       BestWidth = Context.getTargetInfo().getLongLongWidth();
13675       assert(NumPositiveBits <= BestWidth &&
13676              "How could an initializer get larger than ULL?");
13677       BestType = Context.UnsignedLongLongTy;
13678       BestPromotionType
13679         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
13680                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
13681     }
13682   }
13683 
13684   // Loop over all of the enumerator constants, changing their types to match
13685   // the type of the enum if needed.
13686   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
13687     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
13688     if (!ECD) continue;  // Already issued a diagnostic.
13689 
13690     // Standard C says the enumerators have int type, but we allow, as an
13691     // extension, the enumerators to be larger than int size.  If each
13692     // enumerator value fits in an int, type it as an int, otherwise type it the
13693     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
13694     // that X has type 'int', not 'unsigned'.
13695 
13696     // Determine whether the value fits into an int.
13697     llvm::APSInt InitVal = ECD->getInitVal();
13698 
13699     // If it fits into an integer type, force it.  Otherwise force it to match
13700     // the enum decl type.
13701     QualType NewTy;
13702     unsigned NewWidth;
13703     bool NewSign;
13704     if (!getLangOpts().CPlusPlus &&
13705         !Enum->isFixed() &&
13706         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
13707       NewTy = Context.IntTy;
13708       NewWidth = IntWidth;
13709       NewSign = true;
13710     } else if (ECD->getType() == BestType) {
13711       // Already the right type!
13712       if (getLangOpts().CPlusPlus)
13713         // C++ [dcl.enum]p4: Following the closing brace of an
13714         // enum-specifier, each enumerator has the type of its
13715         // enumeration.
13716         ECD->setType(EnumType);
13717       continue;
13718     } else {
13719       NewTy = BestType;
13720       NewWidth = BestWidth;
13721       NewSign = BestType->isSignedIntegerOrEnumerationType();
13722     }
13723 
13724     // Adjust the APSInt value.
13725     InitVal = InitVal.extOrTrunc(NewWidth);
13726     InitVal.setIsSigned(NewSign);
13727     ECD->setInitVal(InitVal);
13728 
13729     // Adjust the Expr initializer and type.
13730     if (ECD->getInitExpr() &&
13731         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
13732       ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
13733                                                 CK_IntegralCast,
13734                                                 ECD->getInitExpr(),
13735                                                 /*base paths*/ nullptr,
13736                                                 VK_RValue));
13737     if (getLangOpts().CPlusPlus)
13738       // C++ [dcl.enum]p4: Following the closing brace of an
13739       // enum-specifier, each enumerator has the type of its
13740       // enumeration.
13741       ECD->setType(EnumType);
13742     else
13743       ECD->setType(NewTy);
13744   }
13745 
13746   Enum->completeDefinition(BestType, BestPromotionType,
13747                            NumPositiveBits, NumNegativeBits);
13748 
13749   CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
13750 
13751   // Now that the enum type is defined, ensure it's not been underaligned.
13752   if (Enum->hasAttrs())
13753     CheckAlignasUnderalignment(Enum);
13754 }
13755 
ActOnFileScopeAsmDecl(Expr * expr,SourceLocation StartLoc,SourceLocation EndLoc)13756 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
13757                                   SourceLocation StartLoc,
13758                                   SourceLocation EndLoc) {
13759   StringLiteral *AsmString = cast<StringLiteral>(expr);
13760 
13761   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
13762                                                    AsmString, StartLoc,
13763                                                    EndLoc);
13764   CurContext->addDecl(New);
13765   return New;
13766 }
13767 
checkModuleImportContext(Sema & S,Module * M,SourceLocation ImportLoc,DeclContext * DC)13768 static void checkModuleImportContext(Sema &S, Module *M,
13769                                      SourceLocation ImportLoc,
13770                                      DeclContext *DC) {
13771   if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) {
13772     switch (LSD->getLanguage()) {
13773     case LinkageSpecDecl::lang_c:
13774       if (!M->IsExternC) {
13775         S.Diag(ImportLoc, diag::err_module_import_in_extern_c)
13776           << M->getFullModuleName();
13777         S.Diag(LSD->getLocStart(), diag::note_module_import_in_extern_c);
13778         return;
13779       }
13780       break;
13781     case LinkageSpecDecl::lang_cxx:
13782       break;
13783     }
13784     DC = LSD->getParent();
13785   }
13786 
13787   while (isa<LinkageSpecDecl>(DC))
13788     DC = DC->getParent();
13789   if (!isa<TranslationUnitDecl>(DC)) {
13790     S.Diag(ImportLoc, diag::err_module_import_not_at_top_level)
13791       << M->getFullModuleName() << DC;
13792     S.Diag(cast<Decl>(DC)->getLocStart(),
13793            diag::note_module_import_not_at_top_level)
13794       << DC;
13795   }
13796 }
13797 
ActOnModuleImport(SourceLocation AtLoc,SourceLocation ImportLoc,ModuleIdPath Path)13798 DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
13799                                    SourceLocation ImportLoc,
13800                                    ModuleIdPath Path) {
13801   Module *Mod =
13802       getModuleLoader().loadModule(ImportLoc, Path, Module::AllVisible,
13803                                    /*IsIncludeDirective=*/false);
13804   if (!Mod)
13805     return true;
13806 
13807   checkModuleImportContext(*this, Mod, ImportLoc, CurContext);
13808 
13809   // FIXME: we should support importing a submodule within a different submodule
13810   // of the same top-level module. Until we do, make it an error rather than
13811   // silently ignoring the import.
13812   if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule)
13813     Diag(ImportLoc, diag::err_module_self_import)
13814         << Mod->getFullModuleName() << getLangOpts().CurrentModule;
13815   else if (Mod->getTopLevelModuleName() == getLangOpts().ImplementationOfModule)
13816     Diag(ImportLoc, diag::err_module_import_in_implementation)
13817         << Mod->getFullModuleName() << getLangOpts().ImplementationOfModule;
13818 
13819   SmallVector<SourceLocation, 2> IdentifierLocs;
13820   Module *ModCheck = Mod;
13821   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
13822     // If we've run out of module parents, just drop the remaining identifiers.
13823     // We need the length to be consistent.
13824     if (!ModCheck)
13825       break;
13826     ModCheck = ModCheck->Parent;
13827 
13828     IdentifierLocs.push_back(Path[I].second);
13829   }
13830 
13831   ImportDecl *Import = ImportDecl::Create(Context,
13832                                           Context.getTranslationUnitDecl(),
13833                                           AtLoc.isValid()? AtLoc : ImportLoc,
13834                                           Mod, IdentifierLocs);
13835   Context.getTranslationUnitDecl()->addDecl(Import);
13836   return Import;
13837 }
13838 
ActOnModuleInclude(SourceLocation DirectiveLoc,Module * Mod)13839 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
13840   checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext);
13841 
13842   // FIXME: Should we synthesize an ImportDecl here?
13843   getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc,
13844                                       /*Complain=*/true);
13845 }
13846 
createImplicitModuleImportForErrorRecovery(SourceLocation Loc,Module * Mod)13847 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
13848                                                       Module *Mod) {
13849   // Bail if we're not allowed to implicitly import a module here.
13850   if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery)
13851     return;
13852 
13853   // Create the implicit import declaration.
13854   TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
13855   ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
13856                                                    Loc, Mod, Loc);
13857   TU->addDecl(ImportD);
13858   Consumer.HandleImplicitImportDecl(ImportD);
13859 
13860   // Make the module visible.
13861   getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc,
13862                                       /*Complain=*/false);
13863 }
13864 
ActOnPragmaRedefineExtname(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)13865 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
13866                                       IdentifierInfo* AliasName,
13867                                       SourceLocation PragmaLoc,
13868                                       SourceLocation NameLoc,
13869                                       SourceLocation AliasNameLoc) {
13870   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
13871                                     LookupOrdinaryName);
13872   AsmLabelAttr *Attr = ::new (Context) AsmLabelAttr(AliasNameLoc, Context,
13873                                                     AliasName->getName(), 0);
13874 
13875   if (PrevDecl)
13876     PrevDecl->addAttr(Attr);
13877   else
13878     (void)ExtnameUndeclaredIdentifiers.insert(
13879       std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
13880 }
13881 
ActOnPragmaWeakID(IdentifierInfo * Name,SourceLocation PragmaLoc,SourceLocation NameLoc)13882 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
13883                              SourceLocation PragmaLoc,
13884                              SourceLocation NameLoc) {
13885   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
13886 
13887   if (PrevDecl) {
13888     PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
13889   } else {
13890     (void)WeakUndeclaredIdentifiers.insert(
13891       std::pair<IdentifierInfo*,WeakInfo>
13892         (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
13893   }
13894 }
13895 
ActOnPragmaWeakAlias(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)13896 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
13897                                 IdentifierInfo* AliasName,
13898                                 SourceLocation PragmaLoc,
13899                                 SourceLocation NameLoc,
13900                                 SourceLocation AliasNameLoc) {
13901   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
13902                                     LookupOrdinaryName);
13903   WeakInfo W = WeakInfo(Name, NameLoc);
13904 
13905   if (PrevDecl) {
13906     if (!PrevDecl->hasAttr<AliasAttr>())
13907       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
13908         DeclApplyPragmaWeak(TUScope, ND, W);
13909   } else {
13910     (void)WeakUndeclaredIdentifiers.insert(
13911       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
13912   }
13913 }
13914 
getObjCDeclContext() const13915 Decl *Sema::getObjCDeclContext() const {
13916   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
13917 }
13918 
getCurContextAvailability() const13919 AvailabilityResult Sema::getCurContextAvailability() const {
13920   const Decl *D = cast<Decl>(getCurObjCLexicalContext());
13921   // If we are within an Objective-C method, we should consult
13922   // both the availability of the method as well as the
13923   // enclosing class.  If the class is (say) deprecated,
13924   // the entire method is considered deprecated from the
13925   // purpose of checking if the current context is deprecated.
13926   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
13927     AvailabilityResult R = MD->getAvailability();
13928     if (R != AR_Available)
13929       return R;
13930     D = MD->getClassInterface();
13931   }
13932   // If we are within an Objective-c @implementation, it
13933   // gets the same availability context as the @interface.
13934   else if (const ObjCImplementationDecl *ID =
13935             dyn_cast<ObjCImplementationDecl>(D)) {
13936     D = ID->getClassInterface();
13937   }
13938   // Recover from user error.
13939   return D ? D->getAvailability() : AR_Available;
13940 }
13941