1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===/
8 //
9 //  This file implements semantic analysis for C++ templates.
10 //===----------------------------------------------------------------------===/
11 
12 #include "TreeTransform.h"
13 #include "clang/AST/ASTConsumer.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/DeclFriend.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/RecursiveASTVisitor.h"
20 #include "clang/AST/TypeVisitor.h"
21 #include "clang/Basic/LangOptions.h"
22 #include "clang/Basic/PartialDiagnostic.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Sema/DeclSpec.h"
25 #include "clang/Sema/Lookup.h"
26 #include "clang/Sema/ParsedTemplate.h"
27 #include "clang/Sema/Scope.h"
28 #include "clang/Sema/SemaInternal.h"
29 #include "clang/Sema/Template.h"
30 #include "clang/Sema/TemplateDeduction.h"
31 #include "llvm/ADT/SmallBitVector.h"
32 #include "llvm/ADT/SmallString.h"
33 #include "llvm/ADT/StringExtras.h"
34 using namespace clang;
35 using namespace sema;
36 
37 // Exported for use by Parser.
38 SourceRange
getTemplateParamsRange(TemplateParameterList const * const * Ps,unsigned N)39 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
40                               unsigned N) {
41   if (!N) return SourceRange();
42   return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
43 }
44 
45 /// \brief Determine whether the declaration found is acceptable as the name
46 /// of a template and, if so, return that template declaration. Otherwise,
47 /// returns NULL.
isAcceptableTemplateName(ASTContext & Context,NamedDecl * Orig,bool AllowFunctionTemplates)48 static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
49                                            NamedDecl *Orig,
50                                            bool AllowFunctionTemplates) {
51   NamedDecl *D = Orig->getUnderlyingDecl();
52 
53   if (isa<TemplateDecl>(D)) {
54     if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
55       return nullptr;
56 
57     return Orig;
58   }
59 
60   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
61     // C++ [temp.local]p1:
62     //   Like normal (non-template) classes, class templates have an
63     //   injected-class-name (Clause 9). The injected-class-name
64     //   can be used with or without a template-argument-list. When
65     //   it is used without a template-argument-list, it is
66     //   equivalent to the injected-class-name followed by the
67     //   template-parameters of the class template enclosed in
68     //   <>. When it is used with a template-argument-list, it
69     //   refers to the specified class template specialization,
70     //   which could be the current specialization or another
71     //   specialization.
72     if (Record->isInjectedClassName()) {
73       Record = cast<CXXRecordDecl>(Record->getDeclContext());
74       if (Record->getDescribedClassTemplate())
75         return Record->getDescribedClassTemplate();
76 
77       if (ClassTemplateSpecializationDecl *Spec
78             = dyn_cast<ClassTemplateSpecializationDecl>(Record))
79         return Spec->getSpecializedTemplate();
80     }
81 
82     return nullptr;
83   }
84 
85   return nullptr;
86 }
87 
FilterAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates)88 void Sema::FilterAcceptableTemplateNames(LookupResult &R,
89                                          bool AllowFunctionTemplates) {
90   // The set of class templates we've already seen.
91   llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
92   LookupResult::Filter filter = R.makeFilter();
93   while (filter.hasNext()) {
94     NamedDecl *Orig = filter.next();
95     NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
96                                                AllowFunctionTemplates);
97     if (!Repl)
98       filter.erase();
99     else if (Repl != Orig) {
100 
101       // C++ [temp.local]p3:
102       //   A lookup that finds an injected-class-name (10.2) can result in an
103       //   ambiguity in certain cases (for example, if it is found in more than
104       //   one base class). If all of the injected-class-names that are found
105       //   refer to specializations of the same class template, and if the name
106       //   is used as a template-name, the reference refers to the class
107       //   template itself and not a specialization thereof, and is not
108       //   ambiguous.
109       if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
110         if (!ClassTemplates.insert(ClassTmpl).second) {
111           filter.erase();
112           continue;
113         }
114 
115       // FIXME: we promote access to public here as a workaround to
116       // the fact that LookupResult doesn't let us remember that we
117       // found this template through a particular injected class name,
118       // which means we end up doing nasty things to the invariants.
119       // Pretending that access is public is *much* safer.
120       filter.replace(Repl, AS_public);
121     }
122   }
123   filter.done();
124 }
125 
hasAnyAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates)126 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
127                                          bool AllowFunctionTemplates) {
128   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
129     if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
130       return true;
131 
132   return false;
133 }
134 
isTemplateName(Scope * S,CXXScopeSpec & SS,bool hasTemplateKeyword,UnqualifiedId & Name,ParsedType ObjectTypePtr,bool EnteringContext,TemplateTy & TemplateResult,bool & MemberOfUnknownSpecialization)135 TemplateNameKind Sema::isTemplateName(Scope *S,
136                                       CXXScopeSpec &SS,
137                                       bool hasTemplateKeyword,
138                                       UnqualifiedId &Name,
139                                       ParsedType ObjectTypePtr,
140                                       bool EnteringContext,
141                                       TemplateTy &TemplateResult,
142                                       bool &MemberOfUnknownSpecialization) {
143   assert(getLangOpts().CPlusPlus && "No template names in C!");
144 
145   DeclarationName TName;
146   MemberOfUnknownSpecialization = false;
147 
148   switch (Name.getKind()) {
149   case UnqualifiedId::IK_Identifier:
150     TName = DeclarationName(Name.Identifier);
151     break;
152 
153   case UnqualifiedId::IK_OperatorFunctionId:
154     TName = Context.DeclarationNames.getCXXOperatorName(
155                                               Name.OperatorFunctionId.Operator);
156     break;
157 
158   case UnqualifiedId::IK_LiteralOperatorId:
159     TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
160     break;
161 
162   default:
163     return TNK_Non_template;
164   }
165 
166   QualType ObjectType = ObjectTypePtr.get();
167 
168   LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
169   LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
170                      MemberOfUnknownSpecialization);
171   if (R.empty()) return TNK_Non_template;
172   if (R.isAmbiguous()) {
173     // Suppress diagnostics;  we'll redo this lookup later.
174     R.suppressDiagnostics();
175 
176     // FIXME: we might have ambiguous templates, in which case we
177     // should at least parse them properly!
178     return TNK_Non_template;
179   }
180 
181   TemplateName Template;
182   TemplateNameKind TemplateKind;
183 
184   unsigned ResultCount = R.end() - R.begin();
185   if (ResultCount > 1) {
186     // We assume that we'll preserve the qualifier from a function
187     // template name in other ways.
188     Template = Context.getOverloadedTemplateName(R.begin(), R.end());
189     TemplateKind = TNK_Function_template;
190 
191     // We'll do this lookup again later.
192     R.suppressDiagnostics();
193   } else {
194     TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
195 
196     if (SS.isSet() && !SS.isInvalid()) {
197       NestedNameSpecifier *Qualifier = SS.getScopeRep();
198       Template = Context.getQualifiedTemplateName(Qualifier,
199                                                   hasTemplateKeyword, TD);
200     } else {
201       Template = TemplateName(TD);
202     }
203 
204     if (isa<FunctionTemplateDecl>(TD)) {
205       TemplateKind = TNK_Function_template;
206 
207       // We'll do this lookup again later.
208       R.suppressDiagnostics();
209     } else {
210       assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
211              isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD));
212       TemplateKind =
213           isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template;
214     }
215   }
216 
217   TemplateResult = TemplateTy::make(Template);
218   return TemplateKind;
219 }
220 
DiagnoseUnknownTemplateName(const IdentifierInfo & II,SourceLocation IILoc,Scope * S,const CXXScopeSpec * SS,TemplateTy & SuggestedTemplate,TemplateNameKind & SuggestedKind)221 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
222                                        SourceLocation IILoc,
223                                        Scope *S,
224                                        const CXXScopeSpec *SS,
225                                        TemplateTy &SuggestedTemplate,
226                                        TemplateNameKind &SuggestedKind) {
227   // We can't recover unless there's a dependent scope specifier preceding the
228   // template name.
229   // FIXME: Typo correction?
230   if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
231       computeDeclContext(*SS))
232     return false;
233 
234   // The code is missing a 'template' keyword prior to the dependent template
235   // name.
236   NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
237   Diag(IILoc, diag::err_template_kw_missing)
238     << Qualifier << II.getName()
239     << FixItHint::CreateInsertion(IILoc, "template ");
240   SuggestedTemplate
241     = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
242   SuggestedKind = TNK_Dependent_template_name;
243   return true;
244 }
245 
LookupTemplateName(LookupResult & Found,Scope * S,CXXScopeSpec & SS,QualType ObjectType,bool EnteringContext,bool & MemberOfUnknownSpecialization)246 void Sema::LookupTemplateName(LookupResult &Found,
247                               Scope *S, CXXScopeSpec &SS,
248                               QualType ObjectType,
249                               bool EnteringContext,
250                               bool &MemberOfUnknownSpecialization) {
251   // Determine where to perform name lookup
252   MemberOfUnknownSpecialization = false;
253   DeclContext *LookupCtx = nullptr;
254   bool isDependent = false;
255   if (!ObjectType.isNull()) {
256     // This nested-name-specifier occurs in a member access expression, e.g.,
257     // x->B::f, and we are looking into the type of the object.
258     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
259     LookupCtx = computeDeclContext(ObjectType);
260     isDependent = ObjectType->isDependentType();
261     assert((isDependent || !ObjectType->isIncompleteType() ||
262             ObjectType->castAs<TagType>()->isBeingDefined()) &&
263            "Caller should have completed object type");
264 
265     // Template names cannot appear inside an Objective-C class or object type.
266     if (ObjectType->isObjCObjectOrInterfaceType()) {
267       Found.clear();
268       return;
269     }
270   } else if (SS.isSet()) {
271     // This nested-name-specifier occurs after another nested-name-specifier,
272     // so long into the context associated with the prior nested-name-specifier.
273     LookupCtx = computeDeclContext(SS, EnteringContext);
274     isDependent = isDependentScopeSpecifier(SS);
275 
276     // The declaration context must be complete.
277     if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
278       return;
279   }
280 
281   bool ObjectTypeSearchedInScope = false;
282   bool AllowFunctionTemplatesInLookup = true;
283   if (LookupCtx) {
284     // Perform "qualified" name lookup into the declaration context we
285     // computed, which is either the type of the base of a member access
286     // expression or the declaration context associated with a prior
287     // nested-name-specifier.
288     LookupQualifiedName(Found, LookupCtx);
289     if (!ObjectType.isNull() && Found.empty()) {
290       // C++ [basic.lookup.classref]p1:
291       //   In a class member access expression (5.2.5), if the . or -> token is
292       //   immediately followed by an identifier followed by a <, the
293       //   identifier must be looked up to determine whether the < is the
294       //   beginning of a template argument list (14.2) or a less-than operator.
295       //   The identifier is first looked up in the class of the object
296       //   expression. If the identifier is not found, it is then looked up in
297       //   the context of the entire postfix-expression and shall name a class
298       //   or function template.
299       if (S) LookupName(Found, S);
300       ObjectTypeSearchedInScope = true;
301       AllowFunctionTemplatesInLookup = false;
302     }
303   } else if (isDependent && (!S || ObjectType.isNull())) {
304     // We cannot look into a dependent object type or nested nme
305     // specifier.
306     MemberOfUnknownSpecialization = true;
307     return;
308   } else {
309     // Perform unqualified name lookup in the current scope.
310     LookupName(Found, S);
311 
312     if (!ObjectType.isNull())
313       AllowFunctionTemplatesInLookup = false;
314   }
315 
316   if (Found.empty() && !isDependent) {
317     // If we did not find any names, attempt to correct any typos.
318     DeclarationName Name = Found.getLookupName();
319     Found.clear();
320     // Simple filter callback that, for keywords, only accepts the C++ *_cast
321     auto FilterCCC = llvm::make_unique<CorrectionCandidateCallback>();
322     FilterCCC->WantTypeSpecifiers = false;
323     FilterCCC->WantExpressionKeywords = false;
324     FilterCCC->WantRemainingKeywords = false;
325     FilterCCC->WantCXXNamedCasts = true;
326     if (TypoCorrection Corrected = CorrectTypo(
327             Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS,
328             std::move(FilterCCC), CTK_ErrorRecovery, LookupCtx)) {
329       Found.setLookupName(Corrected.getCorrection());
330       if (Corrected.getCorrectionDecl())
331         Found.addDecl(Corrected.getCorrectionDecl());
332       FilterAcceptableTemplateNames(Found);
333       if (!Found.empty()) {
334         if (LookupCtx) {
335           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
336           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
337                                   Name.getAsString() == CorrectedStr;
338           diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
339                                     << Name << LookupCtx << DroppedSpecifier
340                                     << SS.getRange());
341         } else {
342           diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
343         }
344       }
345     } else {
346       Found.setLookupName(Name);
347     }
348   }
349 
350   FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
351   if (Found.empty()) {
352     if (isDependent)
353       MemberOfUnknownSpecialization = true;
354     return;
355   }
356 
357   if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
358       !getLangOpts().CPlusPlus11) {
359     // C++03 [basic.lookup.classref]p1:
360     //   [...] If the lookup in the class of the object expression finds a
361     //   template, the name is also looked up in the context of the entire
362     //   postfix-expression and [...]
363     //
364     // Note: C++11 does not perform this second lookup.
365     LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
366                             LookupOrdinaryName);
367     LookupName(FoundOuter, S);
368     FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
369 
370     if (FoundOuter.empty()) {
371       //   - if the name is not found, the name found in the class of the
372       //     object expression is used, otherwise
373     } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
374                FoundOuter.isAmbiguous()) {
375       //   - if the name is found in the context of the entire
376       //     postfix-expression and does not name a class template, the name
377       //     found in the class of the object expression is used, otherwise
378       FoundOuter.clear();
379     } else if (!Found.isSuppressingDiagnostics()) {
380       //   - if the name found is a class template, it must refer to the same
381       //     entity as the one found in the class of the object expression,
382       //     otherwise the program is ill-formed.
383       if (!Found.isSingleResult() ||
384           Found.getFoundDecl()->getCanonicalDecl()
385             != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
386         Diag(Found.getNameLoc(),
387              diag::ext_nested_name_member_ref_lookup_ambiguous)
388           << Found.getLookupName()
389           << ObjectType;
390         Diag(Found.getRepresentativeDecl()->getLocation(),
391              diag::note_ambig_member_ref_object_type)
392           << ObjectType;
393         Diag(FoundOuter.getFoundDecl()->getLocation(),
394              diag::note_ambig_member_ref_scope);
395 
396         // Recover by taking the template that we found in the object
397         // expression's type.
398       }
399     }
400   }
401 }
402 
403 /// ActOnDependentIdExpression - Handle a dependent id-expression that
404 /// was just parsed.  This is only possible with an explicit scope
405 /// specifier naming a dependent type.
406 ExprResult
ActOnDependentIdExpression(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,bool isAddressOfOperand,const TemplateArgumentListInfo * TemplateArgs)407 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
408                                  SourceLocation TemplateKWLoc,
409                                  const DeclarationNameInfo &NameInfo,
410                                  bool isAddressOfOperand,
411                            const TemplateArgumentListInfo *TemplateArgs) {
412   DeclContext *DC = getFunctionLevelDeclContext();
413 
414   if (!isAddressOfOperand &&
415       isa<CXXMethodDecl>(DC) &&
416       cast<CXXMethodDecl>(DC)->isInstance()) {
417     QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
418 
419     // Since the 'this' expression is synthesized, we don't need to
420     // perform the double-lookup check.
421     NamedDecl *FirstQualifierInScope = nullptr;
422 
423     return CXXDependentScopeMemberExpr::Create(
424         Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
425         /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
426         FirstQualifierInScope, NameInfo, TemplateArgs);
427   }
428 
429   return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
430 }
431 
432 ExprResult
BuildDependentDeclRefExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)433 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
434                                 SourceLocation TemplateKWLoc,
435                                 const DeclarationNameInfo &NameInfo,
436                                 const TemplateArgumentListInfo *TemplateArgs) {
437   return DependentScopeDeclRefExpr::Create(
438       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
439       TemplateArgs);
440 }
441 
442 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
443 /// that the template parameter 'PrevDecl' is being shadowed by a new
444 /// declaration at location Loc. Returns true to indicate that this is
445 /// an error, and false otherwise.
DiagnoseTemplateParameterShadow(SourceLocation Loc,Decl * PrevDecl)446 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
447   assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
448 
449   // Microsoft Visual C++ permits template parameters to be shadowed.
450   if (getLangOpts().MicrosoftExt)
451     return;
452 
453   // C++ [temp.local]p4:
454   //   A template-parameter shall not be redeclared within its
455   //   scope (including nested scopes).
456   Diag(Loc, diag::err_template_param_shadow)
457     << cast<NamedDecl>(PrevDecl)->getDeclName();
458   Diag(PrevDecl->getLocation(), diag::note_template_param_here);
459   return;
460 }
461 
462 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
463 /// the parameter D to reference the templated declaration and return a pointer
464 /// to the template declaration. Otherwise, do nothing to D and return null.
AdjustDeclIfTemplate(Decl * & D)465 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
466   if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
467     D = Temp->getTemplatedDecl();
468     return Temp;
469   }
470   return nullptr;
471 }
472 
getTemplatePackExpansion(SourceLocation EllipsisLoc) const473 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
474                                              SourceLocation EllipsisLoc) const {
475   assert(Kind == Template &&
476          "Only template template arguments can be pack expansions here");
477   assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
478          "Template template argument pack expansion without packs");
479   ParsedTemplateArgument Result(*this);
480   Result.EllipsisLoc = EllipsisLoc;
481   return Result;
482 }
483 
translateTemplateArgument(Sema & SemaRef,const ParsedTemplateArgument & Arg)484 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
485                                             const ParsedTemplateArgument &Arg) {
486 
487   switch (Arg.getKind()) {
488   case ParsedTemplateArgument::Type: {
489     TypeSourceInfo *DI;
490     QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
491     if (!DI)
492       DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
493     return TemplateArgumentLoc(TemplateArgument(T), DI);
494   }
495 
496   case ParsedTemplateArgument::NonType: {
497     Expr *E = static_cast<Expr *>(Arg.getAsExpr());
498     return TemplateArgumentLoc(TemplateArgument(E), E);
499   }
500 
501   case ParsedTemplateArgument::Template: {
502     TemplateName Template = Arg.getAsTemplate().get();
503     TemplateArgument TArg;
504     if (Arg.getEllipsisLoc().isValid())
505       TArg = TemplateArgument(Template, Optional<unsigned int>());
506     else
507       TArg = Template;
508     return TemplateArgumentLoc(TArg,
509                                Arg.getScopeSpec().getWithLocInContext(
510                                                               SemaRef.Context),
511                                Arg.getLocation(),
512                                Arg.getEllipsisLoc());
513   }
514   }
515 
516   llvm_unreachable("Unhandled parsed template argument");
517 }
518 
519 /// \brief Translates template arguments as provided by the parser
520 /// into template arguments used by semantic analysis.
translateTemplateArguments(const ASTTemplateArgsPtr & TemplateArgsIn,TemplateArgumentListInfo & TemplateArgs)521 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
522                                       TemplateArgumentListInfo &TemplateArgs) {
523  for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
524    TemplateArgs.addArgument(translateTemplateArgument(*this,
525                                                       TemplateArgsIn[I]));
526 }
527 
maybeDiagnoseTemplateParameterShadow(Sema & SemaRef,Scope * S,SourceLocation Loc,IdentifierInfo * Name)528 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
529                                                  SourceLocation Loc,
530                                                  IdentifierInfo *Name) {
531   NamedDecl *PrevDecl = SemaRef.LookupSingleName(
532       S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForRedeclaration);
533   if (PrevDecl && PrevDecl->isTemplateParameter())
534     SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
535 }
536 
537 /// ActOnTypeParameter - Called when a C++ template type parameter
538 /// (e.g., "typename T") has been parsed. Typename specifies whether
539 /// the keyword "typename" was used to declare the type parameter
540 /// (otherwise, "class" was used), and KeyLoc is the location of the
541 /// "class" or "typename" keyword. ParamName is the name of the
542 /// parameter (NULL indicates an unnamed template parameter) and
543 /// ParamNameLoc is the location of the parameter name (if any).
544 /// If the type parameter has a default argument, it will be added
545 /// later via ActOnTypeParameterDefault.
ActOnTypeParameter(Scope * S,bool Typename,SourceLocation EllipsisLoc,SourceLocation KeyLoc,IdentifierInfo * ParamName,SourceLocation ParamNameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedType DefaultArg)546 Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
547                                SourceLocation EllipsisLoc,
548                                SourceLocation KeyLoc,
549                                IdentifierInfo *ParamName,
550                                SourceLocation ParamNameLoc,
551                                unsigned Depth, unsigned Position,
552                                SourceLocation EqualLoc,
553                                ParsedType DefaultArg) {
554   assert(S->isTemplateParamScope() &&
555          "Template type parameter not in template parameter scope!");
556   bool Invalid = false;
557 
558   SourceLocation Loc = ParamNameLoc;
559   if (!ParamName)
560     Loc = KeyLoc;
561 
562   bool IsParameterPack = EllipsisLoc.isValid();
563   TemplateTypeParmDecl *Param
564     = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
565                                    KeyLoc, Loc, Depth, Position, ParamName,
566                                    Typename, IsParameterPack);
567   Param->setAccess(AS_public);
568   if (Invalid)
569     Param->setInvalidDecl();
570 
571   if (ParamName) {
572     maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
573 
574     // Add the template parameter into the current scope.
575     S->AddDecl(Param);
576     IdResolver.AddDecl(Param);
577   }
578 
579   // C++0x [temp.param]p9:
580   //   A default template-argument may be specified for any kind of
581   //   template-parameter that is not a template parameter pack.
582   if (DefaultArg && IsParameterPack) {
583     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
584     DefaultArg = ParsedType();
585   }
586 
587   // Handle the default argument, if provided.
588   if (DefaultArg) {
589     TypeSourceInfo *DefaultTInfo;
590     GetTypeFromParser(DefaultArg, &DefaultTInfo);
591 
592     assert(DefaultTInfo && "expected source information for type");
593 
594     // Check for unexpanded parameter packs.
595     if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
596                                         UPPC_DefaultArgument))
597       return Param;
598 
599     // Check the template argument itself.
600     if (CheckTemplateArgument(Param, DefaultTInfo)) {
601       Param->setInvalidDecl();
602       return Param;
603     }
604 
605     Param->setDefaultArgument(DefaultTInfo, false);
606   }
607 
608   return Param;
609 }
610 
611 /// \brief Check that the type of a non-type template parameter is
612 /// well-formed.
613 ///
614 /// \returns the (possibly-promoted) parameter type if valid;
615 /// otherwise, produces a diagnostic and returns a NULL type.
616 QualType
CheckNonTypeTemplateParameterType(QualType T,SourceLocation Loc)617 Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
618   // We don't allow variably-modified types as the type of non-type template
619   // parameters.
620   if (T->isVariablyModifiedType()) {
621     Diag(Loc, diag::err_variably_modified_nontype_template_param)
622       << T;
623     return QualType();
624   }
625 
626   // C++ [temp.param]p4:
627   //
628   // A non-type template-parameter shall have one of the following
629   // (optionally cv-qualified) types:
630   //
631   //       -- integral or enumeration type,
632   if (T->isIntegralOrEnumerationType() ||
633       //   -- pointer to object or pointer to function,
634       T->isPointerType() ||
635       //   -- reference to object or reference to function,
636       T->isReferenceType() ||
637       //   -- pointer to member,
638       T->isMemberPointerType() ||
639       //   -- std::nullptr_t.
640       T->isNullPtrType() ||
641       // If T is a dependent type, we can't do the check now, so we
642       // assume that it is well-formed.
643       T->isDependentType()) {
644     // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
645     // are ignored when determining its type.
646     return T.getUnqualifiedType();
647   }
648 
649   // C++ [temp.param]p8:
650   //
651   //   A non-type template-parameter of type "array of T" or
652   //   "function returning T" is adjusted to be of type "pointer to
653   //   T" or "pointer to function returning T", respectively.
654   else if (T->isArrayType() || T->isFunctionType())
655     return Context.getDecayedType(T);
656 
657   Diag(Loc, diag::err_template_nontype_parm_bad_type)
658     << T;
659 
660   return QualType();
661 }
662 
ActOnNonTypeTemplateParameter(Scope * S,Declarator & D,unsigned Depth,unsigned Position,SourceLocation EqualLoc,Expr * Default)663 Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
664                                           unsigned Depth,
665                                           unsigned Position,
666                                           SourceLocation EqualLoc,
667                                           Expr *Default) {
668   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
669   QualType T = TInfo->getType();
670 
671   assert(S->isTemplateParamScope() &&
672          "Non-type template parameter not in template parameter scope!");
673   bool Invalid = false;
674 
675   T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
676   if (T.isNull()) {
677     T = Context.IntTy; // Recover with an 'int' type.
678     Invalid = true;
679   }
680 
681   IdentifierInfo *ParamName = D.getIdentifier();
682   bool IsParameterPack = D.hasEllipsis();
683   NonTypeTemplateParmDecl *Param
684     = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
685                                       D.getLocStart(),
686                                       D.getIdentifierLoc(),
687                                       Depth, Position, ParamName, T,
688                                       IsParameterPack, TInfo);
689   Param->setAccess(AS_public);
690 
691   if (Invalid)
692     Param->setInvalidDecl();
693 
694   if (ParamName) {
695     maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
696                                          ParamName);
697 
698     // Add the template parameter into the current scope.
699     S->AddDecl(Param);
700     IdResolver.AddDecl(Param);
701   }
702 
703   // C++0x [temp.param]p9:
704   //   A default template-argument may be specified for any kind of
705   //   template-parameter that is not a template parameter pack.
706   if (Default && IsParameterPack) {
707     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
708     Default = nullptr;
709   }
710 
711   // Check the well-formedness of the default template argument, if provided.
712   if (Default) {
713     // Check for unexpanded parameter packs.
714     if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
715       return Param;
716 
717     TemplateArgument Converted;
718     ExprResult DefaultRes =
719         CheckTemplateArgument(Param, Param->getType(), Default, Converted);
720     if (DefaultRes.isInvalid()) {
721       Param->setInvalidDecl();
722       return Param;
723     }
724     Default = DefaultRes.get();
725 
726     Param->setDefaultArgument(Default, false);
727   }
728 
729   return Param;
730 }
731 
732 /// ActOnTemplateTemplateParameter - Called when a C++ template template
733 /// parameter (e.g. T in template <template \<typename> class T> class array)
734 /// has been parsed. S is the current scope.
ActOnTemplateTemplateParameter(Scope * S,SourceLocation TmpLoc,TemplateParameterList * Params,SourceLocation EllipsisLoc,IdentifierInfo * Name,SourceLocation NameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedTemplateArgument Default)735 Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
736                                            SourceLocation TmpLoc,
737                                            TemplateParameterList *Params,
738                                            SourceLocation EllipsisLoc,
739                                            IdentifierInfo *Name,
740                                            SourceLocation NameLoc,
741                                            unsigned Depth,
742                                            unsigned Position,
743                                            SourceLocation EqualLoc,
744                                            ParsedTemplateArgument Default) {
745   assert(S->isTemplateParamScope() &&
746          "Template template parameter not in template parameter scope!");
747 
748   // Construct the parameter object.
749   bool IsParameterPack = EllipsisLoc.isValid();
750   TemplateTemplateParmDecl *Param =
751     TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
752                                      NameLoc.isInvalid()? TmpLoc : NameLoc,
753                                      Depth, Position, IsParameterPack,
754                                      Name, Params);
755   Param->setAccess(AS_public);
756 
757   // If the template template parameter has a name, then link the identifier
758   // into the scope and lookup mechanisms.
759   if (Name) {
760     maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
761 
762     S->AddDecl(Param);
763     IdResolver.AddDecl(Param);
764   }
765 
766   if (Params->size() == 0) {
767     Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
768     << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
769     Param->setInvalidDecl();
770   }
771 
772   // C++0x [temp.param]p9:
773   //   A default template-argument may be specified for any kind of
774   //   template-parameter that is not a template parameter pack.
775   if (IsParameterPack && !Default.isInvalid()) {
776     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
777     Default = ParsedTemplateArgument();
778   }
779 
780   if (!Default.isInvalid()) {
781     // Check only that we have a template template argument. We don't want to
782     // try to check well-formedness now, because our template template parameter
783     // might have dependent types in its template parameters, which we wouldn't
784     // be able to match now.
785     //
786     // If none of the template template parameter's template arguments mention
787     // other template parameters, we could actually perform more checking here.
788     // However, it isn't worth doing.
789     TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
790     if (DefaultArg.getArgument().getAsTemplate().isNull()) {
791       Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
792         << DefaultArg.getSourceRange();
793       return Param;
794     }
795 
796     // Check for unexpanded parameter packs.
797     if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
798                                         DefaultArg.getArgument().getAsTemplate(),
799                                         UPPC_DefaultArgument))
800       return Param;
801 
802     Param->setDefaultArgument(DefaultArg, false);
803   }
804 
805   return Param;
806 }
807 
808 /// ActOnTemplateParameterList - Builds a TemplateParameterList that
809 /// contains the template parameters in Params/NumParams.
810 TemplateParameterList *
ActOnTemplateParameterList(unsigned Depth,SourceLocation ExportLoc,SourceLocation TemplateLoc,SourceLocation LAngleLoc,Decl ** Params,unsigned NumParams,SourceLocation RAngleLoc)811 Sema::ActOnTemplateParameterList(unsigned Depth,
812                                  SourceLocation ExportLoc,
813                                  SourceLocation TemplateLoc,
814                                  SourceLocation LAngleLoc,
815                                  Decl **Params, unsigned NumParams,
816                                  SourceLocation RAngleLoc) {
817   if (ExportLoc.isValid())
818     Diag(ExportLoc, diag::warn_template_export_unsupported);
819 
820   return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
821                                        (NamedDecl**)Params, NumParams,
822                                        RAngleLoc);
823 }
824 
SetNestedNameSpecifier(TagDecl * T,const CXXScopeSpec & SS)825 static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
826   if (SS.isSet())
827     T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
828 }
829 
830 DeclResult
CheckClassTemplate(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,TemplateParameterList * TemplateParams,AccessSpecifier AS,SourceLocation ModulePrivateLoc,SourceLocation FriendLoc,unsigned NumOuterTemplateParamLists,TemplateParameterList ** OuterTemplateParamLists)831 Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
832                          SourceLocation KWLoc, CXXScopeSpec &SS,
833                          IdentifierInfo *Name, SourceLocation NameLoc,
834                          AttributeList *Attr,
835                          TemplateParameterList *TemplateParams,
836                          AccessSpecifier AS, SourceLocation ModulePrivateLoc,
837                          SourceLocation FriendLoc,
838                          unsigned NumOuterTemplateParamLists,
839                          TemplateParameterList** OuterTemplateParamLists) {
840   assert(TemplateParams && TemplateParams->size() > 0 &&
841          "No template parameters");
842   assert(TUK != TUK_Reference && "Can only declare or define class templates");
843   bool Invalid = false;
844 
845   // Check that we can declare a template here.
846   if (CheckTemplateDeclScope(S, TemplateParams))
847     return true;
848 
849   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
850   assert(Kind != TTK_Enum && "can't build template of enumerated type");
851 
852   // There is no such thing as an unnamed class template.
853   if (!Name) {
854     Diag(KWLoc, diag::err_template_unnamed_class);
855     return true;
856   }
857 
858   // Find any previous declaration with this name. For a friend with no
859   // scope explicitly specified, we only look for tag declarations (per
860   // C++11 [basic.lookup.elab]p2).
861   DeclContext *SemanticContext;
862   LookupResult Previous(*this, Name, NameLoc,
863                         (SS.isEmpty() && TUK == TUK_Friend)
864                           ? LookupTagName : LookupOrdinaryName,
865                         ForRedeclaration);
866   if (SS.isNotEmpty() && !SS.isInvalid()) {
867     SemanticContext = computeDeclContext(SS, true);
868     if (!SemanticContext) {
869       // FIXME: Horrible, horrible hack! We can't currently represent this
870       // in the AST, and historically we have just ignored such friend
871       // class templates, so don't complain here.
872       Diag(NameLoc, TUK == TUK_Friend
873                         ? diag::warn_template_qualified_friend_ignored
874                         : diag::err_template_qualified_declarator_no_match)
875           << SS.getScopeRep() << SS.getRange();
876       return TUK != TUK_Friend;
877     }
878 
879     if (RequireCompleteDeclContext(SS, SemanticContext))
880       return true;
881 
882     // If we're adding a template to a dependent context, we may need to
883     // rebuilding some of the types used within the template parameter list,
884     // now that we know what the current instantiation is.
885     if (SemanticContext->isDependentContext()) {
886       ContextRAII SavedContext(*this, SemanticContext);
887       if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
888         Invalid = true;
889     } else if (TUK != TUK_Friend && TUK != TUK_Reference)
890       diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
891 
892     LookupQualifiedName(Previous, SemanticContext);
893   } else {
894     SemanticContext = CurContext;
895     LookupName(Previous, S);
896   }
897 
898   if (Previous.isAmbiguous())
899     return true;
900 
901   NamedDecl *PrevDecl = nullptr;
902   if (Previous.begin() != Previous.end())
903     PrevDecl = (*Previous.begin())->getUnderlyingDecl();
904 
905   // If there is a previous declaration with the same name, check
906   // whether this is a valid redeclaration.
907   ClassTemplateDecl *PrevClassTemplate
908     = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
909 
910   // We may have found the injected-class-name of a class template,
911   // class template partial specialization, or class template specialization.
912   // In these cases, grab the template that is being defined or specialized.
913   if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
914       cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
915     PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
916     PrevClassTemplate
917       = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
918     if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
919       PrevClassTemplate
920         = cast<ClassTemplateSpecializationDecl>(PrevDecl)
921             ->getSpecializedTemplate();
922     }
923   }
924 
925   if (TUK == TUK_Friend) {
926     // C++ [namespace.memdef]p3:
927     //   [...] When looking for a prior declaration of a class or a function
928     //   declared as a friend, and when the name of the friend class or
929     //   function is neither a qualified name nor a template-id, scopes outside
930     //   the innermost enclosing namespace scope are not considered.
931     if (!SS.isSet()) {
932       DeclContext *OutermostContext = CurContext;
933       while (!OutermostContext->isFileContext())
934         OutermostContext = OutermostContext->getLookupParent();
935 
936       if (PrevDecl &&
937           (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
938            OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
939         SemanticContext = PrevDecl->getDeclContext();
940       } else {
941         // Declarations in outer scopes don't matter. However, the outermost
942         // context we computed is the semantic context for our new
943         // declaration.
944         PrevDecl = PrevClassTemplate = nullptr;
945         SemanticContext = OutermostContext;
946 
947         // Check that the chosen semantic context doesn't already contain a
948         // declaration of this name as a non-tag type.
949         LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
950                               ForRedeclaration);
951         DeclContext *LookupContext = SemanticContext;
952         while (LookupContext->isTransparentContext())
953           LookupContext = LookupContext->getLookupParent();
954         LookupQualifiedName(Previous, LookupContext);
955 
956         if (Previous.isAmbiguous())
957           return true;
958 
959         if (Previous.begin() != Previous.end())
960           PrevDecl = (*Previous.begin())->getUnderlyingDecl();
961       }
962     }
963   } else if (PrevDecl &&
964              !isDeclInScope(PrevDecl, SemanticContext, S, SS.isValid()))
965     PrevDecl = PrevClassTemplate = nullptr;
966 
967   if (PrevClassTemplate) {
968     // Ensure that the template parameter lists are compatible. Skip this check
969     // for a friend in a dependent context: the template parameter list itself
970     // could be dependent.
971     if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
972         !TemplateParameterListsAreEqual(TemplateParams,
973                                    PrevClassTemplate->getTemplateParameters(),
974                                         /*Complain=*/true,
975                                         TPL_TemplateMatch))
976       return true;
977 
978     // C++ [temp.class]p4:
979     //   In a redeclaration, partial specialization, explicit
980     //   specialization or explicit instantiation of a class template,
981     //   the class-key shall agree in kind with the original class
982     //   template declaration (7.1.5.3).
983     RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
984     if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
985                                       TUK == TUK_Definition,  KWLoc, *Name)) {
986       Diag(KWLoc, diag::err_use_with_wrong_tag)
987         << Name
988         << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
989       Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
990       Kind = PrevRecordDecl->getTagKind();
991     }
992 
993     // Check for redefinition of this class template.
994     if (TUK == TUK_Definition) {
995       if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
996         Diag(NameLoc, diag::err_redefinition) << Name;
997         Diag(Def->getLocation(), diag::note_previous_definition);
998         // FIXME: Would it make sense to try to "forget" the previous
999         // definition, as part of error recovery?
1000         return true;
1001       }
1002     }
1003   } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
1004     // Maybe we will complain about the shadowed template parameter.
1005     DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1006     // Just pretend that we didn't see the previous declaration.
1007     PrevDecl = nullptr;
1008   } else if (PrevDecl) {
1009     // C++ [temp]p5:
1010     //   A class template shall not have the same name as any other
1011     //   template, class, function, object, enumeration, enumerator,
1012     //   namespace, or type in the same scope (3.3), except as specified
1013     //   in (14.5.4).
1014     Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1015     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1016     return true;
1017   }
1018 
1019   // Check the template parameter list of this declaration, possibly
1020   // merging in the template parameter list from the previous class
1021   // template declaration. Skip this check for a friend in a dependent
1022   // context, because the template parameter list might be dependent.
1023   if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1024       CheckTemplateParameterList(
1025           TemplateParams,
1026           PrevClassTemplate ? PrevClassTemplate->getTemplateParameters()
1027                             : nullptr,
1028           (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
1029            SemanticContext->isDependentContext())
1030               ? TPC_ClassTemplateMember
1031               : TUK == TUK_Friend ? TPC_FriendClassTemplate
1032                                   : TPC_ClassTemplate))
1033     Invalid = true;
1034 
1035   if (SS.isSet()) {
1036     // If the name of the template was qualified, we must be defining the
1037     // template out-of-line.
1038     if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1039       Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1040                                       : diag::err_member_decl_does_not_match)
1041         << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
1042       Invalid = true;
1043     }
1044   }
1045 
1046   CXXRecordDecl *NewClass =
1047     CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1048                           PrevClassTemplate?
1049                             PrevClassTemplate->getTemplatedDecl() : nullptr,
1050                           /*DelayTypeCreation=*/true);
1051   SetNestedNameSpecifier(NewClass, SS);
1052   if (NumOuterTemplateParamLists > 0)
1053     NewClass->setTemplateParameterListsInfo(Context,
1054                                             NumOuterTemplateParamLists,
1055                                             OuterTemplateParamLists);
1056 
1057   // Add alignment attributes if necessary; these attributes are checked when
1058   // the ASTContext lays out the structure.
1059   if (TUK == TUK_Definition) {
1060     AddAlignmentAttributesForRecord(NewClass);
1061     AddMsStructLayoutForRecord(NewClass);
1062   }
1063 
1064   ClassTemplateDecl *NewTemplate
1065     = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1066                                 DeclarationName(Name), TemplateParams,
1067                                 NewClass, PrevClassTemplate);
1068   NewClass->setDescribedClassTemplate(NewTemplate);
1069 
1070   if (ModulePrivateLoc.isValid())
1071     NewTemplate->setModulePrivate();
1072 
1073   // Build the type for the class template declaration now.
1074   QualType T = NewTemplate->getInjectedClassNameSpecialization();
1075   T = Context.getInjectedClassNameType(NewClass, T);
1076   assert(T->isDependentType() && "Class template type is not dependent?");
1077   (void)T;
1078 
1079   // If we are providing an explicit specialization of a member that is a
1080   // class template, make a note of that.
1081   if (PrevClassTemplate &&
1082       PrevClassTemplate->getInstantiatedFromMemberTemplate())
1083     PrevClassTemplate->setMemberSpecialization();
1084 
1085   // Set the access specifier.
1086   if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1087     SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1088 
1089   // Set the lexical context of these templates
1090   NewClass->setLexicalDeclContext(CurContext);
1091   NewTemplate->setLexicalDeclContext(CurContext);
1092 
1093   if (TUK == TUK_Definition)
1094     NewClass->startDefinition();
1095 
1096   if (Attr)
1097     ProcessDeclAttributeList(S, NewClass, Attr);
1098 
1099   if (PrevClassTemplate)
1100     mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
1101 
1102   AddPushedVisibilityAttribute(NewClass);
1103 
1104   if (TUK != TUK_Friend) {
1105     // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
1106     Scope *Outer = S;
1107     while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
1108       Outer = Outer->getParent();
1109     PushOnScopeChains(NewTemplate, Outer);
1110   } else {
1111     if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1112       NewTemplate->setAccess(PrevClassTemplate->getAccess());
1113       NewClass->setAccess(PrevClassTemplate->getAccess());
1114     }
1115 
1116     NewTemplate->setObjectOfFriendDecl();
1117 
1118     // Friend templates are visible in fairly strange ways.
1119     if (!CurContext->isDependentContext()) {
1120       DeclContext *DC = SemanticContext->getRedeclContext();
1121       DC->makeDeclVisibleInContext(NewTemplate);
1122       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1123         PushOnScopeChains(NewTemplate, EnclosingScope,
1124                           /* AddToContext = */ false);
1125     }
1126 
1127     FriendDecl *Friend = FriendDecl::Create(
1128         Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
1129     Friend->setAccess(AS_public);
1130     CurContext->addDecl(Friend);
1131   }
1132 
1133   if (Invalid) {
1134     NewTemplate->setInvalidDecl();
1135     NewClass->setInvalidDecl();
1136   }
1137 
1138   ActOnDocumentableDecl(NewTemplate);
1139 
1140   return NewTemplate;
1141 }
1142 
1143 /// \brief Diagnose the presence of a default template argument on a
1144 /// template parameter, which is ill-formed in certain contexts.
1145 ///
1146 /// \returns true if the default template argument should be dropped.
DiagnoseDefaultTemplateArgument(Sema & S,Sema::TemplateParamListContext TPC,SourceLocation ParamLoc,SourceRange DefArgRange)1147 static bool DiagnoseDefaultTemplateArgument(Sema &S,
1148                                             Sema::TemplateParamListContext TPC,
1149                                             SourceLocation ParamLoc,
1150                                             SourceRange DefArgRange) {
1151   switch (TPC) {
1152   case Sema::TPC_ClassTemplate:
1153   case Sema::TPC_VarTemplate:
1154   case Sema::TPC_TypeAliasTemplate:
1155     return false;
1156 
1157   case Sema::TPC_FunctionTemplate:
1158   case Sema::TPC_FriendFunctionTemplateDefinition:
1159     // C++ [temp.param]p9:
1160     //   A default template-argument shall not be specified in a
1161     //   function template declaration or a function template
1162     //   definition [...]
1163     //   If a friend function template declaration specifies a default
1164     //   template-argument, that declaration shall be a definition and shall be
1165     //   the only declaration of the function template in the translation unit.
1166     // (C++98/03 doesn't have this wording; see DR226).
1167     S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
1168          diag::warn_cxx98_compat_template_parameter_default_in_function_template
1169            : diag::ext_template_parameter_default_in_function_template)
1170       << DefArgRange;
1171     return false;
1172 
1173   case Sema::TPC_ClassTemplateMember:
1174     // C++0x [temp.param]p9:
1175     //   A default template-argument shall not be specified in the
1176     //   template-parameter-lists of the definition of a member of a
1177     //   class template that appears outside of the member's class.
1178     S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1179       << DefArgRange;
1180     return true;
1181 
1182   case Sema::TPC_FriendClassTemplate:
1183   case Sema::TPC_FriendFunctionTemplate:
1184     // C++ [temp.param]p9:
1185     //   A default template-argument shall not be specified in a
1186     //   friend template declaration.
1187     S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1188       << DefArgRange;
1189     return true;
1190 
1191     // FIXME: C++0x [temp.param]p9 allows default template-arguments
1192     // for friend function templates if there is only a single
1193     // declaration (and it is a definition). Strange!
1194   }
1195 
1196   llvm_unreachable("Invalid TemplateParamListContext!");
1197 }
1198 
1199 /// \brief Check for unexpanded parameter packs within the template parameters
1200 /// of a template template parameter, recursively.
DiagnoseUnexpandedParameterPacks(Sema & S,TemplateTemplateParmDecl * TTP)1201 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1202                                              TemplateTemplateParmDecl *TTP) {
1203   // A template template parameter which is a parameter pack is also a pack
1204   // expansion.
1205   if (TTP->isParameterPack())
1206     return false;
1207 
1208   TemplateParameterList *Params = TTP->getTemplateParameters();
1209   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1210     NamedDecl *P = Params->getParam(I);
1211     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1212       if (!NTTP->isParameterPack() &&
1213           S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1214                                             NTTP->getTypeSourceInfo(),
1215                                       Sema::UPPC_NonTypeTemplateParameterType))
1216         return true;
1217 
1218       continue;
1219     }
1220 
1221     if (TemplateTemplateParmDecl *InnerTTP
1222                                         = dyn_cast<TemplateTemplateParmDecl>(P))
1223       if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1224         return true;
1225   }
1226 
1227   return false;
1228 }
1229 
1230 /// \brief Checks the validity of a template parameter list, possibly
1231 /// considering the template parameter list from a previous
1232 /// declaration.
1233 ///
1234 /// If an "old" template parameter list is provided, it must be
1235 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
1236 /// template parameter list.
1237 ///
1238 /// \param NewParams Template parameter list for a new template
1239 /// declaration. This template parameter list will be updated with any
1240 /// default arguments that are carried through from the previous
1241 /// template parameter list.
1242 ///
1243 /// \param OldParams If provided, template parameter list from a
1244 /// previous declaration of the same template. Default template
1245 /// arguments will be merged from the old template parameter list to
1246 /// the new template parameter list.
1247 ///
1248 /// \param TPC Describes the context in which we are checking the given
1249 /// template parameter list.
1250 ///
1251 /// \returns true if an error occurred, false otherwise.
CheckTemplateParameterList(TemplateParameterList * NewParams,TemplateParameterList * OldParams,TemplateParamListContext TPC)1252 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1253                                       TemplateParameterList *OldParams,
1254                                       TemplateParamListContext TPC) {
1255   bool Invalid = false;
1256 
1257   // C++ [temp.param]p10:
1258   //   The set of default template-arguments available for use with a
1259   //   template declaration or definition is obtained by merging the
1260   //   default arguments from the definition (if in scope) and all
1261   //   declarations in scope in the same way default function
1262   //   arguments are (8.3.6).
1263   bool SawDefaultArgument = false;
1264   SourceLocation PreviousDefaultArgLoc;
1265 
1266   // Dummy initialization to avoid warnings.
1267   TemplateParameterList::iterator OldParam = NewParams->end();
1268   if (OldParams)
1269     OldParam = OldParams->begin();
1270 
1271   bool RemoveDefaultArguments = false;
1272   for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1273                                     NewParamEnd = NewParams->end();
1274        NewParam != NewParamEnd; ++NewParam) {
1275     // Variables used to diagnose redundant default arguments
1276     bool RedundantDefaultArg = false;
1277     SourceLocation OldDefaultLoc;
1278     SourceLocation NewDefaultLoc;
1279 
1280     // Variable used to diagnose missing default arguments
1281     bool MissingDefaultArg = false;
1282 
1283     // Variable used to diagnose non-final parameter packs
1284     bool SawParameterPack = false;
1285 
1286     if (TemplateTypeParmDecl *NewTypeParm
1287           = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1288       // Check the presence of a default argument here.
1289       if (NewTypeParm->hasDefaultArgument() &&
1290           DiagnoseDefaultTemplateArgument(*this, TPC,
1291                                           NewTypeParm->getLocation(),
1292                NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1293                                                        .getSourceRange()))
1294         NewTypeParm->removeDefaultArgument();
1295 
1296       // Merge default arguments for template type parameters.
1297       TemplateTypeParmDecl *OldTypeParm
1298           = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
1299 
1300       if (NewTypeParm->isParameterPack()) {
1301         assert(!NewTypeParm->hasDefaultArgument() &&
1302                "Parameter packs can't have a default argument!");
1303         SawParameterPack = true;
1304       } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1305                  NewTypeParm->hasDefaultArgument()) {
1306         OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1307         NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1308         SawDefaultArgument = true;
1309         RedundantDefaultArg = true;
1310         PreviousDefaultArgLoc = NewDefaultLoc;
1311       } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1312         // Merge the default argument from the old declaration to the
1313         // new declaration.
1314         NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1315                                         true);
1316         PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1317       } else if (NewTypeParm->hasDefaultArgument()) {
1318         SawDefaultArgument = true;
1319         PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1320       } else if (SawDefaultArgument)
1321         MissingDefaultArg = true;
1322     } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1323                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1324       // Check for unexpanded parameter packs.
1325       if (!NewNonTypeParm->isParameterPack() &&
1326           DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1327                                           NewNonTypeParm->getTypeSourceInfo(),
1328                                           UPPC_NonTypeTemplateParameterType)) {
1329         Invalid = true;
1330         continue;
1331       }
1332 
1333       // Check the presence of a default argument here.
1334       if (NewNonTypeParm->hasDefaultArgument() &&
1335           DiagnoseDefaultTemplateArgument(*this, TPC,
1336                                           NewNonTypeParm->getLocation(),
1337                     NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1338         NewNonTypeParm->removeDefaultArgument();
1339       }
1340 
1341       // Merge default arguments for non-type template parameters
1342       NonTypeTemplateParmDecl *OldNonTypeParm
1343         = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
1344       if (NewNonTypeParm->isParameterPack()) {
1345         assert(!NewNonTypeParm->hasDefaultArgument() &&
1346                "Parameter packs can't have a default argument!");
1347         if (!NewNonTypeParm->isPackExpansion())
1348           SawParameterPack = true;
1349       } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1350                  NewNonTypeParm->hasDefaultArgument()) {
1351         OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1352         NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1353         SawDefaultArgument = true;
1354         RedundantDefaultArg = true;
1355         PreviousDefaultArgLoc = NewDefaultLoc;
1356       } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1357         // Merge the default argument from the old declaration to the
1358         // new declaration.
1359         // FIXME: We need to create a new kind of "default argument"
1360         // expression that points to a previous non-type template
1361         // parameter.
1362         NewNonTypeParm->setDefaultArgument(
1363                                          OldNonTypeParm->getDefaultArgument(),
1364                                          /*Inherited=*/ true);
1365         PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1366       } else if (NewNonTypeParm->hasDefaultArgument()) {
1367         SawDefaultArgument = true;
1368         PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1369       } else if (SawDefaultArgument)
1370         MissingDefaultArg = true;
1371     } else {
1372       TemplateTemplateParmDecl *NewTemplateParm
1373         = cast<TemplateTemplateParmDecl>(*NewParam);
1374 
1375       // Check for unexpanded parameter packs, recursively.
1376       if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1377         Invalid = true;
1378         continue;
1379       }
1380 
1381       // Check the presence of a default argument here.
1382       if (NewTemplateParm->hasDefaultArgument() &&
1383           DiagnoseDefaultTemplateArgument(*this, TPC,
1384                                           NewTemplateParm->getLocation(),
1385                      NewTemplateParm->getDefaultArgument().getSourceRange()))
1386         NewTemplateParm->removeDefaultArgument();
1387 
1388       // Merge default arguments for template template parameters
1389       TemplateTemplateParmDecl *OldTemplateParm
1390         = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
1391       if (NewTemplateParm->isParameterPack()) {
1392         assert(!NewTemplateParm->hasDefaultArgument() &&
1393                "Parameter packs can't have a default argument!");
1394         if (!NewTemplateParm->isPackExpansion())
1395           SawParameterPack = true;
1396       } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1397           NewTemplateParm->hasDefaultArgument()) {
1398         OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1399         NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1400         SawDefaultArgument = true;
1401         RedundantDefaultArg = true;
1402         PreviousDefaultArgLoc = NewDefaultLoc;
1403       } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1404         // Merge the default argument from the old declaration to the
1405         // new declaration.
1406         // FIXME: We need to create a new kind of "default argument" expression
1407         // that points to a previous template template parameter.
1408         NewTemplateParm->setDefaultArgument(
1409                                           OldTemplateParm->getDefaultArgument(),
1410                                           /*Inherited=*/ true);
1411         PreviousDefaultArgLoc
1412           = OldTemplateParm->getDefaultArgument().getLocation();
1413       } else if (NewTemplateParm->hasDefaultArgument()) {
1414         SawDefaultArgument = true;
1415         PreviousDefaultArgLoc
1416           = NewTemplateParm->getDefaultArgument().getLocation();
1417       } else if (SawDefaultArgument)
1418         MissingDefaultArg = true;
1419     }
1420 
1421     // C++11 [temp.param]p11:
1422     //   If a template parameter of a primary class template or alias template
1423     //   is a template parameter pack, it shall be the last template parameter.
1424     if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1425         (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
1426          TPC == TPC_TypeAliasTemplate)) {
1427       Diag((*NewParam)->getLocation(),
1428            diag::err_template_param_pack_must_be_last_template_parameter);
1429       Invalid = true;
1430     }
1431 
1432     if (RedundantDefaultArg) {
1433       // C++ [temp.param]p12:
1434       //   A template-parameter shall not be given default arguments
1435       //   by two different declarations in the same scope.
1436       Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1437       Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1438       Invalid = true;
1439     } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1440       // C++ [temp.param]p11:
1441       //   If a template-parameter of a class template has a default
1442       //   template-argument, each subsequent template-parameter shall either
1443       //   have a default template-argument supplied or be a template parameter
1444       //   pack.
1445       Diag((*NewParam)->getLocation(),
1446            diag::err_template_param_default_arg_missing);
1447       Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1448       Invalid = true;
1449       RemoveDefaultArguments = true;
1450     }
1451 
1452     // If we have an old template parameter list that we're merging
1453     // in, move on to the next parameter.
1454     if (OldParams)
1455       ++OldParam;
1456   }
1457 
1458   // We were missing some default arguments at the end of the list, so remove
1459   // all of the default arguments.
1460   if (RemoveDefaultArguments) {
1461     for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1462                                       NewParamEnd = NewParams->end();
1463          NewParam != NewParamEnd; ++NewParam) {
1464       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1465         TTP->removeDefaultArgument();
1466       else if (NonTypeTemplateParmDecl *NTTP
1467                                 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1468         NTTP->removeDefaultArgument();
1469       else
1470         cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1471     }
1472   }
1473 
1474   return Invalid;
1475 }
1476 
1477 namespace {
1478 
1479 /// A class which looks for a use of a certain level of template
1480 /// parameter.
1481 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1482   typedef RecursiveASTVisitor<DependencyChecker> super;
1483 
1484   unsigned Depth;
1485   bool Match;
1486   SourceLocation MatchLoc;
1487 
DependencyChecker__anon0111d2fc0111::DependencyChecker1488   DependencyChecker(unsigned Depth) : Depth(Depth), Match(false) {}
1489 
DependencyChecker__anon0111d2fc0111::DependencyChecker1490   DependencyChecker(TemplateParameterList *Params) : Match(false) {
1491     NamedDecl *ND = Params->getParam(0);
1492     if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1493       Depth = PD->getDepth();
1494     } else if (NonTypeTemplateParmDecl *PD =
1495                  dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1496       Depth = PD->getDepth();
1497     } else {
1498       Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1499     }
1500   }
1501 
Matches__anon0111d2fc0111::DependencyChecker1502   bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
1503     if (ParmDepth >= Depth) {
1504       Match = true;
1505       MatchLoc = Loc;
1506       return true;
1507     }
1508     return false;
1509   }
1510 
VisitTemplateTypeParmTypeLoc__anon0111d2fc0111::DependencyChecker1511   bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
1512     return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
1513   }
1514 
VisitTemplateTypeParmType__anon0111d2fc0111::DependencyChecker1515   bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1516     return !Matches(T->getDepth());
1517   }
1518 
TraverseTemplateName__anon0111d2fc0111::DependencyChecker1519   bool TraverseTemplateName(TemplateName N) {
1520     if (TemplateTemplateParmDecl *PD =
1521           dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1522       if (Matches(PD->getDepth()))
1523         return false;
1524     return super::TraverseTemplateName(N);
1525   }
1526 
VisitDeclRefExpr__anon0111d2fc0111::DependencyChecker1527   bool VisitDeclRefExpr(DeclRefExpr *E) {
1528     if (NonTypeTemplateParmDecl *PD =
1529           dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
1530       if (Matches(PD->getDepth(), E->getExprLoc()))
1531         return false;
1532     return super::VisitDeclRefExpr(E);
1533   }
1534 
VisitSubstTemplateTypeParmType__anon0111d2fc0111::DependencyChecker1535   bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
1536     return TraverseType(T->getReplacementType());
1537   }
1538 
1539   bool
VisitSubstTemplateTypeParmPackType__anon0111d2fc0111::DependencyChecker1540   VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
1541     return TraverseTemplateArgument(T->getArgumentPack());
1542   }
1543 
TraverseInjectedClassNameType__anon0111d2fc0111::DependencyChecker1544   bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1545     return TraverseType(T->getInjectedSpecializationType());
1546   }
1547 };
1548 }
1549 
1550 /// Determines whether a given type depends on the given parameter
1551 /// list.
1552 static bool
DependsOnTemplateParameters(QualType T,TemplateParameterList * Params)1553 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1554   DependencyChecker Checker(Params);
1555   Checker.TraverseType(T);
1556   return Checker.Match;
1557 }
1558 
1559 // Find the source range corresponding to the named type in the given
1560 // nested-name-specifier, if any.
getRangeOfTypeInNestedNameSpecifier(ASTContext & Context,QualType T,const CXXScopeSpec & SS)1561 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1562                                                        QualType T,
1563                                                        const CXXScopeSpec &SS) {
1564   NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1565   while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1566     if (const Type *CurType = NNS->getAsType()) {
1567       if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1568         return NNSLoc.getTypeLoc().getSourceRange();
1569     } else
1570       break;
1571 
1572     NNSLoc = NNSLoc.getPrefix();
1573   }
1574 
1575   return SourceRange();
1576 }
1577 
1578 /// \brief Match the given template parameter lists to the given scope
1579 /// specifier, returning the template parameter list that applies to the
1580 /// name.
1581 ///
1582 /// \param DeclStartLoc the start of the declaration that has a scope
1583 /// specifier or a template parameter list.
1584 ///
1585 /// \param DeclLoc The location of the declaration itself.
1586 ///
1587 /// \param SS the scope specifier that will be matched to the given template
1588 /// parameter lists. This scope specifier precedes a qualified name that is
1589 /// being declared.
1590 ///
1591 /// \param TemplateId The template-id following the scope specifier, if there
1592 /// is one. Used to check for a missing 'template<>'.
1593 ///
1594 /// \param ParamLists the template parameter lists, from the outermost to the
1595 /// innermost template parameter lists.
1596 ///
1597 /// \param IsFriend Whether to apply the slightly different rules for
1598 /// matching template parameters to scope specifiers in friend
1599 /// declarations.
1600 ///
1601 /// \param IsExplicitSpecialization will be set true if the entity being
1602 /// declared is an explicit specialization, false otherwise.
1603 ///
1604 /// \returns the template parameter list, if any, that corresponds to the
1605 /// name that is preceded by the scope specifier @p SS. This template
1606 /// parameter list may have template parameters (if we're declaring a
1607 /// template) or may have no template parameters (if we're declaring a
1608 /// template specialization), or may be NULL (if what we're declaring isn't
1609 /// itself a template).
MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,SourceLocation DeclLoc,const CXXScopeSpec & SS,TemplateIdAnnotation * TemplateId,ArrayRef<TemplateParameterList * > ParamLists,bool IsFriend,bool & IsExplicitSpecialization,bool & Invalid)1610 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
1611     SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
1612     TemplateIdAnnotation *TemplateId,
1613     ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
1614     bool &IsExplicitSpecialization, bool &Invalid) {
1615   IsExplicitSpecialization = false;
1616   Invalid = false;
1617 
1618   // The sequence of nested types to which we will match up the template
1619   // parameter lists. We first build this list by starting with the type named
1620   // by the nested-name-specifier and walking out until we run out of types.
1621   SmallVector<QualType, 4> NestedTypes;
1622   QualType T;
1623   if (SS.getScopeRep()) {
1624     if (CXXRecordDecl *Record
1625               = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1626       T = Context.getTypeDeclType(Record);
1627     else
1628       T = QualType(SS.getScopeRep()->getAsType(), 0);
1629   }
1630 
1631   // If we found an explicit specialization that prevents us from needing
1632   // 'template<>' headers, this will be set to the location of that
1633   // explicit specialization.
1634   SourceLocation ExplicitSpecLoc;
1635 
1636   while (!T.isNull()) {
1637     NestedTypes.push_back(T);
1638 
1639     // Retrieve the parent of a record type.
1640     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1641       // If this type is an explicit specialization, we're done.
1642       if (ClassTemplateSpecializationDecl *Spec
1643           = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1644         if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1645             Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1646           ExplicitSpecLoc = Spec->getLocation();
1647           break;
1648         }
1649       } else if (Record->getTemplateSpecializationKind()
1650                                                 == TSK_ExplicitSpecialization) {
1651         ExplicitSpecLoc = Record->getLocation();
1652         break;
1653       }
1654 
1655       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1656         T = Context.getTypeDeclType(Parent);
1657       else
1658         T = QualType();
1659       continue;
1660     }
1661 
1662     if (const TemplateSpecializationType *TST
1663                                      = T->getAs<TemplateSpecializationType>()) {
1664       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1665         if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1666           T = Context.getTypeDeclType(Parent);
1667         else
1668           T = QualType();
1669         continue;
1670       }
1671     }
1672 
1673     // Look one step prior in a dependent template specialization type.
1674     if (const DependentTemplateSpecializationType *DependentTST
1675                           = T->getAs<DependentTemplateSpecializationType>()) {
1676       if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1677         T = QualType(NNS->getAsType(), 0);
1678       else
1679         T = QualType();
1680       continue;
1681     }
1682 
1683     // Look one step prior in a dependent name type.
1684     if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1685       if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1686         T = QualType(NNS->getAsType(), 0);
1687       else
1688         T = QualType();
1689       continue;
1690     }
1691 
1692     // Retrieve the parent of an enumeration type.
1693     if (const EnumType *EnumT = T->getAs<EnumType>()) {
1694       // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1695       // check here.
1696       EnumDecl *Enum = EnumT->getDecl();
1697 
1698       // Get to the parent type.
1699       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1700         T = Context.getTypeDeclType(Parent);
1701       else
1702         T = QualType();
1703       continue;
1704     }
1705 
1706     T = QualType();
1707   }
1708   // Reverse the nested types list, since we want to traverse from the outermost
1709   // to the innermost while checking template-parameter-lists.
1710   std::reverse(NestedTypes.begin(), NestedTypes.end());
1711 
1712   // C++0x [temp.expl.spec]p17:
1713   //   A member or a member template may be nested within many
1714   //   enclosing class templates. In an explicit specialization for
1715   //   such a member, the member declaration shall be preceded by a
1716   //   template<> for each enclosing class template that is
1717   //   explicitly specialized.
1718   bool SawNonEmptyTemplateParameterList = false;
1719 
1720   auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
1721     if (SawNonEmptyTemplateParameterList) {
1722       Diag(DeclLoc, diag::err_specialize_member_of_template)
1723         << !Recovery << Range;
1724       Invalid = true;
1725       IsExplicitSpecialization = false;
1726       return true;
1727     }
1728 
1729     return false;
1730   };
1731 
1732   auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
1733     // Check that we can have an explicit specialization here.
1734     if (CheckExplicitSpecialization(Range, true))
1735       return true;
1736 
1737     // We don't have a template header, but we should.
1738     SourceLocation ExpectedTemplateLoc;
1739     if (!ParamLists.empty())
1740       ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1741     else
1742       ExpectedTemplateLoc = DeclStartLoc;
1743 
1744     Diag(DeclLoc, diag::err_template_spec_needs_header)
1745       << Range
1746       << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1747     return false;
1748   };
1749 
1750   unsigned ParamIdx = 0;
1751   for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1752        ++TypeIdx) {
1753     T = NestedTypes[TypeIdx];
1754 
1755     // Whether we expect a 'template<>' header.
1756     bool NeedEmptyTemplateHeader = false;
1757 
1758     // Whether we expect a template header with parameters.
1759     bool NeedNonemptyTemplateHeader = false;
1760 
1761     // For a dependent type, the set of template parameters that we
1762     // expect to see.
1763     TemplateParameterList *ExpectedTemplateParams = nullptr;
1764 
1765     // C++0x [temp.expl.spec]p15:
1766     //   A member or a member template may be nested within many enclosing
1767     //   class templates. In an explicit specialization for such a member, the
1768     //   member declaration shall be preceded by a template<> for each
1769     //   enclosing class template that is explicitly specialized.
1770     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1771       if (ClassTemplatePartialSpecializationDecl *Partial
1772             = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1773         ExpectedTemplateParams = Partial->getTemplateParameters();
1774         NeedNonemptyTemplateHeader = true;
1775       } else if (Record->isDependentType()) {
1776         if (Record->getDescribedClassTemplate()) {
1777           ExpectedTemplateParams = Record->getDescribedClassTemplate()
1778                                                       ->getTemplateParameters();
1779           NeedNonemptyTemplateHeader = true;
1780         }
1781       } else if (ClassTemplateSpecializationDecl *Spec
1782                      = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1783         // C++0x [temp.expl.spec]p4:
1784         //   Members of an explicitly specialized class template are defined
1785         //   in the same manner as members of normal classes, and not using
1786         //   the template<> syntax.
1787         if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1788           NeedEmptyTemplateHeader = true;
1789         else
1790           continue;
1791       } else if (Record->getTemplateSpecializationKind()) {
1792         if (Record->getTemplateSpecializationKind()
1793                                                 != TSK_ExplicitSpecialization &&
1794             TypeIdx == NumTypes - 1)
1795           IsExplicitSpecialization = true;
1796 
1797         continue;
1798       }
1799     } else if (const TemplateSpecializationType *TST
1800                                      = T->getAs<TemplateSpecializationType>()) {
1801       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1802         ExpectedTemplateParams = Template->getTemplateParameters();
1803         NeedNonemptyTemplateHeader = true;
1804       }
1805     } else if (T->getAs<DependentTemplateSpecializationType>()) {
1806       // FIXME:  We actually could/should check the template arguments here
1807       // against the corresponding template parameter list.
1808       NeedNonemptyTemplateHeader = false;
1809     }
1810 
1811     // C++ [temp.expl.spec]p16:
1812     //   In an explicit specialization declaration for a member of a class
1813     //   template or a member template that ap- pears in namespace scope, the
1814     //   member template and some of its enclosing class templates may remain
1815     //   unspecialized, except that the declaration shall not explicitly
1816     //   specialize a class member template if its en- closing class templates
1817     //   are not explicitly specialized as well.
1818     if (ParamIdx < ParamLists.size()) {
1819       if (ParamLists[ParamIdx]->size() == 0) {
1820         if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
1821                                         false))
1822           return nullptr;
1823       } else
1824         SawNonEmptyTemplateParameterList = true;
1825     }
1826 
1827     if (NeedEmptyTemplateHeader) {
1828       // If we're on the last of the types, and we need a 'template<>' header
1829       // here, then it's an explicit specialization.
1830       if (TypeIdx == NumTypes - 1)
1831         IsExplicitSpecialization = true;
1832 
1833       if (ParamIdx < ParamLists.size()) {
1834         if (ParamLists[ParamIdx]->size() > 0) {
1835           // The header has template parameters when it shouldn't. Complain.
1836           Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1837                diag::err_template_param_list_matches_nontemplate)
1838             << T
1839             << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1840                            ParamLists[ParamIdx]->getRAngleLoc())
1841             << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1842           Invalid = true;
1843           return nullptr;
1844         }
1845 
1846         // Consume this template header.
1847         ++ParamIdx;
1848         continue;
1849       }
1850 
1851       if (!IsFriend)
1852         if (DiagnoseMissingExplicitSpecialization(
1853                 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
1854           return nullptr;
1855 
1856       continue;
1857     }
1858 
1859     if (NeedNonemptyTemplateHeader) {
1860       // In friend declarations we can have template-ids which don't
1861       // depend on the corresponding template parameter lists.  But
1862       // assume that empty parameter lists are supposed to match this
1863       // template-id.
1864       if (IsFriend && T->isDependentType()) {
1865         if (ParamIdx < ParamLists.size() &&
1866             DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1867           ExpectedTemplateParams = nullptr;
1868         else
1869           continue;
1870       }
1871 
1872       if (ParamIdx < ParamLists.size()) {
1873         // Check the template parameter list, if we can.
1874         if (ExpectedTemplateParams &&
1875             !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1876                                             ExpectedTemplateParams,
1877                                             true, TPL_TemplateMatch))
1878           Invalid = true;
1879 
1880         if (!Invalid &&
1881             CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
1882                                        TPC_ClassTemplateMember))
1883           Invalid = true;
1884 
1885         ++ParamIdx;
1886         continue;
1887       }
1888 
1889       Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1890         << T
1891         << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1892       Invalid = true;
1893       continue;
1894     }
1895   }
1896 
1897   // If there were at least as many template-ids as there were template
1898   // parameter lists, then there are no template parameter lists remaining for
1899   // the declaration itself.
1900   if (ParamIdx >= ParamLists.size()) {
1901     if (TemplateId && !IsFriend) {
1902       // We don't have a template header for the declaration itself, but we
1903       // should.
1904       IsExplicitSpecialization = true;
1905       DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
1906                                                         TemplateId->RAngleLoc));
1907 
1908       // Fabricate an empty template parameter list for the invented header.
1909       return TemplateParameterList::Create(Context, SourceLocation(),
1910                                            SourceLocation(), nullptr, 0,
1911                                            SourceLocation());
1912     }
1913 
1914     return nullptr;
1915   }
1916 
1917   // If there were too many template parameter lists, complain about that now.
1918   if (ParamIdx < ParamLists.size() - 1) {
1919     bool HasAnyExplicitSpecHeader = false;
1920     bool AllExplicitSpecHeaders = true;
1921     for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
1922       if (ParamLists[I]->size() == 0)
1923         HasAnyExplicitSpecHeader = true;
1924       else
1925         AllExplicitSpecHeaders = false;
1926     }
1927 
1928     Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1929          AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
1930                                 : diag::err_template_spec_extra_headers)
1931         << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1932                        ParamLists[ParamLists.size() - 2]->getRAngleLoc());
1933 
1934     // If there was a specialization somewhere, such that 'template<>' is
1935     // not required, and there were any 'template<>' headers, note where the
1936     // specialization occurred.
1937     if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1938       Diag(ExplicitSpecLoc,
1939            diag::note_explicit_template_spec_does_not_need_header)
1940         << NestedTypes.back();
1941 
1942     // We have a template parameter list with no corresponding scope, which
1943     // means that the resulting template declaration can't be instantiated
1944     // properly (we'll end up with dependent nodes when we shouldn't).
1945     if (!AllExplicitSpecHeaders)
1946       Invalid = true;
1947   }
1948 
1949   // C++ [temp.expl.spec]p16:
1950   //   In an explicit specialization declaration for a member of a class
1951   //   template or a member template that ap- pears in namespace scope, the
1952   //   member template and some of its enclosing class templates may remain
1953   //   unspecialized, except that the declaration shall not explicitly
1954   //   specialize a class member template if its en- closing class templates
1955   //   are not explicitly specialized as well.
1956   if (ParamLists.back()->size() == 0 &&
1957       CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
1958                                   false))
1959     return nullptr;
1960 
1961   // Return the last template parameter list, which corresponds to the
1962   // entity being declared.
1963   return ParamLists.back();
1964 }
1965 
NoteAllFoundTemplates(TemplateName Name)1966 void Sema::NoteAllFoundTemplates(TemplateName Name) {
1967   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1968     Diag(Template->getLocation(), diag::note_template_declared_here)
1969         << (isa<FunctionTemplateDecl>(Template)
1970                 ? 0
1971                 : isa<ClassTemplateDecl>(Template)
1972                       ? 1
1973                       : isa<VarTemplateDecl>(Template)
1974                             ? 2
1975                             : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
1976         << Template->getDeclName();
1977     return;
1978   }
1979 
1980   if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1981     for (OverloadedTemplateStorage::iterator I = OST->begin(),
1982                                           IEnd = OST->end();
1983          I != IEnd; ++I)
1984       Diag((*I)->getLocation(), diag::note_template_declared_here)
1985         << 0 << (*I)->getDeclName();
1986 
1987     return;
1988   }
1989 }
1990 
CheckTemplateIdType(TemplateName Name,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)1991 QualType Sema::CheckTemplateIdType(TemplateName Name,
1992                                    SourceLocation TemplateLoc,
1993                                    TemplateArgumentListInfo &TemplateArgs) {
1994   DependentTemplateName *DTN
1995     = Name.getUnderlying().getAsDependentTemplateName();
1996   if (DTN && DTN->isIdentifier())
1997     // When building a template-id where the template-name is dependent,
1998     // assume the template is a type template. Either our assumption is
1999     // correct, or the code is ill-formed and will be diagnosed when the
2000     // dependent name is substituted.
2001     return Context.getDependentTemplateSpecializationType(ETK_None,
2002                                                           DTN->getQualifier(),
2003                                                           DTN->getIdentifier(),
2004                                                           TemplateArgs);
2005 
2006   TemplateDecl *Template = Name.getAsTemplateDecl();
2007   if (!Template || isa<FunctionTemplateDecl>(Template) ||
2008       isa<VarTemplateDecl>(Template)) {
2009     // We might have a substituted template template parameter pack. If so,
2010     // build a template specialization type for it.
2011     if (Name.getAsSubstTemplateTemplateParmPack())
2012       return Context.getTemplateSpecializationType(Name, TemplateArgs);
2013 
2014     Diag(TemplateLoc, diag::err_template_id_not_a_type)
2015       << Name;
2016     NoteAllFoundTemplates(Name);
2017     return QualType();
2018   }
2019 
2020   // Check that the template argument list is well-formed for this
2021   // template.
2022   SmallVector<TemplateArgument, 4> Converted;
2023   if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
2024                                 false, Converted))
2025     return QualType();
2026 
2027   QualType CanonType;
2028 
2029   bool InstantiationDependent = false;
2030   if (TypeAliasTemplateDecl *AliasTemplate =
2031           dyn_cast<TypeAliasTemplateDecl>(Template)) {
2032     // Find the canonical type for this type alias template specialization.
2033     TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
2034     if (Pattern->isInvalidDecl())
2035       return QualType();
2036 
2037     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2038                                       Converted.data(), Converted.size());
2039 
2040     // Only substitute for the innermost template argument list.
2041     MultiLevelTemplateArgumentList TemplateArgLists;
2042     TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
2043     unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
2044     for (unsigned I = 0; I < Depth; ++I)
2045       TemplateArgLists.addOuterTemplateArguments(None);
2046 
2047     LocalInstantiationScope Scope(*this);
2048     InstantiatingTemplate Inst(*this, TemplateLoc, Template);
2049     if (Inst.isInvalid())
2050       return QualType();
2051 
2052     CanonType = SubstType(Pattern->getUnderlyingType(),
2053                           TemplateArgLists, AliasTemplate->getLocation(),
2054                           AliasTemplate->getDeclName());
2055     if (CanonType.isNull())
2056       return QualType();
2057   } else if (Name.isDependent() ||
2058              TemplateSpecializationType::anyDependentTemplateArguments(
2059                TemplateArgs, InstantiationDependent)) {
2060     // This class template specialization is a dependent
2061     // type. Therefore, its canonical type is another class template
2062     // specialization type that contains all of the converted
2063     // arguments in canonical form. This ensures that, e.g., A<T> and
2064     // A<T, T> have identical types when A is declared as:
2065     //
2066     //   template<typename T, typename U = T> struct A;
2067     TemplateName CanonName = Context.getCanonicalTemplateName(Name);
2068     CanonType = Context.getTemplateSpecializationType(CanonName,
2069                                                       Converted.data(),
2070                                                       Converted.size());
2071 
2072     // FIXME: CanonType is not actually the canonical type, and unfortunately
2073     // it is a TemplateSpecializationType that we will never use again.
2074     // In the future, we need to teach getTemplateSpecializationType to only
2075     // build the canonical type and return that to us.
2076     CanonType = Context.getCanonicalType(CanonType);
2077 
2078     // This might work out to be a current instantiation, in which
2079     // case the canonical type needs to be the InjectedClassNameType.
2080     //
2081     // TODO: in theory this could be a simple hashtable lookup; most
2082     // changes to CurContext don't change the set of current
2083     // instantiations.
2084     if (isa<ClassTemplateDecl>(Template)) {
2085       for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
2086         // If we get out to a namespace, we're done.
2087         if (Ctx->isFileContext()) break;
2088 
2089         // If this isn't a record, keep looking.
2090         CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
2091         if (!Record) continue;
2092 
2093         // Look for one of the two cases with InjectedClassNameTypes
2094         // and check whether it's the same template.
2095         if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
2096             !Record->getDescribedClassTemplate())
2097           continue;
2098 
2099         // Fetch the injected class name type and check whether its
2100         // injected type is equal to the type we just built.
2101         QualType ICNT = Context.getTypeDeclType(Record);
2102         QualType Injected = cast<InjectedClassNameType>(ICNT)
2103           ->getInjectedSpecializationType();
2104 
2105         if (CanonType != Injected->getCanonicalTypeInternal())
2106           continue;
2107 
2108         // If so, the canonical type of this TST is the injected
2109         // class name type of the record we just found.
2110         assert(ICNT.isCanonical());
2111         CanonType = ICNT;
2112         break;
2113       }
2114     }
2115   } else if (ClassTemplateDecl *ClassTemplate
2116                = dyn_cast<ClassTemplateDecl>(Template)) {
2117     // Find the class template specialization declaration that
2118     // corresponds to these arguments.
2119     void *InsertPos = nullptr;
2120     ClassTemplateSpecializationDecl *Decl
2121       = ClassTemplate->findSpecialization(Converted, InsertPos);
2122     if (!Decl) {
2123       // This is the first time we have referenced this class template
2124       // specialization. Create the canonical declaration and add it to
2125       // the set of specializations.
2126       Decl = ClassTemplateSpecializationDecl::Create(Context,
2127                             ClassTemplate->getTemplatedDecl()->getTagKind(),
2128                                                 ClassTemplate->getDeclContext(),
2129                             ClassTemplate->getTemplatedDecl()->getLocStart(),
2130                                                 ClassTemplate->getLocation(),
2131                                                      ClassTemplate,
2132                                                      Converted.data(),
2133                                                      Converted.size(), nullptr);
2134       ClassTemplate->AddSpecialization(Decl, InsertPos);
2135       if (ClassTemplate->isOutOfLine())
2136         Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
2137     }
2138 
2139     // Diagnose uses of this specialization.
2140     (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
2141 
2142     CanonType = Context.getTypeDeclType(Decl);
2143     assert(isa<RecordType>(CanonType) &&
2144            "type of non-dependent specialization is not a RecordType");
2145   }
2146 
2147   // Build the fully-sugared type for this class template
2148   // specialization, which refers back to the class template
2149   // specialization we created or found.
2150   return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2151 }
2152 
2153 TypeResult
ActOnTemplateIdType(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,bool IsCtorOrDtorName)2154 Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
2155                           TemplateTy TemplateD, SourceLocation TemplateLoc,
2156                           SourceLocation LAngleLoc,
2157                           ASTTemplateArgsPtr TemplateArgsIn,
2158                           SourceLocation RAngleLoc,
2159                           bool IsCtorOrDtorName) {
2160   if (SS.isInvalid())
2161     return true;
2162 
2163   TemplateName Template = TemplateD.get();
2164 
2165   // Translate the parser's template argument list in our AST format.
2166   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2167   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2168 
2169   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2170     QualType T
2171       = Context.getDependentTemplateSpecializationType(ETK_None,
2172                                                        DTN->getQualifier(),
2173                                                        DTN->getIdentifier(),
2174                                                        TemplateArgs);
2175     // Build type-source information.
2176     TypeLocBuilder TLB;
2177     DependentTemplateSpecializationTypeLoc SpecTL
2178       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2179     SpecTL.setElaboratedKeywordLoc(SourceLocation());
2180     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2181     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2182     SpecTL.setTemplateNameLoc(TemplateLoc);
2183     SpecTL.setLAngleLoc(LAngleLoc);
2184     SpecTL.setRAngleLoc(RAngleLoc);
2185     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2186       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2187     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2188   }
2189 
2190   QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2191 
2192   if (Result.isNull())
2193     return true;
2194 
2195   // Build type-source information.
2196   TypeLocBuilder TLB;
2197   TemplateSpecializationTypeLoc SpecTL
2198     = TLB.push<TemplateSpecializationTypeLoc>(Result);
2199   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2200   SpecTL.setTemplateNameLoc(TemplateLoc);
2201   SpecTL.setLAngleLoc(LAngleLoc);
2202   SpecTL.setRAngleLoc(RAngleLoc);
2203   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2204     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2205 
2206   // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2207   // constructor or destructor name (in such a case, the scope specifier
2208   // will be attached to the enclosing Decl or Expr node).
2209   if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2210     // Create an elaborated-type-specifier containing the nested-name-specifier.
2211     Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2212     ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2213     ElabTL.setElaboratedKeywordLoc(SourceLocation());
2214     ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2215   }
2216 
2217   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2218 }
2219 
ActOnTagTemplateIdType(TagUseKind TUK,TypeSpecifierType TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)2220 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2221                                         TypeSpecifierType TagSpec,
2222                                         SourceLocation TagLoc,
2223                                         CXXScopeSpec &SS,
2224                                         SourceLocation TemplateKWLoc,
2225                                         TemplateTy TemplateD,
2226                                         SourceLocation TemplateLoc,
2227                                         SourceLocation LAngleLoc,
2228                                         ASTTemplateArgsPtr TemplateArgsIn,
2229                                         SourceLocation RAngleLoc) {
2230   TemplateName Template = TemplateD.get();
2231 
2232   // Translate the parser's template argument list in our AST format.
2233   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2234   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2235 
2236   // Determine the tag kind
2237   TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2238   ElaboratedTypeKeyword Keyword
2239     = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2240 
2241   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2242     QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2243                                                           DTN->getQualifier(),
2244                                                           DTN->getIdentifier(),
2245                                                                 TemplateArgs);
2246 
2247     // Build type-source information.
2248     TypeLocBuilder TLB;
2249     DependentTemplateSpecializationTypeLoc SpecTL
2250       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2251     SpecTL.setElaboratedKeywordLoc(TagLoc);
2252     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2253     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2254     SpecTL.setTemplateNameLoc(TemplateLoc);
2255     SpecTL.setLAngleLoc(LAngleLoc);
2256     SpecTL.setRAngleLoc(RAngleLoc);
2257     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2258       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2259     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2260   }
2261 
2262   if (TypeAliasTemplateDecl *TAT =
2263         dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2264     // C++0x [dcl.type.elab]p2:
2265     //   If the identifier resolves to a typedef-name or the simple-template-id
2266     //   resolves to an alias template specialization, the
2267     //   elaborated-type-specifier is ill-formed.
2268     Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2269     Diag(TAT->getLocation(), diag::note_declared_at);
2270   }
2271 
2272   QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2273   if (Result.isNull())
2274     return TypeResult(true);
2275 
2276   // Check the tag kind
2277   if (const RecordType *RT = Result->getAs<RecordType>()) {
2278     RecordDecl *D = RT->getDecl();
2279 
2280     IdentifierInfo *Id = D->getIdentifier();
2281     assert(Id && "templated class must have an identifier");
2282 
2283     if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2284                                       TagLoc, *Id)) {
2285       Diag(TagLoc, diag::err_use_with_wrong_tag)
2286         << Result
2287         << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2288       Diag(D->getLocation(), diag::note_previous_use);
2289     }
2290   }
2291 
2292   // Provide source-location information for the template specialization.
2293   TypeLocBuilder TLB;
2294   TemplateSpecializationTypeLoc SpecTL
2295     = TLB.push<TemplateSpecializationTypeLoc>(Result);
2296   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2297   SpecTL.setTemplateNameLoc(TemplateLoc);
2298   SpecTL.setLAngleLoc(LAngleLoc);
2299   SpecTL.setRAngleLoc(RAngleLoc);
2300   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2301     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2302 
2303   // Construct an elaborated type containing the nested-name-specifier (if any)
2304   // and tag keyword.
2305   Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2306   ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2307   ElabTL.setElaboratedKeywordLoc(TagLoc);
2308   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2309   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2310 }
2311 
2312 static bool CheckTemplatePartialSpecializationArgs(
2313     Sema &S, SourceLocation NameLoc, TemplateParameterList *TemplateParams,
2314     unsigned ExplicitArgs, SmallVectorImpl<TemplateArgument> &TemplateArgs);
2315 
2316 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
2317                                              NamedDecl *PrevDecl,
2318                                              SourceLocation Loc,
2319                                              bool IsPartialSpecialization);
2320 
2321 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
2322 
isTemplateArgumentTemplateParameter(const TemplateArgument & Arg,unsigned Depth,unsigned Index)2323 static bool isTemplateArgumentTemplateParameter(
2324     const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
2325   switch (Arg.getKind()) {
2326   case TemplateArgument::Null:
2327   case TemplateArgument::NullPtr:
2328   case TemplateArgument::Integral:
2329   case TemplateArgument::Declaration:
2330   case TemplateArgument::Pack:
2331   case TemplateArgument::TemplateExpansion:
2332     return false;
2333 
2334   case TemplateArgument::Type: {
2335     QualType Type = Arg.getAsType();
2336     const TemplateTypeParmType *TPT =
2337         Arg.getAsType()->getAs<TemplateTypeParmType>();
2338     return TPT && !Type.hasQualifiers() &&
2339            TPT->getDepth() == Depth && TPT->getIndex() == Index;
2340   }
2341 
2342   case TemplateArgument::Expression: {
2343     DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
2344     if (!DRE || !DRE->getDecl())
2345       return false;
2346     const NonTypeTemplateParmDecl *NTTP =
2347         dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
2348     return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
2349   }
2350 
2351   case TemplateArgument::Template:
2352     const TemplateTemplateParmDecl *TTP =
2353         dyn_cast_or_null<TemplateTemplateParmDecl>(
2354             Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
2355     return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
2356   }
2357   llvm_unreachable("unexpected kind of template argument");
2358 }
2359 
isSameAsPrimaryTemplate(TemplateParameterList * Params,ArrayRef<TemplateArgument> Args)2360 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
2361                                     ArrayRef<TemplateArgument> Args) {
2362   if (Params->size() != Args.size())
2363     return false;
2364 
2365   unsigned Depth = Params->getDepth();
2366 
2367   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2368     TemplateArgument Arg = Args[I];
2369 
2370     // If the parameter is a pack expansion, the argument must be a pack
2371     // whose only element is a pack expansion.
2372     if (Params->getParam(I)->isParameterPack()) {
2373       if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
2374           !Arg.pack_begin()->isPackExpansion())
2375         return false;
2376       Arg = Arg.pack_begin()->getPackExpansionPattern();
2377     }
2378 
2379     if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
2380       return false;
2381   }
2382 
2383   return true;
2384 }
2385 
2386 /// Convert the parser's template argument list representation into our form.
2387 static TemplateArgumentListInfo
makeTemplateArgumentListInfo(Sema & S,TemplateIdAnnotation & TemplateId)2388 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
2389   TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
2390                                         TemplateId.RAngleLoc);
2391   ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
2392                                      TemplateId.NumArgs);
2393   S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
2394   return TemplateArgs;
2395 }
2396 
ActOnVarTemplateSpecialization(Scope * S,Declarator & D,TypeSourceInfo * DI,SourceLocation TemplateKWLoc,TemplateParameterList * TemplateParams,StorageClass SC,bool IsPartialSpecialization)2397 DeclResult Sema::ActOnVarTemplateSpecialization(
2398     Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
2399     TemplateParameterList *TemplateParams, StorageClass SC,
2400     bool IsPartialSpecialization) {
2401   // D must be variable template id.
2402   assert(D.getName().getKind() == UnqualifiedId::IK_TemplateId &&
2403          "Variable template specialization is declared with a template it.");
2404 
2405   TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2406   TemplateArgumentListInfo TemplateArgs =
2407       makeTemplateArgumentListInfo(*this, *TemplateId);
2408   SourceLocation TemplateNameLoc = D.getIdentifierLoc();
2409   SourceLocation LAngleLoc = TemplateId->LAngleLoc;
2410   SourceLocation RAngleLoc = TemplateId->RAngleLoc;
2411 
2412   TemplateName Name = TemplateId->Template.get();
2413 
2414   // The template-id must name a variable template.
2415   VarTemplateDecl *VarTemplate =
2416       dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
2417   if (!VarTemplate) {
2418     NamedDecl *FnTemplate;
2419     if (auto *OTS = Name.getAsOverloadedTemplate())
2420       FnTemplate = *OTS->begin();
2421     else
2422       FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
2423     if (FnTemplate)
2424       return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
2425                << FnTemplate->getDeclName();
2426     return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
2427              << IsPartialSpecialization;
2428   }
2429 
2430   // Check for unexpanded parameter packs in any of the template arguments.
2431   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2432     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
2433                                         UPPC_PartialSpecialization))
2434       return true;
2435 
2436   // Check that the template argument list is well-formed for this
2437   // template.
2438   SmallVector<TemplateArgument, 4> Converted;
2439   if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
2440                                 false, Converted))
2441     return true;
2442 
2443   // Check that the type of this variable template specialization
2444   // matches the expected type.
2445   TypeSourceInfo *ExpectedDI;
2446   {
2447     // Do substitution on the type of the declaration
2448     TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
2449                                          Converted.data(), Converted.size());
2450     InstantiatingTemplate Inst(*this, TemplateKWLoc, VarTemplate);
2451     if (Inst.isInvalid())
2452       return true;
2453     VarDecl *Templated = VarTemplate->getTemplatedDecl();
2454     ExpectedDI =
2455         SubstType(Templated->getTypeSourceInfo(),
2456                   MultiLevelTemplateArgumentList(TemplateArgList),
2457                   Templated->getTypeSpecStartLoc(), Templated->getDeclName());
2458   }
2459   if (!ExpectedDI)
2460     return true;
2461 
2462   // Find the variable template (partial) specialization declaration that
2463   // corresponds to these arguments.
2464   if (IsPartialSpecialization) {
2465     if (CheckTemplatePartialSpecializationArgs(
2466             *this, TemplateNameLoc, VarTemplate->getTemplateParameters(),
2467             TemplateArgs.size(), Converted))
2468       return true;
2469 
2470     bool InstantiationDependent;
2471     if (!Name.isDependent() &&
2472         !TemplateSpecializationType::anyDependentTemplateArguments(
2473             TemplateArgs.getArgumentArray(), TemplateArgs.size(),
2474             InstantiationDependent)) {
2475       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
2476           << VarTemplate->getDeclName();
2477       IsPartialSpecialization = false;
2478     }
2479 
2480     if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
2481                                 Converted)) {
2482       // C++ [temp.class.spec]p9b3:
2483       //
2484       //   -- The argument list of the specialization shall not be identical
2485       //      to the implicit argument list of the primary template.
2486       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
2487         << /*variable template*/ 1
2488         << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
2489         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
2490       // FIXME: Recover from this by treating the declaration as a redeclaration
2491       // of the primary template.
2492       return true;
2493     }
2494   }
2495 
2496   void *InsertPos = nullptr;
2497   VarTemplateSpecializationDecl *PrevDecl = nullptr;
2498 
2499   if (IsPartialSpecialization)
2500     // FIXME: Template parameter list matters too
2501     PrevDecl = VarTemplate->findPartialSpecialization(Converted, InsertPos);
2502   else
2503     PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos);
2504 
2505   VarTemplateSpecializationDecl *Specialization = nullptr;
2506 
2507   // Check whether we can declare a variable template specialization in
2508   // the current scope.
2509   if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
2510                                        TemplateNameLoc,
2511                                        IsPartialSpecialization))
2512     return true;
2513 
2514   if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
2515     // Since the only prior variable template specialization with these
2516     // arguments was referenced but not declared,  reuse that
2517     // declaration node as our own, updating its source location and
2518     // the list of outer template parameters to reflect our new declaration.
2519     Specialization = PrevDecl;
2520     Specialization->setLocation(TemplateNameLoc);
2521     PrevDecl = nullptr;
2522   } else if (IsPartialSpecialization) {
2523     // Create a new class template partial specialization declaration node.
2524     VarTemplatePartialSpecializationDecl *PrevPartial =
2525         cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
2526     VarTemplatePartialSpecializationDecl *Partial =
2527         VarTemplatePartialSpecializationDecl::Create(
2528             Context, VarTemplate->getDeclContext(), TemplateKWLoc,
2529             TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
2530             Converted.data(), Converted.size(), TemplateArgs);
2531 
2532     if (!PrevPartial)
2533       VarTemplate->AddPartialSpecialization(Partial, InsertPos);
2534     Specialization = Partial;
2535 
2536     // If we are providing an explicit specialization of a member variable
2537     // template specialization, make a note of that.
2538     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
2539       PrevPartial->setMemberSpecialization();
2540 
2541     // Check that all of the template parameters of the variable template
2542     // partial specialization are deducible from the template
2543     // arguments. If not, this variable template partial specialization
2544     // will never be used.
2545     llvm::SmallBitVector DeducibleParams(TemplateParams->size());
2546     MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
2547                                TemplateParams->getDepth(), DeducibleParams);
2548 
2549     if (!DeducibleParams.all()) {
2550       unsigned NumNonDeducible =
2551           DeducibleParams.size() - DeducibleParams.count();
2552       Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
2553         << /*variable template*/ 1 << (NumNonDeducible > 1)
2554         << SourceRange(TemplateNameLoc, RAngleLoc);
2555       for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
2556         if (!DeducibleParams[I]) {
2557           NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
2558           if (Param->getDeclName())
2559             Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2560                 << Param->getDeclName();
2561           else
2562             Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2563                 << "(anonymous)";
2564         }
2565       }
2566     }
2567   } else {
2568     // Create a new class template specialization declaration node for
2569     // this explicit specialization or friend declaration.
2570     Specialization = VarTemplateSpecializationDecl::Create(
2571         Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
2572         VarTemplate, DI->getType(), DI, SC, Converted.data(), Converted.size());
2573     Specialization->setTemplateArgsInfo(TemplateArgs);
2574 
2575     if (!PrevDecl)
2576       VarTemplate->AddSpecialization(Specialization, InsertPos);
2577   }
2578 
2579   // C++ [temp.expl.spec]p6:
2580   //   If a template, a member template or the member of a class template is
2581   //   explicitly specialized then that specialization shall be declared
2582   //   before the first use of that specialization that would cause an implicit
2583   //   instantiation to take place, in every translation unit in which such a
2584   //   use occurs; no diagnostic is required.
2585   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
2586     bool Okay = false;
2587     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
2588       // Is there any previous explicit specialization declaration?
2589       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
2590         Okay = true;
2591         break;
2592       }
2593     }
2594 
2595     if (!Okay) {
2596       SourceRange Range(TemplateNameLoc, RAngleLoc);
2597       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
2598           << Name << Range;
2599 
2600       Diag(PrevDecl->getPointOfInstantiation(),
2601            diag::note_instantiation_required_here)
2602           << (PrevDecl->getTemplateSpecializationKind() !=
2603               TSK_ImplicitInstantiation);
2604       return true;
2605     }
2606   }
2607 
2608   Specialization->setTemplateKeywordLoc(TemplateKWLoc);
2609   Specialization->setLexicalDeclContext(CurContext);
2610 
2611   // Add the specialization into its lexical context, so that it can
2612   // be seen when iterating through the list of declarations in that
2613   // context. However, specializations are not found by name lookup.
2614   CurContext->addDecl(Specialization);
2615 
2616   // Note that this is an explicit specialization.
2617   Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
2618 
2619   if (PrevDecl) {
2620     // Check that this isn't a redefinition of this specialization,
2621     // merging with previous declarations.
2622     LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
2623                           ForRedeclaration);
2624     PrevSpec.addDecl(PrevDecl);
2625     D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
2626   } else if (Specialization->isStaticDataMember() &&
2627              Specialization->isOutOfLine()) {
2628     Specialization->setAccess(VarTemplate->getAccess());
2629   }
2630 
2631   // Link instantiations of static data members back to the template from
2632   // which they were instantiated.
2633   if (Specialization->isStaticDataMember())
2634     Specialization->setInstantiationOfStaticDataMember(
2635         VarTemplate->getTemplatedDecl(),
2636         Specialization->getSpecializationKind());
2637 
2638   return Specialization;
2639 }
2640 
2641 namespace {
2642 /// \brief A partial specialization whose template arguments have matched
2643 /// a given template-id.
2644 struct PartialSpecMatchResult {
2645   VarTemplatePartialSpecializationDecl *Partial;
2646   TemplateArgumentList *Args;
2647 };
2648 }
2649 
2650 DeclResult
CheckVarTemplateId(VarTemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation TemplateNameLoc,const TemplateArgumentListInfo & TemplateArgs)2651 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
2652                          SourceLocation TemplateNameLoc,
2653                          const TemplateArgumentListInfo &TemplateArgs) {
2654   assert(Template && "A variable template id without template?");
2655 
2656   // Check that the template argument list is well-formed for this template.
2657   SmallVector<TemplateArgument, 4> Converted;
2658   if (CheckTemplateArgumentList(
2659           Template, TemplateNameLoc,
2660           const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
2661           Converted))
2662     return true;
2663 
2664   // Find the variable template specialization declaration that
2665   // corresponds to these arguments.
2666   void *InsertPos = nullptr;
2667   if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
2668           Converted, InsertPos))
2669     // If we already have a variable template specialization, return it.
2670     return Spec;
2671 
2672   // This is the first time we have referenced this variable template
2673   // specialization. Create the canonical declaration and add it to
2674   // the set of specializations, based on the closest partial specialization
2675   // that it represents. That is,
2676   VarDecl *InstantiationPattern = Template->getTemplatedDecl();
2677   TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
2678                                        Converted.data(), Converted.size());
2679   TemplateArgumentList *InstantiationArgs = &TemplateArgList;
2680   bool AmbiguousPartialSpec = false;
2681   typedef PartialSpecMatchResult MatchResult;
2682   SmallVector<MatchResult, 4> Matched;
2683   SourceLocation PointOfInstantiation = TemplateNameLoc;
2684   TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation);
2685 
2686   // 1. Attempt to find the closest partial specialization that this
2687   // specializes, if any.
2688   // If any of the template arguments is dependent, then this is probably
2689   // a placeholder for an incomplete declarative context; which must be
2690   // complete by instantiation time. Thus, do not search through the partial
2691   // specializations yet.
2692   // TODO: Unify with InstantiateClassTemplateSpecialization()?
2693   //       Perhaps better after unification of DeduceTemplateArguments() and
2694   //       getMoreSpecializedPartialSpecialization().
2695   bool InstantiationDependent = false;
2696   if (!TemplateSpecializationType::anyDependentTemplateArguments(
2697           TemplateArgs, InstantiationDependent)) {
2698 
2699     SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
2700     Template->getPartialSpecializations(PartialSpecs);
2701 
2702     for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
2703       VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
2704       TemplateDeductionInfo Info(FailedCandidates.getLocation());
2705 
2706       if (TemplateDeductionResult Result =
2707               DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
2708         // Store the failed-deduction information for use in diagnostics, later.
2709         // TODO: Actually use the failed-deduction info?
2710         FailedCandidates.addCandidate()
2711             .set(Partial, MakeDeductionFailureInfo(Context, Result, Info));
2712         (void)Result;
2713       } else {
2714         Matched.push_back(PartialSpecMatchResult());
2715         Matched.back().Partial = Partial;
2716         Matched.back().Args = Info.take();
2717       }
2718     }
2719 
2720     if (Matched.size() >= 1) {
2721       SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
2722       if (Matched.size() == 1) {
2723         //   -- If exactly one matching specialization is found, the
2724         //      instantiation is generated from that specialization.
2725         // We don't need to do anything for this.
2726       } else {
2727         //   -- If more than one matching specialization is found, the
2728         //      partial order rules (14.5.4.2) are used to determine
2729         //      whether one of the specializations is more specialized
2730         //      than the others. If none of the specializations is more
2731         //      specialized than all of the other matching
2732         //      specializations, then the use of the variable template is
2733         //      ambiguous and the program is ill-formed.
2734         for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
2735                                                    PEnd = Matched.end();
2736              P != PEnd; ++P) {
2737           if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
2738                                                       PointOfInstantiation) ==
2739               P->Partial)
2740             Best = P;
2741         }
2742 
2743         // Determine if the best partial specialization is more specialized than
2744         // the others.
2745         for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2746                                                    PEnd = Matched.end();
2747              P != PEnd; ++P) {
2748           if (P != Best && getMoreSpecializedPartialSpecialization(
2749                                P->Partial, Best->Partial,
2750                                PointOfInstantiation) != Best->Partial) {
2751             AmbiguousPartialSpec = true;
2752             break;
2753           }
2754         }
2755       }
2756 
2757       // Instantiate using the best variable template partial specialization.
2758       InstantiationPattern = Best->Partial;
2759       InstantiationArgs = Best->Args;
2760     } else {
2761       //   -- If no match is found, the instantiation is generated
2762       //      from the primary template.
2763       // InstantiationPattern = Template->getTemplatedDecl();
2764     }
2765   }
2766 
2767   // 2. Create the canonical declaration.
2768   // Note that we do not instantiate the variable just yet, since
2769   // instantiation is handled in DoMarkVarDeclReferenced().
2770   // FIXME: LateAttrs et al.?
2771   VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
2772       Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
2773       Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
2774   if (!Decl)
2775     return true;
2776 
2777   if (AmbiguousPartialSpec) {
2778     // Partial ordering did not produce a clear winner. Complain.
2779     Decl->setInvalidDecl();
2780     Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
2781         << Decl;
2782 
2783     // Print the matching partial specializations.
2784     for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2785                                                PEnd = Matched.end();
2786          P != PEnd; ++P)
2787       Diag(P->Partial->getLocation(), diag::note_partial_spec_match)
2788           << getTemplateArgumentBindingsText(
2789                  P->Partial->getTemplateParameters(), *P->Args);
2790     return true;
2791   }
2792 
2793   if (VarTemplatePartialSpecializationDecl *D =
2794           dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
2795     Decl->setInstantiationOf(D, InstantiationArgs);
2796 
2797   assert(Decl && "No variable template specialization?");
2798   return Decl;
2799 }
2800 
2801 ExprResult
CheckVarTemplateId(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,VarTemplateDecl * Template,SourceLocation TemplateLoc,const TemplateArgumentListInfo * TemplateArgs)2802 Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
2803                          const DeclarationNameInfo &NameInfo,
2804                          VarTemplateDecl *Template, SourceLocation TemplateLoc,
2805                          const TemplateArgumentListInfo *TemplateArgs) {
2806 
2807   DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
2808                                        *TemplateArgs);
2809   if (Decl.isInvalid())
2810     return ExprError();
2811 
2812   VarDecl *Var = cast<VarDecl>(Decl.get());
2813   if (!Var->getTemplateSpecializationKind())
2814     Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
2815                                        NameInfo.getLoc());
2816 
2817   // Build an ordinary singleton decl ref.
2818   return BuildDeclarationNameExpr(SS, NameInfo, Var,
2819                                   /*FoundD=*/nullptr, TemplateArgs);
2820 }
2821 
BuildTemplateIdExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,bool RequiresADL,const TemplateArgumentListInfo * TemplateArgs)2822 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2823                                      SourceLocation TemplateKWLoc,
2824                                      LookupResult &R,
2825                                      bool RequiresADL,
2826                                  const TemplateArgumentListInfo *TemplateArgs) {
2827   // FIXME: Can we do any checking at this point? I guess we could check the
2828   // template arguments that we have against the template name, if the template
2829   // name refers to a single template. That's not a terribly common case,
2830   // though.
2831   // foo<int> could identify a single function unambiguously
2832   // This approach does NOT work, since f<int>(1);
2833   // gets resolved prior to resorting to overload resolution
2834   // i.e., template<class T> void f(double);
2835   //       vs template<class T, class U> void f(U);
2836 
2837   // These should be filtered out by our callers.
2838   assert(!R.empty() && "empty lookup results when building templateid");
2839   assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2840 
2841   // In C++1y, check variable template ids.
2842   bool InstantiationDependent;
2843   if (R.getAsSingle<VarTemplateDecl>() &&
2844       !TemplateSpecializationType::anyDependentTemplateArguments(
2845            *TemplateArgs, InstantiationDependent)) {
2846     return CheckVarTemplateId(SS, R.getLookupNameInfo(),
2847                               R.getAsSingle<VarTemplateDecl>(),
2848                               TemplateKWLoc, TemplateArgs);
2849   }
2850 
2851   // We don't want lookup warnings at this point.
2852   R.suppressDiagnostics();
2853 
2854   UnresolvedLookupExpr *ULE
2855     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2856                                    SS.getWithLocInContext(Context),
2857                                    TemplateKWLoc,
2858                                    R.getLookupNameInfo(),
2859                                    RequiresADL, TemplateArgs,
2860                                    R.begin(), R.end());
2861 
2862   return ULE;
2863 }
2864 
2865 // We actually only call this from template instantiation.
2866 ExprResult
BuildQualifiedTemplateIdExpr(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)2867 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2868                                    SourceLocation TemplateKWLoc,
2869                                    const DeclarationNameInfo &NameInfo,
2870                              const TemplateArgumentListInfo *TemplateArgs) {
2871 
2872   assert(TemplateArgs || TemplateKWLoc.isValid());
2873   DeclContext *DC;
2874   if (!(DC = computeDeclContext(SS, false)) ||
2875       DC->isDependentContext() ||
2876       RequireCompleteDeclContext(SS, DC))
2877     return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
2878 
2879   bool MemberOfUnknownSpecialization;
2880   LookupResult R(*this, NameInfo, LookupOrdinaryName);
2881   LookupTemplateName(R, (Scope*)nullptr, SS, QualType(), /*Entering*/ false,
2882                      MemberOfUnknownSpecialization);
2883 
2884   if (R.isAmbiguous())
2885     return ExprError();
2886 
2887   if (R.empty()) {
2888     Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2889       << NameInfo.getName() << SS.getRange();
2890     return ExprError();
2891   }
2892 
2893   if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2894     Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2895       << SS.getScopeRep()
2896       << NameInfo.getName().getAsString() << SS.getRange();
2897     Diag(Temp->getLocation(), diag::note_referenced_class_template);
2898     return ExprError();
2899   }
2900 
2901   return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
2902 }
2903 
2904 /// \brief Form a dependent template name.
2905 ///
2906 /// This action forms a dependent template name given the template
2907 /// name and its (presumably dependent) scope specifier. For
2908 /// example, given "MetaFun::template apply", the scope specifier \p
2909 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2910 /// of the "template" keyword, and "apply" is the \p Name.
ActOnDependentTemplateName(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Name,ParsedType ObjectType,bool EnteringContext,TemplateTy & Result)2911 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2912                                                   CXXScopeSpec &SS,
2913                                                   SourceLocation TemplateKWLoc,
2914                                                   UnqualifiedId &Name,
2915                                                   ParsedType ObjectType,
2916                                                   bool EnteringContext,
2917                                                   TemplateTy &Result) {
2918   if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
2919     Diag(TemplateKWLoc,
2920          getLangOpts().CPlusPlus11 ?
2921            diag::warn_cxx98_compat_template_outside_of_template :
2922            diag::ext_template_outside_of_template)
2923       << FixItHint::CreateRemoval(TemplateKWLoc);
2924 
2925   DeclContext *LookupCtx = nullptr;
2926   if (SS.isSet())
2927     LookupCtx = computeDeclContext(SS, EnteringContext);
2928   if (!LookupCtx && ObjectType)
2929     LookupCtx = computeDeclContext(ObjectType.get());
2930   if (LookupCtx) {
2931     // C++0x [temp.names]p5:
2932     //   If a name prefixed by the keyword template is not the name of
2933     //   a template, the program is ill-formed. [Note: the keyword
2934     //   template may not be applied to non-template members of class
2935     //   templates. -end note ] [ Note: as is the case with the
2936     //   typename prefix, the template prefix is allowed in cases
2937     //   where it is not strictly necessary; i.e., when the
2938     //   nested-name-specifier or the expression on the left of the ->
2939     //   or . is not dependent on a template-parameter, or the use
2940     //   does not appear in the scope of a template. -end note]
2941     //
2942     // Note: C++03 was more strict here, because it banned the use of
2943     // the "template" keyword prior to a template-name that was not a
2944     // dependent name. C++ DR468 relaxed this requirement (the
2945     // "template" keyword is now permitted). We follow the C++0x
2946     // rules, even in C++03 mode with a warning, retroactively applying the DR.
2947     bool MemberOfUnknownSpecialization;
2948     TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
2949                                           ObjectType, EnteringContext, Result,
2950                                           MemberOfUnknownSpecialization);
2951     if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2952         isa<CXXRecordDecl>(LookupCtx) &&
2953         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2954          cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2955       // This is a dependent template. Handle it below.
2956     } else if (TNK == TNK_Non_template) {
2957       Diag(Name.getLocStart(),
2958            diag::err_template_kw_refers_to_non_template)
2959         << GetNameFromUnqualifiedId(Name).getName()
2960         << Name.getSourceRange()
2961         << TemplateKWLoc;
2962       return TNK_Non_template;
2963     } else {
2964       // We found something; return it.
2965       return TNK;
2966     }
2967   }
2968 
2969   NestedNameSpecifier *Qualifier = SS.getScopeRep();
2970 
2971   switch (Name.getKind()) {
2972   case UnqualifiedId::IK_Identifier:
2973     Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2974                                                               Name.Identifier));
2975     return TNK_Dependent_template_name;
2976 
2977   case UnqualifiedId::IK_OperatorFunctionId:
2978     Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2979                                              Name.OperatorFunctionId.Operator));
2980     return TNK_Function_template;
2981 
2982   case UnqualifiedId::IK_LiteralOperatorId:
2983     llvm_unreachable("literal operator id cannot have a dependent scope");
2984 
2985   default:
2986     break;
2987   }
2988 
2989   Diag(Name.getLocStart(),
2990        diag::err_template_kw_refers_to_non_template)
2991     << GetNameFromUnqualifiedId(Name).getName()
2992     << Name.getSourceRange()
2993     << TemplateKWLoc;
2994   return TNK_Non_template;
2995 }
2996 
CheckTemplateTypeArgument(TemplateTypeParmDecl * Param,TemplateArgumentLoc & AL,SmallVectorImpl<TemplateArgument> & Converted)2997 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2998                                      TemplateArgumentLoc &AL,
2999                           SmallVectorImpl<TemplateArgument> &Converted) {
3000   const TemplateArgument &Arg = AL.getArgument();
3001   QualType ArgType;
3002   TypeSourceInfo *TSI = nullptr;
3003 
3004   // Check template type parameter.
3005   switch(Arg.getKind()) {
3006   case TemplateArgument::Type:
3007     // C++ [temp.arg.type]p1:
3008     //   A template-argument for a template-parameter which is a
3009     //   type shall be a type-id.
3010     ArgType = Arg.getAsType();
3011     TSI = AL.getTypeSourceInfo();
3012     break;
3013   case TemplateArgument::Template: {
3014     // We have a template type parameter but the template argument
3015     // is a template without any arguments.
3016     SourceRange SR = AL.getSourceRange();
3017     TemplateName Name = Arg.getAsTemplate();
3018     Diag(SR.getBegin(), diag::err_template_missing_args)
3019       << Name << SR;
3020     if (TemplateDecl *Decl = Name.getAsTemplateDecl())
3021       Diag(Decl->getLocation(), diag::note_template_decl_here);
3022 
3023     return true;
3024   }
3025   case TemplateArgument::Expression: {
3026     // We have a template type parameter but the template argument is an
3027     // expression; see if maybe it is missing the "typename" keyword.
3028     CXXScopeSpec SS;
3029     DeclarationNameInfo NameInfo;
3030 
3031     if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
3032       SS.Adopt(ArgExpr->getQualifierLoc());
3033       NameInfo = ArgExpr->getNameInfo();
3034     } else if (DependentScopeDeclRefExpr *ArgExpr =
3035                dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
3036       SS.Adopt(ArgExpr->getQualifierLoc());
3037       NameInfo = ArgExpr->getNameInfo();
3038     } else if (CXXDependentScopeMemberExpr *ArgExpr =
3039                dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
3040       if (ArgExpr->isImplicitAccess()) {
3041         SS.Adopt(ArgExpr->getQualifierLoc());
3042         NameInfo = ArgExpr->getMemberNameInfo();
3043       }
3044     }
3045 
3046     if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
3047       LookupResult Result(*this, NameInfo, LookupOrdinaryName);
3048       LookupParsedName(Result, CurScope, &SS);
3049 
3050       if (Result.getAsSingle<TypeDecl>() ||
3051           Result.getResultKind() ==
3052               LookupResult::NotFoundInCurrentInstantiation) {
3053         // Suggest that the user add 'typename' before the NNS.
3054         SourceLocation Loc = AL.getSourceRange().getBegin();
3055         Diag(Loc, getLangOpts().MSVCCompat
3056                       ? diag::ext_ms_template_type_arg_missing_typename
3057                       : diag::err_template_arg_must_be_type_suggest)
3058             << FixItHint::CreateInsertion(Loc, "typename ");
3059         Diag(Param->getLocation(), diag::note_template_param_here);
3060 
3061         // Recover by synthesizing a type using the location information that we
3062         // already have.
3063         ArgType =
3064             Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
3065         TypeLocBuilder TLB;
3066         DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
3067         TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
3068         TL.setQualifierLoc(SS.getWithLocInContext(Context));
3069         TL.setNameLoc(NameInfo.getLoc());
3070         TSI = TLB.getTypeSourceInfo(Context, ArgType);
3071 
3072         // Overwrite our input TemplateArgumentLoc so that we can recover
3073         // properly.
3074         AL = TemplateArgumentLoc(TemplateArgument(ArgType),
3075                                  TemplateArgumentLocInfo(TSI));
3076 
3077         break;
3078       }
3079     }
3080     // fallthrough
3081   }
3082   default: {
3083     // We have a template type parameter but the template argument
3084     // is not a type.
3085     SourceRange SR = AL.getSourceRange();
3086     Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
3087     Diag(Param->getLocation(), diag::note_template_param_here);
3088 
3089     return true;
3090   }
3091   }
3092 
3093   if (CheckTemplateArgument(Param, TSI))
3094     return true;
3095 
3096   // Add the converted template type argument.
3097   ArgType = Context.getCanonicalType(ArgType);
3098 
3099   // Objective-C ARC:
3100   //   If an explicitly-specified template argument type is a lifetime type
3101   //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
3102   if (getLangOpts().ObjCAutoRefCount &&
3103       ArgType->isObjCLifetimeType() &&
3104       !ArgType.getObjCLifetime()) {
3105     Qualifiers Qs;
3106     Qs.setObjCLifetime(Qualifiers::OCL_Strong);
3107     ArgType = Context.getQualifiedType(ArgType, Qs);
3108   }
3109 
3110   Converted.push_back(TemplateArgument(ArgType));
3111   return false;
3112 }
3113 
3114 /// \brief Substitute template arguments into the default template argument for
3115 /// the given template type parameter.
3116 ///
3117 /// \param SemaRef the semantic analysis object for which we are performing
3118 /// the substitution.
3119 ///
3120 /// \param Template the template that we are synthesizing template arguments
3121 /// for.
3122 ///
3123 /// \param TemplateLoc the location of the template name that started the
3124 /// template-id we are checking.
3125 ///
3126 /// \param RAngleLoc the location of the right angle bracket ('>') that
3127 /// terminates the template-id.
3128 ///
3129 /// \param Param the template template parameter whose default we are
3130 /// substituting into.
3131 ///
3132 /// \param Converted the list of template arguments provided for template
3133 /// parameters that precede \p Param in the template parameter list.
3134 /// \returns the substituted template argument, or NULL if an error occurred.
3135 static TypeSourceInfo *
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTypeParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted)3136 SubstDefaultTemplateArgument(Sema &SemaRef,
3137                              TemplateDecl *Template,
3138                              SourceLocation TemplateLoc,
3139                              SourceLocation RAngleLoc,
3140                              TemplateTypeParmDecl *Param,
3141                          SmallVectorImpl<TemplateArgument> &Converted) {
3142   TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
3143 
3144   // If the argument type is dependent, instantiate it now based
3145   // on the previously-computed template arguments.
3146   if (ArgType->getType()->isDependentType()) {
3147     Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3148                                      Template, Converted,
3149                                      SourceRange(TemplateLoc, RAngleLoc));
3150     if (Inst.isInvalid())
3151       return nullptr;
3152 
3153     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3154                                       Converted.data(), Converted.size());
3155 
3156     // Only substitute for the innermost template argument list.
3157     MultiLevelTemplateArgumentList TemplateArgLists;
3158     TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3159     for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3160       TemplateArgLists.addOuterTemplateArguments(None);
3161 
3162     Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3163     ArgType =
3164         SemaRef.SubstType(ArgType, TemplateArgLists,
3165                           Param->getDefaultArgumentLoc(), Param->getDeclName());
3166   }
3167 
3168   return ArgType;
3169 }
3170 
3171 /// \brief Substitute template arguments into the default template argument for
3172 /// the given non-type template parameter.
3173 ///
3174 /// \param SemaRef the semantic analysis object for which we are performing
3175 /// the substitution.
3176 ///
3177 /// \param Template the template that we are synthesizing template arguments
3178 /// for.
3179 ///
3180 /// \param TemplateLoc the location of the template name that started the
3181 /// template-id we are checking.
3182 ///
3183 /// \param RAngleLoc the location of the right angle bracket ('>') that
3184 /// terminates the template-id.
3185 ///
3186 /// \param Param the non-type template parameter whose default we are
3187 /// substituting into.
3188 ///
3189 /// \param Converted the list of template arguments provided for template
3190 /// parameters that precede \p Param in the template parameter list.
3191 ///
3192 /// \returns the substituted template argument, or NULL if an error occurred.
3193 static ExprResult
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,NonTypeTemplateParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted)3194 SubstDefaultTemplateArgument(Sema &SemaRef,
3195                              TemplateDecl *Template,
3196                              SourceLocation TemplateLoc,
3197                              SourceLocation RAngleLoc,
3198                              NonTypeTemplateParmDecl *Param,
3199                         SmallVectorImpl<TemplateArgument> &Converted) {
3200   Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3201                                    Template, Converted,
3202                                    SourceRange(TemplateLoc, RAngleLoc));
3203   if (Inst.isInvalid())
3204     return ExprError();
3205 
3206   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3207                                     Converted.data(), Converted.size());
3208 
3209   // Only substitute for the innermost template argument list.
3210   MultiLevelTemplateArgumentList TemplateArgLists;
3211   TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3212   for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3213     TemplateArgLists.addOuterTemplateArguments(None);
3214 
3215   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3216   EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
3217   return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
3218 }
3219 
3220 /// \brief Substitute template arguments into the default template argument for
3221 /// the given template template parameter.
3222 ///
3223 /// \param SemaRef the semantic analysis object for which we are performing
3224 /// the substitution.
3225 ///
3226 /// \param Template the template that we are synthesizing template arguments
3227 /// for.
3228 ///
3229 /// \param TemplateLoc the location of the template name that started the
3230 /// template-id we are checking.
3231 ///
3232 /// \param RAngleLoc the location of the right angle bracket ('>') that
3233 /// terminates the template-id.
3234 ///
3235 /// \param Param the template template parameter whose default we are
3236 /// substituting into.
3237 ///
3238 /// \param Converted the list of template arguments provided for template
3239 /// parameters that precede \p Param in the template parameter list.
3240 ///
3241 /// \param QualifierLoc Will be set to the nested-name-specifier (with
3242 /// source-location information) that precedes the template name.
3243 ///
3244 /// \returns the substituted template argument, or NULL if an error occurred.
3245 static TemplateName
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTemplateParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted,NestedNameSpecifierLoc & QualifierLoc)3246 SubstDefaultTemplateArgument(Sema &SemaRef,
3247                              TemplateDecl *Template,
3248                              SourceLocation TemplateLoc,
3249                              SourceLocation RAngleLoc,
3250                              TemplateTemplateParmDecl *Param,
3251                        SmallVectorImpl<TemplateArgument> &Converted,
3252                              NestedNameSpecifierLoc &QualifierLoc) {
3253   Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Template, Converted,
3254                                    SourceRange(TemplateLoc, RAngleLoc));
3255   if (Inst.isInvalid())
3256     return TemplateName();
3257 
3258   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3259                                     Converted.data(), Converted.size());
3260 
3261   // Only substitute for the innermost template argument list.
3262   MultiLevelTemplateArgumentList TemplateArgLists;
3263   TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3264   for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3265     TemplateArgLists.addOuterTemplateArguments(None);
3266 
3267   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3268   // Substitute into the nested-name-specifier first,
3269   QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
3270   if (QualifierLoc) {
3271     QualifierLoc =
3272         SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
3273     if (!QualifierLoc)
3274       return TemplateName();
3275   }
3276 
3277   return SemaRef.SubstTemplateName(
3278              QualifierLoc,
3279              Param->getDefaultArgument().getArgument().getAsTemplate(),
3280              Param->getDefaultArgument().getTemplateNameLoc(),
3281              TemplateArgLists);
3282 }
3283 
3284 /// \brief If the given template parameter has a default template
3285 /// argument, substitute into that default template argument and
3286 /// return the corresponding template argument.
3287 TemplateArgumentLoc
SubstDefaultTemplateArgumentIfAvailable(TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,Decl * Param,SmallVectorImpl<TemplateArgument> & Converted,bool & HasDefaultArg)3288 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
3289                                               SourceLocation TemplateLoc,
3290                                               SourceLocation RAngleLoc,
3291                                               Decl *Param,
3292                                               SmallVectorImpl<TemplateArgument>
3293                                                 &Converted,
3294                                               bool &HasDefaultArg) {
3295   HasDefaultArg = false;
3296 
3297   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
3298     if (!TypeParm->hasDefaultArgument())
3299       return TemplateArgumentLoc();
3300 
3301     HasDefaultArg = true;
3302     TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
3303                                                       TemplateLoc,
3304                                                       RAngleLoc,
3305                                                       TypeParm,
3306                                                       Converted);
3307     if (DI)
3308       return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
3309 
3310     return TemplateArgumentLoc();
3311   }
3312 
3313   if (NonTypeTemplateParmDecl *NonTypeParm
3314         = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3315     if (!NonTypeParm->hasDefaultArgument())
3316       return TemplateArgumentLoc();
3317 
3318     HasDefaultArg = true;
3319     ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
3320                                                   TemplateLoc,
3321                                                   RAngleLoc,
3322                                                   NonTypeParm,
3323                                                   Converted);
3324     if (Arg.isInvalid())
3325       return TemplateArgumentLoc();
3326 
3327     Expr *ArgE = Arg.getAs<Expr>();
3328     return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
3329   }
3330 
3331   TemplateTemplateParmDecl *TempTempParm
3332     = cast<TemplateTemplateParmDecl>(Param);
3333   if (!TempTempParm->hasDefaultArgument())
3334     return TemplateArgumentLoc();
3335 
3336   HasDefaultArg = true;
3337   NestedNameSpecifierLoc QualifierLoc;
3338   TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
3339                                                     TemplateLoc,
3340                                                     RAngleLoc,
3341                                                     TempTempParm,
3342                                                     Converted,
3343                                                     QualifierLoc);
3344   if (TName.isNull())
3345     return TemplateArgumentLoc();
3346 
3347   return TemplateArgumentLoc(TemplateArgument(TName),
3348                 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
3349                 TempTempParm->getDefaultArgument().getTemplateNameLoc());
3350 }
3351 
3352 /// \brief Check that the given template argument corresponds to the given
3353 /// template parameter.
3354 ///
3355 /// \param Param The template parameter against which the argument will be
3356 /// checked.
3357 ///
3358 /// \param Arg The template argument, which may be updated due to conversions.
3359 ///
3360 /// \param Template The template in which the template argument resides.
3361 ///
3362 /// \param TemplateLoc The location of the template name for the template
3363 /// whose argument list we're matching.
3364 ///
3365 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
3366 /// the template argument list.
3367 ///
3368 /// \param ArgumentPackIndex The index into the argument pack where this
3369 /// argument will be placed. Only valid if the parameter is a parameter pack.
3370 ///
3371 /// \param Converted The checked, converted argument will be added to the
3372 /// end of this small vector.
3373 ///
3374 /// \param CTAK Describes how we arrived at this particular template argument:
3375 /// explicitly written, deduced, etc.
3376 ///
3377 /// \returns true on error, false otherwise.
CheckTemplateArgument(NamedDecl * Param,TemplateArgumentLoc & Arg,NamedDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,unsigned ArgumentPackIndex,SmallVectorImpl<TemplateArgument> & Converted,CheckTemplateArgumentKind CTAK)3378 bool Sema::CheckTemplateArgument(NamedDecl *Param,
3379                                  TemplateArgumentLoc &Arg,
3380                                  NamedDecl *Template,
3381                                  SourceLocation TemplateLoc,
3382                                  SourceLocation RAngleLoc,
3383                                  unsigned ArgumentPackIndex,
3384                             SmallVectorImpl<TemplateArgument> &Converted,
3385                                  CheckTemplateArgumentKind CTAK) {
3386   // Check template type parameters.
3387   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
3388     return CheckTemplateTypeArgument(TTP, Arg, Converted);
3389 
3390   // Check non-type template parameters.
3391   if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3392     // Do substitution on the type of the non-type template parameter
3393     // with the template arguments we've seen thus far.  But if the
3394     // template has a dependent context then we cannot substitute yet.
3395     QualType NTTPType = NTTP->getType();
3396     if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
3397       NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
3398 
3399     if (NTTPType->isDependentType() &&
3400         !isa<TemplateTemplateParmDecl>(Template) &&
3401         !Template->getDeclContext()->isDependentContext()) {
3402       // Do substitution on the type of the non-type template parameter.
3403       InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3404                                  NTTP, Converted,
3405                                  SourceRange(TemplateLoc, RAngleLoc));
3406       if (Inst.isInvalid())
3407         return true;
3408 
3409       TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3410                                         Converted.data(), Converted.size());
3411       NTTPType = SubstType(NTTPType,
3412                            MultiLevelTemplateArgumentList(TemplateArgs),
3413                            NTTP->getLocation(),
3414                            NTTP->getDeclName());
3415       // If that worked, check the non-type template parameter type
3416       // for validity.
3417       if (!NTTPType.isNull())
3418         NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
3419                                                      NTTP->getLocation());
3420       if (NTTPType.isNull())
3421         return true;
3422     }
3423 
3424     switch (Arg.getArgument().getKind()) {
3425     case TemplateArgument::Null:
3426       llvm_unreachable("Should never see a NULL template argument here");
3427 
3428     case TemplateArgument::Expression: {
3429       TemplateArgument Result;
3430       ExprResult Res =
3431         CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
3432                               Result, CTAK);
3433       if (Res.isInvalid())
3434         return true;
3435 
3436       // If the resulting expression is new, then use it in place of the
3437       // old expression in the template argument.
3438       if (Res.get() != Arg.getArgument().getAsExpr()) {
3439         TemplateArgument TA(Res.get());
3440         Arg = TemplateArgumentLoc(TA, Res.get());
3441       }
3442 
3443       Converted.push_back(Result);
3444       break;
3445     }
3446 
3447     case TemplateArgument::Declaration:
3448     case TemplateArgument::Integral:
3449     case TemplateArgument::NullPtr:
3450       // We've already checked this template argument, so just copy
3451       // it to the list of converted arguments.
3452       Converted.push_back(Arg.getArgument());
3453       break;
3454 
3455     case TemplateArgument::Template:
3456     case TemplateArgument::TemplateExpansion:
3457       // We were given a template template argument. It may not be ill-formed;
3458       // see below.
3459       if (DependentTemplateName *DTN
3460             = Arg.getArgument().getAsTemplateOrTemplatePattern()
3461                                               .getAsDependentTemplateName()) {
3462         // We have a template argument such as \c T::template X, which we
3463         // parsed as a template template argument. However, since we now
3464         // know that we need a non-type template argument, convert this
3465         // template name into an expression.
3466 
3467         DeclarationNameInfo NameInfo(DTN->getIdentifier(),
3468                                      Arg.getTemplateNameLoc());
3469 
3470         CXXScopeSpec SS;
3471         SS.Adopt(Arg.getTemplateQualifierLoc());
3472         // FIXME: the template-template arg was a DependentTemplateName,
3473         // so it was provided with a template keyword. However, its source
3474         // location is not stored in the template argument structure.
3475         SourceLocation TemplateKWLoc;
3476         ExprResult E = DependentScopeDeclRefExpr::Create(
3477             Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
3478             nullptr);
3479 
3480         // If we parsed the template argument as a pack expansion, create a
3481         // pack expansion expression.
3482         if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
3483           E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
3484           if (E.isInvalid())
3485             return true;
3486         }
3487 
3488         TemplateArgument Result;
3489         E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result);
3490         if (E.isInvalid())
3491           return true;
3492 
3493         Converted.push_back(Result);
3494         break;
3495       }
3496 
3497       // We have a template argument that actually does refer to a class
3498       // template, alias template, or template template parameter, and
3499       // therefore cannot be a non-type template argument.
3500       Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
3501         << Arg.getSourceRange();
3502 
3503       Diag(Param->getLocation(), diag::note_template_param_here);
3504       return true;
3505 
3506     case TemplateArgument::Type: {
3507       // We have a non-type template parameter but the template
3508       // argument is a type.
3509 
3510       // C++ [temp.arg]p2:
3511       //   In a template-argument, an ambiguity between a type-id and
3512       //   an expression is resolved to a type-id, regardless of the
3513       //   form of the corresponding template-parameter.
3514       //
3515       // We warn specifically about this case, since it can be rather
3516       // confusing for users.
3517       QualType T = Arg.getArgument().getAsType();
3518       SourceRange SR = Arg.getSourceRange();
3519       if (T->isFunctionType())
3520         Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
3521       else
3522         Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
3523       Diag(Param->getLocation(), diag::note_template_param_here);
3524       return true;
3525     }
3526 
3527     case TemplateArgument::Pack:
3528       llvm_unreachable("Caller must expand template argument packs");
3529     }
3530 
3531     return false;
3532   }
3533 
3534 
3535   // Check template template parameters.
3536   TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
3537 
3538   // Substitute into the template parameter list of the template
3539   // template parameter, since previously-supplied template arguments
3540   // may appear within the template template parameter.
3541   {
3542     // Set up a template instantiation context.
3543     LocalInstantiationScope Scope(*this);
3544     InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3545                                TempParm, Converted,
3546                                SourceRange(TemplateLoc, RAngleLoc));
3547     if (Inst.isInvalid())
3548       return true;
3549 
3550     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3551                                       Converted.data(), Converted.size());
3552     TempParm = cast_or_null<TemplateTemplateParmDecl>(
3553                       SubstDecl(TempParm, CurContext,
3554                                 MultiLevelTemplateArgumentList(TemplateArgs)));
3555     if (!TempParm)
3556       return true;
3557   }
3558 
3559   switch (Arg.getArgument().getKind()) {
3560   case TemplateArgument::Null:
3561     llvm_unreachable("Should never see a NULL template argument here");
3562 
3563   case TemplateArgument::Template:
3564   case TemplateArgument::TemplateExpansion:
3565     if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex))
3566       return true;
3567 
3568     Converted.push_back(Arg.getArgument());
3569     break;
3570 
3571   case TemplateArgument::Expression:
3572   case TemplateArgument::Type:
3573     // We have a template template parameter but the template
3574     // argument does not refer to a template.
3575     Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
3576       << getLangOpts().CPlusPlus11;
3577     return true;
3578 
3579   case TemplateArgument::Declaration:
3580     llvm_unreachable("Declaration argument with template template parameter");
3581   case TemplateArgument::Integral:
3582     llvm_unreachable("Integral argument with template template parameter");
3583   case TemplateArgument::NullPtr:
3584     llvm_unreachable("Null pointer argument with template template parameter");
3585 
3586   case TemplateArgument::Pack:
3587     llvm_unreachable("Caller must expand template argument packs");
3588   }
3589 
3590   return false;
3591 }
3592 
3593 /// \brief Diagnose an arity mismatch in the
diagnoseArityMismatch(Sema & S,TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)3594 static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
3595                                   SourceLocation TemplateLoc,
3596                                   TemplateArgumentListInfo &TemplateArgs) {
3597   TemplateParameterList *Params = Template->getTemplateParameters();
3598   unsigned NumParams = Params->size();
3599   unsigned NumArgs = TemplateArgs.size();
3600 
3601   SourceRange Range;
3602   if (NumArgs > NumParams)
3603     Range = SourceRange(TemplateArgs[NumParams].getLocation(),
3604                         TemplateArgs.getRAngleLoc());
3605   S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3606     << (NumArgs > NumParams)
3607     << (isa<ClassTemplateDecl>(Template)? 0 :
3608         isa<FunctionTemplateDecl>(Template)? 1 :
3609         isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3610     << Template << Range;
3611   S.Diag(Template->getLocation(), diag::note_template_decl_here)
3612     << Params->getSourceRange();
3613   return true;
3614 }
3615 
3616 /// \brief Check whether the template parameter is a pack expansion, and if so,
3617 /// determine the number of parameters produced by that expansion. For instance:
3618 ///
3619 /// \code
3620 /// template<typename ...Ts> struct A {
3621 ///   template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
3622 /// };
3623 /// \endcode
3624 ///
3625 /// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
3626 /// is not a pack expansion, so returns an empty Optional.
getExpandedPackSize(NamedDecl * Param)3627 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
3628   if (NonTypeTemplateParmDecl *NTTP
3629         = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3630     if (NTTP->isExpandedParameterPack())
3631       return NTTP->getNumExpansionTypes();
3632   }
3633 
3634   if (TemplateTemplateParmDecl *TTP
3635         = dyn_cast<TemplateTemplateParmDecl>(Param)) {
3636     if (TTP->isExpandedParameterPack())
3637       return TTP->getNumExpansionTemplateParameters();
3638   }
3639 
3640   return None;
3641 }
3642 
3643 /// \brief Check that the given template argument list is well-formed
3644 /// for specializing the given template.
CheckTemplateArgumentList(TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs,bool PartialTemplateArgs,SmallVectorImpl<TemplateArgument> & Converted)3645 bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
3646                                      SourceLocation TemplateLoc,
3647                                      TemplateArgumentListInfo &TemplateArgs,
3648                                      bool PartialTemplateArgs,
3649                           SmallVectorImpl<TemplateArgument> &Converted) {
3650   // Make a copy of the template arguments for processing.  Only make the
3651   // changes at the end when successful in matching the arguments to the
3652   // template.
3653   TemplateArgumentListInfo NewArgs = TemplateArgs;
3654 
3655   TemplateParameterList *Params = Template->getTemplateParameters();
3656 
3657   SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
3658 
3659   // C++ [temp.arg]p1:
3660   //   [...] The type and form of each template-argument specified in
3661   //   a template-id shall match the type and form specified for the
3662   //   corresponding parameter declared by the template in its
3663   //   template-parameter-list.
3664   bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
3665   SmallVector<TemplateArgument, 2> ArgumentPack;
3666   unsigned ArgIdx = 0, NumArgs = NewArgs.size();
3667   LocalInstantiationScope InstScope(*this, true);
3668   for (TemplateParameterList::iterator Param = Params->begin(),
3669                                        ParamEnd = Params->end();
3670        Param != ParamEnd; /* increment in loop */) {
3671     // If we have an expanded parameter pack, make sure we don't have too
3672     // many arguments.
3673     if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
3674       if (*Expansions == ArgumentPack.size()) {
3675         // We're done with this parameter pack. Pack up its arguments and add
3676         // them to the list.
3677         Converted.push_back(
3678           TemplateArgument::CreatePackCopy(Context,
3679                                            ArgumentPack.data(),
3680                                            ArgumentPack.size()));
3681         ArgumentPack.clear();
3682 
3683         // This argument is assigned to the next parameter.
3684         ++Param;
3685         continue;
3686       } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
3687         // Not enough arguments for this parameter pack.
3688         Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3689           << false
3690           << (isa<ClassTemplateDecl>(Template)? 0 :
3691               isa<FunctionTemplateDecl>(Template)? 1 :
3692               isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3693           << Template;
3694         Diag(Template->getLocation(), diag::note_template_decl_here)
3695           << Params->getSourceRange();
3696         return true;
3697       }
3698     }
3699 
3700     if (ArgIdx < NumArgs) {
3701       // Check the template argument we were given.
3702       if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template,
3703                                 TemplateLoc, RAngleLoc,
3704                                 ArgumentPack.size(), Converted))
3705         return true;
3706 
3707       bool PackExpansionIntoNonPack =
3708           NewArgs[ArgIdx].getArgument().isPackExpansion() &&
3709           (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
3710       if (PackExpansionIntoNonPack && isa<TypeAliasTemplateDecl>(Template)) {
3711         // Core issue 1430: we have a pack expansion as an argument to an
3712         // alias template, and it's not part of a parameter pack. This
3713         // can't be canonicalized, so reject it now.
3714         Diag(NewArgs[ArgIdx].getLocation(),
3715              diag::err_alias_template_expansion_into_fixed_list)
3716           << NewArgs[ArgIdx].getSourceRange();
3717         Diag((*Param)->getLocation(), diag::note_template_param_here);
3718         return true;
3719       }
3720 
3721       // We're now done with this argument.
3722       ++ArgIdx;
3723 
3724       if ((*Param)->isTemplateParameterPack()) {
3725         // The template parameter was a template parameter pack, so take the
3726         // deduced argument and place it on the argument pack. Note that we
3727         // stay on the same template parameter so that we can deduce more
3728         // arguments.
3729         ArgumentPack.push_back(Converted.pop_back_val());
3730       } else {
3731         // Move to the next template parameter.
3732         ++Param;
3733       }
3734 
3735       // If we just saw a pack expansion into a non-pack, then directly convert
3736       // the remaining arguments, because we don't know what parameters they'll
3737       // match up with.
3738       if (PackExpansionIntoNonPack) {
3739         if (!ArgumentPack.empty()) {
3740           // If we were part way through filling in an expanded parameter pack,
3741           // fall back to just producing individual arguments.
3742           Converted.insert(Converted.end(),
3743                            ArgumentPack.begin(), ArgumentPack.end());
3744           ArgumentPack.clear();
3745         }
3746 
3747         while (ArgIdx < NumArgs) {
3748           Converted.push_back(NewArgs[ArgIdx].getArgument());
3749           ++ArgIdx;
3750         }
3751 
3752         return false;
3753       }
3754 
3755       continue;
3756     }
3757 
3758     // If we're checking a partial template argument list, we're done.
3759     if (PartialTemplateArgs) {
3760       if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
3761         Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3762                                                          ArgumentPack.data(),
3763                                                          ArgumentPack.size()));
3764 
3765       return false;
3766     }
3767 
3768     // If we have a template parameter pack with no more corresponding
3769     // arguments, just break out now and we'll fill in the argument pack below.
3770     if ((*Param)->isTemplateParameterPack()) {
3771       assert(!getExpandedPackSize(*Param) &&
3772              "Should have dealt with this already");
3773 
3774       // A non-expanded parameter pack before the end of the parameter list
3775       // only occurs for an ill-formed template parameter list, unless we've
3776       // got a partial argument list for a function template, so just bail out.
3777       if (Param + 1 != ParamEnd)
3778         return true;
3779 
3780       Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3781                                                        ArgumentPack.data(),
3782                                                        ArgumentPack.size()));
3783       ArgumentPack.clear();
3784 
3785       ++Param;
3786       continue;
3787     }
3788 
3789     // Check whether we have a default argument.
3790     TemplateArgumentLoc Arg;
3791 
3792     // Retrieve the default template argument from the template
3793     // parameter. For each kind of template parameter, we substitute the
3794     // template arguments provided thus far and any "outer" template arguments
3795     // (when the template parameter was part of a nested template) into
3796     // the default argument.
3797     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
3798       if (!TTP->hasDefaultArgument())
3799         return diagnoseArityMismatch(*this, Template, TemplateLoc, NewArgs);
3800 
3801       TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
3802                                                              Template,
3803                                                              TemplateLoc,
3804                                                              RAngleLoc,
3805                                                              TTP,
3806                                                              Converted);
3807       if (!ArgType)
3808         return true;
3809 
3810       Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
3811                                 ArgType);
3812     } else if (NonTypeTemplateParmDecl *NTTP
3813                  = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3814       if (!NTTP->hasDefaultArgument())
3815         return diagnoseArityMismatch(*this, Template, TemplateLoc, NewArgs);
3816 
3817       ExprResult E = SubstDefaultTemplateArgument(*this, Template,
3818                                                               TemplateLoc,
3819                                                               RAngleLoc,
3820                                                               NTTP,
3821                                                               Converted);
3822       if (E.isInvalid())
3823         return true;
3824 
3825       Expr *Ex = E.getAs<Expr>();
3826       Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
3827     } else {
3828       TemplateTemplateParmDecl *TempParm
3829         = cast<TemplateTemplateParmDecl>(*Param);
3830 
3831       if (!TempParm->hasDefaultArgument())
3832         return diagnoseArityMismatch(*this, Template, TemplateLoc, NewArgs);
3833 
3834       NestedNameSpecifierLoc QualifierLoc;
3835       TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3836                                                        TemplateLoc,
3837                                                        RAngleLoc,
3838                                                        TempParm,
3839                                                        Converted,
3840                                                        QualifierLoc);
3841       if (Name.isNull())
3842         return true;
3843 
3844       Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3845                            TempParm->getDefaultArgument().getTemplateNameLoc());
3846     }
3847 
3848     // Introduce an instantiation record that describes where we are using
3849     // the default template argument.
3850     InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
3851                                SourceRange(TemplateLoc, RAngleLoc));
3852     if (Inst.isInvalid())
3853       return true;
3854 
3855     // Check the default template argument.
3856     if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3857                               RAngleLoc, 0, Converted))
3858       return true;
3859 
3860     // Core issue 150 (assumed resolution): if this is a template template
3861     // parameter, keep track of the default template arguments from the
3862     // template definition.
3863     if (isTemplateTemplateParameter)
3864       NewArgs.addArgument(Arg);
3865 
3866     // Move to the next template parameter and argument.
3867     ++Param;
3868     ++ArgIdx;
3869   }
3870 
3871   // If we're performing a partial argument substitution, allow any trailing
3872   // pack expansions; they might be empty. This can happen even if
3873   // PartialTemplateArgs is false (the list of arguments is complete but
3874   // still dependent).
3875   if (ArgIdx < NumArgs && CurrentInstantiationScope &&
3876       CurrentInstantiationScope->getPartiallySubstitutedPack()) {
3877     while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion())
3878       Converted.push_back(NewArgs[ArgIdx++].getArgument());
3879   }
3880 
3881   // If we have any leftover arguments, then there were too many arguments.
3882   // Complain and fail.
3883   if (ArgIdx < NumArgs)
3884     return diagnoseArityMismatch(*this, Template, TemplateLoc, NewArgs);
3885 
3886   // No problems found with the new argument list, propagate changes back
3887   // to caller.
3888   TemplateArgs = NewArgs;
3889 
3890   return false;
3891 }
3892 
3893 namespace {
3894   class UnnamedLocalNoLinkageFinder
3895     : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3896   {
3897     Sema &S;
3898     SourceRange SR;
3899 
3900     typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3901 
3902   public:
UnnamedLocalNoLinkageFinder(Sema & S,SourceRange SR)3903     UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3904 
Visit(QualType T)3905     bool Visit(QualType T) {
3906       return inherited::Visit(T.getTypePtr());
3907     }
3908 
3909 #define TYPE(Class, Parent) \
3910     bool Visit##Class##Type(const Class##Type *);
3911 #define ABSTRACT_TYPE(Class, Parent) \
3912     bool Visit##Class##Type(const Class##Type *) { return false; }
3913 #define NON_CANONICAL_TYPE(Class, Parent) \
3914     bool Visit##Class##Type(const Class##Type *) { return false; }
3915 #include "clang/AST/TypeNodes.def"
3916 
3917     bool VisitTagDecl(const TagDecl *Tag);
3918     bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3919   };
3920 }
3921 
VisitBuiltinType(const BuiltinType *)3922 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3923   return false;
3924 }
3925 
VisitComplexType(const ComplexType * T)3926 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3927   return Visit(T->getElementType());
3928 }
3929 
VisitPointerType(const PointerType * T)3930 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3931   return Visit(T->getPointeeType());
3932 }
3933 
VisitBlockPointerType(const BlockPointerType * T)3934 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3935                                                     const BlockPointerType* T) {
3936   return Visit(T->getPointeeType());
3937 }
3938 
VisitLValueReferenceType(const LValueReferenceType * T)3939 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3940                                                 const LValueReferenceType* T) {
3941   return Visit(T->getPointeeType());
3942 }
3943 
VisitRValueReferenceType(const RValueReferenceType * T)3944 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3945                                                 const RValueReferenceType* T) {
3946   return Visit(T->getPointeeType());
3947 }
3948 
VisitMemberPointerType(const MemberPointerType * T)3949 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3950                                                   const MemberPointerType* T) {
3951   return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3952 }
3953 
VisitConstantArrayType(const ConstantArrayType * T)3954 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3955                                                   const ConstantArrayType* T) {
3956   return Visit(T->getElementType());
3957 }
3958 
VisitIncompleteArrayType(const IncompleteArrayType * T)3959 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3960                                                  const IncompleteArrayType* T) {
3961   return Visit(T->getElementType());
3962 }
3963 
VisitVariableArrayType(const VariableArrayType * T)3964 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3965                                                    const VariableArrayType* T) {
3966   return Visit(T->getElementType());
3967 }
3968 
VisitDependentSizedArrayType(const DependentSizedArrayType * T)3969 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3970                                             const DependentSizedArrayType* T) {
3971   return Visit(T->getElementType());
3972 }
3973 
VisitDependentSizedExtVectorType(const DependentSizedExtVectorType * T)3974 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3975                                          const DependentSizedExtVectorType* T) {
3976   return Visit(T->getElementType());
3977 }
3978 
VisitVectorType(const VectorType * T)3979 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3980   return Visit(T->getElementType());
3981 }
3982 
VisitExtVectorType(const ExtVectorType * T)3983 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3984   return Visit(T->getElementType());
3985 }
3986 
VisitFunctionProtoType(const FunctionProtoType * T)3987 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3988                                                   const FunctionProtoType* T) {
3989   for (const auto &A : T->param_types()) {
3990     if (Visit(A))
3991       return true;
3992   }
3993 
3994   return Visit(T->getReturnType());
3995 }
3996 
VisitFunctionNoProtoType(const FunctionNoProtoType * T)3997 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3998                                                const FunctionNoProtoType* T) {
3999   return Visit(T->getReturnType());
4000 }
4001 
VisitUnresolvedUsingType(const UnresolvedUsingType *)4002 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
4003                                                   const UnresolvedUsingType*) {
4004   return false;
4005 }
4006 
VisitTypeOfExprType(const TypeOfExprType *)4007 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
4008   return false;
4009 }
4010 
VisitTypeOfType(const TypeOfType * T)4011 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
4012   return Visit(T->getUnderlyingType());
4013 }
4014 
VisitDecltypeType(const DecltypeType *)4015 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
4016   return false;
4017 }
4018 
VisitUnaryTransformType(const UnaryTransformType *)4019 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
4020                                                     const UnaryTransformType*) {
4021   return false;
4022 }
4023 
VisitAutoType(const AutoType * T)4024 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
4025   return Visit(T->getDeducedType());
4026 }
4027 
VisitRecordType(const RecordType * T)4028 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
4029   return VisitTagDecl(T->getDecl());
4030 }
4031 
VisitEnumType(const EnumType * T)4032 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
4033   return VisitTagDecl(T->getDecl());
4034 }
4035 
VisitTemplateTypeParmType(const TemplateTypeParmType *)4036 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
4037                                                  const TemplateTypeParmType*) {
4038   return false;
4039 }
4040 
VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *)4041 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
4042                                         const SubstTemplateTypeParmPackType *) {
4043   return false;
4044 }
4045 
VisitTemplateSpecializationType(const TemplateSpecializationType *)4046 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
4047                                             const TemplateSpecializationType*) {
4048   return false;
4049 }
4050 
VisitInjectedClassNameType(const InjectedClassNameType * T)4051 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
4052                                               const InjectedClassNameType* T) {
4053   return VisitTagDecl(T->getDecl());
4054 }
4055 
VisitDependentNameType(const DependentNameType * T)4056 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
4057                                                    const DependentNameType* T) {
4058   return VisitNestedNameSpecifier(T->getQualifier());
4059 }
4060 
VisitDependentTemplateSpecializationType(const DependentTemplateSpecializationType * T)4061 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
4062                                  const DependentTemplateSpecializationType* T) {
4063   return VisitNestedNameSpecifier(T->getQualifier());
4064 }
4065 
VisitPackExpansionType(const PackExpansionType * T)4066 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
4067                                                    const PackExpansionType* T) {
4068   return Visit(T->getPattern());
4069 }
4070 
VisitObjCObjectType(const ObjCObjectType *)4071 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
4072   return false;
4073 }
4074 
VisitObjCInterfaceType(const ObjCInterfaceType *)4075 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
4076                                                    const ObjCInterfaceType *) {
4077   return false;
4078 }
4079 
VisitObjCObjectPointerType(const ObjCObjectPointerType *)4080 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
4081                                                 const ObjCObjectPointerType *) {
4082   return false;
4083 }
4084 
VisitAtomicType(const AtomicType * T)4085 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
4086   return Visit(T->getValueType());
4087 }
4088 
VisitTagDecl(const TagDecl * Tag)4089 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
4090   if (Tag->getDeclContext()->isFunctionOrMethod()) {
4091     S.Diag(SR.getBegin(),
4092            S.getLangOpts().CPlusPlus11 ?
4093              diag::warn_cxx98_compat_template_arg_local_type :
4094              diag::ext_template_arg_local_type)
4095       << S.Context.getTypeDeclType(Tag) << SR;
4096     return true;
4097   }
4098 
4099   if (!Tag->hasNameForLinkage()) {
4100     S.Diag(SR.getBegin(),
4101            S.getLangOpts().CPlusPlus11 ?
4102              diag::warn_cxx98_compat_template_arg_unnamed_type :
4103              diag::ext_template_arg_unnamed_type) << SR;
4104     S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
4105     return true;
4106   }
4107 
4108   return false;
4109 }
4110 
VisitNestedNameSpecifier(NestedNameSpecifier * NNS)4111 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
4112                                                     NestedNameSpecifier *NNS) {
4113   if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
4114     return true;
4115 
4116   switch (NNS->getKind()) {
4117   case NestedNameSpecifier::Identifier:
4118   case NestedNameSpecifier::Namespace:
4119   case NestedNameSpecifier::NamespaceAlias:
4120   case NestedNameSpecifier::Global:
4121   case NestedNameSpecifier::Super:
4122     return false;
4123 
4124   case NestedNameSpecifier::TypeSpec:
4125   case NestedNameSpecifier::TypeSpecWithTemplate:
4126     return Visit(QualType(NNS->getAsType(), 0));
4127   }
4128   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4129 }
4130 
4131 
4132 /// \brief Check a template argument against its corresponding
4133 /// template type parameter.
4134 ///
4135 /// This routine implements the semantics of C++ [temp.arg.type]. It
4136 /// returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TemplateTypeParmDecl * Param,TypeSourceInfo * ArgInfo)4137 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
4138                                  TypeSourceInfo *ArgInfo) {
4139   assert(ArgInfo && "invalid TypeSourceInfo");
4140   QualType Arg = ArgInfo->getType();
4141   SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
4142 
4143   if (Arg->isVariablyModifiedType()) {
4144     return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
4145   } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
4146     return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
4147   }
4148 
4149   // C++03 [temp.arg.type]p2:
4150   //   A local type, a type with no linkage, an unnamed type or a type
4151   //   compounded from any of these types shall not be used as a
4152   //   template-argument for a template type-parameter.
4153   //
4154   // C++11 allows these, and even in C++03 we allow them as an extension with
4155   // a warning.
4156   bool NeedsCheck;
4157   if (LangOpts.CPlusPlus11)
4158     NeedsCheck =
4159         !Diags.isIgnored(diag::warn_cxx98_compat_template_arg_unnamed_type,
4160                          SR.getBegin()) ||
4161         !Diags.isIgnored(diag::warn_cxx98_compat_template_arg_local_type,
4162                          SR.getBegin());
4163   else
4164     NeedsCheck = Arg->hasUnnamedOrLocalType();
4165 
4166   if (NeedsCheck) {
4167     UnnamedLocalNoLinkageFinder Finder(*this, SR);
4168     (void)Finder.Visit(Context.getCanonicalType(Arg));
4169   }
4170 
4171   return false;
4172 }
4173 
4174 enum NullPointerValueKind {
4175   NPV_NotNullPointer,
4176   NPV_NullPointer,
4177   NPV_Error
4178 };
4179 
4180 /// \brief Determine whether the given template argument is a null pointer
4181 /// value of the appropriate type.
4182 static NullPointerValueKind
isNullPointerValueTemplateArgument(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * Arg)4183 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
4184                                    QualType ParamType, Expr *Arg) {
4185   if (Arg->isValueDependent() || Arg->isTypeDependent())
4186     return NPV_NotNullPointer;
4187 
4188   if (!S.getLangOpts().CPlusPlus11)
4189     return NPV_NotNullPointer;
4190 
4191   // Determine whether we have a constant expression.
4192   ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
4193   if (ArgRV.isInvalid())
4194     return NPV_Error;
4195   Arg = ArgRV.get();
4196 
4197   Expr::EvalResult EvalResult;
4198   SmallVector<PartialDiagnosticAt, 8> Notes;
4199   EvalResult.Diag = &Notes;
4200   if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
4201       EvalResult.HasSideEffects) {
4202     SourceLocation DiagLoc = Arg->getExprLoc();
4203 
4204     // If our only note is the usual "invalid subexpression" note, just point
4205     // the caret at its location rather than producing an essentially
4206     // redundant note.
4207     if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
4208         diag::note_invalid_subexpr_in_const_expr) {
4209       DiagLoc = Notes[0].first;
4210       Notes.clear();
4211     }
4212 
4213     S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
4214       << Arg->getType() << Arg->getSourceRange();
4215     for (unsigned I = 0, N = Notes.size(); I != N; ++I)
4216       S.Diag(Notes[I].first, Notes[I].second);
4217 
4218     S.Diag(Param->getLocation(), diag::note_template_param_here);
4219     return NPV_Error;
4220   }
4221 
4222   // C++11 [temp.arg.nontype]p1:
4223   //   - an address constant expression of type std::nullptr_t
4224   if (Arg->getType()->isNullPtrType())
4225     return NPV_NullPointer;
4226 
4227   //   - a constant expression that evaluates to a null pointer value (4.10); or
4228   //   - a constant expression that evaluates to a null member pointer value
4229   //     (4.11); or
4230   if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
4231       (EvalResult.Val.isMemberPointer() &&
4232        !EvalResult.Val.getMemberPointerDecl())) {
4233     // If our expression has an appropriate type, we've succeeded.
4234     bool ObjCLifetimeConversion;
4235     if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
4236         S.IsQualificationConversion(Arg->getType(), ParamType, false,
4237                                      ObjCLifetimeConversion))
4238       return NPV_NullPointer;
4239 
4240     // The types didn't match, but we know we got a null pointer; complain,
4241     // then recover as if the types were correct.
4242     S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
4243       << Arg->getType() << ParamType << Arg->getSourceRange();
4244     S.Diag(Param->getLocation(), diag::note_template_param_here);
4245     return NPV_NullPointer;
4246   }
4247 
4248   // If we don't have a null pointer value, but we do have a NULL pointer
4249   // constant, suggest a cast to the appropriate type.
4250   if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
4251     std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
4252     S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
4253         << ParamType << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
4254         << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getLocEnd()),
4255                                       ")");
4256     S.Diag(Param->getLocation(), diag::note_template_param_here);
4257     return NPV_NullPointer;
4258   }
4259 
4260   // FIXME: If we ever want to support general, address-constant expressions
4261   // as non-type template arguments, we should return the ExprResult here to
4262   // be interpreted by the caller.
4263   return NPV_NotNullPointer;
4264 }
4265 
4266 /// \brief Checks whether the given template argument is compatible with its
4267 /// template parameter.
CheckTemplateArgumentIsCompatibleWithParameter(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * ArgIn,Expr * Arg,QualType ArgType)4268 static bool CheckTemplateArgumentIsCompatibleWithParameter(
4269     Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
4270     Expr *Arg, QualType ArgType) {
4271   bool ObjCLifetimeConversion;
4272   if (ParamType->isPointerType() &&
4273       !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
4274       S.IsQualificationConversion(ArgType, ParamType, false,
4275                                   ObjCLifetimeConversion)) {
4276     // For pointer-to-object types, qualification conversions are
4277     // permitted.
4278   } else {
4279     if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
4280       if (!ParamRef->getPointeeType()->isFunctionType()) {
4281         // C++ [temp.arg.nontype]p5b3:
4282         //   For a non-type template-parameter of type reference to
4283         //   object, no conversions apply. The type referred to by the
4284         //   reference may be more cv-qualified than the (otherwise
4285         //   identical) type of the template- argument. The
4286         //   template-parameter is bound directly to the
4287         //   template-argument, which shall be an lvalue.
4288 
4289         // FIXME: Other qualifiers?
4290         unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
4291         unsigned ArgQuals = ArgType.getCVRQualifiers();
4292 
4293         if ((ParamQuals | ArgQuals) != ParamQuals) {
4294           S.Diag(Arg->getLocStart(),
4295                  diag::err_template_arg_ref_bind_ignores_quals)
4296             << ParamType << Arg->getType() << Arg->getSourceRange();
4297           S.Diag(Param->getLocation(), diag::note_template_param_here);
4298           return true;
4299         }
4300       }
4301     }
4302 
4303     // At this point, the template argument refers to an object or
4304     // function with external linkage. We now need to check whether the
4305     // argument and parameter types are compatible.
4306     if (!S.Context.hasSameUnqualifiedType(ArgType,
4307                                           ParamType.getNonReferenceType())) {
4308       // We can't perform this conversion or binding.
4309       if (ParamType->isReferenceType())
4310         S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
4311           << ParamType << ArgIn->getType() << Arg->getSourceRange();
4312       else
4313         S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
4314           << ArgIn->getType() << ParamType << Arg->getSourceRange();
4315       S.Diag(Param->getLocation(), diag::note_template_param_here);
4316       return true;
4317     }
4318   }
4319 
4320   return false;
4321 }
4322 
4323 /// \brief Checks whether the given template argument is the address
4324 /// of an object or function according to C++ [temp.arg.nontype]p1.
4325 static bool
CheckTemplateArgumentAddressOfObjectOrFunction(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * ArgIn,TemplateArgument & Converted)4326 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
4327                                                NonTypeTemplateParmDecl *Param,
4328                                                QualType ParamType,
4329                                                Expr *ArgIn,
4330                                                TemplateArgument &Converted) {
4331   bool Invalid = false;
4332   Expr *Arg = ArgIn;
4333   QualType ArgType = Arg->getType();
4334 
4335   bool AddressTaken = false;
4336   SourceLocation AddrOpLoc;
4337   if (S.getLangOpts().MicrosoftExt) {
4338     // Microsoft Visual C++ strips all casts, allows an arbitrary number of
4339     // dereference and address-of operators.
4340     Arg = Arg->IgnoreParenCasts();
4341 
4342     bool ExtWarnMSTemplateArg = false;
4343     UnaryOperatorKind FirstOpKind;
4344     SourceLocation FirstOpLoc;
4345     while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4346       UnaryOperatorKind UnOpKind = UnOp->getOpcode();
4347       if (UnOpKind == UO_Deref)
4348         ExtWarnMSTemplateArg = true;
4349       if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
4350         Arg = UnOp->getSubExpr()->IgnoreParenCasts();
4351         if (!AddrOpLoc.isValid()) {
4352           FirstOpKind = UnOpKind;
4353           FirstOpLoc = UnOp->getOperatorLoc();
4354         }
4355       } else
4356         break;
4357     }
4358     if (FirstOpLoc.isValid()) {
4359       if (ExtWarnMSTemplateArg)
4360         S.Diag(ArgIn->getLocStart(), diag::ext_ms_deref_template_argument)
4361           << ArgIn->getSourceRange();
4362 
4363       if (FirstOpKind == UO_AddrOf)
4364         AddressTaken = true;
4365       else if (Arg->getType()->isPointerType()) {
4366         // We cannot let pointers get dereferenced here, that is obviously not a
4367         // constant expression.
4368         assert(FirstOpKind == UO_Deref);
4369         S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4370           << Arg->getSourceRange();
4371       }
4372     }
4373   } else {
4374     // See through any implicit casts we added to fix the type.
4375     Arg = Arg->IgnoreImpCasts();
4376 
4377     // C++ [temp.arg.nontype]p1:
4378     //
4379     //   A template-argument for a non-type, non-template
4380     //   template-parameter shall be one of: [...]
4381     //
4382     //     -- the address of an object or function with external
4383     //        linkage, including function templates and function
4384     //        template-ids but excluding non-static class members,
4385     //        expressed as & id-expression where the & is optional if
4386     //        the name refers to a function or array, or if the
4387     //        corresponding template-parameter is a reference; or
4388 
4389     // In C++98/03 mode, give an extension warning on any extra parentheses.
4390     // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4391     bool ExtraParens = false;
4392     while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4393       if (!Invalid && !ExtraParens) {
4394         S.Diag(Arg->getLocStart(),
4395                S.getLangOpts().CPlusPlus11
4396                    ? diag::warn_cxx98_compat_template_arg_extra_parens
4397                    : diag::ext_template_arg_extra_parens)
4398             << Arg->getSourceRange();
4399         ExtraParens = true;
4400       }
4401 
4402       Arg = Parens->getSubExpr();
4403     }
4404 
4405     while (SubstNonTypeTemplateParmExpr *subst =
4406                dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4407       Arg = subst->getReplacement()->IgnoreImpCasts();
4408 
4409     if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4410       if (UnOp->getOpcode() == UO_AddrOf) {
4411         Arg = UnOp->getSubExpr();
4412         AddressTaken = true;
4413         AddrOpLoc = UnOp->getOperatorLoc();
4414       }
4415     }
4416 
4417     while (SubstNonTypeTemplateParmExpr *subst =
4418                dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4419       Arg = subst->getReplacement()->IgnoreImpCasts();
4420   }
4421 
4422   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
4423   ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
4424 
4425   // If our parameter has pointer type, check for a null template value.
4426   if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
4427     NullPointerValueKind NPV;
4428     // dllimport'd entities aren't constant but are available inside of template
4429     // arguments.
4430     if (Entity && Entity->hasAttr<DLLImportAttr>())
4431       NPV = NPV_NotNullPointer;
4432     else
4433       NPV = isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn);
4434     switch (NPV) {
4435     case NPV_NullPointer:
4436       S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4437       Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
4438                                    /*isNullPtr=*/true);
4439       return false;
4440 
4441     case NPV_Error:
4442       return true;
4443 
4444     case NPV_NotNullPointer:
4445       break;
4446     }
4447   }
4448 
4449   // Stop checking the precise nature of the argument if it is value dependent,
4450   // it should be checked when instantiated.
4451   if (Arg->isValueDependent()) {
4452     Converted = TemplateArgument(ArgIn);
4453     return false;
4454   }
4455 
4456   if (isa<CXXUuidofExpr>(Arg)) {
4457     if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType,
4458                                                        ArgIn, Arg, ArgType))
4459       return true;
4460 
4461     Converted = TemplateArgument(ArgIn);
4462     return false;
4463   }
4464 
4465   if (!DRE) {
4466     S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4467     << Arg->getSourceRange();
4468     S.Diag(Param->getLocation(), diag::note_template_param_here);
4469     return true;
4470   }
4471 
4472   // Cannot refer to non-static data members
4473   if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
4474     S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
4475       << Entity << Arg->getSourceRange();
4476     S.Diag(Param->getLocation(), diag::note_template_param_here);
4477     return true;
4478   }
4479 
4480   // Cannot refer to non-static member functions
4481   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
4482     if (!Method->isStatic()) {
4483       S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
4484         << Method << Arg->getSourceRange();
4485       S.Diag(Param->getLocation(), diag::note_template_param_here);
4486       return true;
4487     }
4488   }
4489 
4490   FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
4491   VarDecl *Var = dyn_cast<VarDecl>(Entity);
4492 
4493   // A non-type template argument must refer to an object or function.
4494   if (!Func && !Var) {
4495     // We found something, but we don't know specifically what it is.
4496     S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
4497       << Arg->getSourceRange();
4498     S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4499     return true;
4500   }
4501 
4502   // Address / reference template args must have external linkage in C++98.
4503   if (Entity->getFormalLinkage() == InternalLinkage) {
4504     S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ?
4505              diag::warn_cxx98_compat_template_arg_object_internal :
4506              diag::ext_template_arg_object_internal)
4507       << !Func << Entity << Arg->getSourceRange();
4508     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4509       << !Func;
4510   } else if (!Entity->hasLinkage()) {
4511     S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
4512       << !Func << Entity << Arg->getSourceRange();
4513     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4514       << !Func;
4515     return true;
4516   }
4517 
4518   if (Func) {
4519     // If the template parameter has pointer type, the function decays.
4520     if (ParamType->isPointerType() && !AddressTaken)
4521       ArgType = S.Context.getPointerType(Func->getType());
4522     else if (AddressTaken && ParamType->isReferenceType()) {
4523       // If we originally had an address-of operator, but the
4524       // parameter has reference type, complain and (if things look
4525       // like they will work) drop the address-of operator.
4526       if (!S.Context.hasSameUnqualifiedType(Func->getType(),
4527                                             ParamType.getNonReferenceType())) {
4528         S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4529           << ParamType;
4530         S.Diag(Param->getLocation(), diag::note_template_param_here);
4531         return true;
4532       }
4533 
4534       S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4535         << ParamType
4536         << FixItHint::CreateRemoval(AddrOpLoc);
4537       S.Diag(Param->getLocation(), diag::note_template_param_here);
4538 
4539       ArgType = Func->getType();
4540     }
4541   } else {
4542     // A value of reference type is not an object.
4543     if (Var->getType()->isReferenceType()) {
4544       S.Diag(Arg->getLocStart(),
4545              diag::err_template_arg_reference_var)
4546         << Var->getType() << Arg->getSourceRange();
4547       S.Diag(Param->getLocation(), diag::note_template_param_here);
4548       return true;
4549     }
4550 
4551     // A template argument must have static storage duration.
4552     if (Var->getTLSKind()) {
4553       S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
4554         << Arg->getSourceRange();
4555       S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
4556       return true;
4557     }
4558 
4559     // If the template parameter has pointer type, we must have taken
4560     // the address of this object.
4561     if (ParamType->isReferenceType()) {
4562       if (AddressTaken) {
4563         // If we originally had an address-of operator, but the
4564         // parameter has reference type, complain and (if things look
4565         // like they will work) drop the address-of operator.
4566         if (!S.Context.hasSameUnqualifiedType(Var->getType(),
4567                                             ParamType.getNonReferenceType())) {
4568           S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4569             << ParamType;
4570           S.Diag(Param->getLocation(), diag::note_template_param_here);
4571           return true;
4572         }
4573 
4574         S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4575           << ParamType
4576           << FixItHint::CreateRemoval(AddrOpLoc);
4577         S.Diag(Param->getLocation(), diag::note_template_param_here);
4578 
4579         ArgType = Var->getType();
4580       }
4581     } else if (!AddressTaken && ParamType->isPointerType()) {
4582       if (Var->getType()->isArrayType()) {
4583         // Array-to-pointer decay.
4584         ArgType = S.Context.getArrayDecayedType(Var->getType());
4585       } else {
4586         // If the template parameter has pointer type but the address of
4587         // this object was not taken, complain and (possibly) recover by
4588         // taking the address of the entity.
4589         ArgType = S.Context.getPointerType(Var->getType());
4590         if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
4591           S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4592             << ParamType;
4593           S.Diag(Param->getLocation(), diag::note_template_param_here);
4594           return true;
4595         }
4596 
4597         S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4598           << ParamType
4599           << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
4600 
4601         S.Diag(Param->getLocation(), diag::note_template_param_here);
4602       }
4603     }
4604   }
4605 
4606   if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
4607                                                      Arg, ArgType))
4608     return true;
4609 
4610   // Create the template argument.
4611   Converted =
4612       TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), ParamType);
4613   S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false);
4614   return false;
4615 }
4616 
4617 /// \brief Checks whether the given template argument is a pointer to
4618 /// member constant according to C++ [temp.arg.nontype]p1.
CheckTemplateArgumentPointerToMember(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * & ResultArg,TemplateArgument & Converted)4619 static bool CheckTemplateArgumentPointerToMember(Sema &S,
4620                                                  NonTypeTemplateParmDecl *Param,
4621                                                  QualType ParamType,
4622                                                  Expr *&ResultArg,
4623                                                  TemplateArgument &Converted) {
4624   bool Invalid = false;
4625 
4626   // Check for a null pointer value.
4627   Expr *Arg = ResultArg;
4628   switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
4629   case NPV_Error:
4630     return true;
4631   case NPV_NullPointer:
4632     S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4633     Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
4634                                  /*isNullPtr*/true);
4635     if (S.Context.getTargetInfo().getCXXABI().isMicrosoft())
4636       S.RequireCompleteType(Arg->getExprLoc(), ParamType, 0);
4637     return false;
4638   case NPV_NotNullPointer:
4639     break;
4640   }
4641 
4642   bool ObjCLifetimeConversion;
4643   if (S.IsQualificationConversion(Arg->getType(),
4644                                   ParamType.getNonReferenceType(),
4645                                   false, ObjCLifetimeConversion)) {
4646     Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
4647                               Arg->getValueKind()).get();
4648     ResultArg = Arg;
4649   } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
4650                 ParamType.getNonReferenceType())) {
4651     // We can't perform this conversion.
4652     S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
4653       << Arg->getType() << ParamType << Arg->getSourceRange();
4654     S.Diag(Param->getLocation(), diag::note_template_param_here);
4655     return true;
4656   }
4657 
4658   // See through any implicit casts we added to fix the type.
4659   while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
4660     Arg = Cast->getSubExpr();
4661 
4662   // C++ [temp.arg.nontype]p1:
4663   //
4664   //   A template-argument for a non-type, non-template
4665   //   template-parameter shall be one of: [...]
4666   //
4667   //     -- a pointer to member expressed as described in 5.3.1.
4668   DeclRefExpr *DRE = nullptr;
4669 
4670   // In C++98/03 mode, give an extension warning on any extra parentheses.
4671   // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4672   bool ExtraParens = false;
4673   while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4674     if (!Invalid && !ExtraParens) {
4675       S.Diag(Arg->getLocStart(),
4676              S.getLangOpts().CPlusPlus11 ?
4677                diag::warn_cxx98_compat_template_arg_extra_parens :
4678                diag::ext_template_arg_extra_parens)
4679         << Arg->getSourceRange();
4680       ExtraParens = true;
4681     }
4682 
4683     Arg = Parens->getSubExpr();
4684   }
4685 
4686   while (SubstNonTypeTemplateParmExpr *subst =
4687            dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4688     Arg = subst->getReplacement()->IgnoreImpCasts();
4689 
4690   // A pointer-to-member constant written &Class::member.
4691   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4692     if (UnOp->getOpcode() == UO_AddrOf) {
4693       DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
4694       if (DRE && !DRE->getQualifier())
4695         DRE = nullptr;
4696     }
4697   }
4698   // A constant of pointer-to-member type.
4699   else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
4700     if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
4701       if (VD->getType()->isMemberPointerType()) {
4702         if (isa<NonTypeTemplateParmDecl>(VD)) {
4703           if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4704             Converted = TemplateArgument(Arg);
4705           } else {
4706             VD = cast<ValueDecl>(VD->getCanonicalDecl());
4707             Converted = TemplateArgument(VD, ParamType);
4708           }
4709           return Invalid;
4710         }
4711       }
4712     }
4713 
4714     DRE = nullptr;
4715   }
4716 
4717   if (!DRE)
4718     return S.Diag(Arg->getLocStart(),
4719                   diag::err_template_arg_not_pointer_to_member_form)
4720       << Arg->getSourceRange();
4721 
4722   if (isa<FieldDecl>(DRE->getDecl()) ||
4723       isa<IndirectFieldDecl>(DRE->getDecl()) ||
4724       isa<CXXMethodDecl>(DRE->getDecl())) {
4725     assert((isa<FieldDecl>(DRE->getDecl()) ||
4726             isa<IndirectFieldDecl>(DRE->getDecl()) ||
4727             !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
4728            "Only non-static member pointers can make it here");
4729 
4730     // Okay: this is the address of a non-static member, and therefore
4731     // a member pointer constant.
4732     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4733       Converted = TemplateArgument(Arg);
4734     } else {
4735       ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
4736       Converted = TemplateArgument(D, ParamType);
4737     }
4738     return Invalid;
4739   }
4740 
4741   // We found something else, but we don't know specifically what it is.
4742   S.Diag(Arg->getLocStart(),
4743          diag::err_template_arg_not_pointer_to_member_form)
4744     << Arg->getSourceRange();
4745   S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4746   return true;
4747 }
4748 
4749 /// \brief Check a template argument against its corresponding
4750 /// non-type template parameter.
4751 ///
4752 /// This routine implements the semantics of C++ [temp.arg.nontype].
4753 /// If an error occurred, it returns ExprError(); otherwise, it
4754 /// returns the converted template argument. \p ParamType is the
4755 /// type of the non-type template parameter after it has been instantiated.
CheckTemplateArgument(NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * Arg,TemplateArgument & Converted,CheckTemplateArgumentKind CTAK)4756 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
4757                                        QualType ParamType, Expr *Arg,
4758                                        TemplateArgument &Converted,
4759                                        CheckTemplateArgumentKind CTAK) {
4760   SourceLocation StartLoc = Arg->getLocStart();
4761 
4762   // If either the parameter has a dependent type or the argument is
4763   // type-dependent, there's nothing we can check now.
4764   if (ParamType->isDependentType() || Arg->isTypeDependent()) {
4765     // FIXME: Produce a cloned, canonical expression?
4766     Converted = TemplateArgument(Arg);
4767     return Arg;
4768   }
4769 
4770   // We should have already dropped all cv-qualifiers by now.
4771   assert(!ParamType.hasQualifiers() &&
4772          "non-type template parameter type cannot be qualified");
4773 
4774   if (CTAK == CTAK_Deduced &&
4775       !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
4776     // C++ [temp.deduct.type]p17:
4777     //   If, in the declaration of a function template with a non-type
4778     //   template-parameter, the non-type template-parameter is used
4779     //   in an expression in the function parameter-list and, if the
4780     //   corresponding template-argument is deduced, the
4781     //   template-argument type shall match the type of the
4782     //   template-parameter exactly, except that a template-argument
4783     //   deduced from an array bound may be of any integral type.
4784     Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
4785       << Arg->getType().getUnqualifiedType()
4786       << ParamType.getUnqualifiedType();
4787     Diag(Param->getLocation(), diag::note_template_param_here);
4788     return ExprError();
4789   }
4790 
4791   if (getLangOpts().CPlusPlus1z) {
4792     // FIXME: We can do some limited checking for a value-dependent but not
4793     // type-dependent argument.
4794     if (Arg->isValueDependent()) {
4795       Converted = TemplateArgument(Arg);
4796       return Arg;
4797     }
4798 
4799     // C++1z [temp.arg.nontype]p1:
4800     //   A template-argument for a non-type template parameter shall be
4801     //   a converted constant expression of the type of the template-parameter.
4802     APValue Value;
4803     ExprResult ArgResult = CheckConvertedConstantExpression(
4804         Arg, ParamType, Value, CCEK_TemplateArg);
4805     if (ArgResult.isInvalid())
4806       return ExprError();
4807 
4808     QualType CanonParamType = Context.getCanonicalType(ParamType);
4809 
4810     // Convert the APValue to a TemplateArgument.
4811     switch (Value.getKind()) {
4812     case APValue::Uninitialized:
4813       assert(ParamType->isNullPtrType());
4814       Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true);
4815       break;
4816     case APValue::Int:
4817       assert(ParamType->isIntegralOrEnumerationType());
4818       Converted = TemplateArgument(Context, Value.getInt(), CanonParamType);
4819       break;
4820     case APValue::MemberPointer: {
4821       assert(ParamType->isMemberPointerType());
4822 
4823       // FIXME: We need TemplateArgument representation and mangling for these.
4824       if (!Value.getMemberPointerPath().empty()) {
4825         Diag(Arg->getLocStart(),
4826              diag::err_template_arg_member_ptr_base_derived_not_supported)
4827             << Value.getMemberPointerDecl() << ParamType
4828             << Arg->getSourceRange();
4829         return ExprError();
4830       }
4831 
4832       auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
4833       Converted = VD ? TemplateArgument(VD, CanonParamType)
4834                      : TemplateArgument(CanonParamType, /*isNullPtr*/true);
4835       break;
4836     }
4837     case APValue::LValue: {
4838       //   For a non-type template-parameter of pointer or reference type,
4839       //   the value of the constant expression shall not refer to
4840       assert(ParamType->isPointerType() || ParamType->isReferenceType() ||
4841              ParamType->isNullPtrType());
4842       // -- a temporary object
4843       // -- a string literal
4844       // -- the result of a typeid expression, or
4845       // -- a predefind __func__ variable
4846       if (auto *E = Value.getLValueBase().dyn_cast<const Expr*>()) {
4847         if (isa<CXXUuidofExpr>(E)) {
4848           Converted = TemplateArgument(const_cast<Expr*>(E));
4849           break;
4850         }
4851         Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4852           << Arg->getSourceRange();
4853         return ExprError();
4854       }
4855       auto *VD = const_cast<ValueDecl *>(
4856           Value.getLValueBase().dyn_cast<const ValueDecl *>());
4857       // -- a subobject
4858       if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
4859           VD && VD->getType()->isArrayType() &&
4860           Value.getLValuePath()[0].ArrayIndex == 0 &&
4861           !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
4862         // Per defect report (no number yet):
4863         //   ... other than a pointer to the first element of a complete array
4864         //       object.
4865       } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
4866                  Value.isLValueOnePastTheEnd()) {
4867         Diag(StartLoc, diag::err_non_type_template_arg_subobject)
4868           << Value.getAsString(Context, ParamType);
4869         return ExprError();
4870       }
4871       assert((VD || !ParamType->isReferenceType()) &&
4872              "null reference should not be a constant expression");
4873       assert((!VD || !ParamType->isNullPtrType()) &&
4874              "non-null value of type nullptr_t?");
4875       Converted = VD ? TemplateArgument(VD, CanonParamType)
4876                      : TemplateArgument(CanonParamType, /*isNullPtr*/true);
4877       break;
4878     }
4879     case APValue::AddrLabelDiff:
4880       return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
4881     case APValue::Float:
4882     case APValue::ComplexInt:
4883     case APValue::ComplexFloat:
4884     case APValue::Vector:
4885     case APValue::Array:
4886     case APValue::Struct:
4887     case APValue::Union:
4888       llvm_unreachable("invalid kind for template argument");
4889     }
4890 
4891     return ArgResult.get();
4892   }
4893 
4894   // C++ [temp.arg.nontype]p5:
4895   //   The following conversions are performed on each expression used
4896   //   as a non-type template-argument. If a non-type
4897   //   template-argument cannot be converted to the type of the
4898   //   corresponding template-parameter then the program is
4899   //   ill-formed.
4900   if (ParamType->isIntegralOrEnumerationType()) {
4901     // C++11:
4902     //   -- for a non-type template-parameter of integral or
4903     //      enumeration type, conversions permitted in a converted
4904     //      constant expression are applied.
4905     //
4906     // C++98:
4907     //   -- for a non-type template-parameter of integral or
4908     //      enumeration type, integral promotions (4.5) and integral
4909     //      conversions (4.7) are applied.
4910 
4911     if (getLangOpts().CPlusPlus11) {
4912       // We can't check arbitrary value-dependent arguments.
4913       // FIXME: If there's no viable conversion to the template parameter type,
4914       // we should be able to diagnose that prior to instantiation.
4915       if (Arg->isValueDependent()) {
4916         Converted = TemplateArgument(Arg);
4917         return Arg;
4918       }
4919 
4920       // C++ [temp.arg.nontype]p1:
4921       //   A template-argument for a non-type, non-template template-parameter
4922       //   shall be one of:
4923       //
4924       //     -- for a non-type template-parameter of integral or enumeration
4925       //        type, a converted constant expression of the type of the
4926       //        template-parameter; or
4927       llvm::APSInt Value;
4928       ExprResult ArgResult =
4929         CheckConvertedConstantExpression(Arg, ParamType, Value,
4930                                          CCEK_TemplateArg);
4931       if (ArgResult.isInvalid())
4932         return ExprError();
4933 
4934       // Widen the argument value to sizeof(parameter type). This is almost
4935       // always a no-op, except when the parameter type is bool. In
4936       // that case, this may extend the argument from 1 bit to 8 bits.
4937       QualType IntegerType = ParamType;
4938       if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4939         IntegerType = Enum->getDecl()->getIntegerType();
4940       Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
4941 
4942       Converted = TemplateArgument(Context, Value,
4943                                    Context.getCanonicalType(ParamType));
4944       return ArgResult;
4945     }
4946 
4947     ExprResult ArgResult = DefaultLvalueConversion(Arg);
4948     if (ArgResult.isInvalid())
4949       return ExprError();
4950     Arg = ArgResult.get();
4951 
4952     QualType ArgType = Arg->getType();
4953 
4954     // C++ [temp.arg.nontype]p1:
4955     //   A template-argument for a non-type, non-template
4956     //   template-parameter shall be one of:
4957     //
4958     //     -- an integral constant-expression of integral or enumeration
4959     //        type; or
4960     //     -- the name of a non-type template-parameter; or
4961     SourceLocation NonConstantLoc;
4962     llvm::APSInt Value;
4963     if (!ArgType->isIntegralOrEnumerationType()) {
4964       Diag(Arg->getLocStart(),
4965            diag::err_template_arg_not_integral_or_enumeral)
4966         << ArgType << Arg->getSourceRange();
4967       Diag(Param->getLocation(), diag::note_template_param_here);
4968       return ExprError();
4969     } else if (!Arg->isValueDependent()) {
4970       class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
4971         QualType T;
4972 
4973       public:
4974         TmplArgICEDiagnoser(QualType T) : T(T) { }
4975 
4976         void diagnoseNotICE(Sema &S, SourceLocation Loc,
4977                             SourceRange SR) override {
4978           S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
4979         }
4980       } Diagnoser(ArgType);
4981 
4982       Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
4983                                             false).get();
4984       if (!Arg)
4985         return ExprError();
4986     }
4987 
4988     // From here on out, all we care about is the unqualified form
4989     // of the argument type.
4990     ArgType = ArgType.getUnqualifiedType();
4991 
4992     // Try to convert the argument to the parameter's type.
4993     if (Context.hasSameType(ParamType, ArgType)) {
4994       // Okay: no conversion necessary
4995     } else if (ParamType->isBooleanType()) {
4996       // This is an integral-to-boolean conversion.
4997       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
4998     } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
4999                !ParamType->isEnumeralType()) {
5000       // This is an integral promotion or conversion.
5001       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
5002     } else {
5003       // We can't perform this conversion.
5004       Diag(Arg->getLocStart(),
5005            diag::err_template_arg_not_convertible)
5006         << Arg->getType() << ParamType << Arg->getSourceRange();
5007       Diag(Param->getLocation(), diag::note_template_param_here);
5008       return ExprError();
5009     }
5010 
5011     // Add the value of this argument to the list of converted
5012     // arguments. We use the bitwidth and signedness of the template
5013     // parameter.
5014     if (Arg->isValueDependent()) {
5015       // The argument is value-dependent. Create a new
5016       // TemplateArgument with the converted expression.
5017       Converted = TemplateArgument(Arg);
5018       return Arg;
5019     }
5020 
5021     QualType IntegerType = Context.getCanonicalType(ParamType);
5022     if (const EnumType *Enum = IntegerType->getAs<EnumType>())
5023       IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
5024 
5025     if (ParamType->isBooleanType()) {
5026       // Value must be zero or one.
5027       Value = Value != 0;
5028       unsigned AllowedBits = Context.getTypeSize(IntegerType);
5029       if (Value.getBitWidth() != AllowedBits)
5030         Value = Value.extOrTrunc(AllowedBits);
5031       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
5032     } else {
5033       llvm::APSInt OldValue = Value;
5034 
5035       // Coerce the template argument's value to the value it will have
5036       // based on the template parameter's type.
5037       unsigned AllowedBits = Context.getTypeSize(IntegerType);
5038       if (Value.getBitWidth() != AllowedBits)
5039         Value = Value.extOrTrunc(AllowedBits);
5040       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
5041 
5042       // Complain if an unsigned parameter received a negative value.
5043       if (IntegerType->isUnsignedIntegerOrEnumerationType()
5044                && (OldValue.isSigned() && OldValue.isNegative())) {
5045         Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
5046           << OldValue.toString(10) << Value.toString(10) << Param->getType()
5047           << Arg->getSourceRange();
5048         Diag(Param->getLocation(), diag::note_template_param_here);
5049       }
5050 
5051       // Complain if we overflowed the template parameter's type.
5052       unsigned RequiredBits;
5053       if (IntegerType->isUnsignedIntegerOrEnumerationType())
5054         RequiredBits = OldValue.getActiveBits();
5055       else if (OldValue.isUnsigned())
5056         RequiredBits = OldValue.getActiveBits() + 1;
5057       else
5058         RequiredBits = OldValue.getMinSignedBits();
5059       if (RequiredBits > AllowedBits) {
5060         Diag(Arg->getLocStart(),
5061              diag::warn_template_arg_too_large)
5062           << OldValue.toString(10) << Value.toString(10) << Param->getType()
5063           << Arg->getSourceRange();
5064         Diag(Param->getLocation(), diag::note_template_param_here);
5065       }
5066     }
5067 
5068     Converted = TemplateArgument(Context, Value,
5069                                  ParamType->isEnumeralType()
5070                                    ? Context.getCanonicalType(ParamType)
5071                                    : IntegerType);
5072     return Arg;
5073   }
5074 
5075   QualType ArgType = Arg->getType();
5076   DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
5077 
5078   // Handle pointer-to-function, reference-to-function, and
5079   // pointer-to-member-function all in (roughly) the same way.
5080   if (// -- For a non-type template-parameter of type pointer to
5081       //    function, only the function-to-pointer conversion (4.3) is
5082       //    applied. If the template-argument represents a set of
5083       //    overloaded functions (or a pointer to such), the matching
5084       //    function is selected from the set (13.4).
5085       (ParamType->isPointerType() &&
5086        ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
5087       // -- For a non-type template-parameter of type reference to
5088       //    function, no conversions apply. If the template-argument
5089       //    represents a set of overloaded functions, the matching
5090       //    function is selected from the set (13.4).
5091       (ParamType->isReferenceType() &&
5092        ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
5093       // -- For a non-type template-parameter of type pointer to
5094       //    member function, no conversions apply. If the
5095       //    template-argument represents a set of overloaded member
5096       //    functions, the matching member function is selected from
5097       //    the set (13.4).
5098       (ParamType->isMemberPointerType() &&
5099        ParamType->getAs<MemberPointerType>()->getPointeeType()
5100          ->isFunctionType())) {
5101 
5102     if (Arg->getType() == Context.OverloadTy) {
5103       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
5104                                                                 true,
5105                                                                 FoundResult)) {
5106         if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
5107           return ExprError();
5108 
5109         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
5110         ArgType = Arg->getType();
5111       } else
5112         return ExprError();
5113     }
5114 
5115     if (!ParamType->isMemberPointerType()) {
5116       if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
5117                                                          ParamType,
5118                                                          Arg, Converted))
5119         return ExprError();
5120       return Arg;
5121     }
5122 
5123     if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
5124                                              Converted))
5125       return ExprError();
5126     return Arg;
5127   }
5128 
5129   if (ParamType->isPointerType()) {
5130     //   -- for a non-type template-parameter of type pointer to
5131     //      object, qualification conversions (4.4) and the
5132     //      array-to-pointer conversion (4.2) are applied.
5133     // C++0x also allows a value of std::nullptr_t.
5134     assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
5135            "Only object pointers allowed here");
5136 
5137     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
5138                                                        ParamType,
5139                                                        Arg, Converted))
5140       return ExprError();
5141     return Arg;
5142   }
5143 
5144   if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
5145     //   -- For a non-type template-parameter of type reference to
5146     //      object, no conversions apply. The type referred to by the
5147     //      reference may be more cv-qualified than the (otherwise
5148     //      identical) type of the template-argument. The
5149     //      template-parameter is bound directly to the
5150     //      template-argument, which must be an lvalue.
5151     assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
5152            "Only object references allowed here");
5153 
5154     if (Arg->getType() == Context.OverloadTy) {
5155       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
5156                                                  ParamRefType->getPointeeType(),
5157                                                                 true,
5158                                                                 FoundResult)) {
5159         if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
5160           return ExprError();
5161 
5162         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
5163         ArgType = Arg->getType();
5164       } else
5165         return ExprError();
5166     }
5167 
5168     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
5169                                                        ParamType,
5170                                                        Arg, Converted))
5171       return ExprError();
5172     return Arg;
5173   }
5174 
5175   // Deal with parameters of type std::nullptr_t.
5176   if (ParamType->isNullPtrType()) {
5177     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
5178       Converted = TemplateArgument(Arg);
5179       return Arg;
5180     }
5181 
5182     switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
5183     case NPV_NotNullPointer:
5184       Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
5185         << Arg->getType() << ParamType;
5186       Diag(Param->getLocation(), diag::note_template_param_here);
5187       return ExprError();
5188 
5189     case NPV_Error:
5190       return ExprError();
5191 
5192     case NPV_NullPointer:
5193       Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
5194       Converted = TemplateArgument(Context.getCanonicalType(ParamType),
5195                                    /*isNullPtr*/true);
5196       return Arg;
5197     }
5198   }
5199 
5200   //     -- For a non-type template-parameter of type pointer to data
5201   //        member, qualification conversions (4.4) are applied.
5202   assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
5203 
5204   if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
5205                                            Converted))
5206     return ExprError();
5207   return Arg;
5208 }
5209 
5210 /// \brief Check a template argument against its corresponding
5211 /// template template parameter.
5212 ///
5213 /// This routine implements the semantics of C++ [temp.arg.template].
5214 /// It returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TemplateTemplateParmDecl * Param,TemplateArgumentLoc & Arg,unsigned ArgumentPackIndex)5215 bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
5216                                  TemplateArgumentLoc &Arg,
5217                                  unsigned ArgumentPackIndex) {
5218   TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
5219   TemplateDecl *Template = Name.getAsTemplateDecl();
5220   if (!Template) {
5221     // Any dependent template name is fine.
5222     assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
5223     return false;
5224   }
5225 
5226   // C++0x [temp.arg.template]p1:
5227   //   A template-argument for a template template-parameter shall be
5228   //   the name of a class template or an alias template, expressed as an
5229   //   id-expression. When the template-argument names a class template, only
5230   //   primary class templates are considered when matching the
5231   //   template template argument with the corresponding parameter;
5232   //   partial specializations are not considered even if their
5233   //   parameter lists match that of the template template parameter.
5234   //
5235   // Note that we also allow template template parameters here, which
5236   // will happen when we are dealing with, e.g., class template
5237   // partial specializations.
5238   if (!isa<ClassTemplateDecl>(Template) &&
5239       !isa<TemplateTemplateParmDecl>(Template) &&
5240       !isa<TypeAliasTemplateDecl>(Template)) {
5241     assert(isa<FunctionTemplateDecl>(Template) &&
5242            "Only function templates are possible here");
5243     Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
5244     Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
5245       << Template;
5246   }
5247 
5248   TemplateParameterList *Params = Param->getTemplateParameters();
5249   if (Param->isExpandedParameterPack())
5250     Params = Param->getExpansionTemplateParameters(ArgumentPackIndex);
5251 
5252   return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
5253                                          Params,
5254                                          true,
5255                                          TPL_TemplateTemplateArgumentMatch,
5256                                          Arg.getLocation());
5257 }
5258 
5259 /// \brief Given a non-type template argument that refers to a
5260 /// declaration and the type of its corresponding non-type template
5261 /// parameter, produce an expression that properly refers to that
5262 /// declaration.
5263 ExprResult
BuildExpressionFromDeclTemplateArgument(const TemplateArgument & Arg,QualType ParamType,SourceLocation Loc)5264 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
5265                                               QualType ParamType,
5266                                               SourceLocation Loc) {
5267   // C++ [temp.param]p8:
5268   //
5269   //   A non-type template-parameter of type "array of T" or
5270   //   "function returning T" is adjusted to be of type "pointer to
5271   //   T" or "pointer to function returning T", respectively.
5272   if (ParamType->isArrayType())
5273     ParamType = Context.getArrayDecayedType(ParamType);
5274   else if (ParamType->isFunctionType())
5275     ParamType = Context.getPointerType(ParamType);
5276 
5277   // For a NULL non-type template argument, return nullptr casted to the
5278   // parameter's type.
5279   if (Arg.getKind() == TemplateArgument::NullPtr) {
5280     return ImpCastExprToType(
5281              new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
5282                              ParamType,
5283                              ParamType->getAs<MemberPointerType>()
5284                                ? CK_NullToMemberPointer
5285                                : CK_NullToPointer);
5286   }
5287   assert(Arg.getKind() == TemplateArgument::Declaration &&
5288          "Only declaration template arguments permitted here");
5289 
5290   ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
5291 
5292   if (VD->getDeclContext()->isRecord() &&
5293       (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
5294        isa<IndirectFieldDecl>(VD))) {
5295     // If the value is a class member, we might have a pointer-to-member.
5296     // Determine whether the non-type template template parameter is of
5297     // pointer-to-member type. If so, we need to build an appropriate
5298     // expression for a pointer-to-member, since a "normal" DeclRefExpr
5299     // would refer to the member itself.
5300     if (ParamType->isMemberPointerType()) {
5301       QualType ClassType
5302         = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
5303       NestedNameSpecifier *Qualifier
5304         = NestedNameSpecifier::Create(Context, nullptr, false,
5305                                       ClassType.getTypePtr());
5306       CXXScopeSpec SS;
5307       SS.MakeTrivial(Context, Qualifier, Loc);
5308 
5309       // The actual value-ness of this is unimportant, but for
5310       // internal consistency's sake, references to instance methods
5311       // are r-values.
5312       ExprValueKind VK = VK_LValue;
5313       if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
5314         VK = VK_RValue;
5315 
5316       ExprResult RefExpr = BuildDeclRefExpr(VD,
5317                                             VD->getType().getNonReferenceType(),
5318                                             VK,
5319                                             Loc,
5320                                             &SS);
5321       if (RefExpr.isInvalid())
5322         return ExprError();
5323 
5324       RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5325 
5326       // We might need to perform a trailing qualification conversion, since
5327       // the element type on the parameter could be more qualified than the
5328       // element type in the expression we constructed.
5329       bool ObjCLifetimeConversion;
5330       if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
5331                                     ParamType.getUnqualifiedType(), false,
5332                                     ObjCLifetimeConversion))
5333         RefExpr = ImpCastExprToType(RefExpr.get(), ParamType.getUnqualifiedType(), CK_NoOp);
5334 
5335       assert(!RefExpr.isInvalid() &&
5336              Context.hasSameType(((Expr*) RefExpr.get())->getType(),
5337                                  ParamType.getUnqualifiedType()));
5338       return RefExpr;
5339     }
5340   }
5341 
5342   QualType T = VD->getType().getNonReferenceType();
5343 
5344   if (ParamType->isPointerType()) {
5345     // When the non-type template parameter is a pointer, take the
5346     // address of the declaration.
5347     ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
5348     if (RefExpr.isInvalid())
5349       return ExprError();
5350 
5351     if (T->isFunctionType() || T->isArrayType()) {
5352       // Decay functions and arrays.
5353       RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
5354       if (RefExpr.isInvalid())
5355         return ExprError();
5356 
5357       return RefExpr;
5358     }
5359 
5360     // Take the address of everything else
5361     return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5362   }
5363 
5364   ExprValueKind VK = VK_RValue;
5365 
5366   // If the non-type template parameter has reference type, qualify the
5367   // resulting declaration reference with the extra qualifiers on the
5368   // type that the reference refers to.
5369   if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
5370     VK = VK_LValue;
5371     T = Context.getQualifiedType(T,
5372                               TargetRef->getPointeeType().getQualifiers());
5373   } else if (isa<FunctionDecl>(VD)) {
5374     // References to functions are always lvalues.
5375     VK = VK_LValue;
5376   }
5377 
5378   return BuildDeclRefExpr(VD, T, VK, Loc);
5379 }
5380 
5381 /// \brief Construct a new expression that refers to the given
5382 /// integral template argument with the given source-location
5383 /// information.
5384 ///
5385 /// This routine takes care of the mapping from an integral template
5386 /// argument (which may have any integral type) to the appropriate
5387 /// literal value.
5388 ExprResult
BuildExpressionFromIntegralTemplateArgument(const TemplateArgument & Arg,SourceLocation Loc)5389 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
5390                                                   SourceLocation Loc) {
5391   assert(Arg.getKind() == TemplateArgument::Integral &&
5392          "Operation is only valid for integral template arguments");
5393   QualType OrigT = Arg.getIntegralType();
5394 
5395   // If this is an enum type that we're instantiating, we need to use an integer
5396   // type the same size as the enumerator.  We don't want to build an
5397   // IntegerLiteral with enum type.  The integer type of an enum type can be of
5398   // any integral type with C++11 enum classes, make sure we create the right
5399   // type of literal for it.
5400   QualType T = OrigT;
5401   if (const EnumType *ET = OrigT->getAs<EnumType>())
5402     T = ET->getDecl()->getIntegerType();
5403 
5404   Expr *E;
5405   if (T->isAnyCharacterType()) {
5406     CharacterLiteral::CharacterKind Kind;
5407     if (T->isWideCharType())
5408       Kind = CharacterLiteral::Wide;
5409     else if (T->isChar16Type())
5410       Kind = CharacterLiteral::UTF16;
5411     else if (T->isChar32Type())
5412       Kind = CharacterLiteral::UTF32;
5413     else
5414       Kind = CharacterLiteral::Ascii;
5415 
5416     E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
5417                                        Kind, T, Loc);
5418   } else if (T->isBooleanType()) {
5419     E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
5420                                          T, Loc);
5421   } else if (T->isNullPtrType()) {
5422     E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
5423   } else {
5424     E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
5425   }
5426 
5427   if (OrigT->isEnumeralType()) {
5428     // FIXME: This is a hack. We need a better way to handle substituted
5429     // non-type template parameters.
5430     E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E,
5431                                nullptr,
5432                                Context.getTrivialTypeSourceInfo(OrigT, Loc),
5433                                Loc, Loc);
5434   }
5435 
5436   return E;
5437 }
5438 
5439 /// \brief Match two template parameters within template parameter lists.
MatchTemplateParameterKind(Sema & S,NamedDecl * New,NamedDecl * Old,bool Complain,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)5440 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
5441                                        bool Complain,
5442                                      Sema::TemplateParameterListEqualKind Kind,
5443                                        SourceLocation TemplateArgLoc) {
5444   // Check the actual kind (type, non-type, template).
5445   if (Old->getKind() != New->getKind()) {
5446     if (Complain) {
5447       unsigned NextDiag = diag::err_template_param_different_kind;
5448       if (TemplateArgLoc.isValid()) {
5449         S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5450         NextDiag = diag::note_template_param_different_kind;
5451       }
5452       S.Diag(New->getLocation(), NextDiag)
5453         << (Kind != Sema::TPL_TemplateMatch);
5454       S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
5455         << (Kind != Sema::TPL_TemplateMatch);
5456     }
5457 
5458     return false;
5459   }
5460 
5461   // Check that both are parameter packs are neither are parameter packs.
5462   // However, if we are matching a template template argument to a
5463   // template template parameter, the template template parameter can have
5464   // a parameter pack where the template template argument does not.
5465   if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
5466       !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5467         Old->isTemplateParameterPack())) {
5468     if (Complain) {
5469       unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
5470       if (TemplateArgLoc.isValid()) {
5471         S.Diag(TemplateArgLoc,
5472              diag::err_template_arg_template_params_mismatch);
5473         NextDiag = diag::note_template_parameter_pack_non_pack;
5474       }
5475 
5476       unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
5477                       : isa<NonTypeTemplateParmDecl>(New)? 1
5478                       : 2;
5479       S.Diag(New->getLocation(), NextDiag)
5480         << ParamKind << New->isParameterPack();
5481       S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
5482         << ParamKind << Old->isParameterPack();
5483     }
5484 
5485     return false;
5486   }
5487 
5488   // For non-type template parameters, check the type of the parameter.
5489   if (NonTypeTemplateParmDecl *OldNTTP
5490                                     = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
5491     NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
5492 
5493     // If we are matching a template template argument to a template
5494     // template parameter and one of the non-type template parameter types
5495     // is dependent, then we must wait until template instantiation time
5496     // to actually compare the arguments.
5497     if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5498         (OldNTTP->getType()->isDependentType() ||
5499          NewNTTP->getType()->isDependentType()))
5500       return true;
5501 
5502     if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
5503       if (Complain) {
5504         unsigned NextDiag = diag::err_template_nontype_parm_different_type;
5505         if (TemplateArgLoc.isValid()) {
5506           S.Diag(TemplateArgLoc,
5507                  diag::err_template_arg_template_params_mismatch);
5508           NextDiag = diag::note_template_nontype_parm_different_type;
5509         }
5510         S.Diag(NewNTTP->getLocation(), NextDiag)
5511           << NewNTTP->getType()
5512           << (Kind != Sema::TPL_TemplateMatch);
5513         S.Diag(OldNTTP->getLocation(),
5514                diag::note_template_nontype_parm_prev_declaration)
5515           << OldNTTP->getType();
5516       }
5517 
5518       return false;
5519     }
5520 
5521     return true;
5522   }
5523 
5524   // For template template parameters, check the template parameter types.
5525   // The template parameter lists of template template
5526   // parameters must agree.
5527   if (TemplateTemplateParmDecl *OldTTP
5528                                     = dyn_cast<TemplateTemplateParmDecl>(Old)) {
5529     TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
5530     return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
5531                                             OldTTP->getTemplateParameters(),
5532                                             Complain,
5533                                         (Kind == Sema::TPL_TemplateMatch
5534                                            ? Sema::TPL_TemplateTemplateParmMatch
5535                                            : Kind),
5536                                             TemplateArgLoc);
5537   }
5538 
5539   return true;
5540 }
5541 
5542 /// \brief Diagnose a known arity mismatch when comparing template argument
5543 /// lists.
5544 static
DiagnoseTemplateParameterListArityMismatch(Sema & S,TemplateParameterList * New,TemplateParameterList * Old,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)5545 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
5546                                                 TemplateParameterList *New,
5547                                                 TemplateParameterList *Old,
5548                                       Sema::TemplateParameterListEqualKind Kind,
5549                                                 SourceLocation TemplateArgLoc) {
5550   unsigned NextDiag = diag::err_template_param_list_different_arity;
5551   if (TemplateArgLoc.isValid()) {
5552     S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5553     NextDiag = diag::note_template_param_list_different_arity;
5554   }
5555   S.Diag(New->getTemplateLoc(), NextDiag)
5556     << (New->size() > Old->size())
5557     << (Kind != Sema::TPL_TemplateMatch)
5558     << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
5559   S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
5560     << (Kind != Sema::TPL_TemplateMatch)
5561     << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
5562 }
5563 
5564 /// \brief Determine whether the given template parameter lists are
5565 /// equivalent.
5566 ///
5567 /// \param New  The new template parameter list, typically written in the
5568 /// source code as part of a new template declaration.
5569 ///
5570 /// \param Old  The old template parameter list, typically found via
5571 /// name lookup of the template declared with this template parameter
5572 /// list.
5573 ///
5574 /// \param Complain  If true, this routine will produce a diagnostic if
5575 /// the template parameter lists are not equivalent.
5576 ///
5577 /// \param Kind describes how we are to match the template parameter lists.
5578 ///
5579 /// \param TemplateArgLoc If this source location is valid, then we
5580 /// are actually checking the template parameter list of a template
5581 /// argument (New) against the template parameter list of its
5582 /// corresponding template template parameter (Old). We produce
5583 /// slightly different diagnostics in this scenario.
5584 ///
5585 /// \returns True if the template parameter lists are equal, false
5586 /// otherwise.
5587 bool
TemplateParameterListsAreEqual(TemplateParameterList * New,TemplateParameterList * Old,bool Complain,TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)5588 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
5589                                      TemplateParameterList *Old,
5590                                      bool Complain,
5591                                      TemplateParameterListEqualKind Kind,
5592                                      SourceLocation TemplateArgLoc) {
5593   if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
5594     if (Complain)
5595       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5596                                                  TemplateArgLoc);
5597 
5598     return false;
5599   }
5600 
5601   // C++0x [temp.arg.template]p3:
5602   //   A template-argument matches a template template-parameter (call it P)
5603   //   when each of the template parameters in the template-parameter-list of
5604   //   the template-argument's corresponding class template or alias template
5605   //   (call it A) matches the corresponding template parameter in the
5606   //   template-parameter-list of P. [...]
5607   TemplateParameterList::iterator NewParm = New->begin();
5608   TemplateParameterList::iterator NewParmEnd = New->end();
5609   for (TemplateParameterList::iterator OldParm = Old->begin(),
5610                                     OldParmEnd = Old->end();
5611        OldParm != OldParmEnd; ++OldParm) {
5612     if (Kind != TPL_TemplateTemplateArgumentMatch ||
5613         !(*OldParm)->isTemplateParameterPack()) {
5614       if (NewParm == NewParmEnd) {
5615         if (Complain)
5616           DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5617                                                      TemplateArgLoc);
5618 
5619         return false;
5620       }
5621 
5622       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5623                                       Kind, TemplateArgLoc))
5624         return false;
5625 
5626       ++NewParm;
5627       continue;
5628     }
5629 
5630     // C++0x [temp.arg.template]p3:
5631     //   [...] When P's template- parameter-list contains a template parameter
5632     //   pack (14.5.3), the template parameter pack will match zero or more
5633     //   template parameters or template parameter packs in the
5634     //   template-parameter-list of A with the same type and form as the
5635     //   template parameter pack in P (ignoring whether those template
5636     //   parameters are template parameter packs).
5637     for (; NewParm != NewParmEnd; ++NewParm) {
5638       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5639                                       Kind, TemplateArgLoc))
5640         return false;
5641     }
5642   }
5643 
5644   // Make sure we exhausted all of the arguments.
5645   if (NewParm != NewParmEnd) {
5646     if (Complain)
5647       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5648                                                  TemplateArgLoc);
5649 
5650     return false;
5651   }
5652 
5653   return true;
5654 }
5655 
5656 /// \brief Check whether a template can be declared within this scope.
5657 ///
5658 /// If the template declaration is valid in this scope, returns
5659 /// false. Otherwise, issues a diagnostic and returns true.
5660 bool
CheckTemplateDeclScope(Scope * S,TemplateParameterList * TemplateParams)5661 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
5662   if (!S)
5663     return false;
5664 
5665   // Find the nearest enclosing declaration scope.
5666   while ((S->getFlags() & Scope::DeclScope) == 0 ||
5667          (S->getFlags() & Scope::TemplateParamScope) != 0)
5668     S = S->getParent();
5669 
5670   // C++ [temp]p4:
5671   //   A template [...] shall not have C linkage.
5672   DeclContext *Ctx = S->getEntity();
5673   if (Ctx && Ctx->isExternCContext())
5674     return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
5675              << TemplateParams->getSourceRange();
5676 
5677   while (Ctx && isa<LinkageSpecDecl>(Ctx))
5678     Ctx = Ctx->getParent();
5679 
5680   // C++ [temp]p2:
5681   //   A template-declaration can appear only as a namespace scope or
5682   //   class scope declaration.
5683   if (Ctx) {
5684     if (Ctx->isFileContext())
5685       return false;
5686     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
5687       // C++ [temp.mem]p2:
5688       //   A local class shall not have member templates.
5689       if (RD->isLocalClass())
5690         return Diag(TemplateParams->getTemplateLoc(),
5691                     diag::err_template_inside_local_class)
5692           << TemplateParams->getSourceRange();
5693       else
5694         return false;
5695     }
5696   }
5697 
5698   return Diag(TemplateParams->getTemplateLoc(),
5699               diag::err_template_outside_namespace_or_class_scope)
5700     << TemplateParams->getSourceRange();
5701 }
5702 
5703 /// \brief Determine what kind of template specialization the given declaration
5704 /// is.
getTemplateSpecializationKind(Decl * D)5705 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
5706   if (!D)
5707     return TSK_Undeclared;
5708 
5709   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
5710     return Record->getTemplateSpecializationKind();
5711   if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
5712     return Function->getTemplateSpecializationKind();
5713   if (VarDecl *Var = dyn_cast<VarDecl>(D))
5714     return Var->getTemplateSpecializationKind();
5715 
5716   return TSK_Undeclared;
5717 }
5718 
5719 /// \brief Check whether a specialization is well-formed in the current
5720 /// context.
5721 ///
5722 /// This routine determines whether a template specialization can be declared
5723 /// in the current context (C++ [temp.expl.spec]p2).
5724 ///
5725 /// \param S the semantic analysis object for which this check is being
5726 /// performed.
5727 ///
5728 /// \param Specialized the entity being specialized or instantiated, which
5729 /// may be a kind of template (class template, function template, etc.) or
5730 /// a member of a class template (member function, static data member,
5731 /// member class).
5732 ///
5733 /// \param PrevDecl the previous declaration of this entity, if any.
5734 ///
5735 /// \param Loc the location of the explicit specialization or instantiation of
5736 /// this entity.
5737 ///
5738 /// \param IsPartialSpecialization whether this is a partial specialization of
5739 /// a class template.
5740 ///
5741 /// \returns true if there was an error that we cannot recover from, false
5742 /// otherwise.
CheckTemplateSpecializationScope(Sema & S,NamedDecl * Specialized,NamedDecl * PrevDecl,SourceLocation Loc,bool IsPartialSpecialization)5743 static bool CheckTemplateSpecializationScope(Sema &S,
5744                                              NamedDecl *Specialized,
5745                                              NamedDecl *PrevDecl,
5746                                              SourceLocation Loc,
5747                                              bool IsPartialSpecialization) {
5748   // Keep these "kind" numbers in sync with the %select statements in the
5749   // various diagnostics emitted by this routine.
5750   int EntityKind = 0;
5751   if (isa<ClassTemplateDecl>(Specialized))
5752     EntityKind = IsPartialSpecialization? 1 : 0;
5753   else if (isa<VarTemplateDecl>(Specialized))
5754     EntityKind = IsPartialSpecialization ? 3 : 2;
5755   else if (isa<FunctionTemplateDecl>(Specialized))
5756     EntityKind = 4;
5757   else if (isa<CXXMethodDecl>(Specialized))
5758     EntityKind = 5;
5759   else if (isa<VarDecl>(Specialized))
5760     EntityKind = 6;
5761   else if (isa<RecordDecl>(Specialized))
5762     EntityKind = 7;
5763   else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
5764     EntityKind = 8;
5765   else {
5766     S.Diag(Loc, diag::err_template_spec_unknown_kind)
5767       << S.getLangOpts().CPlusPlus11;
5768     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5769     return true;
5770   }
5771 
5772   // C++ [temp.expl.spec]p2:
5773   //   An explicit specialization shall be declared in the namespace
5774   //   of which the template is a member, or, for member templates, in
5775   //   the namespace of which the enclosing class or enclosing class
5776   //   template is a member. An explicit specialization of a member
5777   //   function, member class or static data member of a class
5778   //   template shall be declared in the namespace of which the class
5779   //   template is a member. Such a declaration may also be a
5780   //   definition. If the declaration is not a definition, the
5781   //   specialization may be defined later in the name- space in which
5782   //   the explicit specialization was declared, or in a namespace
5783   //   that encloses the one in which the explicit specialization was
5784   //   declared.
5785   if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5786     S.Diag(Loc, diag::err_template_spec_decl_function_scope)
5787       << Specialized;
5788     return true;
5789   }
5790 
5791   if (S.CurContext->isRecord() && !IsPartialSpecialization) {
5792     if (S.getLangOpts().MicrosoftExt) {
5793       // Do not warn for class scope explicit specialization during
5794       // instantiation, warning was already emitted during pattern
5795       // semantic analysis.
5796       if (!S.ActiveTemplateInstantiations.size())
5797         S.Diag(Loc, diag::ext_function_specialization_in_class)
5798           << Specialized;
5799     } else {
5800       S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5801         << Specialized;
5802       return true;
5803     }
5804   }
5805 
5806   if (S.CurContext->isRecord() &&
5807       !S.CurContext->Equals(Specialized->getDeclContext())) {
5808     // Make sure that we're specializing in the right record context.
5809     // Otherwise, things can go horribly wrong.
5810     S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5811       << Specialized;
5812     return true;
5813   }
5814 
5815   // C++ [temp.class.spec]p6:
5816   //   A class template partial specialization may be declared or redeclared
5817   //   in any namespace scope in which its definition may be defined (14.5.1
5818   //   and 14.5.2).
5819   DeclContext *SpecializedContext
5820     = Specialized->getDeclContext()->getEnclosingNamespaceContext();
5821   DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
5822 
5823   // Make sure that this redeclaration (or definition) occurs in an enclosing
5824   // namespace.
5825   // Note that HandleDeclarator() performs this check for explicit
5826   // specializations of function templates, static data members, and member
5827   // functions, so we skip the check here for those kinds of entities.
5828   // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
5829   // Should we refactor that check, so that it occurs later?
5830   if (!DC->Encloses(SpecializedContext) &&
5831       !(isa<FunctionTemplateDecl>(Specialized) ||
5832         isa<FunctionDecl>(Specialized) ||
5833         isa<VarTemplateDecl>(Specialized) ||
5834         isa<VarDecl>(Specialized))) {
5835     if (isa<TranslationUnitDecl>(SpecializedContext))
5836       S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
5837         << EntityKind << Specialized;
5838     else if (isa<NamespaceDecl>(SpecializedContext))
5839       S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
5840         << EntityKind << Specialized
5841         << cast<NamedDecl>(SpecializedContext);
5842     else
5843       llvm_unreachable("unexpected namespace context for specialization");
5844 
5845     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5846   } else if ((!PrevDecl ||
5847               getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
5848               getTemplateSpecializationKind(PrevDecl) ==
5849                   TSK_ImplicitInstantiation)) {
5850     // C++ [temp.exp.spec]p2:
5851     //   An explicit specialization shall be declared in the namespace of which
5852     //   the template is a member, or, for member templates, in the namespace
5853     //   of which the enclosing class or enclosing class template is a member.
5854     //   An explicit specialization of a member function, member class or
5855     //   static data member of a class template shall be declared in the
5856     //   namespace of which the class template is a member.
5857     //
5858     // C++11 [temp.expl.spec]p2:
5859     //   An explicit specialization shall be declared in a namespace enclosing
5860     //   the specialized template.
5861     // C++11 [temp.explicit]p3:
5862     //   An explicit instantiation shall appear in an enclosing namespace of its
5863     //   template.
5864     if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
5865       bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext);
5866       if (isa<TranslationUnitDecl>(SpecializedContext)) {
5867         assert(!IsCPlusPlus11Extension &&
5868                "DC encloses TU but isn't in enclosing namespace set");
5869         S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
5870           << EntityKind << Specialized;
5871       } else if (isa<NamespaceDecl>(SpecializedContext)) {
5872         int Diag;
5873         if (!IsCPlusPlus11Extension)
5874           Diag = diag::err_template_spec_decl_out_of_scope;
5875         else if (!S.getLangOpts().CPlusPlus11)
5876           Diag = diag::ext_template_spec_decl_out_of_scope;
5877         else
5878           Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
5879         S.Diag(Loc, Diag)
5880           << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
5881       }
5882 
5883       S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5884     }
5885   }
5886 
5887   return false;
5888 }
5889 
findTemplateParameter(unsigned Depth,Expr * E)5890 static SourceRange findTemplateParameter(unsigned Depth, Expr *E) {
5891   if (!E->isInstantiationDependent())
5892     return SourceLocation();
5893   DependencyChecker Checker(Depth);
5894   Checker.TraverseStmt(E);
5895   if (Checker.Match && Checker.MatchLoc.isInvalid())
5896     return E->getSourceRange();
5897   return Checker.MatchLoc;
5898 }
5899 
findTemplateParameter(unsigned Depth,TypeLoc TL)5900 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
5901   if (!TL.getType()->isDependentType())
5902     return SourceLocation();
5903   DependencyChecker Checker(Depth);
5904   Checker.TraverseTypeLoc(TL);
5905   if (Checker.Match && Checker.MatchLoc.isInvalid())
5906     return TL.getSourceRange();
5907   return Checker.MatchLoc;
5908 }
5909 
5910 /// \brief Subroutine of Sema::CheckTemplatePartialSpecializationArgs
5911 /// that checks non-type template partial specialization arguments.
CheckNonTypeTemplatePartialSpecializationArgs(Sema & S,SourceLocation TemplateNameLoc,NonTypeTemplateParmDecl * Param,const TemplateArgument * Args,unsigned NumArgs,bool IsDefaultArgument)5912 static bool CheckNonTypeTemplatePartialSpecializationArgs(
5913     Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
5914     const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
5915   for (unsigned I = 0; I != NumArgs; ++I) {
5916     if (Args[I].getKind() == TemplateArgument::Pack) {
5917       if (CheckNonTypeTemplatePartialSpecializationArgs(
5918               S, TemplateNameLoc, Param, Args[I].pack_begin(),
5919               Args[I].pack_size(), IsDefaultArgument))
5920         return true;
5921 
5922       continue;
5923     }
5924 
5925     if (Args[I].getKind() != TemplateArgument::Expression)
5926       continue;
5927 
5928     Expr *ArgExpr = Args[I].getAsExpr();
5929 
5930     // We can have a pack expansion of any of the bullets below.
5931     if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
5932       ArgExpr = Expansion->getPattern();
5933 
5934     // Strip off any implicit casts we added as part of type checking.
5935     while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
5936       ArgExpr = ICE->getSubExpr();
5937 
5938     // C++ [temp.class.spec]p8:
5939     //   A non-type argument is non-specialized if it is the name of a
5940     //   non-type parameter. All other non-type arguments are
5941     //   specialized.
5942     //
5943     // Below, we check the two conditions that only apply to
5944     // specialized non-type arguments, so skip any non-specialized
5945     // arguments.
5946     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
5947       if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
5948         continue;
5949 
5950     // C++ [temp.class.spec]p9:
5951     //   Within the argument list of a class template partial
5952     //   specialization, the following restrictions apply:
5953     //     -- A partially specialized non-type argument expression
5954     //        shall not involve a template parameter of the partial
5955     //        specialization except when the argument expression is a
5956     //        simple identifier.
5957     SourceRange ParamUseRange =
5958         findTemplateParameter(Param->getDepth(), ArgExpr);
5959     if (ParamUseRange.isValid()) {
5960       if (IsDefaultArgument) {
5961         S.Diag(TemplateNameLoc,
5962                diag::err_dependent_non_type_arg_in_partial_spec);
5963         S.Diag(ParamUseRange.getBegin(),
5964                diag::note_dependent_non_type_default_arg_in_partial_spec)
5965           << ParamUseRange;
5966       } else {
5967         S.Diag(ParamUseRange.getBegin(),
5968                diag::err_dependent_non_type_arg_in_partial_spec)
5969           << ParamUseRange;
5970       }
5971       return true;
5972     }
5973 
5974     //     -- The type of a template parameter corresponding to a
5975     //        specialized non-type argument shall not be dependent on a
5976     //        parameter of the specialization.
5977     //
5978     // FIXME: We need to delay this check until instantiation in some cases:
5979     //
5980     //   template<template<typename> class X> struct A {
5981     //     template<typename T, X<T> N> struct B;
5982     //     template<typename T> struct B<T, 0>;
5983     //   };
5984     //   template<typename> using X = int;
5985     //   A<X>::B<int, 0> b;
5986     ParamUseRange = findTemplateParameter(
5987             Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
5988     if (ParamUseRange.isValid()) {
5989       S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getLocStart(),
5990              diag::err_dependent_typed_non_type_arg_in_partial_spec)
5991         << Param->getType() << ParamUseRange;
5992       S.Diag(Param->getLocation(), diag::note_template_param_here)
5993         << (IsDefaultArgument ? ParamUseRange : SourceRange());
5994       return true;
5995     }
5996   }
5997 
5998   return false;
5999 }
6000 
6001 /// \brief Check the non-type template arguments of a class template
6002 /// partial specialization according to C++ [temp.class.spec]p9.
6003 ///
6004 /// \param TemplateNameLoc the location of the template name.
6005 /// \param TemplateParams the template parameters of the primary class
6006 ///        template.
6007 /// \param NumExplicit the number of explicitly-specified template arguments.
6008 /// \param TemplateArgs the template arguments of the class template
6009 ///        partial specialization.
6010 ///
6011 /// \returns \c true if there was an error, \c false otherwise.
CheckTemplatePartialSpecializationArgs(Sema & S,SourceLocation TemplateNameLoc,TemplateParameterList * TemplateParams,unsigned NumExplicit,SmallVectorImpl<TemplateArgument> & TemplateArgs)6012 static bool CheckTemplatePartialSpecializationArgs(
6013     Sema &S, SourceLocation TemplateNameLoc,
6014     TemplateParameterList *TemplateParams, unsigned NumExplicit,
6015     SmallVectorImpl<TemplateArgument> &TemplateArgs) {
6016   const TemplateArgument *ArgList = TemplateArgs.data();
6017 
6018   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
6019     NonTypeTemplateParmDecl *Param
6020       = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
6021     if (!Param)
6022       continue;
6023 
6024     if (CheckNonTypeTemplatePartialSpecializationArgs(
6025             S, TemplateNameLoc, Param, &ArgList[I], 1, I >= NumExplicit))
6026       return true;
6027   }
6028 
6029   return false;
6030 }
6031 
6032 DeclResult
ActOnClassTemplateSpecialization(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,SourceLocation ModulePrivateLoc,TemplateIdAnnotation & TemplateId,AttributeList * Attr,MultiTemplateParamsArg TemplateParameterLists)6033 Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
6034                                        TagUseKind TUK,
6035                                        SourceLocation KWLoc,
6036                                        SourceLocation ModulePrivateLoc,
6037                                        TemplateIdAnnotation &TemplateId,
6038                                        AttributeList *Attr,
6039                                MultiTemplateParamsArg TemplateParameterLists) {
6040   assert(TUK != TUK_Reference && "References are not specializations");
6041 
6042   CXXScopeSpec &SS = TemplateId.SS;
6043 
6044   // NOTE: KWLoc is the location of the tag keyword. This will instead
6045   // store the location of the outermost template keyword in the declaration.
6046   SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
6047     ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
6048   SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
6049   SourceLocation LAngleLoc = TemplateId.LAngleLoc;
6050   SourceLocation RAngleLoc = TemplateId.RAngleLoc;
6051 
6052   // Find the class template we're specializing
6053   TemplateName Name = TemplateId.Template.get();
6054   ClassTemplateDecl *ClassTemplate
6055     = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
6056 
6057   if (!ClassTemplate) {
6058     Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
6059       << (Name.getAsTemplateDecl() &&
6060           isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
6061     return true;
6062   }
6063 
6064   bool isExplicitSpecialization = false;
6065   bool isPartialSpecialization = false;
6066 
6067   // Check the validity of the template headers that introduce this
6068   // template.
6069   // FIXME: We probably shouldn't complain about these headers for
6070   // friend declarations.
6071   bool Invalid = false;
6072   TemplateParameterList *TemplateParams =
6073       MatchTemplateParametersToScopeSpecifier(
6074           KWLoc, TemplateNameLoc, SS, &TemplateId,
6075           TemplateParameterLists, TUK == TUK_Friend, isExplicitSpecialization,
6076           Invalid);
6077   if (Invalid)
6078     return true;
6079 
6080   if (TemplateParams && TemplateParams->size() > 0) {
6081     isPartialSpecialization = true;
6082 
6083     if (TUK == TUK_Friend) {
6084       Diag(KWLoc, diag::err_partial_specialization_friend)
6085         << SourceRange(LAngleLoc, RAngleLoc);
6086       return true;
6087     }
6088 
6089     // C++ [temp.class.spec]p10:
6090     //   The template parameter list of a specialization shall not
6091     //   contain default template argument values.
6092     for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
6093       Decl *Param = TemplateParams->getParam(I);
6094       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
6095         if (TTP->hasDefaultArgument()) {
6096           Diag(TTP->getDefaultArgumentLoc(),
6097                diag::err_default_arg_in_partial_spec);
6098           TTP->removeDefaultArgument();
6099         }
6100       } else if (NonTypeTemplateParmDecl *NTTP
6101                    = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
6102         if (Expr *DefArg = NTTP->getDefaultArgument()) {
6103           Diag(NTTP->getDefaultArgumentLoc(),
6104                diag::err_default_arg_in_partial_spec)
6105             << DefArg->getSourceRange();
6106           NTTP->removeDefaultArgument();
6107         }
6108       } else {
6109         TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
6110         if (TTP->hasDefaultArgument()) {
6111           Diag(TTP->getDefaultArgument().getLocation(),
6112                diag::err_default_arg_in_partial_spec)
6113             << TTP->getDefaultArgument().getSourceRange();
6114           TTP->removeDefaultArgument();
6115         }
6116       }
6117     }
6118   } else if (TemplateParams) {
6119     if (TUK == TUK_Friend)
6120       Diag(KWLoc, diag::err_template_spec_friend)
6121         << FixItHint::CreateRemoval(
6122                                 SourceRange(TemplateParams->getTemplateLoc(),
6123                                             TemplateParams->getRAngleLoc()))
6124         << SourceRange(LAngleLoc, RAngleLoc);
6125     else
6126       isExplicitSpecialization = true;
6127   } else {
6128     assert(TUK == TUK_Friend && "should have a 'template<>' for this decl");
6129   }
6130 
6131   // Check that the specialization uses the same tag kind as the
6132   // original template.
6133   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6134   assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
6135   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
6136                                     Kind, TUK == TUK_Definition, KWLoc,
6137                                     *ClassTemplate->getIdentifier())) {
6138     Diag(KWLoc, diag::err_use_with_wrong_tag)
6139       << ClassTemplate
6140       << FixItHint::CreateReplacement(KWLoc,
6141                             ClassTemplate->getTemplatedDecl()->getKindName());
6142     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
6143          diag::note_previous_use);
6144     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
6145   }
6146 
6147   // Translate the parser's template argument list in our AST format.
6148   TemplateArgumentListInfo TemplateArgs =
6149       makeTemplateArgumentListInfo(*this, TemplateId);
6150 
6151   // Check for unexpanded parameter packs in any of the template arguments.
6152   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6153     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
6154                                         UPPC_PartialSpecialization))
6155       return true;
6156 
6157   // Check that the template argument list is well-formed for this
6158   // template.
6159   SmallVector<TemplateArgument, 4> Converted;
6160   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
6161                                 TemplateArgs, false, Converted))
6162     return true;
6163 
6164   // Find the class template (partial) specialization declaration that
6165   // corresponds to these arguments.
6166   if (isPartialSpecialization) {
6167     if (CheckTemplatePartialSpecializationArgs(
6168             *this, TemplateNameLoc, ClassTemplate->getTemplateParameters(),
6169             TemplateArgs.size(), Converted))
6170       return true;
6171 
6172     bool InstantiationDependent;
6173     if (!Name.isDependent() &&
6174         !TemplateSpecializationType::anyDependentTemplateArguments(
6175                                              TemplateArgs.getArgumentArray(),
6176                                                          TemplateArgs.size(),
6177                                                      InstantiationDependent)) {
6178       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
6179         << ClassTemplate->getDeclName();
6180       isPartialSpecialization = false;
6181     }
6182   }
6183 
6184   void *InsertPos = nullptr;
6185   ClassTemplateSpecializationDecl *PrevDecl = nullptr;
6186 
6187   if (isPartialSpecialization)
6188     // FIXME: Template parameter list matters, too
6189     PrevDecl = ClassTemplate->findPartialSpecialization(Converted, InsertPos);
6190   else
6191     PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos);
6192 
6193   ClassTemplateSpecializationDecl *Specialization = nullptr;
6194 
6195   // Check whether we can declare a class template specialization in
6196   // the current scope.
6197   if (TUK != TUK_Friend &&
6198       CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
6199                                        TemplateNameLoc,
6200                                        isPartialSpecialization))
6201     return true;
6202 
6203   // The canonical type
6204   QualType CanonType;
6205   if (isPartialSpecialization) {
6206     // Build the canonical type that describes the converted template
6207     // arguments of the class template partial specialization.
6208     TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
6209     CanonType = Context.getTemplateSpecializationType(CanonTemplate,
6210                                                       Converted.data(),
6211                                                       Converted.size());
6212 
6213     if (Context.hasSameType(CanonType,
6214                         ClassTemplate->getInjectedClassNameSpecialization())) {
6215       // C++ [temp.class.spec]p9b3:
6216       //
6217       //   -- The argument list of the specialization shall not be identical
6218       //      to the implicit argument list of the primary template.
6219       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
6220         << /*class template*/0 << (TUK == TUK_Definition)
6221         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
6222       return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
6223                                 ClassTemplate->getIdentifier(),
6224                                 TemplateNameLoc,
6225                                 Attr,
6226                                 TemplateParams,
6227                                 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
6228                                 /*FriendLoc*/SourceLocation(),
6229                                 TemplateParameterLists.size() - 1,
6230                                 TemplateParameterLists.data());
6231     }
6232 
6233     // Create a new class template partial specialization declaration node.
6234     ClassTemplatePartialSpecializationDecl *PrevPartial
6235       = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
6236     ClassTemplatePartialSpecializationDecl *Partial
6237       = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
6238                                              ClassTemplate->getDeclContext(),
6239                                                        KWLoc, TemplateNameLoc,
6240                                                        TemplateParams,
6241                                                        ClassTemplate,
6242                                                        Converted.data(),
6243                                                        Converted.size(),
6244                                                        TemplateArgs,
6245                                                        CanonType,
6246                                                        PrevPartial);
6247     SetNestedNameSpecifier(Partial, SS);
6248     if (TemplateParameterLists.size() > 1 && SS.isSet()) {
6249       Partial->setTemplateParameterListsInfo(Context,
6250                                              TemplateParameterLists.size() - 1,
6251                                              TemplateParameterLists.data());
6252     }
6253 
6254     if (!PrevPartial)
6255       ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
6256     Specialization = Partial;
6257 
6258     // If we are providing an explicit specialization of a member class
6259     // template specialization, make a note of that.
6260     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
6261       PrevPartial->setMemberSpecialization();
6262 
6263     // Check that all of the template parameters of the class template
6264     // partial specialization are deducible from the template
6265     // arguments. If not, this class template partial specialization
6266     // will never be used.
6267     llvm::SmallBitVector DeducibleParams(TemplateParams->size());
6268     MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
6269                                TemplateParams->getDepth(),
6270                                DeducibleParams);
6271 
6272     if (!DeducibleParams.all()) {
6273       unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
6274       Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
6275         << /*class template*/0 << (NumNonDeducible > 1)
6276         << SourceRange(TemplateNameLoc, RAngleLoc);
6277       for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
6278         if (!DeducibleParams[I]) {
6279           NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
6280           if (Param->getDeclName())
6281             Diag(Param->getLocation(),
6282                  diag::note_partial_spec_unused_parameter)
6283               << Param->getDeclName();
6284           else
6285             Diag(Param->getLocation(),
6286                  diag::note_partial_spec_unused_parameter)
6287               << "(anonymous)";
6288         }
6289       }
6290     }
6291   } else {
6292     // Create a new class template specialization declaration node for
6293     // this explicit specialization or friend declaration.
6294     Specialization
6295       = ClassTemplateSpecializationDecl::Create(Context, Kind,
6296                                              ClassTemplate->getDeclContext(),
6297                                                 KWLoc, TemplateNameLoc,
6298                                                 ClassTemplate,
6299                                                 Converted.data(),
6300                                                 Converted.size(),
6301                                                 PrevDecl);
6302     SetNestedNameSpecifier(Specialization, SS);
6303     if (TemplateParameterLists.size() > 0) {
6304       Specialization->setTemplateParameterListsInfo(Context,
6305                                               TemplateParameterLists.size(),
6306                                               TemplateParameterLists.data());
6307     }
6308 
6309     if (!PrevDecl)
6310       ClassTemplate->AddSpecialization(Specialization, InsertPos);
6311 
6312     CanonType = Context.getTypeDeclType(Specialization);
6313   }
6314 
6315   // C++ [temp.expl.spec]p6:
6316   //   If a template, a member template or the member of a class template is
6317   //   explicitly specialized then that specialization shall be declared
6318   //   before the first use of that specialization that would cause an implicit
6319   //   instantiation to take place, in every translation unit in which such a
6320   //   use occurs; no diagnostic is required.
6321   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
6322     bool Okay = false;
6323     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6324       // Is there any previous explicit specialization declaration?
6325       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
6326         Okay = true;
6327         break;
6328       }
6329     }
6330 
6331     if (!Okay) {
6332       SourceRange Range(TemplateNameLoc, RAngleLoc);
6333       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
6334         << Context.getTypeDeclType(Specialization) << Range;
6335 
6336       Diag(PrevDecl->getPointOfInstantiation(),
6337            diag::note_instantiation_required_here)
6338         << (PrevDecl->getTemplateSpecializationKind()
6339                                                 != TSK_ImplicitInstantiation);
6340       return true;
6341     }
6342   }
6343 
6344   // If this is not a friend, note that this is an explicit specialization.
6345   if (TUK != TUK_Friend)
6346     Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
6347 
6348   // Check that this isn't a redefinition of this specialization.
6349   if (TUK == TUK_Definition) {
6350     if (RecordDecl *Def = Specialization->getDefinition()) {
6351       SourceRange Range(TemplateNameLoc, RAngleLoc);
6352       Diag(TemplateNameLoc, diag::err_redefinition)
6353         << Context.getTypeDeclType(Specialization) << Range;
6354       Diag(Def->getLocation(), diag::note_previous_definition);
6355       Specialization->setInvalidDecl();
6356       return true;
6357     }
6358   }
6359 
6360   if (Attr)
6361     ProcessDeclAttributeList(S, Specialization, Attr);
6362 
6363   // Add alignment attributes if necessary; these attributes are checked when
6364   // the ASTContext lays out the structure.
6365   if (TUK == TUK_Definition) {
6366     AddAlignmentAttributesForRecord(Specialization);
6367     AddMsStructLayoutForRecord(Specialization);
6368   }
6369 
6370   if (ModulePrivateLoc.isValid())
6371     Diag(Specialization->getLocation(), diag::err_module_private_specialization)
6372       << (isPartialSpecialization? 1 : 0)
6373       << FixItHint::CreateRemoval(ModulePrivateLoc);
6374 
6375   // Build the fully-sugared type for this class template
6376   // specialization as the user wrote in the specialization
6377   // itself. This means that we'll pretty-print the type retrieved
6378   // from the specialization's declaration the way that the user
6379   // actually wrote the specialization, rather than formatting the
6380   // name based on the "canonical" representation used to store the
6381   // template arguments in the specialization.
6382   TypeSourceInfo *WrittenTy
6383     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6384                                                 TemplateArgs, CanonType);
6385   if (TUK != TUK_Friend) {
6386     Specialization->setTypeAsWritten(WrittenTy);
6387     Specialization->setTemplateKeywordLoc(TemplateKWLoc);
6388   }
6389 
6390   // C++ [temp.expl.spec]p9:
6391   //   A template explicit specialization is in the scope of the
6392   //   namespace in which the template was defined.
6393   //
6394   // We actually implement this paragraph where we set the semantic
6395   // context (in the creation of the ClassTemplateSpecializationDecl),
6396   // but we also maintain the lexical context where the actual
6397   // definition occurs.
6398   Specialization->setLexicalDeclContext(CurContext);
6399 
6400   // We may be starting the definition of this specialization.
6401   if (TUK == TUK_Definition)
6402     Specialization->startDefinition();
6403 
6404   if (TUK == TUK_Friend) {
6405     FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
6406                                             TemplateNameLoc,
6407                                             WrittenTy,
6408                                             /*FIXME:*/KWLoc);
6409     Friend->setAccess(AS_public);
6410     CurContext->addDecl(Friend);
6411   } else {
6412     // Add the specialization into its lexical context, so that it can
6413     // be seen when iterating through the list of declarations in that
6414     // context. However, specializations are not found by name lookup.
6415     CurContext->addDecl(Specialization);
6416   }
6417   return Specialization;
6418 }
6419 
ActOnTemplateDeclarator(Scope * S,MultiTemplateParamsArg TemplateParameterLists,Declarator & D)6420 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
6421                               MultiTemplateParamsArg TemplateParameterLists,
6422                                     Declarator &D) {
6423   Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
6424   ActOnDocumentableDecl(NewDecl);
6425   return NewDecl;
6426 }
6427 
ActOnStartOfFunctionTemplateDef(Scope * FnBodyScope,MultiTemplateParamsArg TemplateParameterLists,Declarator & D)6428 Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
6429                                MultiTemplateParamsArg TemplateParameterLists,
6430                                             Declarator &D) {
6431   assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
6432   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6433 
6434   if (FTI.hasPrototype) {
6435     // FIXME: Diagnose arguments without names in C.
6436   }
6437 
6438   Scope *ParentScope = FnBodyScope->getParent();
6439 
6440   D.setFunctionDefinitionKind(FDK_Definition);
6441   Decl *DP = HandleDeclarator(ParentScope, D,
6442                               TemplateParameterLists);
6443   return ActOnStartOfFunctionDef(FnBodyScope, DP);
6444 }
6445 
6446 /// \brief Strips various properties off an implicit instantiation
6447 /// that has just been explicitly specialized.
StripImplicitInstantiation(NamedDecl * D)6448 static void StripImplicitInstantiation(NamedDecl *D) {
6449   D->dropAttr<DLLImportAttr>();
6450   D->dropAttr<DLLExportAttr>();
6451 
6452   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
6453     FD->setInlineSpecified(false);
6454 }
6455 
6456 /// \brief Compute the diagnostic location for an explicit instantiation
6457 //  declaration or definition.
DiagLocForExplicitInstantiation(NamedDecl * D,SourceLocation PointOfInstantiation)6458 static SourceLocation DiagLocForExplicitInstantiation(
6459     NamedDecl* D, SourceLocation PointOfInstantiation) {
6460   // Explicit instantiations following a specialization have no effect and
6461   // hence no PointOfInstantiation. In that case, walk decl backwards
6462   // until a valid name loc is found.
6463   SourceLocation PrevDiagLoc = PointOfInstantiation;
6464   for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
6465        Prev = Prev->getPreviousDecl()) {
6466     PrevDiagLoc = Prev->getLocation();
6467   }
6468   assert(PrevDiagLoc.isValid() &&
6469          "Explicit instantiation without point of instantiation?");
6470   return PrevDiagLoc;
6471 }
6472 
6473 /// \brief Diagnose cases where we have an explicit template specialization
6474 /// before/after an explicit template instantiation, producing diagnostics
6475 /// for those cases where they are required and determining whether the
6476 /// new specialization/instantiation will have any effect.
6477 ///
6478 /// \param NewLoc the location of the new explicit specialization or
6479 /// instantiation.
6480 ///
6481 /// \param NewTSK the kind of the new explicit specialization or instantiation.
6482 ///
6483 /// \param PrevDecl the previous declaration of the entity.
6484 ///
6485 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
6486 ///
6487 /// \param PrevPointOfInstantiation if valid, indicates where the previus
6488 /// declaration was instantiated (either implicitly or explicitly).
6489 ///
6490 /// \param HasNoEffect will be set to true to indicate that the new
6491 /// specialization or instantiation has no effect and should be ignored.
6492 ///
6493 /// \returns true if there was an error that should prevent the introduction of
6494 /// the new declaration into the AST, false otherwise.
6495 bool
CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,TemplateSpecializationKind NewTSK,NamedDecl * PrevDecl,TemplateSpecializationKind PrevTSK,SourceLocation PrevPointOfInstantiation,bool & HasNoEffect)6496 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
6497                                              TemplateSpecializationKind NewTSK,
6498                                              NamedDecl *PrevDecl,
6499                                              TemplateSpecializationKind PrevTSK,
6500                                         SourceLocation PrevPointOfInstantiation,
6501                                              bool &HasNoEffect) {
6502   HasNoEffect = false;
6503 
6504   switch (NewTSK) {
6505   case TSK_Undeclared:
6506   case TSK_ImplicitInstantiation:
6507     assert(
6508         (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&
6509         "previous declaration must be implicit!");
6510     return false;
6511 
6512   case TSK_ExplicitSpecialization:
6513     switch (PrevTSK) {
6514     case TSK_Undeclared:
6515     case TSK_ExplicitSpecialization:
6516       // Okay, we're just specializing something that is either already
6517       // explicitly specialized or has merely been mentioned without any
6518       // instantiation.
6519       return false;
6520 
6521     case TSK_ImplicitInstantiation:
6522       if (PrevPointOfInstantiation.isInvalid()) {
6523         // The declaration itself has not actually been instantiated, so it is
6524         // still okay to specialize it.
6525         StripImplicitInstantiation(PrevDecl);
6526         return false;
6527       }
6528       // Fall through
6529 
6530     case TSK_ExplicitInstantiationDeclaration:
6531     case TSK_ExplicitInstantiationDefinition:
6532       assert((PrevTSK == TSK_ImplicitInstantiation ||
6533               PrevPointOfInstantiation.isValid()) &&
6534              "Explicit instantiation without point of instantiation?");
6535 
6536       // C++ [temp.expl.spec]p6:
6537       //   If a template, a member template or the member of a class template
6538       //   is explicitly specialized then that specialization shall be declared
6539       //   before the first use of that specialization that would cause an
6540       //   implicit instantiation to take place, in every translation unit in
6541       //   which such a use occurs; no diagnostic is required.
6542       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6543         // Is there any previous explicit specialization declaration?
6544         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
6545           return false;
6546       }
6547 
6548       Diag(NewLoc, diag::err_specialization_after_instantiation)
6549         << PrevDecl;
6550       Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
6551         << (PrevTSK != TSK_ImplicitInstantiation);
6552 
6553       return true;
6554     }
6555 
6556   case TSK_ExplicitInstantiationDeclaration:
6557     switch (PrevTSK) {
6558     case TSK_ExplicitInstantiationDeclaration:
6559       // This explicit instantiation declaration is redundant (that's okay).
6560       HasNoEffect = true;
6561       return false;
6562 
6563     case TSK_Undeclared:
6564     case TSK_ImplicitInstantiation:
6565       // We're explicitly instantiating something that may have already been
6566       // implicitly instantiated; that's fine.
6567       return false;
6568 
6569     case TSK_ExplicitSpecialization:
6570       // C++0x [temp.explicit]p4:
6571       //   For a given set of template parameters, if an explicit instantiation
6572       //   of a template appears after a declaration of an explicit
6573       //   specialization for that template, the explicit instantiation has no
6574       //   effect.
6575       HasNoEffect = true;
6576       return false;
6577 
6578     case TSK_ExplicitInstantiationDefinition:
6579       // C++0x [temp.explicit]p10:
6580       //   If an entity is the subject of both an explicit instantiation
6581       //   declaration and an explicit instantiation definition in the same
6582       //   translation unit, the definition shall follow the declaration.
6583       Diag(NewLoc,
6584            diag::err_explicit_instantiation_declaration_after_definition);
6585 
6586       // Explicit instantiations following a specialization have no effect and
6587       // hence no PrevPointOfInstantiation. In that case, walk decl backwards
6588       // until a valid name loc is found.
6589       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6590            diag::note_explicit_instantiation_definition_here);
6591       HasNoEffect = true;
6592       return false;
6593     }
6594 
6595   case TSK_ExplicitInstantiationDefinition:
6596     switch (PrevTSK) {
6597     case TSK_Undeclared:
6598     case TSK_ImplicitInstantiation:
6599       // We're explicitly instantiating something that may have already been
6600       // implicitly instantiated; that's fine.
6601       return false;
6602 
6603     case TSK_ExplicitSpecialization:
6604       // C++ DR 259, C++0x [temp.explicit]p4:
6605       //   For a given set of template parameters, if an explicit
6606       //   instantiation of a template appears after a declaration of
6607       //   an explicit specialization for that template, the explicit
6608       //   instantiation has no effect.
6609       //
6610       // In C++98/03 mode, we only give an extension warning here, because it
6611       // is not harmful to try to explicitly instantiate something that
6612       // has been explicitly specialized.
6613       Diag(NewLoc, getLangOpts().CPlusPlus11 ?
6614            diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
6615            diag::ext_explicit_instantiation_after_specialization)
6616         << PrevDecl;
6617       Diag(PrevDecl->getLocation(),
6618            diag::note_previous_template_specialization);
6619       HasNoEffect = true;
6620       return false;
6621 
6622     case TSK_ExplicitInstantiationDeclaration:
6623       // We're explicity instantiating a definition for something for which we
6624       // were previously asked to suppress instantiations. That's fine.
6625 
6626       // C++0x [temp.explicit]p4:
6627       //   For a given set of template parameters, if an explicit instantiation
6628       //   of a template appears after a declaration of an explicit
6629       //   specialization for that template, the explicit instantiation has no
6630       //   effect.
6631       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6632         // Is there any previous explicit specialization declaration?
6633         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
6634           HasNoEffect = true;
6635           break;
6636         }
6637       }
6638 
6639       return false;
6640 
6641     case TSK_ExplicitInstantiationDefinition:
6642       // C++0x [temp.spec]p5:
6643       //   For a given template and a given set of template-arguments,
6644       //     - an explicit instantiation definition shall appear at most once
6645       //       in a program,
6646 
6647       // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
6648       Diag(NewLoc, (getLangOpts().MSVCCompat)
6649                        ? diag::ext_explicit_instantiation_duplicate
6650                        : diag::err_explicit_instantiation_duplicate)
6651           << PrevDecl;
6652       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6653            diag::note_previous_explicit_instantiation);
6654       HasNoEffect = true;
6655       return false;
6656     }
6657   }
6658 
6659   llvm_unreachable("Missing specialization/instantiation case?");
6660 }
6661 
6662 /// \brief Perform semantic analysis for the given dependent function
6663 /// template specialization.
6664 ///
6665 /// The only possible way to get a dependent function template specialization
6666 /// is with a friend declaration, like so:
6667 ///
6668 /// \code
6669 ///   template \<class T> void foo(T);
6670 ///   template \<class T> class A {
6671 ///     friend void foo<>(T);
6672 ///   };
6673 /// \endcode
6674 ///
6675 /// There really isn't any useful analysis we can do here, so we
6676 /// just store the information.
6677 bool
CheckDependentFunctionTemplateSpecialization(FunctionDecl * FD,const TemplateArgumentListInfo & ExplicitTemplateArgs,LookupResult & Previous)6678 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
6679                    const TemplateArgumentListInfo &ExplicitTemplateArgs,
6680                                                    LookupResult &Previous) {
6681   // Remove anything from Previous that isn't a function template in
6682   // the correct context.
6683   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6684   LookupResult::Filter F = Previous.makeFilter();
6685   while (F.hasNext()) {
6686     NamedDecl *D = F.next()->getUnderlyingDecl();
6687     if (!isa<FunctionTemplateDecl>(D) ||
6688         !FDLookupContext->InEnclosingNamespaceSetOf(
6689                               D->getDeclContext()->getRedeclContext()))
6690       F.erase();
6691   }
6692   F.done();
6693 
6694   // Should this be diagnosed here?
6695   if (Previous.empty()) return true;
6696 
6697   FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
6698                                          ExplicitTemplateArgs);
6699   return false;
6700 }
6701 
6702 /// \brief Perform semantic analysis for the given function template
6703 /// specialization.
6704 ///
6705 /// This routine performs all of the semantic analysis required for an
6706 /// explicit function template specialization. On successful completion,
6707 /// the function declaration \p FD will become a function template
6708 /// specialization.
6709 ///
6710 /// \param FD the function declaration, which will be updated to become a
6711 /// function template specialization.
6712 ///
6713 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
6714 /// if any. Note that this may be valid info even when 0 arguments are
6715 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
6716 /// as it anyway contains info on the angle brackets locations.
6717 ///
6718 /// \param Previous the set of declarations that may be specialized by
6719 /// this function specialization.
CheckFunctionTemplateSpecialization(FunctionDecl * FD,TemplateArgumentListInfo * ExplicitTemplateArgs,LookupResult & Previous)6720 bool Sema::CheckFunctionTemplateSpecialization(
6721     FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
6722     LookupResult &Previous) {
6723   // The set of function template specializations that could match this
6724   // explicit function template specialization.
6725   UnresolvedSet<8> Candidates;
6726   TemplateSpecCandidateSet FailedCandidates(FD->getLocation());
6727 
6728   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6729   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6730          I != E; ++I) {
6731     NamedDecl *Ovl = (*I)->getUnderlyingDecl();
6732     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
6733       // Only consider templates found within the same semantic lookup scope as
6734       // FD.
6735       if (!FDLookupContext->InEnclosingNamespaceSetOf(
6736                                 Ovl->getDeclContext()->getRedeclContext()))
6737         continue;
6738 
6739       // When matching a constexpr member function template specialization
6740       // against the primary template, we don't yet know whether the
6741       // specialization has an implicit 'const' (because we don't know whether
6742       // it will be a static member function until we know which template it
6743       // specializes), so adjust it now assuming it specializes this template.
6744       QualType FT = FD->getType();
6745       if (FD->isConstexpr()) {
6746         CXXMethodDecl *OldMD =
6747           dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
6748         if (OldMD && OldMD->isConst()) {
6749           const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
6750           FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6751           EPI.TypeQuals |= Qualifiers::Const;
6752           FT = Context.getFunctionType(FPT->getReturnType(),
6753                                        FPT->getParamTypes(), EPI);
6754         }
6755       }
6756 
6757       // C++ [temp.expl.spec]p11:
6758       //   A trailing template-argument can be left unspecified in the
6759       //   template-id naming an explicit function template specialization
6760       //   provided it can be deduced from the function argument type.
6761       // Perform template argument deduction to determine whether we may be
6762       // specializing this template.
6763       // FIXME: It is somewhat wasteful to build
6764       TemplateDeductionInfo Info(FailedCandidates.getLocation());
6765       FunctionDecl *Specialization = nullptr;
6766       if (TemplateDeductionResult TDK = DeduceTemplateArguments(
6767               cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
6768               ExplicitTemplateArgs, FT, Specialization, Info)) {
6769         // Template argument deduction failed; record why it failed, so
6770         // that we can provide nifty diagnostics.
6771         FailedCandidates.addCandidate()
6772             .set(FunTmpl->getTemplatedDecl(),
6773                  MakeDeductionFailureInfo(Context, TDK, Info));
6774         (void)TDK;
6775         continue;
6776       }
6777 
6778       // Record this candidate.
6779       Candidates.addDecl(Specialization, I.getAccess());
6780     }
6781   }
6782 
6783   // Find the most specialized function template.
6784   UnresolvedSetIterator Result = getMostSpecialized(
6785       Candidates.begin(), Candidates.end(), FailedCandidates,
6786       FD->getLocation(),
6787       PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
6788       PDiag(diag::err_function_template_spec_ambiguous)
6789           << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
6790       PDiag(diag::note_function_template_spec_matched));
6791 
6792   if (Result == Candidates.end())
6793     return true;
6794 
6795   // Ignore access information;  it doesn't figure into redeclaration checking.
6796   FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6797 
6798   FunctionTemplateSpecializationInfo *SpecInfo
6799     = Specialization->getTemplateSpecializationInfo();
6800   assert(SpecInfo && "Function template specialization info missing?");
6801 
6802   // Note: do not overwrite location info if previous template
6803   // specialization kind was explicit.
6804   TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
6805   if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
6806     Specialization->setLocation(FD->getLocation());
6807     // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
6808     // function can differ from the template declaration with respect to
6809     // the constexpr specifier.
6810     Specialization->setConstexpr(FD->isConstexpr());
6811   }
6812 
6813   // FIXME: Check if the prior specialization has a point of instantiation.
6814   // If so, we have run afoul of .
6815 
6816   // If this is a friend declaration, then we're not really declaring
6817   // an explicit specialization.
6818   bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
6819 
6820   // Check the scope of this explicit specialization.
6821   if (!isFriend &&
6822       CheckTemplateSpecializationScope(*this,
6823                                        Specialization->getPrimaryTemplate(),
6824                                        Specialization, FD->getLocation(),
6825                                        false))
6826     return true;
6827 
6828   // C++ [temp.expl.spec]p6:
6829   //   If a template, a member template or the member of a class template is
6830   //   explicitly specialized then that specialization shall be declared
6831   //   before the first use of that specialization that would cause an implicit
6832   //   instantiation to take place, in every translation unit in which such a
6833   //   use occurs; no diagnostic is required.
6834   bool HasNoEffect = false;
6835   if (!isFriend &&
6836       CheckSpecializationInstantiationRedecl(FD->getLocation(),
6837                                              TSK_ExplicitSpecialization,
6838                                              Specialization,
6839                                    SpecInfo->getTemplateSpecializationKind(),
6840                                          SpecInfo->getPointOfInstantiation(),
6841                                              HasNoEffect))
6842     return true;
6843 
6844   // Mark the prior declaration as an explicit specialization, so that later
6845   // clients know that this is an explicit specialization.
6846   if (!isFriend) {
6847     SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
6848     MarkUnusedFileScopedDecl(Specialization);
6849   }
6850 
6851   // Turn the given function declaration into a function template
6852   // specialization, with the template arguments from the previous
6853   // specialization.
6854   // Take copies of (semantic and syntactic) template argument lists.
6855   const TemplateArgumentList* TemplArgs = new (Context)
6856     TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
6857   FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
6858                                         TemplArgs, /*InsertPos=*/nullptr,
6859                                     SpecInfo->getTemplateSpecializationKind(),
6860                                         ExplicitTemplateArgs);
6861 
6862   // The "previous declaration" for this function template specialization is
6863   // the prior function template specialization.
6864   Previous.clear();
6865   Previous.addDecl(Specialization);
6866   return false;
6867 }
6868 
6869 /// \brief Perform semantic analysis for the given non-template member
6870 /// specialization.
6871 ///
6872 /// This routine performs all of the semantic analysis required for an
6873 /// explicit member function specialization. On successful completion,
6874 /// the function declaration \p FD will become a member function
6875 /// specialization.
6876 ///
6877 /// \param Member the member declaration, which will be updated to become a
6878 /// specialization.
6879 ///
6880 /// \param Previous the set of declarations, one of which may be specialized
6881 /// by this function specialization;  the set will be modified to contain the
6882 /// redeclared member.
6883 bool
CheckMemberSpecialization(NamedDecl * Member,LookupResult & Previous)6884 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
6885   assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
6886 
6887   // Try to find the member we are instantiating.
6888   NamedDecl *Instantiation = nullptr;
6889   NamedDecl *InstantiatedFrom = nullptr;
6890   MemberSpecializationInfo *MSInfo = nullptr;
6891 
6892   if (Previous.empty()) {
6893     // Nowhere to look anyway.
6894   } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
6895     for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6896            I != E; ++I) {
6897       NamedDecl *D = (*I)->getUnderlyingDecl();
6898       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
6899         QualType Adjusted = Function->getType();
6900         if (!hasExplicitCallingConv(Adjusted))
6901           Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
6902         if (Context.hasSameType(Adjusted, Method->getType())) {
6903           Instantiation = Method;
6904           InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
6905           MSInfo = Method->getMemberSpecializationInfo();
6906           break;
6907         }
6908       }
6909     }
6910   } else if (isa<VarDecl>(Member)) {
6911     VarDecl *PrevVar;
6912     if (Previous.isSingleResult() &&
6913         (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
6914       if (PrevVar->isStaticDataMember()) {
6915         Instantiation = PrevVar;
6916         InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
6917         MSInfo = PrevVar->getMemberSpecializationInfo();
6918       }
6919   } else if (isa<RecordDecl>(Member)) {
6920     CXXRecordDecl *PrevRecord;
6921     if (Previous.isSingleResult() &&
6922         (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
6923       Instantiation = PrevRecord;
6924       InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
6925       MSInfo = PrevRecord->getMemberSpecializationInfo();
6926     }
6927   } else if (isa<EnumDecl>(Member)) {
6928     EnumDecl *PrevEnum;
6929     if (Previous.isSingleResult() &&
6930         (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
6931       Instantiation = PrevEnum;
6932       InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
6933       MSInfo = PrevEnum->getMemberSpecializationInfo();
6934     }
6935   }
6936 
6937   if (!Instantiation) {
6938     // There is no previous declaration that matches. Since member
6939     // specializations are always out-of-line, the caller will complain about
6940     // this mismatch later.
6941     return false;
6942   }
6943 
6944   // If this is a friend, just bail out here before we start turning
6945   // things into explicit specializations.
6946   if (Member->getFriendObjectKind() != Decl::FOK_None) {
6947     // Preserve instantiation information.
6948     if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
6949       cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
6950                                       cast<CXXMethodDecl>(InstantiatedFrom),
6951         cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
6952     } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
6953       cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6954                                       cast<CXXRecordDecl>(InstantiatedFrom),
6955         cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
6956     }
6957 
6958     Previous.clear();
6959     Previous.addDecl(Instantiation);
6960     return false;
6961   }
6962 
6963   // Make sure that this is a specialization of a member.
6964   if (!InstantiatedFrom) {
6965     Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
6966       << Member;
6967     Diag(Instantiation->getLocation(), diag::note_specialized_decl);
6968     return true;
6969   }
6970 
6971   // C++ [temp.expl.spec]p6:
6972   //   If a template, a member template or the member of a class template is
6973   //   explicitly specialized then that specialization shall be declared
6974   //   before the first use of that specialization that would cause an implicit
6975   //   instantiation to take place, in every translation unit in which such a
6976   //   use occurs; no diagnostic is required.
6977   assert(MSInfo && "Member specialization info missing?");
6978 
6979   bool HasNoEffect = false;
6980   if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
6981                                              TSK_ExplicitSpecialization,
6982                                              Instantiation,
6983                                      MSInfo->getTemplateSpecializationKind(),
6984                                            MSInfo->getPointOfInstantiation(),
6985                                              HasNoEffect))
6986     return true;
6987 
6988   // Check the scope of this explicit specialization.
6989   if (CheckTemplateSpecializationScope(*this,
6990                                        InstantiatedFrom,
6991                                        Instantiation, Member->getLocation(),
6992                                        false))
6993     return true;
6994 
6995   // Note that this is an explicit instantiation of a member.
6996   // the original declaration to note that it is an explicit specialization
6997   // (if it was previously an implicit instantiation). This latter step
6998   // makes bookkeeping easier.
6999   if (isa<FunctionDecl>(Member)) {
7000     FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
7001     if (InstantiationFunction->getTemplateSpecializationKind() ==
7002           TSK_ImplicitInstantiation) {
7003       InstantiationFunction->setTemplateSpecializationKind(
7004                                                   TSK_ExplicitSpecialization);
7005       InstantiationFunction->setLocation(Member->getLocation());
7006     }
7007 
7008     cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
7009                                         cast<CXXMethodDecl>(InstantiatedFrom),
7010                                                   TSK_ExplicitSpecialization);
7011     MarkUnusedFileScopedDecl(InstantiationFunction);
7012   } else if (isa<VarDecl>(Member)) {
7013     VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
7014     if (InstantiationVar->getTemplateSpecializationKind() ==
7015           TSK_ImplicitInstantiation) {
7016       InstantiationVar->setTemplateSpecializationKind(
7017                                                   TSK_ExplicitSpecialization);
7018       InstantiationVar->setLocation(Member->getLocation());
7019     }
7020 
7021     cast<VarDecl>(Member)->setInstantiationOfStaticDataMember(
7022         cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
7023     MarkUnusedFileScopedDecl(InstantiationVar);
7024   } else if (isa<CXXRecordDecl>(Member)) {
7025     CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
7026     if (InstantiationClass->getTemplateSpecializationKind() ==
7027           TSK_ImplicitInstantiation) {
7028       InstantiationClass->setTemplateSpecializationKind(
7029                                                    TSK_ExplicitSpecialization);
7030       InstantiationClass->setLocation(Member->getLocation());
7031     }
7032 
7033     cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
7034                                         cast<CXXRecordDecl>(InstantiatedFrom),
7035                                                    TSK_ExplicitSpecialization);
7036   } else {
7037     assert(isa<EnumDecl>(Member) && "Only member enums remain");
7038     EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
7039     if (InstantiationEnum->getTemplateSpecializationKind() ==
7040           TSK_ImplicitInstantiation) {
7041       InstantiationEnum->setTemplateSpecializationKind(
7042                                                    TSK_ExplicitSpecialization);
7043       InstantiationEnum->setLocation(Member->getLocation());
7044     }
7045 
7046     cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
7047         cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
7048   }
7049 
7050   // Save the caller the trouble of having to figure out which declaration
7051   // this specialization matches.
7052   Previous.clear();
7053   Previous.addDecl(Instantiation);
7054   return false;
7055 }
7056 
7057 /// \brief Check the scope of an explicit instantiation.
7058 ///
7059 /// \returns true if a serious error occurs, false otherwise.
CheckExplicitInstantiationScope(Sema & S,NamedDecl * D,SourceLocation InstLoc,bool WasQualifiedName)7060 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
7061                                             SourceLocation InstLoc,
7062                                             bool WasQualifiedName) {
7063   DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
7064   DeclContext *CurContext = S.CurContext->getRedeclContext();
7065 
7066   if (CurContext->isRecord()) {
7067     S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
7068       << D;
7069     return true;
7070   }
7071 
7072   // C++11 [temp.explicit]p3:
7073   //   An explicit instantiation shall appear in an enclosing namespace of its
7074   //   template. If the name declared in the explicit instantiation is an
7075   //   unqualified name, the explicit instantiation shall appear in the
7076   //   namespace where its template is declared or, if that namespace is inline
7077   //   (7.3.1), any namespace from its enclosing namespace set.
7078   //
7079   // This is DR275, which we do not retroactively apply to C++98/03.
7080   if (WasQualifiedName) {
7081     if (CurContext->Encloses(OrigContext))
7082       return false;
7083   } else {
7084     if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
7085       return false;
7086   }
7087 
7088   if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
7089     if (WasQualifiedName)
7090       S.Diag(InstLoc,
7091              S.getLangOpts().CPlusPlus11?
7092                diag::err_explicit_instantiation_out_of_scope :
7093                diag::warn_explicit_instantiation_out_of_scope_0x)
7094         << D << NS;
7095     else
7096       S.Diag(InstLoc,
7097              S.getLangOpts().CPlusPlus11?
7098                diag::err_explicit_instantiation_unqualified_wrong_namespace :
7099                diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
7100         << D << NS;
7101   } else
7102     S.Diag(InstLoc,
7103            S.getLangOpts().CPlusPlus11?
7104              diag::err_explicit_instantiation_must_be_global :
7105              diag::warn_explicit_instantiation_must_be_global_0x)
7106       << D;
7107   S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
7108   return false;
7109 }
7110 
7111 /// \brief Determine whether the given scope specifier has a template-id in it.
ScopeSpecifierHasTemplateId(const CXXScopeSpec & SS)7112 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
7113   if (!SS.isSet())
7114     return false;
7115 
7116   // C++11 [temp.explicit]p3:
7117   //   If the explicit instantiation is for a member function, a member class
7118   //   or a static data member of a class template specialization, the name of
7119   //   the class template specialization in the qualified-id for the member
7120   //   name shall be a simple-template-id.
7121   //
7122   // C++98 has the same restriction, just worded differently.
7123   for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
7124        NNS = NNS->getPrefix())
7125     if (const Type *T = NNS->getAsType())
7126       if (isa<TemplateSpecializationType>(T))
7127         return true;
7128 
7129   return false;
7130 }
7131 
7132 // Explicit instantiation of a class template specialization
7133 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,const CXXScopeSpec & SS,TemplateTy TemplateD,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,AttributeList * Attr)7134 Sema::ActOnExplicitInstantiation(Scope *S,
7135                                  SourceLocation ExternLoc,
7136                                  SourceLocation TemplateLoc,
7137                                  unsigned TagSpec,
7138                                  SourceLocation KWLoc,
7139                                  const CXXScopeSpec &SS,
7140                                  TemplateTy TemplateD,
7141                                  SourceLocation TemplateNameLoc,
7142                                  SourceLocation LAngleLoc,
7143                                  ASTTemplateArgsPtr TemplateArgsIn,
7144                                  SourceLocation RAngleLoc,
7145                                  AttributeList *Attr) {
7146   // Find the class template we're specializing
7147   TemplateName Name = TemplateD.get();
7148   TemplateDecl *TD = Name.getAsTemplateDecl();
7149   // Check that the specialization uses the same tag kind as the
7150   // original template.
7151   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7152   assert(Kind != TTK_Enum &&
7153          "Invalid enum tag in class template explicit instantiation!");
7154 
7155   if (isa<TypeAliasTemplateDecl>(TD)) {
7156       Diag(KWLoc, diag::err_tag_reference_non_tag) << Kind;
7157       Diag(TD->getTemplatedDecl()->getLocation(),
7158            diag::note_previous_use);
7159     return true;
7160   }
7161 
7162   ClassTemplateDecl *ClassTemplate = cast<ClassTemplateDecl>(TD);
7163 
7164   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
7165                                     Kind, /*isDefinition*/false, KWLoc,
7166                                     *ClassTemplate->getIdentifier())) {
7167     Diag(KWLoc, diag::err_use_with_wrong_tag)
7168       << ClassTemplate
7169       << FixItHint::CreateReplacement(KWLoc,
7170                             ClassTemplate->getTemplatedDecl()->getKindName());
7171     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
7172          diag::note_previous_use);
7173     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
7174   }
7175 
7176   // C++0x [temp.explicit]p2:
7177   //   There are two forms of explicit instantiation: an explicit instantiation
7178   //   definition and an explicit instantiation declaration. An explicit
7179   //   instantiation declaration begins with the extern keyword. [...]
7180   TemplateSpecializationKind TSK
7181     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7182                            : TSK_ExplicitInstantiationDeclaration;
7183 
7184   // Translate the parser's template argument list in our AST format.
7185   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
7186   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
7187 
7188   // Check that the template argument list is well-formed for this
7189   // template.
7190   SmallVector<TemplateArgument, 4> Converted;
7191   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
7192                                 TemplateArgs, false, Converted))
7193     return true;
7194 
7195   // Find the class template specialization declaration that
7196   // corresponds to these arguments.
7197   void *InsertPos = nullptr;
7198   ClassTemplateSpecializationDecl *PrevDecl
7199     = ClassTemplate->findSpecialization(Converted, InsertPos);
7200 
7201   TemplateSpecializationKind PrevDecl_TSK
7202     = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
7203 
7204   // C++0x [temp.explicit]p2:
7205   //   [...] An explicit instantiation shall appear in an enclosing
7206   //   namespace of its template. [...]
7207   //
7208   // This is C++ DR 275.
7209   if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
7210                                       SS.isSet()))
7211     return true;
7212 
7213   ClassTemplateSpecializationDecl *Specialization = nullptr;
7214 
7215   bool HasNoEffect = false;
7216   if (PrevDecl) {
7217     if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
7218                                                PrevDecl, PrevDecl_TSK,
7219                                             PrevDecl->getPointOfInstantiation(),
7220                                                HasNoEffect))
7221       return PrevDecl;
7222 
7223     // Even though HasNoEffect == true means that this explicit instantiation
7224     // has no effect on semantics, we go on to put its syntax in the AST.
7225 
7226     if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
7227         PrevDecl_TSK == TSK_Undeclared) {
7228       // Since the only prior class template specialization with these
7229       // arguments was referenced but not declared, reuse that
7230       // declaration node as our own, updating the source location
7231       // for the template name to reflect our new declaration.
7232       // (Other source locations will be updated later.)
7233       Specialization = PrevDecl;
7234       Specialization->setLocation(TemplateNameLoc);
7235       PrevDecl = nullptr;
7236     }
7237   }
7238 
7239   if (!Specialization) {
7240     // Create a new class template specialization declaration node for
7241     // this explicit specialization.
7242     Specialization
7243       = ClassTemplateSpecializationDecl::Create(Context, Kind,
7244                                              ClassTemplate->getDeclContext(),
7245                                                 KWLoc, TemplateNameLoc,
7246                                                 ClassTemplate,
7247                                                 Converted.data(),
7248                                                 Converted.size(),
7249                                                 PrevDecl);
7250     SetNestedNameSpecifier(Specialization, SS);
7251 
7252     if (!HasNoEffect && !PrevDecl) {
7253       // Insert the new specialization.
7254       ClassTemplate->AddSpecialization(Specialization, InsertPos);
7255     }
7256   }
7257 
7258   // Build the fully-sugared type for this explicit instantiation as
7259   // the user wrote in the explicit instantiation itself. This means
7260   // that we'll pretty-print the type retrieved from the
7261   // specialization's declaration the way that the user actually wrote
7262   // the explicit instantiation, rather than formatting the name based
7263   // on the "canonical" representation used to store the template
7264   // arguments in the specialization.
7265   TypeSourceInfo *WrittenTy
7266     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
7267                                                 TemplateArgs,
7268                                   Context.getTypeDeclType(Specialization));
7269   Specialization->setTypeAsWritten(WrittenTy);
7270 
7271   // Set source locations for keywords.
7272   Specialization->setExternLoc(ExternLoc);
7273   Specialization->setTemplateKeywordLoc(TemplateLoc);
7274   Specialization->setRBraceLoc(SourceLocation());
7275 
7276   if (Attr)
7277     ProcessDeclAttributeList(S, Specialization, Attr);
7278 
7279   // Add the explicit instantiation into its lexical context. However,
7280   // since explicit instantiations are never found by name lookup, we
7281   // just put it into the declaration context directly.
7282   Specialization->setLexicalDeclContext(CurContext);
7283   CurContext->addDecl(Specialization);
7284 
7285   // Syntax is now OK, so return if it has no other effect on semantics.
7286   if (HasNoEffect) {
7287     // Set the template specialization kind.
7288     Specialization->setTemplateSpecializationKind(TSK);
7289     return Specialization;
7290   }
7291 
7292   // C++ [temp.explicit]p3:
7293   //   A definition of a class template or class member template
7294   //   shall be in scope at the point of the explicit instantiation of
7295   //   the class template or class member template.
7296   //
7297   // This check comes when we actually try to perform the
7298   // instantiation.
7299   ClassTemplateSpecializationDecl *Def
7300     = cast_or_null<ClassTemplateSpecializationDecl>(
7301                                               Specialization->getDefinition());
7302   if (!Def)
7303     InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
7304   else if (TSK == TSK_ExplicitInstantiationDefinition) {
7305     MarkVTableUsed(TemplateNameLoc, Specialization, true);
7306     Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
7307   }
7308 
7309   // Instantiate the members of this class template specialization.
7310   Def = cast_or_null<ClassTemplateSpecializationDecl>(
7311                                        Specialization->getDefinition());
7312   if (Def) {
7313     TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
7314 
7315     // Fix a TSK_ExplicitInstantiationDeclaration followed by a
7316     // TSK_ExplicitInstantiationDefinition
7317     if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
7318         TSK == TSK_ExplicitInstantiationDefinition)
7319       // FIXME: Need to notify the ASTMutationListener that we did this.
7320       Def->setTemplateSpecializationKind(TSK);
7321 
7322     InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
7323   }
7324 
7325   // Set the template specialization kind.
7326   Specialization->setTemplateSpecializationKind(TSK);
7327   return Specialization;
7328 }
7329 
7330 // Explicit instantiation of a member class of a class template.
7331 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr)7332 Sema::ActOnExplicitInstantiation(Scope *S,
7333                                  SourceLocation ExternLoc,
7334                                  SourceLocation TemplateLoc,
7335                                  unsigned TagSpec,
7336                                  SourceLocation KWLoc,
7337                                  CXXScopeSpec &SS,
7338                                  IdentifierInfo *Name,
7339                                  SourceLocation NameLoc,
7340                                  AttributeList *Attr) {
7341 
7342   bool Owned = false;
7343   bool IsDependent = false;
7344   Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
7345                         KWLoc, SS, Name, NameLoc, Attr, AS_none,
7346                         /*ModulePrivateLoc=*/SourceLocation(),
7347                         MultiTemplateParamsArg(), Owned, IsDependent,
7348                         SourceLocation(), false, TypeResult(),
7349                         /*IsTypeSpecifier*/false);
7350   assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
7351 
7352   if (!TagD)
7353     return true;
7354 
7355   TagDecl *Tag = cast<TagDecl>(TagD);
7356   assert(!Tag->isEnum() && "shouldn't see enumerations here");
7357 
7358   if (Tag->isInvalidDecl())
7359     return true;
7360 
7361   CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
7362   CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
7363   if (!Pattern) {
7364     Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
7365       << Context.getTypeDeclType(Record);
7366     Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
7367     return true;
7368   }
7369 
7370   // C++0x [temp.explicit]p2:
7371   //   If the explicit instantiation is for a class or member class, the
7372   //   elaborated-type-specifier in the declaration shall include a
7373   //   simple-template-id.
7374   //
7375   // C++98 has the same restriction, just worded differently.
7376   if (!ScopeSpecifierHasTemplateId(SS))
7377     Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
7378       << Record << SS.getRange();
7379 
7380   // C++0x [temp.explicit]p2:
7381   //   There are two forms of explicit instantiation: an explicit instantiation
7382   //   definition and an explicit instantiation declaration. An explicit
7383   //   instantiation declaration begins with the extern keyword. [...]
7384   TemplateSpecializationKind TSK
7385     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7386                            : TSK_ExplicitInstantiationDeclaration;
7387 
7388   // C++0x [temp.explicit]p2:
7389   //   [...] An explicit instantiation shall appear in an enclosing
7390   //   namespace of its template. [...]
7391   //
7392   // This is C++ DR 275.
7393   CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
7394 
7395   // Verify that it is okay to explicitly instantiate here.
7396   CXXRecordDecl *PrevDecl
7397     = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
7398   if (!PrevDecl && Record->getDefinition())
7399     PrevDecl = Record;
7400   if (PrevDecl) {
7401     MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
7402     bool HasNoEffect = false;
7403     assert(MSInfo && "No member specialization information?");
7404     if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
7405                                                PrevDecl,
7406                                         MSInfo->getTemplateSpecializationKind(),
7407                                              MSInfo->getPointOfInstantiation(),
7408                                                HasNoEffect))
7409       return true;
7410     if (HasNoEffect)
7411       return TagD;
7412   }
7413 
7414   CXXRecordDecl *RecordDef
7415     = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7416   if (!RecordDef) {
7417     // C++ [temp.explicit]p3:
7418     //   A definition of a member class of a class template shall be in scope
7419     //   at the point of an explicit instantiation of the member class.
7420     CXXRecordDecl *Def
7421       = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
7422     if (!Def) {
7423       Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
7424         << 0 << Record->getDeclName() << Record->getDeclContext();
7425       Diag(Pattern->getLocation(), diag::note_forward_declaration)
7426         << Pattern;
7427       return true;
7428     } else {
7429       if (InstantiateClass(NameLoc, Record, Def,
7430                            getTemplateInstantiationArgs(Record),
7431                            TSK))
7432         return true;
7433 
7434       RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7435       if (!RecordDef)
7436         return true;
7437     }
7438   }
7439 
7440   // Instantiate all of the members of the class.
7441   InstantiateClassMembers(NameLoc, RecordDef,
7442                           getTemplateInstantiationArgs(Record), TSK);
7443 
7444   if (TSK == TSK_ExplicitInstantiationDefinition)
7445     MarkVTableUsed(NameLoc, RecordDef, true);
7446 
7447   // FIXME: We don't have any representation for explicit instantiations of
7448   // member classes. Such a representation is not needed for compilation, but it
7449   // should be available for clients that want to see all of the declarations in
7450   // the source code.
7451   return TagD;
7452 }
7453 
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,Declarator & D)7454 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
7455                                             SourceLocation ExternLoc,
7456                                             SourceLocation TemplateLoc,
7457                                             Declarator &D) {
7458   // Explicit instantiations always require a name.
7459   // TODO: check if/when DNInfo should replace Name.
7460   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7461   DeclarationName Name = NameInfo.getName();
7462   if (!Name) {
7463     if (!D.isInvalidType())
7464       Diag(D.getDeclSpec().getLocStart(),
7465            diag::err_explicit_instantiation_requires_name)
7466         << D.getDeclSpec().getSourceRange()
7467         << D.getSourceRange();
7468 
7469     return true;
7470   }
7471 
7472   // The scope passed in may not be a decl scope.  Zip up the scope tree until
7473   // we find one that is.
7474   while ((S->getFlags() & Scope::DeclScope) == 0 ||
7475          (S->getFlags() & Scope::TemplateParamScope) != 0)
7476     S = S->getParent();
7477 
7478   // Determine the type of the declaration.
7479   TypeSourceInfo *T = GetTypeForDeclarator(D, S);
7480   QualType R = T->getType();
7481   if (R.isNull())
7482     return true;
7483 
7484   // C++ [dcl.stc]p1:
7485   //   A storage-class-specifier shall not be specified in [...] an explicit
7486   //   instantiation (14.7.2) directive.
7487   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
7488     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
7489       << Name;
7490     return true;
7491   } else if (D.getDeclSpec().getStorageClassSpec()
7492                                                 != DeclSpec::SCS_unspecified) {
7493     // Complain about then remove the storage class specifier.
7494     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
7495       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7496 
7497     D.getMutableDeclSpec().ClearStorageClassSpecs();
7498   }
7499 
7500   // C++0x [temp.explicit]p1:
7501   //   [...] An explicit instantiation of a function template shall not use the
7502   //   inline or constexpr specifiers.
7503   // Presumably, this also applies to member functions of class templates as
7504   // well.
7505   if (D.getDeclSpec().isInlineSpecified())
7506     Diag(D.getDeclSpec().getInlineSpecLoc(),
7507          getLangOpts().CPlusPlus11 ?
7508            diag::err_explicit_instantiation_inline :
7509            diag::warn_explicit_instantiation_inline_0x)
7510       << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7511   if (D.getDeclSpec().isConstexprSpecified() && R->isFunctionType())
7512     // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
7513     // not already specified.
7514     Diag(D.getDeclSpec().getConstexprSpecLoc(),
7515          diag::err_explicit_instantiation_constexpr);
7516 
7517   // C++0x [temp.explicit]p2:
7518   //   There are two forms of explicit instantiation: an explicit instantiation
7519   //   definition and an explicit instantiation declaration. An explicit
7520   //   instantiation declaration begins with the extern keyword. [...]
7521   TemplateSpecializationKind TSK
7522     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7523                            : TSK_ExplicitInstantiationDeclaration;
7524 
7525   LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
7526   LookupParsedName(Previous, S, &D.getCXXScopeSpec());
7527 
7528   if (!R->isFunctionType()) {
7529     // C++ [temp.explicit]p1:
7530     //   A [...] static data member of a class template can be explicitly
7531     //   instantiated from the member definition associated with its class
7532     //   template.
7533     // C++1y [temp.explicit]p1:
7534     //   A [...] variable [...] template specialization can be explicitly
7535     //   instantiated from its template.
7536     if (Previous.isAmbiguous())
7537       return true;
7538 
7539     VarDecl *Prev = Previous.getAsSingle<VarDecl>();
7540     VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
7541 
7542     if (!PrevTemplate) {
7543       if (!Prev || !Prev->isStaticDataMember()) {
7544         // We expect to see a data data member here.
7545         Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
7546             << Name;
7547         for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7548              P != PEnd; ++P)
7549           Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
7550         return true;
7551       }
7552 
7553       if (!Prev->getInstantiatedFromStaticDataMember()) {
7554         // FIXME: Check for explicit specialization?
7555         Diag(D.getIdentifierLoc(),
7556              diag::err_explicit_instantiation_data_member_not_instantiated)
7557             << Prev;
7558         Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
7559         // FIXME: Can we provide a note showing where this was declared?
7560         return true;
7561       }
7562     } else {
7563       // Explicitly instantiate a variable template.
7564 
7565       // C++1y [dcl.spec.auto]p6:
7566       //   ... A program that uses auto or decltype(auto) in a context not
7567       //   explicitly allowed in this section is ill-formed.
7568       //
7569       // This includes auto-typed variable template instantiations.
7570       if (R->isUndeducedType()) {
7571         Diag(T->getTypeLoc().getLocStart(),
7572              diag::err_auto_not_allowed_var_inst);
7573         return true;
7574       }
7575 
7576       if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
7577         // C++1y [temp.explicit]p3:
7578         //   If the explicit instantiation is for a variable, the unqualified-id
7579         //   in the declaration shall be a template-id.
7580         Diag(D.getIdentifierLoc(),
7581              diag::err_explicit_instantiation_without_template_id)
7582           << PrevTemplate;
7583         Diag(PrevTemplate->getLocation(),
7584              diag::note_explicit_instantiation_here);
7585         return true;
7586       }
7587 
7588       // Translate the parser's template argument list into our AST format.
7589       TemplateArgumentListInfo TemplateArgs =
7590           makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
7591 
7592       DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
7593                                           D.getIdentifierLoc(), TemplateArgs);
7594       if (Res.isInvalid())
7595         return true;
7596 
7597       // Ignore access control bits, we don't need them for redeclaration
7598       // checking.
7599       Prev = cast<VarDecl>(Res.get());
7600     }
7601 
7602     // C++0x [temp.explicit]p2:
7603     //   If the explicit instantiation is for a member function, a member class
7604     //   or a static data member of a class template specialization, the name of
7605     //   the class template specialization in the qualified-id for the member
7606     //   name shall be a simple-template-id.
7607     //
7608     // C++98 has the same restriction, just worded differently.
7609     //
7610     // This does not apply to variable template specializations, where the
7611     // template-id is in the unqualified-id instead.
7612     if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
7613       Diag(D.getIdentifierLoc(),
7614            diag::ext_explicit_instantiation_without_qualified_id)
7615         << Prev << D.getCXXScopeSpec().getRange();
7616 
7617     // Check the scope of this explicit instantiation.
7618     CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
7619 
7620     // Verify that it is okay to explicitly instantiate here.
7621     TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
7622     SourceLocation POI = Prev->getPointOfInstantiation();
7623     bool HasNoEffect = false;
7624     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
7625                                                PrevTSK, POI, HasNoEffect))
7626       return true;
7627 
7628     if (!HasNoEffect) {
7629       // Instantiate static data member or variable template.
7630 
7631       Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
7632       if (PrevTemplate) {
7633         // Merge attributes.
7634         if (AttributeList *Attr = D.getDeclSpec().getAttributes().getList())
7635           ProcessDeclAttributeList(S, Prev, Attr);
7636       }
7637       if (TSK == TSK_ExplicitInstantiationDefinition)
7638         InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
7639     }
7640 
7641     // Check the new variable specialization against the parsed input.
7642     if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
7643       Diag(T->getTypeLoc().getLocStart(),
7644            diag::err_invalid_var_template_spec_type)
7645           << 0 << PrevTemplate << R << Prev->getType();
7646       Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
7647           << 2 << PrevTemplate->getDeclName();
7648       return true;
7649     }
7650 
7651     // FIXME: Create an ExplicitInstantiation node?
7652     return (Decl*) nullptr;
7653   }
7654 
7655   // If the declarator is a template-id, translate the parser's template
7656   // argument list into our AST format.
7657   bool HasExplicitTemplateArgs = false;
7658   TemplateArgumentListInfo TemplateArgs;
7659   if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7660     TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
7661     HasExplicitTemplateArgs = true;
7662   }
7663 
7664   // C++ [temp.explicit]p1:
7665   //   A [...] function [...] can be explicitly instantiated from its template.
7666   //   A member function [...] of a class template can be explicitly
7667   //  instantiated from the member definition associated with its class
7668   //  template.
7669   UnresolvedSet<8> Matches;
7670   TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
7671   for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7672        P != PEnd; ++P) {
7673     NamedDecl *Prev = *P;
7674     if (!HasExplicitTemplateArgs) {
7675       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
7676         QualType Adjusted = adjustCCAndNoReturn(R, Method->getType());
7677         if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
7678           Matches.clear();
7679 
7680           Matches.addDecl(Method, P.getAccess());
7681           if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
7682             break;
7683         }
7684       }
7685     }
7686 
7687     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
7688     if (!FunTmpl)
7689       continue;
7690 
7691     TemplateDeductionInfo Info(FailedCandidates.getLocation());
7692     FunctionDecl *Specialization = nullptr;
7693     if (TemplateDeductionResult TDK
7694           = DeduceTemplateArguments(FunTmpl,
7695                                (HasExplicitTemplateArgs ? &TemplateArgs
7696                                                         : nullptr),
7697                                     R, Specialization, Info)) {
7698       // Keep track of almost-matches.
7699       FailedCandidates.addCandidate()
7700           .set(FunTmpl->getTemplatedDecl(),
7701                MakeDeductionFailureInfo(Context, TDK, Info));
7702       (void)TDK;
7703       continue;
7704     }
7705 
7706     Matches.addDecl(Specialization, P.getAccess());
7707   }
7708 
7709   // Find the most specialized function template specialization.
7710   UnresolvedSetIterator Result = getMostSpecialized(
7711       Matches.begin(), Matches.end(), FailedCandidates,
7712       D.getIdentifierLoc(),
7713       PDiag(diag::err_explicit_instantiation_not_known) << Name,
7714       PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
7715       PDiag(diag::note_explicit_instantiation_candidate));
7716 
7717   if (Result == Matches.end())
7718     return true;
7719 
7720   // Ignore access control bits, we don't need them for redeclaration checking.
7721   FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
7722 
7723   // C++11 [except.spec]p4
7724   // In an explicit instantiation an exception-specification may be specified,
7725   // but is not required.
7726   // If an exception-specification is specified in an explicit instantiation
7727   // directive, it shall be compatible with the exception-specifications of
7728   // other declarations of that function.
7729   if (auto *FPT = R->getAs<FunctionProtoType>())
7730     if (FPT->hasExceptionSpec()) {
7731       unsigned DiagID =
7732           diag::err_mismatched_exception_spec_explicit_instantiation;
7733       if (getLangOpts().MicrosoftExt)
7734         DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
7735       bool Result = CheckEquivalentExceptionSpec(
7736           PDiag(DiagID) << Specialization->getType(),
7737           PDiag(diag::note_explicit_instantiation_here),
7738           Specialization->getType()->getAs<FunctionProtoType>(),
7739           Specialization->getLocation(), FPT, D.getLocStart());
7740       // In Microsoft mode, mismatching exception specifications just cause a
7741       // warning.
7742       if (!getLangOpts().MicrosoftExt && Result)
7743         return true;
7744     }
7745 
7746   if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
7747     Diag(D.getIdentifierLoc(),
7748          diag::err_explicit_instantiation_member_function_not_instantiated)
7749       << Specialization
7750       << (Specialization->getTemplateSpecializationKind() ==
7751           TSK_ExplicitSpecialization);
7752     Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
7753     return true;
7754   }
7755 
7756   FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
7757   if (!PrevDecl && Specialization->isThisDeclarationADefinition())
7758     PrevDecl = Specialization;
7759 
7760   if (PrevDecl) {
7761     bool HasNoEffect = false;
7762     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
7763                                                PrevDecl,
7764                                      PrevDecl->getTemplateSpecializationKind(),
7765                                           PrevDecl->getPointOfInstantiation(),
7766                                                HasNoEffect))
7767       return true;
7768 
7769     // FIXME: We may still want to build some representation of this
7770     // explicit specialization.
7771     if (HasNoEffect)
7772       return (Decl*) nullptr;
7773   }
7774 
7775   Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
7776   AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
7777   if (Attr)
7778     ProcessDeclAttributeList(S, Specialization, Attr);
7779 
7780   if (Specialization->isDefined()) {
7781     // Let the ASTConsumer know that this function has been explicitly
7782     // instantiated now, and its linkage might have changed.
7783     Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
7784   } else if (TSK == TSK_ExplicitInstantiationDefinition)
7785     InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
7786 
7787   // C++0x [temp.explicit]p2:
7788   //   If the explicit instantiation is for a member function, a member class
7789   //   or a static data member of a class template specialization, the name of
7790   //   the class template specialization in the qualified-id for the member
7791   //   name shall be a simple-template-id.
7792   //
7793   // C++98 has the same restriction, just worded differently.
7794   FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
7795   if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
7796       D.getCXXScopeSpec().isSet() &&
7797       !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
7798     Diag(D.getIdentifierLoc(),
7799          diag::ext_explicit_instantiation_without_qualified_id)
7800     << Specialization << D.getCXXScopeSpec().getRange();
7801 
7802   CheckExplicitInstantiationScope(*this,
7803                    FunTmpl? (NamedDecl *)FunTmpl
7804                           : Specialization->getInstantiatedFromMemberFunction(),
7805                                   D.getIdentifierLoc(),
7806                                   D.getCXXScopeSpec().isSet());
7807 
7808   // FIXME: Create some kind of ExplicitInstantiationDecl here.
7809   return (Decl*) nullptr;
7810 }
7811 
7812 TypeResult
ActOnDependentTag(Scope * S,unsigned TagSpec,TagUseKind TUK,const CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation TagLoc,SourceLocation NameLoc)7813 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7814                         const CXXScopeSpec &SS, IdentifierInfo *Name,
7815                         SourceLocation TagLoc, SourceLocation NameLoc) {
7816   // This has to hold, because SS is expected to be defined.
7817   assert(Name && "Expected a name in a dependent tag");
7818 
7819   NestedNameSpecifier *NNS = SS.getScopeRep();
7820   if (!NNS)
7821     return true;
7822 
7823   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7824 
7825   if (TUK == TUK_Declaration || TUK == TUK_Definition) {
7826     Diag(NameLoc, diag::err_dependent_tag_decl)
7827       << (TUK == TUK_Definition) << Kind << SS.getRange();
7828     return true;
7829   }
7830 
7831   // Create the resulting type.
7832   ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
7833   QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
7834 
7835   // Create type-source location information for this type.
7836   TypeLocBuilder TLB;
7837   DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
7838   TL.setElaboratedKeywordLoc(TagLoc);
7839   TL.setQualifierLoc(SS.getWithLocInContext(Context));
7840   TL.setNameLoc(NameLoc);
7841   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
7842 }
7843 
7844 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,const IdentifierInfo & II,SourceLocation IdLoc)7845 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
7846                         const CXXScopeSpec &SS, const IdentifierInfo &II,
7847                         SourceLocation IdLoc) {
7848   if (SS.isInvalid())
7849     return true;
7850 
7851   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
7852     Diag(TypenameLoc,
7853          getLangOpts().CPlusPlus11 ?
7854            diag::warn_cxx98_compat_typename_outside_of_template :
7855            diag::ext_typename_outside_of_template)
7856       << FixItHint::CreateRemoval(TypenameLoc);
7857 
7858   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7859   QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
7860                                  TypenameLoc, QualifierLoc, II, IdLoc);
7861   if (T.isNull())
7862     return true;
7863 
7864   TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
7865   if (isa<DependentNameType>(T)) {
7866     DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
7867     TL.setElaboratedKeywordLoc(TypenameLoc);
7868     TL.setQualifierLoc(QualifierLoc);
7869     TL.setNameLoc(IdLoc);
7870   } else {
7871     ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
7872     TL.setElaboratedKeywordLoc(TypenameLoc);
7873     TL.setQualifierLoc(QualifierLoc);
7874     TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
7875   }
7876 
7877   return CreateParsedType(T, TSI);
7878 }
7879 
7880 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateIn,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)7881 Sema::ActOnTypenameType(Scope *S,
7882                         SourceLocation TypenameLoc,
7883                         const CXXScopeSpec &SS,
7884                         SourceLocation TemplateKWLoc,
7885                         TemplateTy TemplateIn,
7886                         SourceLocation TemplateNameLoc,
7887                         SourceLocation LAngleLoc,
7888                         ASTTemplateArgsPtr TemplateArgsIn,
7889                         SourceLocation RAngleLoc) {
7890   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
7891     Diag(TypenameLoc,
7892          getLangOpts().CPlusPlus11 ?
7893            diag::warn_cxx98_compat_typename_outside_of_template :
7894            diag::ext_typename_outside_of_template)
7895       << FixItHint::CreateRemoval(TypenameLoc);
7896 
7897   // Translate the parser's template argument list in our AST format.
7898   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
7899   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
7900 
7901   TemplateName Template = TemplateIn.get();
7902   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
7903     // Construct a dependent template specialization type.
7904     assert(DTN && "dependent template has non-dependent name?");
7905     assert(DTN->getQualifier() == SS.getScopeRep());
7906     QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
7907                                                           DTN->getQualifier(),
7908                                                           DTN->getIdentifier(),
7909                                                                 TemplateArgs);
7910 
7911     // Create source-location information for this type.
7912     TypeLocBuilder Builder;
7913     DependentTemplateSpecializationTypeLoc SpecTL
7914     = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
7915     SpecTL.setElaboratedKeywordLoc(TypenameLoc);
7916     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
7917     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
7918     SpecTL.setTemplateNameLoc(TemplateNameLoc);
7919     SpecTL.setLAngleLoc(LAngleLoc);
7920     SpecTL.setRAngleLoc(RAngleLoc);
7921     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7922       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
7923     return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
7924   }
7925 
7926   QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
7927   if (T.isNull())
7928     return true;
7929 
7930   // Provide source-location information for the template specialization type.
7931   TypeLocBuilder Builder;
7932   TemplateSpecializationTypeLoc SpecTL
7933     = Builder.push<TemplateSpecializationTypeLoc>(T);
7934   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
7935   SpecTL.setTemplateNameLoc(TemplateNameLoc);
7936   SpecTL.setLAngleLoc(LAngleLoc);
7937   SpecTL.setRAngleLoc(RAngleLoc);
7938   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7939     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
7940 
7941   T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
7942   ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
7943   TL.setElaboratedKeywordLoc(TypenameLoc);
7944   TL.setQualifierLoc(SS.getWithLocInContext(Context));
7945 
7946   TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
7947   return CreateParsedType(T, TSI);
7948 }
7949 
7950 
7951 /// Determine whether this failed name lookup should be treated as being
7952 /// disabled by a usage of std::enable_if.
isEnableIf(NestedNameSpecifierLoc NNS,const IdentifierInfo & II,SourceRange & CondRange)7953 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
7954                        SourceRange &CondRange) {
7955   // We must be looking for a ::type...
7956   if (!II.isStr("type"))
7957     return false;
7958 
7959   // ... within an explicitly-written template specialization...
7960   if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
7961     return false;
7962   TypeLoc EnableIfTy = NNS.getTypeLoc();
7963   TemplateSpecializationTypeLoc EnableIfTSTLoc =
7964       EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
7965   if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
7966     return false;
7967   const TemplateSpecializationType *EnableIfTST =
7968     cast<TemplateSpecializationType>(EnableIfTSTLoc.getTypePtr());
7969 
7970   // ... which names a complete class template declaration...
7971   const TemplateDecl *EnableIfDecl =
7972     EnableIfTST->getTemplateName().getAsTemplateDecl();
7973   if (!EnableIfDecl || EnableIfTST->isIncompleteType())
7974     return false;
7975 
7976   // ... called "enable_if".
7977   const IdentifierInfo *EnableIfII =
7978     EnableIfDecl->getDeclName().getAsIdentifierInfo();
7979   if (!EnableIfII || !EnableIfII->isStr("enable_if"))
7980     return false;
7981 
7982   // Assume the first template argument is the condition.
7983   CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
7984   return true;
7985 }
7986 
7987 /// \brief Build the type that describes a C++ typename specifier,
7988 /// e.g., "typename T::type".
7989 QualType
CheckTypenameType(ElaboratedTypeKeyword Keyword,SourceLocation KeywordLoc,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo & II,SourceLocation IILoc)7990 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
7991                         SourceLocation KeywordLoc,
7992                         NestedNameSpecifierLoc QualifierLoc,
7993                         const IdentifierInfo &II,
7994                         SourceLocation IILoc) {
7995   CXXScopeSpec SS;
7996   SS.Adopt(QualifierLoc);
7997 
7998   DeclContext *Ctx = computeDeclContext(SS);
7999   if (!Ctx) {
8000     // If the nested-name-specifier is dependent and couldn't be
8001     // resolved to a type, build a typename type.
8002     assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
8003     return Context.getDependentNameType(Keyword,
8004                                         QualifierLoc.getNestedNameSpecifier(),
8005                                         &II);
8006   }
8007 
8008   // If the nested-name-specifier refers to the current instantiation,
8009   // the "typename" keyword itself is superfluous. In C++03, the
8010   // program is actually ill-formed. However, DR 382 (in C++0x CD1)
8011   // allows such extraneous "typename" keywords, and we retroactively
8012   // apply this DR to C++03 code with only a warning. In any case we continue.
8013 
8014   if (RequireCompleteDeclContext(SS, Ctx))
8015     return QualType();
8016 
8017   DeclarationName Name(&II);
8018   LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
8019   LookupQualifiedName(Result, Ctx, SS);
8020   unsigned DiagID = 0;
8021   Decl *Referenced = nullptr;
8022   switch (Result.getResultKind()) {
8023   case LookupResult::NotFound: {
8024     // If we're looking up 'type' within a template named 'enable_if', produce
8025     // a more specific diagnostic.
8026     SourceRange CondRange;
8027     if (isEnableIf(QualifierLoc, II, CondRange)) {
8028       Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
8029         << Ctx << CondRange;
8030       return QualType();
8031     }
8032 
8033     DiagID = diag::err_typename_nested_not_found;
8034     break;
8035   }
8036 
8037   case LookupResult::FoundUnresolvedValue: {
8038     // We found a using declaration that is a value. Most likely, the using
8039     // declaration itself is meant to have the 'typename' keyword.
8040     SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
8041                           IILoc);
8042     Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
8043       << Name << Ctx << FullRange;
8044     if (UnresolvedUsingValueDecl *Using
8045           = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
8046       SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
8047       Diag(Loc, diag::note_using_value_decl_missing_typename)
8048         << FixItHint::CreateInsertion(Loc, "typename ");
8049     }
8050   }
8051   // Fall through to create a dependent typename type, from which we can recover
8052   // better.
8053 
8054   case LookupResult::NotFoundInCurrentInstantiation:
8055     // Okay, it's a member of an unknown instantiation.
8056     return Context.getDependentNameType(Keyword,
8057                                         QualifierLoc.getNestedNameSpecifier(),
8058                                         &II);
8059 
8060   case LookupResult::Found:
8061     if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
8062       // We found a type. Build an ElaboratedType, since the
8063       // typename-specifier was just sugar.
8064       MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
8065       return Context.getElaboratedType(ETK_Typename,
8066                                        QualifierLoc.getNestedNameSpecifier(),
8067                                        Context.getTypeDeclType(Type));
8068     }
8069 
8070     DiagID = diag::err_typename_nested_not_type;
8071     Referenced = Result.getFoundDecl();
8072     break;
8073 
8074   case LookupResult::FoundOverloaded:
8075     DiagID = diag::err_typename_nested_not_type;
8076     Referenced = *Result.begin();
8077     break;
8078 
8079   case LookupResult::Ambiguous:
8080     return QualType();
8081   }
8082 
8083   // If we get here, it's because name lookup did not find a
8084   // type. Emit an appropriate diagnostic and return an error.
8085   SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
8086                         IILoc);
8087   Diag(IILoc, DiagID) << FullRange << Name << Ctx;
8088   if (Referenced)
8089     Diag(Referenced->getLocation(), diag::note_typename_refers_here)
8090       << Name;
8091   return QualType();
8092 }
8093 
8094 namespace {
8095   // See Sema::RebuildTypeInCurrentInstantiation
8096   class CurrentInstantiationRebuilder
8097     : public TreeTransform<CurrentInstantiationRebuilder> {
8098     SourceLocation Loc;
8099     DeclarationName Entity;
8100 
8101   public:
8102     typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
8103 
CurrentInstantiationRebuilder(Sema & SemaRef,SourceLocation Loc,DeclarationName Entity)8104     CurrentInstantiationRebuilder(Sema &SemaRef,
8105                                   SourceLocation Loc,
8106                                   DeclarationName Entity)
8107     : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
8108       Loc(Loc), Entity(Entity) { }
8109 
8110     /// \brief Determine whether the given type \p T has already been
8111     /// transformed.
8112     ///
8113     /// For the purposes of type reconstruction, a type has already been
8114     /// transformed if it is NULL or if it is not dependent.
AlreadyTransformed(QualType T)8115     bool AlreadyTransformed(QualType T) {
8116       return T.isNull() || !T->isDependentType();
8117     }
8118 
8119     /// \brief Returns the location of the entity whose type is being
8120     /// rebuilt.
getBaseLocation()8121     SourceLocation getBaseLocation() { return Loc; }
8122 
8123     /// \brief Returns the name of the entity whose type is being rebuilt.
getBaseEntity()8124     DeclarationName getBaseEntity() { return Entity; }
8125 
8126     /// \brief Sets the "base" location and entity when that
8127     /// information is known based on another transformation.
setBase(SourceLocation Loc,DeclarationName Entity)8128     void setBase(SourceLocation Loc, DeclarationName Entity) {
8129       this->Loc = Loc;
8130       this->Entity = Entity;
8131     }
8132 
TransformLambdaExpr(LambdaExpr * E)8133     ExprResult TransformLambdaExpr(LambdaExpr *E) {
8134       // Lambdas never need to be transformed.
8135       return E;
8136     }
8137   };
8138 }
8139 
8140 /// \brief Rebuilds a type within the context of the current instantiation.
8141 ///
8142 /// The type \p T is part of the type of an out-of-line member definition of
8143 /// a class template (or class template partial specialization) that was parsed
8144 /// and constructed before we entered the scope of the class template (or
8145 /// partial specialization thereof). This routine will rebuild that type now
8146 /// that we have entered the declarator's scope, which may produce different
8147 /// canonical types, e.g.,
8148 ///
8149 /// \code
8150 /// template<typename T>
8151 /// struct X {
8152 ///   typedef T* pointer;
8153 ///   pointer data();
8154 /// };
8155 ///
8156 /// template<typename T>
8157 /// typename X<T>::pointer X<T>::data() { ... }
8158 /// \endcode
8159 ///
8160 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
8161 /// since we do not know that we can look into X<T> when we parsed the type.
8162 /// This function will rebuild the type, performing the lookup of "pointer"
8163 /// in X<T> and returning an ElaboratedType whose canonical type is the same
8164 /// as the canonical type of T*, allowing the return types of the out-of-line
8165 /// definition and the declaration to match.
RebuildTypeInCurrentInstantiation(TypeSourceInfo * T,SourceLocation Loc,DeclarationName Name)8166 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
8167                                                         SourceLocation Loc,
8168                                                         DeclarationName Name) {
8169   if (!T || !T->getType()->isDependentType())
8170     return T;
8171 
8172   CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
8173   return Rebuilder.TransformType(T);
8174 }
8175 
RebuildExprInCurrentInstantiation(Expr * E)8176 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
8177   CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
8178                                           DeclarationName());
8179   return Rebuilder.TransformExpr(E);
8180 }
8181 
RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec & SS)8182 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
8183   if (SS.isInvalid())
8184     return true;
8185 
8186   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8187   CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
8188                                           DeclarationName());
8189   NestedNameSpecifierLoc Rebuilt
8190     = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
8191   if (!Rebuilt)
8192     return true;
8193 
8194   SS.Adopt(Rebuilt);
8195   return false;
8196 }
8197 
8198 /// \brief Rebuild the template parameters now that we know we're in a current
8199 /// instantiation.
RebuildTemplateParamsInCurrentInstantiation(TemplateParameterList * Params)8200 bool Sema::RebuildTemplateParamsInCurrentInstantiation(
8201                                                TemplateParameterList *Params) {
8202   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
8203     Decl *Param = Params->getParam(I);
8204 
8205     // There is nothing to rebuild in a type parameter.
8206     if (isa<TemplateTypeParmDecl>(Param))
8207       continue;
8208 
8209     // Rebuild the template parameter list of a template template parameter.
8210     if (TemplateTemplateParmDecl *TTP
8211         = dyn_cast<TemplateTemplateParmDecl>(Param)) {
8212       if (RebuildTemplateParamsInCurrentInstantiation(
8213             TTP->getTemplateParameters()))
8214         return true;
8215 
8216       continue;
8217     }
8218 
8219     // Rebuild the type of a non-type template parameter.
8220     NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
8221     TypeSourceInfo *NewTSI
8222       = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
8223                                           NTTP->getLocation(),
8224                                           NTTP->getDeclName());
8225     if (!NewTSI)
8226       return true;
8227 
8228     if (NewTSI != NTTP->getTypeSourceInfo()) {
8229       NTTP->setTypeSourceInfo(NewTSI);
8230       NTTP->setType(NewTSI->getType());
8231     }
8232   }
8233 
8234   return false;
8235 }
8236 
8237 /// \brief Produces a formatted string that describes the binding of
8238 /// template parameters to template arguments.
8239 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgumentList & Args)8240 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
8241                                       const TemplateArgumentList &Args) {
8242   return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
8243 }
8244 
8245 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgument * Args,unsigned NumArgs)8246 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
8247                                       const TemplateArgument *Args,
8248                                       unsigned NumArgs) {
8249   SmallString<128> Str;
8250   llvm::raw_svector_ostream Out(Str);
8251 
8252   if (!Params || Params->size() == 0 || NumArgs == 0)
8253     return std::string();
8254 
8255   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
8256     if (I >= NumArgs)
8257       break;
8258 
8259     if (I == 0)
8260       Out << "[with ";
8261     else
8262       Out << ", ";
8263 
8264     if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
8265       Out << Id->getName();
8266     } else {
8267       Out << '$' << I;
8268     }
8269 
8270     Out << " = ";
8271     Args[I].print(getPrintingPolicy(), Out);
8272   }
8273 
8274   Out << ']';
8275   return Out.str();
8276 }
8277 
MarkAsLateParsedTemplate(FunctionDecl * FD,Decl * FnD,CachedTokens & Toks)8278 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
8279                                     CachedTokens &Toks) {
8280   if (!FD)
8281     return;
8282 
8283   LateParsedTemplate *LPT = new LateParsedTemplate;
8284 
8285   // Take tokens to avoid allocations
8286   LPT->Toks.swap(Toks);
8287   LPT->D = FnD;
8288   LateParsedTemplateMap[FD] = LPT;
8289 
8290   FD->setLateTemplateParsed(true);
8291 }
8292 
UnmarkAsLateParsedTemplate(FunctionDecl * FD)8293 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
8294   if (!FD)
8295     return;
8296   FD->setLateTemplateParsed(false);
8297 }
8298 
IsInsideALocalClassWithinATemplateFunction()8299 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
8300   DeclContext *DC = CurContext;
8301 
8302   while (DC) {
8303     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
8304       const FunctionDecl *FD = RD->isLocalClass();
8305       return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
8306     } else if (DC->isTranslationUnit() || DC->isNamespace())
8307       return false;
8308 
8309     DC = DC->getParent();
8310   }
8311   return false;
8312 }
8313