1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for initializers.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/Initialization.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/DeclObjC.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/ExprObjC.h"
19 #include "clang/AST/TypeLoc.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/Sema/Designator.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <map>
29 using namespace clang;
30 
31 //===----------------------------------------------------------------------===//
32 // Sema Initialization Checking
33 //===----------------------------------------------------------------------===//
34 
35 /// \brief Check whether T is compatible with a wide character type (wchar_t,
36 /// char16_t or char32_t).
IsWideCharCompatible(QualType T,ASTContext & Context)37 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38   if (Context.typesAreCompatible(Context.getWideCharType(), T))
39     return true;
40   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41     return Context.typesAreCompatible(Context.Char16Ty, T) ||
42            Context.typesAreCompatible(Context.Char32Ty, T);
43   }
44   return false;
45 }
46 
47 enum StringInitFailureKind {
48   SIF_None,
49   SIF_NarrowStringIntoWideChar,
50   SIF_WideStringIntoChar,
51   SIF_IncompatWideStringIntoWideChar,
52   SIF_Other
53 };
54 
55 /// \brief Check whether the array of type AT can be initialized by the Init
56 /// expression by means of string initialization. Returns SIF_None if so,
57 /// otherwise returns a StringInitFailureKind that describes why the
58 /// initialization would not work.
IsStringInit(Expr * Init,const ArrayType * AT,ASTContext & Context)59 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
60                                           ASTContext &Context) {
61   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
62     return SIF_Other;
63 
64   // See if this is a string literal or @encode.
65   Init = Init->IgnoreParens();
66 
67   // Handle @encode, which is a narrow string.
68   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
69     return SIF_None;
70 
71   // Otherwise we can only handle string literals.
72   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
73   if (!SL)
74     return SIF_Other;
75 
76   const QualType ElemTy =
77       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
78 
79   switch (SL->getKind()) {
80   case StringLiteral::Ascii:
81   case StringLiteral::UTF8:
82     // char array can be initialized with a narrow string.
83     // Only allow char x[] = "foo";  not char x[] = L"foo";
84     if (ElemTy->isCharType())
85       return SIF_None;
86     if (IsWideCharCompatible(ElemTy, Context))
87       return SIF_NarrowStringIntoWideChar;
88     return SIF_Other;
89   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
90   // "An array with element type compatible with a qualified or unqualified
91   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
92   // string literal with the corresponding encoding prefix (L, u, or U,
93   // respectively), optionally enclosed in braces.
94   case StringLiteral::UTF16:
95     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
96       return SIF_None;
97     if (ElemTy->isCharType())
98       return SIF_WideStringIntoChar;
99     if (IsWideCharCompatible(ElemTy, Context))
100       return SIF_IncompatWideStringIntoWideChar;
101     return SIF_Other;
102   case StringLiteral::UTF32:
103     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
104       return SIF_None;
105     if (ElemTy->isCharType())
106       return SIF_WideStringIntoChar;
107     if (IsWideCharCompatible(ElemTy, Context))
108       return SIF_IncompatWideStringIntoWideChar;
109     return SIF_Other;
110   case StringLiteral::Wide:
111     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
112       return SIF_None;
113     if (ElemTy->isCharType())
114       return SIF_WideStringIntoChar;
115     if (IsWideCharCompatible(ElemTy, Context))
116       return SIF_IncompatWideStringIntoWideChar;
117     return SIF_Other;
118   }
119 
120   llvm_unreachable("missed a StringLiteral kind?");
121 }
122 
IsStringInit(Expr * init,QualType declType,ASTContext & Context)123 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
124                                           ASTContext &Context) {
125   const ArrayType *arrayType = Context.getAsArrayType(declType);
126   if (!arrayType)
127     return SIF_Other;
128   return IsStringInit(init, arrayType, Context);
129 }
130 
131 /// Update the type of a string literal, including any surrounding parentheses,
132 /// to match the type of the object which it is initializing.
updateStringLiteralType(Expr * E,QualType Ty)133 static void updateStringLiteralType(Expr *E, QualType Ty) {
134   while (true) {
135     E->setType(Ty);
136     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
137       break;
138     else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
139       E = PE->getSubExpr();
140     else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
141       E = UO->getSubExpr();
142     else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
143       E = GSE->getResultExpr();
144     else
145       llvm_unreachable("unexpected expr in string literal init");
146   }
147 }
148 
CheckStringInit(Expr * Str,QualType & DeclT,const ArrayType * AT,Sema & S)149 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
150                             Sema &S) {
151   // Get the length of the string as parsed.
152   uint64_t StrLength =
153     cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
154 
155 
156   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
157     // C99 6.7.8p14. We have an array of character type with unknown size
158     // being initialized to a string literal.
159     llvm::APInt ConstVal(32, StrLength);
160     // Return a new array type (C99 6.7.8p22).
161     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
162                                            ConstVal,
163                                            ArrayType::Normal, 0);
164     updateStringLiteralType(Str, DeclT);
165     return;
166   }
167 
168   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
169 
170   // We have an array of character type with known size.  However,
171   // the size may be smaller or larger than the string we are initializing.
172   // FIXME: Avoid truncation for 64-bit length strings.
173   if (S.getLangOpts().CPlusPlus) {
174     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
175       // For Pascal strings it's OK to strip off the terminating null character,
176       // so the example below is valid:
177       //
178       // unsigned char a[2] = "\pa";
179       if (SL->isPascal())
180         StrLength--;
181     }
182 
183     // [dcl.init.string]p2
184     if (StrLength > CAT->getSize().getZExtValue())
185       S.Diag(Str->getLocStart(),
186              diag::err_initializer_string_for_char_array_too_long)
187         << Str->getSourceRange();
188   } else {
189     // C99 6.7.8p14.
190     if (StrLength-1 > CAT->getSize().getZExtValue())
191       S.Diag(Str->getLocStart(),
192              diag::ext_initializer_string_for_char_array_too_long)
193         << Str->getSourceRange();
194   }
195 
196   // Set the type to the actual size that we are initializing.  If we have
197   // something like:
198   //   char x[1] = "foo";
199   // then this will set the string literal's type to char[1].
200   updateStringLiteralType(Str, DeclT);
201 }
202 
203 //===----------------------------------------------------------------------===//
204 // Semantic checking for initializer lists.
205 //===----------------------------------------------------------------------===//
206 
207 /// @brief Semantic checking for initializer lists.
208 ///
209 /// The InitListChecker class contains a set of routines that each
210 /// handle the initialization of a certain kind of entity, e.g.,
211 /// arrays, vectors, struct/union types, scalars, etc. The
212 /// InitListChecker itself performs a recursive walk of the subobject
213 /// structure of the type to be initialized, while stepping through
214 /// the initializer list one element at a time. The IList and Index
215 /// parameters to each of the Check* routines contain the active
216 /// (syntactic) initializer list and the index into that initializer
217 /// list that represents the current initializer. Each routine is
218 /// responsible for moving that Index forward as it consumes elements.
219 ///
220 /// Each Check* routine also has a StructuredList/StructuredIndex
221 /// arguments, which contains the current "structured" (semantic)
222 /// initializer list and the index into that initializer list where we
223 /// are copying initializers as we map them over to the semantic
224 /// list. Once we have completed our recursive walk of the subobject
225 /// structure, we will have constructed a full semantic initializer
226 /// list.
227 ///
228 /// C99 designators cause changes in the initializer list traversal,
229 /// because they make the initialization "jump" into a specific
230 /// subobject and then continue the initialization from that
231 /// point. CheckDesignatedInitializer() recursively steps into the
232 /// designated subobject and manages backing out the recursion to
233 /// initialize the subobjects after the one designated.
234 namespace {
235 class InitListChecker {
236   Sema &SemaRef;
237   bool hadError;
238   bool VerifyOnly; // no diagnostics, no structure building
239   llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
240   InitListExpr *FullyStructuredList;
241 
242   void CheckImplicitInitList(const InitializedEntity &Entity,
243                              InitListExpr *ParentIList, QualType T,
244                              unsigned &Index, InitListExpr *StructuredList,
245                              unsigned &StructuredIndex);
246   void CheckExplicitInitList(const InitializedEntity &Entity,
247                              InitListExpr *IList, QualType &T,
248                              InitListExpr *StructuredList,
249                              bool TopLevelObject = false);
250   void CheckListElementTypes(const InitializedEntity &Entity,
251                              InitListExpr *IList, QualType &DeclType,
252                              bool SubobjectIsDesignatorContext,
253                              unsigned &Index,
254                              InitListExpr *StructuredList,
255                              unsigned &StructuredIndex,
256                              bool TopLevelObject = false);
257   void CheckSubElementType(const InitializedEntity &Entity,
258                            InitListExpr *IList, QualType ElemType,
259                            unsigned &Index,
260                            InitListExpr *StructuredList,
261                            unsigned &StructuredIndex);
262   void CheckComplexType(const InitializedEntity &Entity,
263                         InitListExpr *IList, QualType DeclType,
264                         unsigned &Index,
265                         InitListExpr *StructuredList,
266                         unsigned &StructuredIndex);
267   void CheckScalarType(const InitializedEntity &Entity,
268                        InitListExpr *IList, QualType DeclType,
269                        unsigned &Index,
270                        InitListExpr *StructuredList,
271                        unsigned &StructuredIndex);
272   void CheckReferenceType(const InitializedEntity &Entity,
273                           InitListExpr *IList, QualType DeclType,
274                           unsigned &Index,
275                           InitListExpr *StructuredList,
276                           unsigned &StructuredIndex);
277   void CheckVectorType(const InitializedEntity &Entity,
278                        InitListExpr *IList, QualType DeclType, unsigned &Index,
279                        InitListExpr *StructuredList,
280                        unsigned &StructuredIndex);
281   void CheckStructUnionTypes(const InitializedEntity &Entity,
282                              InitListExpr *IList, QualType DeclType,
283                              RecordDecl::field_iterator Field,
284                              bool SubobjectIsDesignatorContext, unsigned &Index,
285                              InitListExpr *StructuredList,
286                              unsigned &StructuredIndex,
287                              bool TopLevelObject = false);
288   void CheckArrayType(const InitializedEntity &Entity,
289                       InitListExpr *IList, QualType &DeclType,
290                       llvm::APSInt elementIndex,
291                       bool SubobjectIsDesignatorContext, unsigned &Index,
292                       InitListExpr *StructuredList,
293                       unsigned &StructuredIndex);
294   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
295                                   InitListExpr *IList, DesignatedInitExpr *DIE,
296                                   unsigned DesigIdx,
297                                   QualType &CurrentObjectType,
298                                   RecordDecl::field_iterator *NextField,
299                                   llvm::APSInt *NextElementIndex,
300                                   unsigned &Index,
301                                   InitListExpr *StructuredList,
302                                   unsigned &StructuredIndex,
303                                   bool FinishSubobjectInit,
304                                   bool TopLevelObject);
305   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
306                                            QualType CurrentObjectType,
307                                            InitListExpr *StructuredList,
308                                            unsigned StructuredIndex,
309                                            SourceRange InitRange);
310   void UpdateStructuredListElement(InitListExpr *StructuredList,
311                                    unsigned &StructuredIndex,
312                                    Expr *expr);
313   int numArrayElements(QualType DeclType);
314   int numStructUnionElements(QualType DeclType);
315 
316   static ExprResult PerformEmptyInit(Sema &SemaRef,
317                                      SourceLocation Loc,
318                                      const InitializedEntity &Entity,
319                                      bool VerifyOnly);
320   void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
321                                const InitializedEntity &ParentEntity,
322                                InitListExpr *ILE, bool &RequiresSecondPass);
323   void FillInEmptyInitializations(const InitializedEntity &Entity,
324                                   InitListExpr *ILE, bool &RequiresSecondPass);
325   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
326                               Expr *InitExpr, FieldDecl *Field,
327                               bool TopLevelObject);
328   void CheckEmptyInitializable(const InitializedEntity &Entity,
329                                SourceLocation Loc);
330 
331 public:
332   InitListChecker(Sema &S, const InitializedEntity &Entity,
333                   InitListExpr *IL, QualType &T, bool VerifyOnly);
HadError()334   bool HadError() { return hadError; }
335 
336   // @brief Retrieves the fully-structured initializer list used for
337   // semantic analysis and code generation.
getFullyStructuredList() const338   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
339 };
340 } // end anonymous namespace
341 
PerformEmptyInit(Sema & SemaRef,SourceLocation Loc,const InitializedEntity & Entity,bool VerifyOnly)342 ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef,
343                                              SourceLocation Loc,
344                                              const InitializedEntity &Entity,
345                                              bool VerifyOnly) {
346   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
347                                                             true);
348   MultiExprArg SubInit;
349   Expr *InitExpr;
350   InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
351 
352   // C++ [dcl.init.aggr]p7:
353   //   If there are fewer initializer-clauses in the list than there are
354   //   members in the aggregate, then each member not explicitly initialized
355   //   ...
356   bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
357       Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
358   if (EmptyInitList) {
359     // C++1y / DR1070:
360     //   shall be initialized [...] from an empty initializer list.
361     //
362     // We apply the resolution of this DR to C++11 but not C++98, since C++98
363     // does not have useful semantics for initialization from an init list.
364     // We treat this as copy-initialization, because aggregate initialization
365     // always performs copy-initialization on its elements.
366     //
367     // Only do this if we're initializing a class type, to avoid filling in
368     // the initializer list where possible.
369     InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
370                    InitListExpr(SemaRef.Context, Loc, None, Loc);
371     InitExpr->setType(SemaRef.Context.VoidTy);
372     SubInit = InitExpr;
373     Kind = InitializationKind::CreateCopy(Loc, Loc);
374   } else {
375     // C++03:
376     //   shall be value-initialized.
377   }
378 
379   InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
380   // libstdc++4.6 marks the vector default constructor as explicit in
381   // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
382   // stlport does so too. Look for std::__debug for libstdc++, and for
383   // std:: for stlport.  This is effectively a compiler-side implementation of
384   // LWG2193.
385   if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
386           InitializationSequence::FK_ExplicitConstructor) {
387     OverloadCandidateSet::iterator Best;
388     OverloadingResult O =
389         InitSeq.getFailedCandidateSet()
390             .BestViableFunction(SemaRef, Kind.getLocation(), Best);
391     (void)O;
392     assert(O == OR_Success && "Inconsistent overload resolution");
393     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
394     CXXRecordDecl *R = CtorDecl->getParent();
395 
396     if (CtorDecl->getMinRequiredArguments() == 0 &&
397         CtorDecl->isExplicit() && R->getDeclName() &&
398         SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
399 
400 
401       bool IsInStd = false;
402       for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
403            ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
404         if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
405           IsInStd = true;
406       }
407 
408       if (IsInStd && llvm::StringSwitch<bool>(R->getName())
409               .Cases("basic_string", "deque", "forward_list", true)
410               .Cases("list", "map", "multimap", "multiset", true)
411               .Cases("priority_queue", "queue", "set", "stack", true)
412               .Cases("unordered_map", "unordered_set", "vector", true)
413               .Default(false)) {
414         InitSeq.InitializeFrom(
415             SemaRef, Entity,
416             InitializationKind::CreateValue(Loc, Loc, Loc, true),
417             MultiExprArg(), /*TopLevelOfInitList=*/false);
418         // Emit a warning for this.  System header warnings aren't shown
419         // by default, but people working on system headers should see it.
420         if (!VerifyOnly) {
421           SemaRef.Diag(CtorDecl->getLocation(),
422                        diag::warn_invalid_initializer_from_system_header);
423           SemaRef.Diag(Entity.getDecl()->getLocation(),
424                        diag::note_used_in_initialization_here);
425         }
426       }
427     }
428   }
429   if (!InitSeq) {
430     if (!VerifyOnly) {
431       InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
432       if (Entity.getKind() == InitializedEntity::EK_Member)
433         SemaRef.Diag(Entity.getDecl()->getLocation(),
434                      diag::note_in_omitted_aggregate_initializer)
435           << /*field*/1 << Entity.getDecl();
436       else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
437         SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
438           << /*array element*/0 << Entity.getElementIndex();
439     }
440     return ExprError();
441   }
442 
443   return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr))
444                     : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
445 }
446 
CheckEmptyInitializable(const InitializedEntity & Entity,SourceLocation Loc)447 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
448                                               SourceLocation Loc) {
449   assert(VerifyOnly &&
450          "CheckEmptyInitializable is only inteded for verification mode.");
451   if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true).isInvalid())
452     hadError = true;
453 }
454 
FillInEmptyInitForField(unsigned Init,FieldDecl * Field,const InitializedEntity & ParentEntity,InitListExpr * ILE,bool & RequiresSecondPass)455 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
456                                         const InitializedEntity &ParentEntity,
457                                               InitListExpr *ILE,
458                                               bool &RequiresSecondPass) {
459   SourceLocation Loc = ILE->getLocEnd();
460   unsigned NumInits = ILE->getNumInits();
461   InitializedEntity MemberEntity
462     = InitializedEntity::InitializeMember(Field, &ParentEntity);
463   if (Init >= NumInits || !ILE->getInit(Init)) {
464     // C++1y [dcl.init.aggr]p7:
465     //   If there are fewer initializer-clauses in the list than there are
466     //   members in the aggregate, then each member not explicitly initialized
467     //   shall be initialized from its brace-or-equal-initializer [...]
468     if (Field->hasInClassInitializer()) {
469       ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
470       if (DIE.isInvalid()) {
471         hadError = true;
472         return;
473       }
474       if (Init < NumInits)
475         ILE->setInit(Init, DIE.get());
476       else {
477         ILE->updateInit(SemaRef.Context, Init, DIE.get());
478         RequiresSecondPass = true;
479       }
480       return;
481     }
482 
483     if (Field->getType()->isReferenceType()) {
484       // C++ [dcl.init.aggr]p9:
485       //   If an incomplete or empty initializer-list leaves a
486       //   member of reference type uninitialized, the program is
487       //   ill-formed.
488       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
489         << Field->getType()
490         << ILE->getSyntacticForm()->getSourceRange();
491       SemaRef.Diag(Field->getLocation(),
492                    diag::note_uninit_reference_member);
493       hadError = true;
494       return;
495     }
496 
497     ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity,
498                                              /*VerifyOnly*/false);
499     if (MemberInit.isInvalid()) {
500       hadError = true;
501       return;
502     }
503 
504     if (hadError) {
505       // Do nothing
506     } else if (Init < NumInits) {
507       ILE->setInit(Init, MemberInit.getAs<Expr>());
508     } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
509       // Empty initialization requires a constructor call, so
510       // extend the initializer list to include the constructor
511       // call and make a note that we'll need to take another pass
512       // through the initializer list.
513       ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
514       RequiresSecondPass = true;
515     }
516   } else if (InitListExpr *InnerILE
517                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
518     FillInEmptyInitializations(MemberEntity, InnerILE,
519                                RequiresSecondPass);
520 }
521 
522 /// Recursively replaces NULL values within the given initializer list
523 /// with expressions that perform value-initialization of the
524 /// appropriate type.
525 void
FillInEmptyInitializations(const InitializedEntity & Entity,InitListExpr * ILE,bool & RequiresSecondPass)526 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
527                                             InitListExpr *ILE,
528                                             bool &RequiresSecondPass) {
529   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
530          "Should not have void type");
531 
532   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
533     const RecordDecl *RDecl = RType->getDecl();
534     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
535       FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
536                               Entity, ILE, RequiresSecondPass);
537     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
538              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
539       for (auto *Field : RDecl->fields()) {
540         if (Field->hasInClassInitializer()) {
541           FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass);
542           break;
543         }
544       }
545     } else {
546       unsigned Init = 0;
547       for (auto *Field : RDecl->fields()) {
548         if (Field->isUnnamedBitfield())
549           continue;
550 
551         if (hadError)
552           return;
553 
554         FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass);
555         if (hadError)
556           return;
557 
558         ++Init;
559 
560         // Only look at the first initialization of a union.
561         if (RDecl->isUnion())
562           break;
563       }
564     }
565 
566     return;
567   }
568 
569   QualType ElementType;
570 
571   InitializedEntity ElementEntity = Entity;
572   unsigned NumInits = ILE->getNumInits();
573   unsigned NumElements = NumInits;
574   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
575     ElementType = AType->getElementType();
576     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
577       NumElements = CAType->getSize().getZExtValue();
578     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
579                                                          0, Entity);
580   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
581     ElementType = VType->getElementType();
582     NumElements = VType->getNumElements();
583     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
584                                                          0, Entity);
585   } else
586     ElementType = ILE->getType();
587 
588   for (unsigned Init = 0; Init != NumElements; ++Init) {
589     if (hadError)
590       return;
591 
592     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
593         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
594       ElementEntity.setElementIndex(Init);
595 
596     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
597     if (!InitExpr && !ILE->hasArrayFiller()) {
598       ExprResult ElementInit = PerformEmptyInit(SemaRef, ILE->getLocEnd(),
599                                                 ElementEntity,
600                                                 /*VerifyOnly*/false);
601       if (ElementInit.isInvalid()) {
602         hadError = true;
603         return;
604       }
605 
606       if (hadError) {
607         // Do nothing
608       } else if (Init < NumInits) {
609         // For arrays, just set the expression used for value-initialization
610         // of the "holes" in the array.
611         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
612           ILE->setArrayFiller(ElementInit.getAs<Expr>());
613         else
614           ILE->setInit(Init, ElementInit.getAs<Expr>());
615       } else {
616         // For arrays, just set the expression used for value-initialization
617         // of the rest of elements and exit.
618         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
619           ILE->setArrayFiller(ElementInit.getAs<Expr>());
620           return;
621         }
622 
623         if (!isa<ImplicitValueInitExpr>(ElementInit.get())) {
624           // Empty initialization requires a constructor call, so
625           // extend the initializer list to include the constructor
626           // call and make a note that we'll need to take another pass
627           // through the initializer list.
628           ILE->updateInit(SemaRef.Context, Init, ElementInit.getAs<Expr>());
629           RequiresSecondPass = true;
630         }
631       }
632     } else if (InitListExpr *InnerILE
633                  = dyn_cast_or_null<InitListExpr>(InitExpr))
634       FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass);
635   }
636 }
637 
638 
InitListChecker(Sema & S,const InitializedEntity & Entity,InitListExpr * IL,QualType & T,bool VerifyOnly)639 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
640                                  InitListExpr *IL, QualType &T,
641                                  bool VerifyOnly)
642   : SemaRef(S), VerifyOnly(VerifyOnly) {
643   hadError = false;
644 
645   FullyStructuredList =
646       getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange());
647   CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
648                         /*TopLevelObject=*/true);
649 
650   if (!hadError && !VerifyOnly) {
651     bool RequiresSecondPass = false;
652     FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass);
653     if (RequiresSecondPass && !hadError)
654       FillInEmptyInitializations(Entity, FullyStructuredList,
655                                  RequiresSecondPass);
656   }
657 }
658 
numArrayElements(QualType DeclType)659 int InitListChecker::numArrayElements(QualType DeclType) {
660   // FIXME: use a proper constant
661   int maxElements = 0x7FFFFFFF;
662   if (const ConstantArrayType *CAT =
663         SemaRef.Context.getAsConstantArrayType(DeclType)) {
664     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
665   }
666   return maxElements;
667 }
668 
numStructUnionElements(QualType DeclType)669 int InitListChecker::numStructUnionElements(QualType DeclType) {
670   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
671   int InitializableMembers = 0;
672   for (const auto *Field : structDecl->fields())
673     if (!Field->isUnnamedBitfield())
674       ++InitializableMembers;
675 
676   if (structDecl->isUnion())
677     return std::min(InitializableMembers, 1);
678   return InitializableMembers - structDecl->hasFlexibleArrayMember();
679 }
680 
681 /// Check whether the range of the initializer \p ParentIList from element
682 /// \p Index onwards can be used to initialize an object of type \p T. Update
683 /// \p Index to indicate how many elements of the list were consumed.
684 ///
685 /// This also fills in \p StructuredList, from element \p StructuredIndex
686 /// onwards, with the fully-braced, desugared form of the initialization.
CheckImplicitInitList(const InitializedEntity & Entity,InitListExpr * ParentIList,QualType T,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)687 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
688                                             InitListExpr *ParentIList,
689                                             QualType T, unsigned &Index,
690                                             InitListExpr *StructuredList,
691                                             unsigned &StructuredIndex) {
692   int maxElements = 0;
693 
694   if (T->isArrayType())
695     maxElements = numArrayElements(T);
696   else if (T->isRecordType())
697     maxElements = numStructUnionElements(T);
698   else if (T->isVectorType())
699     maxElements = T->getAs<VectorType>()->getNumElements();
700   else
701     llvm_unreachable("CheckImplicitInitList(): Illegal type");
702 
703   if (maxElements == 0) {
704     if (!VerifyOnly)
705       SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
706                    diag::err_implicit_empty_initializer);
707     ++Index;
708     hadError = true;
709     return;
710   }
711 
712   // Build a structured initializer list corresponding to this subobject.
713   InitListExpr *StructuredSubobjectInitList
714     = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
715                                  StructuredIndex,
716           SourceRange(ParentIList->getInit(Index)->getLocStart(),
717                       ParentIList->getSourceRange().getEnd()));
718   unsigned StructuredSubobjectInitIndex = 0;
719 
720   // Check the element types and build the structural subobject.
721   unsigned StartIndex = Index;
722   CheckListElementTypes(Entity, ParentIList, T,
723                         /*SubobjectIsDesignatorContext=*/false, Index,
724                         StructuredSubobjectInitList,
725                         StructuredSubobjectInitIndex);
726 
727   if (!VerifyOnly) {
728     StructuredSubobjectInitList->setType(T);
729 
730     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
731     // Update the structured sub-object initializer so that it's ending
732     // range corresponds with the end of the last initializer it used.
733     if (EndIndex < ParentIList->getNumInits()) {
734       SourceLocation EndLoc
735         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
736       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
737     }
738 
739     // Complain about missing braces.
740     if (T->isArrayType() || T->isRecordType()) {
741       SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
742                    diag::warn_missing_braces)
743           << StructuredSubobjectInitList->getSourceRange()
744           << FixItHint::CreateInsertion(
745                  StructuredSubobjectInitList->getLocStart(), "{")
746           << FixItHint::CreateInsertion(
747                  SemaRef.getLocForEndOfToken(
748                      StructuredSubobjectInitList->getLocEnd()),
749                  "}");
750     }
751   }
752 }
753 
754 /// Check whether the initializer \p IList (that was written with explicit
755 /// braces) can be used to initialize an object of type \p T.
756 ///
757 /// This also fills in \p StructuredList with the fully-braced, desugared
758 /// form of the initialization.
CheckExplicitInitList(const InitializedEntity & Entity,InitListExpr * IList,QualType & T,InitListExpr * StructuredList,bool TopLevelObject)759 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
760                                             InitListExpr *IList, QualType &T,
761                                             InitListExpr *StructuredList,
762                                             bool TopLevelObject) {
763   if (!VerifyOnly) {
764     SyntacticToSemantic[IList] = StructuredList;
765     StructuredList->setSyntacticForm(IList);
766   }
767 
768   unsigned Index = 0, StructuredIndex = 0;
769   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
770                         Index, StructuredList, StructuredIndex, TopLevelObject);
771   if (!VerifyOnly) {
772     QualType ExprTy = T;
773     if (!ExprTy->isArrayType())
774       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
775     IList->setType(ExprTy);
776     StructuredList->setType(ExprTy);
777   }
778   if (hadError)
779     return;
780 
781   if (Index < IList->getNumInits()) {
782     // We have leftover initializers
783     if (VerifyOnly) {
784       if (SemaRef.getLangOpts().CPlusPlus ||
785           (SemaRef.getLangOpts().OpenCL &&
786            IList->getType()->isVectorType())) {
787         hadError = true;
788       }
789       return;
790     }
791 
792     if (StructuredIndex == 1 &&
793         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
794             SIF_None) {
795       unsigned DK = diag::ext_excess_initializers_in_char_array_initializer;
796       if (SemaRef.getLangOpts().CPlusPlus) {
797         DK = diag::err_excess_initializers_in_char_array_initializer;
798         hadError = true;
799       }
800       // Special-case
801       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
802         << IList->getInit(Index)->getSourceRange();
803     } else if (!T->isIncompleteType()) {
804       // Don't complain for incomplete types, since we'll get an error
805       // elsewhere
806       QualType CurrentObjectType = StructuredList->getType();
807       int initKind =
808         CurrentObjectType->isArrayType()? 0 :
809         CurrentObjectType->isVectorType()? 1 :
810         CurrentObjectType->isScalarType()? 2 :
811         CurrentObjectType->isUnionType()? 3 :
812         4;
813 
814       unsigned DK = diag::ext_excess_initializers;
815       if (SemaRef.getLangOpts().CPlusPlus) {
816         DK = diag::err_excess_initializers;
817         hadError = true;
818       }
819       if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
820         DK = diag::err_excess_initializers;
821         hadError = true;
822       }
823 
824       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
825         << initKind << IList->getInit(Index)->getSourceRange();
826     }
827   }
828 
829   if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
830       !TopLevelObject)
831     SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
832       << IList->getSourceRange()
833       << FixItHint::CreateRemoval(IList->getLocStart())
834       << FixItHint::CreateRemoval(IList->getLocEnd());
835 }
836 
CheckListElementTypes(const InitializedEntity & Entity,InitListExpr * IList,QualType & DeclType,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)837 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
838                                             InitListExpr *IList,
839                                             QualType &DeclType,
840                                             bool SubobjectIsDesignatorContext,
841                                             unsigned &Index,
842                                             InitListExpr *StructuredList,
843                                             unsigned &StructuredIndex,
844                                             bool TopLevelObject) {
845   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
846     // Explicitly braced initializer for complex type can be real+imaginary
847     // parts.
848     CheckComplexType(Entity, IList, DeclType, Index,
849                      StructuredList, StructuredIndex);
850   } else if (DeclType->isScalarType()) {
851     CheckScalarType(Entity, IList, DeclType, Index,
852                     StructuredList, StructuredIndex);
853   } else if (DeclType->isVectorType()) {
854     CheckVectorType(Entity, IList, DeclType, Index,
855                     StructuredList, StructuredIndex);
856   } else if (DeclType->isRecordType()) {
857     assert(DeclType->isAggregateType() &&
858            "non-aggregate records should be handed in CheckSubElementType");
859     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
860     CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
861                           SubobjectIsDesignatorContext, Index,
862                           StructuredList, StructuredIndex,
863                           TopLevelObject);
864   } else if (DeclType->isArrayType()) {
865     llvm::APSInt Zero(
866                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
867                     false);
868     CheckArrayType(Entity, IList, DeclType, Zero,
869                    SubobjectIsDesignatorContext, Index,
870                    StructuredList, StructuredIndex);
871   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
872     // This type is invalid, issue a diagnostic.
873     ++Index;
874     if (!VerifyOnly)
875       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
876         << DeclType;
877     hadError = true;
878   } else if (DeclType->isReferenceType()) {
879     CheckReferenceType(Entity, IList, DeclType, Index,
880                        StructuredList, StructuredIndex);
881   } else if (DeclType->isObjCObjectType()) {
882     if (!VerifyOnly)
883       SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
884         << DeclType;
885     hadError = true;
886   } else {
887     if (!VerifyOnly)
888       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
889         << DeclType;
890     hadError = true;
891   }
892 }
893 
CheckSubElementType(const InitializedEntity & Entity,InitListExpr * IList,QualType ElemType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)894 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
895                                           InitListExpr *IList,
896                                           QualType ElemType,
897                                           unsigned &Index,
898                                           InitListExpr *StructuredList,
899                                           unsigned &StructuredIndex) {
900   Expr *expr = IList->getInit(Index);
901 
902   if (ElemType->isReferenceType())
903     return CheckReferenceType(Entity, IList, ElemType, Index,
904                               StructuredList, StructuredIndex);
905 
906   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
907     if (!ElemType->isRecordType() || ElemType->isAggregateType()) {
908       InitListExpr *InnerStructuredList
909         = getStructuredSubobjectInit(IList, Index, ElemType,
910                                      StructuredList, StructuredIndex,
911                                      SubInitList->getSourceRange());
912       CheckExplicitInitList(Entity, SubInitList, ElemType,
913                             InnerStructuredList);
914       ++StructuredIndex;
915       ++Index;
916       return;
917     }
918     assert(SemaRef.getLangOpts().CPlusPlus &&
919            "non-aggregate records are only possible in C++");
920     // C++ initialization is handled later.
921   } else if (isa<ImplicitValueInitExpr>(expr)) {
922     // This happens during template instantiation when we see an InitListExpr
923     // that we've already checked once.
924     assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
925            "found implicit initialization for the wrong type");
926     if (!VerifyOnly)
927       UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
928     ++Index;
929     return;
930   }
931 
932   // FIXME: Need to handle atomic aggregate types with implicit init lists.
933   if (ElemType->isScalarType() || ElemType->isAtomicType())
934     return CheckScalarType(Entity, IList, ElemType, Index,
935                            StructuredList, StructuredIndex);
936 
937   assert((ElemType->isRecordType() || ElemType->isVectorType() ||
938           ElemType->isArrayType()) && "Unexpected type");
939 
940   if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
941     // arrayType can be incomplete if we're initializing a flexible
942     // array member.  There's nothing we can do with the completed
943     // type here, though.
944 
945     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
946       if (!VerifyOnly) {
947         CheckStringInit(expr, ElemType, arrayType, SemaRef);
948         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
949       }
950       ++Index;
951       return;
952     }
953 
954     // Fall through for subaggregate initialization.
955 
956   } else if (SemaRef.getLangOpts().CPlusPlus) {
957     // C++ [dcl.init.aggr]p12:
958     //   All implicit type conversions (clause 4) are considered when
959     //   initializing the aggregate member with an initializer from
960     //   an initializer-list. If the initializer can initialize a
961     //   member, the member is initialized. [...]
962 
963     // FIXME: Better EqualLoc?
964     InitializationKind Kind =
965       InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
966     InitializationSequence Seq(SemaRef, Entity, Kind, expr);
967 
968     if (Seq) {
969       if (!VerifyOnly) {
970         ExprResult Result =
971           Seq.Perform(SemaRef, Entity, Kind, expr);
972         if (Result.isInvalid())
973           hadError = true;
974 
975         UpdateStructuredListElement(StructuredList, StructuredIndex,
976                                     Result.getAs<Expr>());
977       }
978       ++Index;
979       return;
980     }
981 
982     // Fall through for subaggregate initialization
983   } else {
984     // C99 6.7.8p13:
985     //
986     //   The initializer for a structure or union object that has
987     //   automatic storage duration shall be either an initializer
988     //   list as described below, or a single expression that has
989     //   compatible structure or union type. In the latter case, the
990     //   initial value of the object, including unnamed members, is
991     //   that of the expression.
992     ExprResult ExprRes = expr;
993     if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
994         SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
995                                                  !VerifyOnly)
996           != Sema::Incompatible) {
997       if (ExprRes.isInvalid())
998         hadError = true;
999       else {
1000         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1001           if (ExprRes.isInvalid())
1002             hadError = true;
1003       }
1004       UpdateStructuredListElement(StructuredList, StructuredIndex,
1005                                   ExprRes.getAs<Expr>());
1006       ++Index;
1007       return;
1008     }
1009     ExprRes.get();
1010     // Fall through for subaggregate initialization
1011   }
1012 
1013   // C++ [dcl.init.aggr]p12:
1014   //
1015   //   [...] Otherwise, if the member is itself a non-empty
1016   //   subaggregate, brace elision is assumed and the initializer is
1017   //   considered for the initialization of the first member of
1018   //   the subaggregate.
1019   if (!SemaRef.getLangOpts().OpenCL &&
1020       (ElemType->isAggregateType() || ElemType->isVectorType())) {
1021     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1022                           StructuredIndex);
1023     ++StructuredIndex;
1024   } else {
1025     if (!VerifyOnly) {
1026       // We cannot initialize this element, so let
1027       // PerformCopyInitialization produce the appropriate diagnostic.
1028       SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1029                                         /*TopLevelOfInitList=*/true);
1030     }
1031     hadError = true;
1032     ++Index;
1033     ++StructuredIndex;
1034   }
1035 }
1036 
CheckComplexType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1037 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1038                                        InitListExpr *IList, QualType DeclType,
1039                                        unsigned &Index,
1040                                        InitListExpr *StructuredList,
1041                                        unsigned &StructuredIndex) {
1042   assert(Index == 0 && "Index in explicit init list must be zero");
1043 
1044   // As an extension, clang supports complex initializers, which initialize
1045   // a complex number component-wise.  When an explicit initializer list for
1046   // a complex number contains two two initializers, this extension kicks in:
1047   // it exepcts the initializer list to contain two elements convertible to
1048   // the element type of the complex type. The first element initializes
1049   // the real part, and the second element intitializes the imaginary part.
1050 
1051   if (IList->getNumInits() != 2)
1052     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1053                            StructuredIndex);
1054 
1055   // This is an extension in C.  (The builtin _Complex type does not exist
1056   // in the C++ standard.)
1057   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1058     SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
1059       << IList->getSourceRange();
1060 
1061   // Initialize the complex number.
1062   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
1063   InitializedEntity ElementEntity =
1064     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1065 
1066   for (unsigned i = 0; i < 2; ++i) {
1067     ElementEntity.setElementIndex(Index);
1068     CheckSubElementType(ElementEntity, IList, elementType, Index,
1069                         StructuredList, StructuredIndex);
1070   }
1071 }
1072 
1073 
CheckScalarType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1074 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1075                                       InitListExpr *IList, QualType DeclType,
1076                                       unsigned &Index,
1077                                       InitListExpr *StructuredList,
1078                                       unsigned &StructuredIndex) {
1079   if (Index >= IList->getNumInits()) {
1080     if (!VerifyOnly)
1081       SemaRef.Diag(IList->getLocStart(),
1082                    SemaRef.getLangOpts().CPlusPlus11 ?
1083                      diag::warn_cxx98_compat_empty_scalar_initializer :
1084                      diag::err_empty_scalar_initializer)
1085         << IList->getSourceRange();
1086     hadError = !SemaRef.getLangOpts().CPlusPlus11;
1087     ++Index;
1088     ++StructuredIndex;
1089     return;
1090   }
1091 
1092   Expr *expr = IList->getInit(Index);
1093   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1094     // FIXME: This is invalid, and accepting it causes overload resolution
1095     // to pick the wrong overload in some corner cases.
1096     if (!VerifyOnly)
1097       SemaRef.Diag(SubIList->getLocStart(),
1098                    diag::ext_many_braces_around_scalar_init)
1099         << SubIList->getSourceRange();
1100 
1101     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1102                     StructuredIndex);
1103     return;
1104   } else if (isa<DesignatedInitExpr>(expr)) {
1105     if (!VerifyOnly)
1106       SemaRef.Diag(expr->getLocStart(),
1107                    diag::err_designator_for_scalar_init)
1108         << DeclType << expr->getSourceRange();
1109     hadError = true;
1110     ++Index;
1111     ++StructuredIndex;
1112     return;
1113   }
1114 
1115   if (VerifyOnly) {
1116     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1117       hadError = true;
1118     ++Index;
1119     return;
1120   }
1121 
1122   ExprResult Result =
1123     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1124                                       /*TopLevelOfInitList=*/true);
1125 
1126   Expr *ResultExpr = nullptr;
1127 
1128   if (Result.isInvalid())
1129     hadError = true; // types weren't compatible.
1130   else {
1131     ResultExpr = Result.getAs<Expr>();
1132 
1133     if (ResultExpr != expr) {
1134       // The type was promoted, update initializer list.
1135       IList->setInit(Index, ResultExpr);
1136     }
1137   }
1138   if (hadError)
1139     ++StructuredIndex;
1140   else
1141     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1142   ++Index;
1143 }
1144 
CheckReferenceType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1145 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1146                                          InitListExpr *IList, QualType DeclType,
1147                                          unsigned &Index,
1148                                          InitListExpr *StructuredList,
1149                                          unsigned &StructuredIndex) {
1150   if (Index >= IList->getNumInits()) {
1151     // FIXME: It would be wonderful if we could point at the actual member. In
1152     // general, it would be useful to pass location information down the stack,
1153     // so that we know the location (or decl) of the "current object" being
1154     // initialized.
1155     if (!VerifyOnly)
1156       SemaRef.Diag(IList->getLocStart(),
1157                     diag::err_init_reference_member_uninitialized)
1158         << DeclType
1159         << IList->getSourceRange();
1160     hadError = true;
1161     ++Index;
1162     ++StructuredIndex;
1163     return;
1164   }
1165 
1166   Expr *expr = IList->getInit(Index);
1167   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1168     if (!VerifyOnly)
1169       SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
1170         << DeclType << IList->getSourceRange();
1171     hadError = true;
1172     ++Index;
1173     ++StructuredIndex;
1174     return;
1175   }
1176 
1177   if (VerifyOnly) {
1178     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1179       hadError = true;
1180     ++Index;
1181     return;
1182   }
1183 
1184   ExprResult Result =
1185       SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1186                                         /*TopLevelOfInitList=*/true);
1187 
1188   if (Result.isInvalid())
1189     hadError = true;
1190 
1191   expr = Result.getAs<Expr>();
1192   IList->setInit(Index, expr);
1193 
1194   if (hadError)
1195     ++StructuredIndex;
1196   else
1197     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1198   ++Index;
1199 }
1200 
CheckVectorType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1201 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1202                                       InitListExpr *IList, QualType DeclType,
1203                                       unsigned &Index,
1204                                       InitListExpr *StructuredList,
1205                                       unsigned &StructuredIndex) {
1206   const VectorType *VT = DeclType->getAs<VectorType>();
1207   unsigned maxElements = VT->getNumElements();
1208   unsigned numEltsInit = 0;
1209   QualType elementType = VT->getElementType();
1210 
1211   if (Index >= IList->getNumInits()) {
1212     // Make sure the element type can be value-initialized.
1213     if (VerifyOnly)
1214       CheckEmptyInitializable(
1215           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1216           IList->getLocEnd());
1217     return;
1218   }
1219 
1220   if (!SemaRef.getLangOpts().OpenCL) {
1221     // If the initializing element is a vector, try to copy-initialize
1222     // instead of breaking it apart (which is doomed to failure anyway).
1223     Expr *Init = IList->getInit(Index);
1224     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1225       if (VerifyOnly) {
1226         if (!SemaRef.CanPerformCopyInitialization(Entity, Init))
1227           hadError = true;
1228         ++Index;
1229         return;
1230       }
1231 
1232   ExprResult Result =
1233       SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(), Init,
1234                                         /*TopLevelOfInitList=*/true);
1235 
1236       Expr *ResultExpr = nullptr;
1237       if (Result.isInvalid())
1238         hadError = true; // types weren't compatible.
1239       else {
1240         ResultExpr = Result.getAs<Expr>();
1241 
1242         if (ResultExpr != Init) {
1243           // The type was promoted, update initializer list.
1244           IList->setInit(Index, ResultExpr);
1245         }
1246       }
1247       if (hadError)
1248         ++StructuredIndex;
1249       else
1250         UpdateStructuredListElement(StructuredList, StructuredIndex,
1251                                     ResultExpr);
1252       ++Index;
1253       return;
1254     }
1255 
1256     InitializedEntity ElementEntity =
1257       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1258 
1259     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1260       // Don't attempt to go past the end of the init list
1261       if (Index >= IList->getNumInits()) {
1262         if (VerifyOnly)
1263           CheckEmptyInitializable(ElementEntity, IList->getLocEnd());
1264         break;
1265       }
1266 
1267       ElementEntity.setElementIndex(Index);
1268       CheckSubElementType(ElementEntity, IList, elementType, Index,
1269                           StructuredList, StructuredIndex);
1270     }
1271 
1272     if (VerifyOnly)
1273       return;
1274 
1275     bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1276     const VectorType *T = Entity.getType()->getAs<VectorType>();
1277     if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1278                         T->getVectorKind() == VectorType::NeonPolyVector)) {
1279       // The ability to use vector initializer lists is a GNU vector extension
1280       // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1281       // endian machines it works fine, however on big endian machines it
1282       // exhibits surprising behaviour:
1283       //
1284       //   uint32x2_t x = {42, 64};
1285       //   return vget_lane_u32(x, 0); // Will return 64.
1286       //
1287       // Because of this, explicitly call out that it is non-portable.
1288       //
1289       SemaRef.Diag(IList->getLocStart(),
1290                    diag::warn_neon_vector_initializer_non_portable);
1291 
1292       const char *typeCode;
1293       unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1294 
1295       if (elementType->isFloatingType())
1296         typeCode = "f";
1297       else if (elementType->isSignedIntegerType())
1298         typeCode = "s";
1299       else if (elementType->isUnsignedIntegerType())
1300         typeCode = "u";
1301       else
1302         llvm_unreachable("Invalid element type!");
1303 
1304       SemaRef.Diag(IList->getLocStart(),
1305                    SemaRef.Context.getTypeSize(VT) > 64 ?
1306                    diag::note_neon_vector_initializer_non_portable_q :
1307                    diag::note_neon_vector_initializer_non_portable)
1308         << typeCode << typeSize;
1309     }
1310 
1311     return;
1312   }
1313 
1314   InitializedEntity ElementEntity =
1315     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1316 
1317   // OpenCL initializers allows vectors to be constructed from vectors.
1318   for (unsigned i = 0; i < maxElements; ++i) {
1319     // Don't attempt to go past the end of the init list
1320     if (Index >= IList->getNumInits())
1321       break;
1322 
1323     ElementEntity.setElementIndex(Index);
1324 
1325     QualType IType = IList->getInit(Index)->getType();
1326     if (!IType->isVectorType()) {
1327       CheckSubElementType(ElementEntity, IList, elementType, Index,
1328                           StructuredList, StructuredIndex);
1329       ++numEltsInit;
1330     } else {
1331       QualType VecType;
1332       const VectorType *IVT = IType->getAs<VectorType>();
1333       unsigned numIElts = IVT->getNumElements();
1334 
1335       if (IType->isExtVectorType())
1336         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1337       else
1338         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1339                                                 IVT->getVectorKind());
1340       CheckSubElementType(ElementEntity, IList, VecType, Index,
1341                           StructuredList, StructuredIndex);
1342       numEltsInit += numIElts;
1343     }
1344   }
1345 
1346   // OpenCL requires all elements to be initialized.
1347   if (numEltsInit != maxElements) {
1348     if (!VerifyOnly)
1349       SemaRef.Diag(IList->getLocStart(),
1350                    diag::err_vector_incorrect_num_initializers)
1351         << (numEltsInit < maxElements) << maxElements << numEltsInit;
1352     hadError = true;
1353   }
1354 }
1355 
CheckArrayType(const InitializedEntity & Entity,InitListExpr * IList,QualType & DeclType,llvm::APSInt elementIndex,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1356 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1357                                      InitListExpr *IList, QualType &DeclType,
1358                                      llvm::APSInt elementIndex,
1359                                      bool SubobjectIsDesignatorContext,
1360                                      unsigned &Index,
1361                                      InitListExpr *StructuredList,
1362                                      unsigned &StructuredIndex) {
1363   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1364 
1365   // Check for the special-case of initializing an array with a string.
1366   if (Index < IList->getNumInits()) {
1367     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1368         SIF_None) {
1369       // We place the string literal directly into the resulting
1370       // initializer list. This is the only place where the structure
1371       // of the structured initializer list doesn't match exactly,
1372       // because doing so would involve allocating one character
1373       // constant for each string.
1374       if (!VerifyOnly) {
1375         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1376         UpdateStructuredListElement(StructuredList, StructuredIndex,
1377                                     IList->getInit(Index));
1378         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1379       }
1380       ++Index;
1381       return;
1382     }
1383   }
1384   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1385     // Check for VLAs; in standard C it would be possible to check this
1386     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1387     // them in all sorts of strange places).
1388     if (!VerifyOnly)
1389       SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1390                     diag::err_variable_object_no_init)
1391         << VAT->getSizeExpr()->getSourceRange();
1392     hadError = true;
1393     ++Index;
1394     ++StructuredIndex;
1395     return;
1396   }
1397 
1398   // We might know the maximum number of elements in advance.
1399   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1400                            elementIndex.isUnsigned());
1401   bool maxElementsKnown = false;
1402   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1403     maxElements = CAT->getSize();
1404     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1405     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1406     maxElementsKnown = true;
1407   }
1408 
1409   QualType elementType = arrayType->getElementType();
1410   while (Index < IList->getNumInits()) {
1411     Expr *Init = IList->getInit(Index);
1412     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1413       // If we're not the subobject that matches up with the '{' for
1414       // the designator, we shouldn't be handling the
1415       // designator. Return immediately.
1416       if (!SubobjectIsDesignatorContext)
1417         return;
1418 
1419       // Handle this designated initializer. elementIndex will be
1420       // updated to be the next array element we'll initialize.
1421       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1422                                      DeclType, nullptr, &elementIndex, Index,
1423                                      StructuredList, StructuredIndex, true,
1424                                      false)) {
1425         hadError = true;
1426         continue;
1427       }
1428 
1429       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1430         maxElements = maxElements.extend(elementIndex.getBitWidth());
1431       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1432         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1433       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1434 
1435       // If the array is of incomplete type, keep track of the number of
1436       // elements in the initializer.
1437       if (!maxElementsKnown && elementIndex > maxElements)
1438         maxElements = elementIndex;
1439 
1440       continue;
1441     }
1442 
1443     // If we know the maximum number of elements, and we've already
1444     // hit it, stop consuming elements in the initializer list.
1445     if (maxElementsKnown && elementIndex == maxElements)
1446       break;
1447 
1448     InitializedEntity ElementEntity =
1449       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1450                                            Entity);
1451     // Check this element.
1452     CheckSubElementType(ElementEntity, IList, elementType, Index,
1453                         StructuredList, StructuredIndex);
1454     ++elementIndex;
1455 
1456     // If the array is of incomplete type, keep track of the number of
1457     // elements in the initializer.
1458     if (!maxElementsKnown && elementIndex > maxElements)
1459       maxElements = elementIndex;
1460   }
1461   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1462     // If this is an incomplete array type, the actual type needs to
1463     // be calculated here.
1464     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1465     if (maxElements == Zero) {
1466       // Sizing an array implicitly to zero is not allowed by ISO C,
1467       // but is supported by GNU.
1468       SemaRef.Diag(IList->getLocStart(),
1469                     diag::ext_typecheck_zero_array_size);
1470     }
1471 
1472     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1473                                                      ArrayType::Normal, 0);
1474   }
1475   if (!hadError && VerifyOnly) {
1476     // Check if there are any members of the array that get value-initialized.
1477     // If so, check if doing that is possible.
1478     // FIXME: This needs to detect holes left by designated initializers too.
1479     if (maxElementsKnown && elementIndex < maxElements)
1480       CheckEmptyInitializable(InitializedEntity::InitializeElement(
1481                                                   SemaRef.Context, 0, Entity),
1482                               IList->getLocEnd());
1483   }
1484 }
1485 
CheckFlexibleArrayInit(const InitializedEntity & Entity,Expr * InitExpr,FieldDecl * Field,bool TopLevelObject)1486 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1487                                              Expr *InitExpr,
1488                                              FieldDecl *Field,
1489                                              bool TopLevelObject) {
1490   // Handle GNU flexible array initializers.
1491   unsigned FlexArrayDiag;
1492   if (isa<InitListExpr>(InitExpr) &&
1493       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1494     // Empty flexible array init always allowed as an extension
1495     FlexArrayDiag = diag::ext_flexible_array_init;
1496   } else if (SemaRef.getLangOpts().CPlusPlus) {
1497     // Disallow flexible array init in C++; it is not required for gcc
1498     // compatibility, and it needs work to IRGen correctly in general.
1499     FlexArrayDiag = diag::err_flexible_array_init;
1500   } else if (!TopLevelObject) {
1501     // Disallow flexible array init on non-top-level object
1502     FlexArrayDiag = diag::err_flexible_array_init;
1503   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1504     // Disallow flexible array init on anything which is not a variable.
1505     FlexArrayDiag = diag::err_flexible_array_init;
1506   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1507     // Disallow flexible array init on local variables.
1508     FlexArrayDiag = diag::err_flexible_array_init;
1509   } else {
1510     // Allow other cases.
1511     FlexArrayDiag = diag::ext_flexible_array_init;
1512   }
1513 
1514   if (!VerifyOnly) {
1515     SemaRef.Diag(InitExpr->getLocStart(),
1516                  FlexArrayDiag)
1517       << InitExpr->getLocStart();
1518     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1519       << Field;
1520   }
1521 
1522   return FlexArrayDiag != diag::ext_flexible_array_init;
1523 }
1524 
CheckStructUnionTypes(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,RecordDecl::field_iterator Field,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)1525 void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1526                                             InitListExpr *IList,
1527                                             QualType DeclType,
1528                                             RecordDecl::field_iterator Field,
1529                                             bool SubobjectIsDesignatorContext,
1530                                             unsigned &Index,
1531                                             InitListExpr *StructuredList,
1532                                             unsigned &StructuredIndex,
1533                                             bool TopLevelObject) {
1534   RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1535 
1536   // If the record is invalid, some of it's members are invalid. To avoid
1537   // confusion, we forgo checking the intializer for the entire record.
1538   if (structDecl->isInvalidDecl()) {
1539     // Assume it was supposed to consume a single initializer.
1540     ++Index;
1541     hadError = true;
1542     return;
1543   }
1544 
1545   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1546     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1547 
1548     // If there's a default initializer, use it.
1549     if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1550       if (VerifyOnly)
1551         return;
1552       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1553            Field != FieldEnd; ++Field) {
1554         if (Field->hasInClassInitializer()) {
1555           StructuredList->setInitializedFieldInUnion(*Field);
1556           // FIXME: Actually build a CXXDefaultInitExpr?
1557           return;
1558         }
1559       }
1560     }
1561 
1562     // Value-initialize the first member of the union that isn't an unnamed
1563     // bitfield.
1564     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1565          Field != FieldEnd; ++Field) {
1566       if (!Field->isUnnamedBitfield()) {
1567         if (VerifyOnly)
1568           CheckEmptyInitializable(
1569               InitializedEntity::InitializeMember(*Field, &Entity),
1570               IList->getLocEnd());
1571         else
1572           StructuredList->setInitializedFieldInUnion(*Field);
1573         break;
1574       }
1575     }
1576     return;
1577   }
1578 
1579   // If structDecl is a forward declaration, this loop won't do
1580   // anything except look at designated initializers; That's okay,
1581   // because an error should get printed out elsewhere. It might be
1582   // worthwhile to skip over the rest of the initializer, though.
1583   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1584   RecordDecl::field_iterator FieldEnd = RD->field_end();
1585   bool InitializedSomething = false;
1586   bool CheckForMissingFields = true;
1587   while (Index < IList->getNumInits()) {
1588     Expr *Init = IList->getInit(Index);
1589 
1590     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1591       // If we're not the subobject that matches up with the '{' for
1592       // the designator, we shouldn't be handling the
1593       // designator. Return immediately.
1594       if (!SubobjectIsDesignatorContext)
1595         return;
1596 
1597       // Handle this designated initializer. Field will be updated to
1598       // the next field that we'll be initializing.
1599       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1600                                      DeclType, &Field, nullptr, Index,
1601                                      StructuredList, StructuredIndex,
1602                                      true, TopLevelObject))
1603         hadError = true;
1604 
1605       InitializedSomething = true;
1606 
1607       // Disable check for missing fields when designators are used.
1608       // This matches gcc behaviour.
1609       CheckForMissingFields = false;
1610       continue;
1611     }
1612 
1613     if (Field == FieldEnd) {
1614       // We've run out of fields. We're done.
1615       break;
1616     }
1617 
1618     // We've already initialized a member of a union. We're done.
1619     if (InitializedSomething && DeclType->isUnionType())
1620       break;
1621 
1622     // If we've hit the flexible array member at the end, we're done.
1623     if (Field->getType()->isIncompleteArrayType())
1624       break;
1625 
1626     if (Field->isUnnamedBitfield()) {
1627       // Don't initialize unnamed bitfields, e.g. "int : 20;"
1628       ++Field;
1629       continue;
1630     }
1631 
1632     // Make sure we can use this declaration.
1633     bool InvalidUse;
1634     if (VerifyOnly)
1635       InvalidUse = !SemaRef.CanUseDecl(*Field);
1636     else
1637       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1638                                           IList->getInit(Index)->getLocStart());
1639     if (InvalidUse) {
1640       ++Index;
1641       ++Field;
1642       hadError = true;
1643       continue;
1644     }
1645 
1646     InitializedEntity MemberEntity =
1647       InitializedEntity::InitializeMember(*Field, &Entity);
1648     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1649                         StructuredList, StructuredIndex);
1650     InitializedSomething = true;
1651 
1652     if (DeclType->isUnionType() && !VerifyOnly) {
1653       // Initialize the first field within the union.
1654       StructuredList->setInitializedFieldInUnion(*Field);
1655     }
1656 
1657     ++Field;
1658   }
1659 
1660   // Emit warnings for missing struct field initializers.
1661   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1662       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1663       !DeclType->isUnionType()) {
1664     // It is possible we have one or more unnamed bitfields remaining.
1665     // Find first (if any) named field and emit warning.
1666     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1667          it != end; ++it) {
1668       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
1669         SemaRef.Diag(IList->getSourceRange().getEnd(),
1670                      diag::warn_missing_field_initializers) << *it;
1671         break;
1672       }
1673     }
1674   }
1675 
1676   // Check that any remaining fields can be value-initialized.
1677   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1678       !Field->getType()->isIncompleteArrayType()) {
1679     // FIXME: Should check for holes left by designated initializers too.
1680     for (; Field != FieldEnd && !hadError; ++Field) {
1681       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
1682         CheckEmptyInitializable(
1683             InitializedEntity::InitializeMember(*Field, &Entity),
1684             IList->getLocEnd());
1685     }
1686   }
1687 
1688   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1689       Index >= IList->getNumInits())
1690     return;
1691 
1692   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1693                              TopLevelObject)) {
1694     hadError = true;
1695     ++Index;
1696     return;
1697   }
1698 
1699   InitializedEntity MemberEntity =
1700     InitializedEntity::InitializeMember(*Field, &Entity);
1701 
1702   if (isa<InitListExpr>(IList->getInit(Index)))
1703     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1704                         StructuredList, StructuredIndex);
1705   else
1706     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1707                           StructuredList, StructuredIndex);
1708 }
1709 
1710 /// \brief Expand a field designator that refers to a member of an
1711 /// anonymous struct or union into a series of field designators that
1712 /// refers to the field within the appropriate subobject.
1713 ///
ExpandAnonymousFieldDesignator(Sema & SemaRef,DesignatedInitExpr * DIE,unsigned DesigIdx,IndirectFieldDecl * IndirectField)1714 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1715                                            DesignatedInitExpr *DIE,
1716                                            unsigned DesigIdx,
1717                                            IndirectFieldDecl *IndirectField) {
1718   typedef DesignatedInitExpr::Designator Designator;
1719 
1720   // Build the replacement designators.
1721   SmallVector<Designator, 4> Replacements;
1722   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1723        PE = IndirectField->chain_end(); PI != PE; ++PI) {
1724     if (PI + 1 == PE)
1725       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
1726                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
1727                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1728     else
1729       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
1730                                         SourceLocation(), SourceLocation()));
1731     assert(isa<FieldDecl>(*PI));
1732     Replacements.back().setField(cast<FieldDecl>(*PI));
1733   }
1734 
1735   // Expand the current designator into the set of replacement
1736   // designators, so we have a full subobject path down to where the
1737   // member of the anonymous struct/union is actually stored.
1738   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1739                         &Replacements[0] + Replacements.size());
1740 }
1741 
CloneDesignatedInitExpr(Sema & SemaRef,DesignatedInitExpr * DIE)1742 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1743                                                    DesignatedInitExpr *DIE) {
1744   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1745   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1746   for (unsigned I = 0; I < NumIndexExprs; ++I)
1747     IndexExprs[I] = DIE->getSubExpr(I + 1);
1748   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1749                                     DIE->size(), IndexExprs,
1750                                     DIE->getEqualOrColonLoc(),
1751                                     DIE->usesGNUSyntax(), DIE->getInit());
1752 }
1753 
1754 namespace {
1755 
1756 // Callback to only accept typo corrections that are for field members of
1757 // the given struct or union.
1758 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
1759  public:
FieldInitializerValidatorCCC(RecordDecl * RD)1760   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
1761       : Record(RD) {}
1762 
ValidateCandidate(const TypoCorrection & candidate)1763   bool ValidateCandidate(const TypoCorrection &candidate) override {
1764     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
1765     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
1766   }
1767 
1768  private:
1769   RecordDecl *Record;
1770 };
1771 
1772 }
1773 
1774 /// @brief Check the well-formedness of a C99 designated initializer.
1775 ///
1776 /// Determines whether the designated initializer @p DIE, which
1777 /// resides at the given @p Index within the initializer list @p
1778 /// IList, is well-formed for a current object of type @p DeclType
1779 /// (C99 6.7.8). The actual subobject that this designator refers to
1780 /// within the current subobject is returned in either
1781 /// @p NextField or @p NextElementIndex (whichever is appropriate).
1782 ///
1783 /// @param IList  The initializer list in which this designated
1784 /// initializer occurs.
1785 ///
1786 /// @param DIE The designated initializer expression.
1787 ///
1788 /// @param DesigIdx  The index of the current designator.
1789 ///
1790 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
1791 /// into which the designation in @p DIE should refer.
1792 ///
1793 /// @param NextField  If non-NULL and the first designator in @p DIE is
1794 /// a field, this will be set to the field declaration corresponding
1795 /// to the field named by the designator.
1796 ///
1797 /// @param NextElementIndex  If non-NULL and the first designator in @p
1798 /// DIE is an array designator or GNU array-range designator, this
1799 /// will be set to the last index initialized by this designator.
1800 ///
1801 /// @param Index  Index into @p IList where the designated initializer
1802 /// @p DIE occurs.
1803 ///
1804 /// @param StructuredList  The initializer list expression that
1805 /// describes all of the subobject initializers in the order they'll
1806 /// actually be initialized.
1807 ///
1808 /// @returns true if there was an error, false otherwise.
1809 bool
CheckDesignatedInitializer(const InitializedEntity & Entity,InitListExpr * IList,DesignatedInitExpr * DIE,unsigned DesigIdx,QualType & CurrentObjectType,RecordDecl::field_iterator * NextField,llvm::APSInt * NextElementIndex,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool FinishSubobjectInit,bool TopLevelObject)1810 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1811                                             InitListExpr *IList,
1812                                             DesignatedInitExpr *DIE,
1813                                             unsigned DesigIdx,
1814                                             QualType &CurrentObjectType,
1815                                           RecordDecl::field_iterator *NextField,
1816                                             llvm::APSInt *NextElementIndex,
1817                                             unsigned &Index,
1818                                             InitListExpr *StructuredList,
1819                                             unsigned &StructuredIndex,
1820                                             bool FinishSubobjectInit,
1821                                             bool TopLevelObject) {
1822   if (DesigIdx == DIE->size()) {
1823     // Check the actual initialization for the designated object type.
1824     bool prevHadError = hadError;
1825 
1826     // Temporarily remove the designator expression from the
1827     // initializer list that the child calls see, so that we don't try
1828     // to re-process the designator.
1829     unsigned OldIndex = Index;
1830     IList->setInit(OldIndex, DIE->getInit());
1831 
1832     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1833                         StructuredList, StructuredIndex);
1834 
1835     // Restore the designated initializer expression in the syntactic
1836     // form of the initializer list.
1837     if (IList->getInit(OldIndex) != DIE->getInit())
1838       DIE->setInit(IList->getInit(OldIndex));
1839     IList->setInit(OldIndex, DIE);
1840 
1841     return hadError && !prevHadError;
1842   }
1843 
1844   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1845   bool IsFirstDesignator = (DesigIdx == 0);
1846   if (!VerifyOnly) {
1847     assert((IsFirstDesignator || StructuredList) &&
1848            "Need a non-designated initializer list to start from");
1849 
1850     // Determine the structural initializer list that corresponds to the
1851     // current subobject.
1852     StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList)
1853       : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1854                                    StructuredList, StructuredIndex,
1855                                    SourceRange(D->getLocStart(),
1856                                                DIE->getLocEnd()));
1857     assert(StructuredList && "Expected a structured initializer list");
1858   }
1859 
1860   if (D->isFieldDesignator()) {
1861     // C99 6.7.8p7:
1862     //
1863     //   If a designator has the form
1864     //
1865     //      . identifier
1866     //
1867     //   then the current object (defined below) shall have
1868     //   structure or union type and the identifier shall be the
1869     //   name of a member of that type.
1870     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1871     if (!RT) {
1872       SourceLocation Loc = D->getDotLoc();
1873       if (Loc.isInvalid())
1874         Loc = D->getFieldLoc();
1875       if (!VerifyOnly)
1876         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1877           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
1878       ++Index;
1879       return true;
1880     }
1881 
1882     FieldDecl *KnownField = D->getField();
1883     if (!KnownField) {
1884       IdentifierInfo *FieldName = D->getFieldName();
1885       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1886       for (NamedDecl *ND : Lookup) {
1887         if (auto *FD = dyn_cast<FieldDecl>(ND)) {
1888           KnownField = FD;
1889           break;
1890         }
1891         if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
1892           // In verify mode, don't modify the original.
1893           if (VerifyOnly)
1894             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
1895           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
1896           D = DIE->getDesignator(DesigIdx);
1897           KnownField = cast<FieldDecl>(*IFD->chain_begin());
1898           break;
1899         }
1900       }
1901       if (!KnownField) {
1902         if (VerifyOnly) {
1903           ++Index;
1904           return true;  // No typo correction when just trying this out.
1905         }
1906 
1907         // Name lookup found something, but it wasn't a field.
1908         if (!Lookup.empty()) {
1909           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1910             << FieldName;
1911           SemaRef.Diag(Lookup.front()->getLocation(),
1912                        diag::note_field_designator_found);
1913           ++Index;
1914           return true;
1915         }
1916 
1917         // Name lookup didn't find anything.
1918         // Determine whether this was a typo for another field name.
1919         if (TypoCorrection Corrected = SemaRef.CorrectTypo(
1920                 DeclarationNameInfo(FieldName, D->getFieldLoc()),
1921                 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr,
1922                 llvm::make_unique<FieldInitializerValidatorCCC>(RT->getDecl()),
1923                 Sema::CTK_ErrorRecovery, RT->getDecl())) {
1924           SemaRef.diagnoseTypo(
1925               Corrected,
1926               SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
1927                 << FieldName << CurrentObjectType);
1928           KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
1929           hadError = true;
1930         } else {
1931           // Typo correction didn't find anything.
1932           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1933             << FieldName << CurrentObjectType;
1934           ++Index;
1935           return true;
1936         }
1937       }
1938     }
1939 
1940     unsigned FieldIndex = 0;
1941     for (auto *FI : RT->getDecl()->fields()) {
1942       if (FI->isUnnamedBitfield())
1943         continue;
1944       if (KnownField == FI)
1945         break;
1946       ++FieldIndex;
1947     }
1948 
1949     RecordDecl::field_iterator Field =
1950         RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
1951 
1952     // All of the fields of a union are located at the same place in
1953     // the initializer list.
1954     if (RT->getDecl()->isUnion()) {
1955       FieldIndex = 0;
1956       if (!VerifyOnly) {
1957         FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
1958         if (CurrentField && CurrentField != *Field) {
1959           assert(StructuredList->getNumInits() == 1
1960                  && "A union should never have more than one initializer!");
1961 
1962           // we're about to throw away an initializer, emit warning
1963           SemaRef.Diag(D->getFieldLoc(),
1964                        diag::warn_initializer_overrides)
1965             << D->getSourceRange();
1966           Expr *ExistingInit = StructuredList->getInit(0);
1967           SemaRef.Diag(ExistingInit->getLocStart(),
1968                        diag::note_previous_initializer)
1969             << /*FIXME:has side effects=*/0
1970             << ExistingInit->getSourceRange();
1971 
1972           // remove existing initializer
1973           StructuredList->resizeInits(SemaRef.Context, 0);
1974           StructuredList->setInitializedFieldInUnion(nullptr);
1975         }
1976 
1977         StructuredList->setInitializedFieldInUnion(*Field);
1978       }
1979     }
1980 
1981     // Make sure we can use this declaration.
1982     bool InvalidUse;
1983     if (VerifyOnly)
1984       InvalidUse = !SemaRef.CanUseDecl(*Field);
1985     else
1986       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
1987     if (InvalidUse) {
1988       ++Index;
1989       return true;
1990     }
1991 
1992     if (!VerifyOnly) {
1993       // Update the designator with the field declaration.
1994       D->setField(*Field);
1995 
1996       // Make sure that our non-designated initializer list has space
1997       // for a subobject corresponding to this field.
1998       if (FieldIndex >= StructuredList->getNumInits())
1999         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2000     }
2001 
2002     // This designator names a flexible array member.
2003     if (Field->getType()->isIncompleteArrayType()) {
2004       bool Invalid = false;
2005       if ((DesigIdx + 1) != DIE->size()) {
2006         // We can't designate an object within the flexible array
2007         // member (because GCC doesn't allow it).
2008         if (!VerifyOnly) {
2009           DesignatedInitExpr::Designator *NextD
2010             = DIE->getDesignator(DesigIdx + 1);
2011           SemaRef.Diag(NextD->getLocStart(),
2012                         diag::err_designator_into_flexible_array_member)
2013             << SourceRange(NextD->getLocStart(),
2014                            DIE->getLocEnd());
2015           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2016             << *Field;
2017         }
2018         Invalid = true;
2019       }
2020 
2021       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2022           !isa<StringLiteral>(DIE->getInit())) {
2023         // The initializer is not an initializer list.
2024         if (!VerifyOnly) {
2025           SemaRef.Diag(DIE->getInit()->getLocStart(),
2026                         diag::err_flexible_array_init_needs_braces)
2027             << DIE->getInit()->getSourceRange();
2028           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2029             << *Field;
2030         }
2031         Invalid = true;
2032       }
2033 
2034       // Check GNU flexible array initializer.
2035       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2036                                              TopLevelObject))
2037         Invalid = true;
2038 
2039       if (Invalid) {
2040         ++Index;
2041         return true;
2042       }
2043 
2044       // Initialize the array.
2045       bool prevHadError = hadError;
2046       unsigned newStructuredIndex = FieldIndex;
2047       unsigned OldIndex = Index;
2048       IList->setInit(Index, DIE->getInit());
2049 
2050       InitializedEntity MemberEntity =
2051         InitializedEntity::InitializeMember(*Field, &Entity);
2052       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2053                           StructuredList, newStructuredIndex);
2054 
2055       IList->setInit(OldIndex, DIE);
2056       if (hadError && !prevHadError) {
2057         ++Field;
2058         ++FieldIndex;
2059         if (NextField)
2060           *NextField = Field;
2061         StructuredIndex = FieldIndex;
2062         return true;
2063       }
2064     } else {
2065       // Recurse to check later designated subobjects.
2066       QualType FieldType = Field->getType();
2067       unsigned newStructuredIndex = FieldIndex;
2068 
2069       InitializedEntity MemberEntity =
2070         InitializedEntity::InitializeMember(*Field, &Entity);
2071       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2072                                      FieldType, nullptr, nullptr, Index,
2073                                      StructuredList, newStructuredIndex,
2074                                      true, false))
2075         return true;
2076     }
2077 
2078     // Find the position of the next field to be initialized in this
2079     // subobject.
2080     ++Field;
2081     ++FieldIndex;
2082 
2083     // If this the first designator, our caller will continue checking
2084     // the rest of this struct/class/union subobject.
2085     if (IsFirstDesignator) {
2086       if (NextField)
2087         *NextField = Field;
2088       StructuredIndex = FieldIndex;
2089       return false;
2090     }
2091 
2092     if (!FinishSubobjectInit)
2093       return false;
2094 
2095     // We've already initialized something in the union; we're done.
2096     if (RT->getDecl()->isUnion())
2097       return hadError;
2098 
2099     // Check the remaining fields within this class/struct/union subobject.
2100     bool prevHadError = hadError;
2101 
2102     CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
2103                           StructuredList, FieldIndex);
2104     return hadError && !prevHadError;
2105   }
2106 
2107   // C99 6.7.8p6:
2108   //
2109   //   If a designator has the form
2110   //
2111   //      [ constant-expression ]
2112   //
2113   //   then the current object (defined below) shall have array
2114   //   type and the expression shall be an integer constant
2115   //   expression. If the array is of unknown size, any
2116   //   nonnegative value is valid.
2117   //
2118   // Additionally, cope with the GNU extension that permits
2119   // designators of the form
2120   //
2121   //      [ constant-expression ... constant-expression ]
2122   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2123   if (!AT) {
2124     if (!VerifyOnly)
2125       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2126         << CurrentObjectType;
2127     ++Index;
2128     return true;
2129   }
2130 
2131   Expr *IndexExpr = nullptr;
2132   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2133   if (D->isArrayDesignator()) {
2134     IndexExpr = DIE->getArrayIndex(*D);
2135     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2136     DesignatedEndIndex = DesignatedStartIndex;
2137   } else {
2138     assert(D->isArrayRangeDesignator() && "Need array-range designator");
2139 
2140     DesignatedStartIndex =
2141       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2142     DesignatedEndIndex =
2143       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2144     IndexExpr = DIE->getArrayRangeEnd(*D);
2145 
2146     // Codegen can't handle evaluating array range designators that have side
2147     // effects, because we replicate the AST value for each initialized element.
2148     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2149     // elements with something that has a side effect, so codegen can emit an
2150     // "error unsupported" error instead of miscompiling the app.
2151     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2152         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2153       FullyStructuredList->sawArrayRangeDesignator();
2154   }
2155 
2156   if (isa<ConstantArrayType>(AT)) {
2157     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2158     DesignatedStartIndex
2159       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2160     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2161     DesignatedEndIndex
2162       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2163     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2164     if (DesignatedEndIndex >= MaxElements) {
2165       if (!VerifyOnly)
2166         SemaRef.Diag(IndexExpr->getLocStart(),
2167                       diag::err_array_designator_too_large)
2168           << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2169           << IndexExpr->getSourceRange();
2170       ++Index;
2171       return true;
2172     }
2173   } else {
2174     // Make sure the bit-widths and signedness match.
2175     if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
2176       DesignatedEndIndex
2177         = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
2178     else if (DesignatedStartIndex.getBitWidth() <
2179              DesignatedEndIndex.getBitWidth())
2180       DesignatedStartIndex
2181         = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
2182     DesignatedStartIndex.setIsUnsigned(true);
2183     DesignatedEndIndex.setIsUnsigned(true);
2184   }
2185 
2186   if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2187     // We're modifying a string literal init; we have to decompose the string
2188     // so we can modify the individual characters.
2189     ASTContext &Context = SemaRef.Context;
2190     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2191 
2192     // Compute the character type
2193     QualType CharTy = AT->getElementType();
2194 
2195     // Compute the type of the integer literals.
2196     QualType PromotedCharTy = CharTy;
2197     if (CharTy->isPromotableIntegerType())
2198       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2199     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2200 
2201     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2202       // Get the length of the string.
2203       uint64_t StrLen = SL->getLength();
2204       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2205         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2206       StructuredList->resizeInits(Context, StrLen);
2207 
2208       // Build a literal for each character in the string, and put them into
2209       // the init list.
2210       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2211         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2212         Expr *Init = new (Context) IntegerLiteral(
2213             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2214         if (CharTy != PromotedCharTy)
2215           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2216                                           Init, nullptr, VK_RValue);
2217         StructuredList->updateInit(Context, i, Init);
2218       }
2219     } else {
2220       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2221       std::string Str;
2222       Context.getObjCEncodingForType(E->getEncodedType(), Str);
2223 
2224       // Get the length of the string.
2225       uint64_t StrLen = Str.size();
2226       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2227         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2228       StructuredList->resizeInits(Context, StrLen);
2229 
2230       // Build a literal for each character in the string, and put them into
2231       // the init list.
2232       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2233         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2234         Expr *Init = new (Context) IntegerLiteral(
2235             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2236         if (CharTy != PromotedCharTy)
2237           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2238                                           Init, nullptr, VK_RValue);
2239         StructuredList->updateInit(Context, i, Init);
2240       }
2241     }
2242   }
2243 
2244   // Make sure that our non-designated initializer list has space
2245   // for a subobject corresponding to this array element.
2246   if (!VerifyOnly &&
2247       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2248     StructuredList->resizeInits(SemaRef.Context,
2249                                 DesignatedEndIndex.getZExtValue() + 1);
2250 
2251   // Repeatedly perform subobject initializations in the range
2252   // [DesignatedStartIndex, DesignatedEndIndex].
2253 
2254   // Move to the next designator
2255   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2256   unsigned OldIndex = Index;
2257 
2258   InitializedEntity ElementEntity =
2259     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2260 
2261   while (DesignatedStartIndex <= DesignatedEndIndex) {
2262     // Recurse to check later designated subobjects.
2263     QualType ElementType = AT->getElementType();
2264     Index = OldIndex;
2265 
2266     ElementEntity.setElementIndex(ElementIndex);
2267     if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
2268                                    ElementType, nullptr, nullptr, Index,
2269                                    StructuredList, ElementIndex,
2270                                    (DesignatedStartIndex == DesignatedEndIndex),
2271                                    false))
2272       return true;
2273 
2274     // Move to the next index in the array that we'll be initializing.
2275     ++DesignatedStartIndex;
2276     ElementIndex = DesignatedStartIndex.getZExtValue();
2277   }
2278 
2279   // If this the first designator, our caller will continue checking
2280   // the rest of this array subobject.
2281   if (IsFirstDesignator) {
2282     if (NextElementIndex)
2283       *NextElementIndex = DesignatedStartIndex;
2284     StructuredIndex = ElementIndex;
2285     return false;
2286   }
2287 
2288   if (!FinishSubobjectInit)
2289     return false;
2290 
2291   // Check the remaining elements within this array subobject.
2292   bool prevHadError = hadError;
2293   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2294                  /*SubobjectIsDesignatorContext=*/false, Index,
2295                  StructuredList, ElementIndex);
2296   return hadError && !prevHadError;
2297 }
2298 
2299 // Get the structured initializer list for a subobject of type
2300 // @p CurrentObjectType.
2301 InitListExpr *
getStructuredSubobjectInit(InitListExpr * IList,unsigned Index,QualType CurrentObjectType,InitListExpr * StructuredList,unsigned StructuredIndex,SourceRange InitRange)2302 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2303                                             QualType CurrentObjectType,
2304                                             InitListExpr *StructuredList,
2305                                             unsigned StructuredIndex,
2306                                             SourceRange InitRange) {
2307   if (VerifyOnly)
2308     return nullptr; // No structured list in verification-only mode.
2309   Expr *ExistingInit = nullptr;
2310   if (!StructuredList)
2311     ExistingInit = SyntacticToSemantic.lookup(IList);
2312   else if (StructuredIndex < StructuredList->getNumInits())
2313     ExistingInit = StructuredList->getInit(StructuredIndex);
2314 
2315   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2316     return Result;
2317 
2318   if (ExistingInit) {
2319     // We are creating an initializer list that initializes the
2320     // subobjects of the current object, but there was already an
2321     // initialization that completely initialized the current
2322     // subobject, e.g., by a compound literal:
2323     //
2324     // struct X { int a, b; };
2325     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2326     //
2327     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2328     // designated initializer re-initializes the whole
2329     // subobject [0], overwriting previous initializers.
2330     SemaRef.Diag(InitRange.getBegin(),
2331                  diag::warn_subobject_initializer_overrides)
2332       << InitRange;
2333     SemaRef.Diag(ExistingInit->getLocStart(),
2334                   diag::note_previous_initializer)
2335       << /*FIXME:has side effects=*/0
2336       << ExistingInit->getSourceRange();
2337   }
2338 
2339   InitListExpr *Result
2340     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2341                                          InitRange.getBegin(), None,
2342                                          InitRange.getEnd());
2343 
2344   QualType ResultType = CurrentObjectType;
2345   if (!ResultType->isArrayType())
2346     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2347   Result->setType(ResultType);
2348 
2349   // Pre-allocate storage for the structured initializer list.
2350   unsigned NumElements = 0;
2351   unsigned NumInits = 0;
2352   bool GotNumInits = false;
2353   if (!StructuredList) {
2354     NumInits = IList->getNumInits();
2355     GotNumInits = true;
2356   } else if (Index < IList->getNumInits()) {
2357     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2358       NumInits = SubList->getNumInits();
2359       GotNumInits = true;
2360     }
2361   }
2362 
2363   if (const ArrayType *AType
2364       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2365     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2366       NumElements = CAType->getSize().getZExtValue();
2367       // Simple heuristic so that we don't allocate a very large
2368       // initializer with many empty entries at the end.
2369       if (GotNumInits && NumElements > NumInits)
2370         NumElements = 0;
2371     }
2372   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2373     NumElements = VType->getNumElements();
2374   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2375     RecordDecl *RDecl = RType->getDecl();
2376     if (RDecl->isUnion())
2377       NumElements = 1;
2378     else
2379       NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
2380   }
2381 
2382   Result->reserveInits(SemaRef.Context, NumElements);
2383 
2384   // Link this new initializer list into the structured initializer
2385   // lists.
2386   if (StructuredList)
2387     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2388   else {
2389     Result->setSyntacticForm(IList);
2390     SyntacticToSemantic[IList] = Result;
2391   }
2392 
2393   return Result;
2394 }
2395 
2396 /// Update the initializer at index @p StructuredIndex within the
2397 /// structured initializer list to the value @p expr.
UpdateStructuredListElement(InitListExpr * StructuredList,unsigned & StructuredIndex,Expr * expr)2398 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2399                                                   unsigned &StructuredIndex,
2400                                                   Expr *expr) {
2401   // No structured initializer list to update
2402   if (!StructuredList)
2403     return;
2404 
2405   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2406                                                   StructuredIndex, expr)) {
2407     // This initializer overwrites a previous initializer. Warn.
2408     SemaRef.Diag(expr->getLocStart(),
2409                   diag::warn_initializer_overrides)
2410       << expr->getSourceRange();
2411     SemaRef.Diag(PrevInit->getLocStart(),
2412                   diag::note_previous_initializer)
2413       << /*FIXME:has side effects=*/0
2414       << PrevInit->getSourceRange();
2415   }
2416 
2417   ++StructuredIndex;
2418 }
2419 
2420 /// Check that the given Index expression is a valid array designator
2421 /// value. This is essentially just a wrapper around
2422 /// VerifyIntegerConstantExpression that also checks for negative values
2423 /// and produces a reasonable diagnostic if there is a
2424 /// failure. Returns the index expression, possibly with an implicit cast
2425 /// added, on success.  If everything went okay, Value will receive the
2426 /// value of the constant expression.
2427 static ExprResult
CheckArrayDesignatorExpr(Sema & S,Expr * Index,llvm::APSInt & Value)2428 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2429   SourceLocation Loc = Index->getLocStart();
2430 
2431   // Make sure this is an integer constant expression.
2432   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2433   if (Result.isInvalid())
2434     return Result;
2435 
2436   if (Value.isSigned() && Value.isNegative())
2437     return S.Diag(Loc, diag::err_array_designator_negative)
2438       << Value.toString(10) << Index->getSourceRange();
2439 
2440   Value.setIsUnsigned(true);
2441   return Result;
2442 }
2443 
ActOnDesignatedInitializer(Designation & Desig,SourceLocation Loc,bool GNUSyntax,ExprResult Init)2444 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2445                                             SourceLocation Loc,
2446                                             bool GNUSyntax,
2447                                             ExprResult Init) {
2448   typedef DesignatedInitExpr::Designator ASTDesignator;
2449 
2450   bool Invalid = false;
2451   SmallVector<ASTDesignator, 32> Designators;
2452   SmallVector<Expr *, 32> InitExpressions;
2453 
2454   // Build designators and check array designator expressions.
2455   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2456     const Designator &D = Desig.getDesignator(Idx);
2457     switch (D.getKind()) {
2458     case Designator::FieldDesignator:
2459       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2460                                           D.getFieldLoc()));
2461       break;
2462 
2463     case Designator::ArrayDesignator: {
2464       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2465       llvm::APSInt IndexValue;
2466       if (!Index->isTypeDependent() && !Index->isValueDependent())
2467         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
2468       if (!Index)
2469         Invalid = true;
2470       else {
2471         Designators.push_back(ASTDesignator(InitExpressions.size(),
2472                                             D.getLBracketLoc(),
2473                                             D.getRBracketLoc()));
2474         InitExpressions.push_back(Index);
2475       }
2476       break;
2477     }
2478 
2479     case Designator::ArrayRangeDesignator: {
2480       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2481       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2482       llvm::APSInt StartValue;
2483       llvm::APSInt EndValue;
2484       bool StartDependent = StartIndex->isTypeDependent() ||
2485                             StartIndex->isValueDependent();
2486       bool EndDependent = EndIndex->isTypeDependent() ||
2487                           EndIndex->isValueDependent();
2488       if (!StartDependent)
2489         StartIndex =
2490             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
2491       if (!EndDependent)
2492         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
2493 
2494       if (!StartIndex || !EndIndex)
2495         Invalid = true;
2496       else {
2497         // Make sure we're comparing values with the same bit width.
2498         if (StartDependent || EndDependent) {
2499           // Nothing to compute.
2500         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2501           EndValue = EndValue.extend(StartValue.getBitWidth());
2502         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2503           StartValue = StartValue.extend(EndValue.getBitWidth());
2504 
2505         if (!StartDependent && !EndDependent && EndValue < StartValue) {
2506           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2507             << StartValue.toString(10) << EndValue.toString(10)
2508             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2509           Invalid = true;
2510         } else {
2511           Designators.push_back(ASTDesignator(InitExpressions.size(),
2512                                               D.getLBracketLoc(),
2513                                               D.getEllipsisLoc(),
2514                                               D.getRBracketLoc()));
2515           InitExpressions.push_back(StartIndex);
2516           InitExpressions.push_back(EndIndex);
2517         }
2518       }
2519       break;
2520     }
2521     }
2522   }
2523 
2524   if (Invalid || Init.isInvalid())
2525     return ExprError();
2526 
2527   // Clear out the expressions within the designation.
2528   Desig.ClearExprs(*this);
2529 
2530   DesignatedInitExpr *DIE
2531     = DesignatedInitExpr::Create(Context,
2532                                  Designators.data(), Designators.size(),
2533                                  InitExpressions, Loc, GNUSyntax,
2534                                  Init.getAs<Expr>());
2535 
2536   if (!getLangOpts().C99)
2537     Diag(DIE->getLocStart(), diag::ext_designated_init)
2538       << DIE->getSourceRange();
2539 
2540   return DIE;
2541 }
2542 
2543 //===----------------------------------------------------------------------===//
2544 // Initialization entity
2545 //===----------------------------------------------------------------------===//
2546 
InitializedEntity(ASTContext & Context,unsigned Index,const InitializedEntity & Parent)2547 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2548                                      const InitializedEntity &Parent)
2549   : Parent(&Parent), Index(Index)
2550 {
2551   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2552     Kind = EK_ArrayElement;
2553     Type = AT->getElementType();
2554   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2555     Kind = EK_VectorElement;
2556     Type = VT->getElementType();
2557   } else {
2558     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2559     assert(CT && "Unexpected type");
2560     Kind = EK_ComplexElement;
2561     Type = CT->getElementType();
2562   }
2563 }
2564 
2565 InitializedEntity
InitializeBase(ASTContext & Context,const CXXBaseSpecifier * Base,bool IsInheritedVirtualBase)2566 InitializedEntity::InitializeBase(ASTContext &Context,
2567                                   const CXXBaseSpecifier *Base,
2568                                   bool IsInheritedVirtualBase) {
2569   InitializedEntity Result;
2570   Result.Kind = EK_Base;
2571   Result.Parent = nullptr;
2572   Result.Base = reinterpret_cast<uintptr_t>(Base);
2573   if (IsInheritedVirtualBase)
2574     Result.Base |= 0x01;
2575 
2576   Result.Type = Base->getType();
2577   return Result;
2578 }
2579 
getName() const2580 DeclarationName InitializedEntity::getName() const {
2581   switch (getKind()) {
2582   case EK_Parameter:
2583   case EK_Parameter_CF_Audited: {
2584     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2585     return (D ? D->getDeclName() : DeclarationName());
2586   }
2587 
2588   case EK_Variable:
2589   case EK_Member:
2590     return VariableOrMember->getDeclName();
2591 
2592   case EK_LambdaCapture:
2593     return DeclarationName(Capture.VarID);
2594 
2595   case EK_Result:
2596   case EK_Exception:
2597   case EK_New:
2598   case EK_Temporary:
2599   case EK_Base:
2600   case EK_Delegating:
2601   case EK_ArrayElement:
2602   case EK_VectorElement:
2603   case EK_ComplexElement:
2604   case EK_BlockElement:
2605   case EK_CompoundLiteralInit:
2606   case EK_RelatedResult:
2607     return DeclarationName();
2608   }
2609 
2610   llvm_unreachable("Invalid EntityKind!");
2611 }
2612 
getDecl() const2613 DeclaratorDecl *InitializedEntity::getDecl() const {
2614   switch (getKind()) {
2615   case EK_Variable:
2616   case EK_Member:
2617     return VariableOrMember;
2618 
2619   case EK_Parameter:
2620   case EK_Parameter_CF_Audited:
2621     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2622 
2623   case EK_Result:
2624   case EK_Exception:
2625   case EK_New:
2626   case EK_Temporary:
2627   case EK_Base:
2628   case EK_Delegating:
2629   case EK_ArrayElement:
2630   case EK_VectorElement:
2631   case EK_ComplexElement:
2632   case EK_BlockElement:
2633   case EK_LambdaCapture:
2634   case EK_CompoundLiteralInit:
2635   case EK_RelatedResult:
2636     return nullptr;
2637   }
2638 
2639   llvm_unreachable("Invalid EntityKind!");
2640 }
2641 
allowsNRVO() const2642 bool InitializedEntity::allowsNRVO() const {
2643   switch (getKind()) {
2644   case EK_Result:
2645   case EK_Exception:
2646     return LocAndNRVO.NRVO;
2647 
2648   case EK_Variable:
2649   case EK_Parameter:
2650   case EK_Parameter_CF_Audited:
2651   case EK_Member:
2652   case EK_New:
2653   case EK_Temporary:
2654   case EK_CompoundLiteralInit:
2655   case EK_Base:
2656   case EK_Delegating:
2657   case EK_ArrayElement:
2658   case EK_VectorElement:
2659   case EK_ComplexElement:
2660   case EK_BlockElement:
2661   case EK_LambdaCapture:
2662   case EK_RelatedResult:
2663     break;
2664   }
2665 
2666   return false;
2667 }
2668 
dumpImpl(raw_ostream & OS) const2669 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
2670   assert(getParent() != this);
2671   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
2672   for (unsigned I = 0; I != Depth; ++I)
2673     OS << "`-";
2674 
2675   switch (getKind()) {
2676   case EK_Variable: OS << "Variable"; break;
2677   case EK_Parameter: OS << "Parameter"; break;
2678   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
2679     break;
2680   case EK_Result: OS << "Result"; break;
2681   case EK_Exception: OS << "Exception"; break;
2682   case EK_Member: OS << "Member"; break;
2683   case EK_New: OS << "New"; break;
2684   case EK_Temporary: OS << "Temporary"; break;
2685   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
2686   case EK_RelatedResult: OS << "RelatedResult"; break;
2687   case EK_Base: OS << "Base"; break;
2688   case EK_Delegating: OS << "Delegating"; break;
2689   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
2690   case EK_VectorElement: OS << "VectorElement " << Index; break;
2691   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
2692   case EK_BlockElement: OS << "Block"; break;
2693   case EK_LambdaCapture:
2694     OS << "LambdaCapture ";
2695     OS << DeclarationName(Capture.VarID);
2696     break;
2697   }
2698 
2699   if (Decl *D = getDecl()) {
2700     OS << " ";
2701     cast<NamedDecl>(D)->printQualifiedName(OS);
2702   }
2703 
2704   OS << " '" << getType().getAsString() << "'\n";
2705 
2706   return Depth + 1;
2707 }
2708 
dump() const2709 void InitializedEntity::dump() const {
2710   dumpImpl(llvm::errs());
2711 }
2712 
2713 //===----------------------------------------------------------------------===//
2714 // Initialization sequence
2715 //===----------------------------------------------------------------------===//
2716 
Destroy()2717 void InitializationSequence::Step::Destroy() {
2718   switch (Kind) {
2719   case SK_ResolveAddressOfOverloadedFunction:
2720   case SK_CastDerivedToBaseRValue:
2721   case SK_CastDerivedToBaseXValue:
2722   case SK_CastDerivedToBaseLValue:
2723   case SK_BindReference:
2724   case SK_BindReferenceToTemporary:
2725   case SK_ExtraneousCopyToTemporary:
2726   case SK_UserConversion:
2727   case SK_QualificationConversionRValue:
2728   case SK_QualificationConversionXValue:
2729   case SK_QualificationConversionLValue:
2730   case SK_AtomicConversion:
2731   case SK_LValueToRValue:
2732   case SK_ListInitialization:
2733   case SK_UnwrapInitList:
2734   case SK_RewrapInitList:
2735   case SK_ConstructorInitialization:
2736   case SK_ConstructorInitializationFromList:
2737   case SK_ZeroInitialization:
2738   case SK_CAssignment:
2739   case SK_StringInit:
2740   case SK_ObjCObjectConversion:
2741   case SK_ArrayInit:
2742   case SK_ParenthesizedArrayInit:
2743   case SK_PassByIndirectCopyRestore:
2744   case SK_PassByIndirectRestore:
2745   case SK_ProduceObjCObject:
2746   case SK_StdInitializerList:
2747   case SK_StdInitializerListConstructorCall:
2748   case SK_OCLSamplerInit:
2749   case SK_OCLZeroEvent:
2750     break;
2751 
2752   case SK_ConversionSequence:
2753   case SK_ConversionSequenceNoNarrowing:
2754     delete ICS;
2755   }
2756 }
2757 
isDirectReferenceBinding() const2758 bool InitializationSequence::isDirectReferenceBinding() const {
2759   return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2760 }
2761 
isAmbiguous() const2762 bool InitializationSequence::isAmbiguous() const {
2763   if (!Failed())
2764     return false;
2765 
2766   switch (getFailureKind()) {
2767   case FK_TooManyInitsForReference:
2768   case FK_ArrayNeedsInitList:
2769   case FK_ArrayNeedsInitListOrStringLiteral:
2770   case FK_ArrayNeedsInitListOrWideStringLiteral:
2771   case FK_NarrowStringIntoWideCharArray:
2772   case FK_WideStringIntoCharArray:
2773   case FK_IncompatWideStringIntoWideChar:
2774   case FK_AddressOfOverloadFailed: // FIXME: Could do better
2775   case FK_NonConstLValueReferenceBindingToTemporary:
2776   case FK_NonConstLValueReferenceBindingToUnrelated:
2777   case FK_RValueReferenceBindingToLValue:
2778   case FK_ReferenceInitDropsQualifiers:
2779   case FK_ReferenceInitFailed:
2780   case FK_ConversionFailed:
2781   case FK_ConversionFromPropertyFailed:
2782   case FK_TooManyInitsForScalar:
2783   case FK_ReferenceBindingToInitList:
2784   case FK_InitListBadDestinationType:
2785   case FK_DefaultInitOfConst:
2786   case FK_Incomplete:
2787   case FK_ArrayTypeMismatch:
2788   case FK_NonConstantArrayInit:
2789   case FK_ListInitializationFailed:
2790   case FK_VariableLengthArrayHasInitializer:
2791   case FK_PlaceholderType:
2792   case FK_ExplicitConstructor:
2793     return false;
2794 
2795   case FK_ReferenceInitOverloadFailed:
2796   case FK_UserConversionOverloadFailed:
2797   case FK_ConstructorOverloadFailed:
2798   case FK_ListConstructorOverloadFailed:
2799     return FailedOverloadResult == OR_Ambiguous;
2800   }
2801 
2802   llvm_unreachable("Invalid EntityKind!");
2803 }
2804 
isConstructorInitialization() const2805 bool InitializationSequence::isConstructorInitialization() const {
2806   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2807 }
2808 
2809 void
2810 InitializationSequence
AddAddressOverloadResolutionStep(FunctionDecl * Function,DeclAccessPair Found,bool HadMultipleCandidates)2811 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
2812                                    DeclAccessPair Found,
2813                                    bool HadMultipleCandidates) {
2814   Step S;
2815   S.Kind = SK_ResolveAddressOfOverloadedFunction;
2816   S.Type = Function->getType();
2817   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2818   S.Function.Function = Function;
2819   S.Function.FoundDecl = Found;
2820   Steps.push_back(S);
2821 }
2822 
AddDerivedToBaseCastStep(QualType BaseType,ExprValueKind VK)2823 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2824                                                       ExprValueKind VK) {
2825   Step S;
2826   switch (VK) {
2827   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2828   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2829   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2830   }
2831   S.Type = BaseType;
2832   Steps.push_back(S);
2833 }
2834 
AddReferenceBindingStep(QualType T,bool BindingTemporary)2835 void InitializationSequence::AddReferenceBindingStep(QualType T,
2836                                                      bool BindingTemporary) {
2837   Step S;
2838   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2839   S.Type = T;
2840   Steps.push_back(S);
2841 }
2842 
AddExtraneousCopyToTemporary(QualType T)2843 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2844   Step S;
2845   S.Kind = SK_ExtraneousCopyToTemporary;
2846   S.Type = T;
2847   Steps.push_back(S);
2848 }
2849 
2850 void
AddUserConversionStep(FunctionDecl * Function,DeclAccessPair FoundDecl,QualType T,bool HadMultipleCandidates)2851 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2852                                               DeclAccessPair FoundDecl,
2853                                               QualType T,
2854                                               bool HadMultipleCandidates) {
2855   Step S;
2856   S.Kind = SK_UserConversion;
2857   S.Type = T;
2858   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2859   S.Function.Function = Function;
2860   S.Function.FoundDecl = FoundDecl;
2861   Steps.push_back(S);
2862 }
2863 
AddQualificationConversionStep(QualType Ty,ExprValueKind VK)2864 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2865                                                             ExprValueKind VK) {
2866   Step S;
2867   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2868   switch (VK) {
2869   case VK_RValue:
2870     S.Kind = SK_QualificationConversionRValue;
2871     break;
2872   case VK_XValue:
2873     S.Kind = SK_QualificationConversionXValue;
2874     break;
2875   case VK_LValue:
2876     S.Kind = SK_QualificationConversionLValue;
2877     break;
2878   }
2879   S.Type = Ty;
2880   Steps.push_back(S);
2881 }
2882 
AddAtomicConversionStep(QualType Ty)2883 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
2884   Step S;
2885   S.Kind = SK_AtomicConversion;
2886   S.Type = Ty;
2887   Steps.push_back(S);
2888 }
2889 
AddLValueToRValueStep(QualType Ty)2890 void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
2891   assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
2892 
2893   Step S;
2894   S.Kind = SK_LValueToRValue;
2895   S.Type = Ty;
2896   Steps.push_back(S);
2897 }
2898 
AddConversionSequenceStep(const ImplicitConversionSequence & ICS,QualType T,bool TopLevelOfInitList)2899 void InitializationSequence::AddConversionSequenceStep(
2900     const ImplicitConversionSequence &ICS, QualType T,
2901     bool TopLevelOfInitList) {
2902   Step S;
2903   S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
2904                               : SK_ConversionSequence;
2905   S.Type = T;
2906   S.ICS = new ImplicitConversionSequence(ICS);
2907   Steps.push_back(S);
2908 }
2909 
AddListInitializationStep(QualType T)2910 void InitializationSequence::AddListInitializationStep(QualType T) {
2911   Step S;
2912   S.Kind = SK_ListInitialization;
2913   S.Type = T;
2914   Steps.push_back(S);
2915 }
2916 
2917 void
2918 InitializationSequence
AddConstructorInitializationStep(CXXConstructorDecl * Constructor,AccessSpecifier Access,QualType T,bool HadMultipleCandidates,bool FromInitList,bool AsInitList)2919 ::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
2920                                    AccessSpecifier Access,
2921                                    QualType T,
2922                                    bool HadMultipleCandidates,
2923                                    bool FromInitList, bool AsInitList) {
2924   Step S;
2925   S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
2926                                      : SK_ConstructorInitializationFromList
2927                         : SK_ConstructorInitialization;
2928   S.Type = T;
2929   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2930   S.Function.Function = Constructor;
2931   S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2932   Steps.push_back(S);
2933 }
2934 
AddZeroInitializationStep(QualType T)2935 void InitializationSequence::AddZeroInitializationStep(QualType T) {
2936   Step S;
2937   S.Kind = SK_ZeroInitialization;
2938   S.Type = T;
2939   Steps.push_back(S);
2940 }
2941 
AddCAssignmentStep(QualType T)2942 void InitializationSequence::AddCAssignmentStep(QualType T) {
2943   Step S;
2944   S.Kind = SK_CAssignment;
2945   S.Type = T;
2946   Steps.push_back(S);
2947 }
2948 
AddStringInitStep(QualType T)2949 void InitializationSequence::AddStringInitStep(QualType T) {
2950   Step S;
2951   S.Kind = SK_StringInit;
2952   S.Type = T;
2953   Steps.push_back(S);
2954 }
2955 
AddObjCObjectConversionStep(QualType T)2956 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2957   Step S;
2958   S.Kind = SK_ObjCObjectConversion;
2959   S.Type = T;
2960   Steps.push_back(S);
2961 }
2962 
AddArrayInitStep(QualType T)2963 void InitializationSequence::AddArrayInitStep(QualType T) {
2964   Step S;
2965   S.Kind = SK_ArrayInit;
2966   S.Type = T;
2967   Steps.push_back(S);
2968 }
2969 
AddParenthesizedArrayInitStep(QualType T)2970 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
2971   Step S;
2972   S.Kind = SK_ParenthesizedArrayInit;
2973   S.Type = T;
2974   Steps.push_back(S);
2975 }
2976 
AddPassByIndirectCopyRestoreStep(QualType type,bool shouldCopy)2977 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2978                                                               bool shouldCopy) {
2979   Step s;
2980   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
2981                        : SK_PassByIndirectRestore);
2982   s.Type = type;
2983   Steps.push_back(s);
2984 }
2985 
AddProduceObjCObjectStep(QualType T)2986 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
2987   Step S;
2988   S.Kind = SK_ProduceObjCObject;
2989   S.Type = T;
2990   Steps.push_back(S);
2991 }
2992 
AddStdInitializerListConstructionStep(QualType T)2993 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
2994   Step S;
2995   S.Kind = SK_StdInitializerList;
2996   S.Type = T;
2997   Steps.push_back(S);
2998 }
2999 
AddOCLSamplerInitStep(QualType T)3000 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3001   Step S;
3002   S.Kind = SK_OCLSamplerInit;
3003   S.Type = T;
3004   Steps.push_back(S);
3005 }
3006 
AddOCLZeroEventStep(QualType T)3007 void InitializationSequence::AddOCLZeroEventStep(QualType T) {
3008   Step S;
3009   S.Kind = SK_OCLZeroEvent;
3010   S.Type = T;
3011   Steps.push_back(S);
3012 }
3013 
RewrapReferenceInitList(QualType T,InitListExpr * Syntactic)3014 void InitializationSequence::RewrapReferenceInitList(QualType T,
3015                                                      InitListExpr *Syntactic) {
3016   assert(Syntactic->getNumInits() == 1 &&
3017          "Can only rewrap trivial init lists.");
3018   Step S;
3019   S.Kind = SK_UnwrapInitList;
3020   S.Type = Syntactic->getInit(0)->getType();
3021   Steps.insert(Steps.begin(), S);
3022 
3023   S.Kind = SK_RewrapInitList;
3024   S.Type = T;
3025   S.WrappingSyntacticList = Syntactic;
3026   Steps.push_back(S);
3027 }
3028 
SetOverloadFailure(FailureKind Failure,OverloadingResult Result)3029 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3030                                                 OverloadingResult Result) {
3031   setSequenceKind(FailedSequence);
3032   this->Failure = Failure;
3033   this->FailedOverloadResult = Result;
3034 }
3035 
3036 //===----------------------------------------------------------------------===//
3037 // Attempt initialization
3038 //===----------------------------------------------------------------------===//
3039 
MaybeProduceObjCObject(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity)3040 static void MaybeProduceObjCObject(Sema &S,
3041                                    InitializationSequence &Sequence,
3042                                    const InitializedEntity &Entity) {
3043   if (!S.getLangOpts().ObjCAutoRefCount) return;
3044 
3045   /// When initializing a parameter, produce the value if it's marked
3046   /// __attribute__((ns_consumed)).
3047   if (Entity.isParameterKind()) {
3048     if (!Entity.isParameterConsumed())
3049       return;
3050 
3051     assert(Entity.getType()->isObjCRetainableType() &&
3052            "consuming an object of unretainable type?");
3053     Sequence.AddProduceObjCObjectStep(Entity.getType());
3054 
3055   /// When initializing a return value, if the return type is a
3056   /// retainable type, then returns need to immediately retain the
3057   /// object.  If an autorelease is required, it will be done at the
3058   /// last instant.
3059   } else if (Entity.getKind() == InitializedEntity::EK_Result) {
3060     if (!Entity.getType()->isObjCRetainableType())
3061       return;
3062 
3063     Sequence.AddProduceObjCObjectStep(Entity.getType());
3064   }
3065 }
3066 
3067 static void TryListInitialization(Sema &S,
3068                                   const InitializedEntity &Entity,
3069                                   const InitializationKind &Kind,
3070                                   InitListExpr *InitList,
3071                                   InitializationSequence &Sequence);
3072 
3073 /// \brief When initializing from init list via constructor, handle
3074 /// initialization of an object of type std::initializer_list<T>.
3075 ///
3076 /// \return true if we have handled initialization of an object of type
3077 /// std::initializer_list<T>, false otherwise.
TryInitializerListConstruction(Sema & S,InitListExpr * List,QualType DestType,InitializationSequence & Sequence)3078 static bool TryInitializerListConstruction(Sema &S,
3079                                            InitListExpr *List,
3080                                            QualType DestType,
3081                                            InitializationSequence &Sequence) {
3082   QualType E;
3083   if (!S.isStdInitializerList(DestType, &E))
3084     return false;
3085 
3086   if (S.RequireCompleteType(List->getExprLoc(), E, 0)) {
3087     Sequence.setIncompleteTypeFailure(E);
3088     return true;
3089   }
3090 
3091   // Try initializing a temporary array from the init list.
3092   QualType ArrayType = S.Context.getConstantArrayType(
3093       E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3094                                  List->getNumInits()),
3095       clang::ArrayType::Normal, 0);
3096   InitializedEntity HiddenArray =
3097       InitializedEntity::InitializeTemporary(ArrayType);
3098   InitializationKind Kind =
3099       InitializationKind::CreateDirectList(List->getExprLoc());
3100   TryListInitialization(S, HiddenArray, Kind, List, Sequence);
3101   if (Sequence)
3102     Sequence.AddStdInitializerListConstructionStep(DestType);
3103   return true;
3104 }
3105 
3106 static OverloadingResult
ResolveConstructorOverload(Sema & S,SourceLocation DeclLoc,MultiExprArg Args,OverloadCandidateSet & CandidateSet,ArrayRef<NamedDecl * > Ctors,OverloadCandidateSet::iterator & Best,bool CopyInitializing,bool AllowExplicit,bool OnlyListConstructors,bool InitListSyntax)3107 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3108                            MultiExprArg Args,
3109                            OverloadCandidateSet &CandidateSet,
3110                            ArrayRef<NamedDecl *> Ctors,
3111                            OverloadCandidateSet::iterator &Best,
3112                            bool CopyInitializing, bool AllowExplicit,
3113                            bool OnlyListConstructors, bool InitListSyntax) {
3114   CandidateSet.clear();
3115 
3116   for (ArrayRef<NamedDecl *>::iterator
3117          Con = Ctors.begin(), ConEnd = Ctors.end(); Con != ConEnd; ++Con) {
3118     NamedDecl *D = *Con;
3119     DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3120     bool SuppressUserConversions = false;
3121 
3122     // Find the constructor (which may be a template).
3123     CXXConstructorDecl *Constructor = nullptr;
3124     FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3125     if (ConstructorTmpl)
3126       Constructor = cast<CXXConstructorDecl>(
3127                                            ConstructorTmpl->getTemplatedDecl());
3128     else {
3129       Constructor = cast<CXXConstructorDecl>(D);
3130 
3131       // C++11 [over.best.ics]p4:
3132       //   However, when considering the argument of a constructor or
3133       //   user-defined conversion function that is a candidate:
3134       //    -- by 13.3.1.3 when invoked for the copying/moving of a temporary
3135       //       in the second step of a class copy-initialization,
3136       //    -- by 13.3.1.7 when passing the initializer list as a single
3137       //       argument or when the initializer list has exactly one elementand
3138       //       a conversion to some class X or reference to (possibly
3139       //       cv-qualified) X is considered for the first parameter of a
3140       //       constructor of X, or
3141       //    -- by 13.3.1.4, 13.3.1.5, or 13.3.1.6 in all cases,
3142       //   only standard conversion sequences and ellipsis conversion sequences
3143       //   are considered.
3144       if ((CopyInitializing || (InitListSyntax && Args.size() == 1)) &&
3145           Constructor->isCopyOrMoveConstructor())
3146         SuppressUserConversions = true;
3147     }
3148 
3149     if (!Constructor->isInvalidDecl() &&
3150         (AllowExplicit || !Constructor->isExplicit()) &&
3151         (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
3152       if (ConstructorTmpl)
3153         S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3154                                        /*ExplicitArgs*/ nullptr, Args,
3155                                        CandidateSet, SuppressUserConversions);
3156       else {
3157         // C++ [over.match.copy]p1:
3158         //   - When initializing a temporary to be bound to the first parameter
3159         //     of a constructor that takes a reference to possibly cv-qualified
3160         //     T as its first argument, called with a single argument in the
3161         //     context of direct-initialization, explicit conversion functions
3162         //     are also considered.
3163         bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3164                                  Args.size() == 1 &&
3165                                  Constructor->isCopyOrMoveConstructor();
3166         S.AddOverloadCandidate(Constructor, FoundDecl, Args, CandidateSet,
3167                                SuppressUserConversions,
3168                                /*PartialOverloading=*/false,
3169                                /*AllowExplicit=*/AllowExplicitConv);
3170       }
3171     }
3172   }
3173 
3174   // Perform overload resolution and return the result.
3175   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3176 }
3177 
3178 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which
3179 /// enumerates the constructors of the initialized entity and performs overload
3180 /// resolution to select the best.
3181 /// If InitListSyntax is true, this is list-initialization of a non-aggregate
3182 /// class type.
TryConstructorInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,QualType DestType,InitializationSequence & Sequence,bool InitListSyntax=false)3183 static void TryConstructorInitialization(Sema &S,
3184                                          const InitializedEntity &Entity,
3185                                          const InitializationKind &Kind,
3186                                          MultiExprArg Args, QualType DestType,
3187                                          InitializationSequence &Sequence,
3188                                          bool InitListSyntax = false) {
3189   assert((!InitListSyntax || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3190          "InitListSyntax must come with a single initializer list argument.");
3191 
3192   // The type we're constructing needs to be complete.
3193   if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3194     Sequence.setIncompleteTypeFailure(DestType);
3195     return;
3196   }
3197 
3198   const RecordType *DestRecordType = DestType->getAs<RecordType>();
3199   assert(DestRecordType && "Constructor initialization requires record type");
3200   CXXRecordDecl *DestRecordDecl
3201     = cast<CXXRecordDecl>(DestRecordType->getDecl());
3202 
3203   // Build the candidate set directly in the initialization sequence
3204   // structure, so that it will persist if we fail.
3205   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3206 
3207   // Determine whether we are allowed to call explicit constructors or
3208   // explicit conversion operators.
3209   bool AllowExplicit = Kind.AllowExplicit() || InitListSyntax;
3210   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3211 
3212   //   - Otherwise, if T is a class type, constructors are considered. The
3213   //     applicable constructors are enumerated, and the best one is chosen
3214   //     through overload resolution.
3215   DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
3216   // The container holding the constructors can under certain conditions
3217   // be changed while iterating (e.g. because of deserialization).
3218   // To be safe we copy the lookup results to a new container.
3219   SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
3220 
3221   OverloadingResult Result = OR_No_Viable_Function;
3222   OverloadCandidateSet::iterator Best;
3223   bool AsInitializerList = false;
3224 
3225   // C++11 [over.match.list]p1:
3226   //   When objects of non-aggregate type T are list-initialized, overload
3227   //   resolution selects the constructor in two phases:
3228   //   - Initially, the candidate functions are the initializer-list
3229   //     constructors of the class T and the argument list consists of the
3230   //     initializer list as a single argument.
3231   if (InitListSyntax) {
3232     InitListExpr *ILE = cast<InitListExpr>(Args[0]);
3233     AsInitializerList = true;
3234 
3235     // If the initializer list has no elements and T has a default constructor,
3236     // the first phase is omitted.
3237     if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor())
3238       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3239                                           CandidateSet, Ctors, Best,
3240                                           CopyInitialization, AllowExplicit,
3241                                           /*OnlyListConstructor=*/true,
3242                                           InitListSyntax);
3243 
3244     // Time to unwrap the init list.
3245     Args = MultiExprArg(ILE->getInits(), ILE->getNumInits());
3246   }
3247 
3248   // C++11 [over.match.list]p1:
3249   //   - If no viable initializer-list constructor is found, overload resolution
3250   //     is performed again, where the candidate functions are all the
3251   //     constructors of the class T and the argument list consists of the
3252   //     elements of the initializer list.
3253   if (Result == OR_No_Viable_Function) {
3254     AsInitializerList = false;
3255     Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3256                                         CandidateSet, Ctors, Best,
3257                                         CopyInitialization, AllowExplicit,
3258                                         /*OnlyListConstructors=*/false,
3259                                         InitListSyntax);
3260   }
3261   if (Result) {
3262     Sequence.SetOverloadFailure(InitListSyntax ?
3263                       InitializationSequence::FK_ListConstructorOverloadFailed :
3264                       InitializationSequence::FK_ConstructorOverloadFailed,
3265                                 Result);
3266     return;
3267   }
3268 
3269   // C++11 [dcl.init]p6:
3270   //   If a program calls for the default initialization of an object
3271   //   of a const-qualified type T, T shall be a class type with a
3272   //   user-provided default constructor.
3273   if (Kind.getKind() == InitializationKind::IK_Default &&
3274       Entity.getType().isConstQualified() &&
3275       !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) {
3276     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3277     return;
3278   }
3279 
3280   // C++11 [over.match.list]p1:
3281   //   In copy-list-initialization, if an explicit constructor is chosen, the
3282   //   initializer is ill-formed.
3283   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3284   if (InitListSyntax && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3285     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3286     return;
3287   }
3288 
3289   // Add the constructor initialization step. Any cv-qualification conversion is
3290   // subsumed by the initialization.
3291   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3292   Sequence.AddConstructorInitializationStep(CtorDecl,
3293                                             Best->FoundDecl.getAccess(),
3294                                             DestType, HadMultipleCandidates,
3295                                             InitListSyntax, AsInitializerList);
3296 }
3297 
3298 static bool
ResolveOverloadedFunctionForReferenceBinding(Sema & S,Expr * Initializer,QualType & SourceType,QualType & UnqualifiedSourceType,QualType UnqualifiedTargetType,InitializationSequence & Sequence)3299 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3300                                              Expr *Initializer,
3301                                              QualType &SourceType,
3302                                              QualType &UnqualifiedSourceType,
3303                                              QualType UnqualifiedTargetType,
3304                                              InitializationSequence &Sequence) {
3305   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3306         S.Context.OverloadTy) {
3307     DeclAccessPair Found;
3308     bool HadMultipleCandidates = false;
3309     if (FunctionDecl *Fn
3310         = S.ResolveAddressOfOverloadedFunction(Initializer,
3311                                                UnqualifiedTargetType,
3312                                                false, Found,
3313                                                &HadMultipleCandidates)) {
3314       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3315                                                 HadMultipleCandidates);
3316       SourceType = Fn->getType();
3317       UnqualifiedSourceType = SourceType.getUnqualifiedType();
3318     } else if (!UnqualifiedTargetType->isRecordType()) {
3319       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3320       return true;
3321     }
3322   }
3323   return false;
3324 }
3325 
3326 static void TryReferenceInitializationCore(Sema &S,
3327                                            const InitializedEntity &Entity,
3328                                            const InitializationKind &Kind,
3329                                            Expr *Initializer,
3330                                            QualType cv1T1, QualType T1,
3331                                            Qualifiers T1Quals,
3332                                            QualType cv2T2, QualType T2,
3333                                            Qualifiers T2Quals,
3334                                            InitializationSequence &Sequence);
3335 
3336 static void TryValueInitialization(Sema &S,
3337                                    const InitializedEntity &Entity,
3338                                    const InitializationKind &Kind,
3339                                    InitializationSequence &Sequence,
3340                                    InitListExpr *InitList = nullptr);
3341 
3342 /// \brief Attempt list initialization of a reference.
TryReferenceListInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitListExpr * InitList,InitializationSequence & Sequence)3343 static void TryReferenceListInitialization(Sema &S,
3344                                            const InitializedEntity &Entity,
3345                                            const InitializationKind &Kind,
3346                                            InitListExpr *InitList,
3347                                            InitializationSequence &Sequence) {
3348   // First, catch C++03 where this isn't possible.
3349   if (!S.getLangOpts().CPlusPlus11) {
3350     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3351     return;
3352   }
3353 
3354   QualType DestType = Entity.getType();
3355   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3356   Qualifiers T1Quals;
3357   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3358 
3359   // Reference initialization via an initializer list works thus:
3360   // If the initializer list consists of a single element that is
3361   // reference-related to the referenced type, bind directly to that element
3362   // (possibly creating temporaries).
3363   // Otherwise, initialize a temporary with the initializer list and
3364   // bind to that.
3365   if (InitList->getNumInits() == 1) {
3366     Expr *Initializer = InitList->getInit(0);
3367     QualType cv2T2 = Initializer->getType();
3368     Qualifiers T2Quals;
3369     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3370 
3371     // If this fails, creating a temporary wouldn't work either.
3372     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3373                                                      T1, Sequence))
3374       return;
3375 
3376     SourceLocation DeclLoc = Initializer->getLocStart();
3377     bool dummy1, dummy2, dummy3;
3378     Sema::ReferenceCompareResult RefRelationship
3379       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3380                                        dummy2, dummy3);
3381     if (RefRelationship >= Sema::Ref_Related) {
3382       // Try to bind the reference here.
3383       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3384                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
3385       if (Sequence)
3386         Sequence.RewrapReferenceInitList(cv1T1, InitList);
3387       return;
3388     }
3389 
3390     // Update the initializer if we've resolved an overloaded function.
3391     if (Sequence.step_begin() != Sequence.step_end())
3392       Sequence.RewrapReferenceInitList(cv1T1, InitList);
3393   }
3394 
3395   // Not reference-related. Create a temporary and bind to that.
3396   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3397 
3398   TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
3399   if (Sequence) {
3400     if (DestType->isRValueReferenceType() ||
3401         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3402       Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3403     else
3404       Sequence.SetFailed(
3405           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3406   }
3407 }
3408 
3409 /// \brief Attempt list initialization (C++0x [dcl.init.list])
TryListInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitListExpr * InitList,InitializationSequence & Sequence)3410 static void TryListInitialization(Sema &S,
3411                                   const InitializedEntity &Entity,
3412                                   const InitializationKind &Kind,
3413                                   InitListExpr *InitList,
3414                                   InitializationSequence &Sequence) {
3415   QualType DestType = Entity.getType();
3416 
3417   // C++ doesn't allow scalar initialization with more than one argument.
3418   // But C99 complex numbers are scalars and it makes sense there.
3419   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3420       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3421     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3422     return;
3423   }
3424   if (DestType->isReferenceType()) {
3425     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
3426     return;
3427   }
3428   if (DestType->isRecordType()) {
3429     if (S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) {
3430       Sequence.setIncompleteTypeFailure(DestType);
3431       return;
3432     }
3433 
3434     // C++11 [dcl.init.list]p3:
3435     //   - If T is an aggregate, aggregate initialization is performed.
3436     if (!DestType->isAggregateType()) {
3437       if (S.getLangOpts().CPlusPlus11) {
3438         //   - Otherwise, if the initializer list has no elements and T is a
3439         //     class type with a default constructor, the object is
3440         //     value-initialized.
3441         if (InitList->getNumInits() == 0) {
3442           CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3443           if (RD->hasDefaultConstructor()) {
3444             TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3445             return;
3446           }
3447         }
3448 
3449         //   - Otherwise, if T is a specialization of std::initializer_list<E>,
3450         //     an initializer_list object constructed [...]
3451         if (TryInitializerListConstruction(S, InitList, DestType, Sequence))
3452           return;
3453 
3454         //   - Otherwise, if T is a class type, constructors are considered.
3455         Expr *InitListAsExpr = InitList;
3456         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
3457                                      Sequence, /*InitListSyntax*/true);
3458       } else
3459         Sequence.SetFailed(
3460             InitializationSequence::FK_InitListBadDestinationType);
3461       return;
3462     }
3463   }
3464   if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
3465       InitList->getNumInits() == 1 &&
3466       InitList->getInit(0)->getType()->isRecordType()) {
3467     //   - Otherwise, if the initializer list has a single element of type E
3468     //     [...references are handled above...], the object or reference is
3469     //     initialized from that element; if a narrowing conversion is required
3470     //     to convert the element to T, the program is ill-formed.
3471     //
3472     // Per core-24034, this is direct-initialization if we were performing
3473     // direct-list-initialization and copy-initialization otherwise.
3474     // We can't use InitListChecker for this, because it always performs
3475     // copy-initialization. This only matters if we might use an 'explicit'
3476     // conversion operator, so we only need to handle the cases where the source
3477     // is of record type.
3478     InitializationKind SubKind =
3479         Kind.getKind() == InitializationKind::IK_DirectList
3480             ? InitializationKind::CreateDirect(Kind.getLocation(),
3481                                                InitList->getLBraceLoc(),
3482                                                InitList->getRBraceLoc())
3483             : Kind;
3484     Expr *SubInit[1] = { InitList->getInit(0) };
3485     Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
3486                             /*TopLevelOfInitList*/true);
3487     if (Sequence)
3488       Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
3489     return;
3490   }
3491 
3492   InitListChecker CheckInitList(S, Entity, InitList,
3493           DestType, /*VerifyOnly=*/true);
3494   if (CheckInitList.HadError()) {
3495     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
3496     return;
3497   }
3498 
3499   // Add the list initialization step with the built init list.
3500   Sequence.AddListInitializationStep(DestType);
3501 }
3502 
3503 /// \brief Try a reference initialization that involves calling a conversion
3504 /// function.
TryRefInitWithConversionFunction(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,bool AllowRValues,InitializationSequence & Sequence)3505 static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
3506                                              const InitializedEntity &Entity,
3507                                              const InitializationKind &Kind,
3508                                              Expr *Initializer,
3509                                              bool AllowRValues,
3510                                              InitializationSequence &Sequence) {
3511   QualType DestType = Entity.getType();
3512   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3513   QualType T1 = cv1T1.getUnqualifiedType();
3514   QualType cv2T2 = Initializer->getType();
3515   QualType T2 = cv2T2.getUnqualifiedType();
3516 
3517   bool DerivedToBase;
3518   bool ObjCConversion;
3519   bool ObjCLifetimeConversion;
3520   assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
3521                                          T1, T2, DerivedToBase,
3522                                          ObjCConversion,
3523                                          ObjCLifetimeConversion) &&
3524          "Must have incompatible references when binding via conversion");
3525   (void)DerivedToBase;
3526   (void)ObjCConversion;
3527   (void)ObjCLifetimeConversion;
3528 
3529   // Build the candidate set directly in the initialization sequence
3530   // structure, so that it will persist if we fail.
3531   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3532   CandidateSet.clear();
3533 
3534   // Determine whether we are allowed to call explicit constructors or
3535   // explicit conversion operators.
3536   bool AllowExplicit = Kind.AllowExplicit();
3537   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
3538 
3539   const RecordType *T1RecordType = nullptr;
3540   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
3541       !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
3542     // The type we're converting to is a class type. Enumerate its constructors
3543     // to see if there is a suitable conversion.
3544     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
3545 
3546     DeclContext::lookup_result R = S.LookupConstructors(T1RecordDecl);
3547     // The container holding the constructors can under certain conditions
3548     // be changed while iterating (e.g. because of deserialization).
3549     // To be safe we copy the lookup results to a new container.
3550     SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
3551     for (SmallVectorImpl<NamedDecl *>::iterator
3552            CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
3553       NamedDecl *D = *CI;
3554       DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3555 
3556       // Find the constructor (which may be a template).
3557       CXXConstructorDecl *Constructor = nullptr;
3558       FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3559       if (ConstructorTmpl)
3560         Constructor = cast<CXXConstructorDecl>(
3561                                          ConstructorTmpl->getTemplatedDecl());
3562       else
3563         Constructor = cast<CXXConstructorDecl>(D);
3564 
3565       if (!Constructor->isInvalidDecl() &&
3566           Constructor->isConvertingConstructor(AllowExplicit)) {
3567         if (ConstructorTmpl)
3568           S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3569                                          /*ExplicitArgs*/ nullptr,
3570                                          Initializer, CandidateSet,
3571                                          /*SuppressUserConversions=*/true);
3572         else
3573           S.AddOverloadCandidate(Constructor, FoundDecl,
3574                                  Initializer, CandidateSet,
3575                                  /*SuppressUserConversions=*/true);
3576       }
3577     }
3578   }
3579   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
3580     return OR_No_Viable_Function;
3581 
3582   const RecordType *T2RecordType = nullptr;
3583   if ((T2RecordType = T2->getAs<RecordType>()) &&
3584       !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
3585     // The type we're converting from is a class type, enumerate its conversion
3586     // functions.
3587     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
3588 
3589     std::pair<CXXRecordDecl::conversion_iterator,
3590               CXXRecordDecl::conversion_iterator>
3591       Conversions = T2RecordDecl->getVisibleConversionFunctions();
3592     for (CXXRecordDecl::conversion_iterator
3593            I = Conversions.first, E = Conversions.second; I != E; ++I) {
3594       NamedDecl *D = *I;
3595       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3596       if (isa<UsingShadowDecl>(D))
3597         D = cast<UsingShadowDecl>(D)->getTargetDecl();
3598 
3599       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3600       CXXConversionDecl *Conv;
3601       if (ConvTemplate)
3602         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3603       else
3604         Conv = cast<CXXConversionDecl>(D);
3605 
3606       // If the conversion function doesn't return a reference type,
3607       // it can't be considered for this conversion unless we're allowed to
3608       // consider rvalues.
3609       // FIXME: Do we need to make sure that we only consider conversion
3610       // candidates with reference-compatible results? That might be needed to
3611       // break recursion.
3612       if ((AllowExplicitConvs || !Conv->isExplicit()) &&
3613           (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
3614         if (ConvTemplate)
3615           S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3616                                            ActingDC, Initializer,
3617                                            DestType, CandidateSet,
3618                                            /*AllowObjCConversionOnExplicit=*/
3619                                              false);
3620         else
3621           S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3622                                    Initializer, DestType, CandidateSet,
3623                                    /*AllowObjCConversionOnExplicit=*/false);
3624       }
3625     }
3626   }
3627   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
3628     return OR_No_Viable_Function;
3629 
3630   SourceLocation DeclLoc = Initializer->getLocStart();
3631 
3632   // Perform overload resolution. If it fails, return the failed result.
3633   OverloadCandidateSet::iterator Best;
3634   if (OverloadingResult Result
3635         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
3636     return Result;
3637 
3638   FunctionDecl *Function = Best->Function;
3639   // This is the overload that will be used for this initialization step if we
3640   // use this initialization. Mark it as referenced.
3641   Function->setReferenced();
3642 
3643   // Compute the returned type of the conversion.
3644   if (isa<CXXConversionDecl>(Function))
3645     T2 = Function->getReturnType();
3646   else
3647     T2 = cv1T1;
3648 
3649   // Add the user-defined conversion step.
3650   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3651   Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3652                                  T2.getNonLValueExprType(S.Context),
3653                                  HadMultipleCandidates);
3654 
3655   // Determine whether we need to perform derived-to-base or
3656   // cv-qualification adjustments.
3657   ExprValueKind VK = VK_RValue;
3658   if (T2->isLValueReferenceType())
3659     VK = VK_LValue;
3660   else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
3661     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
3662 
3663   bool NewDerivedToBase = false;
3664   bool NewObjCConversion = false;
3665   bool NewObjCLifetimeConversion = false;
3666   Sema::ReferenceCompareResult NewRefRelationship
3667     = S.CompareReferenceRelationship(DeclLoc, T1,
3668                                      T2.getNonLValueExprType(S.Context),
3669                                      NewDerivedToBase, NewObjCConversion,
3670                                      NewObjCLifetimeConversion);
3671   if (NewRefRelationship == Sema::Ref_Incompatible) {
3672     // If the type we've converted to is not reference-related to the
3673     // type we're looking for, then there is another conversion step
3674     // we need to perform to produce a temporary of the right type
3675     // that we'll be binding to.
3676     ImplicitConversionSequence ICS;
3677     ICS.setStandard();
3678     ICS.Standard = Best->FinalConversion;
3679     T2 = ICS.Standard.getToType(2);
3680     Sequence.AddConversionSequenceStep(ICS, T2);
3681   } else if (NewDerivedToBase)
3682     Sequence.AddDerivedToBaseCastStep(
3683                                 S.Context.getQualifiedType(T1,
3684                                   T2.getNonReferenceType().getQualifiers()),
3685                                       VK);
3686   else if (NewObjCConversion)
3687     Sequence.AddObjCObjectConversionStep(
3688                                 S.Context.getQualifiedType(T1,
3689                                   T2.getNonReferenceType().getQualifiers()));
3690 
3691   if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3692     Sequence.AddQualificationConversionStep(cv1T1, VK);
3693 
3694   Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3695   return OR_Success;
3696 }
3697 
3698 static void CheckCXX98CompatAccessibleCopy(Sema &S,
3699                                            const InitializedEntity &Entity,
3700                                            Expr *CurInitExpr);
3701 
3702 /// \brief Attempt reference initialization (C++0x [dcl.init.ref])
TryReferenceInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)3703 static void TryReferenceInitialization(Sema &S,
3704                                        const InitializedEntity &Entity,
3705                                        const InitializationKind &Kind,
3706                                        Expr *Initializer,
3707                                        InitializationSequence &Sequence) {
3708   QualType DestType = Entity.getType();
3709   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3710   Qualifiers T1Quals;
3711   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3712   QualType cv2T2 = Initializer->getType();
3713   Qualifiers T2Quals;
3714   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3715 
3716   // If the initializer is the address of an overloaded function, try
3717   // to resolve the overloaded function. If all goes well, T2 is the
3718   // type of the resulting function.
3719   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3720                                                    T1, Sequence))
3721     return;
3722 
3723   // Delegate everything else to a subfunction.
3724   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3725                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
3726 }
3727 
3728 /// Converts the target of reference initialization so that it has the
3729 /// appropriate qualifiers and value kind.
3730 ///
3731 /// In this case, 'x' is an 'int' lvalue, but it needs to be 'const int'.
3732 /// \code
3733 ///   int x;
3734 ///   const int &r = x;
3735 /// \endcode
3736 ///
3737 /// In this case the reference is binding to a bitfield lvalue, which isn't
3738 /// valid. Perform a load to create a lifetime-extended temporary instead.
3739 /// \code
3740 ///   const int &r = someStruct.bitfield;
3741 /// \endcode
3742 static ExprValueKind
convertQualifiersAndValueKindIfNecessary(Sema & S,InitializationSequence & Sequence,Expr * Initializer,QualType cv1T1,Qualifiers T1Quals,Qualifiers T2Quals,bool IsLValueRef)3743 convertQualifiersAndValueKindIfNecessary(Sema &S,
3744                                          InitializationSequence &Sequence,
3745                                          Expr *Initializer,
3746                                          QualType cv1T1,
3747                                          Qualifiers T1Quals,
3748                                          Qualifiers T2Quals,
3749                                          bool IsLValueRef) {
3750   bool IsNonAddressableType = Initializer->refersToBitField() ||
3751                               Initializer->refersToVectorElement();
3752 
3753   if (IsNonAddressableType) {
3754     // C++11 [dcl.init.ref]p5: [...] Otherwise, the reference shall be an
3755     // lvalue reference to a non-volatile const type, or the reference shall be
3756     // an rvalue reference.
3757     //
3758     // If not, we can't make a temporary and bind to that. Give up and allow the
3759     // error to be diagnosed later.
3760     if (IsLValueRef && (!T1Quals.hasConst() || T1Quals.hasVolatile())) {
3761       assert(Initializer->isGLValue());
3762       return Initializer->getValueKind();
3763     }
3764 
3765     // Force a load so we can materialize a temporary.
3766     Sequence.AddLValueToRValueStep(cv1T1.getUnqualifiedType());
3767     return VK_RValue;
3768   }
3769 
3770   if (T1Quals != T2Quals) {
3771     Sequence.AddQualificationConversionStep(cv1T1,
3772                                             Initializer->getValueKind());
3773   }
3774 
3775   return Initializer->getValueKind();
3776 }
3777 
3778 
3779 /// \brief Reference initialization without resolving overloaded functions.
TryReferenceInitializationCore(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,QualType cv1T1,QualType T1,Qualifiers T1Quals,QualType cv2T2,QualType T2,Qualifiers T2Quals,InitializationSequence & Sequence)3780 static void TryReferenceInitializationCore(Sema &S,
3781                                            const InitializedEntity &Entity,
3782                                            const InitializationKind &Kind,
3783                                            Expr *Initializer,
3784                                            QualType cv1T1, QualType T1,
3785                                            Qualifiers T1Quals,
3786                                            QualType cv2T2, QualType T2,
3787                                            Qualifiers T2Quals,
3788                                            InitializationSequence &Sequence) {
3789   QualType DestType = Entity.getType();
3790   SourceLocation DeclLoc = Initializer->getLocStart();
3791   // Compute some basic properties of the types and the initializer.
3792   bool isLValueRef = DestType->isLValueReferenceType();
3793   bool isRValueRef = !isLValueRef;
3794   bool DerivedToBase = false;
3795   bool ObjCConversion = false;
3796   bool ObjCLifetimeConversion = false;
3797   Expr::Classification InitCategory = Initializer->Classify(S.Context);
3798   Sema::ReferenceCompareResult RefRelationship
3799     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
3800                                      ObjCConversion, ObjCLifetimeConversion);
3801 
3802   // C++0x [dcl.init.ref]p5:
3803   //   A reference to type "cv1 T1" is initialized by an expression of type
3804   //   "cv2 T2" as follows:
3805   //
3806   //     - If the reference is an lvalue reference and the initializer
3807   //       expression
3808   // Note the analogous bullet points for rvalue refs to functions. Because
3809   // there are no function rvalues in C++, rvalue refs to functions are treated
3810   // like lvalue refs.
3811   OverloadingResult ConvOvlResult = OR_Success;
3812   bool T1Function = T1->isFunctionType();
3813   if (isLValueRef || T1Function) {
3814     if (InitCategory.isLValue() &&
3815         (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3816          (Kind.isCStyleOrFunctionalCast() &&
3817           RefRelationship == Sema::Ref_Related))) {
3818       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
3819       //     reference-compatible with "cv2 T2," or
3820       //
3821       // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
3822       // bit-field when we're determining whether the reference initialization
3823       // can occur. However, we do pay attention to whether it is a bit-field
3824       // to decide whether we're actually binding to a temporary created from
3825       // the bit-field.
3826       if (DerivedToBase)
3827         Sequence.AddDerivedToBaseCastStep(
3828                          S.Context.getQualifiedType(T1, T2Quals),
3829                          VK_LValue);
3830       else if (ObjCConversion)
3831         Sequence.AddObjCObjectConversionStep(
3832                                      S.Context.getQualifiedType(T1, T2Quals));
3833 
3834       ExprValueKind ValueKind =
3835         convertQualifiersAndValueKindIfNecessary(S, Sequence, Initializer,
3836                                                  cv1T1, T1Quals, T2Quals,
3837                                                  isLValueRef);
3838       Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
3839       return;
3840     }
3841 
3842     //     - has a class type (i.e., T2 is a class type), where T1 is not
3843     //       reference-related to T2, and can be implicitly converted to an
3844     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
3845     //       with "cv3 T3" (this conversion is selected by enumerating the
3846     //       applicable conversion functions (13.3.1.6) and choosing the best
3847     //       one through overload resolution (13.3)),
3848     // If we have an rvalue ref to function type here, the rhs must be
3849     // an rvalue. DR1287 removed the "implicitly" here.
3850     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
3851         (isLValueRef || InitCategory.isRValue())) {
3852       ConvOvlResult = TryRefInitWithConversionFunction(
3853           S, Entity, Kind, Initializer, /*AllowRValues*/isRValueRef, Sequence);
3854       if (ConvOvlResult == OR_Success)
3855         return;
3856       if (ConvOvlResult != OR_No_Viable_Function)
3857         Sequence.SetOverloadFailure(
3858             InitializationSequence::FK_ReferenceInitOverloadFailed,
3859             ConvOvlResult);
3860     }
3861   }
3862 
3863   //     - Otherwise, the reference shall be an lvalue reference to a
3864   //       non-volatile const type (i.e., cv1 shall be const), or the reference
3865   //       shall be an rvalue reference.
3866   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
3867     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3868       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3869     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3870       Sequence.SetOverloadFailure(
3871                         InitializationSequence::FK_ReferenceInitOverloadFailed,
3872                                   ConvOvlResult);
3873     else
3874       Sequence.SetFailed(InitCategory.isLValue()
3875         ? (RefRelationship == Sema::Ref_Related
3876              ? InitializationSequence::FK_ReferenceInitDropsQualifiers
3877              : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
3878         : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3879 
3880     return;
3881   }
3882 
3883   //    - If the initializer expression
3884   //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
3885   //        "cv1 T1" is reference-compatible with "cv2 T2"
3886   // Note: functions are handled below.
3887   if (!T1Function &&
3888       (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3889        (Kind.isCStyleOrFunctionalCast() &&
3890         RefRelationship == Sema::Ref_Related)) &&
3891       (InitCategory.isXValue() ||
3892        (InitCategory.isPRValue() && T2->isRecordType()) ||
3893        (InitCategory.isPRValue() && T2->isArrayType()))) {
3894     ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
3895     if (InitCategory.isPRValue() && T2->isRecordType()) {
3896       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
3897       // compiler the freedom to perform a copy here or bind to the
3898       // object, while C++0x requires that we bind directly to the
3899       // object. Hence, we always bind to the object without making an
3900       // extra copy. However, in C++03 requires that we check for the
3901       // presence of a suitable copy constructor:
3902       //
3903       //   The constructor that would be used to make the copy shall
3904       //   be callable whether or not the copy is actually done.
3905       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
3906         Sequence.AddExtraneousCopyToTemporary(cv2T2);
3907       else if (S.getLangOpts().CPlusPlus11)
3908         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
3909     }
3910 
3911     if (DerivedToBase)
3912       Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
3913                                         ValueKind);
3914     else if (ObjCConversion)
3915       Sequence.AddObjCObjectConversionStep(
3916                                        S.Context.getQualifiedType(T1, T2Quals));
3917 
3918     ValueKind = convertQualifiersAndValueKindIfNecessary(S, Sequence,
3919                                                          Initializer, cv1T1,
3920                                                          T1Quals, T2Quals,
3921                                                          isLValueRef);
3922 
3923     Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
3924     return;
3925   }
3926 
3927   //       - has a class type (i.e., T2 is a class type), where T1 is not
3928   //         reference-related to T2, and can be implicitly converted to an
3929   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
3930   //         where "cv1 T1" is reference-compatible with "cv3 T3",
3931   //
3932   // DR1287 removes the "implicitly" here.
3933   if (T2->isRecordType()) {
3934     if (RefRelationship == Sema::Ref_Incompatible) {
3935       ConvOvlResult = TryRefInitWithConversionFunction(
3936           S, Entity, Kind, Initializer, /*AllowRValues*/true, Sequence);
3937       if (ConvOvlResult)
3938         Sequence.SetOverloadFailure(
3939             InitializationSequence::FK_ReferenceInitOverloadFailed,
3940             ConvOvlResult);
3941 
3942       return;
3943     }
3944 
3945     if ((RefRelationship == Sema::Ref_Compatible ||
3946          RefRelationship == Sema::Ref_Compatible_With_Added_Qualification) &&
3947         isRValueRef && InitCategory.isLValue()) {
3948       Sequence.SetFailed(
3949         InitializationSequence::FK_RValueReferenceBindingToLValue);
3950       return;
3951     }
3952 
3953     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3954     return;
3955   }
3956 
3957   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
3958   //        from the initializer expression using the rules for a non-reference
3959   //        copy-initialization (8.5). The reference is then bound to the
3960   //        temporary. [...]
3961 
3962   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3963 
3964   // FIXME: Why do we use an implicit conversion here rather than trying
3965   // copy-initialization?
3966   ImplicitConversionSequence ICS
3967     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
3968                               /*SuppressUserConversions=*/false,
3969                               /*AllowExplicit=*/false,
3970                               /*FIXME:InOverloadResolution=*/false,
3971                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3972                               /*AllowObjCWritebackConversion=*/false);
3973 
3974   if (ICS.isBad()) {
3975     // FIXME: Use the conversion function set stored in ICS to turn
3976     // this into an overloading ambiguity diagnostic. However, we need
3977     // to keep that set as an OverloadCandidateSet rather than as some
3978     // other kind of set.
3979     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3980       Sequence.SetOverloadFailure(
3981                         InitializationSequence::FK_ReferenceInitOverloadFailed,
3982                                   ConvOvlResult);
3983     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3984       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3985     else
3986       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
3987     return;
3988   } else {
3989     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
3990   }
3991 
3992   //        [...] If T1 is reference-related to T2, cv1 must be the
3993   //        same cv-qualification as, or greater cv-qualification
3994   //        than, cv2; otherwise, the program is ill-formed.
3995   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
3996   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
3997   if (RefRelationship == Sema::Ref_Related &&
3998       (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
3999     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4000     return;
4001   }
4002 
4003   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
4004   //   reference, the initializer expression shall not be an lvalue.
4005   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4006       InitCategory.isLValue()) {
4007     Sequence.SetFailed(
4008                     InitializationSequence::FK_RValueReferenceBindingToLValue);
4009     return;
4010   }
4011 
4012   Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4013   return;
4014 }
4015 
4016 /// \brief Attempt character array initialization from a string literal
4017 /// (C++ [dcl.init.string], C99 6.7.8).
TryStringLiteralInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)4018 static void TryStringLiteralInitialization(Sema &S,
4019                                            const InitializedEntity &Entity,
4020                                            const InitializationKind &Kind,
4021                                            Expr *Initializer,
4022                                        InitializationSequence &Sequence) {
4023   Sequence.AddStringInitStep(Entity.getType());
4024 }
4025 
4026 /// \brief Attempt value initialization (C++ [dcl.init]p7).
TryValueInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitializationSequence & Sequence,InitListExpr * InitList)4027 static void TryValueInitialization(Sema &S,
4028                                    const InitializedEntity &Entity,
4029                                    const InitializationKind &Kind,
4030                                    InitializationSequence &Sequence,
4031                                    InitListExpr *InitList) {
4032   assert((!InitList || InitList->getNumInits() == 0) &&
4033          "Shouldn't use value-init for non-empty init lists");
4034 
4035   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
4036   //
4037   //   To value-initialize an object of type T means:
4038   QualType T = Entity.getType();
4039 
4040   //     -- if T is an array type, then each element is value-initialized;
4041   T = S.Context.getBaseElementType(T);
4042 
4043   if (const RecordType *RT = T->getAs<RecordType>()) {
4044     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
4045       bool NeedZeroInitialization = true;
4046       if (!S.getLangOpts().CPlusPlus11) {
4047         // C++98:
4048         // -- if T is a class type (clause 9) with a user-declared constructor
4049         //    (12.1), then the default constructor for T is called (and the
4050         //    initialization is ill-formed if T has no accessible default
4051         //    constructor);
4052         if (ClassDecl->hasUserDeclaredConstructor())
4053           NeedZeroInitialization = false;
4054       } else {
4055         // C++11:
4056         // -- if T is a class type (clause 9) with either no default constructor
4057         //    (12.1 [class.ctor]) or a default constructor that is user-provided
4058         //    or deleted, then the object is default-initialized;
4059         CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
4060         if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
4061           NeedZeroInitialization = false;
4062       }
4063 
4064       // -- if T is a (possibly cv-qualified) non-union class type without a
4065       //    user-provided or deleted default constructor, then the object is
4066       //    zero-initialized and, if T has a non-trivial default constructor,
4067       //    default-initialized;
4068       // The 'non-union' here was removed by DR1502. The 'non-trivial default
4069       // constructor' part was removed by DR1507.
4070       if (NeedZeroInitialization)
4071         Sequence.AddZeroInitializationStep(Entity.getType());
4072 
4073       // C++03:
4074       // -- if T is a non-union class type without a user-declared constructor,
4075       //    then every non-static data member and base class component of T is
4076       //    value-initialized;
4077       // [...] A program that calls for [...] value-initialization of an
4078       // entity of reference type is ill-formed.
4079       //
4080       // C++11 doesn't need this handling, because value-initialization does not
4081       // occur recursively there, and the implicit default constructor is
4082       // defined as deleted in the problematic cases.
4083       if (!S.getLangOpts().CPlusPlus11 &&
4084           ClassDecl->hasUninitializedReferenceMember()) {
4085         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
4086         return;
4087       }
4088 
4089       // If this is list-value-initialization, pass the empty init list on when
4090       // building the constructor call. This affects the semantics of a few
4091       // things (such as whether an explicit default constructor can be called).
4092       Expr *InitListAsExpr = InitList;
4093       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
4094       bool InitListSyntax = InitList;
4095 
4096       return TryConstructorInitialization(S, Entity, Kind, Args, T, Sequence,
4097                                           InitListSyntax);
4098     }
4099   }
4100 
4101   Sequence.AddZeroInitializationStep(Entity.getType());
4102 }
4103 
4104 /// \brief Attempt default initialization (C++ [dcl.init]p6).
TryDefaultInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitializationSequence & Sequence)4105 static void TryDefaultInitialization(Sema &S,
4106                                      const InitializedEntity &Entity,
4107                                      const InitializationKind &Kind,
4108                                      InitializationSequence &Sequence) {
4109   assert(Kind.getKind() == InitializationKind::IK_Default);
4110 
4111   // C++ [dcl.init]p6:
4112   //   To default-initialize an object of type T means:
4113   //     - if T is an array type, each element is default-initialized;
4114   QualType DestType = S.Context.getBaseElementType(Entity.getType());
4115 
4116   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
4117   //       constructor for T is called (and the initialization is ill-formed if
4118   //       T has no accessible default constructor);
4119   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
4120     TryConstructorInitialization(S, Entity, Kind, None, DestType, Sequence);
4121     return;
4122   }
4123 
4124   //     - otherwise, no initialization is performed.
4125 
4126   //   If a program calls for the default initialization of an object of
4127   //   a const-qualified type T, T shall be a class type with a user-provided
4128   //   default constructor.
4129   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
4130     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4131     return;
4132   }
4133 
4134   // If the destination type has a lifetime property, zero-initialize it.
4135   if (DestType.getQualifiers().hasObjCLifetime()) {
4136     Sequence.AddZeroInitializationStep(Entity.getType());
4137     return;
4138   }
4139 }
4140 
4141 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
4142 /// which enumerates all conversion functions and performs overload resolution
4143 /// to select the best.
TryUserDefinedConversion(Sema & S,QualType DestType,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence,bool TopLevelOfInitList)4144 static void TryUserDefinedConversion(Sema &S,
4145                                      QualType DestType,
4146                                      const InitializationKind &Kind,
4147                                      Expr *Initializer,
4148                                      InitializationSequence &Sequence,
4149                                      bool TopLevelOfInitList) {
4150   assert(!DestType->isReferenceType() && "References are handled elsewhere");
4151   QualType SourceType = Initializer->getType();
4152   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
4153          "Must have a class type to perform a user-defined conversion");
4154 
4155   // Build the candidate set directly in the initialization sequence
4156   // structure, so that it will persist if we fail.
4157   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4158   CandidateSet.clear();
4159 
4160   // Determine whether we are allowed to call explicit constructors or
4161   // explicit conversion operators.
4162   bool AllowExplicit = Kind.AllowExplicit();
4163 
4164   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4165     // The type we're converting to is a class type. Enumerate its constructors
4166     // to see if there is a suitable conversion.
4167     CXXRecordDecl *DestRecordDecl
4168       = cast<CXXRecordDecl>(DestRecordType->getDecl());
4169 
4170     // Try to complete the type we're converting to.
4171     if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
4172       DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
4173       // The container holding the constructors can under certain conditions
4174       // be changed while iterating. To be safe we copy the lookup results
4175       // to a new container.
4176       SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end());
4177       for (SmallVectorImpl<NamedDecl *>::iterator
4178              Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end();
4179            Con != ConEnd; ++Con) {
4180         NamedDecl *D = *Con;
4181         DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
4182 
4183         // Find the constructor (which may be a template).
4184         CXXConstructorDecl *Constructor = nullptr;
4185         FunctionTemplateDecl *ConstructorTmpl
4186           = dyn_cast<FunctionTemplateDecl>(D);
4187         if (ConstructorTmpl)
4188           Constructor = cast<CXXConstructorDecl>(
4189                                            ConstructorTmpl->getTemplatedDecl());
4190         else
4191           Constructor = cast<CXXConstructorDecl>(D);
4192 
4193         if (!Constructor->isInvalidDecl() &&
4194             Constructor->isConvertingConstructor(AllowExplicit)) {
4195           if (ConstructorTmpl)
4196             S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
4197                                            /*ExplicitArgs*/ nullptr,
4198                                            Initializer, CandidateSet,
4199                                            /*SuppressUserConversions=*/true);
4200           else
4201             S.AddOverloadCandidate(Constructor, FoundDecl,
4202                                    Initializer, CandidateSet,
4203                                    /*SuppressUserConversions=*/true);
4204         }
4205       }
4206     }
4207   }
4208 
4209   SourceLocation DeclLoc = Initializer->getLocStart();
4210 
4211   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
4212     // The type we're converting from is a class type, enumerate its conversion
4213     // functions.
4214 
4215     // We can only enumerate the conversion functions for a complete type; if
4216     // the type isn't complete, simply skip this step.
4217     if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
4218       CXXRecordDecl *SourceRecordDecl
4219         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
4220 
4221       std::pair<CXXRecordDecl::conversion_iterator,
4222                 CXXRecordDecl::conversion_iterator>
4223         Conversions = SourceRecordDecl->getVisibleConversionFunctions();
4224       for (CXXRecordDecl::conversion_iterator
4225              I = Conversions.first, E = Conversions.second; I != E; ++I) {
4226         NamedDecl *D = *I;
4227         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4228         if (isa<UsingShadowDecl>(D))
4229           D = cast<UsingShadowDecl>(D)->getTargetDecl();
4230 
4231         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4232         CXXConversionDecl *Conv;
4233         if (ConvTemplate)
4234           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4235         else
4236           Conv = cast<CXXConversionDecl>(D);
4237 
4238         if (AllowExplicit || !Conv->isExplicit()) {
4239           if (ConvTemplate)
4240             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4241                                              ActingDC, Initializer, DestType,
4242                                              CandidateSet, AllowExplicit);
4243           else
4244             S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4245                                      Initializer, DestType, CandidateSet,
4246                                      AllowExplicit);
4247         }
4248       }
4249     }
4250   }
4251 
4252   // Perform overload resolution. If it fails, return the failed result.
4253   OverloadCandidateSet::iterator Best;
4254   if (OverloadingResult Result
4255         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4256     Sequence.SetOverloadFailure(
4257                         InitializationSequence::FK_UserConversionOverloadFailed,
4258                                 Result);
4259     return;
4260   }
4261 
4262   FunctionDecl *Function = Best->Function;
4263   Function->setReferenced();
4264   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4265 
4266   if (isa<CXXConstructorDecl>(Function)) {
4267     // Add the user-defined conversion step. Any cv-qualification conversion is
4268     // subsumed by the initialization. Per DR5, the created temporary is of the
4269     // cv-unqualified type of the destination.
4270     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
4271                                    DestType.getUnqualifiedType(),
4272                                    HadMultipleCandidates);
4273     return;
4274   }
4275 
4276   // Add the user-defined conversion step that calls the conversion function.
4277   QualType ConvType = Function->getCallResultType();
4278   if (ConvType->getAs<RecordType>()) {
4279     // If we're converting to a class type, there may be an copy of
4280     // the resulting temporary object (possible to create an object of
4281     // a base class type). That copy is not a separate conversion, so
4282     // we just make a note of the actual destination type (possibly a
4283     // base class of the type returned by the conversion function) and
4284     // let the user-defined conversion step handle the conversion.
4285     Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
4286                                    HadMultipleCandidates);
4287     return;
4288   }
4289 
4290   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
4291                                  HadMultipleCandidates);
4292 
4293   // If the conversion following the call to the conversion function
4294   // is interesting, add it as a separate step.
4295   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
4296       Best->FinalConversion.Third) {
4297     ImplicitConversionSequence ICS;
4298     ICS.setStandard();
4299     ICS.Standard = Best->FinalConversion;
4300     Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
4301   }
4302 }
4303 
4304 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
4305 /// a function with a pointer return type contains a 'return false;' statement.
4306 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
4307 /// code using that header.
4308 ///
4309 /// Work around this by treating 'return false;' as zero-initializing the result
4310 /// if it's used in a pointer-returning function in a system header.
isLibstdcxxPointerReturnFalseHack(Sema & S,const InitializedEntity & Entity,const Expr * Init)4311 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
4312                                               const InitializedEntity &Entity,
4313                                               const Expr *Init) {
4314   return S.getLangOpts().CPlusPlus11 &&
4315          Entity.getKind() == InitializedEntity::EK_Result &&
4316          Entity.getType()->isPointerType() &&
4317          isa<CXXBoolLiteralExpr>(Init) &&
4318          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
4319          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
4320 }
4321 
4322 /// The non-zero enum values here are indexes into diagnostic alternatives.
4323 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
4324 
4325 /// Determines whether this expression is an acceptable ICR source.
isInvalidICRSource(ASTContext & C,Expr * e,bool isAddressOf,bool & isWeakAccess)4326 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
4327                                          bool isAddressOf, bool &isWeakAccess) {
4328   // Skip parens.
4329   e = e->IgnoreParens();
4330 
4331   // Skip address-of nodes.
4332   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
4333     if (op->getOpcode() == UO_AddrOf)
4334       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
4335                                 isWeakAccess);
4336 
4337   // Skip certain casts.
4338   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
4339     switch (ce->getCastKind()) {
4340     case CK_Dependent:
4341     case CK_BitCast:
4342     case CK_LValueBitCast:
4343     case CK_NoOp:
4344       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
4345 
4346     case CK_ArrayToPointerDecay:
4347       return IIK_nonscalar;
4348 
4349     case CK_NullToPointer:
4350       return IIK_okay;
4351 
4352     default:
4353       break;
4354     }
4355 
4356   // If we have a declaration reference, it had better be a local variable.
4357   } else if (isa<DeclRefExpr>(e)) {
4358     // set isWeakAccess to true, to mean that there will be an implicit
4359     // load which requires a cleanup.
4360     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
4361       isWeakAccess = true;
4362 
4363     if (!isAddressOf) return IIK_nonlocal;
4364 
4365     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
4366     if (!var) return IIK_nonlocal;
4367 
4368     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
4369 
4370   // If we have a conditional operator, check both sides.
4371   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
4372     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
4373                                                 isWeakAccess))
4374       return iik;
4375 
4376     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
4377 
4378   // These are never scalar.
4379   } else if (isa<ArraySubscriptExpr>(e)) {
4380     return IIK_nonscalar;
4381 
4382   // Otherwise, it needs to be a null pointer constant.
4383   } else {
4384     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
4385             ? IIK_okay : IIK_nonlocal);
4386   }
4387 
4388   return IIK_nonlocal;
4389 }
4390 
4391 /// Check whether the given expression is a valid operand for an
4392 /// indirect copy/restore.
checkIndirectCopyRestoreSource(Sema & S,Expr * src)4393 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
4394   assert(src->isRValue());
4395   bool isWeakAccess = false;
4396   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
4397   // If isWeakAccess to true, there will be an implicit
4398   // load which requires a cleanup.
4399   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
4400     S.ExprNeedsCleanups = true;
4401 
4402   if (iik == IIK_okay) return;
4403 
4404   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
4405     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
4406     << src->getSourceRange();
4407 }
4408 
4409 /// \brief Determine whether we have compatible array types for the
4410 /// purposes of GNU by-copy array initialization.
hasCompatibleArrayTypes(ASTContext & Context,const ArrayType * Dest,const ArrayType * Source)4411 static bool hasCompatibleArrayTypes(ASTContext &Context,
4412                                     const ArrayType *Dest,
4413                                     const ArrayType *Source) {
4414   // If the source and destination array types are equivalent, we're
4415   // done.
4416   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
4417     return true;
4418 
4419   // Make sure that the element types are the same.
4420   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
4421     return false;
4422 
4423   // The only mismatch we allow is when the destination is an
4424   // incomplete array type and the source is a constant array type.
4425   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
4426 }
4427 
tryObjCWritebackConversion(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity,Expr * Initializer)4428 static bool tryObjCWritebackConversion(Sema &S,
4429                                        InitializationSequence &Sequence,
4430                                        const InitializedEntity &Entity,
4431                                        Expr *Initializer) {
4432   bool ArrayDecay = false;
4433   QualType ArgType = Initializer->getType();
4434   QualType ArgPointee;
4435   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
4436     ArrayDecay = true;
4437     ArgPointee = ArgArrayType->getElementType();
4438     ArgType = S.Context.getPointerType(ArgPointee);
4439   }
4440 
4441   // Handle write-back conversion.
4442   QualType ConvertedArgType;
4443   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
4444                                    ConvertedArgType))
4445     return false;
4446 
4447   // We should copy unless we're passing to an argument explicitly
4448   // marked 'out'.
4449   bool ShouldCopy = true;
4450   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4451     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4452 
4453   // Do we need an lvalue conversion?
4454   if (ArrayDecay || Initializer->isGLValue()) {
4455     ImplicitConversionSequence ICS;
4456     ICS.setStandard();
4457     ICS.Standard.setAsIdentityConversion();
4458 
4459     QualType ResultType;
4460     if (ArrayDecay) {
4461       ICS.Standard.First = ICK_Array_To_Pointer;
4462       ResultType = S.Context.getPointerType(ArgPointee);
4463     } else {
4464       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4465       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
4466     }
4467 
4468     Sequence.AddConversionSequenceStep(ICS, ResultType);
4469   }
4470 
4471   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4472   return true;
4473 }
4474 
TryOCLSamplerInitialization(Sema & S,InitializationSequence & Sequence,QualType DestType,Expr * Initializer)4475 static bool TryOCLSamplerInitialization(Sema &S,
4476                                         InitializationSequence &Sequence,
4477                                         QualType DestType,
4478                                         Expr *Initializer) {
4479   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
4480     !Initializer->isIntegerConstantExpr(S.getASTContext()))
4481     return false;
4482 
4483   Sequence.AddOCLSamplerInitStep(DestType);
4484   return true;
4485 }
4486 
4487 //
4488 // OpenCL 1.2 spec, s6.12.10
4489 //
4490 // The event argument can also be used to associate the
4491 // async_work_group_copy with a previous async copy allowing
4492 // an event to be shared by multiple async copies; otherwise
4493 // event should be zero.
4494 //
TryOCLZeroEventInitialization(Sema & S,InitializationSequence & Sequence,QualType DestType,Expr * Initializer)4495 static bool TryOCLZeroEventInitialization(Sema &S,
4496                                           InitializationSequence &Sequence,
4497                                           QualType DestType,
4498                                           Expr *Initializer) {
4499   if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
4500       !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
4501       (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
4502     return false;
4503 
4504   Sequence.AddOCLZeroEventStep(DestType);
4505   return true;
4506 }
4507 
InitializationSequence(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,bool TopLevelOfInitList)4508 InitializationSequence::InitializationSequence(Sema &S,
4509                                                const InitializedEntity &Entity,
4510                                                const InitializationKind &Kind,
4511                                                MultiExprArg Args,
4512                                                bool TopLevelOfInitList)
4513     : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
4514   InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList);
4515 }
4516 
InitializeFrom(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,bool TopLevelOfInitList)4517 void InitializationSequence::InitializeFrom(Sema &S,
4518                                             const InitializedEntity &Entity,
4519                                             const InitializationKind &Kind,
4520                                             MultiExprArg Args,
4521                                             bool TopLevelOfInitList) {
4522   ASTContext &Context = S.Context;
4523 
4524   // Eliminate non-overload placeholder types in the arguments.  We
4525   // need to do this before checking whether types are dependent
4526   // because lowering a pseudo-object expression might well give us
4527   // something of dependent type.
4528   for (unsigned I = 0, E = Args.size(); I != E; ++I)
4529     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
4530       // FIXME: should we be doing this here?
4531       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
4532       if (result.isInvalid()) {
4533         SetFailed(FK_PlaceholderType);
4534         return;
4535       }
4536       Args[I] = result.get();
4537     }
4538 
4539   // C++0x [dcl.init]p16:
4540   //   The semantics of initializers are as follows. The destination type is
4541   //   the type of the object or reference being initialized and the source
4542   //   type is the type of the initializer expression. The source type is not
4543   //   defined when the initializer is a braced-init-list or when it is a
4544   //   parenthesized list of expressions.
4545   QualType DestType = Entity.getType();
4546 
4547   if (DestType->isDependentType() ||
4548       Expr::hasAnyTypeDependentArguments(Args)) {
4549     SequenceKind = DependentSequence;
4550     return;
4551   }
4552 
4553   // Almost everything is a normal sequence.
4554   setSequenceKind(NormalSequence);
4555 
4556   QualType SourceType;
4557   Expr *Initializer = nullptr;
4558   if (Args.size() == 1) {
4559     Initializer = Args[0];
4560     if (S.getLangOpts().ObjC1) {
4561       if (S.CheckObjCBridgeRelatedConversions(Initializer->getLocStart(),
4562                                               DestType, Initializer->getType(),
4563                                               Initializer) ||
4564           S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
4565         Args[0] = Initializer;
4566     }
4567     if (!isa<InitListExpr>(Initializer))
4568       SourceType = Initializer->getType();
4569   }
4570 
4571   //     - If the initializer is a (non-parenthesized) braced-init-list, the
4572   //       object is list-initialized (8.5.4).
4573   if (Kind.getKind() != InitializationKind::IK_Direct) {
4574     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
4575       TryListInitialization(S, Entity, Kind, InitList, *this);
4576       return;
4577     }
4578   }
4579 
4580   //     - If the destination type is a reference type, see 8.5.3.
4581   if (DestType->isReferenceType()) {
4582     // C++0x [dcl.init.ref]p1:
4583     //   A variable declared to be a T& or T&&, that is, "reference to type T"
4584     //   (8.3.2), shall be initialized by an object, or function, of type T or
4585     //   by an object that can be converted into a T.
4586     // (Therefore, multiple arguments are not permitted.)
4587     if (Args.size() != 1)
4588       SetFailed(FK_TooManyInitsForReference);
4589     else
4590       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
4591     return;
4592   }
4593 
4594   //     - If the initializer is (), the object is value-initialized.
4595   if (Kind.getKind() == InitializationKind::IK_Value ||
4596       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
4597     TryValueInitialization(S, Entity, Kind, *this);
4598     return;
4599   }
4600 
4601   // Handle default initialization.
4602   if (Kind.getKind() == InitializationKind::IK_Default) {
4603     TryDefaultInitialization(S, Entity, Kind, *this);
4604     return;
4605   }
4606 
4607   //     - If the destination type is an array of characters, an array of
4608   //       char16_t, an array of char32_t, or an array of wchar_t, and the
4609   //       initializer is a string literal, see 8.5.2.
4610   //     - Otherwise, if the destination type is an array, the program is
4611   //       ill-formed.
4612   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
4613     if (Initializer && isa<VariableArrayType>(DestAT)) {
4614       SetFailed(FK_VariableLengthArrayHasInitializer);
4615       return;
4616     }
4617 
4618     if (Initializer) {
4619       switch (IsStringInit(Initializer, DestAT, Context)) {
4620       case SIF_None:
4621         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
4622         return;
4623       case SIF_NarrowStringIntoWideChar:
4624         SetFailed(FK_NarrowStringIntoWideCharArray);
4625         return;
4626       case SIF_WideStringIntoChar:
4627         SetFailed(FK_WideStringIntoCharArray);
4628         return;
4629       case SIF_IncompatWideStringIntoWideChar:
4630         SetFailed(FK_IncompatWideStringIntoWideChar);
4631         return;
4632       case SIF_Other:
4633         break;
4634       }
4635     }
4636 
4637     // Note: as an GNU C extension, we allow initialization of an
4638     // array from a compound literal that creates an array of the same
4639     // type, so long as the initializer has no side effects.
4640     if (!S.getLangOpts().CPlusPlus && Initializer &&
4641         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
4642         Initializer->getType()->isArrayType()) {
4643       const ArrayType *SourceAT
4644         = Context.getAsArrayType(Initializer->getType());
4645       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
4646         SetFailed(FK_ArrayTypeMismatch);
4647       else if (Initializer->HasSideEffects(S.Context))
4648         SetFailed(FK_NonConstantArrayInit);
4649       else {
4650         AddArrayInitStep(DestType);
4651       }
4652     }
4653     // Note: as a GNU C++ extension, we allow list-initialization of a
4654     // class member of array type from a parenthesized initializer list.
4655     else if (S.getLangOpts().CPlusPlus &&
4656              Entity.getKind() == InitializedEntity::EK_Member &&
4657              Initializer && isa<InitListExpr>(Initializer)) {
4658       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
4659                             *this);
4660       AddParenthesizedArrayInitStep(DestType);
4661     } else if (DestAT->getElementType()->isCharType())
4662       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
4663     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
4664       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
4665     else
4666       SetFailed(FK_ArrayNeedsInitList);
4667 
4668     return;
4669   }
4670 
4671   // Determine whether we should consider writeback conversions for
4672   // Objective-C ARC.
4673   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
4674          Entity.isParameterKind();
4675 
4676   // We're at the end of the line for C: it's either a write-back conversion
4677   // or it's a C assignment. There's no need to check anything else.
4678   if (!S.getLangOpts().CPlusPlus) {
4679     // If allowed, check whether this is an Objective-C writeback conversion.
4680     if (allowObjCWritebackConversion &&
4681         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
4682       return;
4683     }
4684 
4685     if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
4686       return;
4687 
4688     if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
4689       return;
4690 
4691     // Handle initialization in C
4692     AddCAssignmentStep(DestType);
4693     MaybeProduceObjCObject(S, *this, Entity);
4694     return;
4695   }
4696 
4697   assert(S.getLangOpts().CPlusPlus);
4698 
4699   //     - If the destination type is a (possibly cv-qualified) class type:
4700   if (DestType->isRecordType()) {
4701     //     - If the initialization is direct-initialization, or if it is
4702     //       copy-initialization where the cv-unqualified version of the
4703     //       source type is the same class as, or a derived class of, the
4704     //       class of the destination, constructors are considered. [...]
4705     if (Kind.getKind() == InitializationKind::IK_Direct ||
4706         (Kind.getKind() == InitializationKind::IK_Copy &&
4707          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
4708           S.IsDerivedFrom(SourceType, DestType))))
4709       TryConstructorInitialization(S, Entity, Kind, Args,
4710                                    DestType, *this);
4711     //     - Otherwise (i.e., for the remaining copy-initialization cases),
4712     //       user-defined conversion sequences that can convert from the source
4713     //       type to the destination type or (when a conversion function is
4714     //       used) to a derived class thereof are enumerated as described in
4715     //       13.3.1.4, and the best one is chosen through overload resolution
4716     //       (13.3).
4717     else
4718       TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
4719                                TopLevelOfInitList);
4720     return;
4721   }
4722 
4723   if (Args.size() > 1) {
4724     SetFailed(FK_TooManyInitsForScalar);
4725     return;
4726   }
4727   assert(Args.size() == 1 && "Zero-argument case handled above");
4728 
4729   //    - Otherwise, if the source type is a (possibly cv-qualified) class
4730   //      type, conversion functions are considered.
4731   if (!SourceType.isNull() && SourceType->isRecordType()) {
4732     // For a conversion to _Atomic(T) from either T or a class type derived
4733     // from T, initialize the T object then convert to _Atomic type.
4734     bool NeedAtomicConversion = false;
4735     if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
4736       if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
4737           S.IsDerivedFrom(SourceType, Atomic->getValueType())) {
4738         DestType = Atomic->getValueType();
4739         NeedAtomicConversion = true;
4740       }
4741     }
4742 
4743     TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
4744                              TopLevelOfInitList);
4745     MaybeProduceObjCObject(S, *this, Entity);
4746     if (!Failed() && NeedAtomicConversion)
4747       AddAtomicConversionStep(Entity.getType());
4748     return;
4749   }
4750 
4751   //    - Otherwise, the initial value of the object being initialized is the
4752   //      (possibly converted) value of the initializer expression. Standard
4753   //      conversions (Clause 4) will be used, if necessary, to convert the
4754   //      initializer expression to the cv-unqualified version of the
4755   //      destination type; no user-defined conversions are considered.
4756 
4757   ImplicitConversionSequence ICS
4758     = S.TryImplicitConversion(Initializer, DestType,
4759                               /*SuppressUserConversions*/true,
4760                               /*AllowExplicitConversions*/ false,
4761                               /*InOverloadResolution*/ false,
4762                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4763                               allowObjCWritebackConversion);
4764 
4765   if (ICS.isStandard() &&
4766       ICS.Standard.Second == ICK_Writeback_Conversion) {
4767     // Objective-C ARC writeback conversion.
4768 
4769     // We should copy unless we're passing to an argument explicitly
4770     // marked 'out'.
4771     bool ShouldCopy = true;
4772     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4773       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4774 
4775     // If there was an lvalue adjustment, add it as a separate conversion.
4776     if (ICS.Standard.First == ICK_Array_To_Pointer ||
4777         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4778       ImplicitConversionSequence LvalueICS;
4779       LvalueICS.setStandard();
4780       LvalueICS.Standard.setAsIdentityConversion();
4781       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
4782       LvalueICS.Standard.First = ICS.Standard.First;
4783       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
4784     }
4785 
4786     AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
4787   } else if (ICS.isBad()) {
4788     DeclAccessPair dap;
4789     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
4790       AddZeroInitializationStep(Entity.getType());
4791     } else if (Initializer->getType() == Context.OverloadTy &&
4792                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
4793                                                      false, dap))
4794       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4795     else
4796       SetFailed(InitializationSequence::FK_ConversionFailed);
4797   } else {
4798     AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
4799 
4800     MaybeProduceObjCObject(S, *this, Entity);
4801   }
4802 }
4803 
~InitializationSequence()4804 InitializationSequence::~InitializationSequence() {
4805   for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
4806                                           StepEnd = Steps.end();
4807        Step != StepEnd; ++Step)
4808     Step->Destroy();
4809 }
4810 
4811 //===----------------------------------------------------------------------===//
4812 // Perform initialization
4813 //===----------------------------------------------------------------------===//
4814 static Sema::AssignmentAction
getAssignmentAction(const InitializedEntity & Entity,bool Diagnose=false)4815 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
4816   switch(Entity.getKind()) {
4817   case InitializedEntity::EK_Variable:
4818   case InitializedEntity::EK_New:
4819   case InitializedEntity::EK_Exception:
4820   case InitializedEntity::EK_Base:
4821   case InitializedEntity::EK_Delegating:
4822     return Sema::AA_Initializing;
4823 
4824   case InitializedEntity::EK_Parameter:
4825     if (Entity.getDecl() &&
4826         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4827       return Sema::AA_Sending;
4828 
4829     return Sema::AA_Passing;
4830 
4831   case InitializedEntity::EK_Parameter_CF_Audited:
4832     if (Entity.getDecl() &&
4833       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4834       return Sema::AA_Sending;
4835 
4836     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
4837 
4838   case InitializedEntity::EK_Result:
4839     return Sema::AA_Returning;
4840 
4841   case InitializedEntity::EK_Temporary:
4842   case InitializedEntity::EK_RelatedResult:
4843     // FIXME: Can we tell apart casting vs. converting?
4844     return Sema::AA_Casting;
4845 
4846   case InitializedEntity::EK_Member:
4847   case InitializedEntity::EK_ArrayElement:
4848   case InitializedEntity::EK_VectorElement:
4849   case InitializedEntity::EK_ComplexElement:
4850   case InitializedEntity::EK_BlockElement:
4851   case InitializedEntity::EK_LambdaCapture:
4852   case InitializedEntity::EK_CompoundLiteralInit:
4853     return Sema::AA_Initializing;
4854   }
4855 
4856   llvm_unreachable("Invalid EntityKind!");
4857 }
4858 
4859 /// \brief Whether we should bind a created object as a temporary when
4860 /// initializing the given entity.
shouldBindAsTemporary(const InitializedEntity & Entity)4861 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
4862   switch (Entity.getKind()) {
4863   case InitializedEntity::EK_ArrayElement:
4864   case InitializedEntity::EK_Member:
4865   case InitializedEntity::EK_Result:
4866   case InitializedEntity::EK_New:
4867   case InitializedEntity::EK_Variable:
4868   case InitializedEntity::EK_Base:
4869   case InitializedEntity::EK_Delegating:
4870   case InitializedEntity::EK_VectorElement:
4871   case InitializedEntity::EK_ComplexElement:
4872   case InitializedEntity::EK_Exception:
4873   case InitializedEntity::EK_BlockElement:
4874   case InitializedEntity::EK_LambdaCapture:
4875   case InitializedEntity::EK_CompoundLiteralInit:
4876     return false;
4877 
4878   case InitializedEntity::EK_Parameter:
4879   case InitializedEntity::EK_Parameter_CF_Audited:
4880   case InitializedEntity::EK_Temporary:
4881   case InitializedEntity::EK_RelatedResult:
4882     return true;
4883   }
4884 
4885   llvm_unreachable("missed an InitializedEntity kind?");
4886 }
4887 
4888 /// \brief Whether the given entity, when initialized with an object
4889 /// created for that initialization, requires destruction.
shouldDestroyTemporary(const InitializedEntity & Entity)4890 static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
4891   switch (Entity.getKind()) {
4892     case InitializedEntity::EK_Result:
4893     case InitializedEntity::EK_New:
4894     case InitializedEntity::EK_Base:
4895     case InitializedEntity::EK_Delegating:
4896     case InitializedEntity::EK_VectorElement:
4897     case InitializedEntity::EK_ComplexElement:
4898     case InitializedEntity::EK_BlockElement:
4899     case InitializedEntity::EK_LambdaCapture:
4900       return false;
4901 
4902     case InitializedEntity::EK_Member:
4903     case InitializedEntity::EK_Variable:
4904     case InitializedEntity::EK_Parameter:
4905     case InitializedEntity::EK_Parameter_CF_Audited:
4906     case InitializedEntity::EK_Temporary:
4907     case InitializedEntity::EK_ArrayElement:
4908     case InitializedEntity::EK_Exception:
4909     case InitializedEntity::EK_CompoundLiteralInit:
4910     case InitializedEntity::EK_RelatedResult:
4911       return true;
4912   }
4913 
4914   llvm_unreachable("missed an InitializedEntity kind?");
4915 }
4916 
4917 /// \brief Look for copy and move constructors and constructor templates, for
4918 /// copying an object via direct-initialization (per C++11 [dcl.init]p16).
LookupCopyAndMoveConstructors(Sema & S,OverloadCandidateSet & CandidateSet,CXXRecordDecl * Class,Expr * CurInitExpr)4919 static void LookupCopyAndMoveConstructors(Sema &S,
4920                                           OverloadCandidateSet &CandidateSet,
4921                                           CXXRecordDecl *Class,
4922                                           Expr *CurInitExpr) {
4923   DeclContext::lookup_result R = S.LookupConstructors(Class);
4924   // The container holding the constructors can under certain conditions
4925   // be changed while iterating (e.g. because of deserialization).
4926   // To be safe we copy the lookup results to a new container.
4927   SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
4928   for (SmallVectorImpl<NamedDecl *>::iterator
4929          CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
4930     NamedDecl *D = *CI;
4931     CXXConstructorDecl *Constructor = nullptr;
4932 
4933     if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) {
4934       // Handle copy/moveconstructors, only.
4935       if (!Constructor || Constructor->isInvalidDecl() ||
4936           !Constructor->isCopyOrMoveConstructor() ||
4937           !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4938         continue;
4939 
4940       DeclAccessPair FoundDecl
4941         = DeclAccessPair::make(Constructor, Constructor->getAccess());
4942       S.AddOverloadCandidate(Constructor, FoundDecl,
4943                              CurInitExpr, CandidateSet);
4944       continue;
4945     }
4946 
4947     // Handle constructor templates.
4948     FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D);
4949     if (ConstructorTmpl->isInvalidDecl())
4950       continue;
4951 
4952     Constructor = cast<CXXConstructorDecl>(
4953                                          ConstructorTmpl->getTemplatedDecl());
4954     if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4955       continue;
4956 
4957     // FIXME: Do we need to limit this to copy-constructor-like
4958     // candidates?
4959     DeclAccessPair FoundDecl
4960       = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
4961     S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, nullptr,
4962                                    CurInitExpr, CandidateSet, true);
4963   }
4964 }
4965 
4966 /// \brief Get the location at which initialization diagnostics should appear.
getInitializationLoc(const InitializedEntity & Entity,Expr * Initializer)4967 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
4968                                            Expr *Initializer) {
4969   switch (Entity.getKind()) {
4970   case InitializedEntity::EK_Result:
4971     return Entity.getReturnLoc();
4972 
4973   case InitializedEntity::EK_Exception:
4974     return Entity.getThrowLoc();
4975 
4976   case InitializedEntity::EK_Variable:
4977     return Entity.getDecl()->getLocation();
4978 
4979   case InitializedEntity::EK_LambdaCapture:
4980     return Entity.getCaptureLoc();
4981 
4982   case InitializedEntity::EK_ArrayElement:
4983   case InitializedEntity::EK_Member:
4984   case InitializedEntity::EK_Parameter:
4985   case InitializedEntity::EK_Parameter_CF_Audited:
4986   case InitializedEntity::EK_Temporary:
4987   case InitializedEntity::EK_New:
4988   case InitializedEntity::EK_Base:
4989   case InitializedEntity::EK_Delegating:
4990   case InitializedEntity::EK_VectorElement:
4991   case InitializedEntity::EK_ComplexElement:
4992   case InitializedEntity::EK_BlockElement:
4993   case InitializedEntity::EK_CompoundLiteralInit:
4994   case InitializedEntity::EK_RelatedResult:
4995     return Initializer->getLocStart();
4996   }
4997   llvm_unreachable("missed an InitializedEntity kind?");
4998 }
4999 
5000 /// \brief Make a (potentially elidable) temporary copy of the object
5001 /// provided by the given initializer by calling the appropriate copy
5002 /// constructor.
5003 ///
5004 /// \param S The Sema object used for type-checking.
5005 ///
5006 /// \param T The type of the temporary object, which must either be
5007 /// the type of the initializer expression or a superclass thereof.
5008 ///
5009 /// \param Entity The entity being initialized.
5010 ///
5011 /// \param CurInit The initializer expression.
5012 ///
5013 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
5014 /// is permitted in C++03 (but not C++0x) when binding a reference to
5015 /// an rvalue.
5016 ///
5017 /// \returns An expression that copies the initializer expression into
5018 /// a temporary object, or an error expression if a copy could not be
5019 /// created.
CopyObject(Sema & S,QualType T,const InitializedEntity & Entity,ExprResult CurInit,bool IsExtraneousCopy)5020 static ExprResult CopyObject(Sema &S,
5021                              QualType T,
5022                              const InitializedEntity &Entity,
5023                              ExprResult CurInit,
5024                              bool IsExtraneousCopy) {
5025   // Determine which class type we're copying to.
5026   Expr *CurInitExpr = (Expr *)CurInit.get();
5027   CXXRecordDecl *Class = nullptr;
5028   if (const RecordType *Record = T->getAs<RecordType>())
5029     Class = cast<CXXRecordDecl>(Record->getDecl());
5030   if (!Class)
5031     return CurInit;
5032 
5033   // C++0x [class.copy]p32:
5034   //   When certain criteria are met, an implementation is allowed to
5035   //   omit the copy/move construction of a class object, even if the
5036   //   copy/move constructor and/or destructor for the object have
5037   //   side effects. [...]
5038   //     - when a temporary class object that has not been bound to a
5039   //       reference (12.2) would be copied/moved to a class object
5040   //       with the same cv-unqualified type, the copy/move operation
5041   //       can be omitted by constructing the temporary object
5042   //       directly into the target of the omitted copy/move
5043   //
5044   // Note that the other three bullets are handled elsewhere. Copy
5045   // elision for return statements and throw expressions are handled as part
5046   // of constructor initialization, while copy elision for exception handlers
5047   // is handled by the run-time.
5048   bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
5049   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
5050 
5051   // Make sure that the type we are copying is complete.
5052   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
5053     return CurInit;
5054 
5055   // Perform overload resolution using the class's copy/move constructors.
5056   // Only consider constructors and constructor templates. Per
5057   // C++0x [dcl.init]p16, second bullet to class types, this initialization
5058   // is direct-initialization.
5059   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5060   LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
5061 
5062   bool HadMultipleCandidates = (CandidateSet.size() > 1);
5063 
5064   OverloadCandidateSet::iterator Best;
5065   switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
5066   case OR_Success:
5067     break;
5068 
5069   case OR_No_Viable_Function:
5070     S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
5071            ? diag::ext_rvalue_to_reference_temp_copy_no_viable
5072            : diag::err_temp_copy_no_viable)
5073       << (int)Entity.getKind() << CurInitExpr->getType()
5074       << CurInitExpr->getSourceRange();
5075     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5076     if (!IsExtraneousCopy || S.isSFINAEContext())
5077       return ExprError();
5078     return CurInit;
5079 
5080   case OR_Ambiguous:
5081     S.Diag(Loc, diag::err_temp_copy_ambiguous)
5082       << (int)Entity.getKind() << CurInitExpr->getType()
5083       << CurInitExpr->getSourceRange();
5084     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5085     return ExprError();
5086 
5087   case OR_Deleted:
5088     S.Diag(Loc, diag::err_temp_copy_deleted)
5089       << (int)Entity.getKind() << CurInitExpr->getType()
5090       << CurInitExpr->getSourceRange();
5091     S.NoteDeletedFunction(Best->Function);
5092     return ExprError();
5093   }
5094 
5095   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
5096   SmallVector<Expr*, 8> ConstructorArgs;
5097   CurInit.get(); // Ownership transferred into MultiExprArg, below.
5098 
5099   S.CheckConstructorAccess(Loc, Constructor, Entity,
5100                            Best->FoundDecl.getAccess(), IsExtraneousCopy);
5101 
5102   if (IsExtraneousCopy) {
5103     // If this is a totally extraneous copy for C++03 reference
5104     // binding purposes, just return the original initialization
5105     // expression. We don't generate an (elided) copy operation here
5106     // because doing so would require us to pass down a flag to avoid
5107     // infinite recursion, where each step adds another extraneous,
5108     // elidable copy.
5109 
5110     // Instantiate the default arguments of any extra parameters in
5111     // the selected copy constructor, as if we were going to create a
5112     // proper call to the copy constructor.
5113     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
5114       ParmVarDecl *Parm = Constructor->getParamDecl(I);
5115       if (S.RequireCompleteType(Loc, Parm->getType(),
5116                                 diag::err_call_incomplete_argument))
5117         break;
5118 
5119       // Build the default argument expression; we don't actually care
5120       // if this succeeds or not, because this routine will complain
5121       // if there was a problem.
5122       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
5123     }
5124 
5125     return CurInitExpr;
5126   }
5127 
5128   // Determine the arguments required to actually perform the
5129   // constructor call (we might have derived-to-base conversions, or
5130   // the copy constructor may have default arguments).
5131   if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
5132     return ExprError();
5133 
5134   // Actually perform the constructor call.
5135   CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
5136                                     ConstructorArgs,
5137                                     HadMultipleCandidates,
5138                                     /*ListInit*/ false,
5139                                     /*StdInitListInit*/ false,
5140                                     /*ZeroInit*/ false,
5141                                     CXXConstructExpr::CK_Complete,
5142                                     SourceRange());
5143 
5144   // If we're supposed to bind temporaries, do so.
5145   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
5146     CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
5147   return CurInit;
5148 }
5149 
5150 /// \brief Check whether elidable copy construction for binding a reference to
5151 /// a temporary would have succeeded if we were building in C++98 mode, for
5152 /// -Wc++98-compat.
CheckCXX98CompatAccessibleCopy(Sema & S,const InitializedEntity & Entity,Expr * CurInitExpr)5153 static void CheckCXX98CompatAccessibleCopy(Sema &S,
5154                                            const InitializedEntity &Entity,
5155                                            Expr *CurInitExpr) {
5156   assert(S.getLangOpts().CPlusPlus11);
5157 
5158   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
5159   if (!Record)
5160     return;
5161 
5162   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
5163   if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
5164     return;
5165 
5166   // Find constructors which would have been considered.
5167   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5168   LookupCopyAndMoveConstructors(
5169       S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
5170 
5171   // Perform overload resolution.
5172   OverloadCandidateSet::iterator Best;
5173   OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
5174 
5175   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
5176     << OR << (int)Entity.getKind() << CurInitExpr->getType()
5177     << CurInitExpr->getSourceRange();
5178 
5179   switch (OR) {
5180   case OR_Success:
5181     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
5182                              Entity, Best->FoundDecl.getAccess(), Diag);
5183     // FIXME: Check default arguments as far as that's possible.
5184     break;
5185 
5186   case OR_No_Viable_Function:
5187     S.Diag(Loc, Diag);
5188     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5189     break;
5190 
5191   case OR_Ambiguous:
5192     S.Diag(Loc, Diag);
5193     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5194     break;
5195 
5196   case OR_Deleted:
5197     S.Diag(Loc, Diag);
5198     S.NoteDeletedFunction(Best->Function);
5199     break;
5200   }
5201 }
5202 
PrintInitLocationNote(Sema & S,const InitializedEntity & Entity)5203 void InitializationSequence::PrintInitLocationNote(Sema &S,
5204                                               const InitializedEntity &Entity) {
5205   if (Entity.isParameterKind() && Entity.getDecl()) {
5206     if (Entity.getDecl()->getLocation().isInvalid())
5207       return;
5208 
5209     if (Entity.getDecl()->getDeclName())
5210       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
5211         << Entity.getDecl()->getDeclName();
5212     else
5213       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
5214   }
5215   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
5216            Entity.getMethodDecl())
5217     S.Diag(Entity.getMethodDecl()->getLocation(),
5218            diag::note_method_return_type_change)
5219       << Entity.getMethodDecl()->getDeclName();
5220 }
5221 
isReferenceBinding(const InitializationSequence::Step & s)5222 static bool isReferenceBinding(const InitializationSequence::Step &s) {
5223   return s.Kind == InitializationSequence::SK_BindReference ||
5224          s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
5225 }
5226 
5227 /// Returns true if the parameters describe a constructor initialization of
5228 /// an explicit temporary object, e.g. "Point(x, y)".
isExplicitTemporary(const InitializedEntity & Entity,const InitializationKind & Kind,unsigned NumArgs)5229 static bool isExplicitTemporary(const InitializedEntity &Entity,
5230                                 const InitializationKind &Kind,
5231                                 unsigned NumArgs) {
5232   switch (Entity.getKind()) {
5233   case InitializedEntity::EK_Temporary:
5234   case InitializedEntity::EK_CompoundLiteralInit:
5235   case InitializedEntity::EK_RelatedResult:
5236     break;
5237   default:
5238     return false;
5239   }
5240 
5241   switch (Kind.getKind()) {
5242   case InitializationKind::IK_DirectList:
5243     return true;
5244   // FIXME: Hack to work around cast weirdness.
5245   case InitializationKind::IK_Direct:
5246   case InitializationKind::IK_Value:
5247     return NumArgs != 1;
5248   default:
5249     return false;
5250   }
5251 }
5252 
5253 static ExprResult
PerformConstructorInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,const InitializationSequence::Step & Step,bool & ConstructorInitRequiresZeroInit,bool IsListInitialization,bool IsStdInitListInitialization,SourceLocation LBraceLoc,SourceLocation RBraceLoc)5254 PerformConstructorInitialization(Sema &S,
5255                                  const InitializedEntity &Entity,
5256                                  const InitializationKind &Kind,
5257                                  MultiExprArg Args,
5258                                  const InitializationSequence::Step& Step,
5259                                  bool &ConstructorInitRequiresZeroInit,
5260                                  bool IsListInitialization,
5261                                  bool IsStdInitListInitialization,
5262                                  SourceLocation LBraceLoc,
5263                                  SourceLocation RBraceLoc) {
5264   unsigned NumArgs = Args.size();
5265   CXXConstructorDecl *Constructor
5266     = cast<CXXConstructorDecl>(Step.Function.Function);
5267   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
5268 
5269   // Build a call to the selected constructor.
5270   SmallVector<Expr*, 8> ConstructorArgs;
5271   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
5272                          ? Kind.getEqualLoc()
5273                          : Kind.getLocation();
5274 
5275   if (Kind.getKind() == InitializationKind::IK_Default) {
5276     // Force even a trivial, implicit default constructor to be
5277     // semantically checked. We do this explicitly because we don't build
5278     // the definition for completely trivial constructors.
5279     assert(Constructor->getParent() && "No parent class for constructor.");
5280     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
5281         Constructor->isTrivial() && !Constructor->isUsed(false))
5282       S.DefineImplicitDefaultConstructor(Loc, Constructor);
5283   }
5284 
5285   ExprResult CurInit((Expr *)nullptr);
5286 
5287   // C++ [over.match.copy]p1:
5288   //   - When initializing a temporary to be bound to the first parameter
5289   //     of a constructor that takes a reference to possibly cv-qualified
5290   //     T as its first argument, called with a single argument in the
5291   //     context of direct-initialization, explicit conversion functions
5292   //     are also considered.
5293   bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
5294                            Args.size() == 1 &&
5295                            Constructor->isCopyOrMoveConstructor();
5296 
5297   // Determine the arguments required to actually perform the constructor
5298   // call.
5299   if (S.CompleteConstructorCall(Constructor, Args,
5300                                 Loc, ConstructorArgs,
5301                                 AllowExplicitConv,
5302                                 IsListInitialization))
5303     return ExprError();
5304 
5305 
5306   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
5307     // An explicitly-constructed temporary, e.g., X(1, 2).
5308     S.MarkFunctionReferenced(Loc, Constructor);
5309     if (S.DiagnoseUseOfDecl(Constructor, Loc))
5310       return ExprError();
5311 
5312     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5313     if (!TSInfo)
5314       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
5315     SourceRange ParenOrBraceRange =
5316       (Kind.getKind() == InitializationKind::IK_DirectList)
5317       ? SourceRange(LBraceLoc, RBraceLoc)
5318       : Kind.getParenRange();
5319 
5320     CurInit = new (S.Context) CXXTemporaryObjectExpr(
5321         S.Context, Constructor, TSInfo, ConstructorArgs, ParenOrBraceRange,
5322         HadMultipleCandidates, IsListInitialization,
5323         IsStdInitListInitialization, ConstructorInitRequiresZeroInit);
5324   } else {
5325     CXXConstructExpr::ConstructionKind ConstructKind =
5326       CXXConstructExpr::CK_Complete;
5327 
5328     if (Entity.getKind() == InitializedEntity::EK_Base) {
5329       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
5330         CXXConstructExpr::CK_VirtualBase :
5331         CXXConstructExpr::CK_NonVirtualBase;
5332     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
5333       ConstructKind = CXXConstructExpr::CK_Delegating;
5334     }
5335 
5336     // Only get the parenthesis or brace range if it is a list initialization or
5337     // direct construction.
5338     SourceRange ParenOrBraceRange;
5339     if (IsListInitialization)
5340       ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
5341     else if (Kind.getKind() == InitializationKind::IK_Direct)
5342       ParenOrBraceRange = Kind.getParenRange();
5343 
5344     // If the entity allows NRVO, mark the construction as elidable
5345     // unconditionally.
5346     if (Entity.allowsNRVO())
5347       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5348                                         Constructor, /*Elidable=*/true,
5349                                         ConstructorArgs,
5350                                         HadMultipleCandidates,
5351                                         IsListInitialization,
5352                                         IsStdInitListInitialization,
5353                                         ConstructorInitRequiresZeroInit,
5354                                         ConstructKind,
5355                                         ParenOrBraceRange);
5356     else
5357       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5358                                         Constructor,
5359                                         ConstructorArgs,
5360                                         HadMultipleCandidates,
5361                                         IsListInitialization,
5362                                         IsStdInitListInitialization,
5363                                         ConstructorInitRequiresZeroInit,
5364                                         ConstructKind,
5365                                         ParenOrBraceRange);
5366   }
5367   if (CurInit.isInvalid())
5368     return ExprError();
5369 
5370   // Only check access if all of that succeeded.
5371   S.CheckConstructorAccess(Loc, Constructor, Entity,
5372                            Step.Function.FoundDecl.getAccess());
5373   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
5374     return ExprError();
5375 
5376   if (shouldBindAsTemporary(Entity))
5377     CurInit = S.MaybeBindToTemporary(CurInit.get());
5378 
5379   return CurInit;
5380 }
5381 
5382 /// Determine whether the specified InitializedEntity definitely has a lifetime
5383 /// longer than the current full-expression. Conservatively returns false if
5384 /// it's unclear.
5385 static bool
InitializedEntityOutlivesFullExpression(const InitializedEntity & Entity)5386 InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
5387   const InitializedEntity *Top = &Entity;
5388   while (Top->getParent())
5389     Top = Top->getParent();
5390 
5391   switch (Top->getKind()) {
5392   case InitializedEntity::EK_Variable:
5393   case InitializedEntity::EK_Result:
5394   case InitializedEntity::EK_Exception:
5395   case InitializedEntity::EK_Member:
5396   case InitializedEntity::EK_New:
5397   case InitializedEntity::EK_Base:
5398   case InitializedEntity::EK_Delegating:
5399     return true;
5400 
5401   case InitializedEntity::EK_ArrayElement:
5402   case InitializedEntity::EK_VectorElement:
5403   case InitializedEntity::EK_BlockElement:
5404   case InitializedEntity::EK_ComplexElement:
5405     // Could not determine what the full initialization is. Assume it might not
5406     // outlive the full-expression.
5407     return false;
5408 
5409   case InitializedEntity::EK_Parameter:
5410   case InitializedEntity::EK_Parameter_CF_Audited:
5411   case InitializedEntity::EK_Temporary:
5412   case InitializedEntity::EK_LambdaCapture:
5413   case InitializedEntity::EK_CompoundLiteralInit:
5414   case InitializedEntity::EK_RelatedResult:
5415     // The entity being initialized might not outlive the full-expression.
5416     return false;
5417   }
5418 
5419   llvm_unreachable("unknown entity kind");
5420 }
5421 
5422 /// Determine the declaration which an initialized entity ultimately refers to,
5423 /// for the purpose of lifetime-extending a temporary bound to a reference in
5424 /// the initialization of \p Entity.
getEntityForTemporaryLifetimeExtension(const InitializedEntity * Entity,const InitializedEntity * FallbackDecl=nullptr)5425 static const InitializedEntity *getEntityForTemporaryLifetimeExtension(
5426     const InitializedEntity *Entity,
5427     const InitializedEntity *FallbackDecl = nullptr) {
5428   // C++11 [class.temporary]p5:
5429   switch (Entity->getKind()) {
5430   case InitializedEntity::EK_Variable:
5431     //   The temporary [...] persists for the lifetime of the reference
5432     return Entity;
5433 
5434   case InitializedEntity::EK_Member:
5435     // For subobjects, we look at the complete object.
5436     if (Entity->getParent())
5437       return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
5438                                                     Entity);
5439 
5440     //   except:
5441     //   -- A temporary bound to a reference member in a constructor's
5442     //      ctor-initializer persists until the constructor exits.
5443     return Entity;
5444 
5445   case InitializedEntity::EK_Parameter:
5446   case InitializedEntity::EK_Parameter_CF_Audited:
5447     //   -- A temporary bound to a reference parameter in a function call
5448     //      persists until the completion of the full-expression containing
5449     //      the call.
5450   case InitializedEntity::EK_Result:
5451     //   -- The lifetime of a temporary bound to the returned value in a
5452     //      function return statement is not extended; the temporary is
5453     //      destroyed at the end of the full-expression in the return statement.
5454   case InitializedEntity::EK_New:
5455     //   -- A temporary bound to a reference in a new-initializer persists
5456     //      until the completion of the full-expression containing the
5457     //      new-initializer.
5458     return nullptr;
5459 
5460   case InitializedEntity::EK_Temporary:
5461   case InitializedEntity::EK_CompoundLiteralInit:
5462   case InitializedEntity::EK_RelatedResult:
5463     // We don't yet know the storage duration of the surrounding temporary.
5464     // Assume it's got full-expression duration for now, it will patch up our
5465     // storage duration if that's not correct.
5466     return nullptr;
5467 
5468   case InitializedEntity::EK_ArrayElement:
5469     // For subobjects, we look at the complete object.
5470     return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
5471                                                   FallbackDecl);
5472 
5473   case InitializedEntity::EK_Base:
5474   case InitializedEntity::EK_Delegating:
5475     // We can reach this case for aggregate initialization in a constructor:
5476     //   struct A { int &&r; };
5477     //   struct B : A { B() : A{0} {} };
5478     // In this case, use the innermost field decl as the context.
5479     return FallbackDecl;
5480 
5481   case InitializedEntity::EK_BlockElement:
5482   case InitializedEntity::EK_LambdaCapture:
5483   case InitializedEntity::EK_Exception:
5484   case InitializedEntity::EK_VectorElement:
5485   case InitializedEntity::EK_ComplexElement:
5486     return nullptr;
5487   }
5488   llvm_unreachable("unknown entity kind");
5489 }
5490 
5491 static void performLifetimeExtension(Expr *Init,
5492                                      const InitializedEntity *ExtendingEntity);
5493 
5494 /// Update a glvalue expression that is used as the initializer of a reference
5495 /// to note that its lifetime is extended.
5496 /// \return \c true if any temporary had its lifetime extended.
5497 static bool
performReferenceExtension(Expr * Init,const InitializedEntity * ExtendingEntity)5498 performReferenceExtension(Expr *Init,
5499                           const InitializedEntity *ExtendingEntity) {
5500   // Walk past any constructs which we can lifetime-extend across.
5501   Expr *Old;
5502   do {
5503     Old = Init;
5504 
5505     if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5506       if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
5507         // This is just redundant braces around an initializer. Step over it.
5508         Init = ILE->getInit(0);
5509       }
5510     }
5511 
5512     // Step over any subobject adjustments; we may have a materialized
5513     // temporary inside them.
5514     SmallVector<const Expr *, 2> CommaLHSs;
5515     SmallVector<SubobjectAdjustment, 2> Adjustments;
5516     Init = const_cast<Expr *>(
5517         Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5518 
5519     // Per current approach for DR1376, look through casts to reference type
5520     // when performing lifetime extension.
5521     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
5522       if (CE->getSubExpr()->isGLValue())
5523         Init = CE->getSubExpr();
5524 
5525     // FIXME: Per DR1213, subscripting on an array temporary produces an xvalue.
5526     // It's unclear if binding a reference to that xvalue extends the array
5527     // temporary.
5528   } while (Init != Old);
5529 
5530   if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) {
5531     // Update the storage duration of the materialized temporary.
5532     // FIXME: Rebuild the expression instead of mutating it.
5533     ME->setExtendingDecl(ExtendingEntity->getDecl(),
5534                          ExtendingEntity->allocateManglingNumber());
5535     performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingEntity);
5536     return true;
5537   }
5538 
5539   return false;
5540 }
5541 
5542 /// Update a prvalue expression that is going to be materialized as a
5543 /// lifetime-extended temporary.
performLifetimeExtension(Expr * Init,const InitializedEntity * ExtendingEntity)5544 static void performLifetimeExtension(Expr *Init,
5545                                      const InitializedEntity *ExtendingEntity) {
5546   // Dig out the expression which constructs the extended temporary.
5547   SmallVector<const Expr *, 2> CommaLHSs;
5548   SmallVector<SubobjectAdjustment, 2> Adjustments;
5549   Init = const_cast<Expr *>(
5550       Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5551 
5552   if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
5553     Init = BTE->getSubExpr();
5554 
5555   if (CXXStdInitializerListExpr *ILE =
5556           dyn_cast<CXXStdInitializerListExpr>(Init)) {
5557     performReferenceExtension(ILE->getSubExpr(), ExtendingEntity);
5558     return;
5559   }
5560 
5561   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5562     if (ILE->getType()->isArrayType()) {
5563       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
5564         performLifetimeExtension(ILE->getInit(I), ExtendingEntity);
5565       return;
5566     }
5567 
5568     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
5569       assert(RD->isAggregate() && "aggregate init on non-aggregate");
5570 
5571       // If we lifetime-extend a braced initializer which is initializing an
5572       // aggregate, and that aggregate contains reference members which are
5573       // bound to temporaries, those temporaries are also lifetime-extended.
5574       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
5575           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
5576         performReferenceExtension(ILE->getInit(0), ExtendingEntity);
5577       else {
5578         unsigned Index = 0;
5579         for (const auto *I : RD->fields()) {
5580           if (Index >= ILE->getNumInits())
5581             break;
5582           if (I->isUnnamedBitfield())
5583             continue;
5584           Expr *SubInit = ILE->getInit(Index);
5585           if (I->getType()->isReferenceType())
5586             performReferenceExtension(SubInit, ExtendingEntity);
5587           else if (isa<InitListExpr>(SubInit) ||
5588                    isa<CXXStdInitializerListExpr>(SubInit))
5589             // This may be either aggregate-initialization of a member or
5590             // initialization of a std::initializer_list object. Either way,
5591             // we should recursively lifetime-extend that initializer.
5592             performLifetimeExtension(SubInit, ExtendingEntity);
5593           ++Index;
5594         }
5595       }
5596     }
5597   }
5598 }
5599 
warnOnLifetimeExtension(Sema & S,const InitializedEntity & Entity,const Expr * Init,bool IsInitializerList,const ValueDecl * ExtendingDecl)5600 static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity,
5601                                     const Expr *Init, bool IsInitializerList,
5602                                     const ValueDecl *ExtendingDecl) {
5603   // Warn if a field lifetime-extends a temporary.
5604   if (isa<FieldDecl>(ExtendingDecl)) {
5605     if (IsInitializerList) {
5606       S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list)
5607         << /*at end of constructor*/true;
5608       return;
5609     }
5610 
5611     bool IsSubobjectMember = false;
5612     for (const InitializedEntity *Ent = Entity.getParent(); Ent;
5613          Ent = Ent->getParent()) {
5614       if (Ent->getKind() != InitializedEntity::EK_Base) {
5615         IsSubobjectMember = true;
5616         break;
5617       }
5618     }
5619     S.Diag(Init->getExprLoc(),
5620            diag::warn_bind_ref_member_to_temporary)
5621       << ExtendingDecl << Init->getSourceRange()
5622       << IsSubobjectMember << IsInitializerList;
5623     if (IsSubobjectMember)
5624       S.Diag(ExtendingDecl->getLocation(),
5625              diag::note_ref_subobject_of_member_declared_here);
5626     else
5627       S.Diag(ExtendingDecl->getLocation(),
5628              diag::note_ref_or_ptr_member_declared_here)
5629         << /*is pointer*/false;
5630   }
5631 }
5632 
5633 static void DiagnoseNarrowingInInitList(Sema &S,
5634                                         const ImplicitConversionSequence &ICS,
5635                                         QualType PreNarrowingType,
5636                                         QualType EntityType,
5637                                         const Expr *PostInit);
5638 
5639 ExprResult
Perform(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,QualType * ResultType)5640 InitializationSequence::Perform(Sema &S,
5641                                 const InitializedEntity &Entity,
5642                                 const InitializationKind &Kind,
5643                                 MultiExprArg Args,
5644                                 QualType *ResultType) {
5645   if (Failed()) {
5646     Diagnose(S, Entity, Kind, Args);
5647     return ExprError();
5648   }
5649 
5650   if (getKind() == DependentSequence) {
5651     // If the declaration is a non-dependent, incomplete array type
5652     // that has an initializer, then its type will be completed once
5653     // the initializer is instantiated.
5654     if (ResultType && !Entity.getType()->isDependentType() &&
5655         Args.size() == 1) {
5656       QualType DeclType = Entity.getType();
5657       if (const IncompleteArrayType *ArrayT
5658                            = S.Context.getAsIncompleteArrayType(DeclType)) {
5659         // FIXME: We don't currently have the ability to accurately
5660         // compute the length of an initializer list without
5661         // performing full type-checking of the initializer list
5662         // (since we have to determine where braces are implicitly
5663         // introduced and such).  So, we fall back to making the array
5664         // type a dependently-sized array type with no specified
5665         // bound.
5666         if (isa<InitListExpr>((Expr *)Args[0])) {
5667           SourceRange Brackets;
5668 
5669           // Scavange the location of the brackets from the entity, if we can.
5670           if (DeclaratorDecl *DD = Entity.getDecl()) {
5671             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
5672               TypeLoc TL = TInfo->getTypeLoc();
5673               if (IncompleteArrayTypeLoc ArrayLoc =
5674                       TL.getAs<IncompleteArrayTypeLoc>())
5675                 Brackets = ArrayLoc.getBracketsRange();
5676             }
5677           }
5678 
5679           *ResultType
5680             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
5681                                                    /*NumElts=*/nullptr,
5682                                                    ArrayT->getSizeModifier(),
5683                                        ArrayT->getIndexTypeCVRQualifiers(),
5684                                                    Brackets);
5685         }
5686 
5687       }
5688     }
5689     if (Kind.getKind() == InitializationKind::IK_Direct &&
5690         !Kind.isExplicitCast()) {
5691       // Rebuild the ParenListExpr.
5692       SourceRange ParenRange = Kind.getParenRange();
5693       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
5694                                   Args);
5695     }
5696     assert(Kind.getKind() == InitializationKind::IK_Copy ||
5697            Kind.isExplicitCast() ||
5698            Kind.getKind() == InitializationKind::IK_DirectList);
5699     return ExprResult(Args[0]);
5700   }
5701 
5702   // No steps means no initialization.
5703   if (Steps.empty())
5704     return ExprResult((Expr *)nullptr);
5705 
5706   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
5707       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
5708       !Entity.isParameterKind()) {
5709     // Produce a C++98 compatibility warning if we are initializing a reference
5710     // from an initializer list. For parameters, we produce a better warning
5711     // elsewhere.
5712     Expr *Init = Args[0];
5713     S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
5714       << Init->getSourceRange();
5715   }
5716 
5717   // Diagnose cases where we initialize a pointer to an array temporary, and the
5718   // pointer obviously outlives the temporary.
5719   if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
5720       Entity.getType()->isPointerType() &&
5721       InitializedEntityOutlivesFullExpression(Entity)) {
5722     Expr *Init = Args[0];
5723     Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
5724     if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
5725       S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
5726         << Init->getSourceRange();
5727   }
5728 
5729   QualType DestType = Entity.getType().getNonReferenceType();
5730   // FIXME: Ugly hack around the fact that Entity.getType() is not
5731   // the same as Entity.getDecl()->getType() in cases involving type merging,
5732   //  and we want latter when it makes sense.
5733   if (ResultType)
5734     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
5735                                      Entity.getType();
5736 
5737   ExprResult CurInit((Expr *)nullptr);
5738 
5739   // For initialization steps that start with a single initializer,
5740   // grab the only argument out the Args and place it into the "current"
5741   // initializer.
5742   switch (Steps.front().Kind) {
5743   case SK_ResolveAddressOfOverloadedFunction:
5744   case SK_CastDerivedToBaseRValue:
5745   case SK_CastDerivedToBaseXValue:
5746   case SK_CastDerivedToBaseLValue:
5747   case SK_BindReference:
5748   case SK_BindReferenceToTemporary:
5749   case SK_ExtraneousCopyToTemporary:
5750   case SK_UserConversion:
5751   case SK_QualificationConversionLValue:
5752   case SK_QualificationConversionXValue:
5753   case SK_QualificationConversionRValue:
5754   case SK_AtomicConversion:
5755   case SK_LValueToRValue:
5756   case SK_ConversionSequence:
5757   case SK_ConversionSequenceNoNarrowing:
5758   case SK_ListInitialization:
5759   case SK_UnwrapInitList:
5760   case SK_RewrapInitList:
5761   case SK_CAssignment:
5762   case SK_StringInit:
5763   case SK_ObjCObjectConversion:
5764   case SK_ArrayInit:
5765   case SK_ParenthesizedArrayInit:
5766   case SK_PassByIndirectCopyRestore:
5767   case SK_PassByIndirectRestore:
5768   case SK_ProduceObjCObject:
5769   case SK_StdInitializerList:
5770   case SK_OCLSamplerInit:
5771   case SK_OCLZeroEvent: {
5772     assert(Args.size() == 1);
5773     CurInit = Args[0];
5774     if (!CurInit.get()) return ExprError();
5775     break;
5776   }
5777 
5778   case SK_ConstructorInitialization:
5779   case SK_ConstructorInitializationFromList:
5780   case SK_StdInitializerListConstructorCall:
5781   case SK_ZeroInitialization:
5782     break;
5783   }
5784 
5785   // Walk through the computed steps for the initialization sequence,
5786   // performing the specified conversions along the way.
5787   bool ConstructorInitRequiresZeroInit = false;
5788   for (step_iterator Step = step_begin(), StepEnd = step_end();
5789        Step != StepEnd; ++Step) {
5790     if (CurInit.isInvalid())
5791       return ExprError();
5792 
5793     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
5794 
5795     switch (Step->Kind) {
5796     case SK_ResolveAddressOfOverloadedFunction:
5797       // Overload resolution determined which function invoke; update the
5798       // initializer to reflect that choice.
5799       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
5800       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
5801         return ExprError();
5802       CurInit = S.FixOverloadedFunctionReference(CurInit,
5803                                                  Step->Function.FoundDecl,
5804                                                  Step->Function.Function);
5805       break;
5806 
5807     case SK_CastDerivedToBaseRValue:
5808     case SK_CastDerivedToBaseXValue:
5809     case SK_CastDerivedToBaseLValue: {
5810       // We have a derived-to-base cast that produces either an rvalue or an
5811       // lvalue. Perform that cast.
5812 
5813       CXXCastPath BasePath;
5814 
5815       // Casts to inaccessible base classes are allowed with C-style casts.
5816       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
5817       if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
5818                                          CurInit.get()->getLocStart(),
5819                                          CurInit.get()->getSourceRange(),
5820                                          &BasePath, IgnoreBaseAccess))
5821         return ExprError();
5822 
5823       if (S.BasePathInvolvesVirtualBase(BasePath)) {
5824         QualType T = SourceType;
5825         if (const PointerType *Pointer = T->getAs<PointerType>())
5826           T = Pointer->getPointeeType();
5827         if (const RecordType *RecordTy = T->getAs<RecordType>())
5828           S.MarkVTableUsed(CurInit.get()->getLocStart(),
5829                            cast<CXXRecordDecl>(RecordTy->getDecl()));
5830       }
5831 
5832       ExprValueKind VK =
5833           Step->Kind == SK_CastDerivedToBaseLValue ?
5834               VK_LValue :
5835               (Step->Kind == SK_CastDerivedToBaseXValue ?
5836                    VK_XValue :
5837                    VK_RValue);
5838       CurInit =
5839           ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
5840                                    CurInit.get(), &BasePath, VK);
5841       break;
5842     }
5843 
5844     case SK_BindReference:
5845       // References cannot bind to bit-fields (C++ [dcl.init.ref]p5).
5846       if (CurInit.get()->refersToBitField()) {
5847         // We don't necessarily have an unambiguous source bit-field.
5848         FieldDecl *BitField = CurInit.get()->getSourceBitField();
5849         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
5850           << Entity.getType().isVolatileQualified()
5851           << (BitField ? BitField->getDeclName() : DeclarationName())
5852           << (BitField != nullptr)
5853           << CurInit.get()->getSourceRange();
5854         if (BitField)
5855           S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
5856 
5857         return ExprError();
5858       }
5859 
5860       if (CurInit.get()->refersToVectorElement()) {
5861         // References cannot bind to vector elements.
5862         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
5863           << Entity.getType().isVolatileQualified()
5864           << CurInit.get()->getSourceRange();
5865         PrintInitLocationNote(S, Entity);
5866         return ExprError();
5867       }
5868 
5869       // Reference binding does not have any corresponding ASTs.
5870 
5871       // Check exception specifications
5872       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5873         return ExprError();
5874 
5875       // Even though we didn't materialize a temporary, the binding may still
5876       // extend the lifetime of a temporary. This happens if we bind a reference
5877       // to the result of a cast to reference type.
5878       if (const InitializedEntity *ExtendingEntity =
5879               getEntityForTemporaryLifetimeExtension(&Entity))
5880         if (performReferenceExtension(CurInit.get(), ExtendingEntity))
5881           warnOnLifetimeExtension(S, Entity, CurInit.get(),
5882                                   /*IsInitializerList=*/false,
5883                                   ExtendingEntity->getDecl());
5884 
5885       break;
5886 
5887     case SK_BindReferenceToTemporary: {
5888       // Make sure the "temporary" is actually an rvalue.
5889       assert(CurInit.get()->isRValue() && "not a temporary");
5890 
5891       // Check exception specifications
5892       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5893         return ExprError();
5894 
5895       // Materialize the temporary into memory.
5896       MaterializeTemporaryExpr *MTE = new (S.Context) MaterializeTemporaryExpr(
5897           Entity.getType().getNonReferenceType(), CurInit.get(),
5898           Entity.getType()->isLValueReferenceType());
5899 
5900       // Maybe lifetime-extend the temporary's subobjects to match the
5901       // entity's lifetime.
5902       if (const InitializedEntity *ExtendingEntity =
5903               getEntityForTemporaryLifetimeExtension(&Entity))
5904         if (performReferenceExtension(MTE, ExtendingEntity))
5905           warnOnLifetimeExtension(S, Entity, CurInit.get(), /*IsInitializerList=*/false,
5906                                   ExtendingEntity->getDecl());
5907 
5908       // If we're binding to an Objective-C object that has lifetime, we
5909       // need cleanups. Likewise if we're extending this temporary to automatic
5910       // storage duration -- we need to register its cleanup during the
5911       // full-expression's cleanups.
5912       if ((S.getLangOpts().ObjCAutoRefCount &&
5913            MTE->getType()->isObjCLifetimeType()) ||
5914           (MTE->getStorageDuration() == SD_Automatic &&
5915            MTE->getType().isDestructedType()))
5916         S.ExprNeedsCleanups = true;
5917 
5918       CurInit = MTE;
5919       break;
5920     }
5921 
5922     case SK_ExtraneousCopyToTemporary:
5923       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
5924                            /*IsExtraneousCopy=*/true);
5925       break;
5926 
5927     case SK_UserConversion: {
5928       // We have a user-defined conversion that invokes either a constructor
5929       // or a conversion function.
5930       CastKind CastKind;
5931       bool IsCopy = false;
5932       FunctionDecl *Fn = Step->Function.Function;
5933       DeclAccessPair FoundFn = Step->Function.FoundDecl;
5934       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
5935       bool CreatedObject = false;
5936       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
5937         // Build a call to the selected constructor.
5938         SmallVector<Expr*, 8> ConstructorArgs;
5939         SourceLocation Loc = CurInit.get()->getLocStart();
5940         CurInit.get(); // Ownership transferred into MultiExprArg, below.
5941 
5942         // Determine the arguments required to actually perform the constructor
5943         // call.
5944         Expr *Arg = CurInit.get();
5945         if (S.CompleteConstructorCall(Constructor,
5946                                       MultiExprArg(&Arg, 1),
5947                                       Loc, ConstructorArgs))
5948           return ExprError();
5949 
5950         // Build an expression that constructs a temporary.
5951         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
5952                                           ConstructorArgs,
5953                                           HadMultipleCandidates,
5954                                           /*ListInit*/ false,
5955                                           /*StdInitListInit*/ false,
5956                                           /*ZeroInit*/ false,
5957                                           CXXConstructExpr::CK_Complete,
5958                                           SourceRange());
5959         if (CurInit.isInvalid())
5960           return ExprError();
5961 
5962         S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
5963                                  FoundFn.getAccess());
5964         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
5965           return ExprError();
5966 
5967         CastKind = CK_ConstructorConversion;
5968         QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
5969         if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
5970             S.IsDerivedFrom(SourceType, Class))
5971           IsCopy = true;
5972 
5973         CreatedObject = true;
5974       } else {
5975         // Build a call to the conversion function.
5976         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
5977         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
5978                                     FoundFn);
5979         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
5980           return ExprError();
5981 
5982         // FIXME: Should we move this initialization into a separate
5983         // derived-to-base conversion? I believe the answer is "no", because
5984         // we don't want to turn off access control here for c-style casts.
5985         ExprResult CurInitExprRes =
5986           S.PerformObjectArgumentInitialization(CurInit.get(),
5987                                                 /*Qualifier=*/nullptr,
5988                                                 FoundFn, Conversion);
5989         if(CurInitExprRes.isInvalid())
5990           return ExprError();
5991         CurInit = CurInitExprRes;
5992 
5993         // Build the actual call to the conversion function.
5994         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
5995                                            HadMultipleCandidates);
5996         if (CurInit.isInvalid() || !CurInit.get())
5997           return ExprError();
5998 
5999         CastKind = CK_UserDefinedConversion;
6000 
6001         CreatedObject = Conversion->getReturnType()->isRecordType();
6002       }
6003 
6004       bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
6005       bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
6006 
6007       if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
6008         QualType T = CurInit.get()->getType();
6009         if (const RecordType *Record = T->getAs<RecordType>()) {
6010           CXXDestructorDecl *Destructor
6011             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
6012           S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
6013                                   S.PDiag(diag::err_access_dtor_temp) << T);
6014           S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
6015           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart()))
6016             return ExprError();
6017         }
6018       }
6019 
6020       CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
6021                                          CastKind, CurInit.get(), nullptr,
6022                                          CurInit.get()->getValueKind());
6023       if (MaybeBindToTemp)
6024         CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6025       if (RequiresCopy)
6026         CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
6027                              CurInit, /*IsExtraneousCopy=*/false);
6028       break;
6029     }
6030 
6031     case SK_QualificationConversionLValue:
6032     case SK_QualificationConversionXValue:
6033     case SK_QualificationConversionRValue: {
6034       // Perform a qualification conversion; these can never go wrong.
6035       ExprValueKind VK =
6036           Step->Kind == SK_QualificationConversionLValue ?
6037               VK_LValue :
6038               (Step->Kind == SK_QualificationConversionXValue ?
6039                    VK_XValue :
6040                    VK_RValue);
6041       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK);
6042       break;
6043     }
6044 
6045     case SK_AtomicConversion: {
6046       assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic");
6047       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
6048                                     CK_NonAtomicToAtomic, VK_RValue);
6049       break;
6050     }
6051 
6052     case SK_LValueToRValue: {
6053       assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
6054       CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
6055                                          CK_LValueToRValue, CurInit.get(),
6056                                          /*BasePath=*/nullptr, VK_RValue);
6057       break;
6058     }
6059 
6060     case SK_ConversionSequence:
6061     case SK_ConversionSequenceNoNarrowing: {
6062       Sema::CheckedConversionKind CCK
6063         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
6064         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
6065         : Kind.isExplicitCast()? Sema::CCK_OtherCast
6066         : Sema::CCK_ImplicitConversion;
6067       ExprResult CurInitExprRes =
6068         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
6069                                     getAssignmentAction(Entity), CCK);
6070       if (CurInitExprRes.isInvalid())
6071         return ExprError();
6072       CurInit = CurInitExprRes;
6073 
6074       if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
6075           S.getLangOpts().CPlusPlus && !CurInit.get()->isValueDependent())
6076         DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
6077                                     CurInit.get());
6078       break;
6079     }
6080 
6081     case SK_ListInitialization: {
6082       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
6083       // If we're not initializing the top-level entity, we need to create an
6084       // InitializeTemporary entity for our target type.
6085       QualType Ty = Step->Type;
6086       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
6087       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
6088       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
6089       InitListChecker PerformInitList(S, InitEntity,
6090           InitList, Ty, /*VerifyOnly=*/false);
6091       if (PerformInitList.HadError())
6092         return ExprError();
6093 
6094       // Hack: We must update *ResultType if available in order to set the
6095       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
6096       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
6097       if (ResultType &&
6098           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
6099         if ((*ResultType)->isRValueReferenceType())
6100           Ty = S.Context.getRValueReferenceType(Ty);
6101         else if ((*ResultType)->isLValueReferenceType())
6102           Ty = S.Context.getLValueReferenceType(Ty,
6103             (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
6104         *ResultType = Ty;
6105       }
6106 
6107       InitListExpr *StructuredInitList =
6108           PerformInitList.getFullyStructuredList();
6109       CurInit.get();
6110       CurInit = shouldBindAsTemporary(InitEntity)
6111           ? S.MaybeBindToTemporary(StructuredInitList)
6112           : StructuredInitList;
6113       break;
6114     }
6115 
6116     case SK_ConstructorInitializationFromList: {
6117       // When an initializer list is passed for a parameter of type "reference
6118       // to object", we don't get an EK_Temporary entity, but instead an
6119       // EK_Parameter entity with reference type.
6120       // FIXME: This is a hack. What we really should do is create a user
6121       // conversion step for this case, but this makes it considerably more
6122       // complicated. For now, this will do.
6123       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
6124                                         Entity.getType().getNonReferenceType());
6125       bool UseTemporary = Entity.getType()->isReferenceType();
6126       assert(Args.size() == 1 && "expected a single argument for list init");
6127       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6128       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
6129         << InitList->getSourceRange();
6130       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
6131       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
6132                                                                    Entity,
6133                                                  Kind, Arg, *Step,
6134                                                ConstructorInitRequiresZeroInit,
6135                                                /*IsListInitialization*/true,
6136                                                /*IsStdInitListInit*/false,
6137                                                InitList->getLBraceLoc(),
6138                                                InitList->getRBraceLoc());
6139       break;
6140     }
6141 
6142     case SK_UnwrapInitList:
6143       CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
6144       break;
6145 
6146     case SK_RewrapInitList: {
6147       Expr *E = CurInit.get();
6148       InitListExpr *Syntactic = Step->WrappingSyntacticList;
6149       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
6150           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
6151       ILE->setSyntacticForm(Syntactic);
6152       ILE->setType(E->getType());
6153       ILE->setValueKind(E->getValueKind());
6154       CurInit = ILE;
6155       break;
6156     }
6157 
6158     case SK_ConstructorInitialization:
6159     case SK_StdInitializerListConstructorCall: {
6160       // When an initializer list is passed for a parameter of type "reference
6161       // to object", we don't get an EK_Temporary entity, but instead an
6162       // EK_Parameter entity with reference type.
6163       // FIXME: This is a hack. What we really should do is create a user
6164       // conversion step for this case, but this makes it considerably more
6165       // complicated. For now, this will do.
6166       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
6167                                         Entity.getType().getNonReferenceType());
6168       bool UseTemporary = Entity.getType()->isReferenceType();
6169       bool IsStdInitListInit =
6170           Step->Kind == SK_StdInitializerListConstructorCall;
6171       CurInit = PerformConstructorInitialization(
6172           S, UseTemporary ? TempEntity : Entity, Kind, Args, *Step,
6173           ConstructorInitRequiresZeroInit,
6174           /*IsListInitialization*/IsStdInitListInit,
6175           /*IsStdInitListInitialization*/IsStdInitListInit,
6176           /*LBraceLoc*/SourceLocation(),
6177           /*RBraceLoc*/SourceLocation());
6178       break;
6179     }
6180 
6181     case SK_ZeroInitialization: {
6182       step_iterator NextStep = Step;
6183       ++NextStep;
6184       if (NextStep != StepEnd &&
6185           (NextStep->Kind == SK_ConstructorInitialization ||
6186            NextStep->Kind == SK_ConstructorInitializationFromList)) {
6187         // The need for zero-initialization is recorded directly into
6188         // the call to the object's constructor within the next step.
6189         ConstructorInitRequiresZeroInit = true;
6190       } else if (Kind.getKind() == InitializationKind::IK_Value &&
6191                  S.getLangOpts().CPlusPlus &&
6192                  !Kind.isImplicitValueInit()) {
6193         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6194         if (!TSInfo)
6195           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
6196                                                     Kind.getRange().getBegin());
6197 
6198         CurInit = new (S.Context) CXXScalarValueInitExpr(
6199             TSInfo->getType().getNonLValueExprType(S.Context), TSInfo,
6200             Kind.getRange().getEnd());
6201       } else {
6202         CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
6203       }
6204       break;
6205     }
6206 
6207     case SK_CAssignment: {
6208       QualType SourceType = CurInit.get()->getType();
6209       ExprResult Result = CurInit;
6210       Sema::AssignConvertType ConvTy =
6211         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
6212             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
6213       if (Result.isInvalid())
6214         return ExprError();
6215       CurInit = Result;
6216 
6217       // If this is a call, allow conversion to a transparent union.
6218       ExprResult CurInitExprRes = CurInit;
6219       if (ConvTy != Sema::Compatible &&
6220           Entity.isParameterKind() &&
6221           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
6222             == Sema::Compatible)
6223         ConvTy = Sema::Compatible;
6224       if (CurInitExprRes.isInvalid())
6225         return ExprError();
6226       CurInit = CurInitExprRes;
6227 
6228       bool Complained;
6229       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
6230                                      Step->Type, SourceType,
6231                                      CurInit.get(),
6232                                      getAssignmentAction(Entity, true),
6233                                      &Complained)) {
6234         PrintInitLocationNote(S, Entity);
6235         return ExprError();
6236       } else if (Complained)
6237         PrintInitLocationNote(S, Entity);
6238       break;
6239     }
6240 
6241     case SK_StringInit: {
6242       QualType Ty = Step->Type;
6243       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
6244                       S.Context.getAsArrayType(Ty), S);
6245       break;
6246     }
6247 
6248     case SK_ObjCObjectConversion:
6249       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
6250                           CK_ObjCObjectLValueCast,
6251                           CurInit.get()->getValueKind());
6252       break;
6253 
6254     case SK_ArrayInit:
6255       // Okay: we checked everything before creating this step. Note that
6256       // this is a GNU extension.
6257       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
6258         << Step->Type << CurInit.get()->getType()
6259         << CurInit.get()->getSourceRange();
6260 
6261       // If the destination type is an incomplete array type, update the
6262       // type accordingly.
6263       if (ResultType) {
6264         if (const IncompleteArrayType *IncompleteDest
6265                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
6266           if (const ConstantArrayType *ConstantSource
6267                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
6268             *ResultType = S.Context.getConstantArrayType(
6269                                              IncompleteDest->getElementType(),
6270                                              ConstantSource->getSize(),
6271                                              ArrayType::Normal, 0);
6272           }
6273         }
6274       }
6275       break;
6276 
6277     case SK_ParenthesizedArrayInit:
6278       // Okay: we checked everything before creating this step. Note that
6279       // this is a GNU extension.
6280       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
6281         << CurInit.get()->getSourceRange();
6282       break;
6283 
6284     case SK_PassByIndirectCopyRestore:
6285     case SK_PassByIndirectRestore:
6286       checkIndirectCopyRestoreSource(S, CurInit.get());
6287       CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
6288           CurInit.get(), Step->Type,
6289           Step->Kind == SK_PassByIndirectCopyRestore);
6290       break;
6291 
6292     case SK_ProduceObjCObject:
6293       CurInit =
6294           ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
6295                                    CurInit.get(), nullptr, VK_RValue);
6296       break;
6297 
6298     case SK_StdInitializerList: {
6299       S.Diag(CurInit.get()->getExprLoc(),
6300              diag::warn_cxx98_compat_initializer_list_init)
6301         << CurInit.get()->getSourceRange();
6302 
6303       // Materialize the temporary into memory.
6304       MaterializeTemporaryExpr *MTE = new (S.Context)
6305           MaterializeTemporaryExpr(CurInit.get()->getType(), CurInit.get(),
6306                                    /*BoundToLvalueReference=*/false);
6307 
6308       // Maybe lifetime-extend the array temporary's subobjects to match the
6309       // entity's lifetime.
6310       if (const InitializedEntity *ExtendingEntity =
6311               getEntityForTemporaryLifetimeExtension(&Entity))
6312         if (performReferenceExtension(MTE, ExtendingEntity))
6313           warnOnLifetimeExtension(S, Entity, CurInit.get(),
6314                                   /*IsInitializerList=*/true,
6315                                   ExtendingEntity->getDecl());
6316 
6317       // Wrap it in a construction of a std::initializer_list<T>.
6318       CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
6319 
6320       // Bind the result, in case the library has given initializer_list a
6321       // non-trivial destructor.
6322       if (shouldBindAsTemporary(Entity))
6323         CurInit = S.MaybeBindToTemporary(CurInit.get());
6324       break;
6325     }
6326 
6327     case SK_OCLSamplerInit: {
6328       assert(Step->Type->isSamplerT() &&
6329              "Sampler initialization on non-sampler type.");
6330 
6331       QualType SourceType = CurInit.get()->getType();
6332 
6333       if (Entity.isParameterKind()) {
6334         if (!SourceType->isSamplerT())
6335           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
6336             << SourceType;
6337       } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
6338         llvm_unreachable("Invalid EntityKind!");
6339       }
6340 
6341       break;
6342     }
6343     case SK_OCLZeroEvent: {
6344       assert(Step->Type->isEventT() &&
6345              "Event initialization on non-event type.");
6346 
6347       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
6348                                     CK_ZeroToOCLEvent,
6349                                     CurInit.get()->getValueKind());
6350       break;
6351     }
6352     }
6353   }
6354 
6355   // Diagnose non-fatal problems with the completed initialization.
6356   if (Entity.getKind() == InitializedEntity::EK_Member &&
6357       cast<FieldDecl>(Entity.getDecl())->isBitField())
6358     S.CheckBitFieldInitialization(Kind.getLocation(),
6359                                   cast<FieldDecl>(Entity.getDecl()),
6360                                   CurInit.get());
6361 
6362   return CurInit;
6363 }
6364 
6365 /// Somewhere within T there is an uninitialized reference subobject.
6366 /// Dig it out and diagnose it.
DiagnoseUninitializedReference(Sema & S,SourceLocation Loc,QualType T)6367 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
6368                                            QualType T) {
6369   if (T->isReferenceType()) {
6370     S.Diag(Loc, diag::err_reference_without_init)
6371       << T.getNonReferenceType();
6372     return true;
6373   }
6374 
6375   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6376   if (!RD || !RD->hasUninitializedReferenceMember())
6377     return false;
6378 
6379   for (const auto *FI : RD->fields()) {
6380     if (FI->isUnnamedBitfield())
6381       continue;
6382 
6383     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
6384       S.Diag(Loc, diag::note_value_initialization_here) << RD;
6385       return true;
6386     }
6387   }
6388 
6389   for (const auto &BI : RD->bases()) {
6390     if (DiagnoseUninitializedReference(S, BI.getLocStart(), BI.getType())) {
6391       S.Diag(Loc, diag::note_value_initialization_here) << RD;
6392       return true;
6393     }
6394   }
6395 
6396   return false;
6397 }
6398 
6399 
6400 //===----------------------------------------------------------------------===//
6401 // Diagnose initialization failures
6402 //===----------------------------------------------------------------------===//
6403 
6404 /// Emit notes associated with an initialization that failed due to a
6405 /// "simple" conversion failure.
emitBadConversionNotes(Sema & S,const InitializedEntity & entity,Expr * op)6406 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
6407                                    Expr *op) {
6408   QualType destType = entity.getType();
6409   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
6410       op->getType()->isObjCObjectPointerType()) {
6411 
6412     // Emit a possible note about the conversion failing because the
6413     // operand is a message send with a related result type.
6414     S.EmitRelatedResultTypeNote(op);
6415 
6416     // Emit a possible note about a return failing because we're
6417     // expecting a related result type.
6418     if (entity.getKind() == InitializedEntity::EK_Result)
6419       S.EmitRelatedResultTypeNoteForReturn(destType);
6420   }
6421 }
6422 
diagnoseListInit(Sema & S,const InitializedEntity & Entity,InitListExpr * InitList)6423 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
6424                              InitListExpr *InitList) {
6425   QualType DestType = Entity.getType();
6426 
6427   QualType E;
6428   if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
6429     QualType ArrayType = S.Context.getConstantArrayType(
6430         E.withConst(),
6431         llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
6432                     InitList->getNumInits()),
6433         clang::ArrayType::Normal, 0);
6434     InitializedEntity HiddenArray =
6435         InitializedEntity::InitializeTemporary(ArrayType);
6436     return diagnoseListInit(S, HiddenArray, InitList);
6437   }
6438 
6439   if (DestType->isReferenceType()) {
6440     // A list-initialization failure for a reference means that we tried to
6441     // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
6442     // inner initialization failed.
6443     QualType T = DestType->getAs<ReferenceType>()->getPointeeType();
6444     diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
6445     SourceLocation Loc = InitList->getLocStart();
6446     if (auto *D = Entity.getDecl())
6447       Loc = D->getLocation();
6448     S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
6449     return;
6450   }
6451 
6452   InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
6453                                    /*VerifyOnly=*/false);
6454   assert(DiagnoseInitList.HadError() &&
6455          "Inconsistent init list check result.");
6456 }
6457 
6458 /// Prints a fixit for adding a null initializer for |Entity|. Call this only
6459 /// right after emitting a diagnostic.
maybeEmitZeroInitializationFixit(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity)6460 static void maybeEmitZeroInitializationFixit(Sema &S,
6461                                              InitializationSequence &Sequence,
6462                                              const InitializedEntity &Entity) {
6463   if (Entity.getKind() != InitializedEntity::EK_Variable)
6464     return;
6465 
6466   VarDecl *VD = cast<VarDecl>(Entity.getDecl());
6467   if (VD->getInit() || VD->getLocEnd().isMacroID())
6468     return;
6469 
6470   QualType VariableTy = VD->getType().getCanonicalType();
6471   SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd());
6472   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
6473 
6474   S.Diag(Loc, diag::note_add_initializer)
6475       << VD << FixItHint::CreateInsertion(Loc, Init);
6476 }
6477 
Diagnose(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,ArrayRef<Expr * > Args)6478 bool InitializationSequence::Diagnose(Sema &S,
6479                                       const InitializedEntity &Entity,
6480                                       const InitializationKind &Kind,
6481                                       ArrayRef<Expr *> Args) {
6482   if (!Failed())
6483     return false;
6484 
6485   QualType DestType = Entity.getType();
6486   switch (Failure) {
6487   case FK_TooManyInitsForReference:
6488     // FIXME: Customize for the initialized entity?
6489     if (Args.empty()) {
6490       // Dig out the reference subobject which is uninitialized and diagnose it.
6491       // If this is value-initialization, this could be nested some way within
6492       // the target type.
6493       assert(Kind.getKind() == InitializationKind::IK_Value ||
6494              DestType->isReferenceType());
6495       bool Diagnosed =
6496         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
6497       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
6498       (void)Diagnosed;
6499     } else  // FIXME: diagnostic below could be better!
6500       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
6501         << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd());
6502     break;
6503 
6504   case FK_ArrayNeedsInitList:
6505     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
6506     break;
6507   case FK_ArrayNeedsInitListOrStringLiteral:
6508     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
6509     break;
6510   case FK_ArrayNeedsInitListOrWideStringLiteral:
6511     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
6512     break;
6513   case FK_NarrowStringIntoWideCharArray:
6514     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
6515     break;
6516   case FK_WideStringIntoCharArray:
6517     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
6518     break;
6519   case FK_IncompatWideStringIntoWideChar:
6520     S.Diag(Kind.getLocation(),
6521            diag::err_array_init_incompat_wide_string_into_wchar);
6522     break;
6523   case FK_ArrayTypeMismatch:
6524   case FK_NonConstantArrayInit:
6525     S.Diag(Kind.getLocation(),
6526            (Failure == FK_ArrayTypeMismatch
6527               ? diag::err_array_init_different_type
6528               : diag::err_array_init_non_constant_array))
6529       << DestType.getNonReferenceType()
6530       << Args[0]->getType()
6531       << Args[0]->getSourceRange();
6532     break;
6533 
6534   case FK_VariableLengthArrayHasInitializer:
6535     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
6536       << Args[0]->getSourceRange();
6537     break;
6538 
6539   case FK_AddressOfOverloadFailed: {
6540     DeclAccessPair Found;
6541     S.ResolveAddressOfOverloadedFunction(Args[0],
6542                                          DestType.getNonReferenceType(),
6543                                          true,
6544                                          Found);
6545     break;
6546   }
6547 
6548   case FK_ReferenceInitOverloadFailed:
6549   case FK_UserConversionOverloadFailed:
6550     switch (FailedOverloadResult) {
6551     case OR_Ambiguous:
6552       if (Failure == FK_UserConversionOverloadFailed)
6553         S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
6554           << Args[0]->getType() << DestType
6555           << Args[0]->getSourceRange();
6556       else
6557         S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
6558           << DestType << Args[0]->getType()
6559           << Args[0]->getSourceRange();
6560 
6561       FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
6562       break;
6563 
6564     case OR_No_Viable_Function:
6565       if (!S.RequireCompleteType(Kind.getLocation(),
6566                                  DestType.getNonReferenceType(),
6567                           diag::err_typecheck_nonviable_condition_incomplete,
6568                                Args[0]->getType(), Args[0]->getSourceRange()))
6569         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
6570           << Args[0]->getType() << Args[0]->getSourceRange()
6571           << DestType.getNonReferenceType();
6572 
6573       FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
6574       break;
6575 
6576     case OR_Deleted: {
6577       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
6578         << Args[0]->getType() << DestType.getNonReferenceType()
6579         << Args[0]->getSourceRange();
6580       OverloadCandidateSet::iterator Best;
6581       OverloadingResult Ovl
6582         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
6583                                                 true);
6584       if (Ovl == OR_Deleted) {
6585         S.NoteDeletedFunction(Best->Function);
6586       } else {
6587         llvm_unreachable("Inconsistent overload resolution?");
6588       }
6589       break;
6590     }
6591 
6592     case OR_Success:
6593       llvm_unreachable("Conversion did not fail!");
6594     }
6595     break;
6596 
6597   case FK_NonConstLValueReferenceBindingToTemporary:
6598     if (isa<InitListExpr>(Args[0])) {
6599       S.Diag(Kind.getLocation(),
6600              diag::err_lvalue_reference_bind_to_initlist)
6601       << DestType.getNonReferenceType().isVolatileQualified()
6602       << DestType.getNonReferenceType()
6603       << Args[0]->getSourceRange();
6604       break;
6605     }
6606     // Intentional fallthrough
6607 
6608   case FK_NonConstLValueReferenceBindingToUnrelated:
6609     S.Diag(Kind.getLocation(),
6610            Failure == FK_NonConstLValueReferenceBindingToTemporary
6611              ? diag::err_lvalue_reference_bind_to_temporary
6612              : diag::err_lvalue_reference_bind_to_unrelated)
6613       << DestType.getNonReferenceType().isVolatileQualified()
6614       << DestType.getNonReferenceType()
6615       << Args[0]->getType()
6616       << Args[0]->getSourceRange();
6617     break;
6618 
6619   case FK_RValueReferenceBindingToLValue:
6620     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
6621       << DestType.getNonReferenceType() << Args[0]->getType()
6622       << Args[0]->getSourceRange();
6623     break;
6624 
6625   case FK_ReferenceInitDropsQualifiers:
6626     S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
6627       << DestType.getNonReferenceType()
6628       << Args[0]->getType()
6629       << Args[0]->getSourceRange();
6630     break;
6631 
6632   case FK_ReferenceInitFailed:
6633     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
6634       << DestType.getNonReferenceType()
6635       << Args[0]->isLValue()
6636       << Args[0]->getType()
6637       << Args[0]->getSourceRange();
6638     emitBadConversionNotes(S, Entity, Args[0]);
6639     break;
6640 
6641   case FK_ConversionFailed: {
6642     QualType FromType = Args[0]->getType();
6643     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
6644       << (int)Entity.getKind()
6645       << DestType
6646       << Args[0]->isLValue()
6647       << FromType
6648       << Args[0]->getSourceRange();
6649     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
6650     S.Diag(Kind.getLocation(), PDiag);
6651     emitBadConversionNotes(S, Entity, Args[0]);
6652     break;
6653   }
6654 
6655   case FK_ConversionFromPropertyFailed:
6656     // No-op. This error has already been reported.
6657     break;
6658 
6659   case FK_TooManyInitsForScalar: {
6660     SourceRange R;
6661 
6662     if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
6663       R = SourceRange(InitList->getInit(0)->getLocEnd(),
6664                       InitList->getLocEnd());
6665     else
6666       R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd());
6667 
6668     R.setBegin(S.getLocForEndOfToken(R.getBegin()));
6669     if (Kind.isCStyleOrFunctionalCast())
6670       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
6671         << R;
6672     else
6673       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
6674         << /*scalar=*/2 << R;
6675     break;
6676   }
6677 
6678   case FK_ReferenceBindingToInitList:
6679     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
6680       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
6681     break;
6682 
6683   case FK_InitListBadDestinationType:
6684     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
6685       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
6686     break;
6687 
6688   case FK_ListConstructorOverloadFailed:
6689   case FK_ConstructorOverloadFailed: {
6690     SourceRange ArgsRange;
6691     if (Args.size())
6692       ArgsRange = SourceRange(Args.front()->getLocStart(),
6693                               Args.back()->getLocEnd());
6694 
6695     if (Failure == FK_ListConstructorOverloadFailed) {
6696       assert(Args.size() == 1 &&
6697              "List construction from other than 1 argument.");
6698       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6699       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
6700     }
6701 
6702     // FIXME: Using "DestType" for the entity we're printing is probably
6703     // bad.
6704     switch (FailedOverloadResult) {
6705       case OR_Ambiguous:
6706         S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
6707           << DestType << ArgsRange;
6708         FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
6709         break;
6710 
6711       case OR_No_Viable_Function:
6712         if (Kind.getKind() == InitializationKind::IK_Default &&
6713             (Entity.getKind() == InitializedEntity::EK_Base ||
6714              Entity.getKind() == InitializedEntity::EK_Member) &&
6715             isa<CXXConstructorDecl>(S.CurContext)) {
6716           // This is implicit default initialization of a member or
6717           // base within a constructor. If no viable function was
6718           // found, notify the user that she needs to explicitly
6719           // initialize this base/member.
6720           CXXConstructorDecl *Constructor
6721             = cast<CXXConstructorDecl>(S.CurContext);
6722           if (Entity.getKind() == InitializedEntity::EK_Base) {
6723             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
6724               << (Constructor->getInheritedConstructor() ? 2 :
6725                   Constructor->isImplicit() ? 1 : 0)
6726               << S.Context.getTypeDeclType(Constructor->getParent())
6727               << /*base=*/0
6728               << Entity.getType();
6729 
6730             RecordDecl *BaseDecl
6731               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
6732                                                                   ->getDecl();
6733             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
6734               << S.Context.getTagDeclType(BaseDecl);
6735           } else {
6736             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
6737               << (Constructor->getInheritedConstructor() ? 2 :
6738                   Constructor->isImplicit() ? 1 : 0)
6739               << S.Context.getTypeDeclType(Constructor->getParent())
6740               << /*member=*/1
6741               << Entity.getName();
6742             S.Diag(Entity.getDecl()->getLocation(),
6743                    diag::note_member_declared_at);
6744 
6745             if (const RecordType *Record
6746                                  = Entity.getType()->getAs<RecordType>())
6747               S.Diag(Record->getDecl()->getLocation(),
6748                      diag::note_previous_decl)
6749                 << S.Context.getTagDeclType(Record->getDecl());
6750           }
6751           break;
6752         }
6753 
6754         S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
6755           << DestType << ArgsRange;
6756         FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
6757         break;
6758 
6759       case OR_Deleted: {
6760         OverloadCandidateSet::iterator Best;
6761         OverloadingResult Ovl
6762           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
6763         if (Ovl != OR_Deleted) {
6764           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
6765             << true << DestType << ArgsRange;
6766           llvm_unreachable("Inconsistent overload resolution?");
6767           break;
6768         }
6769 
6770         // If this is a defaulted or implicitly-declared function, then
6771         // it was implicitly deleted. Make it clear that the deletion was
6772         // implicit.
6773         if (S.isImplicitlyDeleted(Best->Function))
6774           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
6775             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
6776             << DestType << ArgsRange;
6777         else
6778           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
6779             << true << DestType << ArgsRange;
6780 
6781         S.NoteDeletedFunction(Best->Function);
6782         break;
6783       }
6784 
6785       case OR_Success:
6786         llvm_unreachable("Conversion did not fail!");
6787     }
6788   }
6789   break;
6790 
6791   case FK_DefaultInitOfConst:
6792     if (Entity.getKind() == InitializedEntity::EK_Member &&
6793         isa<CXXConstructorDecl>(S.CurContext)) {
6794       // This is implicit default-initialization of a const member in
6795       // a constructor. Complain that it needs to be explicitly
6796       // initialized.
6797       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
6798       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
6799         << (Constructor->getInheritedConstructor() ? 2 :
6800             Constructor->isImplicit() ? 1 : 0)
6801         << S.Context.getTypeDeclType(Constructor->getParent())
6802         << /*const=*/1
6803         << Entity.getName();
6804       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
6805         << Entity.getName();
6806     } else {
6807       S.Diag(Kind.getLocation(), diag::err_default_init_const)
6808           << DestType << (bool)DestType->getAs<RecordType>();
6809       maybeEmitZeroInitializationFixit(S, *this, Entity);
6810     }
6811     break;
6812 
6813   case FK_Incomplete:
6814     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
6815                           diag::err_init_incomplete_type);
6816     break;
6817 
6818   case FK_ListInitializationFailed: {
6819     // Run the init list checker again to emit diagnostics.
6820     InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6821     diagnoseListInit(S, Entity, InitList);
6822     break;
6823   }
6824 
6825   case FK_PlaceholderType: {
6826     // FIXME: Already diagnosed!
6827     break;
6828   }
6829 
6830   case FK_ExplicitConstructor: {
6831     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
6832       << Args[0]->getSourceRange();
6833     OverloadCandidateSet::iterator Best;
6834     OverloadingResult Ovl
6835       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
6836     (void)Ovl;
6837     assert(Ovl == OR_Success && "Inconsistent overload resolution");
6838     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
6839     S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
6840     break;
6841   }
6842   }
6843 
6844   PrintInitLocationNote(S, Entity);
6845   return true;
6846 }
6847 
dump(raw_ostream & OS) const6848 void InitializationSequence::dump(raw_ostream &OS) const {
6849   switch (SequenceKind) {
6850   case FailedSequence: {
6851     OS << "Failed sequence: ";
6852     switch (Failure) {
6853     case FK_TooManyInitsForReference:
6854       OS << "too many initializers for reference";
6855       break;
6856 
6857     case FK_ArrayNeedsInitList:
6858       OS << "array requires initializer list";
6859       break;
6860 
6861     case FK_ArrayNeedsInitListOrStringLiteral:
6862       OS << "array requires initializer list or string literal";
6863       break;
6864 
6865     case FK_ArrayNeedsInitListOrWideStringLiteral:
6866       OS << "array requires initializer list or wide string literal";
6867       break;
6868 
6869     case FK_NarrowStringIntoWideCharArray:
6870       OS << "narrow string into wide char array";
6871       break;
6872 
6873     case FK_WideStringIntoCharArray:
6874       OS << "wide string into char array";
6875       break;
6876 
6877     case FK_IncompatWideStringIntoWideChar:
6878       OS << "incompatible wide string into wide char array";
6879       break;
6880 
6881     case FK_ArrayTypeMismatch:
6882       OS << "array type mismatch";
6883       break;
6884 
6885     case FK_NonConstantArrayInit:
6886       OS << "non-constant array initializer";
6887       break;
6888 
6889     case FK_AddressOfOverloadFailed:
6890       OS << "address of overloaded function failed";
6891       break;
6892 
6893     case FK_ReferenceInitOverloadFailed:
6894       OS << "overload resolution for reference initialization failed";
6895       break;
6896 
6897     case FK_NonConstLValueReferenceBindingToTemporary:
6898       OS << "non-const lvalue reference bound to temporary";
6899       break;
6900 
6901     case FK_NonConstLValueReferenceBindingToUnrelated:
6902       OS << "non-const lvalue reference bound to unrelated type";
6903       break;
6904 
6905     case FK_RValueReferenceBindingToLValue:
6906       OS << "rvalue reference bound to an lvalue";
6907       break;
6908 
6909     case FK_ReferenceInitDropsQualifiers:
6910       OS << "reference initialization drops qualifiers";
6911       break;
6912 
6913     case FK_ReferenceInitFailed:
6914       OS << "reference initialization failed";
6915       break;
6916 
6917     case FK_ConversionFailed:
6918       OS << "conversion failed";
6919       break;
6920 
6921     case FK_ConversionFromPropertyFailed:
6922       OS << "conversion from property failed";
6923       break;
6924 
6925     case FK_TooManyInitsForScalar:
6926       OS << "too many initializers for scalar";
6927       break;
6928 
6929     case FK_ReferenceBindingToInitList:
6930       OS << "referencing binding to initializer list";
6931       break;
6932 
6933     case FK_InitListBadDestinationType:
6934       OS << "initializer list for non-aggregate, non-scalar type";
6935       break;
6936 
6937     case FK_UserConversionOverloadFailed:
6938       OS << "overloading failed for user-defined conversion";
6939       break;
6940 
6941     case FK_ConstructorOverloadFailed:
6942       OS << "constructor overloading failed";
6943       break;
6944 
6945     case FK_DefaultInitOfConst:
6946       OS << "default initialization of a const variable";
6947       break;
6948 
6949     case FK_Incomplete:
6950       OS << "initialization of incomplete type";
6951       break;
6952 
6953     case FK_ListInitializationFailed:
6954       OS << "list initialization checker failure";
6955       break;
6956 
6957     case FK_VariableLengthArrayHasInitializer:
6958       OS << "variable length array has an initializer";
6959       break;
6960 
6961     case FK_PlaceholderType:
6962       OS << "initializer expression isn't contextually valid";
6963       break;
6964 
6965     case FK_ListConstructorOverloadFailed:
6966       OS << "list constructor overloading failed";
6967       break;
6968 
6969     case FK_ExplicitConstructor:
6970       OS << "list copy initialization chose explicit constructor";
6971       break;
6972     }
6973     OS << '\n';
6974     return;
6975   }
6976 
6977   case DependentSequence:
6978     OS << "Dependent sequence\n";
6979     return;
6980 
6981   case NormalSequence:
6982     OS << "Normal sequence: ";
6983     break;
6984   }
6985 
6986   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
6987     if (S != step_begin()) {
6988       OS << " -> ";
6989     }
6990 
6991     switch (S->Kind) {
6992     case SK_ResolveAddressOfOverloadedFunction:
6993       OS << "resolve address of overloaded function";
6994       break;
6995 
6996     case SK_CastDerivedToBaseRValue:
6997       OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
6998       break;
6999 
7000     case SK_CastDerivedToBaseXValue:
7001       OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
7002       break;
7003 
7004     case SK_CastDerivedToBaseLValue:
7005       OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
7006       break;
7007 
7008     case SK_BindReference:
7009       OS << "bind reference to lvalue";
7010       break;
7011 
7012     case SK_BindReferenceToTemporary:
7013       OS << "bind reference to a temporary";
7014       break;
7015 
7016     case SK_ExtraneousCopyToTemporary:
7017       OS << "extraneous C++03 copy to temporary";
7018       break;
7019 
7020     case SK_UserConversion:
7021       OS << "user-defined conversion via " << *S->Function.Function;
7022       break;
7023 
7024     case SK_QualificationConversionRValue:
7025       OS << "qualification conversion (rvalue)";
7026       break;
7027 
7028     case SK_QualificationConversionXValue:
7029       OS << "qualification conversion (xvalue)";
7030       break;
7031 
7032     case SK_QualificationConversionLValue:
7033       OS << "qualification conversion (lvalue)";
7034       break;
7035 
7036     case SK_AtomicConversion:
7037       OS << "non-atomic-to-atomic conversion";
7038       break;
7039 
7040     case SK_LValueToRValue:
7041       OS << "load (lvalue to rvalue)";
7042       break;
7043 
7044     case SK_ConversionSequence:
7045       OS << "implicit conversion sequence (";
7046       S->ICS->dump(); // FIXME: use OS
7047       OS << ")";
7048       break;
7049 
7050     case SK_ConversionSequenceNoNarrowing:
7051       OS << "implicit conversion sequence with narrowing prohibited (";
7052       S->ICS->dump(); // FIXME: use OS
7053       OS << ")";
7054       break;
7055 
7056     case SK_ListInitialization:
7057       OS << "list aggregate initialization";
7058       break;
7059 
7060     case SK_UnwrapInitList:
7061       OS << "unwrap reference initializer list";
7062       break;
7063 
7064     case SK_RewrapInitList:
7065       OS << "rewrap reference initializer list";
7066       break;
7067 
7068     case SK_ConstructorInitialization:
7069       OS << "constructor initialization";
7070       break;
7071 
7072     case SK_ConstructorInitializationFromList:
7073       OS << "list initialization via constructor";
7074       break;
7075 
7076     case SK_ZeroInitialization:
7077       OS << "zero initialization";
7078       break;
7079 
7080     case SK_CAssignment:
7081       OS << "C assignment";
7082       break;
7083 
7084     case SK_StringInit:
7085       OS << "string initialization";
7086       break;
7087 
7088     case SK_ObjCObjectConversion:
7089       OS << "Objective-C object conversion";
7090       break;
7091 
7092     case SK_ArrayInit:
7093       OS << "array initialization";
7094       break;
7095 
7096     case SK_ParenthesizedArrayInit:
7097       OS << "parenthesized array initialization";
7098       break;
7099 
7100     case SK_PassByIndirectCopyRestore:
7101       OS << "pass by indirect copy and restore";
7102       break;
7103 
7104     case SK_PassByIndirectRestore:
7105       OS << "pass by indirect restore";
7106       break;
7107 
7108     case SK_ProduceObjCObject:
7109       OS << "Objective-C object retension";
7110       break;
7111 
7112     case SK_StdInitializerList:
7113       OS << "std::initializer_list from initializer list";
7114       break;
7115 
7116     case SK_StdInitializerListConstructorCall:
7117       OS << "list initialization from std::initializer_list";
7118       break;
7119 
7120     case SK_OCLSamplerInit:
7121       OS << "OpenCL sampler_t from integer constant";
7122       break;
7123 
7124     case SK_OCLZeroEvent:
7125       OS << "OpenCL event_t from zero";
7126       break;
7127     }
7128 
7129     OS << " [" << S->Type.getAsString() << ']';
7130   }
7131 
7132   OS << '\n';
7133 }
7134 
dump() const7135 void InitializationSequence::dump() const {
7136   dump(llvm::errs());
7137 }
7138 
DiagnoseNarrowingInInitList(Sema & S,const ImplicitConversionSequence & ICS,QualType PreNarrowingType,QualType EntityType,const Expr * PostInit)7139 static void DiagnoseNarrowingInInitList(Sema &S,
7140                                         const ImplicitConversionSequence &ICS,
7141                                         QualType PreNarrowingType,
7142                                         QualType EntityType,
7143                                         const Expr *PostInit) {
7144   const StandardConversionSequence *SCS = nullptr;
7145   switch (ICS.getKind()) {
7146   case ImplicitConversionSequence::StandardConversion:
7147     SCS = &ICS.Standard;
7148     break;
7149   case ImplicitConversionSequence::UserDefinedConversion:
7150     SCS = &ICS.UserDefined.After;
7151     break;
7152   case ImplicitConversionSequence::AmbiguousConversion:
7153   case ImplicitConversionSequence::EllipsisConversion:
7154   case ImplicitConversionSequence::BadConversion:
7155     return;
7156   }
7157 
7158   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
7159   APValue ConstantValue;
7160   QualType ConstantType;
7161   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
7162                                 ConstantType)) {
7163   case NK_Not_Narrowing:
7164     // No narrowing occurred.
7165     return;
7166 
7167   case NK_Type_Narrowing:
7168     // This was a floating-to-integer conversion, which is always considered a
7169     // narrowing conversion even if the value is a constant and can be
7170     // represented exactly as an integer.
7171     S.Diag(PostInit->getLocStart(),
7172            (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
7173                ? diag::warn_init_list_type_narrowing
7174                : diag::ext_init_list_type_narrowing)
7175       << PostInit->getSourceRange()
7176       << PreNarrowingType.getLocalUnqualifiedType()
7177       << EntityType.getLocalUnqualifiedType();
7178     break;
7179 
7180   case NK_Constant_Narrowing:
7181     // A constant value was narrowed.
7182     S.Diag(PostInit->getLocStart(),
7183            (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
7184                ? diag::warn_init_list_constant_narrowing
7185                : diag::ext_init_list_constant_narrowing)
7186       << PostInit->getSourceRange()
7187       << ConstantValue.getAsString(S.getASTContext(), ConstantType)
7188       << EntityType.getLocalUnqualifiedType();
7189     break;
7190 
7191   case NK_Variable_Narrowing:
7192     // A variable's value may have been narrowed.
7193     S.Diag(PostInit->getLocStart(),
7194            (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
7195                ? diag::warn_init_list_variable_narrowing
7196                : diag::ext_init_list_variable_narrowing)
7197       << PostInit->getSourceRange()
7198       << PreNarrowingType.getLocalUnqualifiedType()
7199       << EntityType.getLocalUnqualifiedType();
7200     break;
7201   }
7202 
7203   SmallString<128> StaticCast;
7204   llvm::raw_svector_ostream OS(StaticCast);
7205   OS << "static_cast<";
7206   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
7207     // It's important to use the typedef's name if there is one so that the
7208     // fixit doesn't break code using types like int64_t.
7209     //
7210     // FIXME: This will break if the typedef requires qualification.  But
7211     // getQualifiedNameAsString() includes non-machine-parsable components.
7212     OS << *TT->getDecl();
7213   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
7214     OS << BT->getName(S.getLangOpts());
7215   else {
7216     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
7217     // with a broken cast.
7218     return;
7219   }
7220   OS << ">(";
7221   S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_silence)
7222       << PostInit->getSourceRange()
7223       << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
7224       << FixItHint::CreateInsertion(
7225              S.getLocForEndOfToken(PostInit->getLocEnd()), ")");
7226 }
7227 
7228 //===----------------------------------------------------------------------===//
7229 // Initialization helper functions
7230 //===----------------------------------------------------------------------===//
7231 bool
CanPerformCopyInitialization(const InitializedEntity & Entity,ExprResult Init)7232 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
7233                                    ExprResult Init) {
7234   if (Init.isInvalid())
7235     return false;
7236 
7237   Expr *InitE = Init.get();
7238   assert(InitE && "No initialization expression");
7239 
7240   InitializationKind Kind
7241     = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
7242   InitializationSequence Seq(*this, Entity, Kind, InitE);
7243   return !Seq.Failed();
7244 }
7245 
7246 ExprResult
PerformCopyInitialization(const InitializedEntity & Entity,SourceLocation EqualLoc,ExprResult Init,bool TopLevelOfInitList,bool AllowExplicit)7247 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
7248                                 SourceLocation EqualLoc,
7249                                 ExprResult Init,
7250                                 bool TopLevelOfInitList,
7251                                 bool AllowExplicit) {
7252   if (Init.isInvalid())
7253     return ExprError();
7254 
7255   Expr *InitE = Init.get();
7256   assert(InitE && "No initialization expression?");
7257 
7258   if (EqualLoc.isInvalid())
7259     EqualLoc = InitE->getLocStart();
7260 
7261   InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
7262                                                            EqualLoc,
7263                                                            AllowExplicit);
7264   InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
7265   Init.get();
7266 
7267   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
7268 
7269   return Result;
7270 }
7271