1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for declarations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTConsumer.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTLambda.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/AST/CommentDiagnostic.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclTemplate.h"
25 #include "clang/AST/EvaluatedExprVisitor.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
32 #include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
33 #include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
34 #include "clang/Parse/ParseDiagnostic.h"
35 #include "clang/Sema/CXXFieldCollector.h"
36 #include "clang/Sema/DeclSpec.h"
37 #include "clang/Sema/DelayedDiagnostic.h"
38 #include "clang/Sema/Initialization.h"
39 #include "clang/Sema/Lookup.h"
40 #include "clang/Sema/ParsedTemplate.h"
41 #include "clang/Sema/Scope.h"
42 #include "clang/Sema/ScopeInfo.h"
43 #include "clang/Sema/Template.h"
44 #include "llvm/ADT/SmallString.h"
45 #include "llvm/ADT/Triple.h"
46 #include <algorithm>
47 #include <cstring>
48 #include <functional>
49 using namespace clang;
50 using namespace sema;
51 
52 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
53   if (OwnedType) {
54     Decl *Group[2] = { OwnedType, Ptr };
55     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
56   }
57 
58   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
59 }
60 
61 namespace {
62 
63 class TypeNameValidatorCCC : public CorrectionCandidateCallback {
64  public:
65   TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
66       : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
67     WantExpressionKeywords = false;
68     WantCXXNamedCasts = false;
69     WantRemainingKeywords = false;
70   }
71 
72   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
73     if (NamedDecl *ND = candidate.getCorrectionDecl())
74       return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
75           (AllowInvalidDecl || !ND->isInvalidDecl());
76     else
77       return !WantClassName && candidate.isKeyword();
78   }
79 
80  private:
81   bool AllowInvalidDecl;
82   bool WantClassName;
83 };
84 
85 }
86 
87 /// \brief Determine whether the token kind starts a simple-type-specifier.
88 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
89   switch (Kind) {
90   // FIXME: Take into account the current language when deciding whether a
91   // token kind is a valid type specifier
92   case tok::kw_short:
93   case tok::kw_long:
94   case tok::kw___int64:
95   case tok::kw___int128:
96   case tok::kw_signed:
97   case tok::kw_unsigned:
98   case tok::kw_void:
99   case tok::kw_char:
100   case tok::kw_int:
101   case tok::kw_half:
102   case tok::kw_float:
103   case tok::kw_double:
104   case tok::kw_wchar_t:
105   case tok::kw_bool:
106   case tok::kw___underlying_type:
107     return true;
108 
109   case tok::annot_typename:
110   case tok::kw_char16_t:
111   case tok::kw_char32_t:
112   case tok::kw_typeof:
113   case tok::annot_decltype:
114   case tok::kw_decltype:
115     return getLangOpts().CPlusPlus;
116 
117   default:
118     break;
119   }
120 
121   return false;
122 }
123 
124 /// \brief If the identifier refers to a type name within this scope,
125 /// return the declaration of that type.
126 ///
127 /// This routine performs ordinary name lookup of the identifier II
128 /// within the given scope, with optional C++ scope specifier SS, to
129 /// determine whether the name refers to a type. If so, returns an
130 /// opaque pointer (actually a QualType) corresponding to that
131 /// type. Otherwise, returns NULL.
132 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
133                              Scope *S, CXXScopeSpec *SS,
134                              bool isClassName, bool HasTrailingDot,
135                              ParsedType ObjectTypePtr,
136                              bool IsCtorOrDtorName,
137                              bool WantNontrivialTypeSourceInfo,
138                              IdentifierInfo **CorrectedII) {
139   // Determine where we will perform name lookup.
140   DeclContext *LookupCtx = 0;
141   if (ObjectTypePtr) {
142     QualType ObjectType = ObjectTypePtr.get();
143     if (ObjectType->isRecordType())
144       LookupCtx = computeDeclContext(ObjectType);
145   } else if (SS && SS->isNotEmpty()) {
146     LookupCtx = computeDeclContext(*SS, false);
147 
148     if (!LookupCtx) {
149       if (isDependentScopeSpecifier(*SS)) {
150         // C++ [temp.res]p3:
151         //   A qualified-id that refers to a type and in which the
152         //   nested-name-specifier depends on a template-parameter (14.6.2)
153         //   shall be prefixed by the keyword typename to indicate that the
154         //   qualified-id denotes a type, forming an
155         //   elaborated-type-specifier (7.1.5.3).
156         //
157         // We therefore do not perform any name lookup if the result would
158         // refer to a member of an unknown specialization.
159         if (!isClassName && !IsCtorOrDtorName)
160           return ParsedType();
161 
162         // We know from the grammar that this name refers to a type,
163         // so build a dependent node to describe the type.
164         if (WantNontrivialTypeSourceInfo)
165           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
166 
167         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
168         QualType T =
169           CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
170                             II, NameLoc);
171 
172           return ParsedType::make(T);
173       }
174 
175       return ParsedType();
176     }
177 
178     if (!LookupCtx->isDependentContext() &&
179         RequireCompleteDeclContext(*SS, LookupCtx))
180       return ParsedType();
181   }
182 
183   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
184   // lookup for class-names.
185   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
186                                       LookupOrdinaryName;
187   LookupResult Result(*this, &II, NameLoc, Kind);
188   if (LookupCtx) {
189     // Perform "qualified" name lookup into the declaration context we
190     // computed, which is either the type of the base of a member access
191     // expression or the declaration context associated with a prior
192     // nested-name-specifier.
193     LookupQualifiedName(Result, LookupCtx);
194 
195     if (ObjectTypePtr && Result.empty()) {
196       // C++ [basic.lookup.classref]p3:
197       //   If the unqualified-id is ~type-name, the type-name is looked up
198       //   in the context of the entire postfix-expression. If the type T of
199       //   the object expression is of a class type C, the type-name is also
200       //   looked up in the scope of class C. At least one of the lookups shall
201       //   find a name that refers to (possibly cv-qualified) T.
202       LookupName(Result, S);
203     }
204   } else {
205     // Perform unqualified name lookup.
206     LookupName(Result, S);
207   }
208 
209   NamedDecl *IIDecl = 0;
210   switch (Result.getResultKind()) {
211   case LookupResult::NotFound:
212   case LookupResult::NotFoundInCurrentInstantiation:
213     if (CorrectedII) {
214       TypeNameValidatorCCC Validator(true, isClassName);
215       TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
216                                               Kind, S, SS, Validator);
217       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
218       TemplateTy Template;
219       bool MemberOfUnknownSpecialization;
220       UnqualifiedId TemplateName;
221       TemplateName.setIdentifier(NewII, NameLoc);
222       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
223       CXXScopeSpec NewSS, *NewSSPtr = SS;
224       if (SS && NNS) {
225         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
226         NewSSPtr = &NewSS;
227       }
228       if (Correction && (NNS || NewII != &II) &&
229           // Ignore a correction to a template type as the to-be-corrected
230           // identifier is not a template (typo correction for template names
231           // is handled elsewhere).
232           !(getLangOpts().CPlusPlus && NewSSPtr &&
233             isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
234                            false, Template, MemberOfUnknownSpecialization))) {
235         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
236                                     isClassName, HasTrailingDot, ObjectTypePtr,
237                                     IsCtorOrDtorName,
238                                     WantNontrivialTypeSourceInfo);
239         if (Ty) {
240           diagnoseTypo(Correction,
241                        PDiag(diag::err_unknown_type_or_class_name_suggest)
242                          << Result.getLookupName() << isClassName);
243           if (SS && NNS)
244             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
245           *CorrectedII = NewII;
246           return Ty;
247         }
248       }
249     }
250     // If typo correction failed or was not performed, fall through
251   case LookupResult::FoundOverloaded:
252   case LookupResult::FoundUnresolvedValue:
253     Result.suppressDiagnostics();
254     return ParsedType();
255 
256   case LookupResult::Ambiguous:
257     // Recover from type-hiding ambiguities by hiding the type.  We'll
258     // do the lookup again when looking for an object, and we can
259     // diagnose the error then.  If we don't do this, then the error
260     // about hiding the type will be immediately followed by an error
261     // that only makes sense if the identifier was treated like a type.
262     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
263       Result.suppressDiagnostics();
264       return ParsedType();
265     }
266 
267     // Look to see if we have a type anywhere in the list of results.
268     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
269          Res != ResEnd; ++Res) {
270       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
271         if (!IIDecl ||
272             (*Res)->getLocation().getRawEncoding() <
273               IIDecl->getLocation().getRawEncoding())
274           IIDecl = *Res;
275       }
276     }
277 
278     if (!IIDecl) {
279       // None of the entities we found is a type, so there is no way
280       // to even assume that the result is a type. In this case, don't
281       // complain about the ambiguity. The parser will either try to
282       // perform this lookup again (e.g., as an object name), which
283       // will produce the ambiguity, or will complain that it expected
284       // a type name.
285       Result.suppressDiagnostics();
286       return ParsedType();
287     }
288 
289     // We found a type within the ambiguous lookup; diagnose the
290     // ambiguity and then return that type. This might be the right
291     // answer, or it might not be, but it suppresses any attempt to
292     // perform the name lookup again.
293     break;
294 
295   case LookupResult::Found:
296     IIDecl = Result.getFoundDecl();
297     break;
298   }
299 
300   assert(IIDecl && "Didn't find decl");
301 
302   QualType T;
303   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
304     DiagnoseUseOfDecl(IIDecl, NameLoc);
305 
306     if (T.isNull())
307       T = Context.getTypeDeclType(TD);
308 
309     // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
310     // constructor or destructor name (in such a case, the scope specifier
311     // will be attached to the enclosing Expr or Decl node).
312     if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
313       if (WantNontrivialTypeSourceInfo) {
314         // Construct a type with type-source information.
315         TypeLocBuilder Builder;
316         Builder.pushTypeSpec(T).setNameLoc(NameLoc);
317 
318         T = getElaboratedType(ETK_None, *SS, T);
319         ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
320         ElabTL.setElaboratedKeywordLoc(SourceLocation());
321         ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
322         return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
323       } else {
324         T = getElaboratedType(ETK_None, *SS, T);
325       }
326     }
327   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
328     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
329     if (!HasTrailingDot)
330       T = Context.getObjCInterfaceType(IDecl);
331   }
332 
333   if (T.isNull()) {
334     // If it's not plausibly a type, suppress diagnostics.
335     Result.suppressDiagnostics();
336     return ParsedType();
337   }
338   return ParsedType::make(T);
339 }
340 
341 /// isTagName() - This method is called *for error recovery purposes only*
342 /// to determine if the specified name is a valid tag name ("struct foo").  If
343 /// so, this returns the TST for the tag corresponding to it (TST_enum,
344 /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
345 /// cases in C where the user forgot to specify the tag.
346 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
347   // Do a tag name lookup in this scope.
348   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
349   LookupName(R, S, false);
350   R.suppressDiagnostics();
351   if (R.getResultKind() == LookupResult::Found)
352     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
353       switch (TD->getTagKind()) {
354       case TTK_Struct: return DeclSpec::TST_struct;
355       case TTK_Interface: return DeclSpec::TST_interface;
356       case TTK_Union:  return DeclSpec::TST_union;
357       case TTK_Class:  return DeclSpec::TST_class;
358       case TTK_Enum:   return DeclSpec::TST_enum;
359       }
360     }
361 
362   return DeclSpec::TST_unspecified;
363 }
364 
365 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
366 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
367 /// then downgrade the missing typename error to a warning.
368 /// This is needed for MSVC compatibility; Example:
369 /// @code
370 /// template<class T> class A {
371 /// public:
372 ///   typedef int TYPE;
373 /// };
374 /// template<class T> class B : public A<T> {
375 /// public:
376 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
377 /// };
378 /// @endcode
379 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
380   if (CurContext->isRecord()) {
381     const Type *Ty = SS->getScopeRep()->getAsType();
382 
383     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
384     for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
385           BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
386       if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
387         return true;
388     return S->isFunctionPrototypeScope();
389   }
390   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
391 }
392 
393 bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
394                                    SourceLocation IILoc,
395                                    Scope *S,
396                                    CXXScopeSpec *SS,
397                                    ParsedType &SuggestedType) {
398   // We don't have anything to suggest (yet).
399   SuggestedType = ParsedType();
400 
401   // There may have been a typo in the name of the type. Look up typo
402   // results, in case we have something that we can suggest.
403   TypeNameValidatorCCC Validator(false);
404   if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
405                                              LookupOrdinaryName, S, SS,
406                                              Validator)) {
407     if (Corrected.isKeyword()) {
408       // We corrected to a keyword.
409       diagnoseTypo(Corrected, PDiag(diag::err_unknown_typename_suggest) << II);
410       II = Corrected.getCorrectionAsIdentifierInfo();
411     } else {
412       // We found a similarly-named type or interface; suggest that.
413       if (!SS || !SS->isSet()) {
414         diagnoseTypo(Corrected,
415                      PDiag(diag::err_unknown_typename_suggest) << II);
416       } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
417         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
418         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
419                                 II->getName().equals(CorrectedStr);
420         diagnoseTypo(Corrected,
421                      PDiag(diag::err_unknown_nested_typename_suggest)
422                        << II << DC << DroppedSpecifier << SS->getRange());
423       } else {
424         llvm_unreachable("could not have corrected a typo here");
425       }
426 
427       CXXScopeSpec tmpSS;
428       if (Corrected.getCorrectionSpecifier())
429         tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
430                           SourceRange(IILoc));
431       SuggestedType = getTypeName(*Corrected.getCorrectionAsIdentifierInfo(),
432                                   IILoc, S, tmpSS.isSet() ? &tmpSS : SS, false,
433                                   false, ParsedType(),
434                                   /*IsCtorOrDtorName=*/false,
435                                   /*NonTrivialTypeSourceInfo=*/true);
436     }
437     return true;
438   }
439 
440   if (getLangOpts().CPlusPlus) {
441     // See if II is a class template that the user forgot to pass arguments to.
442     UnqualifiedId Name;
443     Name.setIdentifier(II, IILoc);
444     CXXScopeSpec EmptySS;
445     TemplateTy TemplateResult;
446     bool MemberOfUnknownSpecialization;
447     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
448                        Name, ParsedType(), true, TemplateResult,
449                        MemberOfUnknownSpecialization) == TNK_Type_template) {
450       TemplateName TplName = TemplateResult.get();
451       Diag(IILoc, diag::err_template_missing_args) << TplName;
452       if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
453         Diag(TplDecl->getLocation(), diag::note_template_decl_here)
454           << TplDecl->getTemplateParameters()->getSourceRange();
455       }
456       return true;
457     }
458   }
459 
460   // FIXME: Should we move the logic that tries to recover from a missing tag
461   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
462 
463   if (!SS || (!SS->isSet() && !SS->isInvalid()))
464     Diag(IILoc, diag::err_unknown_typename) << II;
465   else if (DeclContext *DC = computeDeclContext(*SS, false))
466     Diag(IILoc, diag::err_typename_nested_not_found)
467       << II << DC << SS->getRange();
468   else if (isDependentScopeSpecifier(*SS)) {
469     unsigned DiagID = diag::err_typename_missing;
470     if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
471       DiagID = diag::warn_typename_missing;
472 
473     Diag(SS->getRange().getBegin(), DiagID)
474       << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
475       << SourceRange(SS->getRange().getBegin(), IILoc)
476       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
477     SuggestedType = ActOnTypenameType(S, SourceLocation(),
478                                       *SS, *II, IILoc).get();
479   } else {
480     assert(SS && SS->isInvalid() &&
481            "Invalid scope specifier has already been diagnosed");
482   }
483 
484   return true;
485 }
486 
487 /// \brief Determine whether the given result set contains either a type name
488 /// or
489 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
490   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
491                        NextToken.is(tok::less);
492 
493   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
494     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
495       return true;
496 
497     if (CheckTemplate && isa<TemplateDecl>(*I))
498       return true;
499   }
500 
501   return false;
502 }
503 
504 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
505                                     Scope *S, CXXScopeSpec &SS,
506                                     IdentifierInfo *&Name,
507                                     SourceLocation NameLoc) {
508   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
509   SemaRef.LookupParsedName(R, S, &SS);
510   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
511     const char *TagName = 0;
512     const char *FixItTagName = 0;
513     switch (Tag->getTagKind()) {
514       case TTK_Class:
515         TagName = "class";
516         FixItTagName = "class ";
517         break;
518 
519       case TTK_Enum:
520         TagName = "enum";
521         FixItTagName = "enum ";
522         break;
523 
524       case TTK_Struct:
525         TagName = "struct";
526         FixItTagName = "struct ";
527         break;
528 
529       case TTK_Interface:
530         TagName = "__interface";
531         FixItTagName = "__interface ";
532         break;
533 
534       case TTK_Union:
535         TagName = "union";
536         FixItTagName = "union ";
537         break;
538     }
539 
540     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
541       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
542       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
543 
544     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
545          I != IEnd; ++I)
546       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
547         << Name << TagName;
548 
549     // Replace lookup results with just the tag decl.
550     Result.clear(Sema::LookupTagName);
551     SemaRef.LookupParsedName(Result, S, &SS);
552     return true;
553   }
554 
555   return false;
556 }
557 
558 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
559 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
560                                   QualType T, SourceLocation NameLoc) {
561   ASTContext &Context = S.Context;
562 
563   TypeLocBuilder Builder;
564   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
565 
566   T = S.getElaboratedType(ETK_None, SS, T);
567   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
568   ElabTL.setElaboratedKeywordLoc(SourceLocation());
569   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
570   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
571 }
572 
573 Sema::NameClassification Sema::ClassifyName(Scope *S,
574                                             CXXScopeSpec &SS,
575                                             IdentifierInfo *&Name,
576                                             SourceLocation NameLoc,
577                                             const Token &NextToken,
578                                             bool IsAddressOfOperand,
579                                             CorrectionCandidateCallback *CCC) {
580   DeclarationNameInfo NameInfo(Name, NameLoc);
581   ObjCMethodDecl *CurMethod = getCurMethodDecl();
582 
583   if (NextToken.is(tok::coloncolon)) {
584     BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
585                                 QualType(), false, SS, 0, false);
586 
587   }
588 
589   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
590   LookupParsedName(Result, S, &SS, !CurMethod);
591 
592   // Perform lookup for Objective-C instance variables (including automatically
593   // synthesized instance variables), if we're in an Objective-C method.
594   // FIXME: This lookup really, really needs to be folded in to the normal
595   // unqualified lookup mechanism.
596   if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
597     ExprResult E = LookupInObjCMethod(Result, S, Name, true);
598     if (E.get() || E.isInvalid())
599       return E;
600   }
601 
602   bool SecondTry = false;
603   bool IsFilteredTemplateName = false;
604 
605 Corrected:
606   switch (Result.getResultKind()) {
607   case LookupResult::NotFound:
608     // If an unqualified-id is followed by a '(', then we have a function
609     // call.
610     if (!SS.isSet() && NextToken.is(tok::l_paren)) {
611       // In C++, this is an ADL-only call.
612       // FIXME: Reference?
613       if (getLangOpts().CPlusPlus)
614         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
615 
616       // C90 6.3.2.2:
617       //   If the expression that precedes the parenthesized argument list in a
618       //   function call consists solely of an identifier, and if no
619       //   declaration is visible for this identifier, the identifier is
620       //   implicitly declared exactly as if, in the innermost block containing
621       //   the function call, the declaration
622       //
623       //     extern int identifier ();
624       //
625       //   appeared.
626       //
627       // We also allow this in C99 as an extension.
628       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
629         Result.addDecl(D);
630         Result.resolveKind();
631         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
632       }
633     }
634 
635     // In C, we first see whether there is a tag type by the same name, in
636     // which case it's likely that the user just forget to write "enum",
637     // "struct", or "union".
638     if (!getLangOpts().CPlusPlus && !SecondTry &&
639         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
640       break;
641     }
642 
643     // Perform typo correction to determine if there is another name that is
644     // close to this name.
645     if (!SecondTry && CCC) {
646       SecondTry = true;
647       if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
648                                                  Result.getLookupKind(), S,
649                                                  &SS, *CCC)) {
650         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
651         unsigned QualifiedDiag = diag::err_no_member_suggest;
652 
653         NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
654         NamedDecl *UnderlyingFirstDecl
655           = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
656         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
657             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
658           UnqualifiedDiag = diag::err_no_template_suggest;
659           QualifiedDiag = diag::err_no_member_template_suggest;
660         } else if (UnderlyingFirstDecl &&
661                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
662                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
663                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
664           UnqualifiedDiag = diag::err_unknown_typename_suggest;
665           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
666         }
667 
668         if (SS.isEmpty()) {
669           diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
670         } else {// FIXME: is this even reachable? Test it.
671           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
672           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
673                                   Name->getName().equals(CorrectedStr);
674           diagnoseTypo(Corrected, PDiag(QualifiedDiag)
675                                     << Name << computeDeclContext(SS, false)
676                                     << DroppedSpecifier << SS.getRange());
677         }
678 
679         // Update the name, so that the caller has the new name.
680         Name = Corrected.getCorrectionAsIdentifierInfo();
681 
682         // Typo correction corrected to a keyword.
683         if (Corrected.isKeyword())
684           return Name;
685 
686         // Also update the LookupResult...
687         // FIXME: This should probably go away at some point
688         Result.clear();
689         Result.setLookupName(Corrected.getCorrection());
690         if (FirstDecl)
691           Result.addDecl(FirstDecl);
692 
693         // If we found an Objective-C instance variable, let
694         // LookupInObjCMethod build the appropriate expression to
695         // reference the ivar.
696         // FIXME: This is a gross hack.
697         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
698           Result.clear();
699           ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
700           return E;
701         }
702 
703         goto Corrected;
704       }
705     }
706 
707     // We failed to correct; just fall through and let the parser deal with it.
708     Result.suppressDiagnostics();
709     return NameClassification::Unknown();
710 
711   case LookupResult::NotFoundInCurrentInstantiation: {
712     // We performed name lookup into the current instantiation, and there were
713     // dependent bases, so we treat this result the same way as any other
714     // dependent nested-name-specifier.
715 
716     // C++ [temp.res]p2:
717     //   A name used in a template declaration or definition and that is
718     //   dependent on a template-parameter is assumed not to name a type
719     //   unless the applicable name lookup finds a type name or the name is
720     //   qualified by the keyword typename.
721     //
722     // FIXME: If the next token is '<', we might want to ask the parser to
723     // perform some heroics to see if we actually have a
724     // template-argument-list, which would indicate a missing 'template'
725     // keyword here.
726     return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
727                                       NameInfo, IsAddressOfOperand,
728                                       /*TemplateArgs=*/0);
729   }
730 
731   case LookupResult::Found:
732   case LookupResult::FoundOverloaded:
733   case LookupResult::FoundUnresolvedValue:
734     break;
735 
736   case LookupResult::Ambiguous:
737     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
738         hasAnyAcceptableTemplateNames(Result)) {
739       // C++ [temp.local]p3:
740       //   A lookup that finds an injected-class-name (10.2) can result in an
741       //   ambiguity in certain cases (for example, if it is found in more than
742       //   one base class). If all of the injected-class-names that are found
743       //   refer to specializations of the same class template, and if the name
744       //   is followed by a template-argument-list, the reference refers to the
745       //   class template itself and not a specialization thereof, and is not
746       //   ambiguous.
747       //
748       // This filtering can make an ambiguous result into an unambiguous one,
749       // so try again after filtering out template names.
750       FilterAcceptableTemplateNames(Result);
751       if (!Result.isAmbiguous()) {
752         IsFilteredTemplateName = true;
753         break;
754       }
755     }
756 
757     // Diagnose the ambiguity and return an error.
758     return NameClassification::Error();
759   }
760 
761   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
762       (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
763     // C++ [temp.names]p3:
764     //   After name lookup (3.4) finds that a name is a template-name or that
765     //   an operator-function-id or a literal- operator-id refers to a set of
766     //   overloaded functions any member of which is a function template if
767     //   this is followed by a <, the < is always taken as the delimiter of a
768     //   template-argument-list and never as the less-than operator.
769     if (!IsFilteredTemplateName)
770       FilterAcceptableTemplateNames(Result);
771 
772     if (!Result.empty()) {
773       bool IsFunctionTemplate;
774       bool IsVarTemplate;
775       TemplateName Template;
776       if (Result.end() - Result.begin() > 1) {
777         IsFunctionTemplate = true;
778         Template = Context.getOverloadedTemplateName(Result.begin(),
779                                                      Result.end());
780       } else {
781         TemplateDecl *TD
782           = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
783         IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
784         IsVarTemplate = isa<VarTemplateDecl>(TD);
785 
786         if (SS.isSet() && !SS.isInvalid())
787           Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
788                                                     /*TemplateKeyword=*/false,
789                                                       TD);
790         else
791           Template = TemplateName(TD);
792       }
793 
794       if (IsFunctionTemplate) {
795         // Function templates always go through overload resolution, at which
796         // point we'll perform the various checks (e.g., accessibility) we need
797         // to based on which function we selected.
798         Result.suppressDiagnostics();
799 
800         return NameClassification::FunctionTemplate(Template);
801       }
802 
803       return IsVarTemplate ? NameClassification::VarTemplate(Template)
804                            : NameClassification::TypeTemplate(Template);
805     }
806   }
807 
808   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
809   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
810     DiagnoseUseOfDecl(Type, NameLoc);
811     QualType T = Context.getTypeDeclType(Type);
812     if (SS.isNotEmpty())
813       return buildNestedType(*this, SS, T, NameLoc);
814     return ParsedType::make(T);
815   }
816 
817   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
818   if (!Class) {
819     // FIXME: It's unfortunate that we don't have a Type node for handling this.
820     if (ObjCCompatibleAliasDecl *Alias
821                                 = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
822       Class = Alias->getClassInterface();
823   }
824 
825   if (Class) {
826     DiagnoseUseOfDecl(Class, NameLoc);
827 
828     if (NextToken.is(tok::period)) {
829       // Interface. <something> is parsed as a property reference expression.
830       // Just return "unknown" as a fall-through for now.
831       Result.suppressDiagnostics();
832       return NameClassification::Unknown();
833     }
834 
835     QualType T = Context.getObjCInterfaceType(Class);
836     return ParsedType::make(T);
837   }
838 
839   // We can have a type template here if we're classifying a template argument.
840   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
841     return NameClassification::TypeTemplate(
842         TemplateName(cast<TemplateDecl>(FirstDecl)));
843 
844   // Check for a tag type hidden by a non-type decl in a few cases where it
845   // seems likely a type is wanted instead of the non-type that was found.
846   bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
847   if ((NextToken.is(tok::identifier) ||
848        (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
849       isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
850     TypeDecl *Type = Result.getAsSingle<TypeDecl>();
851     DiagnoseUseOfDecl(Type, NameLoc);
852     QualType T = Context.getTypeDeclType(Type);
853     if (SS.isNotEmpty())
854       return buildNestedType(*this, SS, T, NameLoc);
855     return ParsedType::make(T);
856   }
857 
858   if (FirstDecl->isCXXClassMember())
859     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
860 
861   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
862   return BuildDeclarationNameExpr(SS, Result, ADL);
863 }
864 
865 // Determines the context to return to after temporarily entering a
866 // context.  This depends in an unnecessarily complicated way on the
867 // exact ordering of callbacks from the parser.
868 DeclContext *Sema::getContainingDC(DeclContext *DC) {
869 
870   // Functions defined inline within classes aren't parsed until we've
871   // finished parsing the top-level class, so the top-level class is
872   // the context we'll need to return to.
873   if (isa<FunctionDecl>(DC)) {
874     DC = DC->getLexicalParent();
875 
876     // A function not defined within a class will always return to its
877     // lexical context.
878     if (!isa<CXXRecordDecl>(DC))
879       return DC;
880 
881     // A C++ inline method/friend is parsed *after* the topmost class
882     // it was declared in is fully parsed ("complete");  the topmost
883     // class is the context we need to return to.
884     while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
885       DC = RD;
886 
887     // Return the declaration context of the topmost class the inline method is
888     // declared in.
889     return DC;
890   }
891 
892   return DC->getLexicalParent();
893 }
894 
895 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
896   assert(getContainingDC(DC) == CurContext &&
897       "The next DeclContext should be lexically contained in the current one.");
898   CurContext = DC;
899   S->setEntity(DC);
900 }
901 
902 void Sema::PopDeclContext() {
903   assert(CurContext && "DeclContext imbalance!");
904 
905   CurContext = getContainingDC(CurContext);
906   assert(CurContext && "Popped translation unit!");
907 }
908 
909 /// EnterDeclaratorContext - Used when we must lookup names in the context
910 /// of a declarator's nested name specifier.
911 ///
912 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
913   // C++0x [basic.lookup.unqual]p13:
914   //   A name used in the definition of a static data member of class
915   //   X (after the qualified-id of the static member) is looked up as
916   //   if the name was used in a member function of X.
917   // C++0x [basic.lookup.unqual]p14:
918   //   If a variable member of a namespace is defined outside of the
919   //   scope of its namespace then any name used in the definition of
920   //   the variable member (after the declarator-id) is looked up as
921   //   if the definition of the variable member occurred in its
922   //   namespace.
923   // Both of these imply that we should push a scope whose context
924   // is the semantic context of the declaration.  We can't use
925   // PushDeclContext here because that context is not necessarily
926   // lexically contained in the current context.  Fortunately,
927   // the containing scope should have the appropriate information.
928 
929   assert(!S->getEntity() && "scope already has entity");
930 
931 #ifndef NDEBUG
932   Scope *Ancestor = S->getParent();
933   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
934   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
935 #endif
936 
937   CurContext = DC;
938   S->setEntity(DC);
939 }
940 
941 void Sema::ExitDeclaratorContext(Scope *S) {
942   assert(S->getEntity() == CurContext && "Context imbalance!");
943 
944   // Switch back to the lexical context.  The safety of this is
945   // enforced by an assert in EnterDeclaratorContext.
946   Scope *Ancestor = S->getParent();
947   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
948   CurContext = Ancestor->getEntity();
949 
950   // We don't need to do anything with the scope, which is going to
951   // disappear.
952 }
953 
954 
955 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
956   FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
957   if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
958     // We assume that the caller has already called
959     // ActOnReenterTemplateScope
960     FD = TFD->getTemplatedDecl();
961   }
962   if (!FD)
963     return;
964 
965   // Same implementation as PushDeclContext, but enters the context
966   // from the lexical parent, rather than the top-level class.
967   assert(CurContext == FD->getLexicalParent() &&
968     "The next DeclContext should be lexically contained in the current one.");
969   CurContext = FD;
970   S->setEntity(CurContext);
971 
972   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
973     ParmVarDecl *Param = FD->getParamDecl(P);
974     // If the parameter has an identifier, then add it to the scope
975     if (Param->getIdentifier()) {
976       S->AddDecl(Param);
977       IdResolver.AddDecl(Param);
978     }
979   }
980 }
981 
982 
983 void Sema::ActOnExitFunctionContext() {
984   // Same implementation as PopDeclContext, but returns to the lexical parent,
985   // rather than the top-level class.
986   assert(CurContext && "DeclContext imbalance!");
987   CurContext = CurContext->getLexicalParent();
988   assert(CurContext && "Popped translation unit!");
989 }
990 
991 
992 /// \brief Determine whether we allow overloading of the function
993 /// PrevDecl with another declaration.
994 ///
995 /// This routine determines whether overloading is possible, not
996 /// whether some new function is actually an overload. It will return
997 /// true in C++ (where we can always provide overloads) or, as an
998 /// extension, in C when the previous function is already an
999 /// overloaded function declaration or has the "overloadable"
1000 /// attribute.
1001 static bool AllowOverloadingOfFunction(LookupResult &Previous,
1002                                        ASTContext &Context) {
1003   if (Context.getLangOpts().CPlusPlus)
1004     return true;
1005 
1006   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1007     return true;
1008 
1009   return (Previous.getResultKind() == LookupResult::Found
1010           && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1011 }
1012 
1013 /// Add this decl to the scope shadowed decl chains.
1014 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1015   // Move up the scope chain until we find the nearest enclosing
1016   // non-transparent context. The declaration will be introduced into this
1017   // scope.
1018   while (S->getEntity() && S->getEntity()->isTransparentContext())
1019     S = S->getParent();
1020 
1021   // Add scoped declarations into their context, so that they can be
1022   // found later. Declarations without a context won't be inserted
1023   // into any context.
1024   if (AddToContext)
1025     CurContext->addDecl(D);
1026 
1027   // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1028   // are function-local declarations.
1029   if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
1030       !D->getDeclContext()->getRedeclContext()->Equals(
1031         D->getLexicalDeclContext()->getRedeclContext()) &&
1032       !D->getLexicalDeclContext()->isFunctionOrMethod())
1033     return;
1034 
1035   // Template instantiations should also not be pushed into scope.
1036   if (isa<FunctionDecl>(D) &&
1037       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1038     return;
1039 
1040   // If this replaces anything in the current scope,
1041   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1042                                IEnd = IdResolver.end();
1043   for (; I != IEnd; ++I) {
1044     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1045       S->RemoveDecl(*I);
1046       IdResolver.RemoveDecl(*I);
1047 
1048       // Should only need to replace one decl.
1049       break;
1050     }
1051   }
1052 
1053   S->AddDecl(D);
1054 
1055   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1056     // Implicitly-generated labels may end up getting generated in an order that
1057     // isn't strictly lexical, which breaks name lookup. Be careful to insert
1058     // the label at the appropriate place in the identifier chain.
1059     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1060       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1061       if (IDC == CurContext) {
1062         if (!S->isDeclScope(*I))
1063           continue;
1064       } else if (IDC->Encloses(CurContext))
1065         break;
1066     }
1067 
1068     IdResolver.InsertDeclAfter(I, D);
1069   } else {
1070     IdResolver.AddDecl(D);
1071   }
1072 }
1073 
1074 void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1075   if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1076     TUScope->AddDecl(D);
1077 }
1078 
1079 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1080                          bool ExplicitInstantiationOrSpecialization) {
1081   return IdResolver.isDeclInScope(D, Ctx, S,
1082                                   ExplicitInstantiationOrSpecialization);
1083 }
1084 
1085 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1086   DeclContext *TargetDC = DC->getPrimaryContext();
1087   do {
1088     if (DeclContext *ScopeDC = S->getEntity())
1089       if (ScopeDC->getPrimaryContext() == TargetDC)
1090         return S;
1091   } while ((S = S->getParent()));
1092 
1093   return 0;
1094 }
1095 
1096 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1097                                             DeclContext*,
1098                                             ASTContext&);
1099 
1100 /// Filters out lookup results that don't fall within the given scope
1101 /// as determined by isDeclInScope.
1102 void Sema::FilterLookupForScope(LookupResult &R,
1103                                 DeclContext *Ctx, Scope *S,
1104                                 bool ConsiderLinkage,
1105                                 bool ExplicitInstantiationOrSpecialization) {
1106   LookupResult::Filter F = R.makeFilter();
1107   while (F.hasNext()) {
1108     NamedDecl *D = F.next();
1109 
1110     if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1111       continue;
1112 
1113     if (ConsiderLinkage &&
1114         isOutOfScopePreviousDeclaration(D, Ctx, Context))
1115       continue;
1116 
1117     F.erase();
1118   }
1119 
1120   F.done();
1121 }
1122 
1123 static bool isUsingDecl(NamedDecl *D) {
1124   return isa<UsingShadowDecl>(D) ||
1125          isa<UnresolvedUsingTypenameDecl>(D) ||
1126          isa<UnresolvedUsingValueDecl>(D);
1127 }
1128 
1129 /// Removes using shadow declarations from the lookup results.
1130 static void RemoveUsingDecls(LookupResult &R) {
1131   LookupResult::Filter F = R.makeFilter();
1132   while (F.hasNext())
1133     if (isUsingDecl(F.next()))
1134       F.erase();
1135 
1136   F.done();
1137 }
1138 
1139 /// \brief Check for this common pattern:
1140 /// @code
1141 /// class S {
1142 ///   S(const S&); // DO NOT IMPLEMENT
1143 ///   void operator=(const S&); // DO NOT IMPLEMENT
1144 /// };
1145 /// @endcode
1146 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1147   // FIXME: Should check for private access too but access is set after we get
1148   // the decl here.
1149   if (D->doesThisDeclarationHaveABody())
1150     return false;
1151 
1152   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1153     return CD->isCopyConstructor();
1154   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1155     return Method->isCopyAssignmentOperator();
1156   return false;
1157 }
1158 
1159 // We need this to handle
1160 //
1161 // typedef struct {
1162 //   void *foo() { return 0; }
1163 // } A;
1164 //
1165 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1166 // for example. If 'A', foo will have external linkage. If we have '*A',
1167 // foo will have no linkage. Since we can't know untill we get to the end
1168 // of the typedef, this function finds out if D might have non external linkage.
1169 // Callers should verify at the end of the TU if it D has external linkage or
1170 // not.
1171 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1172   const DeclContext *DC = D->getDeclContext();
1173   while (!DC->isTranslationUnit()) {
1174     if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1175       if (!RD->hasNameForLinkage())
1176         return true;
1177     }
1178     DC = DC->getParent();
1179   }
1180 
1181   return !D->isExternallyVisible();
1182 }
1183 
1184 // FIXME: This needs to be refactored; some other isInMainFile users want
1185 // these semantics.
1186 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1187   if (S.TUKind != TU_Complete)
1188     return false;
1189   return S.SourceMgr.isInMainFile(Loc);
1190 }
1191 
1192 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1193   assert(D);
1194 
1195   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1196     return false;
1197 
1198   // Ignore class templates.
1199   if (D->getDeclContext()->isDependentContext() ||
1200       D->getLexicalDeclContext()->isDependentContext())
1201     return false;
1202 
1203   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1204     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1205       return false;
1206 
1207     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1208       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1209         return false;
1210     } else {
1211       // 'static inline' functions are defined in headers; don't warn.
1212       if (FD->isInlineSpecified() &&
1213           !isMainFileLoc(*this, FD->getLocation()))
1214         return false;
1215     }
1216 
1217     if (FD->doesThisDeclarationHaveABody() &&
1218         Context.DeclMustBeEmitted(FD))
1219       return false;
1220   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1221     // Constants and utility variables are defined in headers with internal
1222     // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
1223     // like "inline".)
1224     if (!isMainFileLoc(*this, VD->getLocation()))
1225       return false;
1226 
1227     if (Context.DeclMustBeEmitted(VD))
1228       return false;
1229 
1230     if (VD->isStaticDataMember() &&
1231         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1232       return false;
1233   } else {
1234     return false;
1235   }
1236 
1237   // Only warn for unused decls internal to the translation unit.
1238   return mightHaveNonExternalLinkage(D);
1239 }
1240 
1241 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1242   if (!D)
1243     return;
1244 
1245   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1246     const FunctionDecl *First = FD->getFirstDecl();
1247     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1248       return; // First should already be in the vector.
1249   }
1250 
1251   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1252     const VarDecl *First = VD->getFirstDecl();
1253     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1254       return; // First should already be in the vector.
1255   }
1256 
1257   if (ShouldWarnIfUnusedFileScopedDecl(D))
1258     UnusedFileScopedDecls.push_back(D);
1259 }
1260 
1261 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1262   if (D->isInvalidDecl())
1263     return false;
1264 
1265   if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1266     return false;
1267 
1268   if (isa<LabelDecl>(D))
1269     return true;
1270 
1271   // White-list anything that isn't a local variable.
1272   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1273       !D->getDeclContext()->isFunctionOrMethod())
1274     return false;
1275 
1276   // Types of valid local variables should be complete, so this should succeed.
1277   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1278 
1279     // White-list anything with an __attribute__((unused)) type.
1280     QualType Ty = VD->getType();
1281 
1282     // Only look at the outermost level of typedef.
1283     if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1284       if (TT->getDecl()->hasAttr<UnusedAttr>())
1285         return false;
1286     }
1287 
1288     // If we failed to complete the type for some reason, or if the type is
1289     // dependent, don't diagnose the variable.
1290     if (Ty->isIncompleteType() || Ty->isDependentType())
1291       return false;
1292 
1293     if (const TagType *TT = Ty->getAs<TagType>()) {
1294       const TagDecl *Tag = TT->getDecl();
1295       if (Tag->hasAttr<UnusedAttr>())
1296         return false;
1297 
1298       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1299         if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1300           return false;
1301 
1302         if (const Expr *Init = VD->getInit()) {
1303           if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1304             Init = Cleanups->getSubExpr();
1305           const CXXConstructExpr *Construct =
1306             dyn_cast<CXXConstructExpr>(Init);
1307           if (Construct && !Construct->isElidable()) {
1308             CXXConstructorDecl *CD = Construct->getConstructor();
1309             if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>())
1310               return false;
1311           }
1312         }
1313       }
1314     }
1315 
1316     // TODO: __attribute__((unused)) templates?
1317   }
1318 
1319   return true;
1320 }
1321 
1322 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1323                                      FixItHint &Hint) {
1324   if (isa<LabelDecl>(D)) {
1325     SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1326                 tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1327     if (AfterColon.isInvalid())
1328       return;
1329     Hint = FixItHint::CreateRemoval(CharSourceRange::
1330                                     getCharRange(D->getLocStart(), AfterColon));
1331   }
1332   return;
1333 }
1334 
1335 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1336 /// unless they are marked attr(unused).
1337 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1338   FixItHint Hint;
1339   if (!ShouldDiagnoseUnusedDecl(D))
1340     return;
1341 
1342   GenerateFixForUnusedDecl(D, Context, Hint);
1343 
1344   unsigned DiagID;
1345   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1346     DiagID = diag::warn_unused_exception_param;
1347   else if (isa<LabelDecl>(D))
1348     DiagID = diag::warn_unused_label;
1349   else
1350     DiagID = diag::warn_unused_variable;
1351 
1352   Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1353 }
1354 
1355 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1356   // Verify that we have no forward references left.  If so, there was a goto
1357   // or address of a label taken, but no definition of it.  Label fwd
1358   // definitions are indicated with a null substmt.
1359   if (L->getStmt() == 0)
1360     S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1361 }
1362 
1363 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1364   if (S->decl_empty()) return;
1365   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1366          "Scope shouldn't contain decls!");
1367 
1368   for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1369        I != E; ++I) {
1370     Decl *TmpD = (*I);
1371     assert(TmpD && "This decl didn't get pushed??");
1372 
1373     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1374     NamedDecl *D = cast<NamedDecl>(TmpD);
1375 
1376     if (!D->getDeclName()) continue;
1377 
1378     // Diagnose unused variables in this scope.
1379     if (!S->hasUnrecoverableErrorOccurred())
1380       DiagnoseUnusedDecl(D);
1381 
1382     // If this was a forward reference to a label, verify it was defined.
1383     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1384       CheckPoppedLabel(LD, *this);
1385 
1386     // Remove this name from our lexical scope.
1387     IdResolver.RemoveDecl(D);
1388   }
1389   DiagnoseUnusedBackingIvarInAccessor(S);
1390 }
1391 
1392 void Sema::ActOnStartFunctionDeclarator() {
1393   ++InFunctionDeclarator;
1394 }
1395 
1396 void Sema::ActOnEndFunctionDeclarator() {
1397   assert(InFunctionDeclarator);
1398   --InFunctionDeclarator;
1399 }
1400 
1401 /// \brief Look for an Objective-C class in the translation unit.
1402 ///
1403 /// \param Id The name of the Objective-C class we're looking for. If
1404 /// typo-correction fixes this name, the Id will be updated
1405 /// to the fixed name.
1406 ///
1407 /// \param IdLoc The location of the name in the translation unit.
1408 ///
1409 /// \param DoTypoCorrection If true, this routine will attempt typo correction
1410 /// if there is no class with the given name.
1411 ///
1412 /// \returns The declaration of the named Objective-C class, or NULL if the
1413 /// class could not be found.
1414 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1415                                               SourceLocation IdLoc,
1416                                               bool DoTypoCorrection) {
1417   // The third "scope" argument is 0 since we aren't enabling lazy built-in
1418   // creation from this context.
1419   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1420 
1421   if (!IDecl && DoTypoCorrection) {
1422     // Perform typo correction at the given location, but only if we
1423     // find an Objective-C class name.
1424     DeclFilterCCC<ObjCInterfaceDecl> Validator;
1425     if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1426                                        LookupOrdinaryName, TUScope, NULL,
1427                                        Validator)) {
1428       diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1429       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1430       Id = IDecl->getIdentifier();
1431     }
1432   }
1433   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1434   // This routine must always return a class definition, if any.
1435   if (Def && Def->getDefinition())
1436       Def = Def->getDefinition();
1437   return Def;
1438 }
1439 
1440 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
1441 /// from S, where a non-field would be declared. This routine copes
1442 /// with the difference between C and C++ scoping rules in structs and
1443 /// unions. For example, the following code is well-formed in C but
1444 /// ill-formed in C++:
1445 /// @code
1446 /// struct S6 {
1447 ///   enum { BAR } e;
1448 /// };
1449 ///
1450 /// void test_S6() {
1451 ///   struct S6 a;
1452 ///   a.e = BAR;
1453 /// }
1454 /// @endcode
1455 /// For the declaration of BAR, this routine will return a different
1456 /// scope. The scope S will be the scope of the unnamed enumeration
1457 /// within S6. In C++, this routine will return the scope associated
1458 /// with S6, because the enumeration's scope is a transparent
1459 /// context but structures can contain non-field names. In C, this
1460 /// routine will return the translation unit scope, since the
1461 /// enumeration's scope is a transparent context and structures cannot
1462 /// contain non-field names.
1463 Scope *Sema::getNonFieldDeclScope(Scope *S) {
1464   while (((S->getFlags() & Scope::DeclScope) == 0) ||
1465          (S->getEntity() && S->getEntity()->isTransparentContext()) ||
1466          (S->isClassScope() && !getLangOpts().CPlusPlus))
1467     S = S->getParent();
1468   return S;
1469 }
1470 
1471 /// \brief Looks up the declaration of "struct objc_super" and
1472 /// saves it for later use in building builtin declaration of
1473 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1474 /// pre-existing declaration exists no action takes place.
1475 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1476                                         IdentifierInfo *II) {
1477   if (!II->isStr("objc_msgSendSuper"))
1478     return;
1479   ASTContext &Context = ThisSema.Context;
1480 
1481   LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1482                       SourceLocation(), Sema::LookupTagName);
1483   ThisSema.LookupName(Result, S);
1484   if (Result.getResultKind() == LookupResult::Found)
1485     if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1486       Context.setObjCSuperType(Context.getTagDeclType(TD));
1487 }
1488 
1489 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1490 /// file scope.  lazily create a decl for it. ForRedeclaration is true
1491 /// if we're creating this built-in in anticipation of redeclaring the
1492 /// built-in.
1493 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1494                                      Scope *S, bool ForRedeclaration,
1495                                      SourceLocation Loc) {
1496   LookupPredefedObjCSuperType(*this, S, II);
1497 
1498   Builtin::ID BID = (Builtin::ID)bid;
1499 
1500   ASTContext::GetBuiltinTypeError Error;
1501   QualType R = Context.GetBuiltinType(BID, Error);
1502   switch (Error) {
1503   case ASTContext::GE_None:
1504     // Okay
1505     break;
1506 
1507   case ASTContext::GE_Missing_stdio:
1508     if (ForRedeclaration)
1509       Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1510         << Context.BuiltinInfo.GetName(BID);
1511     return 0;
1512 
1513   case ASTContext::GE_Missing_setjmp:
1514     if (ForRedeclaration)
1515       Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1516         << Context.BuiltinInfo.GetName(BID);
1517     return 0;
1518 
1519   case ASTContext::GE_Missing_ucontext:
1520     if (ForRedeclaration)
1521       Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1522         << Context.BuiltinInfo.GetName(BID);
1523     return 0;
1524   }
1525 
1526   if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1527     Diag(Loc, diag::ext_implicit_lib_function_decl)
1528       << Context.BuiltinInfo.GetName(BID)
1529       << R;
1530     if (Context.BuiltinInfo.getHeaderName(BID) &&
1531         Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1532           != DiagnosticsEngine::Ignored)
1533       Diag(Loc, diag::note_please_include_header)
1534         << Context.BuiltinInfo.getHeaderName(BID)
1535         << Context.BuiltinInfo.GetName(BID);
1536   }
1537 
1538   DeclContext *Parent = Context.getTranslationUnitDecl();
1539   if (getLangOpts().CPlusPlus) {
1540     LinkageSpecDecl *CLinkageDecl =
1541         LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
1542                                 LinkageSpecDecl::lang_c, false);
1543     Parent->addDecl(CLinkageDecl);
1544     Parent = CLinkageDecl;
1545   }
1546 
1547   FunctionDecl *New = FunctionDecl::Create(Context,
1548                                            Parent,
1549                                            Loc, Loc, II, R, /*TInfo=*/0,
1550                                            SC_Extern,
1551                                            false,
1552                                            /*hasPrototype=*/true);
1553   New->setImplicit();
1554 
1555   // Create Decl objects for each parameter, adding them to the
1556   // FunctionDecl.
1557   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1558     SmallVector<ParmVarDecl*, 16> Params;
1559     for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1560       ParmVarDecl *parm =
1561         ParmVarDecl::Create(Context, New, SourceLocation(),
1562                             SourceLocation(), 0,
1563                             FT->getArgType(i), /*TInfo=*/0,
1564                             SC_None, 0);
1565       parm->setScopeInfo(0, i);
1566       Params.push_back(parm);
1567     }
1568     New->setParams(Params);
1569   }
1570 
1571   AddKnownFunctionAttributes(New);
1572   RegisterLocallyScopedExternCDecl(New, S);
1573 
1574   // TUScope is the translation-unit scope to insert this function into.
1575   // FIXME: This is hideous. We need to teach PushOnScopeChains to
1576   // relate Scopes to DeclContexts, and probably eliminate CurContext
1577   // entirely, but we're not there yet.
1578   DeclContext *SavedContext = CurContext;
1579   CurContext = Parent;
1580   PushOnScopeChains(New, TUScope);
1581   CurContext = SavedContext;
1582   return New;
1583 }
1584 
1585 /// \brief Filter out any previous declarations that the given declaration
1586 /// should not consider because they are not permitted to conflict, e.g.,
1587 /// because they come from hidden sub-modules and do not refer to the same
1588 /// entity.
1589 static void filterNonConflictingPreviousDecls(ASTContext &context,
1590                                               NamedDecl *decl,
1591                                               LookupResult &previous){
1592   // This is only interesting when modules are enabled.
1593   if (!context.getLangOpts().Modules)
1594     return;
1595 
1596   // Empty sets are uninteresting.
1597   if (previous.empty())
1598     return;
1599 
1600   LookupResult::Filter filter = previous.makeFilter();
1601   while (filter.hasNext()) {
1602     NamedDecl *old = filter.next();
1603 
1604     // Non-hidden declarations are never ignored.
1605     if (!old->isHidden())
1606       continue;
1607 
1608     if (!old->isExternallyVisible())
1609       filter.erase();
1610   }
1611 
1612   filter.done();
1613 }
1614 
1615 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1616   QualType OldType;
1617   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1618     OldType = OldTypedef->getUnderlyingType();
1619   else
1620     OldType = Context.getTypeDeclType(Old);
1621   QualType NewType = New->getUnderlyingType();
1622 
1623   if (NewType->isVariablyModifiedType()) {
1624     // Must not redefine a typedef with a variably-modified type.
1625     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1626     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1627       << Kind << NewType;
1628     if (Old->getLocation().isValid())
1629       Diag(Old->getLocation(), diag::note_previous_definition);
1630     New->setInvalidDecl();
1631     return true;
1632   }
1633 
1634   if (OldType != NewType &&
1635       !OldType->isDependentType() &&
1636       !NewType->isDependentType() &&
1637       !Context.hasSameType(OldType, NewType)) {
1638     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1639     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1640       << Kind << NewType << OldType;
1641     if (Old->getLocation().isValid())
1642       Diag(Old->getLocation(), diag::note_previous_definition);
1643     New->setInvalidDecl();
1644     return true;
1645   }
1646   return false;
1647 }
1648 
1649 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1650 /// same name and scope as a previous declaration 'Old'.  Figure out
1651 /// how to resolve this situation, merging decls or emitting
1652 /// diagnostics as appropriate. If there was an error, set New to be invalid.
1653 ///
1654 void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1655   // If the new decl is known invalid already, don't bother doing any
1656   // merging checks.
1657   if (New->isInvalidDecl()) return;
1658 
1659   // Allow multiple definitions for ObjC built-in typedefs.
1660   // FIXME: Verify the underlying types are equivalent!
1661   if (getLangOpts().ObjC1) {
1662     const IdentifierInfo *TypeID = New->getIdentifier();
1663     switch (TypeID->getLength()) {
1664     default: break;
1665     case 2:
1666       {
1667         if (!TypeID->isStr("id"))
1668           break;
1669         QualType T = New->getUnderlyingType();
1670         if (!T->isPointerType())
1671           break;
1672         if (!T->isVoidPointerType()) {
1673           QualType PT = T->getAs<PointerType>()->getPointeeType();
1674           if (!PT->isStructureType())
1675             break;
1676         }
1677         Context.setObjCIdRedefinitionType(T);
1678         // Install the built-in type for 'id', ignoring the current definition.
1679         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1680         return;
1681       }
1682     case 5:
1683       if (!TypeID->isStr("Class"))
1684         break;
1685       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1686       // Install the built-in type for 'Class', ignoring the current definition.
1687       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1688       return;
1689     case 3:
1690       if (!TypeID->isStr("SEL"))
1691         break;
1692       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1693       // Install the built-in type for 'SEL', ignoring the current definition.
1694       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1695       return;
1696     }
1697     // Fall through - the typedef name was not a builtin type.
1698   }
1699 
1700   // Verify the old decl was also a type.
1701   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1702   if (!Old) {
1703     Diag(New->getLocation(), diag::err_redefinition_different_kind)
1704       << New->getDeclName();
1705 
1706     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1707     if (OldD->getLocation().isValid())
1708       Diag(OldD->getLocation(), diag::note_previous_definition);
1709 
1710     return New->setInvalidDecl();
1711   }
1712 
1713   // If the old declaration is invalid, just give up here.
1714   if (Old->isInvalidDecl())
1715     return New->setInvalidDecl();
1716 
1717   // If the typedef types are not identical, reject them in all languages and
1718   // with any extensions enabled.
1719   if (isIncompatibleTypedef(Old, New))
1720     return;
1721 
1722   // The types match.  Link up the redeclaration chain and merge attributes if
1723   // the old declaration was a typedef.
1724   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
1725     New->setPreviousDecl(Typedef);
1726     mergeDeclAttributes(New, Old);
1727   }
1728 
1729   if (getLangOpts().MicrosoftExt)
1730     return;
1731 
1732   if (getLangOpts().CPlusPlus) {
1733     // C++ [dcl.typedef]p2:
1734     //   In a given non-class scope, a typedef specifier can be used to
1735     //   redefine the name of any type declared in that scope to refer
1736     //   to the type to which it already refers.
1737     if (!isa<CXXRecordDecl>(CurContext))
1738       return;
1739 
1740     // C++0x [dcl.typedef]p4:
1741     //   In a given class scope, a typedef specifier can be used to redefine
1742     //   any class-name declared in that scope that is not also a typedef-name
1743     //   to refer to the type to which it already refers.
1744     //
1745     // This wording came in via DR424, which was a correction to the
1746     // wording in DR56, which accidentally banned code like:
1747     //
1748     //   struct S {
1749     //     typedef struct A { } A;
1750     //   };
1751     //
1752     // in the C++03 standard. We implement the C++0x semantics, which
1753     // allow the above but disallow
1754     //
1755     //   struct S {
1756     //     typedef int I;
1757     //     typedef int I;
1758     //   };
1759     //
1760     // since that was the intent of DR56.
1761     if (!isa<TypedefNameDecl>(Old))
1762       return;
1763 
1764     Diag(New->getLocation(), diag::err_redefinition)
1765       << New->getDeclName();
1766     Diag(Old->getLocation(), diag::note_previous_definition);
1767     return New->setInvalidDecl();
1768   }
1769 
1770   // Modules always permit redefinition of typedefs, as does C11.
1771   if (getLangOpts().Modules || getLangOpts().C11)
1772     return;
1773 
1774   // If we have a redefinition of a typedef in C, emit a warning.  This warning
1775   // is normally mapped to an error, but can be controlled with
1776   // -Wtypedef-redefinition.  If either the original or the redefinition is
1777   // in a system header, don't emit this for compatibility with GCC.
1778   if (getDiagnostics().getSuppressSystemWarnings() &&
1779       (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1780        Context.getSourceManager().isInSystemHeader(New->getLocation())))
1781     return;
1782 
1783   Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1784     << New->getDeclName();
1785   Diag(Old->getLocation(), diag::note_previous_definition);
1786   return;
1787 }
1788 
1789 /// DeclhasAttr - returns true if decl Declaration already has the target
1790 /// attribute.
1791 static bool
1792 DeclHasAttr(const Decl *D, const Attr *A) {
1793   // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1794   // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1795   // responsible for making sure they are consistent.
1796   const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1797   if (AA)
1798     return false;
1799 
1800   // The following thread safety attributes can also be duplicated.
1801   switch (A->getKind()) {
1802     case attr::ExclusiveLocksRequired:
1803     case attr::SharedLocksRequired:
1804     case attr::LocksExcluded:
1805     case attr::ExclusiveLockFunction:
1806     case attr::SharedLockFunction:
1807     case attr::UnlockFunction:
1808     case attr::ExclusiveTrylockFunction:
1809     case attr::SharedTrylockFunction:
1810     case attr::GuardedBy:
1811     case attr::PtGuardedBy:
1812     case attr::AcquiredBefore:
1813     case attr::AcquiredAfter:
1814       return false;
1815     default:
1816       ;
1817   }
1818 
1819   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1820   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1821   for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1822     if ((*i)->getKind() == A->getKind()) {
1823       if (Ann) {
1824         if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1825           return true;
1826         continue;
1827       }
1828       // FIXME: Don't hardcode this check
1829       if (OA && isa<OwnershipAttr>(*i))
1830         return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1831       return true;
1832     }
1833 
1834   return false;
1835 }
1836 
1837 static bool isAttributeTargetADefinition(Decl *D) {
1838   if (VarDecl *VD = dyn_cast<VarDecl>(D))
1839     return VD->isThisDeclarationADefinition();
1840   if (TagDecl *TD = dyn_cast<TagDecl>(D))
1841     return TD->isCompleteDefinition() || TD->isBeingDefined();
1842   return true;
1843 }
1844 
1845 /// Merge alignment attributes from \p Old to \p New, taking into account the
1846 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
1847 ///
1848 /// \return \c true if any attributes were added to \p New.
1849 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
1850   // Look for alignas attributes on Old, and pick out whichever attribute
1851   // specifies the strictest alignment requirement.
1852   AlignedAttr *OldAlignasAttr = 0;
1853   AlignedAttr *OldStrictestAlignAttr = 0;
1854   unsigned OldAlign = 0;
1855   for (specific_attr_iterator<AlignedAttr>
1856          I = Old->specific_attr_begin<AlignedAttr>(),
1857          E = Old->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1858     // FIXME: We have no way of representing inherited dependent alignments
1859     // in a case like:
1860     //   template<int A, int B> struct alignas(A) X;
1861     //   template<int A, int B> struct alignas(B) X {};
1862     // For now, we just ignore any alignas attributes which are not on the
1863     // definition in such a case.
1864     if (I->isAlignmentDependent())
1865       return false;
1866 
1867     if (I->isAlignas())
1868       OldAlignasAttr = *I;
1869 
1870     unsigned Align = I->getAlignment(S.Context);
1871     if (Align > OldAlign) {
1872       OldAlign = Align;
1873       OldStrictestAlignAttr = *I;
1874     }
1875   }
1876 
1877   // Look for alignas attributes on New.
1878   AlignedAttr *NewAlignasAttr = 0;
1879   unsigned NewAlign = 0;
1880   for (specific_attr_iterator<AlignedAttr>
1881          I = New->specific_attr_begin<AlignedAttr>(),
1882          E = New->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1883     if (I->isAlignmentDependent())
1884       return false;
1885 
1886     if (I->isAlignas())
1887       NewAlignasAttr = *I;
1888 
1889     unsigned Align = I->getAlignment(S.Context);
1890     if (Align > NewAlign)
1891       NewAlign = Align;
1892   }
1893 
1894   if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
1895     // Both declarations have 'alignas' attributes. We require them to match.
1896     // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
1897     // fall short. (If two declarations both have alignas, they must both match
1898     // every definition, and so must match each other if there is a definition.)
1899 
1900     // If either declaration only contains 'alignas(0)' specifiers, then it
1901     // specifies the natural alignment for the type.
1902     if (OldAlign == 0 || NewAlign == 0) {
1903       QualType Ty;
1904       if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
1905         Ty = VD->getType();
1906       else
1907         Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
1908 
1909       if (OldAlign == 0)
1910         OldAlign = S.Context.getTypeAlign(Ty);
1911       if (NewAlign == 0)
1912         NewAlign = S.Context.getTypeAlign(Ty);
1913     }
1914 
1915     if (OldAlign != NewAlign) {
1916       S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
1917         << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
1918         << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
1919       S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
1920     }
1921   }
1922 
1923   if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
1924     // C++11 [dcl.align]p6:
1925     //   if any declaration of an entity has an alignment-specifier,
1926     //   every defining declaration of that entity shall specify an
1927     //   equivalent alignment.
1928     // C11 6.7.5/7:
1929     //   If the definition of an object does not have an alignment
1930     //   specifier, any other declaration of that object shall also
1931     //   have no alignment specifier.
1932     S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
1933       << OldAlignasAttr->isC11();
1934     S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
1935       << OldAlignasAttr->isC11();
1936   }
1937 
1938   bool AnyAdded = false;
1939 
1940   // Ensure we have an attribute representing the strictest alignment.
1941   if (OldAlign > NewAlign) {
1942     AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
1943     Clone->setInherited(true);
1944     New->addAttr(Clone);
1945     AnyAdded = true;
1946   }
1947 
1948   // Ensure we have an alignas attribute if the old declaration had one.
1949   if (OldAlignasAttr && !NewAlignasAttr &&
1950       !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
1951     AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
1952     Clone->setInherited(true);
1953     New->addAttr(Clone);
1954     AnyAdded = true;
1955   }
1956 
1957   return AnyAdded;
1958 }
1959 
1960 static bool mergeDeclAttribute(Sema &S, NamedDecl *D, InheritableAttr *Attr,
1961                                bool Override) {
1962   InheritableAttr *NewAttr = NULL;
1963   unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
1964   if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1965     NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1966                                       AA->getIntroduced(), AA->getDeprecated(),
1967                                       AA->getObsoleted(), AA->getUnavailable(),
1968                                       AA->getMessage(), Override,
1969                                       AttrSpellingListIndex);
1970   else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1971     NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1972                                     AttrSpellingListIndex);
1973   else if (TypeVisibilityAttr *VA = dyn_cast<TypeVisibilityAttr>(Attr))
1974     NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1975                                         AttrSpellingListIndex);
1976   else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1977     NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
1978                                    AttrSpellingListIndex);
1979   else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1980     NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
1981                                    AttrSpellingListIndex);
1982   else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1983     NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
1984                                 FA->getFormatIdx(), FA->getFirstArg(),
1985                                 AttrSpellingListIndex);
1986   else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1987     NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
1988                                  AttrSpellingListIndex);
1989   else if (isa<AlignedAttr>(Attr))
1990     // AlignedAttrs are handled separately, because we need to handle all
1991     // such attributes on a declaration at the same time.
1992     NewAttr = 0;
1993   else if (!DeclHasAttr(D, Attr))
1994     NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
1995 
1996   if (NewAttr) {
1997     NewAttr->setInherited(true);
1998     D->addAttr(NewAttr);
1999     return true;
2000   }
2001 
2002   return false;
2003 }
2004 
2005 static const Decl *getDefinition(const Decl *D) {
2006   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2007     return TD->getDefinition();
2008   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2009     const VarDecl *Def = VD->getDefinition();
2010     if (Def)
2011       return Def;
2012     return VD->getActingDefinition();
2013   }
2014   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2015     const FunctionDecl* Def;
2016     if (FD->isDefined(Def))
2017       return Def;
2018   }
2019   return NULL;
2020 }
2021 
2022 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2023   for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
2024        I != E; ++I) {
2025     Attr *Attribute = *I;
2026     if (Attribute->getKind() == Kind)
2027       return true;
2028   }
2029   return false;
2030 }
2031 
2032 /// checkNewAttributesAfterDef - If we already have a definition, check that
2033 /// there are no new attributes in this declaration.
2034 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2035   if (!New->hasAttrs())
2036     return;
2037 
2038   const Decl *Def = getDefinition(Old);
2039   if (!Def || Def == New)
2040     return;
2041 
2042   AttrVec &NewAttributes = New->getAttrs();
2043   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2044     const Attr *NewAttribute = NewAttributes[I];
2045 
2046     if (isa<AliasAttr>(NewAttribute)) {
2047       if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New))
2048         S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def));
2049       else {
2050         VarDecl *VD = cast<VarDecl>(New);
2051         unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2052                                 VarDecl::TentativeDefinition
2053                             ? diag::err_alias_after_tentative
2054                             : diag::err_redefinition;
2055         S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2056         S.Diag(Def->getLocation(), diag::note_previous_definition);
2057         VD->setInvalidDecl();
2058       }
2059       ++I;
2060       continue;
2061     }
2062 
2063     if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2064       // Tentative definitions are only interesting for the alias check above.
2065       if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2066         ++I;
2067         continue;
2068       }
2069     }
2070 
2071     if (hasAttribute(Def, NewAttribute->getKind())) {
2072       ++I;
2073       continue; // regular attr merging will take care of validating this.
2074     }
2075 
2076     if (isa<C11NoReturnAttr>(NewAttribute)) {
2077       // C's _Noreturn is allowed to be added to a function after it is defined.
2078       ++I;
2079       continue;
2080     } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2081       if (AA->isAlignas()) {
2082         // C++11 [dcl.align]p6:
2083         //   if any declaration of an entity has an alignment-specifier,
2084         //   every defining declaration of that entity shall specify an
2085         //   equivalent alignment.
2086         // C11 6.7.5/7:
2087         //   If the definition of an object does not have an alignment
2088         //   specifier, any other declaration of that object shall also
2089         //   have no alignment specifier.
2090         S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2091           << AA->isC11();
2092         S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2093           << AA->isC11();
2094         NewAttributes.erase(NewAttributes.begin() + I);
2095         --E;
2096         continue;
2097       }
2098     }
2099 
2100     S.Diag(NewAttribute->getLocation(),
2101            diag::warn_attribute_precede_definition);
2102     S.Diag(Def->getLocation(), diag::note_previous_definition);
2103     NewAttributes.erase(NewAttributes.begin() + I);
2104     --E;
2105   }
2106 }
2107 
2108 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2109 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2110                                AvailabilityMergeKind AMK) {
2111   if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2112     UsedAttr *NewAttr = OldAttr->clone(Context);
2113     NewAttr->setInherited(true);
2114     New->addAttr(NewAttr);
2115   }
2116 
2117   if (!Old->hasAttrs() && !New->hasAttrs())
2118     return;
2119 
2120   // attributes declared post-definition are currently ignored
2121   checkNewAttributesAfterDef(*this, New, Old);
2122 
2123   if (!Old->hasAttrs())
2124     return;
2125 
2126   bool foundAny = New->hasAttrs();
2127 
2128   // Ensure that any moving of objects within the allocated map is done before
2129   // we process them.
2130   if (!foundAny) New->setAttrs(AttrVec());
2131 
2132   for (specific_attr_iterator<InheritableAttr>
2133          i = Old->specific_attr_begin<InheritableAttr>(),
2134          e = Old->specific_attr_end<InheritableAttr>();
2135        i != e; ++i) {
2136     bool Override = false;
2137     // Ignore deprecated/unavailable/availability attributes if requested.
2138     if (isa<DeprecatedAttr>(*i) ||
2139         isa<UnavailableAttr>(*i) ||
2140         isa<AvailabilityAttr>(*i)) {
2141       switch (AMK) {
2142       case AMK_None:
2143         continue;
2144 
2145       case AMK_Redeclaration:
2146         break;
2147 
2148       case AMK_Override:
2149         Override = true;
2150         break;
2151       }
2152     }
2153 
2154     // Already handled.
2155     if (isa<UsedAttr>(*i))
2156       continue;
2157 
2158     if (mergeDeclAttribute(*this, New, *i, Override))
2159       foundAny = true;
2160   }
2161 
2162   if (mergeAlignedAttrs(*this, New, Old))
2163     foundAny = true;
2164 
2165   if (!foundAny) New->dropAttrs();
2166 }
2167 
2168 /// mergeParamDeclAttributes - Copy attributes from the old parameter
2169 /// to the new one.
2170 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2171                                      const ParmVarDecl *oldDecl,
2172                                      Sema &S) {
2173   // C++11 [dcl.attr.depend]p2:
2174   //   The first declaration of a function shall specify the
2175   //   carries_dependency attribute for its declarator-id if any declaration
2176   //   of the function specifies the carries_dependency attribute.
2177   if (newDecl->hasAttr<CarriesDependencyAttr>() &&
2178       !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2179     S.Diag(newDecl->getAttr<CarriesDependencyAttr>()->getLocation(),
2180            diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2181     // Find the first declaration of the parameter.
2182     // FIXME: Should we build redeclaration chains for function parameters?
2183     const FunctionDecl *FirstFD =
2184       cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2185     const ParmVarDecl *FirstVD =
2186       FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2187     S.Diag(FirstVD->getLocation(),
2188            diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2189   }
2190 
2191   if (!oldDecl->hasAttrs())
2192     return;
2193 
2194   bool foundAny = newDecl->hasAttrs();
2195 
2196   // Ensure that any moving of objects within the allocated map is
2197   // done before we process them.
2198   if (!foundAny) newDecl->setAttrs(AttrVec());
2199 
2200   for (specific_attr_iterator<InheritableParamAttr>
2201        i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
2202        e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
2203     if (!DeclHasAttr(newDecl, *i)) {
2204       InheritableAttr *newAttr =
2205         cast<InheritableParamAttr>((*i)->clone(S.Context));
2206       newAttr->setInherited(true);
2207       newDecl->addAttr(newAttr);
2208       foundAny = true;
2209     }
2210   }
2211 
2212   if (!foundAny) newDecl->dropAttrs();
2213 }
2214 
2215 namespace {
2216 
2217 /// Used in MergeFunctionDecl to keep track of function parameters in
2218 /// C.
2219 struct GNUCompatibleParamWarning {
2220   ParmVarDecl *OldParm;
2221   ParmVarDecl *NewParm;
2222   QualType PromotedType;
2223 };
2224 
2225 }
2226 
2227 /// getSpecialMember - get the special member enum for a method.
2228 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2229   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2230     if (Ctor->isDefaultConstructor())
2231       return Sema::CXXDefaultConstructor;
2232 
2233     if (Ctor->isCopyConstructor())
2234       return Sema::CXXCopyConstructor;
2235 
2236     if (Ctor->isMoveConstructor())
2237       return Sema::CXXMoveConstructor;
2238   } else if (isa<CXXDestructorDecl>(MD)) {
2239     return Sema::CXXDestructor;
2240   } else if (MD->isCopyAssignmentOperator()) {
2241     return Sema::CXXCopyAssignment;
2242   } else if (MD->isMoveAssignmentOperator()) {
2243     return Sema::CXXMoveAssignment;
2244   }
2245 
2246   return Sema::CXXInvalid;
2247 }
2248 
2249 /// canRedefineFunction - checks if a function can be redefined. Currently,
2250 /// only extern inline functions can be redefined, and even then only in
2251 /// GNU89 mode.
2252 static bool canRedefineFunction(const FunctionDecl *FD,
2253                                 const LangOptions& LangOpts) {
2254   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2255           !LangOpts.CPlusPlus &&
2256           FD->isInlineSpecified() &&
2257           FD->getStorageClass() == SC_Extern);
2258 }
2259 
2260 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
2261   const AttributedType *AT = T->getAs<AttributedType>();
2262   while (AT && !AT->isCallingConv())
2263     AT = AT->getModifiedType()->getAs<AttributedType>();
2264   return AT;
2265 }
2266 
2267 template <typename T>
2268 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2269   const DeclContext *DC = Old->getDeclContext();
2270   if (DC->isRecord())
2271     return false;
2272 
2273   LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2274   if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2275     return true;
2276   if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2277     return true;
2278   return false;
2279 }
2280 
2281 /// MergeFunctionDecl - We just parsed a function 'New' from
2282 /// declarator D which has the same name and scope as a previous
2283 /// declaration 'Old'.  Figure out how to resolve this situation,
2284 /// merging decls or emitting diagnostics as appropriate.
2285 ///
2286 /// In C++, New and Old must be declarations that are not
2287 /// overloaded. Use IsOverload to determine whether New and Old are
2288 /// overloaded, and to select the Old declaration that New should be
2289 /// merged with.
2290 ///
2291 /// Returns true if there was an error, false otherwise.
2292 bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S,
2293                              bool MergeTypeWithOld) {
2294   // Verify the old decl was also a function.
2295   FunctionDecl *Old = 0;
2296   if (FunctionTemplateDecl *OldFunctionTemplate
2297         = dyn_cast<FunctionTemplateDecl>(OldD))
2298     Old = OldFunctionTemplate->getTemplatedDecl();
2299   else
2300     Old = dyn_cast<FunctionDecl>(OldD);
2301   if (!Old) {
2302     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2303       if (New->getFriendObjectKind()) {
2304         Diag(New->getLocation(), diag::err_using_decl_friend);
2305         Diag(Shadow->getTargetDecl()->getLocation(),
2306              diag::note_using_decl_target);
2307         Diag(Shadow->getUsingDecl()->getLocation(),
2308              diag::note_using_decl) << 0;
2309         return true;
2310       }
2311 
2312       Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2313       Diag(Shadow->getTargetDecl()->getLocation(),
2314            diag::note_using_decl_target);
2315       Diag(Shadow->getUsingDecl()->getLocation(),
2316            diag::note_using_decl) << 0;
2317       return true;
2318     }
2319 
2320     Diag(New->getLocation(), diag::err_redefinition_different_kind)
2321       << New->getDeclName();
2322     Diag(OldD->getLocation(), diag::note_previous_definition);
2323     return true;
2324   }
2325 
2326   // If the old declaration is invalid, just give up here.
2327   if (Old->isInvalidDecl())
2328     return true;
2329 
2330   // Determine whether the previous declaration was a definition,
2331   // implicit declaration, or a declaration.
2332   diag::kind PrevDiag;
2333   if (Old->isThisDeclarationADefinition())
2334     PrevDiag = diag::note_previous_definition;
2335   else if (Old->isImplicit())
2336     PrevDiag = diag::note_previous_implicit_declaration;
2337   else
2338     PrevDiag = diag::note_previous_declaration;
2339 
2340   // Don't complain about this if we're in GNU89 mode and the old function
2341   // is an extern inline function.
2342   // Don't complain about specializations. They are not supposed to have
2343   // storage classes.
2344   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2345       New->getStorageClass() == SC_Static &&
2346       Old->hasExternalFormalLinkage() &&
2347       !New->getTemplateSpecializationInfo() &&
2348       !canRedefineFunction(Old, getLangOpts())) {
2349     if (getLangOpts().MicrosoftExt) {
2350       Diag(New->getLocation(), diag::warn_static_non_static) << New;
2351       Diag(Old->getLocation(), PrevDiag);
2352     } else {
2353       Diag(New->getLocation(), diag::err_static_non_static) << New;
2354       Diag(Old->getLocation(), PrevDiag);
2355       return true;
2356     }
2357   }
2358 
2359 
2360   // If a function is first declared with a calling convention, but is later
2361   // declared or defined without one, all following decls assume the calling
2362   // convention of the first.
2363   //
2364   // It's OK if a function is first declared without a calling convention,
2365   // but is later declared or defined with the default calling convention.
2366   //
2367   // To test if either decl has an explicit calling convention, we look for
2368   // AttributedType sugar nodes on the type as written.  If they are missing or
2369   // were canonicalized away, we assume the calling convention was implicit.
2370   //
2371   // Note also that we DO NOT return at this point, because we still have
2372   // other tests to run.
2373   QualType OldQType = Context.getCanonicalType(Old->getType());
2374   QualType NewQType = Context.getCanonicalType(New->getType());
2375   const FunctionType *OldType = cast<FunctionType>(OldQType);
2376   const FunctionType *NewType = cast<FunctionType>(NewQType);
2377   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2378   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2379   bool RequiresAdjustment = false;
2380 
2381   if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
2382     FunctionDecl *First = Old->getFirstDecl();
2383     const FunctionType *FT =
2384         First->getType().getCanonicalType()->castAs<FunctionType>();
2385     FunctionType::ExtInfo FI = FT->getExtInfo();
2386     bool NewCCExplicit = getCallingConvAttributedType(New->getType());
2387     if (!NewCCExplicit) {
2388       // Inherit the CC from the previous declaration if it was specified
2389       // there but not here.
2390       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2391       RequiresAdjustment = true;
2392     } else {
2393       // Calling conventions aren't compatible, so complain.
2394       bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
2395       Diag(New->getLocation(), diag::err_cconv_change)
2396         << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2397         << !FirstCCExplicit
2398         << (!FirstCCExplicit ? "" :
2399             FunctionType::getNameForCallConv(FI.getCC()));
2400 
2401       // Put the note on the first decl, since it is the one that matters.
2402       Diag(First->getLocation(), diag::note_previous_declaration);
2403       return true;
2404     }
2405   }
2406 
2407   // FIXME: diagnose the other way around?
2408   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2409     NewTypeInfo = NewTypeInfo.withNoReturn(true);
2410     RequiresAdjustment = true;
2411   }
2412 
2413   // Merge regparm attribute.
2414   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2415       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2416     if (NewTypeInfo.getHasRegParm()) {
2417       Diag(New->getLocation(), diag::err_regparm_mismatch)
2418         << NewType->getRegParmType()
2419         << OldType->getRegParmType();
2420       Diag(Old->getLocation(), diag::note_previous_declaration);
2421       return true;
2422     }
2423 
2424     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2425     RequiresAdjustment = true;
2426   }
2427 
2428   // Merge ns_returns_retained attribute.
2429   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2430     if (NewTypeInfo.getProducesResult()) {
2431       Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2432       Diag(Old->getLocation(), diag::note_previous_declaration);
2433       return true;
2434     }
2435 
2436     NewTypeInfo = NewTypeInfo.withProducesResult(true);
2437     RequiresAdjustment = true;
2438   }
2439 
2440   if (RequiresAdjustment) {
2441     const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
2442     AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
2443     New->setType(QualType(AdjustedType, 0));
2444     NewQType = Context.getCanonicalType(New->getType());
2445     NewType = cast<FunctionType>(NewQType);
2446   }
2447 
2448   // If this redeclaration makes the function inline, we may need to add it to
2449   // UndefinedButUsed.
2450   if (!Old->isInlined() && New->isInlined() &&
2451       !New->hasAttr<GNUInlineAttr>() &&
2452       (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
2453       Old->isUsed(false) &&
2454       !Old->isDefined() && !New->isThisDeclarationADefinition())
2455     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2456                                            SourceLocation()));
2457 
2458   // If this redeclaration makes it newly gnu_inline, we don't want to warn
2459   // about it.
2460   if (New->hasAttr<GNUInlineAttr>() &&
2461       Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2462     UndefinedButUsed.erase(Old->getCanonicalDecl());
2463   }
2464 
2465   if (getLangOpts().CPlusPlus) {
2466     // (C++98 13.1p2):
2467     //   Certain function declarations cannot be overloaded:
2468     //     -- Function declarations that differ only in the return type
2469     //        cannot be overloaded.
2470 
2471     // Go back to the type source info to compare the declared return types,
2472     // per C++1y [dcl.type.auto]p13:
2473     //   Redeclarations or specializations of a function or function template
2474     //   with a declared return type that uses a placeholder type shall also
2475     //   use that placeholder, not a deduced type.
2476     QualType OldDeclaredReturnType = (Old->getTypeSourceInfo()
2477       ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2478       : OldType)->getResultType();
2479     QualType NewDeclaredReturnType = (New->getTypeSourceInfo()
2480       ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2481       : NewType)->getResultType();
2482     QualType ResQT;
2483     if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
2484         !((NewQType->isDependentType() || OldQType->isDependentType()) &&
2485           New->isLocalExternDecl())) {
2486       if (NewDeclaredReturnType->isObjCObjectPointerType() &&
2487           OldDeclaredReturnType->isObjCObjectPointerType())
2488         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2489       if (ResQT.isNull()) {
2490         if (New->isCXXClassMember() && New->isOutOfLine())
2491           Diag(New->getLocation(),
2492                diag::err_member_def_does_not_match_ret_type) << New;
2493         else
2494           Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2495         Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2496         return true;
2497       }
2498       else
2499         NewQType = ResQT;
2500     }
2501 
2502     QualType OldReturnType = OldType->getResultType();
2503     QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2504     if (OldReturnType != NewReturnType) {
2505       // If this function has a deduced return type and has already been
2506       // defined, copy the deduced value from the old declaration.
2507       AutoType *OldAT = Old->getResultType()->getContainedAutoType();
2508       if (OldAT && OldAT->isDeduced()) {
2509         New->setType(
2510             SubstAutoType(New->getType(),
2511                           OldAT->isDependentType() ? Context.DependentTy
2512                                                    : OldAT->getDeducedType()));
2513         NewQType = Context.getCanonicalType(
2514             SubstAutoType(NewQType,
2515                           OldAT->isDependentType() ? Context.DependentTy
2516                                                    : OldAT->getDeducedType()));
2517       }
2518     }
2519 
2520     const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
2521     CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
2522     if (OldMethod && NewMethod) {
2523       // Preserve triviality.
2524       NewMethod->setTrivial(OldMethod->isTrivial());
2525 
2526       // MSVC allows explicit template specialization at class scope:
2527       // 2 CXMethodDecls referring to the same function will be injected.
2528       // We don't want a redeclartion error.
2529       bool IsClassScopeExplicitSpecialization =
2530                               OldMethod->isFunctionTemplateSpecialization() &&
2531                               NewMethod->isFunctionTemplateSpecialization();
2532       bool isFriend = NewMethod->getFriendObjectKind();
2533 
2534       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2535           !IsClassScopeExplicitSpecialization) {
2536         //    -- Member function declarations with the same name and the
2537         //       same parameter types cannot be overloaded if any of them
2538         //       is a static member function declaration.
2539         if (OldMethod->isStatic() != NewMethod->isStatic()) {
2540           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2541           Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2542           return true;
2543         }
2544 
2545         // C++ [class.mem]p1:
2546         //   [...] A member shall not be declared twice in the
2547         //   member-specification, except that a nested class or member
2548         //   class template can be declared and then later defined.
2549         if (ActiveTemplateInstantiations.empty()) {
2550           unsigned NewDiag;
2551           if (isa<CXXConstructorDecl>(OldMethod))
2552             NewDiag = diag::err_constructor_redeclared;
2553           else if (isa<CXXDestructorDecl>(NewMethod))
2554             NewDiag = diag::err_destructor_redeclared;
2555           else if (isa<CXXConversionDecl>(NewMethod))
2556             NewDiag = diag::err_conv_function_redeclared;
2557           else
2558             NewDiag = diag::err_member_redeclared;
2559 
2560           Diag(New->getLocation(), NewDiag);
2561         } else {
2562           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2563             << New << New->getType();
2564         }
2565         Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2566 
2567       // Complain if this is an explicit declaration of a special
2568       // member that was initially declared implicitly.
2569       //
2570       // As an exception, it's okay to befriend such methods in order
2571       // to permit the implicit constructor/destructor/operator calls.
2572       } else if (OldMethod->isImplicit()) {
2573         if (isFriend) {
2574           NewMethod->setImplicit();
2575         } else {
2576           Diag(NewMethod->getLocation(),
2577                diag::err_definition_of_implicitly_declared_member)
2578             << New << getSpecialMember(OldMethod);
2579           return true;
2580         }
2581       } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2582         Diag(NewMethod->getLocation(),
2583              diag::err_definition_of_explicitly_defaulted_member)
2584           << getSpecialMember(OldMethod);
2585         return true;
2586       }
2587     }
2588 
2589     // C++11 [dcl.attr.noreturn]p1:
2590     //   The first declaration of a function shall specify the noreturn
2591     //   attribute if any declaration of that function specifies the noreturn
2592     //   attribute.
2593     if (New->hasAttr<CXX11NoReturnAttr>() &&
2594         !Old->hasAttr<CXX11NoReturnAttr>()) {
2595       Diag(New->getAttr<CXX11NoReturnAttr>()->getLocation(),
2596            diag::err_noreturn_missing_on_first_decl);
2597       Diag(Old->getFirstDecl()->getLocation(),
2598            diag::note_noreturn_missing_first_decl);
2599     }
2600 
2601     // C++11 [dcl.attr.depend]p2:
2602     //   The first declaration of a function shall specify the
2603     //   carries_dependency attribute for its declarator-id if any declaration
2604     //   of the function specifies the carries_dependency attribute.
2605     if (New->hasAttr<CarriesDependencyAttr>() &&
2606         !Old->hasAttr<CarriesDependencyAttr>()) {
2607       Diag(New->getAttr<CarriesDependencyAttr>()->getLocation(),
2608            diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2609       Diag(Old->getFirstDecl()->getLocation(),
2610            diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2611     }
2612 
2613     // (C++98 8.3.5p3):
2614     //   All declarations for a function shall agree exactly in both the
2615     //   return type and the parameter-type-list.
2616     // We also want to respect all the extended bits except noreturn.
2617 
2618     // noreturn should now match unless the old type info didn't have it.
2619     QualType OldQTypeForComparison = OldQType;
2620     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2621       assert(OldQType == QualType(OldType, 0));
2622       const FunctionType *OldTypeForComparison
2623         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2624       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2625       assert(OldQTypeForComparison.isCanonical());
2626     }
2627 
2628     if (haveIncompatibleLanguageLinkages(Old, New)) {
2629       // As a special case, retain the language linkage from previous
2630       // declarations of a friend function as an extension.
2631       //
2632       // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
2633       // and is useful because there's otherwise no way to specify language
2634       // linkage within class scope.
2635       //
2636       // Check cautiously as the friend object kind isn't yet complete.
2637       if (New->getFriendObjectKind() != Decl::FOK_None) {
2638         Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
2639         Diag(Old->getLocation(), PrevDiag);
2640       } else {
2641         Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2642         Diag(Old->getLocation(), PrevDiag);
2643         return true;
2644       }
2645     }
2646 
2647     if (OldQTypeForComparison == NewQType)
2648       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2649 
2650     if ((NewQType->isDependentType() || OldQType->isDependentType()) &&
2651         New->isLocalExternDecl()) {
2652       // It's OK if we couldn't merge types for a local function declaraton
2653       // if either the old or new type is dependent. We'll merge the types
2654       // when we instantiate the function.
2655       return false;
2656     }
2657 
2658     // Fall through for conflicting redeclarations and redefinitions.
2659   }
2660 
2661   // C: Function types need to be compatible, not identical. This handles
2662   // duplicate function decls like "void f(int); void f(enum X);" properly.
2663   if (!getLangOpts().CPlusPlus &&
2664       Context.typesAreCompatible(OldQType, NewQType)) {
2665     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2666     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2667     const FunctionProtoType *OldProto = 0;
2668     if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
2669         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2670       // The old declaration provided a function prototype, but the
2671       // new declaration does not. Merge in the prototype.
2672       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2673       SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2674                                                  OldProto->arg_type_end());
2675       NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2676                                          ParamTypes,
2677                                          OldProto->getExtProtoInfo());
2678       New->setType(NewQType);
2679       New->setHasInheritedPrototype();
2680 
2681       // Synthesize a parameter for each argument type.
2682       SmallVector<ParmVarDecl*, 16> Params;
2683       for (FunctionProtoType::arg_type_iterator
2684              ParamType = OldProto->arg_type_begin(),
2685              ParamEnd = OldProto->arg_type_end();
2686            ParamType != ParamEnd; ++ParamType) {
2687         ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2688                                                  SourceLocation(),
2689                                                  SourceLocation(), 0,
2690                                                  *ParamType, /*TInfo=*/0,
2691                                                  SC_None,
2692                                                  0);
2693         Param->setScopeInfo(0, Params.size());
2694         Param->setImplicit();
2695         Params.push_back(Param);
2696       }
2697 
2698       New->setParams(Params);
2699     }
2700 
2701     return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2702   }
2703 
2704   // GNU C permits a K&R definition to follow a prototype declaration
2705   // if the declared types of the parameters in the K&R definition
2706   // match the types in the prototype declaration, even when the
2707   // promoted types of the parameters from the K&R definition differ
2708   // from the types in the prototype. GCC then keeps the types from
2709   // the prototype.
2710   //
2711   // If a variadic prototype is followed by a non-variadic K&R definition,
2712   // the K&R definition becomes variadic.  This is sort of an edge case, but
2713   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2714   // C99 6.9.1p8.
2715   if (!getLangOpts().CPlusPlus &&
2716       Old->hasPrototype() && !New->hasPrototype() &&
2717       New->getType()->getAs<FunctionProtoType>() &&
2718       Old->getNumParams() == New->getNumParams()) {
2719     SmallVector<QualType, 16> ArgTypes;
2720     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2721     const FunctionProtoType *OldProto
2722       = Old->getType()->getAs<FunctionProtoType>();
2723     const FunctionProtoType *NewProto
2724       = New->getType()->getAs<FunctionProtoType>();
2725 
2726     // Determine whether this is the GNU C extension.
2727     QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2728                                                NewProto->getResultType());
2729     bool LooseCompatible = !MergedReturn.isNull();
2730     for (unsigned Idx = 0, End = Old->getNumParams();
2731          LooseCompatible && Idx != End; ++Idx) {
2732       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2733       ParmVarDecl *NewParm = New->getParamDecl(Idx);
2734       if (Context.typesAreCompatible(OldParm->getType(),
2735                                      NewProto->getArgType(Idx))) {
2736         ArgTypes.push_back(NewParm->getType());
2737       } else if (Context.typesAreCompatible(OldParm->getType(),
2738                                             NewParm->getType(),
2739                                             /*CompareUnqualified=*/true)) {
2740         GNUCompatibleParamWarning Warn
2741           = { OldParm, NewParm, NewProto->getArgType(Idx) };
2742         Warnings.push_back(Warn);
2743         ArgTypes.push_back(NewParm->getType());
2744       } else
2745         LooseCompatible = false;
2746     }
2747 
2748     if (LooseCompatible) {
2749       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2750         Diag(Warnings[Warn].NewParm->getLocation(),
2751              diag::ext_param_promoted_not_compatible_with_prototype)
2752           << Warnings[Warn].PromotedType
2753           << Warnings[Warn].OldParm->getType();
2754         if (Warnings[Warn].OldParm->getLocation().isValid())
2755           Diag(Warnings[Warn].OldParm->getLocation(),
2756                diag::note_previous_declaration);
2757       }
2758 
2759       if (MergeTypeWithOld)
2760         New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
2761                                              OldProto->getExtProtoInfo()));
2762       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2763     }
2764 
2765     // Fall through to diagnose conflicting types.
2766   }
2767 
2768   // A function that has already been declared has been redeclared or
2769   // defined with a different type; show an appropriate diagnostic.
2770 
2771   // If the previous declaration was an implicitly-generated builtin
2772   // declaration, then at the very least we should use a specialized note.
2773   unsigned BuiltinID;
2774   if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
2775     // If it's actually a library-defined builtin function like 'malloc'
2776     // or 'printf', just warn about the incompatible redeclaration.
2777     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2778       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2779       Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2780         << Old << Old->getType();
2781 
2782       // If this is a global redeclaration, just forget hereafter
2783       // about the "builtin-ness" of the function.
2784       //
2785       // Doing this for local extern declarations is problematic.  If
2786       // the builtin declaration remains visible, a second invalid
2787       // local declaration will produce a hard error; if it doesn't
2788       // remain visible, a single bogus local redeclaration (which is
2789       // actually only a warning) could break all the downstream code.
2790       if (!New->getLexicalDeclContext()->isFunctionOrMethod())
2791         New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2792 
2793       return false;
2794     }
2795 
2796     PrevDiag = diag::note_previous_builtin_declaration;
2797   }
2798 
2799   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2800   Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2801   return true;
2802 }
2803 
2804 /// \brief Completes the merge of two function declarations that are
2805 /// known to be compatible.
2806 ///
2807 /// This routine handles the merging of attributes and other
2808 /// properties of function declarations from the old declaration to
2809 /// the new declaration, once we know that New is in fact a
2810 /// redeclaration of Old.
2811 ///
2812 /// \returns false
2813 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2814                                         Scope *S, bool MergeTypeWithOld) {
2815   // Merge the attributes
2816   mergeDeclAttributes(New, Old);
2817 
2818   // Merge "pure" flag.
2819   if (Old->isPure())
2820     New->setPure();
2821 
2822   // Merge "used" flag.
2823   if (Old->getMostRecentDecl()->isUsed(false))
2824     New->setIsUsed();
2825 
2826   // Merge attributes from the parameters.  These can mismatch with K&R
2827   // declarations.
2828   if (New->getNumParams() == Old->getNumParams())
2829     for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2830       mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2831                                *this);
2832 
2833   if (getLangOpts().CPlusPlus)
2834     return MergeCXXFunctionDecl(New, Old, S);
2835 
2836   // Merge the function types so the we get the composite types for the return
2837   // and argument types. Per C11 6.2.7/4, only update the type if the old decl
2838   // was visible.
2839   QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2840   if (!Merged.isNull() && MergeTypeWithOld)
2841     New->setType(Merged);
2842 
2843   return false;
2844 }
2845 
2846 
2847 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2848                                 ObjCMethodDecl *oldMethod) {
2849 
2850   // Merge the attributes, including deprecated/unavailable
2851   AvailabilityMergeKind MergeKind =
2852     isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
2853                                                    : AMK_Override;
2854   mergeDeclAttributes(newMethod, oldMethod, MergeKind);
2855 
2856   // Merge attributes from the parameters.
2857   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2858                                        oe = oldMethod->param_end();
2859   for (ObjCMethodDecl::param_iterator
2860          ni = newMethod->param_begin(), ne = newMethod->param_end();
2861        ni != ne && oi != oe; ++ni, ++oi)
2862     mergeParamDeclAttributes(*ni, *oi, *this);
2863 
2864   CheckObjCMethodOverride(newMethod, oldMethod);
2865 }
2866 
2867 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2868 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2869 /// emitting diagnostics as appropriate.
2870 ///
2871 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2872 /// to here in AddInitializerToDecl. We can't check them before the initializer
2873 /// is attached.
2874 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
2875                              bool MergeTypeWithOld) {
2876   if (New->isInvalidDecl() || Old->isInvalidDecl())
2877     return;
2878 
2879   QualType MergedT;
2880   if (getLangOpts().CPlusPlus) {
2881     if (New->getType()->isUndeducedType()) {
2882       // We don't know what the new type is until the initializer is attached.
2883       return;
2884     } else if (Context.hasSameType(New->getType(), Old->getType())) {
2885       // These could still be something that needs exception specs checked.
2886       return MergeVarDeclExceptionSpecs(New, Old);
2887     }
2888     // C++ [basic.link]p10:
2889     //   [...] the types specified by all declarations referring to a given
2890     //   object or function shall be identical, except that declarations for an
2891     //   array object can specify array types that differ by the presence or
2892     //   absence of a major array bound (8.3.4).
2893     else if (Old->getType()->isIncompleteArrayType() &&
2894              New->getType()->isArrayType()) {
2895       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2896       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2897       if (Context.hasSameType(OldArray->getElementType(),
2898                               NewArray->getElementType()))
2899         MergedT = New->getType();
2900     } else if (Old->getType()->isArrayType() &&
2901                New->getType()->isIncompleteArrayType()) {
2902       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2903       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2904       if (Context.hasSameType(OldArray->getElementType(),
2905                               NewArray->getElementType()))
2906         MergedT = Old->getType();
2907     } else if (New->getType()->isObjCObjectPointerType() &&
2908                Old->getType()->isObjCObjectPointerType()) {
2909       MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2910                                               Old->getType());
2911     }
2912   } else {
2913     // C 6.2.7p2:
2914     //   All declarations that refer to the same object or function shall have
2915     //   compatible type.
2916     MergedT = Context.mergeTypes(New->getType(), Old->getType());
2917   }
2918   if (MergedT.isNull()) {
2919     // It's OK if we couldn't merge types if either type is dependent, for a
2920     // block-scope variable. In other cases (static data members of class
2921     // templates, variable templates, ...), we require the types to be
2922     // equivalent.
2923     // FIXME: The C++ standard doesn't say anything about this.
2924     if ((New->getType()->isDependentType() ||
2925          Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
2926       // If the old type was dependent, we can't merge with it, so the new type
2927       // becomes dependent for now. We'll reproduce the original type when we
2928       // instantiate the TypeSourceInfo for the variable.
2929       if (!New->getType()->isDependentType() && MergeTypeWithOld)
2930         New->setType(Context.DependentTy);
2931       return;
2932     }
2933 
2934     // FIXME: Even if this merging succeeds, some other non-visible declaration
2935     // of this variable might have an incompatible type. For instance:
2936     //
2937     //   extern int arr[];
2938     //   void f() { extern int arr[2]; }
2939     //   void g() { extern int arr[3]; }
2940     //
2941     // Neither C nor C++ requires a diagnostic for this, but we should still try
2942     // to diagnose it.
2943     Diag(New->getLocation(), diag::err_redefinition_different_type)
2944       << New->getDeclName() << New->getType() << Old->getType();
2945     Diag(Old->getLocation(), diag::note_previous_definition);
2946     return New->setInvalidDecl();
2947   }
2948 
2949   // Don't actually update the type on the new declaration if the old
2950   // declaration was an extern declaration in a different scope.
2951   if (MergeTypeWithOld)
2952     New->setType(MergedT);
2953 }
2954 
2955 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
2956                                   LookupResult &Previous) {
2957   // C11 6.2.7p4:
2958   //   For an identifier with internal or external linkage declared
2959   //   in a scope in which a prior declaration of that identifier is
2960   //   visible, if the prior declaration specifies internal or
2961   //   external linkage, the type of the identifier at the later
2962   //   declaration becomes the composite type.
2963   //
2964   // If the variable isn't visible, we do not merge with its type.
2965   if (Previous.isShadowed())
2966     return false;
2967 
2968   if (S.getLangOpts().CPlusPlus) {
2969     // C++11 [dcl.array]p3:
2970     //   If there is a preceding declaration of the entity in the same
2971     //   scope in which the bound was specified, an omitted array bound
2972     //   is taken to be the same as in that earlier declaration.
2973     return NewVD->isPreviousDeclInSameBlockScope() ||
2974            (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
2975             !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
2976   } else {
2977     // If the old declaration was function-local, don't merge with its
2978     // type unless we're in the same function.
2979     return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
2980            OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
2981   }
2982 }
2983 
2984 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
2985 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2986 /// situation, merging decls or emitting diagnostics as appropriate.
2987 ///
2988 /// Tentative definition rules (C99 6.9.2p2) are checked by
2989 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2990 /// definitions here, since the initializer hasn't been attached.
2991 ///
2992 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2993   // If the new decl is already invalid, don't do any other checking.
2994   if (New->isInvalidDecl())
2995     return;
2996 
2997   // Verify the old decl was also a variable or variable template.
2998   VarDecl *Old = 0;
2999   if (Previous.isSingleResult() &&
3000       (Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
3001     if (New->getDescribedVarTemplate())
3002       Old = Old->getDescribedVarTemplate() ? Old : 0;
3003     else
3004       Old = Old->getDescribedVarTemplate() ? 0 : Old;
3005   }
3006   if (!Old) {
3007     Diag(New->getLocation(), diag::err_redefinition_different_kind)
3008       << New->getDeclName();
3009     Diag(Previous.getRepresentativeDecl()->getLocation(),
3010          diag::note_previous_definition);
3011     return New->setInvalidDecl();
3012   }
3013 
3014   if (!shouldLinkPossiblyHiddenDecl(Old, New))
3015     return;
3016 
3017   // C++ [class.mem]p1:
3018   //   A member shall not be declared twice in the member-specification [...]
3019   //
3020   // Here, we need only consider static data members.
3021   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
3022     Diag(New->getLocation(), diag::err_duplicate_member)
3023       << New->getIdentifier();
3024     Diag(Old->getLocation(), diag::note_previous_declaration);
3025     New->setInvalidDecl();
3026   }
3027 
3028   mergeDeclAttributes(New, Old);
3029   // Warn if an already-declared variable is made a weak_import in a subsequent
3030   // declaration
3031   if (New->getAttr<WeakImportAttr>() &&
3032       Old->getStorageClass() == SC_None &&
3033       !Old->getAttr<WeakImportAttr>()) {
3034     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
3035     Diag(Old->getLocation(), diag::note_previous_definition);
3036     // Remove weak_import attribute on new declaration.
3037     New->dropAttr<WeakImportAttr>();
3038   }
3039 
3040   // Merge the types.
3041   MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
3042 
3043   if (New->isInvalidDecl())
3044     return;
3045 
3046   // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
3047   if (New->getStorageClass() == SC_Static &&
3048       !New->isStaticDataMember() &&
3049       Old->hasExternalFormalLinkage()) {
3050     Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
3051     Diag(Old->getLocation(), diag::note_previous_definition);
3052     return New->setInvalidDecl();
3053   }
3054   // C99 6.2.2p4:
3055   //   For an identifier declared with the storage-class specifier
3056   //   extern in a scope in which a prior declaration of that
3057   //   identifier is visible,23) if the prior declaration specifies
3058   //   internal or external linkage, the linkage of the identifier at
3059   //   the later declaration is the same as the linkage specified at
3060   //   the prior declaration. If no prior declaration is visible, or
3061   //   if the prior declaration specifies no linkage, then the
3062   //   identifier has external linkage.
3063   if (New->hasExternalStorage() && Old->hasLinkage())
3064     /* Okay */;
3065   else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
3066            !New->isStaticDataMember() &&
3067            Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
3068     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
3069     Diag(Old->getLocation(), diag::note_previous_definition);
3070     return New->setInvalidDecl();
3071   }
3072 
3073   // Check if extern is followed by non-extern and vice-versa.
3074   if (New->hasExternalStorage() &&
3075       !Old->hasLinkage() && Old->isLocalVarDecl()) {
3076     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
3077     Diag(Old->getLocation(), diag::note_previous_definition);
3078     return New->setInvalidDecl();
3079   }
3080   if (Old->hasLinkage() && New->isLocalVarDecl() &&
3081       !New->hasExternalStorage()) {
3082     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
3083     Diag(Old->getLocation(), diag::note_previous_definition);
3084     return New->setInvalidDecl();
3085   }
3086 
3087   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
3088 
3089   // FIXME: The test for external storage here seems wrong? We still
3090   // need to check for mismatches.
3091   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
3092       // Don't complain about out-of-line definitions of static members.
3093       !(Old->getLexicalDeclContext()->isRecord() &&
3094         !New->getLexicalDeclContext()->isRecord())) {
3095     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
3096     Diag(Old->getLocation(), diag::note_previous_definition);
3097     return New->setInvalidDecl();
3098   }
3099 
3100   if (New->getTLSKind() != Old->getTLSKind()) {
3101     if (!Old->getTLSKind()) {
3102       Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
3103       Diag(Old->getLocation(), diag::note_previous_declaration);
3104     } else if (!New->getTLSKind()) {
3105       Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
3106       Diag(Old->getLocation(), diag::note_previous_declaration);
3107     } else {
3108       // Do not allow redeclaration to change the variable between requiring
3109       // static and dynamic initialization.
3110       // FIXME: GCC allows this, but uses the TLS keyword on the first
3111       // declaration to determine the kind. Do we need to be compatible here?
3112       Diag(New->getLocation(), diag::err_thread_thread_different_kind)
3113         << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
3114       Diag(Old->getLocation(), diag::note_previous_declaration);
3115     }
3116   }
3117 
3118   // C++ doesn't have tentative definitions, so go right ahead and check here.
3119   const VarDecl *Def;
3120   if (getLangOpts().CPlusPlus &&
3121       New->isThisDeclarationADefinition() == VarDecl::Definition &&
3122       (Def = Old->getDefinition())) {
3123     Diag(New->getLocation(), diag::err_redefinition) << New;
3124     Diag(Def->getLocation(), diag::note_previous_definition);
3125     New->setInvalidDecl();
3126     return;
3127   }
3128 
3129   if (haveIncompatibleLanguageLinkages(Old, New)) {
3130     Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3131     Diag(Old->getLocation(), diag::note_previous_definition);
3132     New->setInvalidDecl();
3133     return;
3134   }
3135 
3136   // Merge "used" flag.
3137   if (Old->getMostRecentDecl()->isUsed(false))
3138     New->setIsUsed();
3139 
3140   // Keep a chain of previous declarations.
3141   New->setPreviousDecl(Old);
3142 
3143   // Inherit access appropriately.
3144   New->setAccess(Old->getAccess());
3145 
3146   if (VarTemplateDecl *VTD = New->getDescribedVarTemplate()) {
3147     if (New->isStaticDataMember() && New->isOutOfLine())
3148       VTD->setAccess(New->getAccess());
3149   }
3150 }
3151 
3152 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3153 /// no declarator (e.g. "struct foo;") is parsed.
3154 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3155                                        DeclSpec &DS) {
3156   return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
3157 }
3158 
3159 static void HandleTagNumbering(Sema &S, const TagDecl *Tag) {
3160   if (!S.Context.getLangOpts().CPlusPlus)
3161     return;
3162 
3163   if (isa<CXXRecordDecl>(Tag->getParent())) {
3164     // If this tag is the direct child of a class, number it if
3165     // it is anonymous.
3166     if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
3167       return;
3168     MangleNumberingContext &MCtx =
3169         S.Context.getManglingNumberContext(Tag->getParent());
3170     S.Context.setManglingNumber(Tag, MCtx.getManglingNumber(Tag));
3171     return;
3172   }
3173 
3174   // If this tag isn't a direct child of a class, number it if it is local.
3175   Decl *ManglingContextDecl;
3176   if (MangleNumberingContext *MCtx =
3177           S.getCurrentMangleNumberContext(Tag->getDeclContext(),
3178                                           ManglingContextDecl)) {
3179     S.Context.setManglingNumber(Tag, MCtx->getManglingNumber(Tag));
3180   }
3181 }
3182 
3183 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3184 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
3185 /// parameters to cope with template friend declarations.
3186 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3187                                        DeclSpec &DS,
3188                                        MultiTemplateParamsArg TemplateParams,
3189                                        bool IsExplicitInstantiation) {
3190   Decl *TagD = 0;
3191   TagDecl *Tag = 0;
3192   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
3193       DS.getTypeSpecType() == DeclSpec::TST_struct ||
3194       DS.getTypeSpecType() == DeclSpec::TST_interface ||
3195       DS.getTypeSpecType() == DeclSpec::TST_union ||
3196       DS.getTypeSpecType() == DeclSpec::TST_enum) {
3197     TagD = DS.getRepAsDecl();
3198 
3199     if (!TagD) // We probably had an error
3200       return 0;
3201 
3202     // Note that the above type specs guarantee that the
3203     // type rep is a Decl, whereas in many of the others
3204     // it's a Type.
3205     if (isa<TagDecl>(TagD))
3206       Tag = cast<TagDecl>(TagD);
3207     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3208       Tag = CTD->getTemplatedDecl();
3209   }
3210 
3211   if (Tag) {
3212     HandleTagNumbering(*this, Tag);
3213     Tag->setFreeStanding();
3214     if (Tag->isInvalidDecl())
3215       return Tag;
3216   }
3217 
3218   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3219     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3220     // or incomplete types shall not be restrict-qualified."
3221     if (TypeQuals & DeclSpec::TQ_restrict)
3222       Diag(DS.getRestrictSpecLoc(),
3223            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3224            << DS.getSourceRange();
3225   }
3226 
3227   if (DS.isConstexprSpecified()) {
3228     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3229     // and definitions of functions and variables.
3230     if (Tag)
3231       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3232         << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3233             DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3234             DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3235             DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
3236     else
3237       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3238     // Don't emit warnings after this error.
3239     return TagD;
3240   }
3241 
3242   DiagnoseFunctionSpecifiers(DS);
3243 
3244   if (DS.isFriendSpecified()) {
3245     // If we're dealing with a decl but not a TagDecl, assume that
3246     // whatever routines created it handled the friendship aspect.
3247     if (TagD && !Tag)
3248       return 0;
3249     return ActOnFriendTypeDecl(S, DS, TemplateParams);
3250   }
3251 
3252   CXXScopeSpec &SS = DS.getTypeSpecScope();
3253   bool IsExplicitSpecialization =
3254     !TemplateParams.empty() && TemplateParams.back()->size() == 0;
3255   if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
3256       !IsExplicitInstantiation && !IsExplicitSpecialization) {
3257     // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
3258     // nested-name-specifier unless it is an explicit instantiation
3259     // or an explicit specialization.
3260     // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
3261     Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
3262       << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3263           DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3264           DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3265           DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
3266       << SS.getRange();
3267     return 0;
3268   }
3269 
3270   // Track whether this decl-specifier declares anything.
3271   bool DeclaresAnything = true;
3272 
3273   // Handle anonymous struct definitions.
3274   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3275     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3276         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3277       if (getLangOpts().CPlusPlus ||
3278           Record->getDeclContext()->isRecord())
3279         return BuildAnonymousStructOrUnion(S, DS, AS, Record);
3280 
3281       DeclaresAnything = false;
3282     }
3283   }
3284 
3285   // Check for Microsoft C extension: anonymous struct member.
3286   if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
3287       CurContext->isRecord() &&
3288       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3289     // Handle 2 kinds of anonymous struct:
3290     //   struct STRUCT;
3291     // and
3292     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
3293     RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
3294     if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
3295         (DS.getTypeSpecType() == DeclSpec::TST_typename &&
3296          DS.getRepAsType().get()->isStructureType())) {
3297       Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
3298         << DS.getSourceRange();
3299       return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3300     }
3301   }
3302 
3303   // Skip all the checks below if we have a type error.
3304   if (DS.getTypeSpecType() == DeclSpec::TST_error ||
3305       (TagD && TagD->isInvalidDecl()))
3306     return TagD;
3307 
3308   if (getLangOpts().CPlusPlus &&
3309       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3310     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3311       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3312           !Enum->getIdentifier() && !Enum->isInvalidDecl())
3313         DeclaresAnything = false;
3314 
3315   if (!DS.isMissingDeclaratorOk()) {
3316     // Customize diagnostic for a typedef missing a name.
3317     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
3318       Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3319         << DS.getSourceRange();
3320     else
3321       DeclaresAnything = false;
3322   }
3323 
3324   if (DS.isModulePrivateSpecified() &&
3325       Tag && Tag->getDeclContext()->isFunctionOrMethod())
3326     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3327       << Tag->getTagKind()
3328       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3329 
3330   ActOnDocumentableDecl(TagD);
3331 
3332   // C 6.7/2:
3333   //   A declaration [...] shall declare at least a declarator [...], a tag,
3334   //   or the members of an enumeration.
3335   // C++ [dcl.dcl]p3:
3336   //   [If there are no declarators], and except for the declaration of an
3337   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
3338   //   names into the program, or shall redeclare a name introduced by a
3339   //   previous declaration.
3340   if (!DeclaresAnything) {
3341     // In C, we allow this as a (popular) extension / bug. Don't bother
3342     // producing further diagnostics for redundant qualifiers after this.
3343     Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
3344     return TagD;
3345   }
3346 
3347   // C++ [dcl.stc]p1:
3348   //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
3349   //   init-declarator-list of the declaration shall not be empty.
3350   // C++ [dcl.fct.spec]p1:
3351   //   If a cv-qualifier appears in a decl-specifier-seq, the
3352   //   init-declarator-list of the declaration shall not be empty.
3353   //
3354   // Spurious qualifiers here appear to be valid in C.
3355   unsigned DiagID = diag::warn_standalone_specifier;
3356   if (getLangOpts().CPlusPlus)
3357     DiagID = diag::ext_standalone_specifier;
3358 
3359   // Note that a linkage-specification sets a storage class, but
3360   // 'extern "C" struct foo;' is actually valid and not theoretically
3361   // useless.
3362   if (DeclSpec::SCS SCS = DS.getStorageClassSpec())
3363     if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
3364       Diag(DS.getStorageClassSpecLoc(), DiagID)
3365         << DeclSpec::getSpecifierName(SCS);
3366 
3367   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
3368     Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
3369       << DeclSpec::getSpecifierName(TSCS);
3370   if (DS.getTypeQualifiers()) {
3371     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3372       Diag(DS.getConstSpecLoc(), DiagID) << "const";
3373     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3374       Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
3375     // Restrict is covered above.
3376     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3377       Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
3378   }
3379 
3380   // Warn about ignored type attributes, for example:
3381   // __attribute__((aligned)) struct A;
3382   // Attributes should be placed after tag to apply to type declaration.
3383   if (!DS.getAttributes().empty()) {
3384     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3385     if (TypeSpecType == DeclSpec::TST_class ||
3386         TypeSpecType == DeclSpec::TST_struct ||
3387         TypeSpecType == DeclSpec::TST_interface ||
3388         TypeSpecType == DeclSpec::TST_union ||
3389         TypeSpecType == DeclSpec::TST_enum) {
3390       AttributeList* attrs = DS.getAttributes().getList();
3391       while (attrs) {
3392         Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3393         << attrs->getName()
3394         << (TypeSpecType == DeclSpec::TST_class ? 0 :
3395             TypeSpecType == DeclSpec::TST_struct ? 1 :
3396             TypeSpecType == DeclSpec::TST_union ? 2 :
3397             TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
3398         attrs = attrs->getNext();
3399       }
3400     }
3401   }
3402 
3403   return TagD;
3404 }
3405 
3406 /// We are trying to inject an anonymous member into the given scope;
3407 /// check if there's an existing declaration that can't be overloaded.
3408 ///
3409 /// \return true if this is a forbidden redeclaration
3410 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3411                                          Scope *S,
3412                                          DeclContext *Owner,
3413                                          DeclarationName Name,
3414                                          SourceLocation NameLoc,
3415                                          unsigned diagnostic) {
3416   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3417                  Sema::ForRedeclaration);
3418   if (!SemaRef.LookupName(R, S)) return false;
3419 
3420   if (R.getAsSingle<TagDecl>())
3421     return false;
3422 
3423   // Pick a representative declaration.
3424   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3425   assert(PrevDecl && "Expected a non-null Decl");
3426 
3427   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3428     return false;
3429 
3430   SemaRef.Diag(NameLoc, diagnostic) << Name;
3431   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3432 
3433   return true;
3434 }
3435 
3436 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
3437 /// anonymous struct or union AnonRecord into the owning context Owner
3438 /// and scope S. This routine will be invoked just after we realize
3439 /// that an unnamed union or struct is actually an anonymous union or
3440 /// struct, e.g.,
3441 ///
3442 /// @code
3443 /// union {
3444 ///   int i;
3445 ///   float f;
3446 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3447 ///    // f into the surrounding scope.x
3448 /// @endcode
3449 ///
3450 /// This routine is recursive, injecting the names of nested anonymous
3451 /// structs/unions into the owning context and scope as well.
3452 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3453                                          DeclContext *Owner,
3454                                          RecordDecl *AnonRecord,
3455                                          AccessSpecifier AS,
3456                                          SmallVectorImpl<NamedDecl *> &Chaining,
3457                                          bool MSAnonStruct) {
3458   unsigned diagKind
3459     = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3460                             : diag::err_anonymous_struct_member_redecl;
3461 
3462   bool Invalid = false;
3463 
3464   // Look every FieldDecl and IndirectFieldDecl with a name.
3465   for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
3466                                DEnd = AnonRecord->decls_end();
3467        D != DEnd; ++D) {
3468     if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
3469         cast<NamedDecl>(*D)->getDeclName()) {
3470       ValueDecl *VD = cast<ValueDecl>(*D);
3471       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3472                                        VD->getLocation(), diagKind)) {
3473         // C++ [class.union]p2:
3474         //   The names of the members of an anonymous union shall be
3475         //   distinct from the names of any other entity in the
3476         //   scope in which the anonymous union is declared.
3477         Invalid = true;
3478       } else {
3479         // C++ [class.union]p2:
3480         //   For the purpose of name lookup, after the anonymous union
3481         //   definition, the members of the anonymous union are
3482         //   considered to have been defined in the scope in which the
3483         //   anonymous union is declared.
3484         unsigned OldChainingSize = Chaining.size();
3485         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3486           for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
3487                PE = IF->chain_end(); PI != PE; ++PI)
3488             Chaining.push_back(*PI);
3489         else
3490           Chaining.push_back(VD);
3491 
3492         assert(Chaining.size() >= 2);
3493         NamedDecl **NamedChain =
3494           new (SemaRef.Context)NamedDecl*[Chaining.size()];
3495         for (unsigned i = 0; i < Chaining.size(); i++)
3496           NamedChain[i] = Chaining[i];
3497 
3498         IndirectFieldDecl* IndirectField =
3499           IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
3500                                     VD->getIdentifier(), VD->getType(),
3501                                     NamedChain, Chaining.size());
3502 
3503         IndirectField->setAccess(AS);
3504         IndirectField->setImplicit();
3505         SemaRef.PushOnScopeChains(IndirectField, S);
3506 
3507         // That includes picking up the appropriate access specifier.
3508         if (AS != AS_none) IndirectField->setAccess(AS);
3509 
3510         Chaining.resize(OldChainingSize);
3511       }
3512     }
3513   }
3514 
3515   return Invalid;
3516 }
3517 
3518 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3519 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
3520 /// illegal input values are mapped to SC_None.
3521 static StorageClass
3522 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
3523   DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
3524   assert(StorageClassSpec != DeclSpec::SCS_typedef &&
3525          "Parser allowed 'typedef' as storage class VarDecl.");
3526   switch (StorageClassSpec) {
3527   case DeclSpec::SCS_unspecified:    return SC_None;
3528   case DeclSpec::SCS_extern:
3529     if (DS.isExternInLinkageSpec())
3530       return SC_None;
3531     return SC_Extern;
3532   case DeclSpec::SCS_static:         return SC_Static;
3533   case DeclSpec::SCS_auto:           return SC_Auto;
3534   case DeclSpec::SCS_register:       return SC_Register;
3535   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3536     // Illegal SCSs map to None: error reporting is up to the caller.
3537   case DeclSpec::SCS_mutable:        // Fall through.
3538   case DeclSpec::SCS_typedef:        return SC_None;
3539   }
3540   llvm_unreachable("unknown storage class specifier");
3541 }
3542 
3543 /// BuildAnonymousStructOrUnion - Handle the declaration of an
3544 /// anonymous structure or union. Anonymous unions are a C++ feature
3545 /// (C++ [class.union]) and a C11 feature; anonymous structures
3546 /// are a C11 feature and GNU C++ extension.
3547 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3548                                              AccessSpecifier AS,
3549                                              RecordDecl *Record) {
3550   DeclContext *Owner = Record->getDeclContext();
3551 
3552   // Diagnose whether this anonymous struct/union is an extension.
3553   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3554     Diag(Record->getLocation(), diag::ext_anonymous_union);
3555   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3556     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3557   else if (!Record->isUnion() && !getLangOpts().C11)
3558     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3559 
3560   // C and C++ require different kinds of checks for anonymous
3561   // structs/unions.
3562   bool Invalid = false;
3563   if (getLangOpts().CPlusPlus) {
3564     const char* PrevSpec = 0;
3565     unsigned DiagID;
3566     if (Record->isUnion()) {
3567       // C++ [class.union]p6:
3568       //   Anonymous unions declared in a named namespace or in the
3569       //   global namespace shall be declared static.
3570       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3571           (isa<TranslationUnitDecl>(Owner) ||
3572            (isa<NamespaceDecl>(Owner) &&
3573             cast<NamespaceDecl>(Owner)->getDeclName()))) {
3574         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3575           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3576 
3577         // Recover by adding 'static'.
3578         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3579                                PrevSpec, DiagID);
3580       }
3581       // C++ [class.union]p6:
3582       //   A storage class is not allowed in a declaration of an
3583       //   anonymous union in a class scope.
3584       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3585                isa<RecordDecl>(Owner)) {
3586         Diag(DS.getStorageClassSpecLoc(),
3587              diag::err_anonymous_union_with_storage_spec)
3588           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3589 
3590         // Recover by removing the storage specifier.
3591         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3592                                SourceLocation(),
3593                                PrevSpec, DiagID);
3594       }
3595     }
3596 
3597     // Ignore const/volatile/restrict qualifiers.
3598     if (DS.getTypeQualifiers()) {
3599       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3600         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3601           << Record->isUnion() << "const"
3602           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3603       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3604         Diag(DS.getVolatileSpecLoc(),
3605              diag::ext_anonymous_struct_union_qualified)
3606           << Record->isUnion() << "volatile"
3607           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3608       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3609         Diag(DS.getRestrictSpecLoc(),
3610              diag::ext_anonymous_struct_union_qualified)
3611           << Record->isUnion() << "restrict"
3612           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3613       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3614         Diag(DS.getAtomicSpecLoc(),
3615              diag::ext_anonymous_struct_union_qualified)
3616           << Record->isUnion() << "_Atomic"
3617           << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
3618 
3619       DS.ClearTypeQualifiers();
3620     }
3621 
3622     // C++ [class.union]p2:
3623     //   The member-specification of an anonymous union shall only
3624     //   define non-static data members. [Note: nested types and
3625     //   functions cannot be declared within an anonymous union. ]
3626     for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3627                                  MemEnd = Record->decls_end();
3628          Mem != MemEnd; ++Mem) {
3629       if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3630         // C++ [class.union]p3:
3631         //   An anonymous union shall not have private or protected
3632         //   members (clause 11).
3633         assert(FD->getAccess() != AS_none);
3634         if (FD->getAccess() != AS_public) {
3635           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3636             << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3637           Invalid = true;
3638         }
3639 
3640         // C++ [class.union]p1
3641         //   An object of a class with a non-trivial constructor, a non-trivial
3642         //   copy constructor, a non-trivial destructor, or a non-trivial copy
3643         //   assignment operator cannot be a member of a union, nor can an
3644         //   array of such objects.
3645         if (CheckNontrivialField(FD))
3646           Invalid = true;
3647       } else if ((*Mem)->isImplicit()) {
3648         // Any implicit members are fine.
3649       } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3650         // This is a type that showed up in an
3651         // elaborated-type-specifier inside the anonymous struct or
3652         // union, but which actually declares a type outside of the
3653         // anonymous struct or union. It's okay.
3654       } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3655         if (!MemRecord->isAnonymousStructOrUnion() &&
3656             MemRecord->getDeclName()) {
3657           // Visual C++ allows type definition in anonymous struct or union.
3658           if (getLangOpts().MicrosoftExt)
3659             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3660               << (int)Record->isUnion();
3661           else {
3662             // This is a nested type declaration.
3663             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3664               << (int)Record->isUnion();
3665             Invalid = true;
3666           }
3667         } else {
3668           // This is an anonymous type definition within another anonymous type.
3669           // This is a popular extension, provided by Plan9, MSVC and GCC, but
3670           // not part of standard C++.
3671           Diag(MemRecord->getLocation(),
3672                diag::ext_anonymous_record_with_anonymous_type)
3673             << (int)Record->isUnion();
3674         }
3675       } else if (isa<AccessSpecDecl>(*Mem)) {
3676         // Any access specifier is fine.
3677       } else {
3678         // We have something that isn't a non-static data
3679         // member. Complain about it.
3680         unsigned DK = diag::err_anonymous_record_bad_member;
3681         if (isa<TypeDecl>(*Mem))
3682           DK = diag::err_anonymous_record_with_type;
3683         else if (isa<FunctionDecl>(*Mem))
3684           DK = diag::err_anonymous_record_with_function;
3685         else if (isa<VarDecl>(*Mem))
3686           DK = diag::err_anonymous_record_with_static;
3687 
3688         // Visual C++ allows type definition in anonymous struct or union.
3689         if (getLangOpts().MicrosoftExt &&
3690             DK == diag::err_anonymous_record_with_type)
3691           Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3692             << (int)Record->isUnion();
3693         else {
3694           Diag((*Mem)->getLocation(), DK)
3695               << (int)Record->isUnion();
3696           Invalid = true;
3697         }
3698       }
3699     }
3700   }
3701 
3702   if (!Record->isUnion() && !Owner->isRecord()) {
3703     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3704       << (int)getLangOpts().CPlusPlus;
3705     Invalid = true;
3706   }
3707 
3708   // Mock up a declarator.
3709   Declarator Dc(DS, Declarator::MemberContext);
3710   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3711   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3712 
3713   // Create a declaration for this anonymous struct/union.
3714   NamedDecl *Anon = 0;
3715   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3716     Anon = FieldDecl::Create(Context, OwningClass,
3717                              DS.getLocStart(),
3718                              Record->getLocation(),
3719                              /*IdentifierInfo=*/0,
3720                              Context.getTypeDeclType(Record),
3721                              TInfo,
3722                              /*BitWidth=*/0, /*Mutable=*/false,
3723                              /*InitStyle=*/ICIS_NoInit);
3724     Anon->setAccess(AS);
3725     if (getLangOpts().CPlusPlus)
3726       FieldCollector->Add(cast<FieldDecl>(Anon));
3727   } else {
3728     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3729     VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
3730     if (SCSpec == DeclSpec::SCS_mutable) {
3731       // mutable can only appear on non-static class members, so it's always
3732       // an error here
3733       Diag(Record->getLocation(), diag::err_mutable_nonmember);
3734       Invalid = true;
3735       SC = SC_None;
3736     }
3737 
3738     Anon = VarDecl::Create(Context, Owner,
3739                            DS.getLocStart(),
3740                            Record->getLocation(), /*IdentifierInfo=*/0,
3741                            Context.getTypeDeclType(Record),
3742                            TInfo, SC);
3743 
3744     // Default-initialize the implicit variable. This initialization will be
3745     // trivial in almost all cases, except if a union member has an in-class
3746     // initializer:
3747     //   union { int n = 0; };
3748     ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3749   }
3750   Anon->setImplicit();
3751 
3752   // Add the anonymous struct/union object to the current
3753   // context. We'll be referencing this object when we refer to one of
3754   // its members.
3755   Owner->addDecl(Anon);
3756 
3757   // Inject the members of the anonymous struct/union into the owning
3758   // context and into the identifier resolver chain for name lookup
3759   // purposes.
3760   SmallVector<NamedDecl*, 2> Chain;
3761   Chain.push_back(Anon);
3762 
3763   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3764                                           Chain, false))
3765     Invalid = true;
3766 
3767   // Mark this as an anonymous struct/union type. Note that we do not
3768   // do this until after we have already checked and injected the
3769   // members of this anonymous struct/union type, because otherwise
3770   // the members could be injected twice: once by DeclContext when it
3771   // builds its lookup table, and once by
3772   // InjectAnonymousStructOrUnionMembers.
3773   Record->setAnonymousStructOrUnion(true);
3774 
3775   if (Invalid)
3776     Anon->setInvalidDecl();
3777 
3778   return Anon;
3779 }
3780 
3781 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3782 /// Microsoft C anonymous structure.
3783 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3784 /// Example:
3785 ///
3786 /// struct A { int a; };
3787 /// struct B { struct A; int b; };
3788 ///
3789 /// void foo() {
3790 ///   B var;
3791 ///   var.a = 3;
3792 /// }
3793 ///
3794 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3795                                            RecordDecl *Record) {
3796 
3797   // If there is no Record, get the record via the typedef.
3798   if (!Record)
3799     Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3800 
3801   // Mock up a declarator.
3802   Declarator Dc(DS, Declarator::TypeNameContext);
3803   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3804   assert(TInfo && "couldn't build declarator info for anonymous struct");
3805 
3806   // Create a declaration for this anonymous struct.
3807   NamedDecl* Anon = FieldDecl::Create(Context,
3808                              cast<RecordDecl>(CurContext),
3809                              DS.getLocStart(),
3810                              DS.getLocStart(),
3811                              /*IdentifierInfo=*/0,
3812                              Context.getTypeDeclType(Record),
3813                              TInfo,
3814                              /*BitWidth=*/0, /*Mutable=*/false,
3815                              /*InitStyle=*/ICIS_NoInit);
3816   Anon->setImplicit();
3817 
3818   // Add the anonymous struct object to the current context.
3819   CurContext->addDecl(Anon);
3820 
3821   // Inject the members of the anonymous struct into the current
3822   // context and into the identifier resolver chain for name lookup
3823   // purposes.
3824   SmallVector<NamedDecl*, 2> Chain;
3825   Chain.push_back(Anon);
3826 
3827   RecordDecl *RecordDef = Record->getDefinition();
3828   if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3829                                                         RecordDef, AS_none,
3830                                                         Chain, true))
3831     Anon->setInvalidDecl();
3832 
3833   return Anon;
3834 }
3835 
3836 /// GetNameForDeclarator - Determine the full declaration name for the
3837 /// given Declarator.
3838 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3839   return GetNameFromUnqualifiedId(D.getName());
3840 }
3841 
3842 /// \brief Retrieves the declaration name from a parsed unqualified-id.
3843 DeclarationNameInfo
3844 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3845   DeclarationNameInfo NameInfo;
3846   NameInfo.setLoc(Name.StartLocation);
3847 
3848   switch (Name.getKind()) {
3849 
3850   case UnqualifiedId::IK_ImplicitSelfParam:
3851   case UnqualifiedId::IK_Identifier:
3852     NameInfo.setName(Name.Identifier);
3853     NameInfo.setLoc(Name.StartLocation);
3854     return NameInfo;
3855 
3856   case UnqualifiedId::IK_OperatorFunctionId:
3857     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3858                                            Name.OperatorFunctionId.Operator));
3859     NameInfo.setLoc(Name.StartLocation);
3860     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3861       = Name.OperatorFunctionId.SymbolLocations[0];
3862     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3863       = Name.EndLocation.getRawEncoding();
3864     return NameInfo;
3865 
3866   case UnqualifiedId::IK_LiteralOperatorId:
3867     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3868                                                            Name.Identifier));
3869     NameInfo.setLoc(Name.StartLocation);
3870     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3871     return NameInfo;
3872 
3873   case UnqualifiedId::IK_ConversionFunctionId: {
3874     TypeSourceInfo *TInfo;
3875     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3876     if (Ty.isNull())
3877       return DeclarationNameInfo();
3878     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3879                                                Context.getCanonicalType(Ty)));
3880     NameInfo.setLoc(Name.StartLocation);
3881     NameInfo.setNamedTypeInfo(TInfo);
3882     return NameInfo;
3883   }
3884 
3885   case UnqualifiedId::IK_ConstructorName: {
3886     TypeSourceInfo *TInfo;
3887     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3888     if (Ty.isNull())
3889       return DeclarationNameInfo();
3890     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3891                                               Context.getCanonicalType(Ty)));
3892     NameInfo.setLoc(Name.StartLocation);
3893     NameInfo.setNamedTypeInfo(TInfo);
3894     return NameInfo;
3895   }
3896 
3897   case UnqualifiedId::IK_ConstructorTemplateId: {
3898     // In well-formed code, we can only have a constructor
3899     // template-id that refers to the current context, so go there
3900     // to find the actual type being constructed.
3901     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3902     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3903       return DeclarationNameInfo();
3904 
3905     // Determine the type of the class being constructed.
3906     QualType CurClassType = Context.getTypeDeclType(CurClass);
3907 
3908     // FIXME: Check two things: that the template-id names the same type as
3909     // CurClassType, and that the template-id does not occur when the name
3910     // was qualified.
3911 
3912     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3913                                     Context.getCanonicalType(CurClassType)));
3914     NameInfo.setLoc(Name.StartLocation);
3915     // FIXME: should we retrieve TypeSourceInfo?
3916     NameInfo.setNamedTypeInfo(0);
3917     return NameInfo;
3918   }
3919 
3920   case UnqualifiedId::IK_DestructorName: {
3921     TypeSourceInfo *TInfo;
3922     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3923     if (Ty.isNull())
3924       return DeclarationNameInfo();
3925     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3926                                               Context.getCanonicalType(Ty)));
3927     NameInfo.setLoc(Name.StartLocation);
3928     NameInfo.setNamedTypeInfo(TInfo);
3929     return NameInfo;
3930   }
3931 
3932   case UnqualifiedId::IK_TemplateId: {
3933     TemplateName TName = Name.TemplateId->Template.get();
3934     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3935     return Context.getNameForTemplate(TName, TNameLoc);
3936   }
3937 
3938   } // switch (Name.getKind())
3939 
3940   llvm_unreachable("Unknown name kind");
3941 }
3942 
3943 static QualType getCoreType(QualType Ty) {
3944   do {
3945     if (Ty->isPointerType() || Ty->isReferenceType())
3946       Ty = Ty->getPointeeType();
3947     else if (Ty->isArrayType())
3948       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3949     else
3950       return Ty.withoutLocalFastQualifiers();
3951   } while (true);
3952 }
3953 
3954 /// hasSimilarParameters - Determine whether the C++ functions Declaration
3955 /// and Definition have "nearly" matching parameters. This heuristic is
3956 /// used to improve diagnostics in the case where an out-of-line function
3957 /// definition doesn't match any declaration within the class or namespace.
3958 /// Also sets Params to the list of indices to the parameters that differ
3959 /// between the declaration and the definition. If hasSimilarParameters
3960 /// returns true and Params is empty, then all of the parameters match.
3961 static bool hasSimilarParameters(ASTContext &Context,
3962                                      FunctionDecl *Declaration,
3963                                      FunctionDecl *Definition,
3964                                      SmallVectorImpl<unsigned> &Params) {
3965   Params.clear();
3966   if (Declaration->param_size() != Definition->param_size())
3967     return false;
3968   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3969     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3970     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3971 
3972     // The parameter types are identical
3973     if (Context.hasSameType(DefParamTy, DeclParamTy))
3974       continue;
3975 
3976     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3977     QualType DefParamBaseTy = getCoreType(DefParamTy);
3978     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3979     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3980 
3981     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3982         (DeclTyName && DeclTyName == DefTyName))
3983       Params.push_back(Idx);
3984     else  // The two parameters aren't even close
3985       return false;
3986   }
3987 
3988   return true;
3989 }
3990 
3991 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3992 /// declarator needs to be rebuilt in the current instantiation.
3993 /// Any bits of declarator which appear before the name are valid for
3994 /// consideration here.  That's specifically the type in the decl spec
3995 /// and the base type in any member-pointer chunks.
3996 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3997                                                     DeclarationName Name) {
3998   // The types we specifically need to rebuild are:
3999   //   - typenames, typeofs, and decltypes
4000   //   - types which will become injected class names
4001   // Of course, we also need to rebuild any type referencing such a
4002   // type.  It's safest to just say "dependent", but we call out a
4003   // few cases here.
4004 
4005   DeclSpec &DS = D.getMutableDeclSpec();
4006   switch (DS.getTypeSpecType()) {
4007   case DeclSpec::TST_typename:
4008   case DeclSpec::TST_typeofType:
4009   case DeclSpec::TST_underlyingType:
4010   case DeclSpec::TST_atomic: {
4011     // Grab the type from the parser.
4012     TypeSourceInfo *TSI = 0;
4013     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
4014     if (T.isNull() || !T->isDependentType()) break;
4015 
4016     // Make sure there's a type source info.  This isn't really much
4017     // of a waste; most dependent types should have type source info
4018     // attached already.
4019     if (!TSI)
4020       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
4021 
4022     // Rebuild the type in the current instantiation.
4023     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
4024     if (!TSI) return true;
4025 
4026     // Store the new type back in the decl spec.
4027     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
4028     DS.UpdateTypeRep(LocType);
4029     break;
4030   }
4031 
4032   case DeclSpec::TST_decltype:
4033   case DeclSpec::TST_typeofExpr: {
4034     Expr *E = DS.getRepAsExpr();
4035     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
4036     if (Result.isInvalid()) return true;
4037     DS.UpdateExprRep(Result.get());
4038     break;
4039   }
4040 
4041   default:
4042     // Nothing to do for these decl specs.
4043     break;
4044   }
4045 
4046   // It doesn't matter what order we do this in.
4047   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4048     DeclaratorChunk &Chunk = D.getTypeObject(I);
4049 
4050     // The only type information in the declarator which can come
4051     // before the declaration name is the base type of a member
4052     // pointer.
4053     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
4054       continue;
4055 
4056     // Rebuild the scope specifier in-place.
4057     CXXScopeSpec &SS = Chunk.Mem.Scope();
4058     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
4059       return true;
4060   }
4061 
4062   return false;
4063 }
4064 
4065 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
4066   D.setFunctionDefinitionKind(FDK_Declaration);
4067   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
4068 
4069   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
4070       Dcl && Dcl->getDeclContext()->isFileContext())
4071     Dcl->setTopLevelDeclInObjCContainer();
4072 
4073   return Dcl;
4074 }
4075 
4076 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
4077 ///   If T is the name of a class, then each of the following shall have a
4078 ///   name different from T:
4079 ///     - every static data member of class T;
4080 ///     - every member function of class T
4081 ///     - every member of class T that is itself a type;
4082 /// \returns true if the declaration name violates these rules.
4083 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
4084                                    DeclarationNameInfo NameInfo) {
4085   DeclarationName Name = NameInfo.getName();
4086 
4087   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
4088     if (Record->getIdentifier() && Record->getDeclName() == Name) {
4089       Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
4090       return true;
4091     }
4092 
4093   return false;
4094 }
4095 
4096 /// \brief Diagnose a declaration whose declarator-id has the given
4097 /// nested-name-specifier.
4098 ///
4099 /// \param SS The nested-name-specifier of the declarator-id.
4100 ///
4101 /// \param DC The declaration context to which the nested-name-specifier
4102 /// resolves.
4103 ///
4104 /// \param Name The name of the entity being declared.
4105 ///
4106 /// \param Loc The location of the name of the entity being declared.
4107 ///
4108 /// \returns true if we cannot safely recover from this error, false otherwise.
4109 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
4110                                         DeclarationName Name,
4111                                       SourceLocation Loc) {
4112   DeclContext *Cur = CurContext;
4113   while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
4114     Cur = Cur->getParent();
4115 
4116   // C++ [dcl.meaning]p1:
4117   //   A declarator-id shall not be qualified except for the definition
4118   //   of a member function (9.3) or static data member (9.4) outside of
4119   //   its class, the definition or explicit instantiation of a function
4120   //   or variable member of a namespace outside of its namespace, or the
4121   //   definition of an explicit specialization outside of its namespace,
4122   //   or the declaration of a friend function that is a member of
4123   //   another class or namespace (11.3). [...]
4124 
4125   // The user provided a superfluous scope specifier that refers back to the
4126   // class or namespaces in which the entity is already declared.
4127   //
4128   // class X {
4129   //   void X::f();
4130   // };
4131   if (Cur->Equals(DC)) {
4132     Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
4133                                    : diag::err_member_extra_qualification)
4134       << Name << FixItHint::CreateRemoval(SS.getRange());
4135     SS.clear();
4136     return false;
4137   }
4138 
4139   // Check whether the qualifying scope encloses the scope of the original
4140   // declaration.
4141   if (!Cur->Encloses(DC)) {
4142     if (Cur->isRecord())
4143       Diag(Loc, diag::err_member_qualification)
4144         << Name << SS.getRange();
4145     else if (isa<TranslationUnitDecl>(DC))
4146       Diag(Loc, diag::err_invalid_declarator_global_scope)
4147         << Name << SS.getRange();
4148     else if (isa<FunctionDecl>(Cur))
4149       Diag(Loc, diag::err_invalid_declarator_in_function)
4150         << Name << SS.getRange();
4151     else if (isa<BlockDecl>(Cur))
4152       Diag(Loc, diag::err_invalid_declarator_in_block)
4153         << Name << SS.getRange();
4154     else
4155       Diag(Loc, diag::err_invalid_declarator_scope)
4156       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
4157 
4158     return true;
4159   }
4160 
4161   if (Cur->isRecord()) {
4162     // Cannot qualify members within a class.
4163     Diag(Loc, diag::err_member_qualification)
4164       << Name << SS.getRange();
4165     SS.clear();
4166 
4167     // C++ constructors and destructors with incorrect scopes can break
4168     // our AST invariants by having the wrong underlying types. If
4169     // that's the case, then drop this declaration entirely.
4170     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
4171          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
4172         !Context.hasSameType(Name.getCXXNameType(),
4173                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
4174       return true;
4175 
4176     return false;
4177   }
4178 
4179   // C++11 [dcl.meaning]p1:
4180   //   [...] "The nested-name-specifier of the qualified declarator-id shall
4181   //   not begin with a decltype-specifer"
4182   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
4183   while (SpecLoc.getPrefix())
4184     SpecLoc = SpecLoc.getPrefix();
4185   if (dyn_cast_or_null<DecltypeType>(
4186         SpecLoc.getNestedNameSpecifier()->getAsType()))
4187     Diag(Loc, diag::err_decltype_in_declarator)
4188       << SpecLoc.getTypeLoc().getSourceRange();
4189 
4190   return false;
4191 }
4192 
4193 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
4194                                   MultiTemplateParamsArg TemplateParamLists) {
4195   // TODO: consider using NameInfo for diagnostic.
4196   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4197   DeclarationName Name = NameInfo.getName();
4198 
4199   // All of these full declarators require an identifier.  If it doesn't have
4200   // one, the ParsedFreeStandingDeclSpec action should be used.
4201   if (!Name) {
4202     if (!D.isInvalidType())  // Reject this if we think it is valid.
4203       Diag(D.getDeclSpec().getLocStart(),
4204            diag::err_declarator_need_ident)
4205         << D.getDeclSpec().getSourceRange() << D.getSourceRange();
4206     return 0;
4207   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
4208     return 0;
4209 
4210   // The scope passed in may not be a decl scope.  Zip up the scope tree until
4211   // we find one that is.
4212   while ((S->getFlags() & Scope::DeclScope) == 0 ||
4213          (S->getFlags() & Scope::TemplateParamScope) != 0)
4214     S = S->getParent();
4215 
4216   DeclContext *DC = CurContext;
4217   if (D.getCXXScopeSpec().isInvalid())
4218     D.setInvalidType();
4219   else if (D.getCXXScopeSpec().isSet()) {
4220     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4221                                         UPPC_DeclarationQualifier))
4222       return 0;
4223 
4224     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4225     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4226     if (!DC || isa<EnumDecl>(DC)) {
4227       // If we could not compute the declaration context, it's because the
4228       // declaration context is dependent but does not refer to a class,
4229       // class template, or class template partial specialization. Complain
4230       // and return early, to avoid the coming semantic disaster.
4231       Diag(D.getIdentifierLoc(),
4232            diag::err_template_qualified_declarator_no_match)
4233         << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
4234         << D.getCXXScopeSpec().getRange();
4235       return 0;
4236     }
4237     bool IsDependentContext = DC->isDependentContext();
4238 
4239     if (!IsDependentContext &&
4240         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4241       return 0;
4242 
4243     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4244       Diag(D.getIdentifierLoc(),
4245            diag::err_member_def_undefined_record)
4246         << Name << DC << D.getCXXScopeSpec().getRange();
4247       D.setInvalidType();
4248     } else if (!D.getDeclSpec().isFriendSpecified()) {
4249       if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4250                                       Name, D.getIdentifierLoc())) {
4251         if (DC->isRecord())
4252           return 0;
4253 
4254         D.setInvalidType();
4255       }
4256     }
4257 
4258     // Check whether we need to rebuild the type of the given
4259     // declaration in the current instantiation.
4260     if (EnteringContext && IsDependentContext &&
4261         TemplateParamLists.size() != 0) {
4262       ContextRAII SavedContext(*this, DC);
4263       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4264         D.setInvalidType();
4265     }
4266   }
4267 
4268   if (DiagnoseClassNameShadow(DC, NameInfo))
4269     // If this is a typedef, we'll end up spewing multiple diagnostics.
4270     // Just return early; it's safer.
4271     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4272       return 0;
4273 
4274   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4275   QualType R = TInfo->getType();
4276 
4277   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4278                                       UPPC_DeclarationType))
4279     D.setInvalidType();
4280 
4281   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4282                         ForRedeclaration);
4283 
4284   // See if this is a redefinition of a variable in the same scope.
4285   if (!D.getCXXScopeSpec().isSet()) {
4286     bool IsLinkageLookup = false;
4287     bool CreateBuiltins = false;
4288 
4289     // If the declaration we're planning to build will be a function
4290     // or object with linkage, then look for another declaration with
4291     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4292     //
4293     // If the declaration we're planning to build will be declared with
4294     // external linkage in the translation unit, create any builtin with
4295     // the same name.
4296     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4297       /* Do nothing*/;
4298     else if (CurContext->isFunctionOrMethod() &&
4299              (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
4300               R->isFunctionType())) {
4301       IsLinkageLookup = true;
4302       CreateBuiltins =
4303           CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
4304     } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4305                D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4306       CreateBuiltins = true;
4307 
4308     if (IsLinkageLookup)
4309       Previous.clear(LookupRedeclarationWithLinkage);
4310 
4311     LookupName(Previous, S, CreateBuiltins);
4312   } else { // Something like "int foo::x;"
4313     LookupQualifiedName(Previous, DC);
4314 
4315     // C++ [dcl.meaning]p1:
4316     //   When the declarator-id is qualified, the declaration shall refer to a
4317     //  previously declared member of the class or namespace to which the
4318     //  qualifier refers (or, in the case of a namespace, of an element of the
4319     //  inline namespace set of that namespace (7.3.1)) or to a specialization
4320     //  thereof; [...]
4321     //
4322     // Note that we already checked the context above, and that we do not have
4323     // enough information to make sure that Previous contains the declaration
4324     // we want to match. For example, given:
4325     //
4326     //   class X {
4327     //     void f();
4328     //     void f(float);
4329     //   };
4330     //
4331     //   void X::f(int) { } // ill-formed
4332     //
4333     // In this case, Previous will point to the overload set
4334     // containing the two f's declared in X, but neither of them
4335     // matches.
4336 
4337     // C++ [dcl.meaning]p1:
4338     //   [...] the member shall not merely have been introduced by a
4339     //   using-declaration in the scope of the class or namespace nominated by
4340     //   the nested-name-specifier of the declarator-id.
4341     RemoveUsingDecls(Previous);
4342   }
4343 
4344   if (Previous.isSingleResult() &&
4345       Previous.getFoundDecl()->isTemplateParameter()) {
4346     // Maybe we will complain about the shadowed template parameter.
4347     if (!D.isInvalidType())
4348       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4349                                       Previous.getFoundDecl());
4350 
4351     // Just pretend that we didn't see the previous declaration.
4352     Previous.clear();
4353   }
4354 
4355   // In C++, the previous declaration we find might be a tag type
4356   // (class or enum). In this case, the new declaration will hide the
4357   // tag type. Note that this does does not apply if we're declaring a
4358   // typedef (C++ [dcl.typedef]p4).
4359   if (Previous.isSingleTagDecl() &&
4360       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4361     Previous.clear();
4362 
4363   // Check that there are no default arguments other than in the parameters
4364   // of a function declaration (C++ only).
4365   if (getLangOpts().CPlusPlus)
4366     CheckExtraCXXDefaultArguments(D);
4367 
4368   NamedDecl *New;
4369 
4370   bool AddToScope = true;
4371   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4372     if (TemplateParamLists.size()) {
4373       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4374       return 0;
4375     }
4376 
4377     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4378   } else if (R->isFunctionType()) {
4379     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4380                                   TemplateParamLists,
4381                                   AddToScope);
4382   } else {
4383     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
4384                                   AddToScope);
4385   }
4386 
4387   if (New == 0)
4388     return 0;
4389 
4390   // If this has an identifier and is not an invalid redeclaration or
4391   // function template specialization, add it to the scope stack.
4392   if (New->getDeclName() && AddToScope &&
4393        !(D.isRedeclaration() && New->isInvalidDecl())) {
4394     // Only make a locally-scoped extern declaration visible if it is the first
4395     // declaration of this entity. Qualified lookup for such an entity should
4396     // only find this declaration if there is no visible declaration of it.
4397     bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl();
4398     PushOnScopeChains(New, S, AddToContext);
4399     if (!AddToContext)
4400       CurContext->addHiddenDecl(New);
4401   }
4402 
4403   return New;
4404 }
4405 
4406 /// Helper method to turn variable array types into constant array
4407 /// types in certain situations which would otherwise be errors (for
4408 /// GCC compatibility).
4409 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
4410                                                     ASTContext &Context,
4411                                                     bool &SizeIsNegative,
4412                                                     llvm::APSInt &Oversized) {
4413   // This method tries to turn a variable array into a constant
4414   // array even when the size isn't an ICE.  This is necessary
4415   // for compatibility with code that depends on gcc's buggy
4416   // constant expression folding, like struct {char x[(int)(char*)2];}
4417   SizeIsNegative = false;
4418   Oversized = 0;
4419 
4420   if (T->isDependentType())
4421     return QualType();
4422 
4423   QualifierCollector Qs;
4424   const Type *Ty = Qs.strip(T);
4425 
4426   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4427     QualType Pointee = PTy->getPointeeType();
4428     QualType FixedType =
4429         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4430                                             Oversized);
4431     if (FixedType.isNull()) return FixedType;
4432     FixedType = Context.getPointerType(FixedType);
4433     return Qs.apply(Context, FixedType);
4434   }
4435   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4436     QualType Inner = PTy->getInnerType();
4437     QualType FixedType =
4438         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4439                                             Oversized);
4440     if (FixedType.isNull()) return FixedType;
4441     FixedType = Context.getParenType(FixedType);
4442     return Qs.apply(Context, FixedType);
4443   }
4444 
4445   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4446   if (!VLATy)
4447     return QualType();
4448   // FIXME: We should probably handle this case
4449   if (VLATy->getElementType()->isVariablyModifiedType())
4450     return QualType();
4451 
4452   llvm::APSInt Res;
4453   if (!VLATy->getSizeExpr() ||
4454       !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4455     return QualType();
4456 
4457   // Check whether the array size is negative.
4458   if (Res.isSigned() && Res.isNegative()) {
4459     SizeIsNegative = true;
4460     return QualType();
4461   }
4462 
4463   // Check whether the array is too large to be addressed.
4464   unsigned ActiveSizeBits
4465     = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4466                                               Res);
4467   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4468     Oversized = Res;
4469     return QualType();
4470   }
4471 
4472   return Context.getConstantArrayType(VLATy->getElementType(),
4473                                       Res, ArrayType::Normal, 0);
4474 }
4475 
4476 static void
4477 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4478   if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
4479     PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
4480     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
4481                                       DstPTL.getPointeeLoc());
4482     DstPTL.setStarLoc(SrcPTL.getStarLoc());
4483     return;
4484   }
4485   if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
4486     ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
4487     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
4488                                       DstPTL.getInnerLoc());
4489     DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
4490     DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
4491     return;
4492   }
4493   ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
4494   ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
4495   TypeLoc SrcElemTL = SrcATL.getElementLoc();
4496   TypeLoc DstElemTL = DstATL.getElementLoc();
4497   DstElemTL.initializeFullCopy(SrcElemTL);
4498   DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
4499   DstATL.setSizeExpr(SrcATL.getSizeExpr());
4500   DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
4501 }
4502 
4503 /// Helper method to turn variable array types into constant array
4504 /// types in certain situations which would otherwise be errors (for
4505 /// GCC compatibility).
4506 static TypeSourceInfo*
4507 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4508                                               ASTContext &Context,
4509                                               bool &SizeIsNegative,
4510                                               llvm::APSInt &Oversized) {
4511   QualType FixedTy
4512     = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4513                                           SizeIsNegative, Oversized);
4514   if (FixedTy.isNull())
4515     return 0;
4516   TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4517   FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4518                                     FixedTInfo->getTypeLoc());
4519   return FixedTInfo;
4520 }
4521 
4522 /// \brief Register the given locally-scoped extern "C" declaration so
4523 /// that it can be found later for redeclarations. We include any extern "C"
4524 /// declaration that is not visible in the translation unit here, not just
4525 /// function-scope declarations.
4526 void
4527 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
4528   if (!getLangOpts().CPlusPlus &&
4529       ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
4530     // Don't need to track declarations in the TU in C.
4531     return;
4532 
4533   // Note that we have a locally-scoped external with this name.
4534   // FIXME: There can be multiple such declarations if they are functions marked
4535   // __attribute__((overloadable)) declared in function scope in C.
4536   LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4537 }
4538 
4539 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4540   if (ExternalSource) {
4541     // Load locally-scoped external decls from the external source.
4542     // FIXME: This is inefficient. Maybe add a DeclContext for extern "C" decls?
4543     SmallVector<NamedDecl *, 4> Decls;
4544     ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4545     for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4546       llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4547         = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4548       if (Pos == LocallyScopedExternCDecls.end())
4549         LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4550     }
4551   }
4552 
4553   NamedDecl *D = LocallyScopedExternCDecls.lookup(Name);
4554   return D ? D->getMostRecentDecl() : 0;
4555 }
4556 
4557 /// \brief Diagnose function specifiers on a declaration of an identifier that
4558 /// does not identify a function.
4559 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
4560   // FIXME: We should probably indicate the identifier in question to avoid
4561   // confusion for constructs like "inline int a(), b;"
4562   if (DS.isInlineSpecified())
4563     Diag(DS.getInlineSpecLoc(),
4564          diag::err_inline_non_function);
4565 
4566   if (DS.isVirtualSpecified())
4567     Diag(DS.getVirtualSpecLoc(),
4568          diag::err_virtual_non_function);
4569 
4570   if (DS.isExplicitSpecified())
4571     Diag(DS.getExplicitSpecLoc(),
4572          diag::err_explicit_non_function);
4573 
4574   if (DS.isNoreturnSpecified())
4575     Diag(DS.getNoreturnSpecLoc(),
4576          diag::err_noreturn_non_function);
4577 }
4578 
4579 NamedDecl*
4580 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4581                              TypeSourceInfo *TInfo, LookupResult &Previous) {
4582   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4583   if (D.getCXXScopeSpec().isSet()) {
4584     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4585       << D.getCXXScopeSpec().getRange();
4586     D.setInvalidType();
4587     // Pretend we didn't see the scope specifier.
4588     DC = CurContext;
4589     Previous.clear();
4590   }
4591 
4592   DiagnoseFunctionSpecifiers(D.getDeclSpec());
4593 
4594   if (D.getDeclSpec().isConstexprSpecified())
4595     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4596       << 1;
4597 
4598   if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4599     Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4600       << D.getName().getSourceRange();
4601     return 0;
4602   }
4603 
4604   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4605   if (!NewTD) return 0;
4606 
4607   // Handle attributes prior to checking for duplicates in MergeVarDecl
4608   ProcessDeclAttributes(S, NewTD, D);
4609 
4610   CheckTypedefForVariablyModifiedType(S, NewTD);
4611 
4612   bool Redeclaration = D.isRedeclaration();
4613   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4614   D.setRedeclaration(Redeclaration);
4615   return ND;
4616 }
4617 
4618 void
4619 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4620   // C99 6.7.7p2: If a typedef name specifies a variably modified type
4621   // then it shall have block scope.
4622   // Note that variably modified types must be fixed before merging the decl so
4623   // that redeclarations will match.
4624   TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4625   QualType T = TInfo->getType();
4626   if (T->isVariablyModifiedType()) {
4627     getCurFunction()->setHasBranchProtectedScope();
4628 
4629     if (S->getFnParent() == 0) {
4630       bool SizeIsNegative;
4631       llvm::APSInt Oversized;
4632       TypeSourceInfo *FixedTInfo =
4633         TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4634                                                       SizeIsNegative,
4635                                                       Oversized);
4636       if (FixedTInfo) {
4637         Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4638         NewTD->setTypeSourceInfo(FixedTInfo);
4639       } else {
4640         if (SizeIsNegative)
4641           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4642         else if (T->isVariableArrayType())
4643           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4644         else if (Oversized.getBoolValue())
4645           Diag(NewTD->getLocation(), diag::err_array_too_large)
4646             << Oversized.toString(10);
4647         else
4648           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4649         NewTD->setInvalidDecl();
4650       }
4651     }
4652   }
4653 }
4654 
4655 
4656 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4657 /// declares a typedef-name, either using the 'typedef' type specifier or via
4658 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4659 NamedDecl*
4660 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4661                            LookupResult &Previous, bool &Redeclaration) {
4662   // Merge the decl with the existing one if appropriate. If the decl is
4663   // in an outer scope, it isn't the same thing.
4664   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4665                        /*ExplicitInstantiationOrSpecialization=*/false);
4666   filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4667   if (!Previous.empty()) {
4668     Redeclaration = true;
4669     MergeTypedefNameDecl(NewTD, Previous);
4670   }
4671 
4672   // If this is the C FILE type, notify the AST context.
4673   if (IdentifierInfo *II = NewTD->getIdentifier())
4674     if (!NewTD->isInvalidDecl() &&
4675         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4676       if (II->isStr("FILE"))
4677         Context.setFILEDecl(NewTD);
4678       else if (II->isStr("jmp_buf"))
4679         Context.setjmp_bufDecl(NewTD);
4680       else if (II->isStr("sigjmp_buf"))
4681         Context.setsigjmp_bufDecl(NewTD);
4682       else if (II->isStr("ucontext_t"))
4683         Context.setucontext_tDecl(NewTD);
4684     }
4685 
4686   return NewTD;
4687 }
4688 
4689 /// \brief Determines whether the given declaration is an out-of-scope
4690 /// previous declaration.
4691 ///
4692 /// This routine should be invoked when name lookup has found a
4693 /// previous declaration (PrevDecl) that is not in the scope where a
4694 /// new declaration by the same name is being introduced. If the new
4695 /// declaration occurs in a local scope, previous declarations with
4696 /// linkage may still be considered previous declarations (C99
4697 /// 6.2.2p4-5, C++ [basic.link]p6).
4698 ///
4699 /// \param PrevDecl the previous declaration found by name
4700 /// lookup
4701 ///
4702 /// \param DC the context in which the new declaration is being
4703 /// declared.
4704 ///
4705 /// \returns true if PrevDecl is an out-of-scope previous declaration
4706 /// for a new delcaration with the same name.
4707 static bool
4708 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4709                                 ASTContext &Context) {
4710   if (!PrevDecl)
4711     return false;
4712 
4713   if (!PrevDecl->hasLinkage())
4714     return false;
4715 
4716   if (Context.getLangOpts().CPlusPlus) {
4717     // C++ [basic.link]p6:
4718     //   If there is a visible declaration of an entity with linkage
4719     //   having the same name and type, ignoring entities declared
4720     //   outside the innermost enclosing namespace scope, the block
4721     //   scope declaration declares that same entity and receives the
4722     //   linkage of the previous declaration.
4723     DeclContext *OuterContext = DC->getRedeclContext();
4724     if (!OuterContext->isFunctionOrMethod())
4725       // This rule only applies to block-scope declarations.
4726       return false;
4727 
4728     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4729     if (PrevOuterContext->isRecord())
4730       // We found a member function: ignore it.
4731       return false;
4732 
4733     // Find the innermost enclosing namespace for the new and
4734     // previous declarations.
4735     OuterContext = OuterContext->getEnclosingNamespaceContext();
4736     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4737 
4738     // The previous declaration is in a different namespace, so it
4739     // isn't the same function.
4740     if (!OuterContext->Equals(PrevOuterContext))
4741       return false;
4742   }
4743 
4744   return true;
4745 }
4746 
4747 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4748   CXXScopeSpec &SS = D.getCXXScopeSpec();
4749   if (!SS.isSet()) return;
4750   DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4751 }
4752 
4753 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4754   QualType type = decl->getType();
4755   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4756   if (lifetime == Qualifiers::OCL_Autoreleasing) {
4757     // Various kinds of declaration aren't allowed to be __autoreleasing.
4758     unsigned kind = -1U;
4759     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4760       if (var->hasAttr<BlocksAttr>())
4761         kind = 0; // __block
4762       else if (!var->hasLocalStorage())
4763         kind = 1; // global
4764     } else if (isa<ObjCIvarDecl>(decl)) {
4765       kind = 3; // ivar
4766     } else if (isa<FieldDecl>(decl)) {
4767       kind = 2; // field
4768     }
4769 
4770     if (kind != -1U) {
4771       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4772         << kind;
4773     }
4774   } else if (lifetime == Qualifiers::OCL_None) {
4775     // Try to infer lifetime.
4776     if (!type->isObjCLifetimeType())
4777       return false;
4778 
4779     lifetime = type->getObjCARCImplicitLifetime();
4780     type = Context.getLifetimeQualifiedType(type, lifetime);
4781     decl->setType(type);
4782   }
4783 
4784   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4785     // Thread-local variables cannot have lifetime.
4786     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4787         var->getTLSKind()) {
4788       Diag(var->getLocation(), diag::err_arc_thread_ownership)
4789         << var->getType();
4790       return true;
4791     }
4792   }
4793 
4794   return false;
4795 }
4796 
4797 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
4798   // 'weak' only applies to declarations with external linkage.
4799   if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
4800     if (!ND.isExternallyVisible()) {
4801       S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
4802       ND.dropAttr<WeakAttr>();
4803     }
4804   }
4805   if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
4806     if (ND.isExternallyVisible()) {
4807       S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
4808       ND.dropAttr<WeakRefAttr>();
4809     }
4810   }
4811 
4812   // 'selectany' only applies to externally visible varable declarations.
4813   // It does not apply to functions.
4814   if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
4815     if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
4816       S.Diag(Attr->getLocation(), diag::err_attribute_selectany_non_extern_data);
4817       ND.dropAttr<SelectAnyAttr>();
4818     }
4819   }
4820 }
4821 
4822 /// Given that we are within the definition of the given function,
4823 /// will that definition behave like C99's 'inline', where the
4824 /// definition is discarded except for optimization purposes?
4825 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
4826   // Try to avoid calling GetGVALinkageForFunction.
4827 
4828   // All cases of this require the 'inline' keyword.
4829   if (!FD->isInlined()) return false;
4830 
4831   // This is only possible in C++ with the gnu_inline attribute.
4832   if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
4833     return false;
4834 
4835   // Okay, go ahead and call the relatively-more-expensive function.
4836 
4837 #ifndef NDEBUG
4838   // AST quite reasonably asserts that it's working on a function
4839   // definition.  We don't really have a way to tell it that we're
4840   // currently defining the function, so just lie to it in +Asserts
4841   // builds.  This is an awful hack.
4842   FD->setLazyBody(1);
4843 #endif
4844 
4845   bool isC99Inline = (S.Context.GetGVALinkageForFunction(FD) == GVA_C99Inline);
4846 
4847 #ifndef NDEBUG
4848   FD->setLazyBody(0);
4849 #endif
4850 
4851   return isC99Inline;
4852 }
4853 
4854 /// Determine whether a variable is extern "C" prior to attaching
4855 /// an initializer. We can't just call isExternC() here, because that
4856 /// will also compute and cache whether the declaration is externally
4857 /// visible, which might change when we attach the initializer.
4858 ///
4859 /// This can only be used if the declaration is known to not be a
4860 /// redeclaration of an internal linkage declaration.
4861 ///
4862 /// For instance:
4863 ///
4864 ///   auto x = []{};
4865 ///
4866 /// Attaching the initializer here makes this declaration not externally
4867 /// visible, because its type has internal linkage.
4868 ///
4869 /// FIXME: This is a hack.
4870 template<typename T>
4871 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
4872   if (S.getLangOpts().CPlusPlus) {
4873     // In C++, the overloadable attribute negates the effects of extern "C".
4874     if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
4875       return false;
4876   }
4877   return D->isExternC();
4878 }
4879 
4880 static bool shouldConsiderLinkage(const VarDecl *VD) {
4881   const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
4882   if (DC->isFunctionOrMethod())
4883     return VD->hasExternalStorage();
4884   if (DC->isFileContext())
4885     return true;
4886   if (DC->isRecord())
4887     return false;
4888   llvm_unreachable("Unexpected context");
4889 }
4890 
4891 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
4892   const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
4893   if (DC->isFileContext() || DC->isFunctionOrMethod())
4894     return true;
4895   if (DC->isRecord())
4896     return false;
4897   llvm_unreachable("Unexpected context");
4898 }
4899 
4900 /// Adjust the \c DeclContext for a function or variable that might be a
4901 /// function-local external declaration.
4902 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
4903   if (!DC->isFunctionOrMethod())
4904     return false;
4905 
4906   // If this is a local extern function or variable declared within a function
4907   // template, don't add it into the enclosing namespace scope until it is
4908   // instantiated; it might have a dependent type right now.
4909   if (DC->isDependentContext())
4910     return true;
4911 
4912   // C++11 [basic.link]p7:
4913   //   When a block scope declaration of an entity with linkage is not found to
4914   //   refer to some other declaration, then that entity is a member of the
4915   //   innermost enclosing namespace.
4916   //
4917   // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
4918   // semantically-enclosing namespace, not a lexically-enclosing one.
4919   while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
4920     DC = DC->getParent();
4921   return true;
4922 }
4923 
4924 NamedDecl *
4925 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4926                               TypeSourceInfo *TInfo, LookupResult &Previous,
4927                               MultiTemplateParamsArg TemplateParamLists,
4928                               bool &AddToScope) {
4929   QualType R = TInfo->getType();
4930   DeclarationName Name = GetNameForDeclarator(D).getName();
4931 
4932   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4933   VarDecl::StorageClass SC =
4934     StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
4935 
4936   DeclContext *OriginalDC = DC;
4937   bool IsLocalExternDecl = SC == SC_Extern &&
4938                            adjustContextForLocalExternDecl(DC);
4939 
4940   if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16) {
4941     // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
4942     // half array type (unless the cl_khr_fp16 extension is enabled).
4943     if (Context.getBaseElementType(R)->isHalfType()) {
4944       Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
4945       D.setInvalidType();
4946     }
4947   }
4948 
4949   if (SCSpec == DeclSpec::SCS_mutable) {
4950     // mutable can only appear on non-static class members, so it's always
4951     // an error here
4952     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4953     D.setInvalidType();
4954     SC = SC_None;
4955   }
4956 
4957   if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
4958       !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
4959                               D.getDeclSpec().getStorageClassSpecLoc())) {
4960     // In C++11, the 'register' storage class specifier is deprecated.
4961     // Suppress the warning in system macros, it's used in macros in some
4962     // popular C system headers, such as in glibc's htonl() macro.
4963     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4964          diag::warn_deprecated_register)
4965       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4966   }
4967 
4968   IdentifierInfo *II = Name.getAsIdentifierInfo();
4969   if (!II) {
4970     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4971       << Name;
4972     return 0;
4973   }
4974 
4975   DiagnoseFunctionSpecifiers(D.getDeclSpec());
4976 
4977   if (!DC->isRecord() && S->getFnParent() == 0) {
4978     // C99 6.9p2: The storage-class specifiers auto and register shall not
4979     // appear in the declaration specifiers in an external declaration.
4980     if (SC == SC_Auto || SC == SC_Register) {
4981       // If this is a register variable with an asm label specified, then this
4982       // is a GNU extension.
4983       if (SC == SC_Register && D.getAsmLabel())
4984         Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4985       else
4986         Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4987       D.setInvalidType();
4988     }
4989   }
4990 
4991   if (getLangOpts().OpenCL) {
4992     // Set up the special work-group-local storage class for variables in the
4993     // OpenCL __local address space.
4994     if (R.getAddressSpace() == LangAS::opencl_local) {
4995       SC = SC_OpenCLWorkGroupLocal;
4996     }
4997 
4998     // OpenCL v1.2 s6.9.b p4:
4999     // The sampler type cannot be used with the __local and __global address
5000     // space qualifiers.
5001     if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
5002       R.getAddressSpace() == LangAS::opencl_global)) {
5003       Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
5004     }
5005 
5006     // OpenCL 1.2 spec, p6.9 r:
5007     // The event type cannot be used to declare a program scope variable.
5008     // The event type cannot be used with the __local, __constant and __global
5009     // address space qualifiers.
5010     if (R->isEventT()) {
5011       if (S->getParent() == 0) {
5012         Diag(D.getLocStart(), diag::err_event_t_global_var);
5013         D.setInvalidType();
5014       }
5015 
5016       if (R.getAddressSpace()) {
5017         Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
5018         D.setInvalidType();
5019       }
5020     }
5021   }
5022 
5023   bool IsExplicitSpecialization = false;
5024   bool IsVariableTemplateSpecialization = false;
5025   bool IsPartialSpecialization = false;
5026   bool IsVariableTemplate = false;
5027   VarTemplateDecl *PrevVarTemplate = 0;
5028   VarDecl *NewVD = 0;
5029   VarTemplateDecl *NewTemplate = 0;
5030   if (!getLangOpts().CPlusPlus) {
5031     NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5032                             D.getIdentifierLoc(), II,
5033                             R, TInfo, SC);
5034 
5035     if (D.isInvalidType())
5036       NewVD->setInvalidDecl();
5037   } else {
5038     bool Invalid = false;
5039 
5040     if (DC->isRecord() && !CurContext->isRecord()) {
5041       // This is an out-of-line definition of a static data member.
5042       switch (SC) {
5043       case SC_None:
5044         break;
5045       case SC_Static:
5046         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5047              diag::err_static_out_of_line)
5048           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5049         break;
5050       case SC_Auto:
5051       case SC_Register:
5052       case SC_Extern:
5053         // [dcl.stc] p2: The auto or register specifiers shall be applied only
5054         // to names of variables declared in a block or to function parameters.
5055         // [dcl.stc] p6: The extern specifier cannot be used in the declaration
5056         // of class members
5057 
5058         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5059              diag::err_storage_class_for_static_member)
5060           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5061         break;
5062       case SC_PrivateExtern:
5063         llvm_unreachable("C storage class in c++!");
5064       case SC_OpenCLWorkGroupLocal:
5065         llvm_unreachable("OpenCL storage class in c++!");
5066       }
5067     }
5068 
5069     if (SC == SC_Static && CurContext->isRecord()) {
5070       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
5071         if (RD->isLocalClass())
5072           Diag(D.getIdentifierLoc(),
5073                diag::err_static_data_member_not_allowed_in_local_class)
5074             << Name << RD->getDeclName();
5075 
5076         // C++98 [class.union]p1: If a union contains a static data member,
5077         // the program is ill-formed. C++11 drops this restriction.
5078         if (RD->isUnion())
5079           Diag(D.getIdentifierLoc(),
5080                getLangOpts().CPlusPlus11
5081                  ? diag::warn_cxx98_compat_static_data_member_in_union
5082                  : diag::ext_static_data_member_in_union) << Name;
5083         // We conservatively disallow static data members in anonymous structs.
5084         else if (!RD->getDeclName())
5085           Diag(D.getIdentifierLoc(),
5086                diag::err_static_data_member_not_allowed_in_anon_struct)
5087             << Name << RD->isUnion();
5088       }
5089     }
5090 
5091     NamedDecl *PrevDecl = 0;
5092     if (Previous.begin() != Previous.end())
5093       PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5094     PrevVarTemplate = dyn_cast_or_null<VarTemplateDecl>(PrevDecl);
5095 
5096     // Match up the template parameter lists with the scope specifier, then
5097     // determine whether we have a template or a template specialization.
5098     TemplateParameterList *TemplateParams =
5099         MatchTemplateParametersToScopeSpecifier(
5100             D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
5101             D.getCXXScopeSpec(), TemplateParamLists,
5102             /*never a friend*/ false, IsExplicitSpecialization, Invalid);
5103     if (TemplateParams) {
5104       if (!TemplateParams->size() &&
5105           D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5106         // There is an extraneous 'template<>' for this variable. Complain
5107         // about it, but allow the declaration of the variable.
5108         Diag(TemplateParams->getTemplateLoc(),
5109              diag::err_template_variable_noparams)
5110           << II
5111           << SourceRange(TemplateParams->getTemplateLoc(),
5112                          TemplateParams->getRAngleLoc());
5113       } else {
5114         // Only C++1y supports variable templates (N3651).
5115         Diag(D.getIdentifierLoc(),
5116              getLangOpts().CPlusPlus1y
5117                  ? diag::warn_cxx11_compat_variable_template
5118                  : diag::ext_variable_template);
5119 
5120         if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5121           // This is an explicit specialization or a partial specialization.
5122           // Check that we can declare a specialization here
5123 
5124           IsVariableTemplateSpecialization = true;
5125           IsPartialSpecialization = TemplateParams->size() > 0;
5126 
5127         } else { // if (TemplateParams->size() > 0)
5128           // This is a template declaration.
5129           IsVariableTemplate = true;
5130 
5131           // Check that we can declare a template here.
5132           if (CheckTemplateDeclScope(S, TemplateParams))
5133             return 0;
5134 
5135           // If there is a previous declaration with the same name, check
5136           // whether this is a valid redeclaration.
5137           if (PrevDecl && !isDeclInScope(PrevDecl, DC, S))
5138             PrevDecl = PrevVarTemplate = 0;
5139 
5140           if (PrevVarTemplate) {
5141             // Ensure that the template parameter lists are compatible.
5142             if (!TemplateParameterListsAreEqual(
5143                     TemplateParams, PrevVarTemplate->getTemplateParameters(),
5144                     /*Complain=*/true, TPL_TemplateMatch))
5145               return 0;
5146           } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
5147             // Maybe we will complain about the shadowed template parameter.
5148             DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5149 
5150             // Just pretend that we didn't see the previous declaration.
5151             PrevDecl = 0;
5152           } else if (PrevDecl) {
5153             // C++ [temp]p5:
5154             // ... a template name declared in namespace scope or in class
5155             // scope shall be unique in that scope.
5156             Diag(D.getIdentifierLoc(), diag::err_redefinition_different_kind)
5157                 << Name;
5158             Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5159             return 0;
5160           }
5161 
5162           // Check the template parameter list of this declaration, possibly
5163           // merging in the template parameter list from the previous variable
5164           // template declaration.
5165           if (CheckTemplateParameterList(
5166                   TemplateParams,
5167                   PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
5168                                   : 0,
5169                   (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
5170                    DC->isDependentContext())
5171                       ? TPC_ClassTemplateMember
5172                       : TPC_VarTemplate))
5173             Invalid = true;
5174 
5175           if (D.getCXXScopeSpec().isSet()) {
5176             // If the name of the template was qualified, we must be defining
5177             // the template out-of-line.
5178             if (!D.getCXXScopeSpec().isInvalid() && !Invalid &&
5179                 !PrevVarTemplate) {
5180               Diag(D.getIdentifierLoc(), diag::err_member_decl_does_not_match)
5181                   << Name << DC << /*IsDefinition*/true
5182                   << D.getCXXScopeSpec().getRange();
5183               Invalid = true;
5184             }
5185           }
5186         }
5187       }
5188     } else if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5189       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5190 
5191       // We have encountered something that the user meant to be a
5192       // specialization (because it has explicitly-specified template
5193       // arguments) but that was not introduced with a "template<>" (or had
5194       // too few of them).
5195       // FIXME: Differentiate between attempts for explicit instantiations
5196       // (starting with "template") and the rest.
5197       Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5198           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5199           << FixItHint::CreateInsertion(D.getDeclSpec().getLocStart(),
5200                                         "template<> ");
5201       IsVariableTemplateSpecialization = true;
5202     }
5203 
5204     if (IsVariableTemplateSpecialization) {
5205       if (!PrevVarTemplate) {
5206         Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
5207             << IsPartialSpecialization;
5208         return 0;
5209       }
5210 
5211       SourceLocation TemplateKWLoc =
5212           TemplateParamLists.size() > 0
5213               ? TemplateParamLists[0]->getTemplateLoc()
5214               : SourceLocation();
5215       DeclResult Res = ActOnVarTemplateSpecialization(
5216           S, PrevVarTemplate, D, TInfo, TemplateKWLoc, TemplateParams, SC,
5217           IsPartialSpecialization);
5218       if (Res.isInvalid())
5219         return 0;
5220       NewVD = cast<VarDecl>(Res.get());
5221       AddToScope = false;
5222     } else
5223       NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5224                               D.getIdentifierLoc(), II, R, TInfo, SC);
5225 
5226     // If this is supposed to be a variable template, create it as such.
5227     if (IsVariableTemplate) {
5228       NewTemplate =
5229           VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
5230                                   TemplateParams, NewVD, PrevVarTemplate);
5231       NewVD->setDescribedVarTemplate(NewTemplate);
5232     }
5233 
5234     // If this decl has an auto type in need of deduction, make a note of the
5235     // Decl so we can diagnose uses of it in its own initializer.
5236     if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
5237       ParsingInitForAutoVars.insert(NewVD);
5238 
5239     if (D.isInvalidType() || Invalid) {
5240       NewVD->setInvalidDecl();
5241       if (NewTemplate)
5242         NewTemplate->setInvalidDecl();
5243     }
5244 
5245     SetNestedNameSpecifier(NewVD, D);
5246 
5247     // FIXME: Do we need D.getCXXScopeSpec().isSet()?
5248     if (TemplateParams && TemplateParamLists.size() > 1 &&
5249         (!IsVariableTemplateSpecialization || D.getCXXScopeSpec().isSet())) {
5250       NewVD->setTemplateParameterListsInfo(
5251           Context, TemplateParamLists.size() - 1, TemplateParamLists.data());
5252     } else if (IsVariableTemplateSpecialization ||
5253                (!TemplateParams && TemplateParamLists.size() > 0 &&
5254                 (D.getCXXScopeSpec().isSet()))) {
5255       NewVD->setTemplateParameterListsInfo(Context,
5256                                            TemplateParamLists.size(),
5257                                            TemplateParamLists.data());
5258     }
5259 
5260     if (D.getDeclSpec().isConstexprSpecified())
5261       NewVD->setConstexpr(true);
5262   }
5263 
5264   // Set the lexical context. If the declarator has a C++ scope specifier, the
5265   // lexical context will be different from the semantic context.
5266   NewVD->setLexicalDeclContext(CurContext);
5267   if (NewTemplate)
5268     NewTemplate->setLexicalDeclContext(CurContext);
5269 
5270   if (IsLocalExternDecl)
5271     NewVD->setLocalExternDecl();
5272 
5273   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
5274     if (NewVD->hasLocalStorage()) {
5275       // C++11 [dcl.stc]p4:
5276       //   When thread_local is applied to a variable of block scope the
5277       //   storage-class-specifier static is implied if it does not appear
5278       //   explicitly.
5279       // Core issue: 'static' is not implied if the variable is declared
5280       //   'extern'.
5281       if (SCSpec == DeclSpec::SCS_unspecified &&
5282           TSCS == DeclSpec::TSCS_thread_local &&
5283           DC->isFunctionOrMethod())
5284         NewVD->setTSCSpec(TSCS);
5285       else
5286         Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5287              diag::err_thread_non_global)
5288           << DeclSpec::getSpecifierName(TSCS);
5289     } else if (!Context.getTargetInfo().isTLSSupported())
5290       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5291            diag::err_thread_unsupported);
5292     else
5293       NewVD->setTSCSpec(TSCS);
5294   }
5295 
5296   // C99 6.7.4p3
5297   //   An inline definition of a function with external linkage shall
5298   //   not contain a definition of a modifiable object with static or
5299   //   thread storage duration...
5300   // We only apply this when the function is required to be defined
5301   // elsewhere, i.e. when the function is not 'extern inline'.  Note
5302   // that a local variable with thread storage duration still has to
5303   // be marked 'static'.  Also note that it's possible to get these
5304   // semantics in C++ using __attribute__((gnu_inline)).
5305   if (SC == SC_Static && S->getFnParent() != 0 &&
5306       !NewVD->getType().isConstQualified()) {
5307     FunctionDecl *CurFD = getCurFunctionDecl();
5308     if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
5309       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5310            diag::warn_static_local_in_extern_inline);
5311       MaybeSuggestAddingStaticToDecl(CurFD);
5312     }
5313   }
5314 
5315   if (D.getDeclSpec().isModulePrivateSpecified()) {
5316     if (IsVariableTemplateSpecialization)
5317       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5318           << (IsPartialSpecialization ? 1 : 0)
5319           << FixItHint::CreateRemoval(
5320                  D.getDeclSpec().getModulePrivateSpecLoc());
5321     else if (IsExplicitSpecialization)
5322       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5323         << 2
5324         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5325     else if (NewVD->hasLocalStorage())
5326       Diag(NewVD->getLocation(), diag::err_module_private_local)
5327         << 0 << NewVD->getDeclName()
5328         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
5329         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5330     else {
5331       NewVD->setModulePrivate();
5332       if (NewTemplate)
5333         NewTemplate->setModulePrivate();
5334     }
5335   }
5336 
5337   // Handle attributes prior to checking for duplicates in MergeVarDecl
5338   ProcessDeclAttributes(S, NewVD, D);
5339 
5340   if (NewVD->hasAttrs())
5341     CheckAlignasUnderalignment(NewVD);
5342 
5343   if (getLangOpts().CUDA) {
5344     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
5345     // storage [duration]."
5346     if (SC == SC_None && S->getFnParent() != 0 &&
5347         (NewVD->hasAttr<CUDASharedAttr>() ||
5348          NewVD->hasAttr<CUDAConstantAttr>())) {
5349       NewVD->setStorageClass(SC_Static);
5350     }
5351   }
5352 
5353   // In auto-retain/release, infer strong retension for variables of
5354   // retainable type.
5355   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
5356     NewVD->setInvalidDecl();
5357 
5358   // Handle GNU asm-label extension (encoded as an attribute).
5359   if (Expr *E = (Expr*)D.getAsmLabel()) {
5360     // The parser guarantees this is a string.
5361     StringLiteral *SE = cast<StringLiteral>(E);
5362     StringRef Label = SE->getString();
5363     if (S->getFnParent() != 0) {
5364       switch (SC) {
5365       case SC_None:
5366       case SC_Auto:
5367         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
5368         break;
5369       case SC_Register:
5370         if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
5371           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
5372         break;
5373       case SC_Static:
5374       case SC_Extern:
5375       case SC_PrivateExtern:
5376       case SC_OpenCLWorkGroupLocal:
5377         break;
5378       }
5379     }
5380 
5381     NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
5382                                                 Context, Label));
5383   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5384     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5385       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
5386     if (I != ExtnameUndeclaredIdentifiers.end()) {
5387       NewVD->addAttr(I->second);
5388       ExtnameUndeclaredIdentifiers.erase(I);
5389     }
5390   }
5391 
5392   // Diagnose shadowed variables before filtering for scope.
5393   if (!D.getCXXScopeSpec().isSet())
5394     CheckShadow(S, NewVD, Previous);
5395 
5396   // Don't consider existing declarations that are in a different
5397   // scope and are out-of-semantic-context declarations (if the new
5398   // declaration has linkage).
5399   FilterLookupForScope(
5400       Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
5401       IsExplicitSpecialization || IsVariableTemplateSpecialization);
5402 
5403   // Check whether the previous declaration is in the same block scope. This
5404   // affects whether we merge types with it, per C++11 [dcl.array]p3.
5405   if (getLangOpts().CPlusPlus &&
5406       NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
5407     NewVD->setPreviousDeclInSameBlockScope(
5408         Previous.isSingleResult() && !Previous.isShadowed() &&
5409         isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
5410 
5411   if (!getLangOpts().CPlusPlus) {
5412     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5413   } else {
5414     // Merge the decl with the existing one if appropriate.
5415     if (!Previous.empty()) {
5416       if (Previous.isSingleResult() &&
5417           isa<FieldDecl>(Previous.getFoundDecl()) &&
5418           D.getCXXScopeSpec().isSet()) {
5419         // The user tried to define a non-static data member
5420         // out-of-line (C++ [dcl.meaning]p1).
5421         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
5422           << D.getCXXScopeSpec().getRange();
5423         Previous.clear();
5424         NewVD->setInvalidDecl();
5425       }
5426     } else if (D.getCXXScopeSpec().isSet()) {
5427       // No previous declaration in the qualifying scope.
5428       Diag(D.getIdentifierLoc(), diag::err_no_member)
5429         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
5430         << D.getCXXScopeSpec().getRange();
5431       NewVD->setInvalidDecl();
5432     }
5433 
5434     if (!IsVariableTemplateSpecialization) {
5435       if (PrevVarTemplate) {
5436         LookupResult PrevDecl(*this, GetNameForDeclarator(D),
5437                               LookupOrdinaryName, ForRedeclaration);
5438         PrevDecl.addDecl(PrevVarTemplate->getTemplatedDecl());
5439         D.setRedeclaration(CheckVariableDeclaration(NewVD, PrevDecl));
5440       } else
5441         D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5442     }
5443 
5444     // This is an explicit specialization of a static data member. Check it.
5445     if (IsExplicitSpecialization && !NewVD->isInvalidDecl() &&
5446         CheckMemberSpecialization(NewVD, Previous))
5447       NewVD->setInvalidDecl();
5448   }
5449 
5450   ProcessPragmaWeak(S, NewVD);
5451   checkAttributesAfterMerging(*this, *NewVD);
5452 
5453   // If this is the first declaration of an extern C variable, update
5454   // the map of such variables.
5455   if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
5456       isIncompleteDeclExternC(*this, NewVD))
5457     RegisterLocallyScopedExternCDecl(NewVD, S);
5458 
5459   if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
5460     Decl *ManglingContextDecl;
5461     if (MangleNumberingContext *MCtx =
5462             getCurrentMangleNumberContext(NewVD->getDeclContext(),
5463                                           ManglingContextDecl)) {
5464       Context.setManglingNumber(NewVD, MCtx->getManglingNumber(NewVD));
5465     }
5466   }
5467 
5468   // If we are providing an explicit specialization of a static variable
5469   // template, make a note of that.
5470   if (PrevVarTemplate && PrevVarTemplate->getInstantiatedFromMemberTemplate())
5471     PrevVarTemplate->setMemberSpecialization();
5472 
5473   if (NewTemplate) {
5474     ActOnDocumentableDecl(NewTemplate);
5475     return NewTemplate;
5476   }
5477 
5478   return NewVD;
5479 }
5480 
5481 /// \brief Diagnose variable or built-in function shadowing.  Implements
5482 /// -Wshadow.
5483 ///
5484 /// This method is called whenever a VarDecl is added to a "useful"
5485 /// scope.
5486 ///
5487 /// \param S the scope in which the shadowing name is being declared
5488 /// \param R the lookup of the name
5489 ///
5490 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
5491   // Return if warning is ignored.
5492   if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
5493         DiagnosticsEngine::Ignored)
5494     return;
5495 
5496   // Don't diagnose declarations at file scope.
5497   if (D->hasGlobalStorage())
5498     return;
5499 
5500   DeclContext *NewDC = D->getDeclContext();
5501 
5502   // Only diagnose if we're shadowing an unambiguous field or variable.
5503   if (R.getResultKind() != LookupResult::Found)
5504     return;
5505 
5506   NamedDecl* ShadowedDecl = R.getFoundDecl();
5507   if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
5508     return;
5509 
5510   // Fields are not shadowed by variables in C++ static methods.
5511   if (isa<FieldDecl>(ShadowedDecl))
5512     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
5513       if (MD->isStatic())
5514         return;
5515 
5516   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
5517     if (shadowedVar->isExternC()) {
5518       // For shadowing external vars, make sure that we point to the global
5519       // declaration, not a locally scoped extern declaration.
5520       for (VarDecl::redecl_iterator
5521              I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
5522            I != E; ++I)
5523         if (I->isFileVarDecl()) {
5524           ShadowedDecl = *I;
5525           break;
5526         }
5527     }
5528 
5529   DeclContext *OldDC = ShadowedDecl->getDeclContext();
5530 
5531   // Only warn about certain kinds of shadowing for class members.
5532   if (NewDC && NewDC->isRecord()) {
5533     // In particular, don't warn about shadowing non-class members.
5534     if (!OldDC->isRecord())
5535       return;
5536 
5537     // TODO: should we warn about static data members shadowing
5538     // static data members from base classes?
5539 
5540     // TODO: don't diagnose for inaccessible shadowed members.
5541     // This is hard to do perfectly because we might friend the
5542     // shadowing context, but that's just a false negative.
5543   }
5544 
5545   // Determine what kind of declaration we're shadowing.
5546   unsigned Kind;
5547   if (isa<RecordDecl>(OldDC)) {
5548     if (isa<FieldDecl>(ShadowedDecl))
5549       Kind = 3; // field
5550     else
5551       Kind = 2; // static data member
5552   } else if (OldDC->isFileContext())
5553     Kind = 1; // global
5554   else
5555     Kind = 0; // local
5556 
5557   DeclarationName Name = R.getLookupName();
5558 
5559   // Emit warning and note.
5560   Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
5561   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
5562 }
5563 
5564 /// \brief Check -Wshadow without the advantage of a previous lookup.
5565 void Sema::CheckShadow(Scope *S, VarDecl *D) {
5566   if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
5567         DiagnosticsEngine::Ignored)
5568     return;
5569 
5570   LookupResult R(*this, D->getDeclName(), D->getLocation(),
5571                  Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5572   LookupName(R, S);
5573   CheckShadow(S, D, R);
5574 }
5575 
5576 /// Check for conflict between this global or extern "C" declaration and
5577 /// previous global or extern "C" declarations. This is only used in C++.
5578 template<typename T>
5579 static bool checkGlobalOrExternCConflict(
5580     Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
5581   assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
5582   NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
5583 
5584   if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
5585     // The common case: this global doesn't conflict with any extern "C"
5586     // declaration.
5587     return false;
5588   }
5589 
5590   if (Prev) {
5591     if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
5592       // Both the old and new declarations have C language linkage. This is a
5593       // redeclaration.
5594       Previous.clear();
5595       Previous.addDecl(Prev);
5596       return true;
5597     }
5598 
5599     // This is a global, non-extern "C" declaration, and there is a previous
5600     // non-global extern "C" declaration. Diagnose if this is a variable
5601     // declaration.
5602     if (!isa<VarDecl>(ND))
5603       return false;
5604   } else {
5605     // The declaration is extern "C". Check for any declaration in the
5606     // translation unit which might conflict.
5607     if (IsGlobal) {
5608       // We have already performed the lookup into the translation unit.
5609       IsGlobal = false;
5610       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5611            I != E; ++I) {
5612         if (isa<VarDecl>(*I)) {
5613           Prev = *I;
5614           break;
5615         }
5616       }
5617     } else {
5618       DeclContext::lookup_result R =
5619           S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
5620       for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
5621            I != E; ++I) {
5622         if (isa<VarDecl>(*I)) {
5623           Prev = *I;
5624           break;
5625         }
5626         // FIXME: If we have any other entity with this name in global scope,
5627         // the declaration is ill-formed, but that is a defect: it breaks the
5628         // 'stat' hack, for instance. Only variables can have mangled name
5629         // clashes with extern "C" declarations, so only they deserve a
5630         // diagnostic.
5631       }
5632     }
5633 
5634     if (!Prev)
5635       return false;
5636   }
5637 
5638   // Use the first declaration's location to ensure we point at something which
5639   // is lexically inside an extern "C" linkage-spec.
5640   assert(Prev && "should have found a previous declaration to diagnose");
5641   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
5642     Prev = FD->getFirstDecl();
5643   else
5644     Prev = cast<VarDecl>(Prev)->getFirstDecl();
5645 
5646   S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
5647     << IsGlobal << ND;
5648   S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
5649     << IsGlobal;
5650   return false;
5651 }
5652 
5653 /// Apply special rules for handling extern "C" declarations. Returns \c true
5654 /// if we have found that this is a redeclaration of some prior entity.
5655 ///
5656 /// Per C++ [dcl.link]p6:
5657 ///   Two declarations [for a function or variable] with C language linkage
5658 ///   with the same name that appear in different scopes refer to the same
5659 ///   [entity]. An entity with C language linkage shall not be declared with
5660 ///   the same name as an entity in global scope.
5661 template<typename T>
5662 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
5663                                                   LookupResult &Previous) {
5664   if (!S.getLangOpts().CPlusPlus) {
5665     // In C, when declaring a global variable, look for a corresponding 'extern'
5666     // variable declared in function scope. We don't need this in C++, because
5667     // we find local extern decls in the surrounding file-scope DeclContext.
5668     if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5669       if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
5670         Previous.clear();
5671         Previous.addDecl(Prev);
5672         return true;
5673       }
5674     }
5675     return false;
5676   }
5677 
5678   // A declaration in the translation unit can conflict with an extern "C"
5679   // declaration.
5680   if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
5681     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
5682 
5683   // An extern "C" declaration can conflict with a declaration in the
5684   // translation unit or can be a redeclaration of an extern "C" declaration
5685   // in another scope.
5686   if (isIncompleteDeclExternC(S,ND))
5687     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
5688 
5689   // Neither global nor extern "C": nothing to do.
5690   return false;
5691 }
5692 
5693 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
5694   // If the decl is already known invalid, don't check it.
5695   if (NewVD->isInvalidDecl())
5696     return;
5697 
5698   TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
5699   QualType T = TInfo->getType();
5700 
5701   // Defer checking an 'auto' type until its initializer is attached.
5702   if (T->isUndeducedType())
5703     return;
5704 
5705   if (T->isObjCObjectType()) {
5706     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
5707       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
5708     T = Context.getObjCObjectPointerType(T);
5709     NewVD->setType(T);
5710   }
5711 
5712   // Emit an error if an address space was applied to decl with local storage.
5713   // This includes arrays of objects with address space qualifiers, but not
5714   // automatic variables that point to other address spaces.
5715   // ISO/IEC TR 18037 S5.1.2
5716   if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
5717     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
5718     NewVD->setInvalidDecl();
5719     return;
5720   }
5721 
5722   // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
5723   // __constant address space.
5724   if (getLangOpts().OpenCL && NewVD->isFileVarDecl()
5725       && T.getAddressSpace() != LangAS::opencl_constant
5726       && !T->isSamplerT()){
5727     Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space);
5728     NewVD->setInvalidDecl();
5729     return;
5730   }
5731 
5732   // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
5733   // scope.
5734   if ((getLangOpts().OpenCLVersion >= 120)
5735       && NewVD->isStaticLocal()) {
5736     Diag(NewVD->getLocation(), diag::err_static_function_scope);
5737     NewVD->setInvalidDecl();
5738     return;
5739   }
5740 
5741   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
5742       && !NewVD->hasAttr<BlocksAttr>()) {
5743     if (getLangOpts().getGC() != LangOptions::NonGC)
5744       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
5745     else {
5746       assert(!getLangOpts().ObjCAutoRefCount);
5747       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
5748     }
5749   }
5750 
5751   bool isVM = T->isVariablyModifiedType();
5752   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
5753       NewVD->hasAttr<BlocksAttr>())
5754     getCurFunction()->setHasBranchProtectedScope();
5755 
5756   if ((isVM && NewVD->hasLinkage()) ||
5757       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
5758     bool SizeIsNegative;
5759     llvm::APSInt Oversized;
5760     TypeSourceInfo *FixedTInfo =
5761       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5762                                                     SizeIsNegative, Oversized);
5763     if (FixedTInfo == 0 && T->isVariableArrayType()) {
5764       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
5765       // FIXME: This won't give the correct result for
5766       // int a[10][n];
5767       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
5768 
5769       if (NewVD->isFileVarDecl())
5770         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
5771         << SizeRange;
5772       else if (NewVD->isStaticLocal())
5773         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
5774         << SizeRange;
5775       else
5776         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
5777         << SizeRange;
5778       NewVD->setInvalidDecl();
5779       return;
5780     }
5781 
5782     if (FixedTInfo == 0) {
5783       if (NewVD->isFileVarDecl())
5784         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
5785       else
5786         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
5787       NewVD->setInvalidDecl();
5788       return;
5789     }
5790 
5791     Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
5792     NewVD->setType(FixedTInfo->getType());
5793     NewVD->setTypeSourceInfo(FixedTInfo);
5794   }
5795 
5796   if (T->isVoidType()) {
5797     // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
5798     //                    of objects and functions.
5799     if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
5800       Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
5801         << T;
5802       NewVD->setInvalidDecl();
5803       return;
5804     }
5805   }
5806 
5807   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
5808     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
5809     NewVD->setInvalidDecl();
5810     return;
5811   }
5812 
5813   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
5814     Diag(NewVD->getLocation(), diag::err_block_on_vm);
5815     NewVD->setInvalidDecl();
5816     return;
5817   }
5818 
5819   if (NewVD->isConstexpr() && !T->isDependentType() &&
5820       RequireLiteralType(NewVD->getLocation(), T,
5821                          diag::err_constexpr_var_non_literal)) {
5822     // Can't perform this check until the type is deduced.
5823     NewVD->setInvalidDecl();
5824     return;
5825   }
5826 }
5827 
5828 /// \brief Perform semantic checking on a newly-created variable
5829 /// declaration.
5830 ///
5831 /// This routine performs all of the type-checking required for a
5832 /// variable declaration once it has been built. It is used both to
5833 /// check variables after they have been parsed and their declarators
5834 /// have been translated into a declaration, and to check variables
5835 /// that have been instantiated from a template.
5836 ///
5837 /// Sets NewVD->isInvalidDecl() if an error was encountered.
5838 ///
5839 /// Returns true if the variable declaration is a redeclaration.
5840 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
5841   CheckVariableDeclarationType(NewVD);
5842 
5843   // If the decl is already known invalid, don't check it.
5844   if (NewVD->isInvalidDecl())
5845     return false;
5846 
5847   // If we did not find anything by this name, look for a non-visible
5848   // extern "C" declaration with the same name.
5849   if (Previous.empty() &&
5850       checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
5851     Previous.setShadowed();
5852 
5853   // Filter out any non-conflicting previous declarations.
5854   filterNonConflictingPreviousDecls(Context, NewVD, Previous);
5855 
5856   if (!Previous.empty()) {
5857     MergeVarDecl(NewVD, Previous);
5858     return true;
5859   }
5860   return false;
5861 }
5862 
5863 /// \brief Data used with FindOverriddenMethod
5864 struct FindOverriddenMethodData {
5865   Sema *S;
5866   CXXMethodDecl *Method;
5867 };
5868 
5869 /// \brief Member lookup function that determines whether a given C++
5870 /// method overrides a method in a base class, to be used with
5871 /// CXXRecordDecl::lookupInBases().
5872 static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
5873                                  CXXBasePath &Path,
5874                                  void *UserData) {
5875   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5876 
5877   FindOverriddenMethodData *Data
5878     = reinterpret_cast<FindOverriddenMethodData*>(UserData);
5879 
5880   DeclarationName Name = Data->Method->getDeclName();
5881 
5882   // FIXME: Do we care about other names here too?
5883   if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5884     // We really want to find the base class destructor here.
5885     QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
5886     CanQualType CT = Data->S->Context.getCanonicalType(T);
5887 
5888     Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
5889   }
5890 
5891   for (Path.Decls = BaseRecord->lookup(Name);
5892        !Path.Decls.empty();
5893        Path.Decls = Path.Decls.slice(1)) {
5894     NamedDecl *D = Path.Decls.front();
5895     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5896       if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
5897         return true;
5898     }
5899   }
5900 
5901   return false;
5902 }
5903 
5904 namespace {
5905   enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
5906 }
5907 /// \brief Report an error regarding overriding, along with any relevant
5908 /// overriden methods.
5909 ///
5910 /// \param DiagID the primary error to report.
5911 /// \param MD the overriding method.
5912 /// \param OEK which overrides to include as notes.
5913 static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
5914                             OverrideErrorKind OEK = OEK_All) {
5915   S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
5916   for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5917                                       E = MD->end_overridden_methods();
5918        I != E; ++I) {
5919     // This check (& the OEK parameter) could be replaced by a predicate, but
5920     // without lambdas that would be overkill. This is still nicer than writing
5921     // out the diag loop 3 times.
5922     if ((OEK == OEK_All) ||
5923         (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
5924         (OEK == OEK_Deleted && (*I)->isDeleted()))
5925       S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
5926   }
5927 }
5928 
5929 /// AddOverriddenMethods - See if a method overrides any in the base classes,
5930 /// and if so, check that it's a valid override and remember it.
5931 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5932   // Look for virtual methods in base classes that this method might override.
5933   CXXBasePaths Paths;
5934   FindOverriddenMethodData Data;
5935   Data.Method = MD;
5936   Data.S = this;
5937   bool hasDeletedOverridenMethods = false;
5938   bool hasNonDeletedOverridenMethods = false;
5939   bool AddedAny = false;
5940   if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
5941     for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
5942          E = Paths.found_decls_end(); I != E; ++I) {
5943       if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
5944         MD->addOverriddenMethod(OldMD->getCanonicalDecl());
5945         if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
5946             !CheckOverridingFunctionAttributes(MD, OldMD) &&
5947             !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
5948             !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
5949           hasDeletedOverridenMethods |= OldMD->isDeleted();
5950           hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
5951           AddedAny = true;
5952         }
5953       }
5954     }
5955   }
5956 
5957   if (hasDeletedOverridenMethods && !MD->isDeleted()) {
5958     ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
5959   }
5960   if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
5961     ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
5962   }
5963 
5964   return AddedAny;
5965 }
5966 
5967 namespace {
5968   // Struct for holding all of the extra arguments needed by
5969   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
5970   struct ActOnFDArgs {
5971     Scope *S;
5972     Declarator &D;
5973     MultiTemplateParamsArg TemplateParamLists;
5974     bool AddToScope;
5975   };
5976 }
5977 
5978 namespace {
5979 
5980 // Callback to only accept typo corrections that have a non-zero edit distance.
5981 // Also only accept corrections that have the same parent decl.
5982 class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
5983  public:
5984   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
5985                             CXXRecordDecl *Parent)
5986       : Context(Context), OriginalFD(TypoFD),
5987         ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
5988 
5989   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5990     if (candidate.getEditDistance() == 0)
5991       return false;
5992 
5993     SmallVector<unsigned, 1> MismatchedParams;
5994     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
5995                                           CDeclEnd = candidate.end();
5996          CDecl != CDeclEnd; ++CDecl) {
5997       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5998 
5999       if (FD && !FD->hasBody() &&
6000           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
6001         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6002           CXXRecordDecl *Parent = MD->getParent();
6003           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
6004             return true;
6005         } else if (!ExpectedParent) {
6006           return true;
6007         }
6008       }
6009     }
6010 
6011     return false;
6012   }
6013 
6014  private:
6015   ASTContext &Context;
6016   FunctionDecl *OriginalFD;
6017   CXXRecordDecl *ExpectedParent;
6018 };
6019 
6020 }
6021 
6022 /// \brief Generate diagnostics for an invalid function redeclaration.
6023 ///
6024 /// This routine handles generating the diagnostic messages for an invalid
6025 /// function redeclaration, including finding possible similar declarations
6026 /// or performing typo correction if there are no previous declarations with
6027 /// the same name.
6028 ///
6029 /// Returns a NamedDecl iff typo correction was performed and substituting in
6030 /// the new declaration name does not cause new errors.
6031 static NamedDecl *DiagnoseInvalidRedeclaration(
6032     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
6033     ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
6034   DeclarationName Name = NewFD->getDeclName();
6035   DeclContext *NewDC = NewFD->getDeclContext();
6036   SmallVector<unsigned, 1> MismatchedParams;
6037   SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
6038   TypoCorrection Correction;
6039   bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
6040   unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend
6041                                    : diag::err_member_decl_does_not_match;
6042   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
6043                     IsLocalFriend ? Sema::LookupLocalFriendName
6044                                   : Sema::LookupOrdinaryName,
6045                     Sema::ForRedeclaration);
6046 
6047   NewFD->setInvalidDecl();
6048   if (IsLocalFriend)
6049     SemaRef.LookupName(Prev, S);
6050   else
6051     SemaRef.LookupQualifiedName(Prev, NewDC);
6052   assert(!Prev.isAmbiguous() &&
6053          "Cannot have an ambiguity in previous-declaration lookup");
6054   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6055   DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
6056                                       MD ? MD->getParent() : 0);
6057   if (!Prev.empty()) {
6058     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
6059          Func != FuncEnd; ++Func) {
6060       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
6061       if (FD &&
6062           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6063         // Add 1 to the index so that 0 can mean the mismatch didn't
6064         // involve a parameter
6065         unsigned ParamNum =
6066             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
6067         NearMatches.push_back(std::make_pair(FD, ParamNum));
6068       }
6069     }
6070   // If the qualified name lookup yielded nothing, try typo correction
6071   } else if ((Correction = SemaRef.CorrectTypo(
6072                  Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
6073                  &ExtraArgs.D.getCXXScopeSpec(), Validator,
6074                  IsLocalFriend ? 0 : NewDC))) {
6075     // Set up everything for the call to ActOnFunctionDeclarator
6076     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
6077                               ExtraArgs.D.getIdentifierLoc());
6078     Previous.clear();
6079     Previous.setLookupName(Correction.getCorrection());
6080     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
6081                                     CDeclEnd = Correction.end();
6082          CDecl != CDeclEnd; ++CDecl) {
6083       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
6084       if (FD && !FD->hasBody() &&
6085           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6086         Previous.addDecl(FD);
6087       }
6088     }
6089     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
6090 
6091     NamedDecl *Result;
6092     // Retry building the function declaration with the new previous
6093     // declarations, and with errors suppressed.
6094     {
6095       // Trap errors.
6096       Sema::SFINAETrap Trap(SemaRef);
6097 
6098       // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
6099       // pieces need to verify the typo-corrected C++ declaration and hopefully
6100       // eliminate the need for the parameter pack ExtraArgs.
6101       Result = SemaRef.ActOnFunctionDeclarator(
6102           ExtraArgs.S, ExtraArgs.D,
6103           Correction.getCorrectionDecl()->getDeclContext(),
6104           NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
6105           ExtraArgs.AddToScope);
6106 
6107       if (Trap.hasErrorOccurred())
6108         Result = 0;
6109     }
6110 
6111     if (Result) {
6112       // Determine which correction we picked.
6113       Decl *Canonical = Result->getCanonicalDecl();
6114       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6115            I != E; ++I)
6116         if ((*I)->getCanonicalDecl() == Canonical)
6117           Correction.setCorrectionDecl(*I);
6118 
6119       SemaRef.diagnoseTypo(
6120           Correction,
6121           SemaRef.PDiag(IsLocalFriend
6122                           ? diag::err_no_matching_local_friend_suggest
6123                           : diag::err_member_decl_does_not_match_suggest)
6124             << Name << NewDC << IsDefinition);
6125       return Result;
6126     }
6127 
6128     // Pretend the typo correction never occurred
6129     ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
6130                               ExtraArgs.D.getIdentifierLoc());
6131     ExtraArgs.D.setRedeclaration(wasRedeclaration);
6132     Previous.clear();
6133     Previous.setLookupName(Name);
6134   }
6135 
6136   SemaRef.Diag(NewFD->getLocation(), DiagMsg)
6137       << Name << NewDC << IsDefinition << NewFD->getLocation();
6138 
6139   bool NewFDisConst = false;
6140   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
6141     NewFDisConst = NewMD->isConst();
6142 
6143   for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
6144        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
6145        NearMatch != NearMatchEnd; ++NearMatch) {
6146     FunctionDecl *FD = NearMatch->first;
6147     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
6148     bool FDisConst = MD && MD->isConst();
6149     bool IsMember = MD || !IsLocalFriend;
6150 
6151     // FIXME: These notes are poorly worded for the local friend case.
6152     if (unsigned Idx = NearMatch->second) {
6153       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
6154       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
6155       if (Loc.isInvalid()) Loc = FD->getLocation();
6156       SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
6157                                  : diag::note_local_decl_close_param_match)
6158         << Idx << FDParam->getType()
6159         << NewFD->getParamDecl(Idx - 1)->getType();
6160     } else if (FDisConst != NewFDisConst) {
6161       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
6162           << NewFDisConst << FD->getSourceRange().getEnd();
6163     } else
6164       SemaRef.Diag(FD->getLocation(),
6165                    IsMember ? diag::note_member_def_close_match
6166                             : diag::note_local_decl_close_match);
6167   }
6168   return 0;
6169 }
6170 
6171 static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
6172                                                           Declarator &D) {
6173   switch (D.getDeclSpec().getStorageClassSpec()) {
6174   default: llvm_unreachable("Unknown storage class!");
6175   case DeclSpec::SCS_auto:
6176   case DeclSpec::SCS_register:
6177   case DeclSpec::SCS_mutable:
6178     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6179                  diag::err_typecheck_sclass_func);
6180     D.setInvalidType();
6181     break;
6182   case DeclSpec::SCS_unspecified: break;
6183   case DeclSpec::SCS_extern:
6184     if (D.getDeclSpec().isExternInLinkageSpec())
6185       return SC_None;
6186     return SC_Extern;
6187   case DeclSpec::SCS_static: {
6188     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
6189       // C99 6.7.1p5:
6190       //   The declaration of an identifier for a function that has
6191       //   block scope shall have no explicit storage-class specifier
6192       //   other than extern
6193       // See also (C++ [dcl.stc]p4).
6194       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6195                    diag::err_static_block_func);
6196       break;
6197     } else
6198       return SC_Static;
6199   }
6200   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
6201   }
6202 
6203   // No explicit storage class has already been returned
6204   return SC_None;
6205 }
6206 
6207 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
6208                                            DeclContext *DC, QualType &R,
6209                                            TypeSourceInfo *TInfo,
6210                                            FunctionDecl::StorageClass SC,
6211                                            bool &IsVirtualOkay) {
6212   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
6213   DeclarationName Name = NameInfo.getName();
6214 
6215   FunctionDecl *NewFD = 0;
6216   bool isInline = D.getDeclSpec().isInlineSpecified();
6217 
6218   if (!SemaRef.getLangOpts().CPlusPlus) {
6219     // Determine whether the function was written with a
6220     // prototype. This true when:
6221     //   - there is a prototype in the declarator, or
6222     //   - the type R of the function is some kind of typedef or other reference
6223     //     to a type name (which eventually refers to a function type).
6224     bool HasPrototype =
6225       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
6226       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
6227 
6228     NewFD = FunctionDecl::Create(SemaRef.Context, DC,
6229                                  D.getLocStart(), NameInfo, R,
6230                                  TInfo, SC, isInline,
6231                                  HasPrototype, false);
6232     if (D.isInvalidType())
6233       NewFD->setInvalidDecl();
6234 
6235     // Set the lexical context.
6236     NewFD->setLexicalDeclContext(SemaRef.CurContext);
6237 
6238     return NewFD;
6239   }
6240 
6241   bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6242   bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6243 
6244   // Check that the return type is not an abstract class type.
6245   // For record types, this is done by the AbstractClassUsageDiagnoser once
6246   // the class has been completely parsed.
6247   if (!DC->isRecord() &&
6248       SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
6249                                      R->getAs<FunctionType>()->getResultType(),
6250                                      diag::err_abstract_type_in_decl,
6251                                      SemaRef.AbstractReturnType))
6252     D.setInvalidType();
6253 
6254   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
6255     // This is a C++ constructor declaration.
6256     assert(DC->isRecord() &&
6257            "Constructors can only be declared in a member context");
6258 
6259     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
6260     return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
6261                                       D.getLocStart(), NameInfo,
6262                                       R, TInfo, isExplicit, isInline,
6263                                       /*isImplicitlyDeclared=*/false,
6264                                       isConstexpr);
6265 
6266   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6267     // This is a C++ destructor declaration.
6268     if (DC->isRecord()) {
6269       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
6270       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
6271       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
6272                                         SemaRef.Context, Record,
6273                                         D.getLocStart(),
6274                                         NameInfo, R, TInfo, isInline,
6275                                         /*isImplicitlyDeclared=*/false);
6276 
6277       // If the class is complete, then we now create the implicit exception
6278       // specification. If the class is incomplete or dependent, we can't do
6279       // it yet.
6280       if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
6281           Record->getDefinition() && !Record->isBeingDefined() &&
6282           R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
6283         SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
6284       }
6285 
6286       // The Microsoft ABI requires that we perform the destructor body
6287       // checks (i.e. operator delete() lookup) at every declaration, as
6288       // any translation unit may need to emit a deleting destructor.
6289       if (SemaRef.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
6290           !Record->isDependentType() && Record->getDefinition() &&
6291           !Record->isBeingDefined()) {
6292         SemaRef.CheckDestructor(NewDD);
6293       }
6294 
6295       IsVirtualOkay = true;
6296       return NewDD;
6297 
6298     } else {
6299       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
6300       D.setInvalidType();
6301 
6302       // Create a FunctionDecl to satisfy the function definition parsing
6303       // code path.
6304       return FunctionDecl::Create(SemaRef.Context, DC,
6305                                   D.getLocStart(),
6306                                   D.getIdentifierLoc(), Name, R, TInfo,
6307                                   SC, isInline,
6308                                   /*hasPrototype=*/true, isConstexpr);
6309     }
6310 
6311   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
6312     if (!DC->isRecord()) {
6313       SemaRef.Diag(D.getIdentifierLoc(),
6314            diag::err_conv_function_not_member);
6315       return 0;
6316     }
6317 
6318     SemaRef.CheckConversionDeclarator(D, R, SC);
6319     IsVirtualOkay = true;
6320     return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
6321                                      D.getLocStart(), NameInfo,
6322                                      R, TInfo, isInline, isExplicit,
6323                                      isConstexpr, SourceLocation());
6324 
6325   } else if (DC->isRecord()) {
6326     // If the name of the function is the same as the name of the record,
6327     // then this must be an invalid constructor that has a return type.
6328     // (The parser checks for a return type and makes the declarator a
6329     // constructor if it has no return type).
6330     if (Name.getAsIdentifierInfo() &&
6331         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
6332       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
6333         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6334         << SourceRange(D.getIdentifierLoc());
6335       return 0;
6336     }
6337 
6338     // This is a C++ method declaration.
6339     CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
6340                                                cast<CXXRecordDecl>(DC),
6341                                                D.getLocStart(), NameInfo, R,
6342                                                TInfo, SC, isInline,
6343                                                isConstexpr, SourceLocation());
6344     IsVirtualOkay = !Ret->isStatic();
6345     return Ret;
6346   } else {
6347     // Determine whether the function was written with a
6348     // prototype. This true when:
6349     //   - we're in C++ (where every function has a prototype),
6350     return FunctionDecl::Create(SemaRef.Context, DC,
6351                                 D.getLocStart(),
6352                                 NameInfo, R, TInfo, SC, isInline,
6353                                 true/*HasPrototype*/, isConstexpr);
6354   }
6355 }
6356 
6357 void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
6358   // In C++, the empty parameter-type-list must be spelled "void"; a
6359   // typedef of void is not permitted.
6360   if (getLangOpts().CPlusPlus &&
6361       Param->getType().getUnqualifiedType() != Context.VoidTy) {
6362     bool IsTypeAlias = false;
6363     if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
6364       IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
6365     else if (const TemplateSpecializationType *TST =
6366                Param->getType()->getAs<TemplateSpecializationType>())
6367       IsTypeAlias = TST->isTypeAlias();
6368     Diag(Param->getLocation(), diag::err_param_typedef_of_void)
6369       << IsTypeAlias;
6370   }
6371 }
6372 
6373 enum OpenCLParamType {
6374   ValidKernelParam,
6375   PtrPtrKernelParam,
6376   PtrKernelParam,
6377   InvalidKernelParam,
6378   RecordKernelParam
6379 };
6380 
6381 static OpenCLParamType getOpenCLKernelParameterType(QualType PT) {
6382   if (PT->isPointerType()) {
6383     QualType PointeeType = PT->getPointeeType();
6384     return PointeeType->isPointerType() ? PtrPtrKernelParam : PtrKernelParam;
6385   }
6386 
6387   // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can
6388   // be used as builtin types.
6389 
6390   if (PT->isImageType())
6391     return PtrKernelParam;
6392 
6393   if (PT->isBooleanType())
6394     return InvalidKernelParam;
6395 
6396   if (PT->isEventT())
6397     return InvalidKernelParam;
6398 
6399   if (PT->isHalfType())
6400     return InvalidKernelParam;
6401 
6402   if (PT->isRecordType())
6403     return RecordKernelParam;
6404 
6405   return ValidKernelParam;
6406 }
6407 
6408 static void checkIsValidOpenCLKernelParameter(
6409   Sema &S,
6410   Declarator &D,
6411   ParmVarDecl *Param,
6412   llvm::SmallPtrSet<const Type *, 16> &ValidTypes) {
6413   QualType PT = Param->getType();
6414 
6415   // Cache the valid types we encounter to avoid rechecking structs that are
6416   // used again
6417   if (ValidTypes.count(PT.getTypePtr()))
6418     return;
6419 
6420   switch (getOpenCLKernelParameterType(PT)) {
6421   case PtrPtrKernelParam:
6422     // OpenCL v1.2 s6.9.a:
6423     // A kernel function argument cannot be declared as a
6424     // pointer to a pointer type.
6425     S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
6426     D.setInvalidType();
6427     return;
6428 
6429     // OpenCL v1.2 s6.9.k:
6430     // Arguments to kernel functions in a program cannot be declared with the
6431     // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
6432     // uintptr_t or a struct and/or union that contain fields declared to be
6433     // one of these built-in scalar types.
6434 
6435   case InvalidKernelParam:
6436     // OpenCL v1.2 s6.8 n:
6437     // A kernel function argument cannot be declared
6438     // of event_t type.
6439     S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
6440     D.setInvalidType();
6441     return;
6442 
6443   case PtrKernelParam:
6444   case ValidKernelParam:
6445     ValidTypes.insert(PT.getTypePtr());
6446     return;
6447 
6448   case RecordKernelParam:
6449     break;
6450   }
6451 
6452   // Track nested structs we will inspect
6453   SmallVector<const Decl *, 4> VisitStack;
6454 
6455   // Track where we are in the nested structs. Items will migrate from
6456   // VisitStack to HistoryStack as we do the DFS for bad field.
6457   SmallVector<const FieldDecl *, 4> HistoryStack;
6458   HistoryStack.push_back((const FieldDecl *) 0);
6459 
6460   const RecordDecl *PD = PT->castAs<RecordType>()->getDecl();
6461   VisitStack.push_back(PD);
6462 
6463   assert(VisitStack.back() && "First decl null?");
6464 
6465   do {
6466     const Decl *Next = VisitStack.pop_back_val();
6467     if (!Next) {
6468       assert(!HistoryStack.empty());
6469       // Found a marker, we have gone up a level
6470       if (const FieldDecl *Hist = HistoryStack.pop_back_val())
6471         ValidTypes.insert(Hist->getType().getTypePtr());
6472 
6473       continue;
6474     }
6475 
6476     // Adds everything except the original parameter declaration (which is not a
6477     // field itself) to the history stack.
6478     const RecordDecl *RD;
6479     if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
6480       HistoryStack.push_back(Field);
6481       RD = Field->getType()->castAs<RecordType>()->getDecl();
6482     } else {
6483       RD = cast<RecordDecl>(Next);
6484     }
6485 
6486     // Add a null marker so we know when we've gone back up a level
6487     VisitStack.push_back((const Decl *) 0);
6488 
6489     for (RecordDecl::field_iterator I = RD->field_begin(),
6490            E = RD->field_end(); I != E; ++I) {
6491       const FieldDecl *FD = *I;
6492       QualType QT = FD->getType();
6493 
6494       if (ValidTypes.count(QT.getTypePtr()))
6495         continue;
6496 
6497       OpenCLParamType ParamType = getOpenCLKernelParameterType(QT);
6498       if (ParamType == ValidKernelParam)
6499         continue;
6500 
6501       if (ParamType == RecordKernelParam) {
6502         VisitStack.push_back(FD);
6503         continue;
6504       }
6505 
6506       // OpenCL v1.2 s6.9.p:
6507       // Arguments to kernel functions that are declared to be a struct or union
6508       // do not allow OpenCL objects to be passed as elements of the struct or
6509       // union.
6510       if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam) {
6511         S.Diag(Param->getLocation(),
6512                diag::err_record_with_pointers_kernel_param)
6513           << PT->isUnionType()
6514           << PT;
6515       } else {
6516         S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
6517       }
6518 
6519       S.Diag(PD->getLocation(), diag::note_within_field_of_type)
6520         << PD->getDeclName();
6521 
6522       // We have an error, now let's go back up through history and show where
6523       // the offending field came from
6524       for (ArrayRef<const FieldDecl *>::const_iterator I = HistoryStack.begin() + 1,
6525              E = HistoryStack.end(); I != E; ++I) {
6526         const FieldDecl *OuterField = *I;
6527         S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
6528           << OuterField->getType();
6529       }
6530 
6531       S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
6532         << QT->isPointerType()
6533         << QT;
6534       D.setInvalidType();
6535       return;
6536     }
6537   } while (!VisitStack.empty());
6538 }
6539 
6540 NamedDecl*
6541 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
6542                               TypeSourceInfo *TInfo, LookupResult &Previous,
6543                               MultiTemplateParamsArg TemplateParamLists,
6544                               bool &AddToScope) {
6545   QualType R = TInfo->getType();
6546 
6547   assert(R.getTypePtr()->isFunctionType());
6548 
6549   // TODO: consider using NameInfo for diagnostic.
6550   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6551   DeclarationName Name = NameInfo.getName();
6552   FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
6553 
6554   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
6555     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6556          diag::err_invalid_thread)
6557       << DeclSpec::getSpecifierName(TSCS);
6558 
6559   if (D.isFirstDeclarationOfMember())
6560     adjustMemberFunctionCC(R, D.isStaticMember());
6561 
6562   bool isFriend = false;
6563   FunctionTemplateDecl *FunctionTemplate = 0;
6564   bool isExplicitSpecialization = false;
6565   bool isFunctionTemplateSpecialization = false;
6566 
6567   bool isDependentClassScopeExplicitSpecialization = false;
6568   bool HasExplicitTemplateArgs = false;
6569   TemplateArgumentListInfo TemplateArgs;
6570 
6571   bool isVirtualOkay = false;
6572 
6573   DeclContext *OriginalDC = DC;
6574   bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
6575 
6576   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
6577                                               isVirtualOkay);
6578   if (!NewFD) return 0;
6579 
6580   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
6581     NewFD->setTopLevelDeclInObjCContainer();
6582 
6583   // Set the lexical context. If this is a function-scope declaration, or has a
6584   // C++ scope specifier, or is the object of a friend declaration, the lexical
6585   // context will be different from the semantic context.
6586   NewFD->setLexicalDeclContext(CurContext);
6587 
6588   if (IsLocalExternDecl)
6589     NewFD->setLocalExternDecl();
6590 
6591   if (getLangOpts().CPlusPlus) {
6592     bool isInline = D.getDeclSpec().isInlineSpecified();
6593     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
6594     bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6595     bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6596     isFriend = D.getDeclSpec().isFriendSpecified();
6597     if (isFriend && !isInline && D.isFunctionDefinition()) {
6598       // C++ [class.friend]p5
6599       //   A function can be defined in a friend declaration of a
6600       //   class . . . . Such a function is implicitly inline.
6601       NewFD->setImplicitlyInline();
6602     }
6603 
6604     // If this is a method defined in an __interface, and is not a constructor
6605     // or an overloaded operator, then set the pure flag (isVirtual will already
6606     // return true).
6607     if (const CXXRecordDecl *Parent =
6608           dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
6609       if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
6610         NewFD->setPure(true);
6611     }
6612 
6613     SetNestedNameSpecifier(NewFD, D);
6614     isExplicitSpecialization = false;
6615     isFunctionTemplateSpecialization = false;
6616     if (D.isInvalidType())
6617       NewFD->setInvalidDecl();
6618 
6619     // Match up the template parameter lists with the scope specifier, then
6620     // determine whether we have a template or a template specialization.
6621     bool Invalid = false;
6622     if (TemplateParameterList *TemplateParams =
6623             MatchTemplateParametersToScopeSpecifier(
6624                 D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
6625                 D.getCXXScopeSpec(), TemplateParamLists, isFriend,
6626                 isExplicitSpecialization, Invalid)) {
6627       if (TemplateParams->size() > 0) {
6628         // This is a function template
6629 
6630         // Check that we can declare a template here.
6631         if (CheckTemplateDeclScope(S, TemplateParams))
6632           return 0;
6633 
6634         // A destructor cannot be a template.
6635         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6636           Diag(NewFD->getLocation(), diag::err_destructor_template);
6637           return 0;
6638         }
6639 
6640         // If we're adding a template to a dependent context, we may need to
6641         // rebuilding some of the types used within the template parameter list,
6642         // now that we know what the current instantiation is.
6643         if (DC->isDependentContext()) {
6644           ContextRAII SavedContext(*this, DC);
6645           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
6646             Invalid = true;
6647         }
6648 
6649 
6650         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
6651                                                         NewFD->getLocation(),
6652                                                         Name, TemplateParams,
6653                                                         NewFD);
6654         FunctionTemplate->setLexicalDeclContext(CurContext);
6655         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
6656 
6657         // For source fidelity, store the other template param lists.
6658         if (TemplateParamLists.size() > 1) {
6659           NewFD->setTemplateParameterListsInfo(Context,
6660                                                TemplateParamLists.size() - 1,
6661                                                TemplateParamLists.data());
6662         }
6663       } else {
6664         // This is a function template specialization.
6665         isFunctionTemplateSpecialization = true;
6666         // For source fidelity, store all the template param lists.
6667         NewFD->setTemplateParameterListsInfo(Context,
6668                                              TemplateParamLists.size(),
6669                                              TemplateParamLists.data());
6670 
6671         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
6672         if (isFriend) {
6673           // We want to remove the "template<>", found here.
6674           SourceRange RemoveRange = TemplateParams->getSourceRange();
6675 
6676           // If we remove the template<> and the name is not a
6677           // template-id, we're actually silently creating a problem:
6678           // the friend declaration will refer to an untemplated decl,
6679           // and clearly the user wants a template specialization.  So
6680           // we need to insert '<>' after the name.
6681           SourceLocation InsertLoc;
6682           if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
6683             InsertLoc = D.getName().getSourceRange().getEnd();
6684             InsertLoc = PP.getLocForEndOfToken(InsertLoc);
6685           }
6686 
6687           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
6688             << Name << RemoveRange
6689             << FixItHint::CreateRemoval(RemoveRange)
6690             << FixItHint::CreateInsertion(InsertLoc, "<>");
6691         }
6692       }
6693     }
6694     else {
6695       // All template param lists were matched against the scope specifier:
6696       // this is NOT (an explicit specialization of) a template.
6697       if (TemplateParamLists.size() > 0)
6698         // For source fidelity, store all the template param lists.
6699         NewFD->setTemplateParameterListsInfo(Context,
6700                                              TemplateParamLists.size(),
6701                                              TemplateParamLists.data());
6702     }
6703 
6704     if (Invalid) {
6705       NewFD->setInvalidDecl();
6706       if (FunctionTemplate)
6707         FunctionTemplate->setInvalidDecl();
6708     }
6709 
6710     // C++ [dcl.fct.spec]p5:
6711     //   The virtual specifier shall only be used in declarations of
6712     //   nonstatic class member functions that appear within a
6713     //   member-specification of a class declaration; see 10.3.
6714     //
6715     if (isVirtual && !NewFD->isInvalidDecl()) {
6716       if (!isVirtualOkay) {
6717         Diag(D.getDeclSpec().getVirtualSpecLoc(),
6718              diag::err_virtual_non_function);
6719       } else if (!CurContext->isRecord()) {
6720         // 'virtual' was specified outside of the class.
6721         Diag(D.getDeclSpec().getVirtualSpecLoc(),
6722              diag::err_virtual_out_of_class)
6723           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6724       } else if (NewFD->getDescribedFunctionTemplate()) {
6725         // C++ [temp.mem]p3:
6726         //  A member function template shall not be virtual.
6727         Diag(D.getDeclSpec().getVirtualSpecLoc(),
6728              diag::err_virtual_member_function_template)
6729           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6730       } else {
6731         // Okay: Add virtual to the method.
6732         NewFD->setVirtualAsWritten(true);
6733       }
6734 
6735       if (getLangOpts().CPlusPlus1y &&
6736           NewFD->getResultType()->isUndeducedType())
6737         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
6738     }
6739 
6740     if (getLangOpts().CPlusPlus1y &&
6741         (NewFD->isDependentContext() ||
6742          (isFriend && CurContext->isDependentContext())) &&
6743         NewFD->getResultType()->isUndeducedType()) {
6744       // If the function template is referenced directly (for instance, as a
6745       // member of the current instantiation), pretend it has a dependent type.
6746       // This is not really justified by the standard, but is the only sane
6747       // thing to do.
6748       // FIXME: For a friend function, we have not marked the function as being
6749       // a friend yet, so 'isDependentContext' on the FD doesn't work.
6750       const FunctionProtoType *FPT =
6751           NewFD->getType()->castAs<FunctionProtoType>();
6752       QualType Result = SubstAutoType(FPT->getResultType(),
6753                                        Context.DependentTy);
6754       NewFD->setType(Context.getFunctionType(Result, FPT->getArgTypes(),
6755                                              FPT->getExtProtoInfo()));
6756     }
6757 
6758     // C++ [dcl.fct.spec]p3:
6759     //  The inline specifier shall not appear on a block scope function
6760     //  declaration.
6761     if (isInline && !NewFD->isInvalidDecl()) {
6762       if (CurContext->isFunctionOrMethod()) {
6763         // 'inline' is not allowed on block scope function declaration.
6764         Diag(D.getDeclSpec().getInlineSpecLoc(),
6765              diag::err_inline_declaration_block_scope) << Name
6766           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6767       }
6768     }
6769 
6770     // C++ [dcl.fct.spec]p6:
6771     //  The explicit specifier shall be used only in the declaration of a
6772     //  constructor or conversion function within its class definition;
6773     //  see 12.3.1 and 12.3.2.
6774     if (isExplicit && !NewFD->isInvalidDecl()) {
6775       if (!CurContext->isRecord()) {
6776         // 'explicit' was specified outside of the class.
6777         Diag(D.getDeclSpec().getExplicitSpecLoc(),
6778              diag::err_explicit_out_of_class)
6779           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6780       } else if (!isa<CXXConstructorDecl>(NewFD) &&
6781                  !isa<CXXConversionDecl>(NewFD)) {
6782         // 'explicit' was specified on a function that wasn't a constructor
6783         // or conversion function.
6784         Diag(D.getDeclSpec().getExplicitSpecLoc(),
6785              diag::err_explicit_non_ctor_or_conv_function)
6786           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6787       }
6788     }
6789 
6790     if (isConstexpr) {
6791       // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
6792       // are implicitly inline.
6793       NewFD->setImplicitlyInline();
6794 
6795       // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
6796       // be either constructors or to return a literal type. Therefore,
6797       // destructors cannot be declared constexpr.
6798       if (isa<CXXDestructorDecl>(NewFD))
6799         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
6800     }
6801 
6802     // If __module_private__ was specified, mark the function accordingly.
6803     if (D.getDeclSpec().isModulePrivateSpecified()) {
6804       if (isFunctionTemplateSpecialization) {
6805         SourceLocation ModulePrivateLoc
6806           = D.getDeclSpec().getModulePrivateSpecLoc();
6807         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
6808           << 0
6809           << FixItHint::CreateRemoval(ModulePrivateLoc);
6810       } else {
6811         NewFD->setModulePrivate();
6812         if (FunctionTemplate)
6813           FunctionTemplate->setModulePrivate();
6814       }
6815     }
6816 
6817     if (isFriend) {
6818       if (FunctionTemplate) {
6819         FunctionTemplate->setObjectOfFriendDecl();
6820         FunctionTemplate->setAccess(AS_public);
6821       }
6822       NewFD->setObjectOfFriendDecl();
6823       NewFD->setAccess(AS_public);
6824     }
6825 
6826     // If a function is defined as defaulted or deleted, mark it as such now.
6827     switch (D.getFunctionDefinitionKind()) {
6828       case FDK_Declaration:
6829       case FDK_Definition:
6830         break;
6831 
6832       case FDK_Defaulted:
6833         NewFD->setDefaulted();
6834         break;
6835 
6836       case FDK_Deleted:
6837         NewFD->setDeletedAsWritten();
6838         break;
6839     }
6840 
6841     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
6842         D.isFunctionDefinition()) {
6843       // C++ [class.mfct]p2:
6844       //   A member function may be defined (8.4) in its class definition, in
6845       //   which case it is an inline member function (7.1.2)
6846       NewFD->setImplicitlyInline();
6847     }
6848 
6849     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
6850         !CurContext->isRecord()) {
6851       // C++ [class.static]p1:
6852       //   A data or function member of a class may be declared static
6853       //   in a class definition, in which case it is a static member of
6854       //   the class.
6855 
6856       // Complain about the 'static' specifier if it's on an out-of-line
6857       // member function definition.
6858       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6859            diag::err_static_out_of_line)
6860         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6861     }
6862 
6863     // C++11 [except.spec]p15:
6864     //   A deallocation function with no exception-specification is treated
6865     //   as if it were specified with noexcept(true).
6866     const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
6867     if ((Name.getCXXOverloadedOperator() == OO_Delete ||
6868          Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
6869         getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
6870       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6871       EPI.ExceptionSpecType = EST_BasicNoexcept;
6872       NewFD->setType(Context.getFunctionType(FPT->getResultType(),
6873                                              FPT->getArgTypes(), EPI));
6874     }
6875   }
6876 
6877   // Filter out previous declarations that don't match the scope.
6878   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
6879                        isExplicitSpecialization ||
6880                        isFunctionTemplateSpecialization);
6881 
6882   // Handle GNU asm-label extension (encoded as an attribute).
6883   if (Expr *E = (Expr*) D.getAsmLabel()) {
6884     // The parser guarantees this is a string.
6885     StringLiteral *SE = cast<StringLiteral>(E);
6886     NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
6887                                                 SE->getString()));
6888   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6889     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6890       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
6891     if (I != ExtnameUndeclaredIdentifiers.end()) {
6892       NewFD->addAttr(I->second);
6893       ExtnameUndeclaredIdentifiers.erase(I);
6894     }
6895   }
6896 
6897   // Copy the parameter declarations from the declarator D to the function
6898   // declaration NewFD, if they are available.  First scavenge them into Params.
6899   SmallVector<ParmVarDecl*, 16> Params;
6900   if (D.isFunctionDeclarator()) {
6901     DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6902 
6903     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
6904     // function that takes no arguments, not a function that takes a
6905     // single void argument.
6906     // We let through "const void" here because Sema::GetTypeForDeclarator
6907     // already checks for that case.
6908     if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6909         FTI.ArgInfo[0].Param &&
6910         cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
6911       // Empty arg list, don't push any params.
6912       checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
6913     } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
6914       for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
6915         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
6916         assert(Param->getDeclContext() != NewFD && "Was set before ?");
6917         Param->setDeclContext(NewFD);
6918         Params.push_back(Param);
6919 
6920         if (Param->isInvalidDecl())
6921           NewFD->setInvalidDecl();
6922       }
6923     }
6924 
6925   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
6926     // When we're declaring a function with a typedef, typeof, etc as in the
6927     // following example, we'll need to synthesize (unnamed)
6928     // parameters for use in the declaration.
6929     //
6930     // @code
6931     // typedef void fn(int);
6932     // fn f;
6933     // @endcode
6934 
6935     // Synthesize a parameter for each argument type.
6936     for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
6937          AE = FT->arg_type_end(); AI != AE; ++AI) {
6938       ParmVarDecl *Param =
6939         BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
6940       Param->setScopeInfo(0, Params.size());
6941       Params.push_back(Param);
6942     }
6943   } else {
6944     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
6945            "Should not need args for typedef of non-prototype fn");
6946   }
6947 
6948   // Finally, we know we have the right number of parameters, install them.
6949   NewFD->setParams(Params);
6950 
6951   // Find all anonymous symbols defined during the declaration of this function
6952   // and add to NewFD. This lets us track decls such 'enum Y' in:
6953   //
6954   //   void f(enum Y {AA} x) {}
6955   //
6956   // which would otherwise incorrectly end up in the translation unit scope.
6957   NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
6958   DeclsInPrototypeScope.clear();
6959 
6960   if (D.getDeclSpec().isNoreturnSpecified())
6961     NewFD->addAttr(
6962         ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
6963                                        Context));
6964 
6965   // Functions returning a variably modified type violate C99 6.7.5.2p2
6966   // because all functions have linkage.
6967   if (!NewFD->isInvalidDecl() &&
6968       NewFD->getResultType()->isVariablyModifiedType()) {
6969     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
6970     NewFD->setInvalidDecl();
6971   }
6972 
6973   // Handle attributes.
6974   ProcessDeclAttributes(S, NewFD, D);
6975 
6976   QualType RetType = NewFD->getResultType();
6977   const CXXRecordDecl *Ret = RetType->isRecordType() ?
6978       RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
6979   if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
6980       Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
6981     const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6982     // Attach the attribute to the new decl. Don't apply the attribute if it
6983     // returns an instance of the class (e.g. assignment operators).
6984     if (!MD || MD->getParent() != Ret) {
6985       NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
6986                                                         Context));
6987     }
6988   }
6989 
6990   if (!getLangOpts().CPlusPlus) {
6991     // Perform semantic checking on the function declaration.
6992     bool isExplicitSpecialization=false;
6993     if (!NewFD->isInvalidDecl() && NewFD->isMain())
6994       CheckMain(NewFD, D.getDeclSpec());
6995 
6996     if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
6997       CheckMSVCRTEntryPoint(NewFD);
6998 
6999     if (!NewFD->isInvalidDecl())
7000       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
7001                                                   isExplicitSpecialization));
7002     else if (!Previous.empty())
7003       // Make graceful recovery from an invalid redeclaration.
7004       D.setRedeclaration(true);
7005     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
7006             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
7007            "previous declaration set still overloaded");
7008   } else {
7009     // C++11 [replacement.functions]p3:
7010     //  The program's definitions shall not be specified as inline.
7011     //
7012     // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
7013     //
7014     // Suppress the diagnostic if the function is __attribute__((used)), since
7015     // that forces an external definition to be emitted.
7016     if (D.getDeclSpec().isInlineSpecified() &&
7017         NewFD->isReplaceableGlobalAllocationFunction() &&
7018         !NewFD->hasAttr<UsedAttr>())
7019       Diag(D.getDeclSpec().getInlineSpecLoc(),
7020            diag::ext_operator_new_delete_declared_inline)
7021         << NewFD->getDeclName();
7022 
7023     // If the declarator is a template-id, translate the parser's template
7024     // argument list into our AST format.
7025     if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7026       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
7027       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
7028       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
7029       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7030                                          TemplateId->NumArgs);
7031       translateTemplateArguments(TemplateArgsPtr,
7032                                  TemplateArgs);
7033 
7034       HasExplicitTemplateArgs = true;
7035 
7036       if (NewFD->isInvalidDecl()) {
7037         HasExplicitTemplateArgs = false;
7038       } else if (FunctionTemplate) {
7039         // Function template with explicit template arguments.
7040         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
7041           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
7042 
7043         HasExplicitTemplateArgs = false;
7044       } else if (!isFunctionTemplateSpecialization &&
7045                  !D.getDeclSpec().isFriendSpecified()) {
7046         // We have encountered something that the user meant to be a
7047         // specialization (because it has explicitly-specified template
7048         // arguments) but that was not introduced with a "template<>" (or had
7049         // too few of them).
7050         // FIXME: Differentiate between attempts for explicit instantiations
7051         // (starting with "template") and the rest.
7052         Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
7053           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
7054           << FixItHint::CreateInsertion(
7055                                     D.getDeclSpec().getLocStart(),
7056                                         "template<> ");
7057         isFunctionTemplateSpecialization = true;
7058       } else {
7059         // "friend void foo<>(int);" is an implicit specialization decl.
7060         isFunctionTemplateSpecialization = true;
7061       }
7062     } else if (isFriend && isFunctionTemplateSpecialization) {
7063       // This combination is only possible in a recovery case;  the user
7064       // wrote something like:
7065       //   template <> friend void foo(int);
7066       // which we're recovering from as if the user had written:
7067       //   friend void foo<>(int);
7068       // Go ahead and fake up a template id.
7069       HasExplicitTemplateArgs = true;
7070         TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
7071       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
7072     }
7073 
7074     // If it's a friend (and only if it's a friend), it's possible
7075     // that either the specialized function type or the specialized
7076     // template is dependent, and therefore matching will fail.  In
7077     // this case, don't check the specialization yet.
7078     bool InstantiationDependent = false;
7079     if (isFunctionTemplateSpecialization && isFriend &&
7080         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
7081          TemplateSpecializationType::anyDependentTemplateArguments(
7082             TemplateArgs.getArgumentArray(), TemplateArgs.size(),
7083             InstantiationDependent))) {
7084       assert(HasExplicitTemplateArgs &&
7085              "friend function specialization without template args");
7086       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
7087                                                        Previous))
7088         NewFD->setInvalidDecl();
7089     } else if (isFunctionTemplateSpecialization) {
7090       if (CurContext->isDependentContext() && CurContext->isRecord()
7091           && !isFriend) {
7092         isDependentClassScopeExplicitSpecialization = true;
7093         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
7094           diag::ext_function_specialization_in_class :
7095           diag::err_function_specialization_in_class)
7096           << NewFD->getDeclName();
7097       } else if (CheckFunctionTemplateSpecialization(NewFD,
7098                                   (HasExplicitTemplateArgs ? &TemplateArgs : 0),
7099                                                      Previous))
7100         NewFD->setInvalidDecl();
7101 
7102       // C++ [dcl.stc]p1:
7103       //   A storage-class-specifier shall not be specified in an explicit
7104       //   specialization (14.7.3)
7105       FunctionTemplateSpecializationInfo *Info =
7106           NewFD->getTemplateSpecializationInfo();
7107       if (Info && SC != SC_None) {
7108         if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
7109           Diag(NewFD->getLocation(),
7110                diag::err_explicit_specialization_inconsistent_storage_class)
7111             << SC
7112             << FixItHint::CreateRemoval(
7113                                       D.getDeclSpec().getStorageClassSpecLoc());
7114 
7115         else
7116           Diag(NewFD->getLocation(),
7117                diag::ext_explicit_specialization_storage_class)
7118             << FixItHint::CreateRemoval(
7119                                       D.getDeclSpec().getStorageClassSpecLoc());
7120       }
7121 
7122     } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
7123       if (CheckMemberSpecialization(NewFD, Previous))
7124           NewFD->setInvalidDecl();
7125     }
7126 
7127     // Perform semantic checking on the function declaration.
7128     if (!isDependentClassScopeExplicitSpecialization) {
7129       if (!NewFD->isInvalidDecl() && NewFD->isMain())
7130         CheckMain(NewFD, D.getDeclSpec());
7131 
7132       if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
7133         CheckMSVCRTEntryPoint(NewFD);
7134 
7135       if (NewFD->isInvalidDecl()) {
7136         // If this is a class member, mark the class invalid immediately.
7137         // This avoids some consistency errors later.
7138         if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
7139           methodDecl->getParent()->setInvalidDecl();
7140       } else
7141         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
7142                                                     isExplicitSpecialization));
7143     }
7144 
7145     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
7146             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
7147            "previous declaration set still overloaded");
7148 
7149     NamedDecl *PrincipalDecl = (FunctionTemplate
7150                                 ? cast<NamedDecl>(FunctionTemplate)
7151                                 : NewFD);
7152 
7153     if (isFriend && D.isRedeclaration()) {
7154       AccessSpecifier Access = AS_public;
7155       if (!NewFD->isInvalidDecl())
7156         Access = NewFD->getPreviousDecl()->getAccess();
7157 
7158       NewFD->setAccess(Access);
7159       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
7160     }
7161 
7162     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
7163         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
7164       PrincipalDecl->setNonMemberOperator();
7165 
7166     // If we have a function template, check the template parameter
7167     // list. This will check and merge default template arguments.
7168     if (FunctionTemplate) {
7169       FunctionTemplateDecl *PrevTemplate =
7170                                      FunctionTemplate->getPreviousDecl();
7171       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
7172                        PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
7173                             D.getDeclSpec().isFriendSpecified()
7174                               ? (D.isFunctionDefinition()
7175                                    ? TPC_FriendFunctionTemplateDefinition
7176                                    : TPC_FriendFunctionTemplate)
7177                               : (D.getCXXScopeSpec().isSet() &&
7178                                  DC && DC->isRecord() &&
7179                                  DC->isDependentContext())
7180                                   ? TPC_ClassTemplateMember
7181                                   : TPC_FunctionTemplate);
7182     }
7183 
7184     if (NewFD->isInvalidDecl()) {
7185       // Ignore all the rest of this.
7186     } else if (!D.isRedeclaration()) {
7187       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
7188                                        AddToScope };
7189       // Fake up an access specifier if it's supposed to be a class member.
7190       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
7191         NewFD->setAccess(AS_public);
7192 
7193       // Qualified decls generally require a previous declaration.
7194       if (D.getCXXScopeSpec().isSet()) {
7195         // ...with the major exception of templated-scope or
7196         // dependent-scope friend declarations.
7197 
7198         // TODO: we currently also suppress this check in dependent
7199         // contexts because (1) the parameter depth will be off when
7200         // matching friend templates and (2) we might actually be
7201         // selecting a friend based on a dependent factor.  But there
7202         // are situations where these conditions don't apply and we
7203         // can actually do this check immediately.
7204         if (isFriend &&
7205             (TemplateParamLists.size() ||
7206              D.getCXXScopeSpec().getScopeRep()->isDependent() ||
7207              CurContext->isDependentContext())) {
7208           // ignore these
7209         } else {
7210           // The user tried to provide an out-of-line definition for a
7211           // function that is a member of a class or namespace, but there
7212           // was no such member function declared (C++ [class.mfct]p2,
7213           // C++ [namespace.memdef]p2). For example:
7214           //
7215           // class X {
7216           //   void f() const;
7217           // };
7218           //
7219           // void X::f() { } // ill-formed
7220           //
7221           // Complain about this problem, and attempt to suggest close
7222           // matches (e.g., those that differ only in cv-qualifiers and
7223           // whether the parameter types are references).
7224 
7225           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
7226                   *this, Previous, NewFD, ExtraArgs, false, 0)) {
7227             AddToScope = ExtraArgs.AddToScope;
7228             return Result;
7229           }
7230         }
7231 
7232         // Unqualified local friend declarations are required to resolve
7233         // to something.
7234       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
7235         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
7236                 *this, Previous, NewFD, ExtraArgs, true, S)) {
7237           AddToScope = ExtraArgs.AddToScope;
7238           return Result;
7239         }
7240       }
7241 
7242     } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
7243                !isFriend && !isFunctionTemplateSpecialization &&
7244                !isExplicitSpecialization) {
7245       // An out-of-line member function declaration must also be a
7246       // definition (C++ [dcl.meaning]p1).
7247       // Note that this is not the case for explicit specializations of
7248       // function templates or member functions of class templates, per
7249       // C++ [temp.expl.spec]p2. We also allow these declarations as an
7250       // extension for compatibility with old SWIG code which likes to
7251       // generate them.
7252       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
7253         << D.getCXXScopeSpec().getRange();
7254     }
7255   }
7256 
7257   ProcessPragmaWeak(S, NewFD);
7258   checkAttributesAfterMerging(*this, *NewFD);
7259 
7260   AddKnownFunctionAttributes(NewFD);
7261 
7262   if (NewFD->hasAttr<OverloadableAttr>() &&
7263       !NewFD->getType()->getAs<FunctionProtoType>()) {
7264     Diag(NewFD->getLocation(),
7265          diag::err_attribute_overloadable_no_prototype)
7266       << NewFD;
7267 
7268     // Turn this into a variadic function with no parameters.
7269     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
7270     FunctionProtoType::ExtProtoInfo EPI(
7271         Context.getDefaultCallingConvention(true, false));
7272     EPI.Variadic = true;
7273     EPI.ExtInfo = FT->getExtInfo();
7274 
7275     QualType R = Context.getFunctionType(FT->getResultType(), None, EPI);
7276     NewFD->setType(R);
7277   }
7278 
7279   // If there's a #pragma GCC visibility in scope, and this isn't a class
7280   // member, set the visibility of this function.
7281   if (!DC->isRecord() && NewFD->isExternallyVisible())
7282     AddPushedVisibilityAttribute(NewFD);
7283 
7284   // If there's a #pragma clang arc_cf_code_audited in scope, consider
7285   // marking the function.
7286   AddCFAuditedAttribute(NewFD);
7287 
7288   // If this is the first declaration of an extern C variable, update
7289   // the map of such variables.
7290   if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
7291       isIncompleteDeclExternC(*this, NewFD))
7292     RegisterLocallyScopedExternCDecl(NewFD, S);
7293 
7294   // Set this FunctionDecl's range up to the right paren.
7295   NewFD->setRangeEnd(D.getSourceRange().getEnd());
7296 
7297   if (getLangOpts().CPlusPlus) {
7298     if (FunctionTemplate) {
7299       if (NewFD->isInvalidDecl())
7300         FunctionTemplate->setInvalidDecl();
7301       return FunctionTemplate;
7302     }
7303   }
7304 
7305   if (NewFD->hasAttr<OpenCLKernelAttr>()) {
7306     // OpenCL v1.2 s6.8 static is invalid for kernel functions.
7307     if ((getLangOpts().OpenCLVersion >= 120)
7308         && (SC == SC_Static)) {
7309       Diag(D.getIdentifierLoc(), diag::err_static_kernel);
7310       D.setInvalidType();
7311     }
7312 
7313     // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
7314     if (!NewFD->getResultType()->isVoidType()) {
7315       Diag(D.getIdentifierLoc(),
7316            diag::err_expected_kernel_void_return_type);
7317       D.setInvalidType();
7318     }
7319 
7320     llvm::SmallPtrSet<const Type *, 16> ValidTypes;
7321     for (FunctionDecl::param_iterator PI = NewFD->param_begin(),
7322          PE = NewFD->param_end(); PI != PE; ++PI) {
7323       ParmVarDecl *Param = *PI;
7324       checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
7325     }
7326   }
7327 
7328   MarkUnusedFileScopedDecl(NewFD);
7329 
7330   if (getLangOpts().CUDA)
7331     if (IdentifierInfo *II = NewFD->getIdentifier())
7332       if (!NewFD->isInvalidDecl() &&
7333           NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7334         if (II->isStr("cudaConfigureCall")) {
7335           if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
7336             Diag(NewFD->getLocation(), diag::err_config_scalar_return);
7337 
7338           Context.setcudaConfigureCallDecl(NewFD);
7339         }
7340       }
7341 
7342   // Here we have an function template explicit specialization at class scope.
7343   // The actually specialization will be postponed to template instatiation
7344   // time via the ClassScopeFunctionSpecializationDecl node.
7345   if (isDependentClassScopeExplicitSpecialization) {
7346     ClassScopeFunctionSpecializationDecl *NewSpec =
7347                          ClassScopeFunctionSpecializationDecl::Create(
7348                                 Context, CurContext, SourceLocation(),
7349                                 cast<CXXMethodDecl>(NewFD),
7350                                 HasExplicitTemplateArgs, TemplateArgs);
7351     CurContext->addDecl(NewSpec);
7352     AddToScope = false;
7353   }
7354 
7355   return NewFD;
7356 }
7357 
7358 /// \brief Perform semantic checking of a new function declaration.
7359 ///
7360 /// Performs semantic analysis of the new function declaration
7361 /// NewFD. This routine performs all semantic checking that does not
7362 /// require the actual declarator involved in the declaration, and is
7363 /// used both for the declaration of functions as they are parsed
7364 /// (called via ActOnDeclarator) and for the declaration of functions
7365 /// that have been instantiated via C++ template instantiation (called
7366 /// via InstantiateDecl).
7367 ///
7368 /// \param IsExplicitSpecialization whether this new function declaration is
7369 /// an explicit specialization of the previous declaration.
7370 ///
7371 /// This sets NewFD->isInvalidDecl() to true if there was an error.
7372 ///
7373 /// \returns true if the function declaration is a redeclaration.
7374 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
7375                                     LookupResult &Previous,
7376                                     bool IsExplicitSpecialization) {
7377   assert(!NewFD->getResultType()->isVariablyModifiedType()
7378          && "Variably modified return types are not handled here");
7379 
7380   // Determine whether the type of this function should be merged with
7381   // a previous visible declaration. This never happens for functions in C++,
7382   // and always happens in C if the previous declaration was visible.
7383   bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
7384                                !Previous.isShadowed();
7385 
7386   // Filter out any non-conflicting previous declarations.
7387   filterNonConflictingPreviousDecls(Context, NewFD, Previous);
7388 
7389   bool Redeclaration = false;
7390   NamedDecl *OldDecl = 0;
7391 
7392   // Merge or overload the declaration with an existing declaration of
7393   // the same name, if appropriate.
7394   if (!Previous.empty()) {
7395     // Determine whether NewFD is an overload of PrevDecl or
7396     // a declaration that requires merging. If it's an overload,
7397     // there's no more work to do here; we'll just add the new
7398     // function to the scope.
7399     if (!AllowOverloadingOfFunction(Previous, Context)) {
7400       NamedDecl *Candidate = Previous.getFoundDecl();
7401       if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
7402         Redeclaration = true;
7403         OldDecl = Candidate;
7404       }
7405     } else {
7406       switch (CheckOverload(S, NewFD, Previous, OldDecl,
7407                             /*NewIsUsingDecl*/ false)) {
7408       case Ovl_Match:
7409         Redeclaration = true;
7410         break;
7411 
7412       case Ovl_NonFunction:
7413         Redeclaration = true;
7414         break;
7415 
7416       case Ovl_Overload:
7417         Redeclaration = false;
7418         break;
7419       }
7420 
7421       if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
7422         // If a function name is overloadable in C, then every function
7423         // with that name must be marked "overloadable".
7424         Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
7425           << Redeclaration << NewFD;
7426         NamedDecl *OverloadedDecl = 0;
7427         if (Redeclaration)
7428           OverloadedDecl = OldDecl;
7429         else if (!Previous.empty())
7430           OverloadedDecl = Previous.getRepresentativeDecl();
7431         if (OverloadedDecl)
7432           Diag(OverloadedDecl->getLocation(),
7433                diag::note_attribute_overloadable_prev_overload);
7434         NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
7435                                                         Context));
7436       }
7437     }
7438   }
7439 
7440   // Check for a previous extern "C" declaration with this name.
7441   if (!Redeclaration &&
7442       checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
7443     filterNonConflictingPreviousDecls(Context, NewFD, Previous);
7444     if (!Previous.empty()) {
7445       // This is an extern "C" declaration with the same name as a previous
7446       // declaration, and thus redeclares that entity...
7447       Redeclaration = true;
7448       OldDecl = Previous.getFoundDecl();
7449       MergeTypeWithPrevious = false;
7450 
7451       // ... except in the presence of __attribute__((overloadable)).
7452       if (OldDecl->hasAttr<OverloadableAttr>()) {
7453         if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
7454           Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
7455             << Redeclaration << NewFD;
7456           Diag(Previous.getFoundDecl()->getLocation(),
7457                diag::note_attribute_overloadable_prev_overload);
7458           NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
7459                                                           Context));
7460         }
7461         if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
7462           Redeclaration = false;
7463           OldDecl = 0;
7464         }
7465       }
7466     }
7467   }
7468 
7469   // C++11 [dcl.constexpr]p8:
7470   //   A constexpr specifier for a non-static member function that is not
7471   //   a constructor declares that member function to be const.
7472   //
7473   // This needs to be delayed until we know whether this is an out-of-line
7474   // definition of a static member function.
7475   //
7476   // This rule is not present in C++1y, so we produce a backwards
7477   // compatibility warning whenever it happens in C++11.
7478   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
7479   if (!getLangOpts().CPlusPlus1y && MD && MD->isConstexpr() &&
7480       !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
7481       (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
7482     CXXMethodDecl *OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl);
7483     if (FunctionTemplateDecl *OldTD =
7484           dyn_cast_or_null<FunctionTemplateDecl>(OldDecl))
7485       OldMD = dyn_cast<CXXMethodDecl>(OldTD->getTemplatedDecl());
7486     if (!OldMD || !OldMD->isStatic()) {
7487       const FunctionProtoType *FPT =
7488         MD->getType()->castAs<FunctionProtoType>();
7489       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7490       EPI.TypeQuals |= Qualifiers::Const;
7491       MD->setType(Context.getFunctionType(FPT->getResultType(),
7492                                           FPT->getArgTypes(), EPI));
7493 
7494       // Warn that we did this, if we're not performing template instantiation.
7495       // In that case, we'll have warned already when the template was defined.
7496       if (ActiveTemplateInstantiations.empty()) {
7497         SourceLocation AddConstLoc;
7498         if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
7499                 .IgnoreParens().getAs<FunctionTypeLoc>())
7500           AddConstLoc = PP.getLocForEndOfToken(FTL.getRParenLoc());
7501 
7502         Diag(MD->getLocation(), diag::warn_cxx1y_compat_constexpr_not_const)
7503           << FixItHint::CreateInsertion(AddConstLoc, " const");
7504       }
7505     }
7506   }
7507 
7508   if (Redeclaration) {
7509     // NewFD and OldDecl represent declarations that need to be
7510     // merged.
7511     if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
7512       NewFD->setInvalidDecl();
7513       return Redeclaration;
7514     }
7515 
7516     Previous.clear();
7517     Previous.addDecl(OldDecl);
7518 
7519     if (FunctionTemplateDecl *OldTemplateDecl
7520                                   = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
7521       NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
7522       FunctionTemplateDecl *NewTemplateDecl
7523         = NewFD->getDescribedFunctionTemplate();
7524       assert(NewTemplateDecl && "Template/non-template mismatch");
7525       if (CXXMethodDecl *Method
7526             = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
7527         Method->setAccess(OldTemplateDecl->getAccess());
7528         NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
7529       }
7530 
7531       // If this is an explicit specialization of a member that is a function
7532       // template, mark it as a member specialization.
7533       if (IsExplicitSpecialization &&
7534           NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
7535         NewTemplateDecl->setMemberSpecialization();
7536         assert(OldTemplateDecl->isMemberSpecialization());
7537       }
7538 
7539     } else {
7540       // This needs to happen first so that 'inline' propagates.
7541       NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
7542 
7543       if (isa<CXXMethodDecl>(NewFD)) {
7544         // A valid redeclaration of a C++ method must be out-of-line,
7545         // but (unfortunately) it's not necessarily a definition
7546         // because of templates, which means that the previous
7547         // declaration is not necessarily from the class definition.
7548 
7549         // For just setting the access, that doesn't matter.
7550         CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
7551         NewFD->setAccess(oldMethod->getAccess());
7552 
7553         // Update the key-function state if necessary for this ABI.
7554         if (NewFD->isInlined() &&
7555             !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7556           // setNonKeyFunction needs to work with the original
7557           // declaration from the class definition, and isVirtual() is
7558           // just faster in that case, so map back to that now.
7559           oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDecl());
7560           if (oldMethod->isVirtual()) {
7561             Context.setNonKeyFunction(oldMethod);
7562           }
7563         }
7564       }
7565     }
7566   }
7567 
7568   // Semantic checking for this function declaration (in isolation).
7569   if (getLangOpts().CPlusPlus) {
7570     // C++-specific checks.
7571     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
7572       CheckConstructor(Constructor);
7573     } else if (CXXDestructorDecl *Destructor =
7574                 dyn_cast<CXXDestructorDecl>(NewFD)) {
7575       CXXRecordDecl *Record = Destructor->getParent();
7576       QualType ClassType = Context.getTypeDeclType(Record);
7577 
7578       // FIXME: Shouldn't we be able to perform this check even when the class
7579       // type is dependent? Both gcc and edg can handle that.
7580       if (!ClassType->isDependentType()) {
7581         DeclarationName Name
7582           = Context.DeclarationNames.getCXXDestructorName(
7583                                         Context.getCanonicalType(ClassType));
7584         if (NewFD->getDeclName() != Name) {
7585           Diag(NewFD->getLocation(), diag::err_destructor_name);
7586           NewFD->setInvalidDecl();
7587           return Redeclaration;
7588         }
7589       }
7590     } else if (CXXConversionDecl *Conversion
7591                = dyn_cast<CXXConversionDecl>(NewFD)) {
7592       ActOnConversionDeclarator(Conversion);
7593     }
7594 
7595     // Find any virtual functions that this function overrides.
7596     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
7597       if (!Method->isFunctionTemplateSpecialization() &&
7598           !Method->getDescribedFunctionTemplate() &&
7599           Method->isCanonicalDecl()) {
7600         if (AddOverriddenMethods(Method->getParent(), Method)) {
7601           // If the function was marked as "static", we have a problem.
7602           if (NewFD->getStorageClass() == SC_Static) {
7603             ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
7604           }
7605         }
7606       }
7607 
7608       if (Method->isStatic())
7609         checkThisInStaticMemberFunctionType(Method);
7610     }
7611 
7612     // Extra checking for C++ overloaded operators (C++ [over.oper]).
7613     if (NewFD->isOverloadedOperator() &&
7614         CheckOverloadedOperatorDeclaration(NewFD)) {
7615       NewFD->setInvalidDecl();
7616       return Redeclaration;
7617     }
7618 
7619     // Extra checking for C++0x literal operators (C++0x [over.literal]).
7620     if (NewFD->getLiteralIdentifier() &&
7621         CheckLiteralOperatorDeclaration(NewFD)) {
7622       NewFD->setInvalidDecl();
7623       return Redeclaration;
7624     }
7625 
7626     // In C++, check default arguments now that we have merged decls. Unless
7627     // the lexical context is the class, because in this case this is done
7628     // during delayed parsing anyway.
7629     if (!CurContext->isRecord())
7630       CheckCXXDefaultArguments(NewFD);
7631 
7632     // If this function declares a builtin function, check the type of this
7633     // declaration against the expected type for the builtin.
7634     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
7635       ASTContext::GetBuiltinTypeError Error;
7636       LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
7637       QualType T = Context.GetBuiltinType(BuiltinID, Error);
7638       if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
7639         // The type of this function differs from the type of the builtin,
7640         // so forget about the builtin entirely.
7641         Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
7642       }
7643     }
7644 
7645     // If this function is declared as being extern "C", then check to see if
7646     // the function returns a UDT (class, struct, or union type) that is not C
7647     // compatible, and if it does, warn the user.
7648     // But, issue any diagnostic on the first declaration only.
7649     if (NewFD->isExternC() && Previous.empty()) {
7650       QualType R = NewFD->getResultType();
7651       if (R->isIncompleteType() && !R->isVoidType())
7652         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
7653             << NewFD << R;
7654       else if (!R.isPODType(Context) && !R->isVoidType() &&
7655                !R->isObjCObjectPointerType())
7656         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
7657     }
7658   }
7659   return Redeclaration;
7660 }
7661 
7662 static SourceRange getResultSourceRange(const FunctionDecl *FD) {
7663   const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
7664   if (!TSI)
7665     return SourceRange();
7666 
7667   TypeLoc TL = TSI->getTypeLoc();
7668   FunctionTypeLoc FunctionTL = TL.getAs<FunctionTypeLoc>();
7669   if (!FunctionTL)
7670     return SourceRange();
7671 
7672   TypeLoc ResultTL = FunctionTL.getResultLoc();
7673   if (ResultTL.getUnqualifiedLoc().getAs<BuiltinTypeLoc>())
7674     return ResultTL.getSourceRange();
7675 
7676   return SourceRange();
7677 }
7678 
7679 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
7680   // C++11 [basic.start.main]p3:  A program that declares main to be inline,
7681   //   static or constexpr is ill-formed.
7682   // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
7683   //   appear in a declaration of main.
7684   // static main is not an error under C99, but we should warn about it.
7685   // We accept _Noreturn main as an extension.
7686   if (FD->getStorageClass() == SC_Static)
7687     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
7688          ? diag::err_static_main : diag::warn_static_main)
7689       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
7690   if (FD->isInlineSpecified())
7691     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
7692       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
7693   if (DS.isNoreturnSpecified()) {
7694     SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
7695     SourceRange NoreturnRange(NoreturnLoc,
7696                               PP.getLocForEndOfToken(NoreturnLoc));
7697     Diag(NoreturnLoc, diag::ext_noreturn_main);
7698     Diag(NoreturnLoc, diag::note_main_remove_noreturn)
7699       << FixItHint::CreateRemoval(NoreturnRange);
7700   }
7701   if (FD->isConstexpr()) {
7702     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
7703       << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
7704     FD->setConstexpr(false);
7705   }
7706 
7707   if (getLangOpts().OpenCL) {
7708     Diag(FD->getLocation(), diag::err_opencl_no_main)
7709         << FD->hasAttr<OpenCLKernelAttr>();
7710     FD->setInvalidDecl();
7711     return;
7712   }
7713 
7714   QualType T = FD->getType();
7715   assert(T->isFunctionType() && "function decl is not of function type");
7716   const FunctionType* FT = T->castAs<FunctionType>();
7717 
7718   // All the standards say that main() should should return 'int'.
7719   if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
7720     // In C and C++, main magically returns 0 if you fall off the end;
7721     // set the flag which tells us that.
7722     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7723     FD->setHasImplicitReturnZero(true);
7724 
7725   // In C with GNU extensions we allow main() to have non-integer return
7726   // type, but we should warn about the extension, and we disable the
7727   // implicit-return-zero rule.
7728   } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
7729     Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
7730 
7731     SourceRange ResultRange = getResultSourceRange(FD);
7732     if (ResultRange.isValid())
7733       Diag(ResultRange.getBegin(), diag::note_main_change_return_type)
7734           << FixItHint::CreateReplacement(ResultRange, "int");
7735 
7736   // Otherwise, this is just a flat-out error.
7737   } else {
7738     SourceRange ResultRange = getResultSourceRange(FD);
7739     if (ResultRange.isValid())
7740       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
7741           << FixItHint::CreateReplacement(ResultRange, "int");
7742     else
7743       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
7744 
7745     FD->setInvalidDecl(true);
7746   }
7747 
7748   // Treat protoless main() as nullary.
7749   if (isa<FunctionNoProtoType>(FT)) return;
7750 
7751   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
7752   unsigned nparams = FTP->getNumArgs();
7753   assert(FD->getNumParams() == nparams);
7754 
7755   bool HasExtraParameters = (nparams > 3);
7756 
7757   // Darwin passes an undocumented fourth argument of type char**.  If
7758   // other platforms start sprouting these, the logic below will start
7759   // getting shifty.
7760   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
7761     HasExtraParameters = false;
7762 
7763   if (HasExtraParameters) {
7764     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
7765     FD->setInvalidDecl(true);
7766     nparams = 3;
7767   }
7768 
7769   // FIXME: a lot of the following diagnostics would be improved
7770   // if we had some location information about types.
7771 
7772   QualType CharPP =
7773     Context.getPointerType(Context.getPointerType(Context.CharTy));
7774   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
7775 
7776   for (unsigned i = 0; i < nparams; ++i) {
7777     QualType AT = FTP->getArgType(i);
7778 
7779     bool mismatch = true;
7780 
7781     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
7782       mismatch = false;
7783     else if (Expected[i] == CharPP) {
7784       // As an extension, the following forms are okay:
7785       //   char const **
7786       //   char const * const *
7787       //   char * const *
7788 
7789       QualifierCollector qs;
7790       const PointerType* PT;
7791       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
7792           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
7793           Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
7794                               Context.CharTy)) {
7795         qs.removeConst();
7796         mismatch = !qs.empty();
7797       }
7798     }
7799 
7800     if (mismatch) {
7801       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
7802       // TODO: suggest replacing given type with expected type
7803       FD->setInvalidDecl(true);
7804     }
7805   }
7806 
7807   if (nparams == 1 && !FD->isInvalidDecl()) {
7808     Diag(FD->getLocation(), diag::warn_main_one_arg);
7809   }
7810 
7811   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
7812     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD->getName();
7813     FD->setInvalidDecl();
7814   }
7815 }
7816 
7817 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
7818   QualType T = FD->getType();
7819   assert(T->isFunctionType() && "function decl is not of function type");
7820   const FunctionType *FT = T->castAs<FunctionType>();
7821 
7822   // Set an implicit return of 'zero' if the function can return some integral,
7823   // enumeration, pointer or nullptr type.
7824   if (FT->getResultType()->isIntegralOrEnumerationType() ||
7825       FT->getResultType()->isAnyPointerType() ||
7826       FT->getResultType()->isNullPtrType())
7827     // DllMain is exempt because a return value of zero means it failed.
7828     if (FD->getName() != "DllMain")
7829       FD->setHasImplicitReturnZero(true);
7830 
7831   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
7832     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD->getName();
7833     FD->setInvalidDecl();
7834   }
7835 }
7836 
7837 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
7838   // FIXME: Need strict checking.  In C89, we need to check for
7839   // any assignment, increment, decrement, function-calls, or
7840   // commas outside of a sizeof.  In C99, it's the same list,
7841   // except that the aforementioned are allowed in unevaluated
7842   // expressions.  Everything else falls under the
7843   // "may accept other forms of constant expressions" exception.
7844   // (We never end up here for C++, so the constant expression
7845   // rules there don't matter.)
7846   if (Init->isConstantInitializer(Context, false))
7847     return false;
7848   Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
7849     << Init->getSourceRange();
7850   return true;
7851 }
7852 
7853 namespace {
7854   // Visits an initialization expression to see if OrigDecl is evaluated in
7855   // its own initialization and throws a warning if it does.
7856   class SelfReferenceChecker
7857       : public EvaluatedExprVisitor<SelfReferenceChecker> {
7858     Sema &S;
7859     Decl *OrigDecl;
7860     bool isRecordType;
7861     bool isPODType;
7862     bool isReferenceType;
7863 
7864   public:
7865     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
7866 
7867     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
7868                                                     S(S), OrigDecl(OrigDecl) {
7869       isPODType = false;
7870       isRecordType = false;
7871       isReferenceType = false;
7872       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
7873         isPODType = VD->getType().isPODType(S.Context);
7874         isRecordType = VD->getType()->isRecordType();
7875         isReferenceType = VD->getType()->isReferenceType();
7876       }
7877     }
7878 
7879     // For most expressions, the cast is directly above the DeclRefExpr.
7880     // For conditional operators, the cast can be outside the conditional
7881     // operator if both expressions are DeclRefExpr's.
7882     void HandleValue(Expr *E) {
7883       if (isReferenceType)
7884         return;
7885       E = E->IgnoreParenImpCasts();
7886       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
7887         HandleDeclRefExpr(DRE);
7888         return;
7889       }
7890 
7891       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
7892         HandleValue(CO->getTrueExpr());
7893         HandleValue(CO->getFalseExpr());
7894         return;
7895       }
7896 
7897       if (isa<MemberExpr>(E)) {
7898         Expr *Base = E->IgnoreParenImpCasts();
7899         while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7900           // Check for static member variables and don't warn on them.
7901           if (!isa<FieldDecl>(ME->getMemberDecl()))
7902             return;
7903           Base = ME->getBase()->IgnoreParenImpCasts();
7904         }
7905         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
7906           HandleDeclRefExpr(DRE);
7907         return;
7908       }
7909     }
7910 
7911     // Reference types are handled here since all uses of references are
7912     // bad, not just r-value uses.
7913     void VisitDeclRefExpr(DeclRefExpr *E) {
7914       if (isReferenceType)
7915         HandleDeclRefExpr(E);
7916     }
7917 
7918     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
7919       if (E->getCastKind() == CK_LValueToRValue ||
7920           (isRecordType && E->getCastKind() == CK_NoOp))
7921         HandleValue(E->getSubExpr());
7922 
7923       Inherited::VisitImplicitCastExpr(E);
7924     }
7925 
7926     void VisitMemberExpr(MemberExpr *E) {
7927       // Don't warn on arrays since they can be treated as pointers.
7928       if (E->getType()->canDecayToPointerType()) return;
7929 
7930       // Warn when a non-static method call is followed by non-static member
7931       // field accesses, which is followed by a DeclRefExpr.
7932       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
7933       bool Warn = (MD && !MD->isStatic());
7934       Expr *Base = E->getBase()->IgnoreParenImpCasts();
7935       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7936         if (!isa<FieldDecl>(ME->getMemberDecl()))
7937           Warn = false;
7938         Base = ME->getBase()->IgnoreParenImpCasts();
7939       }
7940 
7941       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
7942         if (Warn)
7943           HandleDeclRefExpr(DRE);
7944         return;
7945       }
7946 
7947       // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
7948       // Visit that expression.
7949       Visit(Base);
7950     }
7951 
7952     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
7953       if (E->getNumArgs() > 0)
7954         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getArg(0)))
7955           HandleDeclRefExpr(DRE);
7956 
7957       Inherited::VisitCXXOperatorCallExpr(E);
7958     }
7959 
7960     void VisitUnaryOperator(UnaryOperator *E) {
7961       // For POD record types, addresses of its own members are well-defined.
7962       if (E->getOpcode() == UO_AddrOf && isRecordType &&
7963           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
7964         if (!isPODType)
7965           HandleValue(E->getSubExpr());
7966         return;
7967       }
7968       Inherited::VisitUnaryOperator(E);
7969     }
7970 
7971     void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
7972 
7973     void HandleDeclRefExpr(DeclRefExpr *DRE) {
7974       Decl* ReferenceDecl = DRE->getDecl();
7975       if (OrigDecl != ReferenceDecl) return;
7976       unsigned diag;
7977       if (isReferenceType) {
7978         diag = diag::warn_uninit_self_reference_in_reference_init;
7979       } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
7980         diag = diag::warn_static_self_reference_in_init;
7981       } else {
7982         diag = diag::warn_uninit_self_reference_in_init;
7983       }
7984 
7985       S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
7986                             S.PDiag(diag)
7987                               << DRE->getNameInfo().getName()
7988                               << OrigDecl->getLocation()
7989                               << DRE->getSourceRange());
7990     }
7991   };
7992 
7993   /// CheckSelfReference - Warns if OrigDecl is used in expression E.
7994   static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
7995                                  bool DirectInit) {
7996     // Parameters arguments are occassionially constructed with itself,
7997     // for instance, in recursive functions.  Skip them.
7998     if (isa<ParmVarDecl>(OrigDecl))
7999       return;
8000 
8001     E = E->IgnoreParens();
8002 
8003     // Skip checking T a = a where T is not a record or reference type.
8004     // Doing so is a way to silence uninitialized warnings.
8005     if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
8006       if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
8007         if (ICE->getCastKind() == CK_LValueToRValue)
8008           if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
8009             if (DRE->getDecl() == OrigDecl)
8010               return;
8011 
8012     SelfReferenceChecker(S, OrigDecl).Visit(E);
8013   }
8014 }
8015 
8016 /// AddInitializerToDecl - Adds the initializer Init to the
8017 /// declaration dcl. If DirectInit is true, this is C++ direct
8018 /// initialization rather than copy initialization.
8019 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
8020                                 bool DirectInit, bool TypeMayContainAuto) {
8021   // If there is no declaration, there was an error parsing it.  Just ignore
8022   // the initializer.
8023   if (RealDecl == 0 || RealDecl->isInvalidDecl())
8024     return;
8025 
8026   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
8027     // With declarators parsed the way they are, the parser cannot
8028     // distinguish between a normal initializer and a pure-specifier.
8029     // Thus this grotesque test.
8030     IntegerLiteral *IL;
8031     if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
8032         Context.getCanonicalType(IL->getType()) == Context.IntTy)
8033       CheckPureMethod(Method, Init->getSourceRange());
8034     else {
8035       Diag(Method->getLocation(), diag::err_member_function_initialization)
8036         << Method->getDeclName() << Init->getSourceRange();
8037       Method->setInvalidDecl();
8038     }
8039     return;
8040   }
8041 
8042   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
8043   if (!VDecl) {
8044     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
8045     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
8046     RealDecl->setInvalidDecl();
8047     return;
8048   }
8049   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
8050 
8051   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
8052   if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
8053     Expr *DeduceInit = Init;
8054     // Initializer could be a C++ direct-initializer. Deduction only works if it
8055     // contains exactly one expression.
8056     if (CXXDirectInit) {
8057       if (CXXDirectInit->getNumExprs() == 0) {
8058         // It isn't possible to write this directly, but it is possible to
8059         // end up in this situation with "auto x(some_pack...);"
8060         Diag(CXXDirectInit->getLocStart(),
8061              VDecl->isInitCapture() ? diag::err_init_capture_no_expression
8062                                     : diag::err_auto_var_init_no_expression)
8063           << VDecl->getDeclName() << VDecl->getType()
8064           << VDecl->getSourceRange();
8065         RealDecl->setInvalidDecl();
8066         return;
8067       } else if (CXXDirectInit->getNumExprs() > 1) {
8068         Diag(CXXDirectInit->getExpr(1)->getLocStart(),
8069              VDecl->isInitCapture()
8070                  ? diag::err_init_capture_multiple_expressions
8071                  : diag::err_auto_var_init_multiple_expressions)
8072           << VDecl->getDeclName() << VDecl->getType()
8073           << VDecl->getSourceRange();
8074         RealDecl->setInvalidDecl();
8075         return;
8076       } else {
8077         DeduceInit = CXXDirectInit->getExpr(0);
8078       }
8079     }
8080 
8081     // Expressions default to 'id' when we're in a debugger.
8082     bool DefaultedToAuto = false;
8083     if (getLangOpts().DebuggerCastResultToId &&
8084         Init->getType() == Context.UnknownAnyTy) {
8085       ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
8086       if (Result.isInvalid()) {
8087         VDecl->setInvalidDecl();
8088         return;
8089       }
8090       Init = Result.take();
8091       DefaultedToAuto = true;
8092     }
8093 
8094     QualType DeducedType;
8095     if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
8096             DAR_Failed)
8097       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
8098     if (DeducedType.isNull()) {
8099       RealDecl->setInvalidDecl();
8100       return;
8101     }
8102     VDecl->setType(DeducedType);
8103     assert(VDecl->isLinkageValid());
8104 
8105     // In ARC, infer lifetime.
8106     if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
8107       VDecl->setInvalidDecl();
8108 
8109     // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
8110     // 'id' instead of a specific object type prevents most of our usual checks.
8111     // We only want to warn outside of template instantiations, though:
8112     // inside a template, the 'id' could have come from a parameter.
8113     if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
8114         DeducedType->isObjCIdType()) {
8115       SourceLocation Loc =
8116           VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
8117       Diag(Loc, diag::warn_auto_var_is_id)
8118         << VDecl->getDeclName() << DeduceInit->getSourceRange();
8119     }
8120 
8121     // If this is a redeclaration, check that the type we just deduced matches
8122     // the previously declared type.
8123     if (VarDecl *Old = VDecl->getPreviousDecl()) {
8124       // We never need to merge the type, because we cannot form an incomplete
8125       // array of auto, nor deduce such a type.
8126       MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/false);
8127     }
8128 
8129     // Check the deduced type is valid for a variable declaration.
8130     CheckVariableDeclarationType(VDecl);
8131     if (VDecl->isInvalidDecl())
8132       return;
8133   }
8134 
8135   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
8136     // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
8137     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
8138     VDecl->setInvalidDecl();
8139     return;
8140   }
8141 
8142   if (!VDecl->getType()->isDependentType()) {
8143     // A definition must end up with a complete type, which means it must be
8144     // complete with the restriction that an array type might be completed by
8145     // the initializer; note that later code assumes this restriction.
8146     QualType BaseDeclType = VDecl->getType();
8147     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
8148       BaseDeclType = Array->getElementType();
8149     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
8150                             diag::err_typecheck_decl_incomplete_type)) {
8151       RealDecl->setInvalidDecl();
8152       return;
8153     }
8154 
8155     // The variable can not have an abstract class type.
8156     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
8157                                diag::err_abstract_type_in_decl,
8158                                AbstractVariableType))
8159       VDecl->setInvalidDecl();
8160   }
8161 
8162   const VarDecl *Def;
8163   if ((Def = VDecl->getDefinition()) && Def != VDecl) {
8164     Diag(VDecl->getLocation(), diag::err_redefinition)
8165       << VDecl->getDeclName();
8166     Diag(Def->getLocation(), diag::note_previous_definition);
8167     VDecl->setInvalidDecl();
8168     return;
8169   }
8170 
8171   const VarDecl* PrevInit = 0;
8172   if (getLangOpts().CPlusPlus) {
8173     // C++ [class.static.data]p4
8174     //   If a static data member is of const integral or const
8175     //   enumeration type, its declaration in the class definition can
8176     //   specify a constant-initializer which shall be an integral
8177     //   constant expression (5.19). In that case, the member can appear
8178     //   in integral constant expressions. The member shall still be
8179     //   defined in a namespace scope if it is used in the program and the
8180     //   namespace scope definition shall not contain an initializer.
8181     //
8182     // We already performed a redefinition check above, but for static
8183     // data members we also need to check whether there was an in-class
8184     // declaration with an initializer.
8185     if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
8186       Diag(VDecl->getLocation(), diag::err_redefinition)
8187         << VDecl->getDeclName();
8188       Diag(PrevInit->getLocation(), diag::note_previous_definition);
8189       return;
8190     }
8191 
8192     if (VDecl->hasLocalStorage())
8193       getCurFunction()->setHasBranchProtectedScope();
8194 
8195     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
8196       VDecl->setInvalidDecl();
8197       return;
8198     }
8199   }
8200 
8201   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
8202   // a kernel function cannot be initialized."
8203   if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
8204     Diag(VDecl->getLocation(), diag::err_local_cant_init);
8205     VDecl->setInvalidDecl();
8206     return;
8207   }
8208 
8209   // Get the decls type and save a reference for later, since
8210   // CheckInitializerTypes may change it.
8211   QualType DclT = VDecl->getType(), SavT = DclT;
8212 
8213   // Expressions default to 'id' when we're in a debugger
8214   // and we are assigning it to a variable of Objective-C pointer type.
8215   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
8216       Init->getType() == Context.UnknownAnyTy) {
8217     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
8218     if (Result.isInvalid()) {
8219       VDecl->setInvalidDecl();
8220       return;
8221     }
8222     Init = Result.take();
8223   }
8224 
8225   // Perform the initialization.
8226   if (!VDecl->isInvalidDecl()) {
8227     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
8228     InitializationKind Kind
8229       = DirectInit ?
8230           CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
8231                                                            Init->getLocStart(),
8232                                                            Init->getLocEnd())
8233                         : InitializationKind::CreateDirectList(
8234                                                           VDecl->getLocation())
8235                    : InitializationKind::CreateCopy(VDecl->getLocation(),
8236                                                     Init->getLocStart());
8237 
8238     MultiExprArg Args = Init;
8239     if (CXXDirectInit)
8240       Args = MultiExprArg(CXXDirectInit->getExprs(),
8241                           CXXDirectInit->getNumExprs());
8242 
8243     InitializationSequence InitSeq(*this, Entity, Kind, Args);
8244     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
8245     if (Result.isInvalid()) {
8246       VDecl->setInvalidDecl();
8247       return;
8248     }
8249 
8250     Init = Result.takeAs<Expr>();
8251   }
8252 
8253   // Check for self-references within variable initializers.
8254   // Variables declared within a function/method body (except for references)
8255   // are handled by a dataflow analysis.
8256   if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
8257       VDecl->getType()->isReferenceType()) {
8258     CheckSelfReference(*this, RealDecl, Init, DirectInit);
8259   }
8260 
8261   // If the type changed, it means we had an incomplete type that was
8262   // completed by the initializer. For example:
8263   //   int ary[] = { 1, 3, 5 };
8264   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
8265   if (!VDecl->isInvalidDecl() && (DclT != SavT))
8266     VDecl->setType(DclT);
8267 
8268   if (!VDecl->isInvalidDecl()) {
8269     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
8270 
8271     if (VDecl->hasAttr<BlocksAttr>())
8272       checkRetainCycles(VDecl, Init);
8273 
8274     // It is safe to assign a weak reference into a strong variable.
8275     // Although this code can still have problems:
8276     //   id x = self.weakProp;
8277     //   id y = self.weakProp;
8278     // we do not warn to warn spuriously when 'x' and 'y' are on separate
8279     // paths through the function. This should be revisited if
8280     // -Wrepeated-use-of-weak is made flow-sensitive.
8281     if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
8282       DiagnosticsEngine::Level Level =
8283         Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
8284                                  Init->getLocStart());
8285       if (Level != DiagnosticsEngine::Ignored)
8286         getCurFunction()->markSafeWeakUse(Init);
8287     }
8288   }
8289 
8290   // The initialization is usually a full-expression.
8291   //
8292   // FIXME: If this is a braced initialization of an aggregate, it is not
8293   // an expression, and each individual field initializer is a separate
8294   // full-expression. For instance, in:
8295   //
8296   //   struct Temp { ~Temp(); };
8297   //   struct S { S(Temp); };
8298   //   struct T { S a, b; } t = { Temp(), Temp() }
8299   //
8300   // we should destroy the first Temp before constructing the second.
8301   ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
8302                                           false,
8303                                           VDecl->isConstexpr());
8304   if (Result.isInvalid()) {
8305     VDecl->setInvalidDecl();
8306     return;
8307   }
8308   Init = Result.take();
8309 
8310   // Attach the initializer to the decl.
8311   VDecl->setInit(Init);
8312 
8313   if (VDecl->isLocalVarDecl()) {
8314     // C99 6.7.8p4: All the expressions in an initializer for an object that has
8315     // static storage duration shall be constant expressions or string literals.
8316     // C++ does not have this restriction.
8317     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) {
8318       if (VDecl->getStorageClass() == SC_Static)
8319         CheckForConstantInitializer(Init, DclT);
8320       // C89 is stricter than C99 for non-static aggregate types.
8321       // C89 6.5.7p3: All the expressions [...] in an initializer list
8322       // for an object that has aggregate or union type shall be
8323       // constant expressions.
8324       else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
8325                isa<InitListExpr>(Init) &&
8326                !Init->isConstantInitializer(Context, false))
8327         Diag(Init->getExprLoc(),
8328              diag::ext_aggregate_init_not_constant)
8329           << Init->getSourceRange();
8330     }
8331   } else if (VDecl->isStaticDataMember() &&
8332              VDecl->getLexicalDeclContext()->isRecord()) {
8333     // This is an in-class initialization for a static data member, e.g.,
8334     //
8335     // struct S {
8336     //   static const int value = 17;
8337     // };
8338 
8339     // C++ [class.mem]p4:
8340     //   A member-declarator can contain a constant-initializer only
8341     //   if it declares a static member (9.4) of const integral or
8342     //   const enumeration type, see 9.4.2.
8343     //
8344     // C++11 [class.static.data]p3:
8345     //   If a non-volatile const static data member is of integral or
8346     //   enumeration type, its declaration in the class definition can
8347     //   specify a brace-or-equal-initializer in which every initalizer-clause
8348     //   that is an assignment-expression is a constant expression. A static
8349     //   data member of literal type can be declared in the class definition
8350     //   with the constexpr specifier; if so, its declaration shall specify a
8351     //   brace-or-equal-initializer in which every initializer-clause that is
8352     //   an assignment-expression is a constant expression.
8353 
8354     // Do nothing on dependent types.
8355     if (DclT->isDependentType()) {
8356 
8357     // Allow any 'static constexpr' members, whether or not they are of literal
8358     // type. We separately check that every constexpr variable is of literal
8359     // type.
8360     } else if (VDecl->isConstexpr()) {
8361 
8362     // Require constness.
8363     } else if (!DclT.isConstQualified()) {
8364       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
8365         << Init->getSourceRange();
8366       VDecl->setInvalidDecl();
8367 
8368     // We allow integer constant expressions in all cases.
8369     } else if (DclT->isIntegralOrEnumerationType()) {
8370       // Check whether the expression is a constant expression.
8371       SourceLocation Loc;
8372       if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
8373         // In C++11, a non-constexpr const static data member with an
8374         // in-class initializer cannot be volatile.
8375         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
8376       else if (Init->isValueDependent())
8377         ; // Nothing to check.
8378       else if (Init->isIntegerConstantExpr(Context, &Loc))
8379         ; // Ok, it's an ICE!
8380       else if (Init->isEvaluatable(Context)) {
8381         // If we can constant fold the initializer through heroics, accept it,
8382         // but report this as a use of an extension for -pedantic.
8383         Diag(Loc, diag::ext_in_class_initializer_non_constant)
8384           << Init->getSourceRange();
8385       } else {
8386         // Otherwise, this is some crazy unknown case.  Report the issue at the
8387         // location provided by the isIntegerConstantExpr failed check.
8388         Diag(Loc, diag::err_in_class_initializer_non_constant)
8389           << Init->getSourceRange();
8390         VDecl->setInvalidDecl();
8391       }
8392 
8393     // We allow foldable floating-point constants as an extension.
8394     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
8395       // In C++98, this is a GNU extension. In C++11, it is not, but we support
8396       // it anyway and provide a fixit to add the 'constexpr'.
8397       if (getLangOpts().CPlusPlus11) {
8398         Diag(VDecl->getLocation(),
8399              diag::ext_in_class_initializer_float_type_cxx11)
8400             << DclT << Init->getSourceRange();
8401         Diag(VDecl->getLocStart(),
8402              diag::note_in_class_initializer_float_type_cxx11)
8403             << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
8404       } else {
8405         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
8406           << DclT << Init->getSourceRange();
8407 
8408         if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
8409           Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
8410             << Init->getSourceRange();
8411           VDecl->setInvalidDecl();
8412         }
8413       }
8414 
8415     // Suggest adding 'constexpr' in C++11 for literal types.
8416     } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
8417       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
8418         << DclT << Init->getSourceRange()
8419         << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
8420       VDecl->setConstexpr(true);
8421 
8422     } else {
8423       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
8424         << DclT << Init->getSourceRange();
8425       VDecl->setInvalidDecl();
8426     }
8427   } else if (VDecl->isFileVarDecl()) {
8428     if (VDecl->getStorageClass() == SC_Extern &&
8429         (!getLangOpts().CPlusPlus ||
8430          !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
8431            VDecl->isExternC())) &&
8432         !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
8433       Diag(VDecl->getLocation(), diag::warn_extern_init);
8434 
8435     // C99 6.7.8p4. All file scoped initializers need to be constant.
8436     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
8437       CheckForConstantInitializer(Init, DclT);
8438     else if (VDecl->getTLSKind() == VarDecl::TLS_Static &&
8439              !VDecl->isInvalidDecl() && !DclT->isDependentType() &&
8440              !Init->isValueDependent() && !VDecl->isConstexpr() &&
8441              !Init->isConstantInitializer(
8442                  Context, VDecl->getType()->isReferenceType())) {
8443       // GNU C++98 edits for __thread, [basic.start.init]p4:
8444       //   An object of thread storage duration shall not require dynamic
8445       //   initialization.
8446       // FIXME: Need strict checking here.
8447       Diag(VDecl->getLocation(), diag::err_thread_dynamic_init);
8448       if (getLangOpts().CPlusPlus11)
8449         Diag(VDecl->getLocation(), diag::note_use_thread_local);
8450     }
8451   }
8452 
8453   // We will represent direct-initialization similarly to copy-initialization:
8454   //    int x(1);  -as-> int x = 1;
8455   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
8456   //
8457   // Clients that want to distinguish between the two forms, can check for
8458   // direct initializer using VarDecl::getInitStyle().
8459   // A major benefit is that clients that don't particularly care about which
8460   // exactly form was it (like the CodeGen) can handle both cases without
8461   // special case code.
8462 
8463   // C++ 8.5p11:
8464   // The form of initialization (using parentheses or '=') is generally
8465   // insignificant, but does matter when the entity being initialized has a
8466   // class type.
8467   if (CXXDirectInit) {
8468     assert(DirectInit && "Call-style initializer must be direct init.");
8469     VDecl->setInitStyle(VarDecl::CallInit);
8470   } else if (DirectInit) {
8471     // This must be list-initialization. No other way is direct-initialization.
8472     VDecl->setInitStyle(VarDecl::ListInit);
8473   }
8474 
8475   CheckCompleteVariableDeclaration(VDecl);
8476 }
8477 
8478 /// ActOnInitializerError - Given that there was an error parsing an
8479 /// initializer for the given declaration, try to return to some form
8480 /// of sanity.
8481 void Sema::ActOnInitializerError(Decl *D) {
8482   // Our main concern here is re-establishing invariants like "a
8483   // variable's type is either dependent or complete".
8484   if (!D || D->isInvalidDecl()) return;
8485 
8486   VarDecl *VD = dyn_cast<VarDecl>(D);
8487   if (!VD) return;
8488 
8489   // Auto types are meaningless if we can't make sense of the initializer.
8490   if (ParsingInitForAutoVars.count(D)) {
8491     D->setInvalidDecl();
8492     return;
8493   }
8494 
8495   QualType Ty = VD->getType();
8496   if (Ty->isDependentType()) return;
8497 
8498   // Require a complete type.
8499   if (RequireCompleteType(VD->getLocation(),
8500                           Context.getBaseElementType(Ty),
8501                           diag::err_typecheck_decl_incomplete_type)) {
8502     VD->setInvalidDecl();
8503     return;
8504   }
8505 
8506   // Require an abstract type.
8507   if (RequireNonAbstractType(VD->getLocation(), Ty,
8508                              diag::err_abstract_type_in_decl,
8509                              AbstractVariableType)) {
8510     VD->setInvalidDecl();
8511     return;
8512   }
8513 
8514   // Don't bother complaining about constructors or destructors,
8515   // though.
8516 }
8517 
8518 void Sema::ActOnUninitializedDecl(Decl *RealDecl,
8519                                   bool TypeMayContainAuto) {
8520   // If there is no declaration, there was an error parsing it. Just ignore it.
8521   if (RealDecl == 0)
8522     return;
8523 
8524   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
8525     QualType Type = Var->getType();
8526 
8527     // C++11 [dcl.spec.auto]p3
8528     if (TypeMayContainAuto && Type->getContainedAutoType()) {
8529       Diag(Var->getLocation(), diag::err_auto_var_requires_init)
8530         << Var->getDeclName() << Type;
8531       Var->setInvalidDecl();
8532       return;
8533     }
8534 
8535     // C++11 [class.static.data]p3: A static data member can be declared with
8536     // the constexpr specifier; if so, its declaration shall specify
8537     // a brace-or-equal-initializer.
8538     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
8539     // the definition of a variable [...] or the declaration of a static data
8540     // member.
8541     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
8542       if (Var->isStaticDataMember())
8543         Diag(Var->getLocation(),
8544              diag::err_constexpr_static_mem_var_requires_init)
8545           << Var->getDeclName();
8546       else
8547         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
8548       Var->setInvalidDecl();
8549       return;
8550     }
8551 
8552     switch (Var->isThisDeclarationADefinition()) {
8553     case VarDecl::Definition:
8554       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
8555         break;
8556 
8557       // We have an out-of-line definition of a static data member
8558       // that has an in-class initializer, so we type-check this like
8559       // a declaration.
8560       //
8561       // Fall through
8562 
8563     case VarDecl::DeclarationOnly:
8564       // It's only a declaration.
8565 
8566       // Block scope. C99 6.7p7: If an identifier for an object is
8567       // declared with no linkage (C99 6.2.2p6), the type for the
8568       // object shall be complete.
8569       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
8570           !Var->hasLinkage() && !Var->isInvalidDecl() &&
8571           RequireCompleteType(Var->getLocation(), Type,
8572                               diag::err_typecheck_decl_incomplete_type))
8573         Var->setInvalidDecl();
8574 
8575       // Make sure that the type is not abstract.
8576       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
8577           RequireNonAbstractType(Var->getLocation(), Type,
8578                                  diag::err_abstract_type_in_decl,
8579                                  AbstractVariableType))
8580         Var->setInvalidDecl();
8581       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
8582           Var->getStorageClass() == SC_PrivateExtern) {
8583         Diag(Var->getLocation(), diag::warn_private_extern);
8584         Diag(Var->getLocation(), diag::note_private_extern);
8585       }
8586 
8587       return;
8588 
8589     case VarDecl::TentativeDefinition:
8590       // File scope. C99 6.9.2p2: A declaration of an identifier for an
8591       // object that has file scope without an initializer, and without a
8592       // storage-class specifier or with the storage-class specifier "static",
8593       // constitutes a tentative definition. Note: A tentative definition with
8594       // external linkage is valid (C99 6.2.2p5).
8595       if (!Var->isInvalidDecl()) {
8596         if (const IncompleteArrayType *ArrayT
8597                                     = Context.getAsIncompleteArrayType(Type)) {
8598           if (RequireCompleteType(Var->getLocation(),
8599                                   ArrayT->getElementType(),
8600                                   diag::err_illegal_decl_array_incomplete_type))
8601             Var->setInvalidDecl();
8602         } else if (Var->getStorageClass() == SC_Static) {
8603           // C99 6.9.2p3: If the declaration of an identifier for an object is
8604           // a tentative definition and has internal linkage (C99 6.2.2p3), the
8605           // declared type shall not be an incomplete type.
8606           // NOTE: code such as the following
8607           //     static struct s;
8608           //     struct s { int a; };
8609           // is accepted by gcc. Hence here we issue a warning instead of
8610           // an error and we do not invalidate the static declaration.
8611           // NOTE: to avoid multiple warnings, only check the first declaration.
8612           if (Var->isFirstDecl())
8613             RequireCompleteType(Var->getLocation(), Type,
8614                                 diag::ext_typecheck_decl_incomplete_type);
8615         }
8616       }
8617 
8618       // Record the tentative definition; we're done.
8619       if (!Var->isInvalidDecl())
8620         TentativeDefinitions.push_back(Var);
8621       return;
8622     }
8623 
8624     // Provide a specific diagnostic for uninitialized variable
8625     // definitions with incomplete array type.
8626     if (Type->isIncompleteArrayType()) {
8627       Diag(Var->getLocation(),
8628            diag::err_typecheck_incomplete_array_needs_initializer);
8629       Var->setInvalidDecl();
8630       return;
8631     }
8632 
8633     // Provide a specific diagnostic for uninitialized variable
8634     // definitions with reference type.
8635     if (Type->isReferenceType()) {
8636       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
8637         << Var->getDeclName()
8638         << SourceRange(Var->getLocation(), Var->getLocation());
8639       Var->setInvalidDecl();
8640       return;
8641     }
8642 
8643     // Do not attempt to type-check the default initializer for a
8644     // variable with dependent type.
8645     if (Type->isDependentType())
8646       return;
8647 
8648     if (Var->isInvalidDecl())
8649       return;
8650 
8651     if (RequireCompleteType(Var->getLocation(),
8652                             Context.getBaseElementType(Type),
8653                             diag::err_typecheck_decl_incomplete_type)) {
8654       Var->setInvalidDecl();
8655       return;
8656     }
8657 
8658     // The variable can not have an abstract class type.
8659     if (RequireNonAbstractType(Var->getLocation(), Type,
8660                                diag::err_abstract_type_in_decl,
8661                                AbstractVariableType)) {
8662       Var->setInvalidDecl();
8663       return;
8664     }
8665 
8666     // Check for jumps past the implicit initializer.  C++0x
8667     // clarifies that this applies to a "variable with automatic
8668     // storage duration", not a "local variable".
8669     // C++11 [stmt.dcl]p3
8670     //   A program that jumps from a point where a variable with automatic
8671     //   storage duration is not in scope to a point where it is in scope is
8672     //   ill-formed unless the variable has scalar type, class type with a
8673     //   trivial default constructor and a trivial destructor, a cv-qualified
8674     //   version of one of these types, or an array of one of the preceding
8675     //   types and is declared without an initializer.
8676     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
8677       if (const RecordType *Record
8678             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
8679         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
8680         // Mark the function for further checking even if the looser rules of
8681         // C++11 do not require such checks, so that we can diagnose
8682         // incompatibilities with C++98.
8683         if (!CXXRecord->isPOD())
8684           getCurFunction()->setHasBranchProtectedScope();
8685       }
8686     }
8687 
8688     // C++03 [dcl.init]p9:
8689     //   If no initializer is specified for an object, and the
8690     //   object is of (possibly cv-qualified) non-POD class type (or
8691     //   array thereof), the object shall be default-initialized; if
8692     //   the object is of const-qualified type, the underlying class
8693     //   type shall have a user-declared default
8694     //   constructor. Otherwise, if no initializer is specified for
8695     //   a non- static object, the object and its subobjects, if
8696     //   any, have an indeterminate initial value); if the object
8697     //   or any of its subobjects are of const-qualified type, the
8698     //   program is ill-formed.
8699     // C++0x [dcl.init]p11:
8700     //   If no initializer is specified for an object, the object is
8701     //   default-initialized; [...].
8702     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
8703     InitializationKind Kind
8704       = InitializationKind::CreateDefault(Var->getLocation());
8705 
8706     InitializationSequence InitSeq(*this, Entity, Kind, None);
8707     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
8708     if (Init.isInvalid())
8709       Var->setInvalidDecl();
8710     else if (Init.get()) {
8711       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
8712       // This is important for template substitution.
8713       Var->setInitStyle(VarDecl::CallInit);
8714     }
8715 
8716     CheckCompleteVariableDeclaration(Var);
8717   }
8718 }
8719 
8720 void Sema::ActOnCXXForRangeDecl(Decl *D) {
8721   VarDecl *VD = dyn_cast<VarDecl>(D);
8722   if (!VD) {
8723     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
8724     D->setInvalidDecl();
8725     return;
8726   }
8727 
8728   VD->setCXXForRangeDecl(true);
8729 
8730   // for-range-declaration cannot be given a storage class specifier.
8731   int Error = -1;
8732   switch (VD->getStorageClass()) {
8733   case SC_None:
8734     break;
8735   case SC_Extern:
8736     Error = 0;
8737     break;
8738   case SC_Static:
8739     Error = 1;
8740     break;
8741   case SC_PrivateExtern:
8742     Error = 2;
8743     break;
8744   case SC_Auto:
8745     Error = 3;
8746     break;
8747   case SC_Register:
8748     Error = 4;
8749     break;
8750   case SC_OpenCLWorkGroupLocal:
8751     llvm_unreachable("Unexpected storage class");
8752   }
8753   if (VD->isConstexpr())
8754     Error = 5;
8755   if (Error != -1) {
8756     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
8757       << VD->getDeclName() << Error;
8758     D->setInvalidDecl();
8759   }
8760 }
8761 
8762 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
8763   if (var->isInvalidDecl()) return;
8764 
8765   // In ARC, don't allow jumps past the implicit initialization of a
8766   // local retaining variable.
8767   if (getLangOpts().ObjCAutoRefCount &&
8768       var->hasLocalStorage()) {
8769     switch (var->getType().getObjCLifetime()) {
8770     case Qualifiers::OCL_None:
8771     case Qualifiers::OCL_ExplicitNone:
8772     case Qualifiers::OCL_Autoreleasing:
8773       break;
8774 
8775     case Qualifiers::OCL_Weak:
8776     case Qualifiers::OCL_Strong:
8777       getCurFunction()->setHasBranchProtectedScope();
8778       break;
8779     }
8780   }
8781 
8782   if (var->isThisDeclarationADefinition() &&
8783       var->isExternallyVisible() && var->hasLinkage() &&
8784       getDiagnostics().getDiagnosticLevel(
8785                        diag::warn_missing_variable_declarations,
8786                        var->getLocation())) {
8787     // Find a previous declaration that's not a definition.
8788     VarDecl *prev = var->getPreviousDecl();
8789     while (prev && prev->isThisDeclarationADefinition())
8790       prev = prev->getPreviousDecl();
8791 
8792     if (!prev)
8793       Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
8794   }
8795 
8796   if (var->getTLSKind() == VarDecl::TLS_Static &&
8797       var->getType().isDestructedType()) {
8798     // GNU C++98 edits for __thread, [basic.start.term]p3:
8799     //   The type of an object with thread storage duration shall not
8800     //   have a non-trivial destructor.
8801     Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
8802     if (getLangOpts().CPlusPlus11)
8803       Diag(var->getLocation(), diag::note_use_thread_local);
8804   }
8805 
8806   // All the following checks are C++ only.
8807   if (!getLangOpts().CPlusPlus) return;
8808 
8809   QualType type = var->getType();
8810   if (type->isDependentType()) return;
8811 
8812   // __block variables might require us to capture a copy-initializer.
8813   if (var->hasAttr<BlocksAttr>()) {
8814     // It's currently invalid to ever have a __block variable with an
8815     // array type; should we diagnose that here?
8816 
8817     // Regardless, we don't want to ignore array nesting when
8818     // constructing this copy.
8819     if (type->isStructureOrClassType()) {
8820       EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
8821       SourceLocation poi = var->getLocation();
8822       Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
8823       ExprResult result
8824         = PerformMoveOrCopyInitialization(
8825             InitializedEntity::InitializeBlock(poi, type, false),
8826             var, var->getType(), varRef, /*AllowNRVO=*/true);
8827       if (!result.isInvalid()) {
8828         result = MaybeCreateExprWithCleanups(result);
8829         Expr *init = result.takeAs<Expr>();
8830         Context.setBlockVarCopyInits(var, init);
8831       }
8832     }
8833   }
8834 
8835   Expr *Init = var->getInit();
8836   bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
8837   QualType baseType = Context.getBaseElementType(type);
8838 
8839   if (!var->getDeclContext()->isDependentContext() &&
8840       Init && !Init->isValueDependent()) {
8841     if (IsGlobal && !var->isConstexpr() &&
8842         getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
8843                                             var->getLocation())
8844           != DiagnosticsEngine::Ignored) {
8845       // Warn about globals which don't have a constant initializer.  Don't
8846       // warn about globals with a non-trivial destructor because we already
8847       // warned about them.
8848       CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
8849       if (!(RD && !RD->hasTrivialDestructor()) &&
8850           !Init->isConstantInitializer(Context, baseType->isReferenceType()))
8851         Diag(var->getLocation(), diag::warn_global_constructor)
8852           << Init->getSourceRange();
8853     }
8854 
8855     if (var->isConstexpr()) {
8856       SmallVector<PartialDiagnosticAt, 8> Notes;
8857       if (!var->evaluateValue(Notes) || !var->isInitICE()) {
8858         SourceLocation DiagLoc = var->getLocation();
8859         // If the note doesn't add any useful information other than a source
8860         // location, fold it into the primary diagnostic.
8861         if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
8862               diag::note_invalid_subexpr_in_const_expr) {
8863           DiagLoc = Notes[0].first;
8864           Notes.clear();
8865         }
8866         Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
8867           << var << Init->getSourceRange();
8868         for (unsigned I = 0, N = Notes.size(); I != N; ++I)
8869           Diag(Notes[I].first, Notes[I].second);
8870       }
8871     } else if (var->isUsableInConstantExpressions(Context)) {
8872       // Check whether the initializer of a const variable of integral or
8873       // enumeration type is an ICE now, since we can't tell whether it was
8874       // initialized by a constant expression if we check later.
8875       var->checkInitIsICE();
8876     }
8877   }
8878 
8879   // Require the destructor.
8880   if (const RecordType *recordType = baseType->getAs<RecordType>())
8881     FinalizeVarWithDestructor(var, recordType);
8882 }
8883 
8884 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
8885 /// any semantic actions necessary after any initializer has been attached.
8886 void
8887 Sema::FinalizeDeclaration(Decl *ThisDecl) {
8888   // Note that we are no longer parsing the initializer for this declaration.
8889   ParsingInitForAutoVars.erase(ThisDecl);
8890 
8891   VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
8892   if (!VD)
8893     return;
8894 
8895   if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
8896     if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
8897       Diag(Attr->getLocation(), diag::warn_attribute_ignored) << "used";
8898       VD->dropAttr<UsedAttr>();
8899     }
8900   }
8901 
8902   if (!VD->isInvalidDecl() &&
8903       VD->isThisDeclarationADefinition() == VarDecl::TentativeDefinition) {
8904     if (const VarDecl *Def = VD->getDefinition()) {
8905       if (Def->hasAttr<AliasAttr>()) {
8906         Diag(VD->getLocation(), diag::err_tentative_after_alias)
8907             << VD->getDeclName();
8908         Diag(Def->getLocation(), diag::note_previous_definition);
8909         VD->setInvalidDecl();
8910       }
8911     }
8912   }
8913 
8914   const DeclContext *DC = VD->getDeclContext();
8915   // If there's a #pragma GCC visibility in scope, and this isn't a class
8916   // member, set the visibility of this variable.
8917   if (!DC->isRecord() && VD->isExternallyVisible())
8918     AddPushedVisibilityAttribute(VD);
8919 
8920   if (VD->isFileVarDecl())
8921     MarkUnusedFileScopedDecl(VD);
8922 
8923   // Now we have parsed the initializer and can update the table of magic
8924   // tag values.
8925   if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
8926       !VD->getType()->isIntegralOrEnumerationType())
8927     return;
8928 
8929   for (specific_attr_iterator<TypeTagForDatatypeAttr>
8930          I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
8931          E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
8932        I != E; ++I) {
8933     const Expr *MagicValueExpr = VD->getInit();
8934     if (!MagicValueExpr) {
8935       continue;
8936     }
8937     llvm::APSInt MagicValueInt;
8938     if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
8939       Diag(I->getRange().getBegin(),
8940            diag::err_type_tag_for_datatype_not_ice)
8941         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8942       continue;
8943     }
8944     if (MagicValueInt.getActiveBits() > 64) {
8945       Diag(I->getRange().getBegin(),
8946            diag::err_type_tag_for_datatype_too_large)
8947         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8948       continue;
8949     }
8950     uint64_t MagicValue = MagicValueInt.getZExtValue();
8951     RegisterTypeTagForDatatype(I->getArgumentKind(),
8952                                MagicValue,
8953                                I->getMatchingCType(),
8954                                I->getLayoutCompatible(),
8955                                I->getMustBeNull());
8956   }
8957 }
8958 
8959 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
8960                                                    ArrayRef<Decl *> Group) {
8961   SmallVector<Decl*, 8> Decls;
8962 
8963   if (DS.isTypeSpecOwned())
8964     Decls.push_back(DS.getRepAsDecl());
8965 
8966   DeclaratorDecl *FirstDeclaratorInGroup = 0;
8967   for (unsigned i = 0, e = Group.size(); i != e; ++i)
8968     if (Decl *D = Group[i]) {
8969       if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D))
8970         if (!FirstDeclaratorInGroup)
8971           FirstDeclaratorInGroup = DD;
8972       Decls.push_back(D);
8973     }
8974 
8975   if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
8976     if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
8977       HandleTagNumbering(*this, Tag);
8978       if (!Tag->hasNameForLinkage() && !Tag->hasDeclaratorForAnonDecl())
8979         Tag->setDeclaratorForAnonDecl(FirstDeclaratorInGroup);
8980     }
8981   }
8982 
8983   return BuildDeclaratorGroup(Decls, DS.containsPlaceholderType());
8984 }
8985 
8986 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
8987 /// group, performing any necessary semantic checking.
8988 Sema::DeclGroupPtrTy
8989 Sema::BuildDeclaratorGroup(llvm::MutableArrayRef<Decl *> Group,
8990                            bool TypeMayContainAuto) {
8991   // C++0x [dcl.spec.auto]p7:
8992   //   If the type deduced for the template parameter U is not the same in each
8993   //   deduction, the program is ill-formed.
8994   // FIXME: When initializer-list support is added, a distinction is needed
8995   // between the deduced type U and the deduced type which 'auto' stands for.
8996   //   auto a = 0, b = { 1, 2, 3 };
8997   // is legal because the deduced type U is 'int' in both cases.
8998   if (TypeMayContainAuto && Group.size() > 1) {
8999     QualType Deduced;
9000     CanQualType DeducedCanon;
9001     VarDecl *DeducedDecl = 0;
9002     for (unsigned i = 0, e = Group.size(); i != e; ++i) {
9003       if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
9004         AutoType *AT = D->getType()->getContainedAutoType();
9005         // Don't reissue diagnostics when instantiating a template.
9006         if (AT && D->isInvalidDecl())
9007           break;
9008         QualType U = AT ? AT->getDeducedType() : QualType();
9009         if (!U.isNull()) {
9010           CanQualType UCanon = Context.getCanonicalType(U);
9011           if (Deduced.isNull()) {
9012             Deduced = U;
9013             DeducedCanon = UCanon;
9014             DeducedDecl = D;
9015           } else if (DeducedCanon != UCanon) {
9016             Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
9017                  diag::err_auto_different_deductions)
9018               << (AT->isDecltypeAuto() ? 1 : 0)
9019               << Deduced << DeducedDecl->getDeclName()
9020               << U << D->getDeclName()
9021               << DeducedDecl->getInit()->getSourceRange()
9022               << D->getInit()->getSourceRange();
9023             D->setInvalidDecl();
9024             break;
9025           }
9026         }
9027       }
9028     }
9029   }
9030 
9031   ActOnDocumentableDecls(Group);
9032 
9033   return DeclGroupPtrTy::make(
9034       DeclGroupRef::Create(Context, Group.data(), Group.size()));
9035 }
9036 
9037 void Sema::ActOnDocumentableDecl(Decl *D) {
9038   ActOnDocumentableDecls(D);
9039 }
9040 
9041 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
9042   // Don't parse the comment if Doxygen diagnostics are ignored.
9043   if (Group.empty() || !Group[0])
9044    return;
9045 
9046   if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
9047                                Group[0]->getLocation())
9048         == DiagnosticsEngine::Ignored)
9049     return;
9050 
9051   if (Group.size() >= 2) {
9052     // This is a decl group.  Normally it will contain only declarations
9053     // produced from declarator list.  But in case we have any definitions or
9054     // additional declaration references:
9055     //   'typedef struct S {} S;'
9056     //   'typedef struct S *S;'
9057     //   'struct S *pS;'
9058     // FinalizeDeclaratorGroup adds these as separate declarations.
9059     Decl *MaybeTagDecl = Group[0];
9060     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
9061       Group = Group.slice(1);
9062     }
9063   }
9064 
9065   // See if there are any new comments that are not attached to a decl.
9066   ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
9067   if (!Comments.empty() &&
9068       !Comments.back()->isAttached()) {
9069     // There is at least one comment that not attached to a decl.
9070     // Maybe it should be attached to one of these decls?
9071     //
9072     // Note that this way we pick up not only comments that precede the
9073     // declaration, but also comments that *follow* the declaration -- thanks to
9074     // the lookahead in the lexer: we've consumed the semicolon and looked
9075     // ahead through comments.
9076     for (unsigned i = 0, e = Group.size(); i != e; ++i)
9077       Context.getCommentForDecl(Group[i], &PP);
9078   }
9079 }
9080 
9081 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
9082 /// to introduce parameters into function prototype scope.
9083 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
9084   const DeclSpec &DS = D.getDeclSpec();
9085 
9086   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
9087 
9088   // C++03 [dcl.stc]p2 also permits 'auto'.
9089   VarDecl::StorageClass StorageClass = SC_None;
9090   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
9091     StorageClass = SC_Register;
9092   } else if (getLangOpts().CPlusPlus &&
9093              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
9094     StorageClass = SC_Auto;
9095   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
9096     Diag(DS.getStorageClassSpecLoc(),
9097          diag::err_invalid_storage_class_in_func_decl);
9098     D.getMutableDeclSpec().ClearStorageClassSpecs();
9099   }
9100 
9101   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
9102     Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
9103       << DeclSpec::getSpecifierName(TSCS);
9104   if (DS.isConstexprSpecified())
9105     Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
9106       << 0;
9107 
9108   DiagnoseFunctionSpecifiers(DS);
9109 
9110   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9111   QualType parmDeclType = TInfo->getType();
9112 
9113   if (getLangOpts().CPlusPlus) {
9114     // Check that there are no default arguments inside the type of this
9115     // parameter.
9116     CheckExtraCXXDefaultArguments(D);
9117 
9118     // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
9119     if (D.getCXXScopeSpec().isSet()) {
9120       Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
9121         << D.getCXXScopeSpec().getRange();
9122       D.getCXXScopeSpec().clear();
9123     }
9124   }
9125 
9126   // Ensure we have a valid name
9127   IdentifierInfo *II = 0;
9128   if (D.hasName()) {
9129     II = D.getIdentifier();
9130     if (!II) {
9131       Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
9132         << GetNameForDeclarator(D).getName().getAsString();
9133       D.setInvalidType(true);
9134     }
9135   }
9136 
9137   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
9138   if (II) {
9139     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
9140                    ForRedeclaration);
9141     LookupName(R, S);
9142     if (R.isSingleResult()) {
9143       NamedDecl *PrevDecl = R.getFoundDecl();
9144       if (PrevDecl->isTemplateParameter()) {
9145         // Maybe we will complain about the shadowed template parameter.
9146         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9147         // Just pretend that we didn't see the previous declaration.
9148         PrevDecl = 0;
9149       } else if (S->isDeclScope(PrevDecl)) {
9150         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
9151         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9152 
9153         // Recover by removing the name
9154         II = 0;
9155         D.SetIdentifier(0, D.getIdentifierLoc());
9156         D.setInvalidType(true);
9157       }
9158     }
9159   }
9160 
9161   // Temporarily put parameter variables in the translation unit, not
9162   // the enclosing context.  This prevents them from accidentally
9163   // looking like class members in C++.
9164   ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
9165                                     D.getLocStart(),
9166                                     D.getIdentifierLoc(), II,
9167                                     parmDeclType, TInfo,
9168                                     StorageClass);
9169 
9170   if (D.isInvalidType())
9171     New->setInvalidDecl();
9172 
9173   assert(S->isFunctionPrototypeScope());
9174   assert(S->getFunctionPrototypeDepth() >= 1);
9175   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
9176                     S->getNextFunctionPrototypeIndex());
9177 
9178   // Add the parameter declaration into this scope.
9179   S->AddDecl(New);
9180   if (II)
9181     IdResolver.AddDecl(New);
9182 
9183   ProcessDeclAttributes(S, New, D);
9184 
9185   if (D.getDeclSpec().isModulePrivateSpecified())
9186     Diag(New->getLocation(), diag::err_module_private_local)
9187       << 1 << New->getDeclName()
9188       << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
9189       << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
9190 
9191   if (New->hasAttr<BlocksAttr>()) {
9192     Diag(New->getLocation(), diag::err_block_on_nonlocal);
9193   }
9194   return New;
9195 }
9196 
9197 /// \brief Synthesizes a variable for a parameter arising from a
9198 /// typedef.
9199 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
9200                                               SourceLocation Loc,
9201                                               QualType T) {
9202   /* FIXME: setting StartLoc == Loc.
9203      Would it be worth to modify callers so as to provide proper source
9204      location for the unnamed parameters, embedding the parameter's type? */
9205   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
9206                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
9207                                            SC_None, 0);
9208   Param->setImplicit();
9209   return Param;
9210 }
9211 
9212 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
9213                                     ParmVarDecl * const *ParamEnd) {
9214   // Don't diagnose unused-parameter errors in template instantiations; we
9215   // will already have done so in the template itself.
9216   if (!ActiveTemplateInstantiations.empty())
9217     return;
9218 
9219   for (; Param != ParamEnd; ++Param) {
9220     if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
9221         !(*Param)->hasAttr<UnusedAttr>()) {
9222       Diag((*Param)->getLocation(), diag::warn_unused_parameter)
9223         << (*Param)->getDeclName();
9224     }
9225   }
9226 }
9227 
9228 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
9229                                                   ParmVarDecl * const *ParamEnd,
9230                                                   QualType ReturnTy,
9231                                                   NamedDecl *D) {
9232   if (LangOpts.NumLargeByValueCopy == 0) // No check.
9233     return;
9234 
9235   // Warn if the return value is pass-by-value and larger than the specified
9236   // threshold.
9237   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
9238     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
9239     if (Size > LangOpts.NumLargeByValueCopy)
9240       Diag(D->getLocation(), diag::warn_return_value_size)
9241           << D->getDeclName() << Size;
9242   }
9243 
9244   // Warn if any parameter is pass-by-value and larger than the specified
9245   // threshold.
9246   for (; Param != ParamEnd; ++Param) {
9247     QualType T = (*Param)->getType();
9248     if (T->isDependentType() || !T.isPODType(Context))
9249       continue;
9250     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
9251     if (Size > LangOpts.NumLargeByValueCopy)
9252       Diag((*Param)->getLocation(), diag::warn_parameter_size)
9253           << (*Param)->getDeclName() << Size;
9254   }
9255 }
9256 
9257 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
9258                                   SourceLocation NameLoc, IdentifierInfo *Name,
9259                                   QualType T, TypeSourceInfo *TSInfo,
9260                                   VarDecl::StorageClass StorageClass) {
9261   // In ARC, infer a lifetime qualifier for appropriate parameter types.
9262   if (getLangOpts().ObjCAutoRefCount &&
9263       T.getObjCLifetime() == Qualifiers::OCL_None &&
9264       T->isObjCLifetimeType()) {
9265 
9266     Qualifiers::ObjCLifetime lifetime;
9267 
9268     // Special cases for arrays:
9269     //   - if it's const, use __unsafe_unretained
9270     //   - otherwise, it's an error
9271     if (T->isArrayType()) {
9272       if (!T.isConstQualified()) {
9273         DelayedDiagnostics.add(
9274             sema::DelayedDiagnostic::makeForbiddenType(
9275             NameLoc, diag::err_arc_array_param_no_ownership, T, false));
9276       }
9277       lifetime = Qualifiers::OCL_ExplicitNone;
9278     } else {
9279       lifetime = T->getObjCARCImplicitLifetime();
9280     }
9281     T = Context.getLifetimeQualifiedType(T, lifetime);
9282   }
9283 
9284   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
9285                                          Context.getAdjustedParameterType(T),
9286                                          TSInfo,
9287                                          StorageClass, 0);
9288 
9289   // Parameters can not be abstract class types.
9290   // For record types, this is done by the AbstractClassUsageDiagnoser once
9291   // the class has been completely parsed.
9292   if (!CurContext->isRecord() &&
9293       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
9294                              AbstractParamType))
9295     New->setInvalidDecl();
9296 
9297   // Parameter declarators cannot be interface types. All ObjC objects are
9298   // passed by reference.
9299   if (T->isObjCObjectType()) {
9300     SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
9301     Diag(NameLoc,
9302          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
9303       << FixItHint::CreateInsertion(TypeEndLoc, "*");
9304     T = Context.getObjCObjectPointerType(T);
9305     New->setType(T);
9306   }
9307 
9308   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
9309   // duration shall not be qualified by an address-space qualifier."
9310   // Since all parameters have automatic store duration, they can not have
9311   // an address space.
9312   if (T.getAddressSpace() != 0) {
9313     Diag(NameLoc, diag::err_arg_with_address_space);
9314     New->setInvalidDecl();
9315   }
9316 
9317   return New;
9318 }
9319 
9320 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
9321                                            SourceLocation LocAfterDecls) {
9322   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
9323 
9324   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
9325   // for a K&R function.
9326   if (!FTI.hasPrototype) {
9327     for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
9328       --i;
9329       if (FTI.ArgInfo[i].Param == 0) {
9330         SmallString<256> Code;
9331         llvm::raw_svector_ostream(Code) << "  int "
9332                                         << FTI.ArgInfo[i].Ident->getName()
9333                                         << ";\n";
9334         Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
9335           << FTI.ArgInfo[i].Ident
9336           << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
9337 
9338         // Implicitly declare the argument as type 'int' for lack of a better
9339         // type.
9340         AttributeFactory attrs;
9341         DeclSpec DS(attrs);
9342         const char* PrevSpec; // unused
9343         unsigned DiagID; // unused
9344         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
9345                            PrevSpec, DiagID);
9346         // Use the identifier location for the type source range.
9347         DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
9348         DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
9349         Declarator ParamD(DS, Declarator::KNRTypeListContext);
9350         ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
9351         FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
9352       }
9353     }
9354   }
9355 }
9356 
9357 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
9358   assert(getCurFunctionDecl() == 0 && "Function parsing confused");
9359   assert(D.isFunctionDeclarator() && "Not a function declarator!");
9360   Scope *ParentScope = FnBodyScope->getParent();
9361 
9362   D.setFunctionDefinitionKind(FDK_Definition);
9363   Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
9364   return ActOnStartOfFunctionDef(FnBodyScope, DP);
9365 }
9366 
9367 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
9368                              const FunctionDecl*& PossibleZeroParamPrototype) {
9369   // Don't warn about invalid declarations.
9370   if (FD->isInvalidDecl())
9371     return false;
9372 
9373   // Or declarations that aren't global.
9374   if (!FD->isGlobal())
9375     return false;
9376 
9377   // Don't warn about C++ member functions.
9378   if (isa<CXXMethodDecl>(FD))
9379     return false;
9380 
9381   // Don't warn about 'main'.
9382   if (FD->isMain())
9383     return false;
9384 
9385   // Don't warn about inline functions.
9386   if (FD->isInlined())
9387     return false;
9388 
9389   // Don't warn about function templates.
9390   if (FD->getDescribedFunctionTemplate())
9391     return false;
9392 
9393   // Don't warn about function template specializations.
9394   if (FD->isFunctionTemplateSpecialization())
9395     return false;
9396 
9397   // Don't warn for OpenCL kernels.
9398   if (FD->hasAttr<OpenCLKernelAttr>())
9399     return false;
9400 
9401   bool MissingPrototype = true;
9402   for (const FunctionDecl *Prev = FD->getPreviousDecl();
9403        Prev; Prev = Prev->getPreviousDecl()) {
9404     // Ignore any declarations that occur in function or method
9405     // scope, because they aren't visible from the header.
9406     if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
9407       continue;
9408 
9409     MissingPrototype = !Prev->getType()->isFunctionProtoType();
9410     if (FD->getNumParams() == 0)
9411       PossibleZeroParamPrototype = Prev;
9412     break;
9413   }
9414 
9415   return MissingPrototype;
9416 }
9417 
9418 void
9419 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
9420                                    const FunctionDecl *EffectiveDefinition) {
9421   // Don't complain if we're in GNU89 mode and the previous definition
9422   // was an extern inline function.
9423   const FunctionDecl *Definition = EffectiveDefinition;
9424   if (!Definition)
9425     if (!FD->isDefined(Definition))
9426       return;
9427 
9428   if (canRedefineFunction(Definition, getLangOpts()))
9429     return;
9430 
9431   if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
9432       Definition->getStorageClass() == SC_Extern)
9433     Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
9434         << FD->getDeclName() << getLangOpts().CPlusPlus;
9435   else
9436     Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
9437 
9438   Diag(Definition->getLocation(), diag::note_previous_definition);
9439   FD->setInvalidDecl();
9440 }
9441 
9442 
9443 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
9444                                    Sema &S) {
9445   CXXRecordDecl *const LambdaClass = CallOperator->getParent();
9446 
9447   LambdaScopeInfo *LSI = S.PushLambdaScope();
9448   LSI->CallOperator = CallOperator;
9449   LSI->Lambda = LambdaClass;
9450   LSI->ReturnType = CallOperator->getResultType();
9451   const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
9452 
9453   if (LCD == LCD_None)
9454     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
9455   else if (LCD == LCD_ByCopy)
9456     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
9457   else if (LCD == LCD_ByRef)
9458     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
9459   DeclarationNameInfo DNI = CallOperator->getNameInfo();
9460 
9461   LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
9462   LSI->Mutable = !CallOperator->isConst();
9463 
9464   // Add the captures to the LSI so they can be noted as already
9465   // captured within tryCaptureVar.
9466   for (LambdaExpr::capture_iterator C = LambdaClass->captures_begin(),
9467       CEnd = LambdaClass->captures_end(); C != CEnd; ++C) {
9468     if (C->capturesVariable()) {
9469       VarDecl *VD = C->getCapturedVar();
9470       if (VD->isInitCapture())
9471         S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
9472       QualType CaptureType = VD->getType();
9473       const bool ByRef = C->getCaptureKind() == LCK_ByRef;
9474       LSI->addCapture(VD, /*IsBlock*/false, ByRef,
9475           /*RefersToEnclosingLocal*/true, C->getLocation(),
9476           /*EllipsisLoc*/C->isPackExpansion()
9477                          ? C->getEllipsisLoc() : SourceLocation(),
9478           CaptureType, /*Expr*/ 0);
9479 
9480     } else if (C->capturesThis()) {
9481       LSI->addThisCapture(/*Nested*/ false, C->getLocation(),
9482                               S.getCurrentThisType(), /*Expr*/ 0);
9483     }
9484   }
9485 }
9486 
9487 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
9488   // Clear the last template instantiation error context.
9489   LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
9490 
9491   if (!D)
9492     return D;
9493   FunctionDecl *FD = 0;
9494 
9495   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
9496     FD = FunTmpl->getTemplatedDecl();
9497   else
9498     FD = cast<FunctionDecl>(D);
9499   // If we are instantiating a generic lambda call operator, push
9500   // a LambdaScopeInfo onto the function stack.  But use the information
9501   // that's already been calculated (ActOnLambdaExpr) to prime the current
9502   // LambdaScopeInfo.
9503   // When the template operator is being specialized, the LambdaScopeInfo,
9504   // has to be properly restored so that tryCaptureVariable doesn't try
9505   // and capture any new variables. In addition when calculating potential
9506   // captures during transformation of nested lambdas, it is necessary to
9507   // have the LSI properly restored.
9508   if (isGenericLambdaCallOperatorSpecialization(FD)) {
9509     assert(ActiveTemplateInstantiations.size() &&
9510       "There should be an active template instantiation on the stack "
9511       "when instantiating a generic lambda!");
9512     RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
9513   }
9514   else
9515     // Enter a new function scope
9516     PushFunctionScope();
9517 
9518   // See if this is a redefinition.
9519   if (!FD->isLateTemplateParsed())
9520     CheckForFunctionRedefinition(FD);
9521 
9522   // Builtin functions cannot be defined.
9523   if (unsigned BuiltinID = FD->getBuiltinID()) {
9524     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
9525         !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
9526       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
9527       FD->setInvalidDecl();
9528     }
9529   }
9530 
9531   // The return type of a function definition must be complete
9532   // (C99 6.9.1p3, C++ [dcl.fct]p6).
9533   QualType ResultType = FD->getResultType();
9534   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
9535       !FD->isInvalidDecl() &&
9536       RequireCompleteType(FD->getLocation(), ResultType,
9537                           diag::err_func_def_incomplete_result))
9538     FD->setInvalidDecl();
9539 
9540   // GNU warning -Wmissing-prototypes:
9541   //   Warn if a global function is defined without a previous
9542   //   prototype declaration. This warning is issued even if the
9543   //   definition itself provides a prototype. The aim is to detect
9544   //   global functions that fail to be declared in header files.
9545   const FunctionDecl *PossibleZeroParamPrototype = 0;
9546   if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
9547     Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
9548 
9549     if (PossibleZeroParamPrototype) {
9550       // We found a declaration that is not a prototype,
9551       // but that could be a zero-parameter prototype
9552       if (TypeSourceInfo *TI =
9553               PossibleZeroParamPrototype->getTypeSourceInfo()) {
9554         TypeLoc TL = TI->getTypeLoc();
9555         if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
9556           Diag(PossibleZeroParamPrototype->getLocation(),
9557                diag::note_declaration_not_a_prototype)
9558             << PossibleZeroParamPrototype
9559             << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
9560       }
9561     }
9562   }
9563 
9564   if (FnBodyScope)
9565     PushDeclContext(FnBodyScope, FD);
9566 
9567   // Check the validity of our function parameters
9568   CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
9569                            /*CheckParameterNames=*/true);
9570 
9571   // Introduce our parameters into the function scope
9572   for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
9573     ParmVarDecl *Param = FD->getParamDecl(p);
9574     Param->setOwningFunction(FD);
9575 
9576     // If this has an identifier, add it to the scope stack.
9577     if (Param->getIdentifier() && FnBodyScope) {
9578       CheckShadow(FnBodyScope, Param);
9579 
9580       PushOnScopeChains(Param, FnBodyScope);
9581     }
9582   }
9583 
9584   // If we had any tags defined in the function prototype,
9585   // introduce them into the function scope.
9586   if (FnBodyScope) {
9587     for (ArrayRef<NamedDecl *>::iterator
9588              I = FD->getDeclsInPrototypeScope().begin(),
9589              E = FD->getDeclsInPrototypeScope().end();
9590          I != E; ++I) {
9591       NamedDecl *D = *I;
9592 
9593       // Some of these decls (like enums) may have been pinned to the translation unit
9594       // for lack of a real context earlier. If so, remove from the translation unit
9595       // and reattach to the current context.
9596       if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
9597         // Is the decl actually in the context?
9598         for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
9599                DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
9600           if (*DI == D) {
9601             Context.getTranslationUnitDecl()->removeDecl(D);
9602             break;
9603           }
9604         }
9605         // Either way, reassign the lexical decl context to our FunctionDecl.
9606         D->setLexicalDeclContext(CurContext);
9607       }
9608 
9609       // If the decl has a non-null name, make accessible in the current scope.
9610       if (!D->getName().empty())
9611         PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
9612 
9613       // Similarly, dive into enums and fish their constants out, making them
9614       // accessible in this scope.
9615       if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
9616         for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
9617                EE = ED->enumerator_end(); EI != EE; ++EI)
9618           PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
9619       }
9620     }
9621   }
9622 
9623   // Ensure that the function's exception specification is instantiated.
9624   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
9625     ResolveExceptionSpec(D->getLocation(), FPT);
9626 
9627   // Checking attributes of current function definition
9628   // dllimport attribute.
9629   DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
9630   if (DA && (!FD->getAttr<DLLExportAttr>())) {
9631     // dllimport attribute cannot be directly applied to definition.
9632     // Microsoft accepts dllimport for functions defined within class scope.
9633     if (!DA->isInherited() &&
9634         !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
9635       Diag(FD->getLocation(),
9636            diag::err_attribute_can_be_applied_only_to_symbol_declaration)
9637         << "dllimport";
9638       FD->setInvalidDecl();
9639       return D;
9640     }
9641 
9642     // Visual C++ appears to not think this is an issue, so only issue
9643     // a warning when Microsoft extensions are disabled.
9644     if (!LangOpts.MicrosoftExt) {
9645       // If a symbol previously declared dllimport is later defined, the
9646       // attribute is ignored in subsequent references, and a warning is
9647       // emitted.
9648       Diag(FD->getLocation(),
9649            diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
9650         << FD->getName() << "dllimport";
9651     }
9652   }
9653   // We want to attach documentation to original Decl (which might be
9654   // a function template).
9655   ActOnDocumentableDecl(D);
9656   return D;
9657 }
9658 
9659 /// \brief Given the set of return statements within a function body,
9660 /// compute the variables that are subject to the named return value
9661 /// optimization.
9662 ///
9663 /// Each of the variables that is subject to the named return value
9664 /// optimization will be marked as NRVO variables in the AST, and any
9665 /// return statement that has a marked NRVO variable as its NRVO candidate can
9666 /// use the named return value optimization.
9667 ///
9668 /// This function applies a very simplistic algorithm for NRVO: if every return
9669 /// statement in the function has the same NRVO candidate, that candidate is
9670 /// the NRVO variable.
9671 ///
9672 /// FIXME: Employ a smarter algorithm that accounts for multiple return
9673 /// statements and the lifetimes of the NRVO candidates. We should be able to
9674 /// find a maximal set of NRVO variables.
9675 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
9676   ReturnStmt **Returns = Scope->Returns.data();
9677 
9678   const VarDecl *NRVOCandidate = 0;
9679   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
9680     if (!Returns[I]->getNRVOCandidate())
9681       return;
9682 
9683     if (!NRVOCandidate)
9684       NRVOCandidate = Returns[I]->getNRVOCandidate();
9685     else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
9686       return;
9687   }
9688 
9689   if (NRVOCandidate)
9690     const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
9691 }
9692 
9693 bool Sema::canSkipFunctionBody(Decl *D) {
9694   if (!Consumer.shouldSkipFunctionBody(D))
9695     return false;
9696 
9697   if (isa<ObjCMethodDecl>(D))
9698     return true;
9699 
9700   FunctionDecl *FD = 0;
9701   if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
9702     FD = FTD->getTemplatedDecl();
9703   else
9704     FD = cast<FunctionDecl>(D);
9705 
9706   // We cannot skip the body of a function (or function template) which is
9707   // constexpr, since we may need to evaluate its body in order to parse the
9708   // rest of the file.
9709   // We cannot skip the body of a function with an undeduced return type,
9710   // because any callers of that function need to know the type.
9711   return !FD->isConstexpr() && !FD->getResultType()->isUndeducedType();
9712 }
9713 
9714 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
9715   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
9716     FD->setHasSkippedBody();
9717   else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
9718     MD->setHasSkippedBody();
9719   return ActOnFinishFunctionBody(Decl, 0);
9720 }
9721 
9722 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
9723   return ActOnFinishFunctionBody(D, BodyArg, false);
9724 }
9725 
9726 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
9727                                     bool IsInstantiation) {
9728   FunctionDecl *FD = 0;
9729   FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
9730   if (FunTmpl)
9731     FD = FunTmpl->getTemplatedDecl();
9732   else
9733     FD = dyn_cast_or_null<FunctionDecl>(dcl);
9734 
9735   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
9736   sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
9737 
9738   if (FD) {
9739     FD->setBody(Body);
9740 
9741     if (getLangOpts().CPlusPlus1y && !FD->isInvalidDecl() && Body &&
9742         !FD->isDependentContext() && FD->getResultType()->isUndeducedType()) {
9743       // If the function has a deduced result type but contains no 'return'
9744       // statements, the result type as written must be exactly 'auto', and
9745       // the deduced result type is 'void'.
9746       if (!FD->getResultType()->getAs<AutoType>()) {
9747         Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
9748           << FD->getResultType();
9749         FD->setInvalidDecl();
9750       } else {
9751         // Substitute 'void' for the 'auto' in the type.
9752         TypeLoc ResultType = FD->getTypeSourceInfo()->getTypeLoc().
9753             IgnoreParens().castAs<FunctionProtoTypeLoc>().getResultLoc();
9754         Context.adjustDeducedFunctionResultType(
9755             FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
9756       }
9757     }
9758 
9759     // The only way to be included in UndefinedButUsed is if there is an
9760     // ODR use before the definition. Avoid the expensive map lookup if this
9761     // is the first declaration.
9762     if (!FD->isFirstDecl() && FD->getPreviousDecl()->isUsed()) {
9763       if (!FD->isExternallyVisible())
9764         UndefinedButUsed.erase(FD);
9765       else if (FD->isInlined() &&
9766                (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
9767                (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
9768         UndefinedButUsed.erase(FD);
9769     }
9770 
9771     // If the function implicitly returns zero (like 'main') or is naked,
9772     // don't complain about missing return statements.
9773     if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
9774       WP.disableCheckFallThrough();
9775 
9776     // MSVC permits the use of pure specifier (=0) on function definition,
9777     // defined at class scope, warn about this non standard construct.
9778     if (getLangOpts().MicrosoftExt && FD->isPure() && FD->isCanonicalDecl())
9779       Diag(FD->getLocation(), diag::warn_pure_function_definition);
9780 
9781     if (!FD->isInvalidDecl()) {
9782       DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
9783       DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
9784                                              FD->getResultType(), FD);
9785 
9786       // If this is a constructor, we need a vtable.
9787       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
9788         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
9789 
9790       // Try to apply the named return value optimization. We have to check
9791       // if we can do this here because lambdas keep return statements around
9792       // to deduce an implicit return type.
9793       if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
9794           !FD->isDependentContext())
9795         computeNRVO(Body, getCurFunction());
9796     }
9797 
9798     assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
9799            "Function parsing confused");
9800   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
9801     assert(MD == getCurMethodDecl() && "Method parsing confused");
9802     MD->setBody(Body);
9803     if (!MD->isInvalidDecl()) {
9804       DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
9805       DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
9806                                              MD->getResultType(), MD);
9807 
9808       if (Body)
9809         computeNRVO(Body, getCurFunction());
9810     }
9811     if (getCurFunction()->ObjCShouldCallSuper) {
9812       Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
9813         << MD->getSelector().getAsString();
9814       getCurFunction()->ObjCShouldCallSuper = false;
9815     }
9816   } else {
9817     return 0;
9818   }
9819 
9820   assert(!getCurFunction()->ObjCShouldCallSuper &&
9821          "This should only be set for ObjC methods, which should have been "
9822          "handled in the block above.");
9823 
9824   // Verify and clean out per-function state.
9825   if (Body) {
9826     // C++ constructors that have function-try-blocks can't have return
9827     // statements in the handlers of that block. (C++ [except.handle]p14)
9828     // Verify this.
9829     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
9830       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
9831 
9832     // Verify that gotos and switch cases don't jump into scopes illegally.
9833     if (getCurFunction()->NeedsScopeChecking() &&
9834         !dcl->isInvalidDecl() &&
9835         !hasAnyUnrecoverableErrorsInThisFunction() &&
9836         !PP.isCodeCompletionEnabled())
9837       DiagnoseInvalidJumps(Body);
9838 
9839     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
9840       if (!Destructor->getParent()->isDependentType())
9841         CheckDestructor(Destructor);
9842 
9843       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
9844                                              Destructor->getParent());
9845     }
9846 
9847     // If any errors have occurred, clear out any temporaries that may have
9848     // been leftover. This ensures that these temporaries won't be picked up for
9849     // deletion in some later function.
9850     if (PP.getDiagnostics().hasErrorOccurred() ||
9851         PP.getDiagnostics().getSuppressAllDiagnostics()) {
9852       DiscardCleanupsInEvaluationContext();
9853     }
9854     if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
9855         !isa<FunctionTemplateDecl>(dcl)) {
9856       // Since the body is valid, issue any analysis-based warnings that are
9857       // enabled.
9858       ActivePolicy = &WP;
9859     }
9860 
9861     if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
9862         (!CheckConstexprFunctionDecl(FD) ||
9863          !CheckConstexprFunctionBody(FD, Body)))
9864       FD->setInvalidDecl();
9865 
9866     assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
9867     assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
9868     assert(MaybeODRUseExprs.empty() &&
9869            "Leftover expressions for odr-use checking");
9870   }
9871 
9872   if (!IsInstantiation)
9873     PopDeclContext();
9874 
9875   PopFunctionScopeInfo(ActivePolicy, dcl);
9876   // If any errors have occurred, clear out any temporaries that may have
9877   // been leftover. This ensures that these temporaries won't be picked up for
9878   // deletion in some later function.
9879   if (getDiagnostics().hasErrorOccurred()) {
9880     DiscardCleanupsInEvaluationContext();
9881   }
9882 
9883   return dcl;
9884 }
9885 
9886 
9887 /// When we finish delayed parsing of an attribute, we must attach it to the
9888 /// relevant Decl.
9889 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
9890                                        ParsedAttributes &Attrs) {
9891   // Always attach attributes to the underlying decl.
9892   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
9893     D = TD->getTemplatedDecl();
9894   ProcessDeclAttributeList(S, D, Attrs.getList());
9895 
9896   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
9897     if (Method->isStatic())
9898       checkThisInStaticMemberFunctionAttributes(Method);
9899 }
9900 
9901 
9902 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
9903 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
9904 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
9905                                           IdentifierInfo &II, Scope *S) {
9906   // Before we produce a declaration for an implicitly defined
9907   // function, see whether there was a locally-scoped declaration of
9908   // this name as a function or variable. If so, use that
9909   // (non-visible) declaration, and complain about it.
9910   if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) {
9911     Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev;
9912     Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
9913     return ExternCPrev;
9914   }
9915 
9916   // Extension in C99.  Legal in C90, but warn about it.
9917   unsigned diag_id;
9918   if (II.getName().startswith("__builtin_"))
9919     diag_id = diag::warn_builtin_unknown;
9920   else if (getLangOpts().C99)
9921     diag_id = diag::ext_implicit_function_decl;
9922   else
9923     diag_id = diag::warn_implicit_function_decl;
9924   Diag(Loc, diag_id) << &II;
9925 
9926   // Because typo correction is expensive, only do it if the implicit
9927   // function declaration is going to be treated as an error.
9928   if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
9929     TypoCorrection Corrected;
9930     DeclFilterCCC<FunctionDecl> Validator;
9931     if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
9932                                       LookupOrdinaryName, S, 0, Validator)))
9933       diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
9934                    /*ErrorRecovery*/false);
9935   }
9936 
9937   // Set a Declarator for the implicit definition: int foo();
9938   const char *Dummy;
9939   AttributeFactory attrFactory;
9940   DeclSpec DS(attrFactory);
9941   unsigned DiagID;
9942   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
9943   (void)Error; // Silence warning.
9944   assert(!Error && "Error setting up implicit decl!");
9945   SourceLocation NoLoc;
9946   Declarator D(DS, Declarator::BlockContext);
9947   D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
9948                                              /*IsAmbiguous=*/false,
9949                                              /*RParenLoc=*/NoLoc,
9950                                              /*ArgInfo=*/0,
9951                                              /*NumArgs=*/0,
9952                                              /*EllipsisLoc=*/NoLoc,
9953                                              /*RParenLoc=*/NoLoc,
9954                                              /*TypeQuals=*/0,
9955                                              /*RefQualifierIsLvalueRef=*/true,
9956                                              /*RefQualifierLoc=*/NoLoc,
9957                                              /*ConstQualifierLoc=*/NoLoc,
9958                                              /*VolatileQualifierLoc=*/NoLoc,
9959                                              /*MutableLoc=*/NoLoc,
9960                                              EST_None,
9961                                              /*ESpecLoc=*/NoLoc,
9962                                              /*Exceptions=*/0,
9963                                              /*ExceptionRanges=*/0,
9964                                              /*NumExceptions=*/0,
9965                                              /*NoexceptExpr=*/0,
9966                                              Loc, Loc, D),
9967                 DS.getAttributes(),
9968                 SourceLocation());
9969   D.SetIdentifier(&II, Loc);
9970 
9971   // Insert this function into translation-unit scope.
9972 
9973   DeclContext *PrevDC = CurContext;
9974   CurContext = Context.getTranslationUnitDecl();
9975 
9976   FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
9977   FD->setImplicit();
9978 
9979   CurContext = PrevDC;
9980 
9981   AddKnownFunctionAttributes(FD);
9982 
9983   return FD;
9984 }
9985 
9986 /// \brief Adds any function attributes that we know a priori based on
9987 /// the declaration of this function.
9988 ///
9989 /// These attributes can apply both to implicitly-declared builtins
9990 /// (like __builtin___printf_chk) or to library-declared functions
9991 /// like NSLog or printf.
9992 ///
9993 /// We need to check for duplicate attributes both here and where user-written
9994 /// attributes are applied to declarations.
9995 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
9996   if (FD->isInvalidDecl())
9997     return;
9998 
9999   // If this is a built-in function, map its builtin attributes to
10000   // actual attributes.
10001   if (unsigned BuiltinID = FD->getBuiltinID()) {
10002     // Handle printf-formatting attributes.
10003     unsigned FormatIdx;
10004     bool HasVAListArg;
10005     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
10006       if (!FD->getAttr<FormatAttr>()) {
10007         const char *fmt = "printf";
10008         unsigned int NumParams = FD->getNumParams();
10009         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
10010             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
10011           fmt = "NSString";
10012         FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
10013                                                &Context.Idents.get(fmt),
10014                                                FormatIdx+1,
10015                                                HasVAListArg ? 0 : FormatIdx+2));
10016       }
10017     }
10018     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
10019                                              HasVAListArg)) {
10020      if (!FD->getAttr<FormatAttr>())
10021        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
10022                                               &Context.Idents.get("scanf"),
10023                                               FormatIdx+1,
10024                                               HasVAListArg ? 0 : FormatIdx+2));
10025     }
10026 
10027     // Mark const if we don't care about errno and that is the only
10028     // thing preventing the function from being const. This allows
10029     // IRgen to use LLVM intrinsics for such functions.
10030     if (!getLangOpts().MathErrno &&
10031         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
10032       if (!FD->getAttr<ConstAttr>())
10033         FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
10034     }
10035 
10036     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
10037         !FD->getAttr<ReturnsTwiceAttr>())
10038       FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
10039     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
10040       FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
10041     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
10042       FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
10043   }
10044 
10045   IdentifierInfo *Name = FD->getIdentifier();
10046   if (!Name)
10047     return;
10048   if ((!getLangOpts().CPlusPlus &&
10049        FD->getDeclContext()->isTranslationUnit()) ||
10050       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
10051        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
10052        LinkageSpecDecl::lang_c)) {
10053     // Okay: this could be a libc/libm/Objective-C function we know
10054     // about.
10055   } else
10056     return;
10057 
10058   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
10059     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
10060     // target-specific builtins, perhaps?
10061     if (!FD->getAttr<FormatAttr>())
10062       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
10063                                              &Context.Idents.get("printf"), 2,
10064                                              Name->isStr("vasprintf") ? 0 : 3));
10065   }
10066 
10067   if (Name->isStr("__CFStringMakeConstantString")) {
10068     // We already have a __builtin___CFStringMakeConstantString,
10069     // but builds that use -fno-constant-cfstrings don't go through that.
10070     if (!FD->getAttr<FormatArgAttr>())
10071       FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
10072   }
10073 }
10074 
10075 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
10076                                     TypeSourceInfo *TInfo) {
10077   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
10078   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
10079 
10080   if (!TInfo) {
10081     assert(D.isInvalidType() && "no declarator info for valid type");
10082     TInfo = Context.getTrivialTypeSourceInfo(T);
10083   }
10084 
10085   // Scope manipulation handled by caller.
10086   TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
10087                                            D.getLocStart(),
10088                                            D.getIdentifierLoc(),
10089                                            D.getIdentifier(),
10090                                            TInfo);
10091 
10092   // Bail out immediately if we have an invalid declaration.
10093   if (D.isInvalidType()) {
10094     NewTD->setInvalidDecl();
10095     return NewTD;
10096   }
10097 
10098   if (D.getDeclSpec().isModulePrivateSpecified()) {
10099     if (CurContext->isFunctionOrMethod())
10100       Diag(NewTD->getLocation(), diag::err_module_private_local)
10101         << 2 << NewTD->getDeclName()
10102         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
10103         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
10104     else
10105       NewTD->setModulePrivate();
10106   }
10107 
10108   // C++ [dcl.typedef]p8:
10109   //   If the typedef declaration defines an unnamed class (or
10110   //   enum), the first typedef-name declared by the declaration
10111   //   to be that class type (or enum type) is used to denote the
10112   //   class type (or enum type) for linkage purposes only.
10113   // We need to check whether the type was declared in the declaration.
10114   switch (D.getDeclSpec().getTypeSpecType()) {
10115   case TST_enum:
10116   case TST_struct:
10117   case TST_interface:
10118   case TST_union:
10119   case TST_class: {
10120     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
10121 
10122     // Do nothing if the tag is not anonymous or already has an
10123     // associated typedef (from an earlier typedef in this decl group).
10124     if (tagFromDeclSpec->getIdentifier()) break;
10125     if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
10126 
10127     // A well-formed anonymous tag must always be a TUK_Definition.
10128     assert(tagFromDeclSpec->isThisDeclarationADefinition());
10129 
10130     // The type must match the tag exactly;  no qualifiers allowed.
10131     if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
10132       break;
10133 
10134     // Otherwise, set this is the anon-decl typedef for the tag.
10135     tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
10136     break;
10137   }
10138 
10139   default:
10140     break;
10141   }
10142 
10143   return NewTD;
10144 }
10145 
10146 
10147 /// \brief Check that this is a valid underlying type for an enum declaration.
10148 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
10149   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
10150   QualType T = TI->getType();
10151 
10152   if (T->isDependentType())
10153     return false;
10154 
10155   if (const BuiltinType *BT = T->getAs<BuiltinType>())
10156     if (BT->isInteger())
10157       return false;
10158 
10159   Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
10160   return true;
10161 }
10162 
10163 /// Check whether this is a valid redeclaration of a previous enumeration.
10164 /// \return true if the redeclaration was invalid.
10165 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
10166                                   QualType EnumUnderlyingTy,
10167                                   const EnumDecl *Prev) {
10168   bool IsFixed = !EnumUnderlyingTy.isNull();
10169 
10170   if (IsScoped != Prev->isScoped()) {
10171     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
10172       << Prev->isScoped();
10173     Diag(Prev->getLocation(), diag::note_previous_use);
10174     return true;
10175   }
10176 
10177   if (IsFixed && Prev->isFixed()) {
10178     if (!EnumUnderlyingTy->isDependentType() &&
10179         !Prev->getIntegerType()->isDependentType() &&
10180         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
10181                                         Prev->getIntegerType())) {
10182       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
10183         << EnumUnderlyingTy << Prev->getIntegerType();
10184       Diag(Prev->getLocation(), diag::note_previous_use);
10185       return true;
10186     }
10187   } else if (IsFixed != Prev->isFixed()) {
10188     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
10189       << Prev->isFixed();
10190     Diag(Prev->getLocation(), diag::note_previous_use);
10191     return true;
10192   }
10193 
10194   return false;
10195 }
10196 
10197 /// \brief Get diagnostic %select index for tag kind for
10198 /// redeclaration diagnostic message.
10199 /// WARNING: Indexes apply to particular diagnostics only!
10200 ///
10201 /// \returns diagnostic %select index.
10202 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
10203   switch (Tag) {
10204   case TTK_Struct: return 0;
10205   case TTK_Interface: return 1;
10206   case TTK_Class:  return 2;
10207   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
10208   }
10209 }
10210 
10211 /// \brief Determine if tag kind is a class-key compatible with
10212 /// class for redeclaration (class, struct, or __interface).
10213 ///
10214 /// \returns true iff the tag kind is compatible.
10215 static bool isClassCompatTagKind(TagTypeKind Tag)
10216 {
10217   return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
10218 }
10219 
10220 /// \brief Determine whether a tag with a given kind is acceptable
10221 /// as a redeclaration of the given tag declaration.
10222 ///
10223 /// \returns true if the new tag kind is acceptable, false otherwise.
10224 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
10225                                         TagTypeKind NewTag, bool isDefinition,
10226                                         SourceLocation NewTagLoc,
10227                                         const IdentifierInfo &Name) {
10228   // C++ [dcl.type.elab]p3:
10229   //   The class-key or enum keyword present in the
10230   //   elaborated-type-specifier shall agree in kind with the
10231   //   declaration to which the name in the elaborated-type-specifier
10232   //   refers. This rule also applies to the form of
10233   //   elaborated-type-specifier that declares a class-name or
10234   //   friend class since it can be construed as referring to the
10235   //   definition of the class. Thus, in any
10236   //   elaborated-type-specifier, the enum keyword shall be used to
10237   //   refer to an enumeration (7.2), the union class-key shall be
10238   //   used to refer to a union (clause 9), and either the class or
10239   //   struct class-key shall be used to refer to a class (clause 9)
10240   //   declared using the class or struct class-key.
10241   TagTypeKind OldTag = Previous->getTagKind();
10242   if (!isDefinition || !isClassCompatTagKind(NewTag))
10243     if (OldTag == NewTag)
10244       return true;
10245 
10246   if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
10247     // Warn about the struct/class tag mismatch.
10248     bool isTemplate = false;
10249     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
10250       isTemplate = Record->getDescribedClassTemplate();
10251 
10252     if (!ActiveTemplateInstantiations.empty()) {
10253       // In a template instantiation, do not offer fix-its for tag mismatches
10254       // since they usually mess up the template instead of fixing the problem.
10255       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
10256         << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
10257         << getRedeclDiagFromTagKind(OldTag);
10258       return true;
10259     }
10260 
10261     if (isDefinition) {
10262       // On definitions, check previous tags and issue a fix-it for each
10263       // one that doesn't match the current tag.
10264       if (Previous->getDefinition()) {
10265         // Don't suggest fix-its for redefinitions.
10266         return true;
10267       }
10268 
10269       bool previousMismatch = false;
10270       for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
10271            E(Previous->redecls_end()); I != E; ++I) {
10272         if (I->getTagKind() != NewTag) {
10273           if (!previousMismatch) {
10274             previousMismatch = true;
10275             Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
10276               << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
10277               << getRedeclDiagFromTagKind(I->getTagKind());
10278           }
10279           Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
10280             << getRedeclDiagFromTagKind(NewTag)
10281             << FixItHint::CreateReplacement(I->getInnerLocStart(),
10282                  TypeWithKeyword::getTagTypeKindName(NewTag));
10283         }
10284       }
10285       return true;
10286     }
10287 
10288     // Check for a previous definition.  If current tag and definition
10289     // are same type, do nothing.  If no definition, but disagree with
10290     // with previous tag type, give a warning, but no fix-it.
10291     const TagDecl *Redecl = Previous->getDefinition() ?
10292                             Previous->getDefinition() : Previous;
10293     if (Redecl->getTagKind() == NewTag) {
10294       return true;
10295     }
10296 
10297     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
10298       << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
10299       << getRedeclDiagFromTagKind(OldTag);
10300     Diag(Redecl->getLocation(), diag::note_previous_use);
10301 
10302     // If there is a previous defintion, suggest a fix-it.
10303     if (Previous->getDefinition()) {
10304         Diag(NewTagLoc, diag::note_struct_class_suggestion)
10305           << getRedeclDiagFromTagKind(Redecl->getTagKind())
10306           << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
10307                TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
10308     }
10309 
10310     return true;
10311   }
10312   return false;
10313 }
10314 
10315 /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
10316 /// former case, Name will be non-null.  In the later case, Name will be null.
10317 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
10318 /// reference/declaration/definition of a tag.
10319 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
10320                      SourceLocation KWLoc, CXXScopeSpec &SS,
10321                      IdentifierInfo *Name, SourceLocation NameLoc,
10322                      AttributeList *Attr, AccessSpecifier AS,
10323                      SourceLocation ModulePrivateLoc,
10324                      MultiTemplateParamsArg TemplateParameterLists,
10325                      bool &OwnedDecl, bool &IsDependent,
10326                      SourceLocation ScopedEnumKWLoc,
10327                      bool ScopedEnumUsesClassTag,
10328                      TypeResult UnderlyingType) {
10329   // If this is not a definition, it must have a name.
10330   IdentifierInfo *OrigName = Name;
10331   assert((Name != 0 || TUK == TUK_Definition) &&
10332          "Nameless record must be a definition!");
10333   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
10334 
10335   OwnedDecl = false;
10336   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10337   bool ScopedEnum = ScopedEnumKWLoc.isValid();
10338 
10339   // FIXME: Check explicit specializations more carefully.
10340   bool isExplicitSpecialization = false;
10341   bool Invalid = false;
10342 
10343   // We only need to do this matching if we have template parameters
10344   // or a scope specifier, which also conveniently avoids this work
10345   // for non-C++ cases.
10346   if (TemplateParameterLists.size() > 0 ||
10347       (SS.isNotEmpty() && TUK != TUK_Reference)) {
10348     if (TemplateParameterList *TemplateParams =
10349             MatchTemplateParametersToScopeSpecifier(
10350                 KWLoc, NameLoc, SS, TemplateParameterLists, TUK == TUK_Friend,
10351                 isExplicitSpecialization, Invalid)) {
10352       if (Kind == TTK_Enum) {
10353         Diag(KWLoc, diag::err_enum_template);
10354         return 0;
10355       }
10356 
10357       if (TemplateParams->size() > 0) {
10358         // This is a declaration or definition of a class template (which may
10359         // be a member of another template).
10360 
10361         if (Invalid)
10362           return 0;
10363 
10364         OwnedDecl = false;
10365         DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
10366                                                SS, Name, NameLoc, Attr,
10367                                                TemplateParams, AS,
10368                                                ModulePrivateLoc,
10369                                                TemplateParameterLists.size()-1,
10370                                                TemplateParameterLists.data());
10371         return Result.get();
10372       } else {
10373         // The "template<>" header is extraneous.
10374         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10375           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10376         isExplicitSpecialization = true;
10377       }
10378     }
10379   }
10380 
10381   // Figure out the underlying type if this a enum declaration. We need to do
10382   // this early, because it's needed to detect if this is an incompatible
10383   // redeclaration.
10384   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
10385 
10386   if (Kind == TTK_Enum) {
10387     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
10388       // No underlying type explicitly specified, or we failed to parse the
10389       // type, default to int.
10390       EnumUnderlying = Context.IntTy.getTypePtr();
10391     else if (UnderlyingType.get()) {
10392       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
10393       // integral type; any cv-qualification is ignored.
10394       TypeSourceInfo *TI = 0;
10395       GetTypeFromParser(UnderlyingType.get(), &TI);
10396       EnumUnderlying = TI;
10397 
10398       if (CheckEnumUnderlyingType(TI))
10399         // Recover by falling back to int.
10400         EnumUnderlying = Context.IntTy.getTypePtr();
10401 
10402       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
10403                                           UPPC_FixedUnderlyingType))
10404         EnumUnderlying = Context.IntTy.getTypePtr();
10405 
10406     } else if (getLangOpts().MicrosoftMode)
10407       // Microsoft enums are always of int type.
10408       EnumUnderlying = Context.IntTy.getTypePtr();
10409   }
10410 
10411   DeclContext *SearchDC = CurContext;
10412   DeclContext *DC = CurContext;
10413   bool isStdBadAlloc = false;
10414 
10415   RedeclarationKind Redecl = ForRedeclaration;
10416   if (TUK == TUK_Friend || TUK == TUK_Reference)
10417     Redecl = NotForRedeclaration;
10418 
10419   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
10420   bool FriendSawTagOutsideEnclosingNamespace = false;
10421   if (Name && SS.isNotEmpty()) {
10422     // We have a nested-name tag ('struct foo::bar').
10423 
10424     // Check for invalid 'foo::'.
10425     if (SS.isInvalid()) {
10426       Name = 0;
10427       goto CreateNewDecl;
10428     }
10429 
10430     // If this is a friend or a reference to a class in a dependent
10431     // context, don't try to make a decl for it.
10432     if (TUK == TUK_Friend || TUK == TUK_Reference) {
10433       DC = computeDeclContext(SS, false);
10434       if (!DC) {
10435         IsDependent = true;
10436         return 0;
10437       }
10438     } else {
10439       DC = computeDeclContext(SS, true);
10440       if (!DC) {
10441         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
10442           << SS.getRange();
10443         return 0;
10444       }
10445     }
10446 
10447     if (RequireCompleteDeclContext(SS, DC))
10448       return 0;
10449 
10450     SearchDC = DC;
10451     // Look-up name inside 'foo::'.
10452     LookupQualifiedName(Previous, DC);
10453 
10454     if (Previous.isAmbiguous())
10455       return 0;
10456 
10457     if (Previous.empty()) {
10458       // Name lookup did not find anything. However, if the
10459       // nested-name-specifier refers to the current instantiation,
10460       // and that current instantiation has any dependent base
10461       // classes, we might find something at instantiation time: treat
10462       // this as a dependent elaborated-type-specifier.
10463       // But this only makes any sense for reference-like lookups.
10464       if (Previous.wasNotFoundInCurrentInstantiation() &&
10465           (TUK == TUK_Reference || TUK == TUK_Friend)) {
10466         IsDependent = true;
10467         return 0;
10468       }
10469 
10470       // A tag 'foo::bar' must already exist.
10471       Diag(NameLoc, diag::err_not_tag_in_scope)
10472         << Kind << Name << DC << SS.getRange();
10473       Name = 0;
10474       Invalid = true;
10475       goto CreateNewDecl;
10476     }
10477   } else if (Name) {
10478     // If this is a named struct, check to see if there was a previous forward
10479     // declaration or definition.
10480     // FIXME: We're looking into outer scopes here, even when we
10481     // shouldn't be. Doing so can result in ambiguities that we
10482     // shouldn't be diagnosing.
10483     LookupName(Previous, S);
10484 
10485     // When declaring or defining a tag, ignore ambiguities introduced
10486     // by types using'ed into this scope.
10487     if (Previous.isAmbiguous() &&
10488         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
10489       LookupResult::Filter F = Previous.makeFilter();
10490       while (F.hasNext()) {
10491         NamedDecl *ND = F.next();
10492         if (ND->getDeclContext()->getRedeclContext() != SearchDC)
10493           F.erase();
10494       }
10495       F.done();
10496     }
10497 
10498     // C++11 [namespace.memdef]p3:
10499     //   If the name in a friend declaration is neither qualified nor
10500     //   a template-id and the declaration is a function or an
10501     //   elaborated-type-specifier, the lookup to determine whether
10502     //   the entity has been previously declared shall not consider
10503     //   any scopes outside the innermost enclosing namespace.
10504     //
10505     // Does it matter that this should be by scope instead of by
10506     // semantic context?
10507     if (!Previous.empty() && TUK == TUK_Friend) {
10508       DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
10509       LookupResult::Filter F = Previous.makeFilter();
10510       while (F.hasNext()) {
10511         NamedDecl *ND = F.next();
10512         DeclContext *DC = ND->getDeclContext()->getRedeclContext();
10513         if (DC->isFileContext() &&
10514             !EnclosingNS->Encloses(ND->getDeclContext())) {
10515           F.erase();
10516           FriendSawTagOutsideEnclosingNamespace = true;
10517         }
10518       }
10519       F.done();
10520     }
10521 
10522     // Note:  there used to be some attempt at recovery here.
10523     if (Previous.isAmbiguous())
10524       return 0;
10525 
10526     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
10527       // FIXME: This makes sure that we ignore the contexts associated
10528       // with C structs, unions, and enums when looking for a matching
10529       // tag declaration or definition. See the similar lookup tweak
10530       // in Sema::LookupName; is there a better way to deal with this?
10531       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
10532         SearchDC = SearchDC->getParent();
10533     }
10534   } else if (S->isFunctionPrototypeScope()) {
10535     // If this is an enum declaration in function prototype scope, set its
10536     // initial context to the translation unit.
10537     // FIXME: [citation needed]
10538     SearchDC = Context.getTranslationUnitDecl();
10539   }
10540 
10541   if (Previous.isSingleResult() &&
10542       Previous.getFoundDecl()->isTemplateParameter()) {
10543     // Maybe we will complain about the shadowed template parameter.
10544     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
10545     // Just pretend that we didn't see the previous declaration.
10546     Previous.clear();
10547   }
10548 
10549   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
10550       DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
10551     // This is a declaration of or a reference to "std::bad_alloc".
10552     isStdBadAlloc = true;
10553 
10554     if (Previous.empty() && StdBadAlloc) {
10555       // std::bad_alloc has been implicitly declared (but made invisible to
10556       // name lookup). Fill in this implicit declaration as the previous
10557       // declaration, so that the declarations get chained appropriately.
10558       Previous.addDecl(getStdBadAlloc());
10559     }
10560   }
10561 
10562   // If we didn't find a previous declaration, and this is a reference
10563   // (or friend reference), move to the correct scope.  In C++, we
10564   // also need to do a redeclaration lookup there, just in case
10565   // there's a shadow friend decl.
10566   if (Name && Previous.empty() &&
10567       (TUK == TUK_Reference || TUK == TUK_Friend)) {
10568     if (Invalid) goto CreateNewDecl;
10569     assert(SS.isEmpty());
10570 
10571     if (TUK == TUK_Reference) {
10572       // C++ [basic.scope.pdecl]p5:
10573       //   -- for an elaborated-type-specifier of the form
10574       //
10575       //          class-key identifier
10576       //
10577       //      if the elaborated-type-specifier is used in the
10578       //      decl-specifier-seq or parameter-declaration-clause of a
10579       //      function defined in namespace scope, the identifier is
10580       //      declared as a class-name in the namespace that contains
10581       //      the declaration; otherwise, except as a friend
10582       //      declaration, the identifier is declared in the smallest
10583       //      non-class, non-function-prototype scope that contains the
10584       //      declaration.
10585       //
10586       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
10587       // C structs and unions.
10588       //
10589       // It is an error in C++ to declare (rather than define) an enum
10590       // type, including via an elaborated type specifier.  We'll
10591       // diagnose that later; for now, declare the enum in the same
10592       // scope as we would have picked for any other tag type.
10593       //
10594       // GNU C also supports this behavior as part of its incomplete
10595       // enum types extension, while GNU C++ does not.
10596       //
10597       // Find the context where we'll be declaring the tag.
10598       // FIXME: We would like to maintain the current DeclContext as the
10599       // lexical context,
10600       while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
10601         SearchDC = SearchDC->getParent();
10602 
10603       // Find the scope where we'll be declaring the tag.
10604       while (S->isClassScope() ||
10605              (getLangOpts().CPlusPlus &&
10606               S->isFunctionPrototypeScope()) ||
10607              ((S->getFlags() & Scope::DeclScope) == 0) ||
10608              (S->getEntity() && S->getEntity()->isTransparentContext()))
10609         S = S->getParent();
10610     } else {
10611       assert(TUK == TUK_Friend);
10612       // C++ [namespace.memdef]p3:
10613       //   If a friend declaration in a non-local class first declares a
10614       //   class or function, the friend class or function is a member of
10615       //   the innermost enclosing namespace.
10616       SearchDC = SearchDC->getEnclosingNamespaceContext();
10617     }
10618 
10619     // In C++, we need to do a redeclaration lookup to properly
10620     // diagnose some problems.
10621     if (getLangOpts().CPlusPlus) {
10622       Previous.setRedeclarationKind(ForRedeclaration);
10623       LookupQualifiedName(Previous, SearchDC);
10624     }
10625   }
10626 
10627   if (!Previous.empty()) {
10628     NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
10629 
10630     // It's okay to have a tag decl in the same scope as a typedef
10631     // which hides a tag decl in the same scope.  Finding this
10632     // insanity with a redeclaration lookup can only actually happen
10633     // in C++.
10634     //
10635     // This is also okay for elaborated-type-specifiers, which is
10636     // technically forbidden by the current standard but which is
10637     // okay according to the likely resolution of an open issue;
10638     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
10639     if (getLangOpts().CPlusPlus) {
10640       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
10641         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
10642           TagDecl *Tag = TT->getDecl();
10643           if (Tag->getDeclName() == Name &&
10644               Tag->getDeclContext()->getRedeclContext()
10645                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
10646             PrevDecl = Tag;
10647             Previous.clear();
10648             Previous.addDecl(Tag);
10649             Previous.resolveKind();
10650           }
10651         }
10652       }
10653     }
10654 
10655     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
10656       // If this is a use of a previous tag, or if the tag is already declared
10657       // in the same scope (so that the definition/declaration completes or
10658       // rementions the tag), reuse the decl.
10659       if (TUK == TUK_Reference || TUK == TUK_Friend ||
10660           isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
10661         // Make sure that this wasn't declared as an enum and now used as a
10662         // struct or something similar.
10663         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
10664                                           TUK == TUK_Definition, KWLoc,
10665                                           *Name)) {
10666           bool SafeToContinue
10667             = (PrevTagDecl->getTagKind() != TTK_Enum &&
10668                Kind != TTK_Enum);
10669           if (SafeToContinue)
10670             Diag(KWLoc, diag::err_use_with_wrong_tag)
10671               << Name
10672               << FixItHint::CreateReplacement(SourceRange(KWLoc),
10673                                               PrevTagDecl->getKindName());
10674           else
10675             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
10676           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
10677 
10678           if (SafeToContinue)
10679             Kind = PrevTagDecl->getTagKind();
10680           else {
10681             // Recover by making this an anonymous redefinition.
10682             Name = 0;
10683             Previous.clear();
10684             Invalid = true;
10685           }
10686         }
10687 
10688         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
10689           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
10690 
10691           // If this is an elaborated-type-specifier for a scoped enumeration,
10692           // the 'class' keyword is not necessary and not permitted.
10693           if (TUK == TUK_Reference || TUK == TUK_Friend) {
10694             if (ScopedEnum)
10695               Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
10696                 << PrevEnum->isScoped()
10697                 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
10698             return PrevTagDecl;
10699           }
10700 
10701           QualType EnumUnderlyingTy;
10702           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
10703             EnumUnderlyingTy = TI->getType();
10704           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
10705             EnumUnderlyingTy = QualType(T, 0);
10706 
10707           // All conflicts with previous declarations are recovered by
10708           // returning the previous declaration, unless this is a definition,
10709           // in which case we want the caller to bail out.
10710           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
10711                                      ScopedEnum, EnumUnderlyingTy, PrevEnum))
10712             return TUK == TUK_Declaration ? PrevTagDecl : 0;
10713         }
10714 
10715         // C++11 [class.mem]p1:
10716         //   A member shall not be declared twice in the member-specification,
10717         //   except that a nested class or member class template can be declared
10718         //   and then later defined.
10719         if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
10720             S->isDeclScope(PrevDecl)) {
10721           Diag(NameLoc, diag::ext_member_redeclared);
10722           Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
10723         }
10724 
10725         if (!Invalid) {
10726           // If this is a use, just return the declaration we found.
10727 
10728           // FIXME: In the future, return a variant or some other clue
10729           // for the consumer of this Decl to know it doesn't own it.
10730           // For our current ASTs this shouldn't be a problem, but will
10731           // need to be changed with DeclGroups.
10732           if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
10733                getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
10734             return PrevTagDecl;
10735 
10736           // Diagnose attempts to redefine a tag.
10737           if (TUK == TUK_Definition) {
10738             if (TagDecl *Def = PrevTagDecl->getDefinition()) {
10739               // If we're defining a specialization and the previous definition
10740               // is from an implicit instantiation, don't emit an error
10741               // here; we'll catch this in the general case below.
10742               bool IsExplicitSpecializationAfterInstantiation = false;
10743               if (isExplicitSpecialization) {
10744                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
10745                   IsExplicitSpecializationAfterInstantiation =
10746                     RD->getTemplateSpecializationKind() !=
10747                     TSK_ExplicitSpecialization;
10748                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
10749                   IsExplicitSpecializationAfterInstantiation =
10750                     ED->getTemplateSpecializationKind() !=
10751                     TSK_ExplicitSpecialization;
10752               }
10753 
10754               if (!IsExplicitSpecializationAfterInstantiation) {
10755                 // A redeclaration in function prototype scope in C isn't
10756                 // visible elsewhere, so merely issue a warning.
10757                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
10758                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
10759                 else
10760                   Diag(NameLoc, diag::err_redefinition) << Name;
10761                 Diag(Def->getLocation(), diag::note_previous_definition);
10762                 // If this is a redefinition, recover by making this
10763                 // struct be anonymous, which will make any later
10764                 // references get the previous definition.
10765                 Name = 0;
10766                 Previous.clear();
10767                 Invalid = true;
10768               }
10769             } else {
10770               // If the type is currently being defined, complain
10771               // about a nested redefinition.
10772               const TagType *Tag
10773                 = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
10774               if (Tag->isBeingDefined()) {
10775                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
10776                 Diag(PrevTagDecl->getLocation(),
10777                      diag::note_previous_definition);
10778                 Name = 0;
10779                 Previous.clear();
10780                 Invalid = true;
10781               }
10782             }
10783 
10784             // Okay, this is definition of a previously declared or referenced
10785             // tag PrevDecl. We're going to create a new Decl for it.
10786           }
10787         }
10788         // If we get here we have (another) forward declaration or we
10789         // have a definition.  Just create a new decl.
10790 
10791       } else {
10792         // If we get here, this is a definition of a new tag type in a nested
10793         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
10794         // new decl/type.  We set PrevDecl to NULL so that the entities
10795         // have distinct types.
10796         Previous.clear();
10797       }
10798       // If we get here, we're going to create a new Decl. If PrevDecl
10799       // is non-NULL, it's a definition of the tag declared by
10800       // PrevDecl. If it's NULL, we have a new definition.
10801 
10802 
10803     // Otherwise, PrevDecl is not a tag, but was found with tag
10804     // lookup.  This is only actually possible in C++, where a few
10805     // things like templates still live in the tag namespace.
10806     } else {
10807       // Use a better diagnostic if an elaborated-type-specifier
10808       // found the wrong kind of type on the first
10809       // (non-redeclaration) lookup.
10810       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
10811           !Previous.isForRedeclaration()) {
10812         unsigned Kind = 0;
10813         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
10814         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
10815         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
10816         Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
10817         Diag(PrevDecl->getLocation(), diag::note_declared_at);
10818         Invalid = true;
10819 
10820       // Otherwise, only diagnose if the declaration is in scope.
10821       } else if (!isDeclInScope(PrevDecl, SearchDC, S,
10822                                 isExplicitSpecialization)) {
10823         // do nothing
10824 
10825       // Diagnose implicit declarations introduced by elaborated types.
10826       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
10827         unsigned Kind = 0;
10828         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
10829         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
10830         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
10831         Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
10832         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
10833         Invalid = true;
10834 
10835       // Otherwise it's a declaration.  Call out a particularly common
10836       // case here.
10837       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
10838         unsigned Kind = 0;
10839         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
10840         Diag(NameLoc, diag::err_tag_definition_of_typedef)
10841           << Name << Kind << TND->getUnderlyingType();
10842         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
10843         Invalid = true;
10844 
10845       // Otherwise, diagnose.
10846       } else {
10847         // The tag name clashes with something else in the target scope,
10848         // issue an error and recover by making this tag be anonymous.
10849         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
10850         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10851         Name = 0;
10852         Invalid = true;
10853       }
10854 
10855       // The existing declaration isn't relevant to us; we're in a
10856       // new scope, so clear out the previous declaration.
10857       Previous.clear();
10858     }
10859   }
10860 
10861 CreateNewDecl:
10862 
10863   TagDecl *PrevDecl = 0;
10864   if (Previous.isSingleResult())
10865     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
10866 
10867   // If there is an identifier, use the location of the identifier as the
10868   // location of the decl, otherwise use the location of the struct/union
10869   // keyword.
10870   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
10871 
10872   // Otherwise, create a new declaration. If there is a previous
10873   // declaration of the same entity, the two will be linked via
10874   // PrevDecl.
10875   TagDecl *New;
10876 
10877   bool IsForwardReference = false;
10878   if (Kind == TTK_Enum) {
10879     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
10880     // enum X { A, B, C } D;    D should chain to X.
10881     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
10882                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
10883                            ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
10884     // If this is an undefined enum, warn.
10885     if (TUK != TUK_Definition && !Invalid) {
10886       TagDecl *Def;
10887       if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
10888           cast<EnumDecl>(New)->isFixed()) {
10889         // C++0x: 7.2p2: opaque-enum-declaration.
10890         // Conflicts are diagnosed above. Do nothing.
10891       }
10892       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
10893         Diag(Loc, diag::ext_forward_ref_enum_def)
10894           << New;
10895         Diag(Def->getLocation(), diag::note_previous_definition);
10896       } else {
10897         unsigned DiagID = diag::ext_forward_ref_enum;
10898         if (getLangOpts().MicrosoftMode)
10899           DiagID = diag::ext_ms_forward_ref_enum;
10900         else if (getLangOpts().CPlusPlus)
10901           DiagID = diag::err_forward_ref_enum;
10902         Diag(Loc, DiagID);
10903 
10904         // If this is a forward-declared reference to an enumeration, make a
10905         // note of it; we won't actually be introducing the declaration into
10906         // the declaration context.
10907         if (TUK == TUK_Reference)
10908           IsForwardReference = true;
10909       }
10910     }
10911 
10912     if (EnumUnderlying) {
10913       EnumDecl *ED = cast<EnumDecl>(New);
10914       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
10915         ED->setIntegerTypeSourceInfo(TI);
10916       else
10917         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
10918       ED->setPromotionType(ED->getIntegerType());
10919     }
10920 
10921   } else {
10922     // struct/union/class
10923 
10924     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
10925     // struct X { int A; } D;    D should chain to X.
10926     if (getLangOpts().CPlusPlus) {
10927       // FIXME: Look for a way to use RecordDecl for simple structs.
10928       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
10929                                   cast_or_null<CXXRecordDecl>(PrevDecl));
10930 
10931       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
10932         StdBadAlloc = cast<CXXRecordDecl>(New);
10933     } else
10934       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
10935                                cast_or_null<RecordDecl>(PrevDecl));
10936   }
10937 
10938   // Maybe add qualifier info.
10939   if (SS.isNotEmpty()) {
10940     if (SS.isSet()) {
10941       // If this is either a declaration or a definition, check the
10942       // nested-name-specifier against the current context. We don't do this
10943       // for explicit specializations, because they have similar checking
10944       // (with more specific diagnostics) in the call to
10945       // CheckMemberSpecialization, below.
10946       if (!isExplicitSpecialization &&
10947           (TUK == TUK_Definition || TUK == TUK_Declaration) &&
10948           diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
10949         Invalid = true;
10950 
10951       New->setQualifierInfo(SS.getWithLocInContext(Context));
10952       if (TemplateParameterLists.size() > 0) {
10953         New->setTemplateParameterListsInfo(Context,
10954                                            TemplateParameterLists.size(),
10955                                            TemplateParameterLists.data());
10956       }
10957     }
10958     else
10959       Invalid = true;
10960   }
10961 
10962   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
10963     // Add alignment attributes if necessary; these attributes are checked when
10964     // the ASTContext lays out the structure.
10965     //
10966     // It is important for implementing the correct semantics that this
10967     // happen here (in act on tag decl). The #pragma pack stack is
10968     // maintained as a result of parser callbacks which can occur at
10969     // many points during the parsing of a struct declaration (because
10970     // the #pragma tokens are effectively skipped over during the
10971     // parsing of the struct).
10972     if (TUK == TUK_Definition) {
10973       AddAlignmentAttributesForRecord(RD);
10974       AddMsStructLayoutForRecord(RD);
10975     }
10976   }
10977 
10978   if (ModulePrivateLoc.isValid()) {
10979     if (isExplicitSpecialization)
10980       Diag(New->getLocation(), diag::err_module_private_specialization)
10981         << 2
10982         << FixItHint::CreateRemoval(ModulePrivateLoc);
10983     // __module_private__ does not apply to local classes. However, we only
10984     // diagnose this as an error when the declaration specifiers are
10985     // freestanding. Here, we just ignore the __module_private__.
10986     else if (!SearchDC->isFunctionOrMethod())
10987       New->setModulePrivate();
10988   }
10989 
10990   // If this is a specialization of a member class (of a class template),
10991   // check the specialization.
10992   if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
10993     Invalid = true;
10994 
10995   if (Invalid)
10996     New->setInvalidDecl();
10997 
10998   if (Attr)
10999     ProcessDeclAttributeList(S, New, Attr);
11000 
11001   // If we're declaring or defining a tag in function prototype scope
11002   // in C, note that this type can only be used within the function.
11003   if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
11004     Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
11005 
11006   // Set the lexical context. If the tag has a C++ scope specifier, the
11007   // lexical context will be different from the semantic context.
11008   New->setLexicalDeclContext(CurContext);
11009 
11010   // Mark this as a friend decl if applicable.
11011   // In Microsoft mode, a friend declaration also acts as a forward
11012   // declaration so we always pass true to setObjectOfFriendDecl to make
11013   // the tag name visible.
11014   if (TUK == TUK_Friend)
11015     New->setObjectOfFriendDecl(!FriendSawTagOutsideEnclosingNamespace &&
11016                                getLangOpts().MicrosoftExt);
11017 
11018   // Set the access specifier.
11019   if (!Invalid && SearchDC->isRecord())
11020     SetMemberAccessSpecifier(New, PrevDecl, AS);
11021 
11022   if (TUK == TUK_Definition)
11023     New->startDefinition();
11024 
11025   // If this has an identifier, add it to the scope stack.
11026   if (TUK == TUK_Friend) {
11027     // We might be replacing an existing declaration in the lookup tables;
11028     // if so, borrow its access specifier.
11029     if (PrevDecl)
11030       New->setAccess(PrevDecl->getAccess());
11031 
11032     DeclContext *DC = New->getDeclContext()->getRedeclContext();
11033     DC->makeDeclVisibleInContext(New);
11034     if (Name) // can be null along some error paths
11035       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
11036         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
11037   } else if (Name) {
11038     S = getNonFieldDeclScope(S);
11039     PushOnScopeChains(New, S, !IsForwardReference);
11040     if (IsForwardReference)
11041       SearchDC->makeDeclVisibleInContext(New);
11042 
11043   } else {
11044     CurContext->addDecl(New);
11045   }
11046 
11047   // If this is the C FILE type, notify the AST context.
11048   if (IdentifierInfo *II = New->getIdentifier())
11049     if (!New->isInvalidDecl() &&
11050         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
11051         II->isStr("FILE"))
11052       Context.setFILEDecl(New);
11053 
11054   // If we were in function prototype scope (and not in C++ mode), add this
11055   // tag to the list of decls to inject into the function definition scope.
11056   if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
11057       InFunctionDeclarator && Name)
11058     DeclsInPrototypeScope.push_back(New);
11059 
11060   if (PrevDecl)
11061     mergeDeclAttributes(New, PrevDecl);
11062 
11063   // If there's a #pragma GCC visibility in scope, set the visibility of this
11064   // record.
11065   AddPushedVisibilityAttribute(New);
11066 
11067   OwnedDecl = true;
11068   // In C++, don't return an invalid declaration. We can't recover well from
11069   // the cases where we make the type anonymous.
11070   return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
11071 }
11072 
11073 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
11074   AdjustDeclIfTemplate(TagD);
11075   TagDecl *Tag = cast<TagDecl>(TagD);
11076 
11077   // Enter the tag context.
11078   PushDeclContext(S, Tag);
11079 
11080   ActOnDocumentableDecl(TagD);
11081 
11082   // If there's a #pragma GCC visibility in scope, set the visibility of this
11083   // record.
11084   AddPushedVisibilityAttribute(Tag);
11085 }
11086 
11087 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
11088   assert(isa<ObjCContainerDecl>(IDecl) &&
11089          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
11090   DeclContext *OCD = cast<DeclContext>(IDecl);
11091   assert(getContainingDC(OCD) == CurContext &&
11092       "The next DeclContext should be lexically contained in the current one.");
11093   CurContext = OCD;
11094   return IDecl;
11095 }
11096 
11097 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
11098                                            SourceLocation FinalLoc,
11099                                            bool IsFinalSpelledSealed,
11100                                            SourceLocation LBraceLoc) {
11101   AdjustDeclIfTemplate(TagD);
11102   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
11103 
11104   FieldCollector->StartClass();
11105 
11106   if (!Record->getIdentifier())
11107     return;
11108 
11109   if (FinalLoc.isValid())
11110     Record->addAttr(new (Context)
11111                     FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
11112 
11113   // C++ [class]p2:
11114   //   [...] The class-name is also inserted into the scope of the
11115   //   class itself; this is known as the injected-class-name. For
11116   //   purposes of access checking, the injected-class-name is treated
11117   //   as if it were a public member name.
11118   CXXRecordDecl *InjectedClassName
11119     = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
11120                             Record->getLocStart(), Record->getLocation(),
11121                             Record->getIdentifier(),
11122                             /*PrevDecl=*/0,
11123                             /*DelayTypeCreation=*/true);
11124   Context.getTypeDeclType(InjectedClassName, Record);
11125   InjectedClassName->setImplicit();
11126   InjectedClassName->setAccess(AS_public);
11127   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
11128       InjectedClassName->setDescribedClassTemplate(Template);
11129   PushOnScopeChains(InjectedClassName, S);
11130   assert(InjectedClassName->isInjectedClassName() &&
11131          "Broken injected-class-name");
11132 }
11133 
11134 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
11135                                     SourceLocation RBraceLoc) {
11136   AdjustDeclIfTemplate(TagD);
11137   TagDecl *Tag = cast<TagDecl>(TagD);
11138   Tag->setRBraceLoc(RBraceLoc);
11139 
11140   // Make sure we "complete" the definition even it is invalid.
11141   if (Tag->isBeingDefined()) {
11142     assert(Tag->isInvalidDecl() && "We should already have completed it");
11143     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
11144       RD->completeDefinition();
11145   }
11146 
11147   if (isa<CXXRecordDecl>(Tag))
11148     FieldCollector->FinishClass();
11149 
11150   // Exit this scope of this tag's definition.
11151   PopDeclContext();
11152 
11153   if (getCurLexicalContext()->isObjCContainer() &&
11154       Tag->getDeclContext()->isFileContext())
11155     Tag->setTopLevelDeclInObjCContainer();
11156 
11157   // Notify the consumer that we've defined a tag.
11158   if (!Tag->isInvalidDecl())
11159     Consumer.HandleTagDeclDefinition(Tag);
11160 }
11161 
11162 void Sema::ActOnObjCContainerFinishDefinition() {
11163   // Exit this scope of this interface definition.
11164   PopDeclContext();
11165 }
11166 
11167 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
11168   assert(DC == CurContext && "Mismatch of container contexts");
11169   OriginalLexicalContext = DC;
11170   ActOnObjCContainerFinishDefinition();
11171 }
11172 
11173 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
11174   ActOnObjCContainerStartDefinition(cast<Decl>(DC));
11175   OriginalLexicalContext = 0;
11176 }
11177 
11178 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
11179   AdjustDeclIfTemplate(TagD);
11180   TagDecl *Tag = cast<TagDecl>(TagD);
11181   Tag->setInvalidDecl();
11182 
11183   // Make sure we "complete" the definition even it is invalid.
11184   if (Tag->isBeingDefined()) {
11185     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
11186       RD->completeDefinition();
11187   }
11188 
11189   // We're undoing ActOnTagStartDefinition here, not
11190   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
11191   // the FieldCollector.
11192 
11193   PopDeclContext();
11194 }
11195 
11196 // Note that FieldName may be null for anonymous bitfields.
11197 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
11198                                 IdentifierInfo *FieldName,
11199                                 QualType FieldTy, bool IsMsStruct,
11200                                 Expr *BitWidth, bool *ZeroWidth) {
11201   // Default to true; that shouldn't confuse checks for emptiness
11202   if (ZeroWidth)
11203     *ZeroWidth = true;
11204 
11205   // C99 6.7.2.1p4 - verify the field type.
11206   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
11207   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
11208     // Handle incomplete types with specific error.
11209     if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
11210       return ExprError();
11211     if (FieldName)
11212       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
11213         << FieldName << FieldTy << BitWidth->getSourceRange();
11214     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
11215       << FieldTy << BitWidth->getSourceRange();
11216   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
11217                                              UPPC_BitFieldWidth))
11218     return ExprError();
11219 
11220   // If the bit-width is type- or value-dependent, don't try to check
11221   // it now.
11222   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
11223     return Owned(BitWidth);
11224 
11225   llvm::APSInt Value;
11226   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
11227   if (ICE.isInvalid())
11228     return ICE;
11229   BitWidth = ICE.take();
11230 
11231   if (Value != 0 && ZeroWidth)
11232     *ZeroWidth = false;
11233 
11234   // Zero-width bitfield is ok for anonymous field.
11235   if (Value == 0 && FieldName)
11236     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
11237 
11238   if (Value.isSigned() && Value.isNegative()) {
11239     if (FieldName)
11240       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
11241                << FieldName << Value.toString(10);
11242     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
11243       << Value.toString(10);
11244   }
11245 
11246   if (!FieldTy->isDependentType()) {
11247     uint64_t TypeSize = Context.getTypeSize(FieldTy);
11248     if (Value.getZExtValue() > TypeSize) {
11249       if (!getLangOpts().CPlusPlus || IsMsStruct) {
11250         if (FieldName)
11251           return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
11252             << FieldName << (unsigned)Value.getZExtValue()
11253             << (unsigned)TypeSize;
11254 
11255         return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
11256           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
11257       }
11258 
11259       if (FieldName)
11260         Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
11261           << FieldName << (unsigned)Value.getZExtValue()
11262           << (unsigned)TypeSize;
11263       else
11264         Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
11265           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
11266     }
11267   }
11268 
11269   return Owned(BitWidth);
11270 }
11271 
11272 /// ActOnField - Each field of a C struct/union is passed into this in order
11273 /// to create a FieldDecl object for it.
11274 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
11275                        Declarator &D, Expr *BitfieldWidth) {
11276   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
11277                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
11278                                /*InitStyle=*/ICIS_NoInit, AS_public);
11279   return Res;
11280 }
11281 
11282 /// HandleField - Analyze a field of a C struct or a C++ data member.
11283 ///
11284 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
11285                              SourceLocation DeclStart,
11286                              Declarator &D, Expr *BitWidth,
11287                              InClassInitStyle InitStyle,
11288                              AccessSpecifier AS) {
11289   IdentifierInfo *II = D.getIdentifier();
11290   SourceLocation Loc = DeclStart;
11291   if (II) Loc = D.getIdentifierLoc();
11292 
11293   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11294   QualType T = TInfo->getType();
11295   if (getLangOpts().CPlusPlus) {
11296     CheckExtraCXXDefaultArguments(D);
11297 
11298     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
11299                                         UPPC_DataMemberType)) {
11300       D.setInvalidType();
11301       T = Context.IntTy;
11302       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
11303     }
11304   }
11305 
11306   // TR 18037 does not allow fields to be declared with address spaces.
11307   if (T.getQualifiers().hasAddressSpace()) {
11308     Diag(Loc, diag::err_field_with_address_space);
11309     D.setInvalidType();
11310   }
11311 
11312   // OpenCL 1.2 spec, s6.9 r:
11313   // The event type cannot be used to declare a structure or union field.
11314   if (LangOpts.OpenCL && T->isEventT()) {
11315     Diag(Loc, diag::err_event_t_struct_field);
11316     D.setInvalidType();
11317   }
11318 
11319   DiagnoseFunctionSpecifiers(D.getDeclSpec());
11320 
11321   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
11322     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
11323          diag::err_invalid_thread)
11324       << DeclSpec::getSpecifierName(TSCS);
11325 
11326   // Check to see if this name was declared as a member previously
11327   NamedDecl *PrevDecl = 0;
11328   LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
11329   LookupName(Previous, S);
11330   switch (Previous.getResultKind()) {
11331     case LookupResult::Found:
11332     case LookupResult::FoundUnresolvedValue:
11333       PrevDecl = Previous.getAsSingle<NamedDecl>();
11334       break;
11335 
11336     case LookupResult::FoundOverloaded:
11337       PrevDecl = Previous.getRepresentativeDecl();
11338       break;
11339 
11340     case LookupResult::NotFound:
11341     case LookupResult::NotFoundInCurrentInstantiation:
11342     case LookupResult::Ambiguous:
11343       break;
11344   }
11345   Previous.suppressDiagnostics();
11346 
11347   if (PrevDecl && PrevDecl->isTemplateParameter()) {
11348     // Maybe we will complain about the shadowed template parameter.
11349     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
11350     // Just pretend that we didn't see the previous declaration.
11351     PrevDecl = 0;
11352   }
11353 
11354   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
11355     PrevDecl = 0;
11356 
11357   bool Mutable
11358     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
11359   SourceLocation TSSL = D.getLocStart();
11360   FieldDecl *NewFD
11361     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
11362                      TSSL, AS, PrevDecl, &D);
11363 
11364   if (NewFD->isInvalidDecl())
11365     Record->setInvalidDecl();
11366 
11367   if (D.getDeclSpec().isModulePrivateSpecified())
11368     NewFD->setModulePrivate();
11369 
11370   if (NewFD->isInvalidDecl() && PrevDecl) {
11371     // Don't introduce NewFD into scope; there's already something
11372     // with the same name in the same scope.
11373   } else if (II) {
11374     PushOnScopeChains(NewFD, S);
11375   } else
11376     Record->addDecl(NewFD);
11377 
11378   return NewFD;
11379 }
11380 
11381 /// \brief Build a new FieldDecl and check its well-formedness.
11382 ///
11383 /// This routine builds a new FieldDecl given the fields name, type,
11384 /// record, etc. \p PrevDecl should refer to any previous declaration
11385 /// with the same name and in the same scope as the field to be
11386 /// created.
11387 ///
11388 /// \returns a new FieldDecl.
11389 ///
11390 /// \todo The Declarator argument is a hack. It will be removed once
11391 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
11392                                 TypeSourceInfo *TInfo,
11393                                 RecordDecl *Record, SourceLocation Loc,
11394                                 bool Mutable, Expr *BitWidth,
11395                                 InClassInitStyle InitStyle,
11396                                 SourceLocation TSSL,
11397                                 AccessSpecifier AS, NamedDecl *PrevDecl,
11398                                 Declarator *D) {
11399   IdentifierInfo *II = Name.getAsIdentifierInfo();
11400   bool InvalidDecl = false;
11401   if (D) InvalidDecl = D->isInvalidType();
11402 
11403   // If we receive a broken type, recover by assuming 'int' and
11404   // marking this declaration as invalid.
11405   if (T.isNull()) {
11406     InvalidDecl = true;
11407     T = Context.IntTy;
11408   }
11409 
11410   QualType EltTy = Context.getBaseElementType(T);
11411   if (!EltTy->isDependentType()) {
11412     if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
11413       // Fields of incomplete type force their record to be invalid.
11414       Record->setInvalidDecl();
11415       InvalidDecl = true;
11416     } else {
11417       NamedDecl *Def;
11418       EltTy->isIncompleteType(&Def);
11419       if (Def && Def->isInvalidDecl()) {
11420         Record->setInvalidDecl();
11421         InvalidDecl = true;
11422       }
11423     }
11424   }
11425 
11426   // OpenCL v1.2 s6.9.c: bitfields are not supported.
11427   if (BitWidth && getLangOpts().OpenCL) {
11428     Diag(Loc, diag::err_opencl_bitfields);
11429     InvalidDecl = true;
11430   }
11431 
11432   // C99 6.7.2.1p8: A member of a structure or union may have any type other
11433   // than a variably modified type.
11434   if (!InvalidDecl && T->isVariablyModifiedType()) {
11435     bool SizeIsNegative;
11436     llvm::APSInt Oversized;
11437 
11438     TypeSourceInfo *FixedTInfo =
11439       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
11440                                                     SizeIsNegative,
11441                                                     Oversized);
11442     if (FixedTInfo) {
11443       Diag(Loc, diag::warn_illegal_constant_array_size);
11444       TInfo = FixedTInfo;
11445       T = FixedTInfo->getType();
11446     } else {
11447       if (SizeIsNegative)
11448         Diag(Loc, diag::err_typecheck_negative_array_size);
11449       else if (Oversized.getBoolValue())
11450         Diag(Loc, diag::err_array_too_large)
11451           << Oversized.toString(10);
11452       else
11453         Diag(Loc, diag::err_typecheck_field_variable_size);
11454       InvalidDecl = true;
11455     }
11456   }
11457 
11458   // Fields can not have abstract class types
11459   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
11460                                              diag::err_abstract_type_in_decl,
11461                                              AbstractFieldType))
11462     InvalidDecl = true;
11463 
11464   bool ZeroWidth = false;
11465   // If this is declared as a bit-field, check the bit-field.
11466   if (!InvalidDecl && BitWidth) {
11467     BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
11468                               &ZeroWidth).take();
11469     if (!BitWidth) {
11470       InvalidDecl = true;
11471       BitWidth = 0;
11472       ZeroWidth = false;
11473     }
11474   }
11475 
11476   // Check that 'mutable' is consistent with the type of the declaration.
11477   if (!InvalidDecl && Mutable) {
11478     unsigned DiagID = 0;
11479     if (T->isReferenceType())
11480       DiagID = diag::err_mutable_reference;
11481     else if (T.isConstQualified())
11482       DiagID = diag::err_mutable_const;
11483 
11484     if (DiagID) {
11485       SourceLocation ErrLoc = Loc;
11486       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
11487         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
11488       Diag(ErrLoc, DiagID);
11489       Mutable = false;
11490       InvalidDecl = true;
11491     }
11492   }
11493 
11494   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
11495                                        BitWidth, Mutable, InitStyle);
11496   if (InvalidDecl)
11497     NewFD->setInvalidDecl();
11498 
11499   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
11500     Diag(Loc, diag::err_duplicate_member) << II;
11501     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
11502     NewFD->setInvalidDecl();
11503   }
11504 
11505   if (!InvalidDecl && getLangOpts().CPlusPlus) {
11506     if (Record->isUnion()) {
11507       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
11508         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
11509         if (RDecl->getDefinition()) {
11510           // C++ [class.union]p1: An object of a class with a non-trivial
11511           // constructor, a non-trivial copy constructor, a non-trivial
11512           // destructor, or a non-trivial copy assignment operator
11513           // cannot be a member of a union, nor can an array of such
11514           // objects.
11515           if (CheckNontrivialField(NewFD))
11516             NewFD->setInvalidDecl();
11517         }
11518       }
11519 
11520       // C++ [class.union]p1: If a union contains a member of reference type,
11521       // the program is ill-formed, except when compiling with MSVC extensions
11522       // enabled.
11523       if (EltTy->isReferenceType()) {
11524         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
11525                                     diag::ext_union_member_of_reference_type :
11526                                     diag::err_union_member_of_reference_type)
11527           << NewFD->getDeclName() << EltTy;
11528         if (!getLangOpts().MicrosoftExt)
11529           NewFD->setInvalidDecl();
11530       }
11531     }
11532   }
11533 
11534   // FIXME: We need to pass in the attributes given an AST
11535   // representation, not a parser representation.
11536   if (D) {
11537     // FIXME: The current scope is almost... but not entirely... correct here.
11538     ProcessDeclAttributes(getCurScope(), NewFD, *D);
11539 
11540     if (NewFD->hasAttrs())
11541       CheckAlignasUnderalignment(NewFD);
11542   }
11543 
11544   // In auto-retain/release, infer strong retension for fields of
11545   // retainable type.
11546   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
11547     NewFD->setInvalidDecl();
11548 
11549   if (T.isObjCGCWeak())
11550     Diag(Loc, diag::warn_attribute_weak_on_field);
11551 
11552   NewFD->setAccess(AS);
11553   return NewFD;
11554 }
11555 
11556 bool Sema::CheckNontrivialField(FieldDecl *FD) {
11557   assert(FD);
11558   assert(getLangOpts().CPlusPlus && "valid check only for C++");
11559 
11560   if (FD->isInvalidDecl() || FD->getType()->isDependentType())
11561     return false;
11562 
11563   QualType EltTy = Context.getBaseElementType(FD->getType());
11564   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
11565     CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
11566     if (RDecl->getDefinition()) {
11567       // We check for copy constructors before constructors
11568       // because otherwise we'll never get complaints about
11569       // copy constructors.
11570 
11571       CXXSpecialMember member = CXXInvalid;
11572       // We're required to check for any non-trivial constructors. Since the
11573       // implicit default constructor is suppressed if there are any
11574       // user-declared constructors, we just need to check that there is a
11575       // trivial default constructor and a trivial copy constructor. (We don't
11576       // worry about move constructors here, since this is a C++98 check.)
11577       if (RDecl->hasNonTrivialCopyConstructor())
11578         member = CXXCopyConstructor;
11579       else if (!RDecl->hasTrivialDefaultConstructor())
11580         member = CXXDefaultConstructor;
11581       else if (RDecl->hasNonTrivialCopyAssignment())
11582         member = CXXCopyAssignment;
11583       else if (RDecl->hasNonTrivialDestructor())
11584         member = CXXDestructor;
11585 
11586       if (member != CXXInvalid) {
11587         if (!getLangOpts().CPlusPlus11 &&
11588             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
11589           // Objective-C++ ARC: it is an error to have a non-trivial field of
11590           // a union. However, system headers in Objective-C programs
11591           // occasionally have Objective-C lifetime objects within unions,
11592           // and rather than cause the program to fail, we make those
11593           // members unavailable.
11594           SourceLocation Loc = FD->getLocation();
11595           if (getSourceManager().isInSystemHeader(Loc)) {
11596             if (!FD->hasAttr<UnavailableAttr>())
11597               FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
11598                                   "this system field has retaining ownership"));
11599             return false;
11600           }
11601         }
11602 
11603         Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
11604                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
11605                diag::err_illegal_union_or_anon_struct_member)
11606           << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
11607         DiagnoseNontrivial(RDecl, member);
11608         return !getLangOpts().CPlusPlus11;
11609       }
11610     }
11611   }
11612 
11613   return false;
11614 }
11615 
11616 /// TranslateIvarVisibility - Translate visibility from a token ID to an
11617 ///  AST enum value.
11618 static ObjCIvarDecl::AccessControl
11619 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
11620   switch (ivarVisibility) {
11621   default: llvm_unreachable("Unknown visitibility kind");
11622   case tok::objc_private: return ObjCIvarDecl::Private;
11623   case tok::objc_public: return ObjCIvarDecl::Public;
11624   case tok::objc_protected: return ObjCIvarDecl::Protected;
11625   case tok::objc_package: return ObjCIvarDecl::Package;
11626   }
11627 }
11628 
11629 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
11630 /// in order to create an IvarDecl object for it.
11631 Decl *Sema::ActOnIvar(Scope *S,
11632                                 SourceLocation DeclStart,
11633                                 Declarator &D, Expr *BitfieldWidth,
11634                                 tok::ObjCKeywordKind Visibility) {
11635 
11636   IdentifierInfo *II = D.getIdentifier();
11637   Expr *BitWidth = (Expr*)BitfieldWidth;
11638   SourceLocation Loc = DeclStart;
11639   if (II) Loc = D.getIdentifierLoc();
11640 
11641   // FIXME: Unnamed fields can be handled in various different ways, for
11642   // example, unnamed unions inject all members into the struct namespace!
11643 
11644   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11645   QualType T = TInfo->getType();
11646 
11647   if (BitWidth) {
11648     // 6.7.2.1p3, 6.7.2.1p4
11649     BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).take();
11650     if (!BitWidth)
11651       D.setInvalidType();
11652   } else {
11653     // Not a bitfield.
11654 
11655     // validate II.
11656 
11657   }
11658   if (T->isReferenceType()) {
11659     Diag(Loc, diag::err_ivar_reference_type);
11660     D.setInvalidType();
11661   }
11662   // C99 6.7.2.1p8: A member of a structure or union may have any type other
11663   // than a variably modified type.
11664   else if (T->isVariablyModifiedType()) {
11665     Diag(Loc, diag::err_typecheck_ivar_variable_size);
11666     D.setInvalidType();
11667   }
11668 
11669   // Get the visibility (access control) for this ivar.
11670   ObjCIvarDecl::AccessControl ac =
11671     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
11672                                         : ObjCIvarDecl::None;
11673   // Must set ivar's DeclContext to its enclosing interface.
11674   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
11675   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
11676     return 0;
11677   ObjCContainerDecl *EnclosingContext;
11678   if (ObjCImplementationDecl *IMPDecl =
11679       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
11680     if (LangOpts.ObjCRuntime.isFragile()) {
11681     // Case of ivar declared in an implementation. Context is that of its class.
11682       EnclosingContext = IMPDecl->getClassInterface();
11683       assert(EnclosingContext && "Implementation has no class interface!");
11684     }
11685     else
11686       EnclosingContext = EnclosingDecl;
11687   } else {
11688     if (ObjCCategoryDecl *CDecl =
11689         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
11690       if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
11691         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
11692         return 0;
11693       }
11694     }
11695     EnclosingContext = EnclosingDecl;
11696   }
11697 
11698   // Construct the decl.
11699   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
11700                                              DeclStart, Loc, II, T,
11701                                              TInfo, ac, (Expr *)BitfieldWidth);
11702 
11703   if (II) {
11704     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
11705                                            ForRedeclaration);
11706     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
11707         && !isa<TagDecl>(PrevDecl)) {
11708       Diag(Loc, diag::err_duplicate_member) << II;
11709       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
11710       NewID->setInvalidDecl();
11711     }
11712   }
11713 
11714   // Process attributes attached to the ivar.
11715   ProcessDeclAttributes(S, NewID, D);
11716 
11717   if (D.isInvalidType())
11718     NewID->setInvalidDecl();
11719 
11720   // In ARC, infer 'retaining' for ivars of retainable type.
11721   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
11722     NewID->setInvalidDecl();
11723 
11724   if (D.getDeclSpec().isModulePrivateSpecified())
11725     NewID->setModulePrivate();
11726 
11727   if (II) {
11728     // FIXME: When interfaces are DeclContexts, we'll need to add
11729     // these to the interface.
11730     S->AddDecl(NewID);
11731     IdResolver.AddDecl(NewID);
11732   }
11733 
11734   if (LangOpts.ObjCRuntime.isNonFragile() &&
11735       !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
11736     Diag(Loc, diag::warn_ivars_in_interface);
11737 
11738   return NewID;
11739 }
11740 
11741 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
11742 /// class and class extensions. For every class \@interface and class
11743 /// extension \@interface, if the last ivar is a bitfield of any type,
11744 /// then add an implicit `char :0` ivar to the end of that interface.
11745 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
11746                              SmallVectorImpl<Decl *> &AllIvarDecls) {
11747   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
11748     return;
11749 
11750   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
11751   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
11752 
11753   if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
11754     return;
11755   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
11756   if (!ID) {
11757     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
11758       if (!CD->IsClassExtension())
11759         return;
11760     }
11761     // No need to add this to end of @implementation.
11762     else
11763       return;
11764   }
11765   // All conditions are met. Add a new bitfield to the tail end of ivars.
11766   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
11767   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
11768 
11769   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
11770                               DeclLoc, DeclLoc, 0,
11771                               Context.CharTy,
11772                               Context.getTrivialTypeSourceInfo(Context.CharTy,
11773                                                                DeclLoc),
11774                               ObjCIvarDecl::Private, BW,
11775                               true);
11776   AllIvarDecls.push_back(Ivar);
11777 }
11778 
11779 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
11780                        ArrayRef<Decl *> Fields, SourceLocation LBrac,
11781                        SourceLocation RBrac, AttributeList *Attr) {
11782   assert(EnclosingDecl && "missing record or interface decl");
11783 
11784   // If this is an Objective-C @implementation or category and we have
11785   // new fields here we should reset the layout of the interface since
11786   // it will now change.
11787   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
11788     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
11789     switch (DC->getKind()) {
11790     default: break;
11791     case Decl::ObjCCategory:
11792       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
11793       break;
11794     case Decl::ObjCImplementation:
11795       Context.
11796         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
11797       break;
11798     }
11799   }
11800 
11801   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
11802 
11803   // Start counting up the number of named members; make sure to include
11804   // members of anonymous structs and unions in the total.
11805   unsigned NumNamedMembers = 0;
11806   if (Record) {
11807     for (RecordDecl::decl_iterator i = Record->decls_begin(),
11808                                    e = Record->decls_end(); i != e; i++) {
11809       if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
11810         if (IFD->getDeclName())
11811           ++NumNamedMembers;
11812     }
11813   }
11814 
11815   // Verify that all the fields are okay.
11816   SmallVector<FieldDecl*, 32> RecFields;
11817 
11818   bool ARCErrReported = false;
11819   for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
11820        i != end; ++i) {
11821     FieldDecl *FD = cast<FieldDecl>(*i);
11822 
11823     // Get the type for the field.
11824     const Type *FDTy = FD->getType().getTypePtr();
11825 
11826     if (!FD->isAnonymousStructOrUnion()) {
11827       // Remember all fields written by the user.
11828       RecFields.push_back(FD);
11829     }
11830 
11831     // If the field is already invalid for some reason, don't emit more
11832     // diagnostics about it.
11833     if (FD->isInvalidDecl()) {
11834       EnclosingDecl->setInvalidDecl();
11835       continue;
11836     }
11837 
11838     // C99 6.7.2.1p2:
11839     //   A structure or union shall not contain a member with
11840     //   incomplete or function type (hence, a structure shall not
11841     //   contain an instance of itself, but may contain a pointer to
11842     //   an instance of itself), except that the last member of a
11843     //   structure with more than one named member may have incomplete
11844     //   array type; such a structure (and any union containing,
11845     //   possibly recursively, a member that is such a structure)
11846     //   shall not be a member of a structure or an element of an
11847     //   array.
11848     if (FDTy->isFunctionType()) {
11849       // Field declared as a function.
11850       Diag(FD->getLocation(), diag::err_field_declared_as_function)
11851         << FD->getDeclName();
11852       FD->setInvalidDecl();
11853       EnclosingDecl->setInvalidDecl();
11854       continue;
11855     } else if (FDTy->isIncompleteArrayType() && Record &&
11856                ((i + 1 == Fields.end() && !Record->isUnion()) ||
11857                 ((getLangOpts().MicrosoftExt ||
11858                   getLangOpts().CPlusPlus) &&
11859                  (i + 1 == Fields.end() || Record->isUnion())))) {
11860       // Flexible array member.
11861       // Microsoft and g++ is more permissive regarding flexible array.
11862       // It will accept flexible array in union and also
11863       // as the sole element of a struct/class.
11864       unsigned DiagID = 0;
11865       if (Record->isUnion())
11866         DiagID = getLangOpts().MicrosoftExt
11867                      ? diag::ext_flexible_array_union_ms
11868                      : getLangOpts().CPlusPlus
11869                            ? diag::ext_flexible_array_union_gnu
11870                            : diag::err_flexible_array_union;
11871       else if (Fields.size() == 1)
11872         DiagID = getLangOpts().MicrosoftExt
11873                      ? diag::ext_flexible_array_empty_aggregate_ms
11874                      : getLangOpts().CPlusPlus
11875                            ? diag::ext_flexible_array_empty_aggregate_gnu
11876                            : NumNamedMembers < 1
11877                                  ? diag::err_flexible_array_empty_aggregate
11878                                  : 0;
11879 
11880       if (DiagID)
11881         Diag(FD->getLocation(), DiagID) << FD->getDeclName()
11882                                         << Record->getTagKind();
11883       // While the layout of types that contain virtual bases is not specified
11884       // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
11885       // virtual bases after the derived members.  This would make a flexible
11886       // array member declared at the end of an object not adjacent to the end
11887       // of the type.
11888       if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record))
11889         if (RD->getNumVBases() != 0)
11890           Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
11891             << FD->getDeclName() << Record->getTagKind();
11892       if (!getLangOpts().C99)
11893         Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
11894           << FD->getDeclName() << Record->getTagKind();
11895 
11896       if (!FD->getType()->isDependentType() &&
11897           !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
11898         Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
11899           << FD->getDeclName() << FD->getType();
11900         FD->setInvalidDecl();
11901         EnclosingDecl->setInvalidDecl();
11902         continue;
11903       }
11904       // Okay, we have a legal flexible array member at the end of the struct.
11905       if (Record)
11906         Record->setHasFlexibleArrayMember(true);
11907     } else if (!FDTy->isDependentType() &&
11908                RequireCompleteType(FD->getLocation(), FD->getType(),
11909                                    diag::err_field_incomplete)) {
11910       // Incomplete type
11911       FD->setInvalidDecl();
11912       EnclosingDecl->setInvalidDecl();
11913       continue;
11914     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
11915       if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
11916         // If this is a member of a union, then entire union becomes "flexible".
11917         if (Record && Record->isUnion()) {
11918           Record->setHasFlexibleArrayMember(true);
11919         } else {
11920           // If this is a struct/class and this is not the last element, reject
11921           // it.  Note that GCC supports variable sized arrays in the middle of
11922           // structures.
11923           if (i + 1 != Fields.end())
11924             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
11925               << FD->getDeclName() << FD->getType();
11926           else {
11927             // We support flexible arrays at the end of structs in
11928             // other structs as an extension.
11929             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
11930               << FD->getDeclName();
11931             if (Record)
11932               Record->setHasFlexibleArrayMember(true);
11933           }
11934         }
11935       }
11936       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
11937           RequireNonAbstractType(FD->getLocation(), FD->getType(),
11938                                  diag::err_abstract_type_in_decl,
11939                                  AbstractIvarType)) {
11940         // Ivars can not have abstract class types
11941         FD->setInvalidDecl();
11942       }
11943       if (Record && FDTTy->getDecl()->hasObjectMember())
11944         Record->setHasObjectMember(true);
11945       if (Record && FDTTy->getDecl()->hasVolatileMember())
11946         Record->setHasVolatileMember(true);
11947     } else if (FDTy->isObjCObjectType()) {
11948       /// A field cannot be an Objective-c object
11949       Diag(FD->getLocation(), diag::err_statically_allocated_object)
11950         << FixItHint::CreateInsertion(FD->getLocation(), "*");
11951       QualType T = Context.getObjCObjectPointerType(FD->getType());
11952       FD->setType(T);
11953     } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
11954                (!getLangOpts().CPlusPlus || Record->isUnion())) {
11955       // It's an error in ARC if a field has lifetime.
11956       // We don't want to report this in a system header, though,
11957       // so we just make the field unavailable.
11958       // FIXME: that's really not sufficient; we need to make the type
11959       // itself invalid to, say, initialize or copy.
11960       QualType T = FD->getType();
11961       Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
11962       if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
11963         SourceLocation loc = FD->getLocation();
11964         if (getSourceManager().isInSystemHeader(loc)) {
11965           if (!FD->hasAttr<UnavailableAttr>()) {
11966             FD->addAttr(new (Context) UnavailableAttr(loc, Context,
11967                               "this system field has retaining ownership"));
11968           }
11969         } else {
11970           Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
11971             << T->isBlockPointerType() << Record->getTagKind();
11972         }
11973         ARCErrReported = true;
11974       }
11975     } else if (getLangOpts().ObjC1 &&
11976                getLangOpts().getGC() != LangOptions::NonGC &&
11977                Record && !Record->hasObjectMember()) {
11978       if (FD->getType()->isObjCObjectPointerType() ||
11979           FD->getType().isObjCGCStrong())
11980         Record->setHasObjectMember(true);
11981       else if (Context.getAsArrayType(FD->getType())) {
11982         QualType BaseType = Context.getBaseElementType(FD->getType());
11983         if (BaseType->isRecordType() &&
11984             BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
11985           Record->setHasObjectMember(true);
11986         else if (BaseType->isObjCObjectPointerType() ||
11987                  BaseType.isObjCGCStrong())
11988                Record->setHasObjectMember(true);
11989       }
11990     }
11991     if (Record && FD->getType().isVolatileQualified())
11992       Record->setHasVolatileMember(true);
11993     // Keep track of the number of named members.
11994     if (FD->getIdentifier())
11995       ++NumNamedMembers;
11996   }
11997 
11998   // Okay, we successfully defined 'Record'.
11999   if (Record) {
12000     bool Completed = false;
12001     if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
12002       if (!CXXRecord->isInvalidDecl()) {
12003         // Set access bits correctly on the directly-declared conversions.
12004         for (CXXRecordDecl::conversion_iterator
12005                I = CXXRecord->conversion_begin(),
12006                E = CXXRecord->conversion_end(); I != E; ++I)
12007           I.setAccess((*I)->getAccess());
12008 
12009         if (!CXXRecord->isDependentType()) {
12010           if (CXXRecord->hasUserDeclaredDestructor()) {
12011             // Adjust user-defined destructor exception spec.
12012             if (getLangOpts().CPlusPlus11)
12013               AdjustDestructorExceptionSpec(CXXRecord,
12014                                             CXXRecord->getDestructor());
12015 
12016             // The Microsoft ABI requires that we perform the destructor body
12017             // checks (i.e. operator delete() lookup) at every declaration, as
12018             // any translation unit may need to emit a deleting destructor.
12019             if (Context.getTargetInfo().getCXXABI().isMicrosoft())
12020               CheckDestructor(CXXRecord->getDestructor());
12021           }
12022 
12023           // Add any implicitly-declared members to this class.
12024           AddImplicitlyDeclaredMembersToClass(CXXRecord);
12025 
12026           // If we have virtual base classes, we may end up finding multiple
12027           // final overriders for a given virtual function. Check for this
12028           // problem now.
12029           if (CXXRecord->getNumVBases()) {
12030             CXXFinalOverriderMap FinalOverriders;
12031             CXXRecord->getFinalOverriders(FinalOverriders);
12032 
12033             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
12034                                              MEnd = FinalOverriders.end();
12035                  M != MEnd; ++M) {
12036               for (OverridingMethods::iterator SO = M->second.begin(),
12037                                             SOEnd = M->second.end();
12038                    SO != SOEnd; ++SO) {
12039                 assert(SO->second.size() > 0 &&
12040                        "Virtual function without overridding functions?");
12041                 if (SO->second.size() == 1)
12042                   continue;
12043 
12044                 // C++ [class.virtual]p2:
12045                 //   In a derived class, if a virtual member function of a base
12046                 //   class subobject has more than one final overrider the
12047                 //   program is ill-formed.
12048                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
12049                   << (const NamedDecl *)M->first << Record;
12050                 Diag(M->first->getLocation(),
12051                      diag::note_overridden_virtual_function);
12052                 for (OverridingMethods::overriding_iterator
12053                           OM = SO->second.begin(),
12054                        OMEnd = SO->second.end();
12055                      OM != OMEnd; ++OM)
12056                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
12057                     << (const NamedDecl *)M->first << OM->Method->getParent();
12058 
12059                 Record->setInvalidDecl();
12060               }
12061             }
12062             CXXRecord->completeDefinition(&FinalOverriders);
12063             Completed = true;
12064           }
12065         }
12066       }
12067     }
12068 
12069     if (!Completed)
12070       Record->completeDefinition();
12071 
12072     if (Record->hasAttrs())
12073       CheckAlignasUnderalignment(Record);
12074 
12075     // Check if the structure/union declaration is a type that can have zero
12076     // size in C. For C this is a language extension, for C++ it may cause
12077     // compatibility problems.
12078     bool CheckForZeroSize;
12079     if (!getLangOpts().CPlusPlus) {
12080       CheckForZeroSize = true;
12081     } else {
12082       // For C++ filter out types that cannot be referenced in C code.
12083       CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
12084       CheckForZeroSize =
12085           CXXRecord->getLexicalDeclContext()->isExternCContext() &&
12086           !CXXRecord->isDependentType() &&
12087           CXXRecord->isCLike();
12088     }
12089     if (CheckForZeroSize) {
12090       bool ZeroSize = true;
12091       bool IsEmpty = true;
12092       unsigned NonBitFields = 0;
12093       for (RecordDecl::field_iterator I = Record->field_begin(),
12094                                       E = Record->field_end();
12095            (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
12096         IsEmpty = false;
12097         if (I->isUnnamedBitfield()) {
12098           if (I->getBitWidthValue(Context) > 0)
12099             ZeroSize = false;
12100         } else {
12101           ++NonBitFields;
12102           QualType FieldType = I->getType();
12103           if (FieldType->isIncompleteType() ||
12104               !Context.getTypeSizeInChars(FieldType).isZero())
12105             ZeroSize = false;
12106         }
12107       }
12108 
12109       // Empty structs are an extension in C (C99 6.7.2.1p7). They are
12110       // allowed in C++, but warn if its declaration is inside
12111       // extern "C" block.
12112       if (ZeroSize) {
12113         Diag(RecLoc, getLangOpts().CPlusPlus ?
12114                          diag::warn_zero_size_struct_union_in_extern_c :
12115                          diag::warn_zero_size_struct_union_compat)
12116           << IsEmpty << Record->isUnion() << (NonBitFields > 1);
12117       }
12118 
12119       // Structs without named members are extension in C (C99 6.7.2.1p7),
12120       // but are accepted by GCC.
12121       if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
12122         Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
12123                                diag::ext_no_named_members_in_struct_union)
12124           << Record->isUnion();
12125       }
12126     }
12127   } else {
12128     ObjCIvarDecl **ClsFields =
12129       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
12130     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
12131       ID->setEndOfDefinitionLoc(RBrac);
12132       // Add ivar's to class's DeclContext.
12133       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
12134         ClsFields[i]->setLexicalDeclContext(ID);
12135         ID->addDecl(ClsFields[i]);
12136       }
12137       // Must enforce the rule that ivars in the base classes may not be
12138       // duplicates.
12139       if (ID->getSuperClass())
12140         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
12141     } else if (ObjCImplementationDecl *IMPDecl =
12142                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
12143       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
12144       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
12145         // Ivar declared in @implementation never belongs to the implementation.
12146         // Only it is in implementation's lexical context.
12147         ClsFields[I]->setLexicalDeclContext(IMPDecl);
12148       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
12149       IMPDecl->setIvarLBraceLoc(LBrac);
12150       IMPDecl->setIvarRBraceLoc(RBrac);
12151     } else if (ObjCCategoryDecl *CDecl =
12152                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
12153       // case of ivars in class extension; all other cases have been
12154       // reported as errors elsewhere.
12155       // FIXME. Class extension does not have a LocEnd field.
12156       // CDecl->setLocEnd(RBrac);
12157       // Add ivar's to class extension's DeclContext.
12158       // Diagnose redeclaration of private ivars.
12159       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
12160       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
12161         if (IDecl) {
12162           if (const ObjCIvarDecl *ClsIvar =
12163               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
12164             Diag(ClsFields[i]->getLocation(),
12165                  diag::err_duplicate_ivar_declaration);
12166             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
12167             continue;
12168           }
12169           for (ObjCInterfaceDecl::known_extensions_iterator
12170                  Ext = IDecl->known_extensions_begin(),
12171                  ExtEnd = IDecl->known_extensions_end();
12172                Ext != ExtEnd; ++Ext) {
12173             if (const ObjCIvarDecl *ClsExtIvar
12174                   = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
12175               Diag(ClsFields[i]->getLocation(),
12176                    diag::err_duplicate_ivar_declaration);
12177               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
12178               continue;
12179             }
12180           }
12181         }
12182         ClsFields[i]->setLexicalDeclContext(CDecl);
12183         CDecl->addDecl(ClsFields[i]);
12184       }
12185       CDecl->setIvarLBraceLoc(LBrac);
12186       CDecl->setIvarRBraceLoc(RBrac);
12187     }
12188   }
12189 
12190   if (Attr)
12191     ProcessDeclAttributeList(S, Record, Attr);
12192 }
12193 
12194 /// \brief Determine whether the given integral value is representable within
12195 /// the given type T.
12196 static bool isRepresentableIntegerValue(ASTContext &Context,
12197                                         llvm::APSInt &Value,
12198                                         QualType T) {
12199   assert(T->isIntegralType(Context) && "Integral type required!");
12200   unsigned BitWidth = Context.getIntWidth(T);
12201 
12202   if (Value.isUnsigned() || Value.isNonNegative()) {
12203     if (T->isSignedIntegerOrEnumerationType())
12204       --BitWidth;
12205     return Value.getActiveBits() <= BitWidth;
12206   }
12207   return Value.getMinSignedBits() <= BitWidth;
12208 }
12209 
12210 // \brief Given an integral type, return the next larger integral type
12211 // (or a NULL type of no such type exists).
12212 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
12213   // FIXME: Int128/UInt128 support, which also needs to be introduced into
12214   // enum checking below.
12215   assert(T->isIntegralType(Context) && "Integral type required!");
12216   const unsigned NumTypes = 4;
12217   QualType SignedIntegralTypes[NumTypes] = {
12218     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
12219   };
12220   QualType UnsignedIntegralTypes[NumTypes] = {
12221     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
12222     Context.UnsignedLongLongTy
12223   };
12224 
12225   unsigned BitWidth = Context.getTypeSize(T);
12226   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
12227                                                         : UnsignedIntegralTypes;
12228   for (unsigned I = 0; I != NumTypes; ++I)
12229     if (Context.getTypeSize(Types[I]) > BitWidth)
12230       return Types[I];
12231 
12232   return QualType();
12233 }
12234 
12235 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
12236                                           EnumConstantDecl *LastEnumConst,
12237                                           SourceLocation IdLoc,
12238                                           IdentifierInfo *Id,
12239                                           Expr *Val) {
12240   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
12241   llvm::APSInt EnumVal(IntWidth);
12242   QualType EltTy;
12243 
12244   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
12245     Val = 0;
12246 
12247   if (Val)
12248     Val = DefaultLvalueConversion(Val).take();
12249 
12250   if (Val) {
12251     if (Enum->isDependentType() || Val->isTypeDependent())
12252       EltTy = Context.DependentTy;
12253     else {
12254       SourceLocation ExpLoc;
12255       if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
12256           !getLangOpts().MicrosoftMode) {
12257         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
12258         // constant-expression in the enumerator-definition shall be a converted
12259         // constant expression of the underlying type.
12260         EltTy = Enum->getIntegerType();
12261         ExprResult Converted =
12262           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
12263                                            CCEK_Enumerator);
12264         if (Converted.isInvalid())
12265           Val = 0;
12266         else
12267           Val = Converted.take();
12268       } else if (!Val->isValueDependent() &&
12269                  !(Val = VerifyIntegerConstantExpression(Val,
12270                                                          &EnumVal).take())) {
12271         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
12272       } else {
12273         if (Enum->isFixed()) {
12274           EltTy = Enum->getIntegerType();
12275 
12276           // In Obj-C and Microsoft mode, require the enumeration value to be
12277           // representable in the underlying type of the enumeration. In C++11,
12278           // we perform a non-narrowing conversion as part of converted constant
12279           // expression checking.
12280           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
12281             if (getLangOpts().MicrosoftMode) {
12282               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
12283               Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
12284             } else
12285               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
12286           } else
12287             Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
12288         } else if (getLangOpts().CPlusPlus) {
12289           // C++11 [dcl.enum]p5:
12290           //   If the underlying type is not fixed, the type of each enumerator
12291           //   is the type of its initializing value:
12292           //     - If an initializer is specified for an enumerator, the
12293           //       initializing value has the same type as the expression.
12294           EltTy = Val->getType();
12295         } else {
12296           // C99 6.7.2.2p2:
12297           //   The expression that defines the value of an enumeration constant
12298           //   shall be an integer constant expression that has a value
12299           //   representable as an int.
12300 
12301           // Complain if the value is not representable in an int.
12302           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
12303             Diag(IdLoc, diag::ext_enum_value_not_int)
12304               << EnumVal.toString(10) << Val->getSourceRange()
12305               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
12306           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
12307             // Force the type of the expression to 'int'.
12308             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
12309           }
12310           EltTy = Val->getType();
12311         }
12312       }
12313     }
12314   }
12315 
12316   if (!Val) {
12317     if (Enum->isDependentType())
12318       EltTy = Context.DependentTy;
12319     else if (!LastEnumConst) {
12320       // C++0x [dcl.enum]p5:
12321       //   If the underlying type is not fixed, the type of each enumerator
12322       //   is the type of its initializing value:
12323       //     - If no initializer is specified for the first enumerator, the
12324       //       initializing value has an unspecified integral type.
12325       //
12326       // GCC uses 'int' for its unspecified integral type, as does
12327       // C99 6.7.2.2p3.
12328       if (Enum->isFixed()) {
12329         EltTy = Enum->getIntegerType();
12330       }
12331       else {
12332         EltTy = Context.IntTy;
12333       }
12334     } else {
12335       // Assign the last value + 1.
12336       EnumVal = LastEnumConst->getInitVal();
12337       ++EnumVal;
12338       EltTy = LastEnumConst->getType();
12339 
12340       // Check for overflow on increment.
12341       if (EnumVal < LastEnumConst->getInitVal()) {
12342         // C++0x [dcl.enum]p5:
12343         //   If the underlying type is not fixed, the type of each enumerator
12344         //   is the type of its initializing value:
12345         //
12346         //     - Otherwise the type of the initializing value is the same as
12347         //       the type of the initializing value of the preceding enumerator
12348         //       unless the incremented value is not representable in that type,
12349         //       in which case the type is an unspecified integral type
12350         //       sufficient to contain the incremented value. If no such type
12351         //       exists, the program is ill-formed.
12352         QualType T = getNextLargerIntegralType(Context, EltTy);
12353         if (T.isNull() || Enum->isFixed()) {
12354           // There is no integral type larger enough to represent this
12355           // value. Complain, then allow the value to wrap around.
12356           EnumVal = LastEnumConst->getInitVal();
12357           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
12358           ++EnumVal;
12359           if (Enum->isFixed())
12360             // When the underlying type is fixed, this is ill-formed.
12361             Diag(IdLoc, diag::err_enumerator_wrapped)
12362               << EnumVal.toString(10)
12363               << EltTy;
12364           else
12365             Diag(IdLoc, diag::warn_enumerator_too_large)
12366               << EnumVal.toString(10);
12367         } else {
12368           EltTy = T;
12369         }
12370 
12371         // Retrieve the last enumerator's value, extent that type to the
12372         // type that is supposed to be large enough to represent the incremented
12373         // value, then increment.
12374         EnumVal = LastEnumConst->getInitVal();
12375         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
12376         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
12377         ++EnumVal;
12378 
12379         // If we're not in C++, diagnose the overflow of enumerator values,
12380         // which in C99 means that the enumerator value is not representable in
12381         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
12382         // permits enumerator values that are representable in some larger
12383         // integral type.
12384         if (!getLangOpts().CPlusPlus && !T.isNull())
12385           Diag(IdLoc, diag::warn_enum_value_overflow);
12386       } else if (!getLangOpts().CPlusPlus &&
12387                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
12388         // Enforce C99 6.7.2.2p2 even when we compute the next value.
12389         Diag(IdLoc, diag::ext_enum_value_not_int)
12390           << EnumVal.toString(10) << 1;
12391       }
12392     }
12393   }
12394 
12395   if (!EltTy->isDependentType()) {
12396     // Make the enumerator value match the signedness and size of the
12397     // enumerator's type.
12398     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
12399     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
12400   }
12401 
12402   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
12403                                   Val, EnumVal);
12404 }
12405 
12406 
12407 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
12408                               SourceLocation IdLoc, IdentifierInfo *Id,
12409                               AttributeList *Attr,
12410                               SourceLocation EqualLoc, Expr *Val) {
12411   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
12412   EnumConstantDecl *LastEnumConst =
12413     cast_or_null<EnumConstantDecl>(lastEnumConst);
12414 
12415   // The scope passed in may not be a decl scope.  Zip up the scope tree until
12416   // we find one that is.
12417   S = getNonFieldDeclScope(S);
12418 
12419   // Verify that there isn't already something declared with this name in this
12420   // scope.
12421   NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
12422                                          ForRedeclaration);
12423   if (PrevDecl && PrevDecl->isTemplateParameter()) {
12424     // Maybe we will complain about the shadowed template parameter.
12425     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
12426     // Just pretend that we didn't see the previous declaration.
12427     PrevDecl = 0;
12428   }
12429 
12430   if (PrevDecl) {
12431     // When in C++, we may get a TagDecl with the same name; in this case the
12432     // enum constant will 'hide' the tag.
12433     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
12434            "Received TagDecl when not in C++!");
12435     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
12436       if (isa<EnumConstantDecl>(PrevDecl))
12437         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
12438       else
12439         Diag(IdLoc, diag::err_redefinition) << Id;
12440       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
12441       return 0;
12442     }
12443   }
12444 
12445   // C++ [class.mem]p15:
12446   // If T is the name of a class, then each of the following shall have a name
12447   // different from T:
12448   // - every enumerator of every member of class T that is an unscoped
12449   // enumerated type
12450   if (CXXRecordDecl *Record
12451                       = dyn_cast<CXXRecordDecl>(
12452                              TheEnumDecl->getDeclContext()->getRedeclContext()))
12453     if (!TheEnumDecl->isScoped() &&
12454         Record->getIdentifier() && Record->getIdentifier() == Id)
12455       Diag(IdLoc, diag::err_member_name_of_class) << Id;
12456 
12457   EnumConstantDecl *New =
12458     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
12459 
12460   if (New) {
12461     // Process attributes.
12462     if (Attr) ProcessDeclAttributeList(S, New, Attr);
12463 
12464     // Register this decl in the current scope stack.
12465     New->setAccess(TheEnumDecl->getAccess());
12466     PushOnScopeChains(New, S);
12467   }
12468 
12469   ActOnDocumentableDecl(New);
12470 
12471   return New;
12472 }
12473 
12474 // Returns true when the enum initial expression does not trigger the
12475 // duplicate enum warning.  A few common cases are exempted as follows:
12476 // Element2 = Element1
12477 // Element2 = Element1 + 1
12478 // Element2 = Element1 - 1
12479 // Where Element2 and Element1 are from the same enum.
12480 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
12481   Expr *InitExpr = ECD->getInitExpr();
12482   if (!InitExpr)
12483     return true;
12484   InitExpr = InitExpr->IgnoreImpCasts();
12485 
12486   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
12487     if (!BO->isAdditiveOp())
12488       return true;
12489     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
12490     if (!IL)
12491       return true;
12492     if (IL->getValue() != 1)
12493       return true;
12494 
12495     InitExpr = BO->getLHS();
12496   }
12497 
12498   // This checks if the elements are from the same enum.
12499   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
12500   if (!DRE)
12501     return true;
12502 
12503   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
12504   if (!EnumConstant)
12505     return true;
12506 
12507   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
12508       Enum)
12509     return true;
12510 
12511   return false;
12512 }
12513 
12514 struct DupKey {
12515   int64_t val;
12516   bool isTombstoneOrEmptyKey;
12517   DupKey(int64_t val, bool isTombstoneOrEmptyKey)
12518     : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
12519 };
12520 
12521 static DupKey GetDupKey(const llvm::APSInt& Val) {
12522   return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
12523                 false);
12524 }
12525 
12526 struct DenseMapInfoDupKey {
12527   static DupKey getEmptyKey() { return DupKey(0, true); }
12528   static DupKey getTombstoneKey() { return DupKey(1, true); }
12529   static unsigned getHashValue(const DupKey Key) {
12530     return (unsigned)(Key.val * 37);
12531   }
12532   static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
12533     return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
12534            LHS.val == RHS.val;
12535   }
12536 };
12537 
12538 // Emits a warning when an element is implicitly set a value that
12539 // a previous element has already been set to.
12540 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
12541                                         EnumDecl *Enum,
12542                                         QualType EnumType) {
12543   if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
12544                                  Enum->getLocation()) ==
12545       DiagnosticsEngine::Ignored)
12546     return;
12547   // Avoid anonymous enums
12548   if (!Enum->getIdentifier())
12549     return;
12550 
12551   // Only check for small enums.
12552   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
12553     return;
12554 
12555   typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
12556   typedef SmallVector<ECDVector *, 3> DuplicatesVector;
12557 
12558   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
12559   typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
12560           ValueToVectorMap;
12561 
12562   DuplicatesVector DupVector;
12563   ValueToVectorMap EnumMap;
12564 
12565   // Populate the EnumMap with all values represented by enum constants without
12566   // an initialier.
12567   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12568     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
12569 
12570     // Null EnumConstantDecl means a previous diagnostic has been emitted for
12571     // this constant.  Skip this enum since it may be ill-formed.
12572     if (!ECD) {
12573       return;
12574     }
12575 
12576     if (ECD->getInitExpr())
12577       continue;
12578 
12579     DupKey Key = GetDupKey(ECD->getInitVal());
12580     DeclOrVector &Entry = EnumMap[Key];
12581 
12582     // First time encountering this value.
12583     if (Entry.isNull())
12584       Entry = ECD;
12585   }
12586 
12587   // Create vectors for any values that has duplicates.
12588   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12589     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
12590     if (!ValidDuplicateEnum(ECD, Enum))
12591       continue;
12592 
12593     DupKey Key = GetDupKey(ECD->getInitVal());
12594 
12595     DeclOrVector& Entry = EnumMap[Key];
12596     if (Entry.isNull())
12597       continue;
12598 
12599     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
12600       // Ensure constants are different.
12601       if (D == ECD)
12602         continue;
12603 
12604       // Create new vector and push values onto it.
12605       ECDVector *Vec = new ECDVector();
12606       Vec->push_back(D);
12607       Vec->push_back(ECD);
12608 
12609       // Update entry to point to the duplicates vector.
12610       Entry = Vec;
12611 
12612       // Store the vector somewhere we can consult later for quick emission of
12613       // diagnostics.
12614       DupVector.push_back(Vec);
12615       continue;
12616     }
12617 
12618     ECDVector *Vec = Entry.get<ECDVector*>();
12619     // Make sure constants are not added more than once.
12620     if (*Vec->begin() == ECD)
12621       continue;
12622 
12623     Vec->push_back(ECD);
12624   }
12625 
12626   // Emit diagnostics.
12627   for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
12628                                   DupVectorEnd = DupVector.end();
12629        DupVectorIter != DupVectorEnd; ++DupVectorIter) {
12630     ECDVector *Vec = *DupVectorIter;
12631     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
12632 
12633     // Emit warning for one enum constant.
12634     ECDVector::iterator I = Vec->begin();
12635     S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
12636       << (*I)->getName() << (*I)->getInitVal().toString(10)
12637       << (*I)->getSourceRange();
12638     ++I;
12639 
12640     // Emit one note for each of the remaining enum constants with
12641     // the same value.
12642     for (ECDVector::iterator E = Vec->end(); I != E; ++I)
12643       S.Diag((*I)->getLocation(), diag::note_duplicate_element)
12644         << (*I)->getName() << (*I)->getInitVal().toString(10)
12645         << (*I)->getSourceRange();
12646     delete Vec;
12647   }
12648 }
12649 
12650 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
12651                          SourceLocation RBraceLoc, Decl *EnumDeclX,
12652                          ArrayRef<Decl *> Elements,
12653                          Scope *S, AttributeList *Attr) {
12654   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
12655   QualType EnumType = Context.getTypeDeclType(Enum);
12656 
12657   if (Attr)
12658     ProcessDeclAttributeList(S, Enum, Attr);
12659 
12660   if (Enum->isDependentType()) {
12661     for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12662       EnumConstantDecl *ECD =
12663         cast_or_null<EnumConstantDecl>(Elements[i]);
12664       if (!ECD) continue;
12665 
12666       ECD->setType(EnumType);
12667     }
12668 
12669     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
12670     return;
12671   }
12672 
12673   // TODO: If the result value doesn't fit in an int, it must be a long or long
12674   // long value.  ISO C does not support this, but GCC does as an extension,
12675   // emit a warning.
12676   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
12677   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
12678   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
12679 
12680   // Verify that all the values are okay, compute the size of the values, and
12681   // reverse the list.
12682   unsigned NumNegativeBits = 0;
12683   unsigned NumPositiveBits = 0;
12684 
12685   // Keep track of whether all elements have type int.
12686   bool AllElementsInt = true;
12687 
12688   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12689     EnumConstantDecl *ECD =
12690       cast_or_null<EnumConstantDecl>(Elements[i]);
12691     if (!ECD) continue;  // Already issued a diagnostic.
12692 
12693     const llvm::APSInt &InitVal = ECD->getInitVal();
12694 
12695     // Keep track of the size of positive and negative values.
12696     if (InitVal.isUnsigned() || InitVal.isNonNegative())
12697       NumPositiveBits = std::max(NumPositiveBits,
12698                                  (unsigned)InitVal.getActiveBits());
12699     else
12700       NumNegativeBits = std::max(NumNegativeBits,
12701                                  (unsigned)InitVal.getMinSignedBits());
12702 
12703     // Keep track of whether every enum element has type int (very commmon).
12704     if (AllElementsInt)
12705       AllElementsInt = ECD->getType() == Context.IntTy;
12706   }
12707 
12708   // Figure out the type that should be used for this enum.
12709   QualType BestType;
12710   unsigned BestWidth;
12711 
12712   // C++0x N3000 [conv.prom]p3:
12713   //   An rvalue of an unscoped enumeration type whose underlying
12714   //   type is not fixed can be converted to an rvalue of the first
12715   //   of the following types that can represent all the values of
12716   //   the enumeration: int, unsigned int, long int, unsigned long
12717   //   int, long long int, or unsigned long long int.
12718   // C99 6.4.4.3p2:
12719   //   An identifier declared as an enumeration constant has type int.
12720   // The C99 rule is modified by a gcc extension
12721   QualType BestPromotionType;
12722 
12723   bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
12724   // -fshort-enums is the equivalent to specifying the packed attribute on all
12725   // enum definitions.
12726   if (LangOpts.ShortEnums)
12727     Packed = true;
12728 
12729   if (Enum->isFixed()) {
12730     BestType = Enum->getIntegerType();
12731     if (BestType->isPromotableIntegerType())
12732       BestPromotionType = Context.getPromotedIntegerType(BestType);
12733     else
12734       BestPromotionType = BestType;
12735     // We don't need to set BestWidth, because BestType is going to be the type
12736     // of the enumerators, but we do anyway because otherwise some compilers
12737     // warn that it might be used uninitialized.
12738     BestWidth = CharWidth;
12739   }
12740   else if (NumNegativeBits) {
12741     // If there is a negative value, figure out the smallest integer type (of
12742     // int/long/longlong) that fits.
12743     // If it's packed, check also if it fits a char or a short.
12744     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
12745       BestType = Context.SignedCharTy;
12746       BestWidth = CharWidth;
12747     } else if (Packed && NumNegativeBits <= ShortWidth &&
12748                NumPositiveBits < ShortWidth) {
12749       BestType = Context.ShortTy;
12750       BestWidth = ShortWidth;
12751     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
12752       BestType = Context.IntTy;
12753       BestWidth = IntWidth;
12754     } else {
12755       BestWidth = Context.getTargetInfo().getLongWidth();
12756 
12757       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
12758         BestType = Context.LongTy;
12759       } else {
12760         BestWidth = Context.getTargetInfo().getLongLongWidth();
12761 
12762         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
12763           Diag(Enum->getLocation(), diag::warn_enum_too_large);
12764         BestType = Context.LongLongTy;
12765       }
12766     }
12767     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
12768   } else {
12769     // If there is no negative value, figure out the smallest type that fits
12770     // all of the enumerator values.
12771     // If it's packed, check also if it fits a char or a short.
12772     if (Packed && NumPositiveBits <= CharWidth) {
12773       BestType = Context.UnsignedCharTy;
12774       BestPromotionType = Context.IntTy;
12775       BestWidth = CharWidth;
12776     } else if (Packed && NumPositiveBits <= ShortWidth) {
12777       BestType = Context.UnsignedShortTy;
12778       BestPromotionType = Context.IntTy;
12779       BestWidth = ShortWidth;
12780     } else if (NumPositiveBits <= IntWidth) {
12781       BestType = Context.UnsignedIntTy;
12782       BestWidth = IntWidth;
12783       BestPromotionType
12784         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12785                            ? Context.UnsignedIntTy : Context.IntTy;
12786     } else if (NumPositiveBits <=
12787                (BestWidth = Context.getTargetInfo().getLongWidth())) {
12788       BestType = Context.UnsignedLongTy;
12789       BestPromotionType
12790         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12791                            ? Context.UnsignedLongTy : Context.LongTy;
12792     } else {
12793       BestWidth = Context.getTargetInfo().getLongLongWidth();
12794       assert(NumPositiveBits <= BestWidth &&
12795              "How could an initializer get larger than ULL?");
12796       BestType = Context.UnsignedLongLongTy;
12797       BestPromotionType
12798         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12799                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
12800     }
12801   }
12802 
12803   // Loop over all of the enumerator constants, changing their types to match
12804   // the type of the enum if needed.
12805   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12806     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
12807     if (!ECD) continue;  // Already issued a diagnostic.
12808 
12809     // Standard C says the enumerators have int type, but we allow, as an
12810     // extension, the enumerators to be larger than int size.  If each
12811     // enumerator value fits in an int, type it as an int, otherwise type it the
12812     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
12813     // that X has type 'int', not 'unsigned'.
12814 
12815     // Determine whether the value fits into an int.
12816     llvm::APSInt InitVal = ECD->getInitVal();
12817 
12818     // If it fits into an integer type, force it.  Otherwise force it to match
12819     // the enum decl type.
12820     QualType NewTy;
12821     unsigned NewWidth;
12822     bool NewSign;
12823     if (!getLangOpts().CPlusPlus &&
12824         !Enum->isFixed() &&
12825         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
12826       NewTy = Context.IntTy;
12827       NewWidth = IntWidth;
12828       NewSign = true;
12829     } else if (ECD->getType() == BestType) {
12830       // Already the right type!
12831       if (getLangOpts().CPlusPlus)
12832         // C++ [dcl.enum]p4: Following the closing brace of an
12833         // enum-specifier, each enumerator has the type of its
12834         // enumeration.
12835         ECD->setType(EnumType);
12836       continue;
12837     } else {
12838       NewTy = BestType;
12839       NewWidth = BestWidth;
12840       NewSign = BestType->isSignedIntegerOrEnumerationType();
12841     }
12842 
12843     // Adjust the APSInt value.
12844     InitVal = InitVal.extOrTrunc(NewWidth);
12845     InitVal.setIsSigned(NewSign);
12846     ECD->setInitVal(InitVal);
12847 
12848     // Adjust the Expr initializer and type.
12849     if (ECD->getInitExpr() &&
12850         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
12851       ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
12852                                                 CK_IntegralCast,
12853                                                 ECD->getInitExpr(),
12854                                                 /*base paths*/ 0,
12855                                                 VK_RValue));
12856     if (getLangOpts().CPlusPlus)
12857       // C++ [dcl.enum]p4: Following the closing brace of an
12858       // enum-specifier, each enumerator has the type of its
12859       // enumeration.
12860       ECD->setType(EnumType);
12861     else
12862       ECD->setType(NewTy);
12863   }
12864 
12865   Enum->completeDefinition(BestType, BestPromotionType,
12866                            NumPositiveBits, NumNegativeBits);
12867 
12868   // If we're declaring a function, ensure this decl isn't forgotten about -
12869   // it needs to go into the function scope.
12870   if (InFunctionDeclarator)
12871     DeclsInPrototypeScope.push_back(Enum);
12872 
12873   CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
12874 
12875   // Now that the enum type is defined, ensure it's not been underaligned.
12876   if (Enum->hasAttrs())
12877     CheckAlignasUnderalignment(Enum);
12878 }
12879 
12880 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
12881                                   SourceLocation StartLoc,
12882                                   SourceLocation EndLoc) {
12883   StringLiteral *AsmString = cast<StringLiteral>(expr);
12884 
12885   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
12886                                                    AsmString, StartLoc,
12887                                                    EndLoc);
12888   CurContext->addDecl(New);
12889   return New;
12890 }
12891 
12892 DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
12893                                    SourceLocation ImportLoc,
12894                                    ModuleIdPath Path) {
12895   Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
12896                                                 Module::AllVisible,
12897                                                 /*IsIncludeDirective=*/false);
12898   if (!Mod)
12899     return true;
12900 
12901   SmallVector<SourceLocation, 2> IdentifierLocs;
12902   Module *ModCheck = Mod;
12903   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
12904     // If we've run out of module parents, just drop the remaining identifiers.
12905     // We need the length to be consistent.
12906     if (!ModCheck)
12907       break;
12908     ModCheck = ModCheck->Parent;
12909 
12910     IdentifierLocs.push_back(Path[I].second);
12911   }
12912 
12913   ImportDecl *Import = ImportDecl::Create(Context,
12914                                           Context.getTranslationUnitDecl(),
12915                                           AtLoc.isValid()? AtLoc : ImportLoc,
12916                                           Mod, IdentifierLocs);
12917   Context.getTranslationUnitDecl()->addDecl(Import);
12918   return Import;
12919 }
12920 
12921 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
12922   // FIXME: Should we synthesize an ImportDecl here?
12923   PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc,
12924                                          /*Complain=*/true);
12925 }
12926 
12927 void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
12928   // Create the implicit import declaration.
12929   TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
12930   ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
12931                                                    Loc, Mod, Loc);
12932   TU->addDecl(ImportD);
12933   Consumer.HandleImplicitImportDecl(ImportD);
12934 
12935   // Make the module visible.
12936   PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc,
12937                                          /*Complain=*/false);
12938 }
12939 
12940 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
12941                                       IdentifierInfo* AliasName,
12942                                       SourceLocation PragmaLoc,
12943                                       SourceLocation NameLoc,
12944                                       SourceLocation AliasNameLoc) {
12945   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
12946                                     LookupOrdinaryName);
12947   AsmLabelAttr *Attr =
12948      ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
12949 
12950   if (PrevDecl)
12951     PrevDecl->addAttr(Attr);
12952   else
12953     (void)ExtnameUndeclaredIdentifiers.insert(
12954       std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
12955 }
12956 
12957 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
12958                              SourceLocation PragmaLoc,
12959                              SourceLocation NameLoc) {
12960   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
12961 
12962   if (PrevDecl) {
12963     PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
12964   } else {
12965     (void)WeakUndeclaredIdentifiers.insert(
12966       std::pair<IdentifierInfo*,WeakInfo>
12967         (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
12968   }
12969 }
12970 
12971 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
12972                                 IdentifierInfo* AliasName,
12973                                 SourceLocation PragmaLoc,
12974                                 SourceLocation NameLoc,
12975                                 SourceLocation AliasNameLoc) {
12976   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
12977                                     LookupOrdinaryName);
12978   WeakInfo W = WeakInfo(Name, NameLoc);
12979 
12980   if (PrevDecl) {
12981     if (!PrevDecl->hasAttr<AliasAttr>())
12982       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
12983         DeclApplyPragmaWeak(TUScope, ND, W);
12984   } else {
12985     (void)WeakUndeclaredIdentifiers.insert(
12986       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
12987   }
12988 }
12989 
12990 Decl *Sema::getObjCDeclContext() const {
12991   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
12992 }
12993 
12994 AvailabilityResult Sema::getCurContextAvailability() const {
12995   const Decl *D = cast<Decl>(getCurObjCLexicalContext());
12996   return D->getAvailability();
12997 }
12998