1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===/
8 //
9 //  This file implements semantic analysis for C++ templates.
10 //===----------------------------------------------------------------------===/
11 
12 #include "TreeTransform.h"
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/DeclFriend.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/RecursiveASTVisitor.h"
20 #include "clang/AST/TypeVisitor.h"
21 #include "clang/Basic/LangOptions.h"
22 #include "clang/Basic/PartialDiagnostic.h"
23 #include "clang/Sema/DeclSpec.h"
24 #include "clang/Sema/Lookup.h"
25 #include "clang/Sema/ParsedTemplate.h"
26 #include "clang/Sema/Scope.h"
27 #include "clang/Sema/SemaInternal.h"
28 #include "clang/Sema/Template.h"
29 #include "clang/Sema/TemplateDeduction.h"
30 #include "llvm/ADT/SmallBitVector.h"
31 #include "llvm/ADT/SmallString.h"
32 #include "llvm/ADT/StringExtras.h"
33 using namespace clang;
34 using namespace sema;
35 
36 // Exported for use by Parser.
37 SourceRange
38 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
39                               unsigned N) {
40   if (!N) return SourceRange();
41   return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
42 }
43 
44 /// \brief Determine whether the declaration found is acceptable as the name
45 /// of a template and, if so, return that template declaration. Otherwise,
46 /// returns NULL.
47 static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
48                                            NamedDecl *Orig,
49                                            bool AllowFunctionTemplates) {
50   NamedDecl *D = Orig->getUnderlyingDecl();
51 
52   if (isa<TemplateDecl>(D)) {
53     if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
54       return 0;
55 
56     return Orig;
57   }
58 
59   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
60     // C++ [temp.local]p1:
61     //   Like normal (non-template) classes, class templates have an
62     //   injected-class-name (Clause 9). The injected-class-name
63     //   can be used with or without a template-argument-list. When
64     //   it is used without a template-argument-list, it is
65     //   equivalent to the injected-class-name followed by the
66     //   template-parameters of the class template enclosed in
67     //   <>. When it is used with a template-argument-list, it
68     //   refers to the specified class template specialization,
69     //   which could be the current specialization or another
70     //   specialization.
71     if (Record->isInjectedClassName()) {
72       Record = cast<CXXRecordDecl>(Record->getDeclContext());
73       if (Record->getDescribedClassTemplate())
74         return Record->getDescribedClassTemplate();
75 
76       if (ClassTemplateSpecializationDecl *Spec
77             = dyn_cast<ClassTemplateSpecializationDecl>(Record))
78         return Spec->getSpecializedTemplate();
79     }
80 
81     return 0;
82   }
83 
84   return 0;
85 }
86 
87 void Sema::FilterAcceptableTemplateNames(LookupResult &R,
88                                          bool AllowFunctionTemplates) {
89   // The set of class templates we've already seen.
90   llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
91   LookupResult::Filter filter = R.makeFilter();
92   while (filter.hasNext()) {
93     NamedDecl *Orig = filter.next();
94     NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
95                                                AllowFunctionTemplates);
96     if (!Repl)
97       filter.erase();
98     else if (Repl != Orig) {
99 
100       // C++ [temp.local]p3:
101       //   A lookup that finds an injected-class-name (10.2) can result in an
102       //   ambiguity in certain cases (for example, if it is found in more than
103       //   one base class). If all of the injected-class-names that are found
104       //   refer to specializations of the same class template, and if the name
105       //   is used as a template-name, the reference refers to the class
106       //   template itself and not a specialization thereof, and is not
107       //   ambiguous.
108       if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
109         if (!ClassTemplates.insert(ClassTmpl)) {
110           filter.erase();
111           continue;
112         }
113 
114       // FIXME: we promote access to public here as a workaround to
115       // the fact that LookupResult doesn't let us remember that we
116       // found this template through a particular injected class name,
117       // which means we end up doing nasty things to the invariants.
118       // Pretending that access is public is *much* safer.
119       filter.replace(Repl, AS_public);
120     }
121   }
122   filter.done();
123 }
124 
125 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
126                                          bool AllowFunctionTemplates) {
127   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
128     if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
129       return true;
130 
131   return false;
132 }
133 
134 TemplateNameKind Sema::isTemplateName(Scope *S,
135                                       CXXScopeSpec &SS,
136                                       bool hasTemplateKeyword,
137                                       UnqualifiedId &Name,
138                                       ParsedType ObjectTypePtr,
139                                       bool EnteringContext,
140                                       TemplateTy &TemplateResult,
141                                       bool &MemberOfUnknownSpecialization) {
142   assert(getLangOpts().CPlusPlus && "No template names in C!");
143 
144   DeclarationName TName;
145   MemberOfUnknownSpecialization = false;
146 
147   switch (Name.getKind()) {
148   case UnqualifiedId::IK_Identifier:
149     TName = DeclarationName(Name.Identifier);
150     break;
151 
152   case UnqualifiedId::IK_OperatorFunctionId:
153     TName = Context.DeclarationNames.getCXXOperatorName(
154                                               Name.OperatorFunctionId.Operator);
155     break;
156 
157   case UnqualifiedId::IK_LiteralOperatorId:
158     TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
159     break;
160 
161   default:
162     return TNK_Non_template;
163   }
164 
165   QualType ObjectType = ObjectTypePtr.get();
166 
167   LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
168   LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
169                      MemberOfUnknownSpecialization);
170   if (R.empty()) return TNK_Non_template;
171   if (R.isAmbiguous()) {
172     // Suppress diagnostics;  we'll redo this lookup later.
173     R.suppressDiagnostics();
174 
175     // FIXME: we might have ambiguous templates, in which case we
176     // should at least parse them properly!
177     return TNK_Non_template;
178   }
179 
180   TemplateName Template;
181   TemplateNameKind TemplateKind;
182 
183   unsigned ResultCount = R.end() - R.begin();
184   if (ResultCount > 1) {
185     // We assume that we'll preserve the qualifier from a function
186     // template name in other ways.
187     Template = Context.getOverloadedTemplateName(R.begin(), R.end());
188     TemplateKind = TNK_Function_template;
189 
190     // We'll do this lookup again later.
191     R.suppressDiagnostics();
192   } else {
193     TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
194 
195     if (SS.isSet() && !SS.isInvalid()) {
196       NestedNameSpecifier *Qualifier
197         = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
198       Template = Context.getQualifiedTemplateName(Qualifier,
199                                                   hasTemplateKeyword, TD);
200     } else {
201       Template = TemplateName(TD);
202     }
203 
204     if (isa<FunctionTemplateDecl>(TD)) {
205       TemplateKind = TNK_Function_template;
206 
207       // We'll do this lookup again later.
208       R.suppressDiagnostics();
209     } else {
210       assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
211              isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD));
212       TemplateKind =
213           isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template;
214     }
215   }
216 
217   TemplateResult = TemplateTy::make(Template);
218   return TemplateKind;
219 }
220 
221 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
222                                        SourceLocation IILoc,
223                                        Scope *S,
224                                        const CXXScopeSpec *SS,
225                                        TemplateTy &SuggestedTemplate,
226                                        TemplateNameKind &SuggestedKind) {
227   // We can't recover unless there's a dependent scope specifier preceding the
228   // template name.
229   // FIXME: Typo correction?
230   if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
231       computeDeclContext(*SS))
232     return false;
233 
234   // The code is missing a 'template' keyword prior to the dependent template
235   // name.
236   NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
237   Diag(IILoc, diag::err_template_kw_missing)
238     << Qualifier << II.getName()
239     << FixItHint::CreateInsertion(IILoc, "template ");
240   SuggestedTemplate
241     = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
242   SuggestedKind = TNK_Dependent_template_name;
243   return true;
244 }
245 
246 void Sema::LookupTemplateName(LookupResult &Found,
247                               Scope *S, CXXScopeSpec &SS,
248                               QualType ObjectType,
249                               bool EnteringContext,
250                               bool &MemberOfUnknownSpecialization) {
251   // Determine where to perform name lookup
252   MemberOfUnknownSpecialization = false;
253   DeclContext *LookupCtx = 0;
254   bool isDependent = false;
255   if (!ObjectType.isNull()) {
256     // This nested-name-specifier occurs in a member access expression, e.g.,
257     // x->B::f, and we are looking into the type of the object.
258     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
259     LookupCtx = computeDeclContext(ObjectType);
260     isDependent = ObjectType->isDependentType();
261     assert((isDependent || !ObjectType->isIncompleteType() ||
262             ObjectType->castAs<TagType>()->isBeingDefined()) &&
263            "Caller should have completed object type");
264 
265     // Template names cannot appear inside an Objective-C class or object type.
266     if (ObjectType->isObjCObjectOrInterfaceType()) {
267       Found.clear();
268       return;
269     }
270   } else if (SS.isSet()) {
271     // This nested-name-specifier occurs after another nested-name-specifier,
272     // so long into the context associated with the prior nested-name-specifier.
273     LookupCtx = computeDeclContext(SS, EnteringContext);
274     isDependent = isDependentScopeSpecifier(SS);
275 
276     // The declaration context must be complete.
277     if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
278       return;
279   }
280 
281   bool ObjectTypeSearchedInScope = false;
282   bool AllowFunctionTemplatesInLookup = true;
283   if (LookupCtx) {
284     // Perform "qualified" name lookup into the declaration context we
285     // computed, which is either the type of the base of a member access
286     // expression or the declaration context associated with a prior
287     // nested-name-specifier.
288     LookupQualifiedName(Found, LookupCtx);
289     if (!ObjectType.isNull() && Found.empty()) {
290       // C++ [basic.lookup.classref]p1:
291       //   In a class member access expression (5.2.5), if the . or -> token is
292       //   immediately followed by an identifier followed by a <, the
293       //   identifier must be looked up to determine whether the < is the
294       //   beginning of a template argument list (14.2) or a less-than operator.
295       //   The identifier is first looked up in the class of the object
296       //   expression. If the identifier is not found, it is then looked up in
297       //   the context of the entire postfix-expression and shall name a class
298       //   or function template.
299       if (S) LookupName(Found, S);
300       ObjectTypeSearchedInScope = true;
301       AllowFunctionTemplatesInLookup = false;
302     }
303   } else if (isDependent && (!S || ObjectType.isNull())) {
304     // We cannot look into a dependent object type or nested nme
305     // specifier.
306     MemberOfUnknownSpecialization = true;
307     return;
308   } else {
309     // Perform unqualified name lookup in the current scope.
310     LookupName(Found, S);
311 
312     if (!ObjectType.isNull())
313       AllowFunctionTemplatesInLookup = false;
314   }
315 
316   if (Found.empty() && !isDependent) {
317     // If we did not find any names, attempt to correct any typos.
318     DeclarationName Name = Found.getLookupName();
319     Found.clear();
320     // Simple filter callback that, for keywords, only accepts the C++ *_cast
321     CorrectionCandidateCallback FilterCCC;
322     FilterCCC.WantTypeSpecifiers = false;
323     FilterCCC.WantExpressionKeywords = false;
324     FilterCCC.WantRemainingKeywords = false;
325     FilterCCC.WantCXXNamedCasts = true;
326     if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
327                                                Found.getLookupKind(), S, &SS,
328                                                FilterCCC, LookupCtx)) {
329       Found.setLookupName(Corrected.getCorrection());
330       if (Corrected.getCorrectionDecl())
331         Found.addDecl(Corrected.getCorrectionDecl());
332       FilterAcceptableTemplateNames(Found);
333       if (!Found.empty()) {
334         if (LookupCtx) {
335           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
336           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
337                                   Name.getAsString() == CorrectedStr;
338           diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
339                                     << Name << LookupCtx << DroppedSpecifier
340                                     << SS.getRange());
341         } else {
342           diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
343         }
344       }
345     } else {
346       Found.setLookupName(Name);
347     }
348   }
349 
350   FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
351   if (Found.empty()) {
352     if (isDependent)
353       MemberOfUnknownSpecialization = true;
354     return;
355   }
356 
357   if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
358       !getLangOpts().CPlusPlus11) {
359     // C++03 [basic.lookup.classref]p1:
360     //   [...] If the lookup in the class of the object expression finds a
361     //   template, the name is also looked up in the context of the entire
362     //   postfix-expression and [...]
363     //
364     // Note: C++11 does not perform this second lookup.
365     LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
366                             LookupOrdinaryName);
367     LookupName(FoundOuter, S);
368     FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
369 
370     if (FoundOuter.empty()) {
371       //   - if the name is not found, the name found in the class of the
372       //     object expression is used, otherwise
373     } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
374                FoundOuter.isAmbiguous()) {
375       //   - if the name is found in the context of the entire
376       //     postfix-expression and does not name a class template, the name
377       //     found in the class of the object expression is used, otherwise
378       FoundOuter.clear();
379     } else if (!Found.isSuppressingDiagnostics()) {
380       //   - if the name found is a class template, it must refer to the same
381       //     entity as the one found in the class of the object expression,
382       //     otherwise the program is ill-formed.
383       if (!Found.isSingleResult() ||
384           Found.getFoundDecl()->getCanonicalDecl()
385             != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
386         Diag(Found.getNameLoc(),
387              diag::ext_nested_name_member_ref_lookup_ambiguous)
388           << Found.getLookupName()
389           << ObjectType;
390         Diag(Found.getRepresentativeDecl()->getLocation(),
391              diag::note_ambig_member_ref_object_type)
392           << ObjectType;
393         Diag(FoundOuter.getFoundDecl()->getLocation(),
394              diag::note_ambig_member_ref_scope);
395 
396         // Recover by taking the template that we found in the object
397         // expression's type.
398       }
399     }
400   }
401 }
402 
403 /// ActOnDependentIdExpression - Handle a dependent id-expression that
404 /// was just parsed.  This is only possible with an explicit scope
405 /// specifier naming a dependent type.
406 ExprResult
407 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
408                                  SourceLocation TemplateKWLoc,
409                                  const DeclarationNameInfo &NameInfo,
410                                  bool isAddressOfOperand,
411                            const TemplateArgumentListInfo *TemplateArgs) {
412   DeclContext *DC = getFunctionLevelDeclContext();
413 
414   if (!isAddressOfOperand &&
415       isa<CXXMethodDecl>(DC) &&
416       cast<CXXMethodDecl>(DC)->isInstance()) {
417     QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
418 
419     // Since the 'this' expression is synthesized, we don't need to
420     // perform the double-lookup check.
421     NamedDecl *FirstQualifierInScope = 0;
422 
423     return Owned(CXXDependentScopeMemberExpr::Create(Context,
424                                                      /*This*/ 0, ThisType,
425                                                      /*IsArrow*/ true,
426                                                      /*Op*/ SourceLocation(),
427                                                SS.getWithLocInContext(Context),
428                                                      TemplateKWLoc,
429                                                      FirstQualifierInScope,
430                                                      NameInfo,
431                                                      TemplateArgs));
432   }
433 
434   return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
435 }
436 
437 ExprResult
438 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
439                                 SourceLocation TemplateKWLoc,
440                                 const DeclarationNameInfo &NameInfo,
441                                 const TemplateArgumentListInfo *TemplateArgs) {
442   return Owned(DependentScopeDeclRefExpr::Create(Context,
443                                                SS.getWithLocInContext(Context),
444                                                  TemplateKWLoc,
445                                                  NameInfo,
446                                                  TemplateArgs));
447 }
448 
449 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
450 /// that the template parameter 'PrevDecl' is being shadowed by a new
451 /// declaration at location Loc. Returns true to indicate that this is
452 /// an error, and false otherwise.
453 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
454   assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
455 
456   // Microsoft Visual C++ permits template parameters to be shadowed.
457   if (getLangOpts().MicrosoftExt)
458     return;
459 
460   // C++ [temp.local]p4:
461   //   A template-parameter shall not be redeclared within its
462   //   scope (including nested scopes).
463   Diag(Loc, diag::err_template_param_shadow)
464     << cast<NamedDecl>(PrevDecl)->getDeclName();
465   Diag(PrevDecl->getLocation(), diag::note_template_param_here);
466   return;
467 }
468 
469 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
470 /// the parameter D to reference the templated declaration and return a pointer
471 /// to the template declaration. Otherwise, do nothing to D and return null.
472 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
473   if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
474     D = Temp->getTemplatedDecl();
475     return Temp;
476   }
477   return 0;
478 }
479 
480 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
481                                              SourceLocation EllipsisLoc) const {
482   assert(Kind == Template &&
483          "Only template template arguments can be pack expansions here");
484   assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
485          "Template template argument pack expansion without packs");
486   ParsedTemplateArgument Result(*this);
487   Result.EllipsisLoc = EllipsisLoc;
488   return Result;
489 }
490 
491 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
492                                             const ParsedTemplateArgument &Arg) {
493 
494   switch (Arg.getKind()) {
495   case ParsedTemplateArgument::Type: {
496     TypeSourceInfo *DI;
497     QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
498     if (!DI)
499       DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
500     return TemplateArgumentLoc(TemplateArgument(T), DI);
501   }
502 
503   case ParsedTemplateArgument::NonType: {
504     Expr *E = static_cast<Expr *>(Arg.getAsExpr());
505     return TemplateArgumentLoc(TemplateArgument(E), E);
506   }
507 
508   case ParsedTemplateArgument::Template: {
509     TemplateName Template = Arg.getAsTemplate().get();
510     TemplateArgument TArg;
511     if (Arg.getEllipsisLoc().isValid())
512       TArg = TemplateArgument(Template, Optional<unsigned int>());
513     else
514       TArg = Template;
515     return TemplateArgumentLoc(TArg,
516                                Arg.getScopeSpec().getWithLocInContext(
517                                                               SemaRef.Context),
518                                Arg.getLocation(),
519                                Arg.getEllipsisLoc());
520   }
521   }
522 
523   llvm_unreachable("Unhandled parsed template argument");
524 }
525 
526 /// \brief Translates template arguments as provided by the parser
527 /// into template arguments used by semantic analysis.
528 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
529                                       TemplateArgumentListInfo &TemplateArgs) {
530  for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
531    TemplateArgs.addArgument(translateTemplateArgument(*this,
532                                                       TemplateArgsIn[I]));
533 }
534 
535 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
536                                                  SourceLocation Loc,
537                                                  IdentifierInfo *Name) {
538   NamedDecl *PrevDecl = SemaRef.LookupSingleName(
539       S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForRedeclaration);
540   if (PrevDecl && PrevDecl->isTemplateParameter())
541     SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
542 }
543 
544 /// ActOnTypeParameter - Called when a C++ template type parameter
545 /// (e.g., "typename T") has been parsed. Typename specifies whether
546 /// the keyword "typename" was used to declare the type parameter
547 /// (otherwise, "class" was used), and KeyLoc is the location of the
548 /// "class" or "typename" keyword. ParamName is the name of the
549 /// parameter (NULL indicates an unnamed template parameter) and
550 /// ParamNameLoc is the location of the parameter name (if any).
551 /// If the type parameter has a default argument, it will be added
552 /// later via ActOnTypeParameterDefault.
553 Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
554                                SourceLocation EllipsisLoc,
555                                SourceLocation KeyLoc,
556                                IdentifierInfo *ParamName,
557                                SourceLocation ParamNameLoc,
558                                unsigned Depth, unsigned Position,
559                                SourceLocation EqualLoc,
560                                ParsedType DefaultArg) {
561   assert(S->isTemplateParamScope() &&
562          "Template type parameter not in template parameter scope!");
563   bool Invalid = false;
564 
565   SourceLocation Loc = ParamNameLoc;
566   if (!ParamName)
567     Loc = KeyLoc;
568 
569   TemplateTypeParmDecl *Param
570     = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
571                                    KeyLoc, Loc, Depth, Position, ParamName,
572                                    Typename, Ellipsis);
573   Param->setAccess(AS_public);
574   if (Invalid)
575     Param->setInvalidDecl();
576 
577   if (ParamName) {
578     maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
579 
580     // Add the template parameter into the current scope.
581     S->AddDecl(Param);
582     IdResolver.AddDecl(Param);
583   }
584 
585   // C++0x [temp.param]p9:
586   //   A default template-argument may be specified for any kind of
587   //   template-parameter that is not a template parameter pack.
588   if (DefaultArg && Ellipsis) {
589     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
590     DefaultArg = ParsedType();
591   }
592 
593   // Handle the default argument, if provided.
594   if (DefaultArg) {
595     TypeSourceInfo *DefaultTInfo;
596     GetTypeFromParser(DefaultArg, &DefaultTInfo);
597 
598     assert(DefaultTInfo && "expected source information for type");
599 
600     // Check for unexpanded parameter packs.
601     if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
602                                         UPPC_DefaultArgument))
603       return Param;
604 
605     // Check the template argument itself.
606     if (CheckTemplateArgument(Param, DefaultTInfo)) {
607       Param->setInvalidDecl();
608       return Param;
609     }
610 
611     Param->setDefaultArgument(DefaultTInfo, false);
612   }
613 
614   return Param;
615 }
616 
617 /// \brief Check that the type of a non-type template parameter is
618 /// well-formed.
619 ///
620 /// \returns the (possibly-promoted) parameter type if valid;
621 /// otherwise, produces a diagnostic and returns a NULL type.
622 QualType
623 Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
624   // We don't allow variably-modified types as the type of non-type template
625   // parameters.
626   if (T->isVariablyModifiedType()) {
627     Diag(Loc, diag::err_variably_modified_nontype_template_param)
628       << T;
629     return QualType();
630   }
631 
632   // C++ [temp.param]p4:
633   //
634   // A non-type template-parameter shall have one of the following
635   // (optionally cv-qualified) types:
636   //
637   //       -- integral or enumeration type,
638   if (T->isIntegralOrEnumerationType() ||
639       //   -- pointer to object or pointer to function,
640       T->isPointerType() ||
641       //   -- reference to object or reference to function,
642       T->isReferenceType() ||
643       //   -- pointer to member,
644       T->isMemberPointerType() ||
645       //   -- std::nullptr_t.
646       T->isNullPtrType() ||
647       // If T is a dependent type, we can't do the check now, so we
648       // assume that it is well-formed.
649       T->isDependentType()) {
650     // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
651     // are ignored when determining its type.
652     return T.getUnqualifiedType();
653   }
654 
655   // C++ [temp.param]p8:
656   //
657   //   A non-type template-parameter of type "array of T" or
658   //   "function returning T" is adjusted to be of type "pointer to
659   //   T" or "pointer to function returning T", respectively.
660   else if (T->isArrayType())
661     // FIXME: Keep the type prior to promotion?
662     return Context.getArrayDecayedType(T);
663   else if (T->isFunctionType())
664     // FIXME: Keep the type prior to promotion?
665     return Context.getPointerType(T);
666 
667   Diag(Loc, diag::err_template_nontype_parm_bad_type)
668     << T;
669 
670   return QualType();
671 }
672 
673 Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
674                                           unsigned Depth,
675                                           unsigned Position,
676                                           SourceLocation EqualLoc,
677                                           Expr *Default) {
678   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
679   QualType T = TInfo->getType();
680 
681   assert(S->isTemplateParamScope() &&
682          "Non-type template parameter not in template parameter scope!");
683   bool Invalid = false;
684 
685   T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
686   if (T.isNull()) {
687     T = Context.IntTy; // Recover with an 'int' type.
688     Invalid = true;
689   }
690 
691   IdentifierInfo *ParamName = D.getIdentifier();
692   bool IsParameterPack = D.hasEllipsis();
693   NonTypeTemplateParmDecl *Param
694     = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
695                                       D.getLocStart(),
696                                       D.getIdentifierLoc(),
697                                       Depth, Position, ParamName, T,
698                                       IsParameterPack, TInfo);
699   Param->setAccess(AS_public);
700 
701   if (Invalid)
702     Param->setInvalidDecl();
703 
704   if (ParamName) {
705     maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
706                                          ParamName);
707 
708     // Add the template parameter into the current scope.
709     S->AddDecl(Param);
710     IdResolver.AddDecl(Param);
711   }
712 
713   // C++0x [temp.param]p9:
714   //   A default template-argument may be specified for any kind of
715   //   template-parameter that is not a template parameter pack.
716   if (Default && IsParameterPack) {
717     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
718     Default = 0;
719   }
720 
721   // Check the well-formedness of the default template argument, if provided.
722   if (Default) {
723     // Check for unexpanded parameter packs.
724     if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
725       return Param;
726 
727     TemplateArgument Converted;
728     ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
729     if (DefaultRes.isInvalid()) {
730       Param->setInvalidDecl();
731       return Param;
732     }
733     Default = DefaultRes.take();
734 
735     Param->setDefaultArgument(Default, false);
736   }
737 
738   return Param;
739 }
740 
741 /// ActOnTemplateTemplateParameter - Called when a C++ template template
742 /// parameter (e.g. T in template <template \<typename> class T> class array)
743 /// has been parsed. S is the current scope.
744 Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
745                                            SourceLocation TmpLoc,
746                                            TemplateParameterList *Params,
747                                            SourceLocation EllipsisLoc,
748                                            IdentifierInfo *Name,
749                                            SourceLocation NameLoc,
750                                            unsigned Depth,
751                                            unsigned Position,
752                                            SourceLocation EqualLoc,
753                                            ParsedTemplateArgument Default) {
754   assert(S->isTemplateParamScope() &&
755          "Template template parameter not in template parameter scope!");
756 
757   // Construct the parameter object.
758   bool IsParameterPack = EllipsisLoc.isValid();
759   TemplateTemplateParmDecl *Param =
760     TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
761                                      NameLoc.isInvalid()? TmpLoc : NameLoc,
762                                      Depth, Position, IsParameterPack,
763                                      Name, Params);
764   Param->setAccess(AS_public);
765 
766   // If the template template parameter has a name, then link the identifier
767   // into the scope and lookup mechanisms.
768   if (Name) {
769     maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
770 
771     S->AddDecl(Param);
772     IdResolver.AddDecl(Param);
773   }
774 
775   if (Params->size() == 0) {
776     Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
777     << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
778     Param->setInvalidDecl();
779   }
780 
781   // C++0x [temp.param]p9:
782   //   A default template-argument may be specified for any kind of
783   //   template-parameter that is not a template parameter pack.
784   if (IsParameterPack && !Default.isInvalid()) {
785     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
786     Default = ParsedTemplateArgument();
787   }
788 
789   if (!Default.isInvalid()) {
790     // Check only that we have a template template argument. We don't want to
791     // try to check well-formedness now, because our template template parameter
792     // might have dependent types in its template parameters, which we wouldn't
793     // be able to match now.
794     //
795     // If none of the template template parameter's template arguments mention
796     // other template parameters, we could actually perform more checking here.
797     // However, it isn't worth doing.
798     TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
799     if (DefaultArg.getArgument().getAsTemplate().isNull()) {
800       Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
801         << DefaultArg.getSourceRange();
802       return Param;
803     }
804 
805     // Check for unexpanded parameter packs.
806     if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
807                                         DefaultArg.getArgument().getAsTemplate(),
808                                         UPPC_DefaultArgument))
809       return Param;
810 
811     Param->setDefaultArgument(DefaultArg, false);
812   }
813 
814   return Param;
815 }
816 
817 /// ActOnTemplateParameterList - Builds a TemplateParameterList that
818 /// contains the template parameters in Params/NumParams.
819 TemplateParameterList *
820 Sema::ActOnTemplateParameterList(unsigned Depth,
821                                  SourceLocation ExportLoc,
822                                  SourceLocation TemplateLoc,
823                                  SourceLocation LAngleLoc,
824                                  Decl **Params, unsigned NumParams,
825                                  SourceLocation RAngleLoc) {
826   if (ExportLoc.isValid())
827     Diag(ExportLoc, diag::warn_template_export_unsupported);
828 
829   return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
830                                        (NamedDecl**)Params, NumParams,
831                                        RAngleLoc);
832 }
833 
834 static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
835   if (SS.isSet())
836     T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
837 }
838 
839 DeclResult
840 Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
841                          SourceLocation KWLoc, CXXScopeSpec &SS,
842                          IdentifierInfo *Name, SourceLocation NameLoc,
843                          AttributeList *Attr,
844                          TemplateParameterList *TemplateParams,
845                          AccessSpecifier AS, SourceLocation ModulePrivateLoc,
846                          unsigned NumOuterTemplateParamLists,
847                          TemplateParameterList** OuterTemplateParamLists) {
848   assert(TemplateParams && TemplateParams->size() > 0 &&
849          "No template parameters");
850   assert(TUK != TUK_Reference && "Can only declare or define class templates");
851   bool Invalid = false;
852 
853   // Check that we can declare a template here.
854   if (CheckTemplateDeclScope(S, TemplateParams))
855     return true;
856 
857   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
858   assert(Kind != TTK_Enum && "can't build template of enumerated type");
859 
860   // There is no such thing as an unnamed class template.
861   if (!Name) {
862     Diag(KWLoc, diag::err_template_unnamed_class);
863     return true;
864   }
865 
866   // Find any previous declaration with this name. For a friend with no
867   // scope explicitly specified, we only look for tag declarations (per
868   // C++11 [basic.lookup.elab]p2).
869   DeclContext *SemanticContext;
870   LookupResult Previous(*this, Name, NameLoc,
871                         (SS.isEmpty() && TUK == TUK_Friend)
872                           ? LookupTagName : LookupOrdinaryName,
873                         ForRedeclaration);
874   if (SS.isNotEmpty() && !SS.isInvalid()) {
875     SemanticContext = computeDeclContext(SS, true);
876     if (!SemanticContext) {
877       // FIXME: Horrible, horrible hack! We can't currently represent this
878       // in the AST, and historically we have just ignored such friend
879       // class templates, so don't complain here.
880       Diag(NameLoc, TUK == TUK_Friend
881                         ? diag::warn_template_qualified_friend_ignored
882                         : diag::err_template_qualified_declarator_no_match)
883           << SS.getScopeRep() << SS.getRange();
884       return TUK != TUK_Friend;
885     }
886 
887     if (RequireCompleteDeclContext(SS, SemanticContext))
888       return true;
889 
890     // If we're adding a template to a dependent context, we may need to
891     // rebuilding some of the types used within the template parameter list,
892     // now that we know what the current instantiation is.
893     if (SemanticContext->isDependentContext()) {
894       ContextRAII SavedContext(*this, SemanticContext);
895       if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
896         Invalid = true;
897     } else if (TUK != TUK_Friend && TUK != TUK_Reference)
898       diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
899 
900     LookupQualifiedName(Previous, SemanticContext);
901   } else {
902     SemanticContext = CurContext;
903     LookupName(Previous, S);
904   }
905 
906   if (Previous.isAmbiguous())
907     return true;
908 
909   NamedDecl *PrevDecl = 0;
910   if (Previous.begin() != Previous.end())
911     PrevDecl = (*Previous.begin())->getUnderlyingDecl();
912 
913   // If there is a previous declaration with the same name, check
914   // whether this is a valid redeclaration.
915   ClassTemplateDecl *PrevClassTemplate
916     = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
917 
918   // We may have found the injected-class-name of a class template,
919   // class template partial specialization, or class template specialization.
920   // In these cases, grab the template that is being defined or specialized.
921   if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
922       cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
923     PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
924     PrevClassTemplate
925       = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
926     if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
927       PrevClassTemplate
928         = cast<ClassTemplateSpecializationDecl>(PrevDecl)
929             ->getSpecializedTemplate();
930     }
931   }
932 
933   if (TUK == TUK_Friend) {
934     // C++ [namespace.memdef]p3:
935     //   [...] When looking for a prior declaration of a class or a function
936     //   declared as a friend, and when the name of the friend class or
937     //   function is neither a qualified name nor a template-id, scopes outside
938     //   the innermost enclosing namespace scope are not considered.
939     if (!SS.isSet()) {
940       DeclContext *OutermostContext = CurContext;
941       while (!OutermostContext->isFileContext())
942         OutermostContext = OutermostContext->getLookupParent();
943 
944       if (PrevDecl &&
945           (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
946            OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
947         SemanticContext = PrevDecl->getDeclContext();
948       } else {
949         // Declarations in outer scopes don't matter. However, the outermost
950         // context we computed is the semantic context for our new
951         // declaration.
952         PrevDecl = PrevClassTemplate = 0;
953         SemanticContext = OutermostContext;
954 
955         // Check that the chosen semantic context doesn't already contain a
956         // declaration of this name as a non-tag type.
957         LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
958                               ForRedeclaration);
959         DeclContext *LookupContext = SemanticContext;
960         while (LookupContext->isTransparentContext())
961           LookupContext = LookupContext->getLookupParent();
962         LookupQualifiedName(Previous, LookupContext);
963 
964         if (Previous.isAmbiguous())
965           return true;
966 
967         if (Previous.begin() != Previous.end())
968           PrevDecl = (*Previous.begin())->getUnderlyingDecl();
969       }
970     }
971   } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
972     PrevDecl = PrevClassTemplate = 0;
973 
974   if (PrevClassTemplate) {
975     // Ensure that the template parameter lists are compatible. Skip this check
976     // for a friend in a dependent context: the template parameter list itself
977     // could be dependent.
978     if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
979         !TemplateParameterListsAreEqual(TemplateParams,
980                                    PrevClassTemplate->getTemplateParameters(),
981                                         /*Complain=*/true,
982                                         TPL_TemplateMatch))
983       return true;
984 
985     // C++ [temp.class]p4:
986     //   In a redeclaration, partial specialization, explicit
987     //   specialization or explicit instantiation of a class template,
988     //   the class-key shall agree in kind with the original class
989     //   template declaration (7.1.5.3).
990     RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
991     if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
992                                       TUK == TUK_Definition,  KWLoc, *Name)) {
993       Diag(KWLoc, diag::err_use_with_wrong_tag)
994         << Name
995         << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
996       Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
997       Kind = PrevRecordDecl->getTagKind();
998     }
999 
1000     // Check for redefinition of this class template.
1001     if (TUK == TUK_Definition) {
1002       if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1003         Diag(NameLoc, diag::err_redefinition) << Name;
1004         Diag(Def->getLocation(), diag::note_previous_definition);
1005         // FIXME: Would it make sense to try to "forget" the previous
1006         // definition, as part of error recovery?
1007         return true;
1008       }
1009     }
1010   } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
1011     // Maybe we will complain about the shadowed template parameter.
1012     DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1013     // Just pretend that we didn't see the previous declaration.
1014     PrevDecl = 0;
1015   } else if (PrevDecl) {
1016     // C++ [temp]p5:
1017     //   A class template shall not have the same name as any other
1018     //   template, class, function, object, enumeration, enumerator,
1019     //   namespace, or type in the same scope (3.3), except as specified
1020     //   in (14.5.4).
1021     Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1022     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1023     return true;
1024   }
1025 
1026   // Check the template parameter list of this declaration, possibly
1027   // merging in the template parameter list from the previous class
1028   // template declaration. Skip this check for a friend in a dependent
1029   // context, because the template parameter list might be dependent.
1030   if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1031       CheckTemplateParameterList(
1032           TemplateParams,
1033           PrevClassTemplate ? PrevClassTemplate->getTemplateParameters() : 0,
1034           (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
1035            SemanticContext->isDependentContext())
1036               ? TPC_ClassTemplateMember
1037               : TUK == TUK_Friend ? TPC_FriendClassTemplate
1038                                   : TPC_ClassTemplate))
1039     Invalid = true;
1040 
1041   if (SS.isSet()) {
1042     // If the name of the template was qualified, we must be defining the
1043     // template out-of-line.
1044     if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1045       Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1046                                       : diag::err_member_decl_does_not_match)
1047         << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
1048       Invalid = true;
1049     }
1050   }
1051 
1052   CXXRecordDecl *NewClass =
1053     CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1054                           PrevClassTemplate?
1055                             PrevClassTemplate->getTemplatedDecl() : 0,
1056                           /*DelayTypeCreation=*/true);
1057   SetNestedNameSpecifier(NewClass, SS);
1058   if (NumOuterTemplateParamLists > 0)
1059     NewClass->setTemplateParameterListsInfo(Context,
1060                                             NumOuterTemplateParamLists,
1061                                             OuterTemplateParamLists);
1062 
1063   // Add alignment attributes if necessary; these attributes are checked when
1064   // the ASTContext lays out the structure.
1065   if (TUK == TUK_Definition) {
1066     AddAlignmentAttributesForRecord(NewClass);
1067     AddMsStructLayoutForRecord(NewClass);
1068   }
1069 
1070   ClassTemplateDecl *NewTemplate
1071     = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1072                                 DeclarationName(Name), TemplateParams,
1073                                 NewClass, PrevClassTemplate);
1074   NewClass->setDescribedClassTemplate(NewTemplate);
1075 
1076   if (ModulePrivateLoc.isValid())
1077     NewTemplate->setModulePrivate();
1078 
1079   // Build the type for the class template declaration now.
1080   QualType T = NewTemplate->getInjectedClassNameSpecialization();
1081   T = Context.getInjectedClassNameType(NewClass, T);
1082   assert(T->isDependentType() && "Class template type is not dependent?");
1083   (void)T;
1084 
1085   // If we are providing an explicit specialization of a member that is a
1086   // class template, make a note of that.
1087   if (PrevClassTemplate &&
1088       PrevClassTemplate->getInstantiatedFromMemberTemplate())
1089     PrevClassTemplate->setMemberSpecialization();
1090 
1091   // Set the access specifier.
1092   if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1093     SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1094 
1095   // Set the lexical context of these templates
1096   NewClass->setLexicalDeclContext(CurContext);
1097   NewTemplate->setLexicalDeclContext(CurContext);
1098 
1099   if (TUK == TUK_Definition)
1100     NewClass->startDefinition();
1101 
1102   if (Attr)
1103     ProcessDeclAttributeList(S, NewClass, Attr);
1104 
1105   if (PrevClassTemplate)
1106     mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
1107 
1108   AddPushedVisibilityAttribute(NewClass);
1109 
1110   if (TUK != TUK_Friend)
1111     PushOnScopeChains(NewTemplate, S);
1112   else {
1113     if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1114       NewTemplate->setAccess(PrevClassTemplate->getAccess());
1115       NewClass->setAccess(PrevClassTemplate->getAccess());
1116     }
1117 
1118     NewTemplate->setObjectOfFriendDecl();
1119 
1120     // Friend templates are visible in fairly strange ways.
1121     if (!CurContext->isDependentContext()) {
1122       DeclContext *DC = SemanticContext->getRedeclContext();
1123       DC->makeDeclVisibleInContext(NewTemplate);
1124       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1125         PushOnScopeChains(NewTemplate, EnclosingScope,
1126                           /* AddToContext = */ false);
1127     }
1128 
1129     FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1130                                             NewClass->getLocation(),
1131                                             NewTemplate,
1132                                     /*FIXME:*/NewClass->getLocation());
1133     Friend->setAccess(AS_public);
1134     CurContext->addDecl(Friend);
1135   }
1136 
1137   if (Invalid) {
1138     NewTemplate->setInvalidDecl();
1139     NewClass->setInvalidDecl();
1140   }
1141 
1142   ActOnDocumentableDecl(NewTemplate);
1143 
1144   return NewTemplate;
1145 }
1146 
1147 /// \brief Diagnose the presence of a default template argument on a
1148 /// template parameter, which is ill-formed in certain contexts.
1149 ///
1150 /// \returns true if the default template argument should be dropped.
1151 static bool DiagnoseDefaultTemplateArgument(Sema &S,
1152                                             Sema::TemplateParamListContext TPC,
1153                                             SourceLocation ParamLoc,
1154                                             SourceRange DefArgRange) {
1155   switch (TPC) {
1156   case Sema::TPC_ClassTemplate:
1157   case Sema::TPC_VarTemplate:
1158   case Sema::TPC_TypeAliasTemplate:
1159     return false;
1160 
1161   case Sema::TPC_FunctionTemplate:
1162   case Sema::TPC_FriendFunctionTemplateDefinition:
1163     // C++ [temp.param]p9:
1164     //   A default template-argument shall not be specified in a
1165     //   function template declaration or a function template
1166     //   definition [...]
1167     //   If a friend function template declaration specifies a default
1168     //   template-argument, that declaration shall be a definition and shall be
1169     //   the only declaration of the function template in the translation unit.
1170     // (C++98/03 doesn't have this wording; see DR226).
1171     S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
1172          diag::warn_cxx98_compat_template_parameter_default_in_function_template
1173            : diag::ext_template_parameter_default_in_function_template)
1174       << DefArgRange;
1175     return false;
1176 
1177   case Sema::TPC_ClassTemplateMember:
1178     // C++0x [temp.param]p9:
1179     //   A default template-argument shall not be specified in the
1180     //   template-parameter-lists of the definition of a member of a
1181     //   class template that appears outside of the member's class.
1182     S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1183       << DefArgRange;
1184     return true;
1185 
1186   case Sema::TPC_FriendClassTemplate:
1187   case Sema::TPC_FriendFunctionTemplate:
1188     // C++ [temp.param]p9:
1189     //   A default template-argument shall not be specified in a
1190     //   friend template declaration.
1191     S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1192       << DefArgRange;
1193     return true;
1194 
1195     // FIXME: C++0x [temp.param]p9 allows default template-arguments
1196     // for friend function templates if there is only a single
1197     // declaration (and it is a definition). Strange!
1198   }
1199 
1200   llvm_unreachable("Invalid TemplateParamListContext!");
1201 }
1202 
1203 /// \brief Check for unexpanded parameter packs within the template parameters
1204 /// of a template template parameter, recursively.
1205 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1206                                              TemplateTemplateParmDecl *TTP) {
1207   // A template template parameter which is a parameter pack is also a pack
1208   // expansion.
1209   if (TTP->isParameterPack())
1210     return false;
1211 
1212   TemplateParameterList *Params = TTP->getTemplateParameters();
1213   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1214     NamedDecl *P = Params->getParam(I);
1215     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1216       if (!NTTP->isParameterPack() &&
1217           S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1218                                             NTTP->getTypeSourceInfo(),
1219                                       Sema::UPPC_NonTypeTemplateParameterType))
1220         return true;
1221 
1222       continue;
1223     }
1224 
1225     if (TemplateTemplateParmDecl *InnerTTP
1226                                         = dyn_cast<TemplateTemplateParmDecl>(P))
1227       if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1228         return true;
1229   }
1230 
1231   return false;
1232 }
1233 
1234 /// \brief Checks the validity of a template parameter list, possibly
1235 /// considering the template parameter list from a previous
1236 /// declaration.
1237 ///
1238 /// If an "old" template parameter list is provided, it must be
1239 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
1240 /// template parameter list.
1241 ///
1242 /// \param NewParams Template parameter list for a new template
1243 /// declaration. This template parameter list will be updated with any
1244 /// default arguments that are carried through from the previous
1245 /// template parameter list.
1246 ///
1247 /// \param OldParams If provided, template parameter list from a
1248 /// previous declaration of the same template. Default template
1249 /// arguments will be merged from the old template parameter list to
1250 /// the new template parameter list.
1251 ///
1252 /// \param TPC Describes the context in which we are checking the given
1253 /// template parameter list.
1254 ///
1255 /// \returns true if an error occurred, false otherwise.
1256 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1257                                       TemplateParameterList *OldParams,
1258                                       TemplateParamListContext TPC) {
1259   bool Invalid = false;
1260 
1261   // C++ [temp.param]p10:
1262   //   The set of default template-arguments available for use with a
1263   //   template declaration or definition is obtained by merging the
1264   //   default arguments from the definition (if in scope) and all
1265   //   declarations in scope in the same way default function
1266   //   arguments are (8.3.6).
1267   bool SawDefaultArgument = false;
1268   SourceLocation PreviousDefaultArgLoc;
1269 
1270   // Dummy initialization to avoid warnings.
1271   TemplateParameterList::iterator OldParam = NewParams->end();
1272   if (OldParams)
1273     OldParam = OldParams->begin();
1274 
1275   bool RemoveDefaultArguments = false;
1276   for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1277                                     NewParamEnd = NewParams->end();
1278        NewParam != NewParamEnd; ++NewParam) {
1279     // Variables used to diagnose redundant default arguments
1280     bool RedundantDefaultArg = false;
1281     SourceLocation OldDefaultLoc;
1282     SourceLocation NewDefaultLoc;
1283 
1284     // Variable used to diagnose missing default arguments
1285     bool MissingDefaultArg = false;
1286 
1287     // Variable used to diagnose non-final parameter packs
1288     bool SawParameterPack = false;
1289 
1290     if (TemplateTypeParmDecl *NewTypeParm
1291           = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1292       // Check the presence of a default argument here.
1293       if (NewTypeParm->hasDefaultArgument() &&
1294           DiagnoseDefaultTemplateArgument(*this, TPC,
1295                                           NewTypeParm->getLocation(),
1296                NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1297                                                        .getSourceRange()))
1298         NewTypeParm->removeDefaultArgument();
1299 
1300       // Merge default arguments for template type parameters.
1301       TemplateTypeParmDecl *OldTypeParm
1302           = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1303 
1304       if (NewTypeParm->isParameterPack()) {
1305         assert(!NewTypeParm->hasDefaultArgument() &&
1306                "Parameter packs can't have a default argument!");
1307         SawParameterPack = true;
1308       } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1309                  NewTypeParm->hasDefaultArgument()) {
1310         OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1311         NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1312         SawDefaultArgument = true;
1313         RedundantDefaultArg = true;
1314         PreviousDefaultArgLoc = NewDefaultLoc;
1315       } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1316         // Merge the default argument from the old declaration to the
1317         // new declaration.
1318         NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1319                                         true);
1320         PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1321       } else if (NewTypeParm->hasDefaultArgument()) {
1322         SawDefaultArgument = true;
1323         PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1324       } else if (SawDefaultArgument)
1325         MissingDefaultArg = true;
1326     } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1327                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1328       // Check for unexpanded parameter packs.
1329       if (!NewNonTypeParm->isParameterPack() &&
1330           DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1331                                           NewNonTypeParm->getTypeSourceInfo(),
1332                                           UPPC_NonTypeTemplateParameterType)) {
1333         Invalid = true;
1334         continue;
1335       }
1336 
1337       // Check the presence of a default argument here.
1338       if (NewNonTypeParm->hasDefaultArgument() &&
1339           DiagnoseDefaultTemplateArgument(*this, TPC,
1340                                           NewNonTypeParm->getLocation(),
1341                     NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1342         NewNonTypeParm->removeDefaultArgument();
1343       }
1344 
1345       // Merge default arguments for non-type template parameters
1346       NonTypeTemplateParmDecl *OldNonTypeParm
1347         = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1348       if (NewNonTypeParm->isParameterPack()) {
1349         assert(!NewNonTypeParm->hasDefaultArgument() &&
1350                "Parameter packs can't have a default argument!");
1351         if (!NewNonTypeParm->isPackExpansion())
1352           SawParameterPack = true;
1353       } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1354                  NewNonTypeParm->hasDefaultArgument()) {
1355         OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1356         NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1357         SawDefaultArgument = true;
1358         RedundantDefaultArg = true;
1359         PreviousDefaultArgLoc = NewDefaultLoc;
1360       } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1361         // Merge the default argument from the old declaration to the
1362         // new declaration.
1363         // FIXME: We need to create a new kind of "default argument"
1364         // expression that points to a previous non-type template
1365         // parameter.
1366         NewNonTypeParm->setDefaultArgument(
1367                                          OldNonTypeParm->getDefaultArgument(),
1368                                          /*Inherited=*/ true);
1369         PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1370       } else if (NewNonTypeParm->hasDefaultArgument()) {
1371         SawDefaultArgument = true;
1372         PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1373       } else if (SawDefaultArgument)
1374         MissingDefaultArg = true;
1375     } else {
1376       TemplateTemplateParmDecl *NewTemplateParm
1377         = cast<TemplateTemplateParmDecl>(*NewParam);
1378 
1379       // Check for unexpanded parameter packs, recursively.
1380       if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1381         Invalid = true;
1382         continue;
1383       }
1384 
1385       // Check the presence of a default argument here.
1386       if (NewTemplateParm->hasDefaultArgument() &&
1387           DiagnoseDefaultTemplateArgument(*this, TPC,
1388                                           NewTemplateParm->getLocation(),
1389                      NewTemplateParm->getDefaultArgument().getSourceRange()))
1390         NewTemplateParm->removeDefaultArgument();
1391 
1392       // Merge default arguments for template template parameters
1393       TemplateTemplateParmDecl *OldTemplateParm
1394         = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1395       if (NewTemplateParm->isParameterPack()) {
1396         assert(!NewTemplateParm->hasDefaultArgument() &&
1397                "Parameter packs can't have a default argument!");
1398         if (!NewTemplateParm->isPackExpansion())
1399           SawParameterPack = true;
1400       } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1401           NewTemplateParm->hasDefaultArgument()) {
1402         OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1403         NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1404         SawDefaultArgument = true;
1405         RedundantDefaultArg = true;
1406         PreviousDefaultArgLoc = NewDefaultLoc;
1407       } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1408         // Merge the default argument from the old declaration to the
1409         // new declaration.
1410         // FIXME: We need to create a new kind of "default argument" expression
1411         // that points to a previous template template parameter.
1412         NewTemplateParm->setDefaultArgument(
1413                                           OldTemplateParm->getDefaultArgument(),
1414                                           /*Inherited=*/ true);
1415         PreviousDefaultArgLoc
1416           = OldTemplateParm->getDefaultArgument().getLocation();
1417       } else if (NewTemplateParm->hasDefaultArgument()) {
1418         SawDefaultArgument = true;
1419         PreviousDefaultArgLoc
1420           = NewTemplateParm->getDefaultArgument().getLocation();
1421       } else if (SawDefaultArgument)
1422         MissingDefaultArg = true;
1423     }
1424 
1425     // C++11 [temp.param]p11:
1426     //   If a template parameter of a primary class template or alias template
1427     //   is a template parameter pack, it shall be the last template parameter.
1428     if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1429         (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
1430          TPC == TPC_TypeAliasTemplate)) {
1431       Diag((*NewParam)->getLocation(),
1432            diag::err_template_param_pack_must_be_last_template_parameter);
1433       Invalid = true;
1434     }
1435 
1436     if (RedundantDefaultArg) {
1437       // C++ [temp.param]p12:
1438       //   A template-parameter shall not be given default arguments
1439       //   by two different declarations in the same scope.
1440       Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1441       Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1442       Invalid = true;
1443     } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1444       // C++ [temp.param]p11:
1445       //   If a template-parameter of a class template has a default
1446       //   template-argument, each subsequent template-parameter shall either
1447       //   have a default template-argument supplied or be a template parameter
1448       //   pack.
1449       Diag((*NewParam)->getLocation(),
1450            diag::err_template_param_default_arg_missing);
1451       Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1452       Invalid = true;
1453       RemoveDefaultArguments = true;
1454     }
1455 
1456     // If we have an old template parameter list that we're merging
1457     // in, move on to the next parameter.
1458     if (OldParams)
1459       ++OldParam;
1460   }
1461 
1462   // We were missing some default arguments at the end of the list, so remove
1463   // all of the default arguments.
1464   if (RemoveDefaultArguments) {
1465     for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1466                                       NewParamEnd = NewParams->end();
1467          NewParam != NewParamEnd; ++NewParam) {
1468       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1469         TTP->removeDefaultArgument();
1470       else if (NonTypeTemplateParmDecl *NTTP
1471                                 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1472         NTTP->removeDefaultArgument();
1473       else
1474         cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1475     }
1476   }
1477 
1478   return Invalid;
1479 }
1480 
1481 namespace {
1482 
1483 /// A class which looks for a use of a certain level of template
1484 /// parameter.
1485 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1486   typedef RecursiveASTVisitor<DependencyChecker> super;
1487 
1488   unsigned Depth;
1489   bool Match;
1490 
1491   DependencyChecker(TemplateParameterList *Params) : Match(false) {
1492     NamedDecl *ND = Params->getParam(0);
1493     if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1494       Depth = PD->getDepth();
1495     } else if (NonTypeTemplateParmDecl *PD =
1496                  dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1497       Depth = PD->getDepth();
1498     } else {
1499       Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1500     }
1501   }
1502 
1503   bool Matches(unsigned ParmDepth) {
1504     if (ParmDepth >= Depth) {
1505       Match = true;
1506       return true;
1507     }
1508     return false;
1509   }
1510 
1511   bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1512     return !Matches(T->getDepth());
1513   }
1514 
1515   bool TraverseTemplateName(TemplateName N) {
1516     if (TemplateTemplateParmDecl *PD =
1517           dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1518       if (Matches(PD->getDepth())) return false;
1519     return super::TraverseTemplateName(N);
1520   }
1521 
1522   bool VisitDeclRefExpr(DeclRefExpr *E) {
1523     if (NonTypeTemplateParmDecl *PD =
1524           dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1525       if (PD->getDepth() == Depth) {
1526         Match = true;
1527         return false;
1528       }
1529     }
1530     return super::VisitDeclRefExpr(E);
1531   }
1532 
1533   bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1534     return TraverseType(T->getInjectedSpecializationType());
1535   }
1536 };
1537 }
1538 
1539 /// Determines whether a given type depends on the given parameter
1540 /// list.
1541 static bool
1542 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1543   DependencyChecker Checker(Params);
1544   Checker.TraverseType(T);
1545   return Checker.Match;
1546 }
1547 
1548 // Find the source range corresponding to the named type in the given
1549 // nested-name-specifier, if any.
1550 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1551                                                        QualType T,
1552                                                        const CXXScopeSpec &SS) {
1553   NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1554   while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1555     if (const Type *CurType = NNS->getAsType()) {
1556       if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1557         return NNSLoc.getTypeLoc().getSourceRange();
1558     } else
1559       break;
1560 
1561     NNSLoc = NNSLoc.getPrefix();
1562   }
1563 
1564   return SourceRange();
1565 }
1566 
1567 /// \brief Match the given template parameter lists to the given scope
1568 /// specifier, returning the template parameter list that applies to the
1569 /// name.
1570 ///
1571 /// \param DeclStartLoc the start of the declaration that has a scope
1572 /// specifier or a template parameter list.
1573 ///
1574 /// \param DeclLoc The location of the declaration itself.
1575 ///
1576 /// \param SS the scope specifier that will be matched to the given template
1577 /// parameter lists. This scope specifier precedes a qualified name that is
1578 /// being declared.
1579 ///
1580 /// \param ParamLists the template parameter lists, from the outermost to the
1581 /// innermost template parameter lists.
1582 ///
1583 /// \param IsFriend Whether to apply the slightly different rules for
1584 /// matching template parameters to scope specifiers in friend
1585 /// declarations.
1586 ///
1587 /// \param IsExplicitSpecialization will be set true if the entity being
1588 /// declared is an explicit specialization, false otherwise.
1589 ///
1590 /// \returns the template parameter list, if any, that corresponds to the
1591 /// name that is preceded by the scope specifier @p SS. This template
1592 /// parameter list may have template parameters (if we're declaring a
1593 /// template) or may have no template parameters (if we're declaring a
1594 /// template specialization), or may be NULL (if what we're declaring isn't
1595 /// itself a template).
1596 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
1597     SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
1598     ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
1599     bool &IsExplicitSpecialization, bool &Invalid) {
1600   IsExplicitSpecialization = false;
1601   Invalid = false;
1602 
1603   // The sequence of nested types to which we will match up the template
1604   // parameter lists. We first build this list by starting with the type named
1605   // by the nested-name-specifier and walking out until we run out of types.
1606   SmallVector<QualType, 4> NestedTypes;
1607   QualType T;
1608   if (SS.getScopeRep()) {
1609     if (CXXRecordDecl *Record
1610               = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1611       T = Context.getTypeDeclType(Record);
1612     else
1613       T = QualType(SS.getScopeRep()->getAsType(), 0);
1614   }
1615 
1616   // If we found an explicit specialization that prevents us from needing
1617   // 'template<>' headers, this will be set to the location of that
1618   // explicit specialization.
1619   SourceLocation ExplicitSpecLoc;
1620 
1621   while (!T.isNull()) {
1622     NestedTypes.push_back(T);
1623 
1624     // Retrieve the parent of a record type.
1625     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1626       // If this type is an explicit specialization, we're done.
1627       if (ClassTemplateSpecializationDecl *Spec
1628           = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1629         if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1630             Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1631           ExplicitSpecLoc = Spec->getLocation();
1632           break;
1633         }
1634       } else if (Record->getTemplateSpecializationKind()
1635                                                 == TSK_ExplicitSpecialization) {
1636         ExplicitSpecLoc = Record->getLocation();
1637         break;
1638       }
1639 
1640       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1641         T = Context.getTypeDeclType(Parent);
1642       else
1643         T = QualType();
1644       continue;
1645     }
1646 
1647     if (const TemplateSpecializationType *TST
1648                                      = T->getAs<TemplateSpecializationType>()) {
1649       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1650         if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1651           T = Context.getTypeDeclType(Parent);
1652         else
1653           T = QualType();
1654         continue;
1655       }
1656     }
1657 
1658     // Look one step prior in a dependent template specialization type.
1659     if (const DependentTemplateSpecializationType *DependentTST
1660                           = T->getAs<DependentTemplateSpecializationType>()) {
1661       if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1662         T = QualType(NNS->getAsType(), 0);
1663       else
1664         T = QualType();
1665       continue;
1666     }
1667 
1668     // Look one step prior in a dependent name type.
1669     if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1670       if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1671         T = QualType(NNS->getAsType(), 0);
1672       else
1673         T = QualType();
1674       continue;
1675     }
1676 
1677     // Retrieve the parent of an enumeration type.
1678     if (const EnumType *EnumT = T->getAs<EnumType>()) {
1679       // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1680       // check here.
1681       EnumDecl *Enum = EnumT->getDecl();
1682 
1683       // Get to the parent type.
1684       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1685         T = Context.getTypeDeclType(Parent);
1686       else
1687         T = QualType();
1688       continue;
1689     }
1690 
1691     T = QualType();
1692   }
1693   // Reverse the nested types list, since we want to traverse from the outermost
1694   // to the innermost while checking template-parameter-lists.
1695   std::reverse(NestedTypes.begin(), NestedTypes.end());
1696 
1697   // C++0x [temp.expl.spec]p17:
1698   //   A member or a member template may be nested within many
1699   //   enclosing class templates. In an explicit specialization for
1700   //   such a member, the member declaration shall be preceded by a
1701   //   template<> for each enclosing class template that is
1702   //   explicitly specialized.
1703   bool SawNonEmptyTemplateParameterList = false;
1704   unsigned ParamIdx = 0;
1705   for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1706        ++TypeIdx) {
1707     T = NestedTypes[TypeIdx];
1708 
1709     // Whether we expect a 'template<>' header.
1710     bool NeedEmptyTemplateHeader = false;
1711 
1712     // Whether we expect a template header with parameters.
1713     bool NeedNonemptyTemplateHeader = false;
1714 
1715     // For a dependent type, the set of template parameters that we
1716     // expect to see.
1717     TemplateParameterList *ExpectedTemplateParams = 0;
1718 
1719     // C++0x [temp.expl.spec]p15:
1720     //   A member or a member template may be nested within many enclosing
1721     //   class templates. In an explicit specialization for such a member, the
1722     //   member declaration shall be preceded by a template<> for each
1723     //   enclosing class template that is explicitly specialized.
1724     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1725       if (ClassTemplatePartialSpecializationDecl *Partial
1726             = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1727         ExpectedTemplateParams = Partial->getTemplateParameters();
1728         NeedNonemptyTemplateHeader = true;
1729       } else if (Record->isDependentType()) {
1730         if (Record->getDescribedClassTemplate()) {
1731           ExpectedTemplateParams = Record->getDescribedClassTemplate()
1732                                                       ->getTemplateParameters();
1733           NeedNonemptyTemplateHeader = true;
1734         }
1735       } else if (ClassTemplateSpecializationDecl *Spec
1736                      = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1737         // C++0x [temp.expl.spec]p4:
1738         //   Members of an explicitly specialized class template are defined
1739         //   in the same manner as members of normal classes, and not using
1740         //   the template<> syntax.
1741         if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1742           NeedEmptyTemplateHeader = true;
1743         else
1744           continue;
1745       } else if (Record->getTemplateSpecializationKind()) {
1746         if (Record->getTemplateSpecializationKind()
1747                                                 != TSK_ExplicitSpecialization &&
1748             TypeIdx == NumTypes - 1)
1749           IsExplicitSpecialization = true;
1750 
1751         continue;
1752       }
1753     } else if (const TemplateSpecializationType *TST
1754                                      = T->getAs<TemplateSpecializationType>()) {
1755       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1756         ExpectedTemplateParams = Template->getTemplateParameters();
1757         NeedNonemptyTemplateHeader = true;
1758       }
1759     } else if (T->getAs<DependentTemplateSpecializationType>()) {
1760       // FIXME:  We actually could/should check the template arguments here
1761       // against the corresponding template parameter list.
1762       NeedNonemptyTemplateHeader = false;
1763     }
1764 
1765     // C++ [temp.expl.spec]p16:
1766     //   In an explicit specialization declaration for a member of a class
1767     //   template or a member template that ap- pears in namespace scope, the
1768     //   member template and some of its enclosing class templates may remain
1769     //   unspecialized, except that the declaration shall not explicitly
1770     //   specialize a class member template if its en- closing class templates
1771     //   are not explicitly specialized as well.
1772     if (ParamIdx < ParamLists.size()) {
1773       if (ParamLists[ParamIdx]->size() == 0) {
1774         if (SawNonEmptyTemplateParameterList) {
1775           Diag(DeclLoc, diag::err_specialize_member_of_template)
1776             << ParamLists[ParamIdx]->getSourceRange();
1777           Invalid = true;
1778           IsExplicitSpecialization = false;
1779           return 0;
1780         }
1781       } else
1782         SawNonEmptyTemplateParameterList = true;
1783     }
1784 
1785     if (NeedEmptyTemplateHeader) {
1786       // If we're on the last of the types, and we need a 'template<>' header
1787       // here, then it's an explicit specialization.
1788       if (TypeIdx == NumTypes - 1)
1789         IsExplicitSpecialization = true;
1790 
1791       if (ParamIdx < ParamLists.size()) {
1792         if (ParamLists[ParamIdx]->size() > 0) {
1793           // The header has template parameters when it shouldn't. Complain.
1794           Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1795                diag::err_template_param_list_matches_nontemplate)
1796             << T
1797             << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1798                            ParamLists[ParamIdx]->getRAngleLoc())
1799             << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1800           Invalid = true;
1801           return 0;
1802         }
1803 
1804         // Consume this template header.
1805         ++ParamIdx;
1806         continue;
1807       }
1808 
1809       if (!IsFriend) {
1810         // We don't have a template header, but we should.
1811         SourceLocation ExpectedTemplateLoc;
1812         if (!ParamLists.empty())
1813           ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1814         else
1815           ExpectedTemplateLoc = DeclStartLoc;
1816 
1817         Diag(DeclLoc, diag::err_template_spec_needs_header)
1818           << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
1819           << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1820       }
1821 
1822       continue;
1823     }
1824 
1825     if (NeedNonemptyTemplateHeader) {
1826       // In friend declarations we can have template-ids which don't
1827       // depend on the corresponding template parameter lists.  But
1828       // assume that empty parameter lists are supposed to match this
1829       // template-id.
1830       if (IsFriend && T->isDependentType()) {
1831         if (ParamIdx < ParamLists.size() &&
1832             DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1833           ExpectedTemplateParams = 0;
1834         else
1835           continue;
1836       }
1837 
1838       if (ParamIdx < ParamLists.size()) {
1839         // Check the template parameter list, if we can.
1840         if (ExpectedTemplateParams &&
1841             !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1842                                             ExpectedTemplateParams,
1843                                             true, TPL_TemplateMatch))
1844           Invalid = true;
1845 
1846         if (!Invalid &&
1847             CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1848                                        TPC_ClassTemplateMember))
1849           Invalid = true;
1850 
1851         ++ParamIdx;
1852         continue;
1853       }
1854 
1855       Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1856         << T
1857         << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1858       Invalid = true;
1859       continue;
1860     }
1861   }
1862 
1863   // If there were at least as many template-ids as there were template
1864   // parameter lists, then there are no template parameter lists remaining for
1865   // the declaration itself.
1866   if (ParamIdx >= ParamLists.size())
1867     return 0;
1868 
1869   // If there were too many template parameter lists, complain about that now.
1870   if (ParamIdx < ParamLists.size() - 1) {
1871     bool HasAnyExplicitSpecHeader = false;
1872     bool AllExplicitSpecHeaders = true;
1873     for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
1874       if (ParamLists[I]->size() == 0)
1875         HasAnyExplicitSpecHeader = true;
1876       else
1877         AllExplicitSpecHeaders = false;
1878     }
1879 
1880     Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1881          AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
1882                                 : diag::err_template_spec_extra_headers)
1883         << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1884                        ParamLists[ParamLists.size() - 2]->getRAngleLoc());
1885 
1886     // If there was a specialization somewhere, such that 'template<>' is
1887     // not required, and there were any 'template<>' headers, note where the
1888     // specialization occurred.
1889     if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1890       Diag(ExplicitSpecLoc,
1891            diag::note_explicit_template_spec_does_not_need_header)
1892         << NestedTypes.back();
1893 
1894     // We have a template parameter list with no corresponding scope, which
1895     // means that the resulting template declaration can't be instantiated
1896     // properly (we'll end up with dependent nodes when we shouldn't).
1897     if (!AllExplicitSpecHeaders)
1898       Invalid = true;
1899   }
1900 
1901   // C++ [temp.expl.spec]p16:
1902   //   In an explicit specialization declaration for a member of a class
1903   //   template or a member template that ap- pears in namespace scope, the
1904   //   member template and some of its enclosing class templates may remain
1905   //   unspecialized, except that the declaration shall not explicitly
1906   //   specialize a class member template if its en- closing class templates
1907   //   are not explicitly specialized as well.
1908   if (ParamLists.back()->size() == 0 && SawNonEmptyTemplateParameterList) {
1909     Diag(DeclLoc, diag::err_specialize_member_of_template)
1910       << ParamLists[ParamIdx]->getSourceRange();
1911     Invalid = true;
1912     IsExplicitSpecialization = false;
1913     return 0;
1914   }
1915 
1916   // Return the last template parameter list, which corresponds to the
1917   // entity being declared.
1918   return ParamLists.back();
1919 }
1920 
1921 void Sema::NoteAllFoundTemplates(TemplateName Name) {
1922   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1923     Diag(Template->getLocation(), diag::note_template_declared_here)
1924         << (isa<FunctionTemplateDecl>(Template)
1925                 ? 0
1926                 : isa<ClassTemplateDecl>(Template)
1927                       ? 1
1928                       : isa<VarTemplateDecl>(Template)
1929                             ? 2
1930                             : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
1931         << Template->getDeclName();
1932     return;
1933   }
1934 
1935   if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1936     for (OverloadedTemplateStorage::iterator I = OST->begin(),
1937                                           IEnd = OST->end();
1938          I != IEnd; ++I)
1939       Diag((*I)->getLocation(), diag::note_template_declared_here)
1940         << 0 << (*I)->getDeclName();
1941 
1942     return;
1943   }
1944 }
1945 
1946 QualType Sema::CheckTemplateIdType(TemplateName Name,
1947                                    SourceLocation TemplateLoc,
1948                                    TemplateArgumentListInfo &TemplateArgs) {
1949   DependentTemplateName *DTN
1950     = Name.getUnderlying().getAsDependentTemplateName();
1951   if (DTN && DTN->isIdentifier())
1952     // When building a template-id where the template-name is dependent,
1953     // assume the template is a type template. Either our assumption is
1954     // correct, or the code is ill-formed and will be diagnosed when the
1955     // dependent name is substituted.
1956     return Context.getDependentTemplateSpecializationType(ETK_None,
1957                                                           DTN->getQualifier(),
1958                                                           DTN->getIdentifier(),
1959                                                           TemplateArgs);
1960 
1961   TemplateDecl *Template = Name.getAsTemplateDecl();
1962   if (!Template || isa<FunctionTemplateDecl>(Template)) {
1963     // We might have a substituted template template parameter pack. If so,
1964     // build a template specialization type for it.
1965     if (Name.getAsSubstTemplateTemplateParmPack())
1966       return Context.getTemplateSpecializationType(Name, TemplateArgs);
1967 
1968     Diag(TemplateLoc, diag::err_template_id_not_a_type)
1969       << Name;
1970     NoteAllFoundTemplates(Name);
1971     return QualType();
1972   }
1973 
1974   // Check that the template argument list is well-formed for this
1975   // template.
1976   SmallVector<TemplateArgument, 4> Converted;
1977   bool ExpansionIntoFixedList = false;
1978   if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1979                                 false, Converted, &ExpansionIntoFixedList))
1980     return QualType();
1981 
1982   QualType CanonType;
1983 
1984   bool InstantiationDependent = false;
1985   TypeAliasTemplateDecl *AliasTemplate = 0;
1986   if (!ExpansionIntoFixedList &&
1987       (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) {
1988     // Find the canonical type for this type alias template specialization.
1989     TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
1990     if (Pattern->isInvalidDecl())
1991       return QualType();
1992 
1993     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1994                                       Converted.data(), Converted.size());
1995 
1996     // Only substitute for the innermost template argument list.
1997     MultiLevelTemplateArgumentList TemplateArgLists;
1998     TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
1999     unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
2000     for (unsigned I = 0; I < Depth; ++I)
2001       TemplateArgLists.addOuterTemplateArguments(None);
2002 
2003     LocalInstantiationScope Scope(*this);
2004     InstantiatingTemplate Inst(*this, TemplateLoc, Template);
2005     if (Inst.isInvalid())
2006       return QualType();
2007 
2008     CanonType = SubstType(Pattern->getUnderlyingType(),
2009                           TemplateArgLists, AliasTemplate->getLocation(),
2010                           AliasTemplate->getDeclName());
2011     if (CanonType.isNull())
2012       return QualType();
2013   } else if (Name.isDependent() ||
2014              TemplateSpecializationType::anyDependentTemplateArguments(
2015                TemplateArgs, InstantiationDependent)) {
2016     // This class template specialization is a dependent
2017     // type. Therefore, its canonical type is another class template
2018     // specialization type that contains all of the converted
2019     // arguments in canonical form. This ensures that, e.g., A<T> and
2020     // A<T, T> have identical types when A is declared as:
2021     //
2022     //   template<typename T, typename U = T> struct A;
2023     TemplateName CanonName = Context.getCanonicalTemplateName(Name);
2024     CanonType = Context.getTemplateSpecializationType(CanonName,
2025                                                       Converted.data(),
2026                                                       Converted.size());
2027 
2028     // FIXME: CanonType is not actually the canonical type, and unfortunately
2029     // it is a TemplateSpecializationType that we will never use again.
2030     // In the future, we need to teach getTemplateSpecializationType to only
2031     // build the canonical type and return that to us.
2032     CanonType = Context.getCanonicalType(CanonType);
2033 
2034     // This might work out to be a current instantiation, in which
2035     // case the canonical type needs to be the InjectedClassNameType.
2036     //
2037     // TODO: in theory this could be a simple hashtable lookup; most
2038     // changes to CurContext don't change the set of current
2039     // instantiations.
2040     if (isa<ClassTemplateDecl>(Template)) {
2041       for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
2042         // If we get out to a namespace, we're done.
2043         if (Ctx->isFileContext()) break;
2044 
2045         // If this isn't a record, keep looking.
2046         CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
2047         if (!Record) continue;
2048 
2049         // Look for one of the two cases with InjectedClassNameTypes
2050         // and check whether it's the same template.
2051         if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
2052             !Record->getDescribedClassTemplate())
2053           continue;
2054 
2055         // Fetch the injected class name type and check whether its
2056         // injected type is equal to the type we just built.
2057         QualType ICNT = Context.getTypeDeclType(Record);
2058         QualType Injected = cast<InjectedClassNameType>(ICNT)
2059           ->getInjectedSpecializationType();
2060 
2061         if (CanonType != Injected->getCanonicalTypeInternal())
2062           continue;
2063 
2064         // If so, the canonical type of this TST is the injected
2065         // class name type of the record we just found.
2066         assert(ICNT.isCanonical());
2067         CanonType = ICNT;
2068         break;
2069       }
2070     }
2071   } else if (ClassTemplateDecl *ClassTemplate
2072                = dyn_cast<ClassTemplateDecl>(Template)) {
2073     // Find the class template specialization declaration that
2074     // corresponds to these arguments.
2075     void *InsertPos = 0;
2076     ClassTemplateSpecializationDecl *Decl
2077       = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
2078                                           InsertPos);
2079     if (!Decl) {
2080       // This is the first time we have referenced this class template
2081       // specialization. Create the canonical declaration and add it to
2082       // the set of specializations.
2083       Decl = ClassTemplateSpecializationDecl::Create(Context,
2084                             ClassTemplate->getTemplatedDecl()->getTagKind(),
2085                                                 ClassTemplate->getDeclContext(),
2086                             ClassTemplate->getTemplatedDecl()->getLocStart(),
2087                                                 ClassTemplate->getLocation(),
2088                                                      ClassTemplate,
2089                                                      Converted.data(),
2090                                                      Converted.size(), 0);
2091       ClassTemplate->AddSpecialization(Decl, InsertPos);
2092       if (ClassTemplate->isOutOfLine())
2093         Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
2094     }
2095 
2096     // Diagnose uses of this specialization.
2097     (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
2098 
2099     CanonType = Context.getTypeDeclType(Decl);
2100     assert(isa<RecordType>(CanonType) &&
2101            "type of non-dependent specialization is not a RecordType");
2102   }
2103 
2104   // Build the fully-sugared type for this class template
2105   // specialization, which refers back to the class template
2106   // specialization we created or found.
2107   return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2108 }
2109 
2110 TypeResult
2111 Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
2112                           TemplateTy TemplateD, SourceLocation TemplateLoc,
2113                           SourceLocation LAngleLoc,
2114                           ASTTemplateArgsPtr TemplateArgsIn,
2115                           SourceLocation RAngleLoc,
2116                           bool IsCtorOrDtorName) {
2117   if (SS.isInvalid())
2118     return true;
2119 
2120   TemplateName Template = TemplateD.get();
2121 
2122   // Translate the parser's template argument list in our AST format.
2123   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2124   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2125 
2126   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2127     QualType T
2128       = Context.getDependentTemplateSpecializationType(ETK_None,
2129                                                        DTN->getQualifier(),
2130                                                        DTN->getIdentifier(),
2131                                                        TemplateArgs);
2132     // Build type-source information.
2133     TypeLocBuilder TLB;
2134     DependentTemplateSpecializationTypeLoc SpecTL
2135       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2136     SpecTL.setElaboratedKeywordLoc(SourceLocation());
2137     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2138     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2139     SpecTL.setTemplateNameLoc(TemplateLoc);
2140     SpecTL.setLAngleLoc(LAngleLoc);
2141     SpecTL.setRAngleLoc(RAngleLoc);
2142     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2143       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2144     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2145   }
2146 
2147   QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2148 
2149   if (Result.isNull())
2150     return true;
2151 
2152   // Build type-source information.
2153   TypeLocBuilder TLB;
2154   TemplateSpecializationTypeLoc SpecTL
2155     = TLB.push<TemplateSpecializationTypeLoc>(Result);
2156   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2157   SpecTL.setTemplateNameLoc(TemplateLoc);
2158   SpecTL.setLAngleLoc(LAngleLoc);
2159   SpecTL.setRAngleLoc(RAngleLoc);
2160   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2161     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2162 
2163   // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2164   // constructor or destructor name (in such a case, the scope specifier
2165   // will be attached to the enclosing Decl or Expr node).
2166   if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2167     // Create an elaborated-type-specifier containing the nested-name-specifier.
2168     Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2169     ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2170     ElabTL.setElaboratedKeywordLoc(SourceLocation());
2171     ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2172   }
2173 
2174   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2175 }
2176 
2177 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2178                                         TypeSpecifierType TagSpec,
2179                                         SourceLocation TagLoc,
2180                                         CXXScopeSpec &SS,
2181                                         SourceLocation TemplateKWLoc,
2182                                         TemplateTy TemplateD,
2183                                         SourceLocation TemplateLoc,
2184                                         SourceLocation LAngleLoc,
2185                                         ASTTemplateArgsPtr TemplateArgsIn,
2186                                         SourceLocation RAngleLoc) {
2187   TemplateName Template = TemplateD.get();
2188 
2189   // Translate the parser's template argument list in our AST format.
2190   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2191   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2192 
2193   // Determine the tag kind
2194   TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2195   ElaboratedTypeKeyword Keyword
2196     = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2197 
2198   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2199     QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2200                                                           DTN->getQualifier(),
2201                                                           DTN->getIdentifier(),
2202                                                                 TemplateArgs);
2203 
2204     // Build type-source information.
2205     TypeLocBuilder TLB;
2206     DependentTemplateSpecializationTypeLoc SpecTL
2207       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2208     SpecTL.setElaboratedKeywordLoc(TagLoc);
2209     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2210     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2211     SpecTL.setTemplateNameLoc(TemplateLoc);
2212     SpecTL.setLAngleLoc(LAngleLoc);
2213     SpecTL.setRAngleLoc(RAngleLoc);
2214     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2215       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2216     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2217   }
2218 
2219   if (TypeAliasTemplateDecl *TAT =
2220         dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2221     // C++0x [dcl.type.elab]p2:
2222     //   If the identifier resolves to a typedef-name or the simple-template-id
2223     //   resolves to an alias template specialization, the
2224     //   elaborated-type-specifier is ill-formed.
2225     Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2226     Diag(TAT->getLocation(), diag::note_declared_at);
2227   }
2228 
2229   QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2230   if (Result.isNull())
2231     return TypeResult(true);
2232 
2233   // Check the tag kind
2234   if (const RecordType *RT = Result->getAs<RecordType>()) {
2235     RecordDecl *D = RT->getDecl();
2236 
2237     IdentifierInfo *Id = D->getIdentifier();
2238     assert(Id && "templated class must have an identifier");
2239 
2240     if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2241                                       TagLoc, *Id)) {
2242       Diag(TagLoc, diag::err_use_with_wrong_tag)
2243         << Result
2244         << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2245       Diag(D->getLocation(), diag::note_previous_use);
2246     }
2247   }
2248 
2249   // Provide source-location information for the template specialization.
2250   TypeLocBuilder TLB;
2251   TemplateSpecializationTypeLoc SpecTL
2252     = TLB.push<TemplateSpecializationTypeLoc>(Result);
2253   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2254   SpecTL.setTemplateNameLoc(TemplateLoc);
2255   SpecTL.setLAngleLoc(LAngleLoc);
2256   SpecTL.setRAngleLoc(RAngleLoc);
2257   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2258     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2259 
2260   // Construct an elaborated type containing the nested-name-specifier (if any)
2261   // and tag keyword.
2262   Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2263   ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2264   ElabTL.setElaboratedKeywordLoc(TagLoc);
2265   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2266   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2267 }
2268 
2269 static bool CheckTemplatePartialSpecializationArgs(
2270     Sema &S, TemplateParameterList *TemplateParams,
2271     SmallVectorImpl<TemplateArgument> &TemplateArgs);
2272 
2273 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
2274                                              NamedDecl *PrevDecl,
2275                                              SourceLocation Loc,
2276                                              bool IsPartialSpecialization);
2277 
2278 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
2279 
2280 static bool isTemplateArgumentTemplateParameter(
2281     const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
2282   switch (Arg.getKind()) {
2283   case TemplateArgument::Null:
2284   case TemplateArgument::NullPtr:
2285   case TemplateArgument::Integral:
2286   case TemplateArgument::Declaration:
2287   case TemplateArgument::Pack:
2288   case TemplateArgument::TemplateExpansion:
2289     return false;
2290 
2291   case TemplateArgument::Type: {
2292     QualType Type = Arg.getAsType();
2293     const TemplateTypeParmType *TPT =
2294         Arg.getAsType()->getAs<TemplateTypeParmType>();
2295     return TPT && !Type.hasQualifiers() &&
2296            TPT->getDepth() == Depth && TPT->getIndex() == Index;
2297   }
2298 
2299   case TemplateArgument::Expression: {
2300     DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
2301     if (!DRE || !DRE->getDecl())
2302       return false;
2303     const NonTypeTemplateParmDecl *NTTP =
2304         dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
2305     return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
2306   }
2307 
2308   case TemplateArgument::Template:
2309     const TemplateTemplateParmDecl *TTP =
2310         dyn_cast_or_null<TemplateTemplateParmDecl>(
2311             Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
2312     return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
2313   }
2314   llvm_unreachable("unexpected kind of template argument");
2315 }
2316 
2317 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
2318                                     ArrayRef<TemplateArgument> Args) {
2319   if (Params->size() != Args.size())
2320     return false;
2321 
2322   unsigned Depth = Params->getDepth();
2323 
2324   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2325     TemplateArgument Arg = Args[I];
2326 
2327     // If the parameter is a pack expansion, the argument must be a pack
2328     // whose only element is a pack expansion.
2329     if (Params->getParam(I)->isParameterPack()) {
2330       if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
2331           !Arg.pack_begin()->isPackExpansion())
2332         return false;
2333       Arg = Arg.pack_begin()->getPackExpansionPattern();
2334     }
2335 
2336     if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
2337       return false;
2338   }
2339 
2340   return true;
2341 }
2342 
2343 DeclResult Sema::ActOnVarTemplateSpecialization(
2344     Scope *S, VarTemplateDecl *VarTemplate, Declarator &D, TypeSourceInfo *DI,
2345     SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams,
2346     VarDecl::StorageClass SC, bool IsPartialSpecialization) {
2347   assert(VarTemplate && "A variable template id without template?");
2348 
2349   // D must be variable template id.
2350   assert(D.getName().getKind() == UnqualifiedId::IK_TemplateId &&
2351          "Variable template specialization is declared with a template it.");
2352 
2353   TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2354   SourceLocation TemplateNameLoc = D.getIdentifierLoc();
2355   SourceLocation LAngleLoc = TemplateId->LAngleLoc;
2356   SourceLocation RAngleLoc = TemplateId->RAngleLoc;
2357   ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
2358                                      TemplateId->NumArgs);
2359   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2360   translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
2361   TemplateName Name(VarTemplate);
2362 
2363   // Check for unexpanded parameter packs in any of the template arguments.
2364   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2365     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
2366                                         UPPC_PartialSpecialization))
2367       return true;
2368 
2369   // Check that the template argument list is well-formed for this
2370   // template.
2371   SmallVector<TemplateArgument, 4> Converted;
2372   if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
2373                                 false, Converted))
2374     return true;
2375 
2376   // Check that the type of this variable template specialization
2377   // matches the expected type.
2378   TypeSourceInfo *ExpectedDI;
2379   {
2380     // Do substitution on the type of the declaration
2381     TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
2382                                          Converted.data(), Converted.size());
2383     InstantiatingTemplate Inst(*this, TemplateKWLoc, VarTemplate);
2384     if (Inst.isInvalid())
2385       return true;
2386     VarDecl *Templated = VarTemplate->getTemplatedDecl();
2387     ExpectedDI =
2388         SubstType(Templated->getTypeSourceInfo(),
2389                   MultiLevelTemplateArgumentList(TemplateArgList),
2390                   Templated->getTypeSpecStartLoc(), Templated->getDeclName());
2391   }
2392   if (!ExpectedDI)
2393     return true;
2394 
2395   // Find the variable template (partial) specialization declaration that
2396   // corresponds to these arguments.
2397   if (IsPartialSpecialization) {
2398     if (CheckTemplatePartialSpecializationArgs(
2399             *this, VarTemplate->getTemplateParameters(), Converted))
2400       return true;
2401 
2402     bool InstantiationDependent;
2403     if (!Name.isDependent() &&
2404         !TemplateSpecializationType::anyDependentTemplateArguments(
2405             TemplateArgs.getArgumentArray(), TemplateArgs.size(),
2406             InstantiationDependent)) {
2407       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
2408           << VarTemplate->getDeclName();
2409       IsPartialSpecialization = false;
2410     }
2411 
2412     if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
2413                                 Converted)) {
2414       // C++ [temp.class.spec]p9b3:
2415       //
2416       //   -- The argument list of the specialization shall not be identical
2417       //      to the implicit argument list of the primary template.
2418       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
2419         << /*variable template*/ 1
2420         << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
2421         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
2422       // FIXME: Recover from this by treating the declaration as a redeclaration
2423       // of the primary template.
2424       return true;
2425     }
2426   }
2427 
2428   void *InsertPos = 0;
2429   VarTemplateSpecializationDecl *PrevDecl = 0;
2430 
2431   if (IsPartialSpecialization)
2432     // FIXME: Template parameter list matters too
2433     PrevDecl = VarTemplate->findPartialSpecialization(
2434         Converted.data(), Converted.size(), InsertPos);
2435   else
2436     PrevDecl = VarTemplate->findSpecialization(Converted.data(),
2437                                                Converted.size(), InsertPos);
2438 
2439   VarTemplateSpecializationDecl *Specialization = 0;
2440 
2441   // Check whether we can declare a variable template specialization in
2442   // the current scope.
2443   if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
2444                                        TemplateNameLoc,
2445                                        IsPartialSpecialization))
2446     return true;
2447 
2448   if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
2449     // Since the only prior variable template specialization with these
2450     // arguments was referenced but not declared,  reuse that
2451     // declaration node as our own, updating its source location and
2452     // the list of outer template parameters to reflect our new declaration.
2453     Specialization = PrevDecl;
2454     Specialization->setLocation(TemplateNameLoc);
2455     PrevDecl = 0;
2456   } else if (IsPartialSpecialization) {
2457     // Create a new class template partial specialization declaration node.
2458     VarTemplatePartialSpecializationDecl *PrevPartial =
2459         cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
2460     VarTemplatePartialSpecializationDecl *Partial =
2461         VarTemplatePartialSpecializationDecl::Create(
2462             Context, VarTemplate->getDeclContext(), TemplateKWLoc,
2463             TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
2464             Converted.data(), Converted.size(), TemplateArgs);
2465 
2466     if (!PrevPartial)
2467       VarTemplate->AddPartialSpecialization(Partial, InsertPos);
2468     Specialization = Partial;
2469 
2470     // If we are providing an explicit specialization of a member variable
2471     // template specialization, make a note of that.
2472     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
2473       PrevPartial->setMemberSpecialization();
2474 
2475     // Check that all of the template parameters of the variable template
2476     // partial specialization are deducible from the template
2477     // arguments. If not, this variable template partial specialization
2478     // will never be used.
2479     llvm::SmallBitVector DeducibleParams(TemplateParams->size());
2480     MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
2481                                TemplateParams->getDepth(), DeducibleParams);
2482 
2483     if (!DeducibleParams.all()) {
2484       unsigned NumNonDeducible =
2485           DeducibleParams.size() - DeducibleParams.count();
2486       Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
2487         << /*variable template*/ 1 << (NumNonDeducible > 1)
2488         << SourceRange(TemplateNameLoc, RAngleLoc);
2489       for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
2490         if (!DeducibleParams[I]) {
2491           NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
2492           if (Param->getDeclName())
2493             Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2494                 << Param->getDeclName();
2495           else
2496             Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2497                 << "<anonymous>";
2498         }
2499       }
2500     }
2501   } else {
2502     // Create a new class template specialization declaration node for
2503     // this explicit specialization or friend declaration.
2504     Specialization = VarTemplateSpecializationDecl::Create(
2505         Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
2506         VarTemplate, DI->getType(), DI, SC, Converted.data(), Converted.size());
2507     Specialization->setTemplateArgsInfo(TemplateArgs);
2508 
2509     if (!PrevDecl)
2510       VarTemplate->AddSpecialization(Specialization, InsertPos);
2511   }
2512 
2513   // C++ [temp.expl.spec]p6:
2514   //   If a template, a member template or the member of a class template is
2515   //   explicitly specialized then that specialization shall be declared
2516   //   before the first use of that specialization that would cause an implicit
2517   //   instantiation to take place, in every translation unit in which such a
2518   //   use occurs; no diagnostic is required.
2519   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
2520     bool Okay = false;
2521     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
2522       // Is there any previous explicit specialization declaration?
2523       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
2524         Okay = true;
2525         break;
2526       }
2527     }
2528 
2529     if (!Okay) {
2530       SourceRange Range(TemplateNameLoc, RAngleLoc);
2531       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
2532           << Name << Range;
2533 
2534       Diag(PrevDecl->getPointOfInstantiation(),
2535            diag::note_instantiation_required_here)
2536           << (PrevDecl->getTemplateSpecializationKind() !=
2537               TSK_ImplicitInstantiation);
2538       return true;
2539     }
2540   }
2541 
2542   Specialization->setTemplateKeywordLoc(TemplateKWLoc);
2543   Specialization->setLexicalDeclContext(CurContext);
2544 
2545   // Add the specialization into its lexical context, so that it can
2546   // be seen when iterating through the list of declarations in that
2547   // context. However, specializations are not found by name lookup.
2548   CurContext->addDecl(Specialization);
2549 
2550   // Note that this is an explicit specialization.
2551   Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
2552 
2553   if (PrevDecl) {
2554     // Check that this isn't a redefinition of this specialization,
2555     // merging with previous declarations.
2556     LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
2557                           ForRedeclaration);
2558     PrevSpec.addDecl(PrevDecl);
2559     D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
2560   } else if (Specialization->isStaticDataMember() &&
2561              Specialization->isOutOfLine()) {
2562     Specialization->setAccess(VarTemplate->getAccess());
2563   }
2564 
2565   // Link instantiations of static data members back to the template from
2566   // which they were instantiated.
2567   if (Specialization->isStaticDataMember())
2568     Specialization->setInstantiationOfStaticDataMember(
2569         VarTemplate->getTemplatedDecl(),
2570         Specialization->getSpecializationKind());
2571 
2572   return Specialization;
2573 }
2574 
2575 namespace {
2576 /// \brief A partial specialization whose template arguments have matched
2577 /// a given template-id.
2578 struct PartialSpecMatchResult {
2579   VarTemplatePartialSpecializationDecl *Partial;
2580   TemplateArgumentList *Args;
2581 };
2582 }
2583 
2584 DeclResult
2585 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
2586                          SourceLocation TemplateNameLoc,
2587                          const TemplateArgumentListInfo &TemplateArgs) {
2588   assert(Template && "A variable template id without template?");
2589 
2590   // Check that the template argument list is well-formed for this template.
2591   SmallVector<TemplateArgument, 4> Converted;
2592   bool ExpansionIntoFixedList = false;
2593   if (CheckTemplateArgumentList(
2594           Template, TemplateNameLoc,
2595           const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
2596           Converted, &ExpansionIntoFixedList))
2597     return true;
2598 
2599   // Find the variable template specialization declaration that
2600   // corresponds to these arguments.
2601   void *InsertPos = 0;
2602   if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
2603           Converted.data(), Converted.size(), InsertPos))
2604     // If we already have a variable template specialization, return it.
2605     return Spec;
2606 
2607   // This is the first time we have referenced this variable template
2608   // specialization. Create the canonical declaration and add it to
2609   // the set of specializations, based on the closest partial specialization
2610   // that it represents. That is,
2611   VarDecl *InstantiationPattern = Template->getTemplatedDecl();
2612   TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
2613                                        Converted.data(), Converted.size());
2614   TemplateArgumentList *InstantiationArgs = &TemplateArgList;
2615   bool AmbiguousPartialSpec = false;
2616   typedef PartialSpecMatchResult MatchResult;
2617   SmallVector<MatchResult, 4> Matched;
2618   SourceLocation PointOfInstantiation = TemplateNameLoc;
2619   TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation);
2620 
2621   // 1. Attempt to find the closest partial specialization that this
2622   // specializes, if any.
2623   // If any of the template arguments is dependent, then this is probably
2624   // a placeholder for an incomplete declarative context; which must be
2625   // complete by instantiation time. Thus, do not search through the partial
2626   // specializations yet.
2627   // TODO: Unify with InstantiateClassTemplateSpecialization()?
2628   //       Perhaps better after unification of DeduceTemplateArguments() and
2629   //       getMoreSpecializedPartialSpecialization().
2630   bool InstantiationDependent = false;
2631   if (!TemplateSpecializationType::anyDependentTemplateArguments(
2632           TemplateArgs, InstantiationDependent)) {
2633 
2634     SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
2635     Template->getPartialSpecializations(PartialSpecs);
2636 
2637     for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
2638       VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
2639       TemplateDeductionInfo Info(FailedCandidates.getLocation());
2640 
2641       if (TemplateDeductionResult Result =
2642               DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
2643         // Store the failed-deduction information for use in diagnostics, later.
2644         // TODO: Actually use the failed-deduction info?
2645         FailedCandidates.addCandidate()
2646             .set(Partial, MakeDeductionFailureInfo(Context, Result, Info));
2647         (void)Result;
2648       } else {
2649         Matched.push_back(PartialSpecMatchResult());
2650         Matched.back().Partial = Partial;
2651         Matched.back().Args = Info.take();
2652       }
2653     }
2654 
2655     // If we're dealing with a member template where the template parameters
2656     // have been instantiated, this provides the original template parameters
2657     // from which the member template's parameters were instantiated.
2658     SmallVector<const NamedDecl *, 4> InstantiatedTemplateParameters;
2659 
2660     if (Matched.size() >= 1) {
2661       SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
2662       if (Matched.size() == 1) {
2663         //   -- If exactly one matching specialization is found, the
2664         //      instantiation is generated from that specialization.
2665         // We don't need to do anything for this.
2666       } else {
2667         //   -- If more than one matching specialization is found, the
2668         //      partial order rules (14.5.4.2) are used to determine
2669         //      whether one of the specializations is more specialized
2670         //      than the others. If none of the specializations is more
2671         //      specialized than all of the other matching
2672         //      specializations, then the use of the variable template is
2673         //      ambiguous and the program is ill-formed.
2674         for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
2675                                                    PEnd = Matched.end();
2676              P != PEnd; ++P) {
2677           if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
2678                                                       PointOfInstantiation) ==
2679               P->Partial)
2680             Best = P;
2681         }
2682 
2683         // Determine if the best partial specialization is more specialized than
2684         // the others.
2685         for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2686                                                    PEnd = Matched.end();
2687              P != PEnd; ++P) {
2688           if (P != Best && getMoreSpecializedPartialSpecialization(
2689                                P->Partial, Best->Partial,
2690                                PointOfInstantiation) != Best->Partial) {
2691             AmbiguousPartialSpec = true;
2692             break;
2693           }
2694         }
2695       }
2696 
2697       // Instantiate using the best variable template partial specialization.
2698       InstantiationPattern = Best->Partial;
2699       InstantiationArgs = Best->Args;
2700     } else {
2701       //   -- If no match is found, the instantiation is generated
2702       //      from the primary template.
2703       // InstantiationPattern = Template->getTemplatedDecl();
2704     }
2705   }
2706 
2707   // 2. Create the canonical declaration.
2708   // Note that we do not instantiate the variable just yet, since
2709   // instantiation is handled in DoMarkVarDeclReferenced().
2710   // FIXME: LateAttrs et al.?
2711   VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
2712       Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
2713       Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
2714   if (!Decl)
2715     return true;
2716 
2717   if (AmbiguousPartialSpec) {
2718     // Partial ordering did not produce a clear winner. Complain.
2719     Decl->setInvalidDecl();
2720     Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
2721         << Decl;
2722 
2723     // Print the matching partial specializations.
2724     for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2725                                                PEnd = Matched.end();
2726          P != PEnd; ++P)
2727       Diag(P->Partial->getLocation(), diag::note_partial_spec_match)
2728           << getTemplateArgumentBindingsText(
2729                  P->Partial->getTemplateParameters(), *P->Args);
2730     return true;
2731   }
2732 
2733   if (VarTemplatePartialSpecializationDecl *D =
2734           dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
2735     Decl->setInstantiationOf(D, InstantiationArgs);
2736 
2737   assert(Decl && "No variable template specialization?");
2738   return Decl;
2739 }
2740 
2741 ExprResult
2742 Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
2743                          const DeclarationNameInfo &NameInfo,
2744                          VarTemplateDecl *Template, SourceLocation TemplateLoc,
2745                          const TemplateArgumentListInfo *TemplateArgs) {
2746 
2747   DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
2748                                        *TemplateArgs);
2749   if (Decl.isInvalid())
2750     return ExprError();
2751 
2752   VarDecl *Var = cast<VarDecl>(Decl.get());
2753   if (!Var->getTemplateSpecializationKind())
2754     Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
2755                                        NameInfo.getLoc());
2756 
2757   // Build an ordinary singleton decl ref.
2758   return BuildDeclarationNameExpr(SS, NameInfo, Var,
2759                                   /*FoundD=*/0, TemplateArgs);
2760 }
2761 
2762 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2763                                      SourceLocation TemplateKWLoc,
2764                                      LookupResult &R,
2765                                      bool RequiresADL,
2766                                  const TemplateArgumentListInfo *TemplateArgs) {
2767   // FIXME: Can we do any checking at this point? I guess we could check the
2768   // template arguments that we have against the template name, if the template
2769   // name refers to a single template. That's not a terribly common case,
2770   // though.
2771   // foo<int> could identify a single function unambiguously
2772   // This approach does NOT work, since f<int>(1);
2773   // gets resolved prior to resorting to overload resolution
2774   // i.e., template<class T> void f(double);
2775   //       vs template<class T, class U> void f(U);
2776 
2777   // These should be filtered out by our callers.
2778   assert(!R.empty() && "empty lookup results when building templateid");
2779   assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2780 
2781   // In C++1y, check variable template ids.
2782   if (R.getAsSingle<VarTemplateDecl>()) {
2783     return Owned(CheckVarTemplateId(SS, R.getLookupNameInfo(),
2784                                     R.getAsSingle<VarTemplateDecl>(),
2785                                     TemplateKWLoc, TemplateArgs));
2786   }
2787 
2788   // We don't want lookup warnings at this point.
2789   R.suppressDiagnostics();
2790 
2791   UnresolvedLookupExpr *ULE
2792     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2793                                    SS.getWithLocInContext(Context),
2794                                    TemplateKWLoc,
2795                                    R.getLookupNameInfo(),
2796                                    RequiresADL, TemplateArgs,
2797                                    R.begin(), R.end());
2798 
2799   return Owned(ULE);
2800 }
2801 
2802 // We actually only call this from template instantiation.
2803 ExprResult
2804 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2805                                    SourceLocation TemplateKWLoc,
2806                                    const DeclarationNameInfo &NameInfo,
2807                              const TemplateArgumentListInfo *TemplateArgs) {
2808 
2809   assert(TemplateArgs || TemplateKWLoc.isValid());
2810   DeclContext *DC;
2811   if (!(DC = computeDeclContext(SS, false)) ||
2812       DC->isDependentContext() ||
2813       RequireCompleteDeclContext(SS, DC))
2814     return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
2815 
2816   bool MemberOfUnknownSpecialization;
2817   LookupResult R(*this, NameInfo, LookupOrdinaryName);
2818   LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
2819                      MemberOfUnknownSpecialization);
2820 
2821   if (R.isAmbiguous())
2822     return ExprError();
2823 
2824   if (R.empty()) {
2825     Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2826       << NameInfo.getName() << SS.getRange();
2827     return ExprError();
2828   }
2829 
2830   if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2831     Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2832       << (NestedNameSpecifier*) SS.getScopeRep()
2833       << NameInfo.getName() << SS.getRange();
2834     Diag(Temp->getLocation(), diag::note_referenced_class_template);
2835     return ExprError();
2836   }
2837 
2838   return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
2839 }
2840 
2841 /// \brief Form a dependent template name.
2842 ///
2843 /// This action forms a dependent template name given the template
2844 /// name and its (presumably dependent) scope specifier. For
2845 /// example, given "MetaFun::template apply", the scope specifier \p
2846 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2847 /// of the "template" keyword, and "apply" is the \p Name.
2848 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2849                                                   CXXScopeSpec &SS,
2850                                                   SourceLocation TemplateKWLoc,
2851                                                   UnqualifiedId &Name,
2852                                                   ParsedType ObjectType,
2853                                                   bool EnteringContext,
2854                                                   TemplateTy &Result) {
2855   if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
2856     Diag(TemplateKWLoc,
2857          getLangOpts().CPlusPlus11 ?
2858            diag::warn_cxx98_compat_template_outside_of_template :
2859            diag::ext_template_outside_of_template)
2860       << FixItHint::CreateRemoval(TemplateKWLoc);
2861 
2862   DeclContext *LookupCtx = 0;
2863   if (SS.isSet())
2864     LookupCtx = computeDeclContext(SS, EnteringContext);
2865   if (!LookupCtx && ObjectType)
2866     LookupCtx = computeDeclContext(ObjectType.get());
2867   if (LookupCtx) {
2868     // C++0x [temp.names]p5:
2869     //   If a name prefixed by the keyword template is not the name of
2870     //   a template, the program is ill-formed. [Note: the keyword
2871     //   template may not be applied to non-template members of class
2872     //   templates. -end note ] [ Note: as is the case with the
2873     //   typename prefix, the template prefix is allowed in cases
2874     //   where it is not strictly necessary; i.e., when the
2875     //   nested-name-specifier or the expression on the left of the ->
2876     //   or . is not dependent on a template-parameter, or the use
2877     //   does not appear in the scope of a template. -end note]
2878     //
2879     // Note: C++03 was more strict here, because it banned the use of
2880     // the "template" keyword prior to a template-name that was not a
2881     // dependent name. C++ DR468 relaxed this requirement (the
2882     // "template" keyword is now permitted). We follow the C++0x
2883     // rules, even in C++03 mode with a warning, retroactively applying the DR.
2884     bool MemberOfUnknownSpecialization;
2885     TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
2886                                           ObjectType, EnteringContext, Result,
2887                                           MemberOfUnknownSpecialization);
2888     if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2889         isa<CXXRecordDecl>(LookupCtx) &&
2890         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2891          cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2892       // This is a dependent template. Handle it below.
2893     } else if (TNK == TNK_Non_template) {
2894       Diag(Name.getLocStart(),
2895            diag::err_template_kw_refers_to_non_template)
2896         << GetNameFromUnqualifiedId(Name).getName()
2897         << Name.getSourceRange()
2898         << TemplateKWLoc;
2899       return TNK_Non_template;
2900     } else {
2901       // We found something; return it.
2902       return TNK;
2903     }
2904   }
2905 
2906   NestedNameSpecifier *Qualifier
2907     = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2908 
2909   switch (Name.getKind()) {
2910   case UnqualifiedId::IK_Identifier:
2911     Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2912                                                               Name.Identifier));
2913     return TNK_Dependent_template_name;
2914 
2915   case UnqualifiedId::IK_OperatorFunctionId:
2916     Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2917                                              Name.OperatorFunctionId.Operator));
2918     return TNK_Dependent_template_name;
2919 
2920   case UnqualifiedId::IK_LiteralOperatorId:
2921     llvm_unreachable(
2922             "We don't support these; Parse shouldn't have allowed propagation");
2923 
2924   default:
2925     break;
2926   }
2927 
2928   Diag(Name.getLocStart(),
2929        diag::err_template_kw_refers_to_non_template)
2930     << GetNameFromUnqualifiedId(Name).getName()
2931     << Name.getSourceRange()
2932     << TemplateKWLoc;
2933   return TNK_Non_template;
2934 }
2935 
2936 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2937                                      const TemplateArgumentLoc &AL,
2938                           SmallVectorImpl<TemplateArgument> &Converted) {
2939   const TemplateArgument &Arg = AL.getArgument();
2940 
2941   // Check template type parameter.
2942   switch(Arg.getKind()) {
2943   case TemplateArgument::Type:
2944     // C++ [temp.arg.type]p1:
2945     //   A template-argument for a template-parameter which is a
2946     //   type shall be a type-id.
2947     break;
2948   case TemplateArgument::Template: {
2949     // We have a template type parameter but the template argument
2950     // is a template without any arguments.
2951     SourceRange SR = AL.getSourceRange();
2952     TemplateName Name = Arg.getAsTemplate();
2953     Diag(SR.getBegin(), diag::err_template_missing_args)
2954       << Name << SR;
2955     if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2956       Diag(Decl->getLocation(), diag::note_template_decl_here);
2957 
2958     return true;
2959   }
2960   case TemplateArgument::Expression: {
2961     // We have a template type parameter but the template argument is an
2962     // expression; see if maybe it is missing the "typename" keyword.
2963     CXXScopeSpec SS;
2964     DeclarationNameInfo NameInfo;
2965 
2966     if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
2967       SS.Adopt(ArgExpr->getQualifierLoc());
2968       NameInfo = ArgExpr->getNameInfo();
2969     } else if (DependentScopeDeclRefExpr *ArgExpr =
2970                dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
2971       SS.Adopt(ArgExpr->getQualifierLoc());
2972       NameInfo = ArgExpr->getNameInfo();
2973     } else if (CXXDependentScopeMemberExpr *ArgExpr =
2974                dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
2975       if (ArgExpr->isImplicitAccess()) {
2976         SS.Adopt(ArgExpr->getQualifierLoc());
2977         NameInfo = ArgExpr->getMemberNameInfo();
2978       }
2979     }
2980 
2981     if (NameInfo.getName().isIdentifier()) {
2982       LookupResult Result(*this, NameInfo, LookupOrdinaryName);
2983       LookupParsedName(Result, CurScope, &SS);
2984 
2985       if (Result.getAsSingle<TypeDecl>() ||
2986           Result.getResultKind() ==
2987             LookupResult::NotFoundInCurrentInstantiation) {
2988         // FIXME: Add a FixIt and fix up the template argument for recovery.
2989         SourceLocation Loc = AL.getSourceRange().getBegin();
2990         Diag(Loc, diag::err_template_arg_must_be_type_suggest);
2991         Diag(Param->getLocation(), diag::note_template_param_here);
2992         return true;
2993       }
2994     }
2995     // fallthrough
2996   }
2997   default: {
2998     // We have a template type parameter but the template argument
2999     // is not a type.
3000     SourceRange SR = AL.getSourceRange();
3001     Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
3002     Diag(Param->getLocation(), diag::note_template_param_here);
3003 
3004     return true;
3005   }
3006   }
3007 
3008   if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
3009     return true;
3010 
3011   // Add the converted template type argument.
3012   QualType ArgType = Context.getCanonicalType(Arg.getAsType());
3013 
3014   // Objective-C ARC:
3015   //   If an explicitly-specified template argument type is a lifetime type
3016   //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
3017   if (getLangOpts().ObjCAutoRefCount &&
3018       ArgType->isObjCLifetimeType() &&
3019       !ArgType.getObjCLifetime()) {
3020     Qualifiers Qs;
3021     Qs.setObjCLifetime(Qualifiers::OCL_Strong);
3022     ArgType = Context.getQualifiedType(ArgType, Qs);
3023   }
3024 
3025   Converted.push_back(TemplateArgument(ArgType));
3026   return false;
3027 }
3028 
3029 /// \brief Substitute template arguments into the default template argument for
3030 /// the given template type parameter.
3031 ///
3032 /// \param SemaRef the semantic analysis object for which we are performing
3033 /// the substitution.
3034 ///
3035 /// \param Template the template that we are synthesizing template arguments
3036 /// for.
3037 ///
3038 /// \param TemplateLoc the location of the template name that started the
3039 /// template-id we are checking.
3040 ///
3041 /// \param RAngleLoc the location of the right angle bracket ('>') that
3042 /// terminates the template-id.
3043 ///
3044 /// \param Param the template template parameter whose default we are
3045 /// substituting into.
3046 ///
3047 /// \param Converted the list of template arguments provided for template
3048 /// parameters that precede \p Param in the template parameter list.
3049 /// \returns the substituted template argument, or NULL if an error occurred.
3050 static TypeSourceInfo *
3051 SubstDefaultTemplateArgument(Sema &SemaRef,
3052                              TemplateDecl *Template,
3053                              SourceLocation TemplateLoc,
3054                              SourceLocation RAngleLoc,
3055                              TemplateTypeParmDecl *Param,
3056                          SmallVectorImpl<TemplateArgument> &Converted) {
3057   TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
3058 
3059   // If the argument type is dependent, instantiate it now based
3060   // on the previously-computed template arguments.
3061   if (ArgType->getType()->isDependentType()) {
3062     Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3063                                      Template, Converted,
3064                                      SourceRange(TemplateLoc, RAngleLoc));
3065     if (Inst.isInvalid())
3066       return 0;
3067 
3068     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3069                                       Converted.data(), Converted.size());
3070 
3071     // Only substitute for the innermost template argument list.
3072     MultiLevelTemplateArgumentList TemplateArgLists;
3073     TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3074     for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3075       TemplateArgLists.addOuterTemplateArguments(None);
3076 
3077     Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3078     ArgType =
3079         SemaRef.SubstType(ArgType, TemplateArgLists,
3080                           Param->getDefaultArgumentLoc(), Param->getDeclName());
3081   }
3082 
3083   return ArgType;
3084 }
3085 
3086 /// \brief Substitute template arguments into the default template argument for
3087 /// the given non-type template parameter.
3088 ///
3089 /// \param SemaRef the semantic analysis object for which we are performing
3090 /// the substitution.
3091 ///
3092 /// \param Template the template that we are synthesizing template arguments
3093 /// for.
3094 ///
3095 /// \param TemplateLoc the location of the template name that started the
3096 /// template-id we are checking.
3097 ///
3098 /// \param RAngleLoc the location of the right angle bracket ('>') that
3099 /// terminates the template-id.
3100 ///
3101 /// \param Param the non-type template parameter whose default we are
3102 /// substituting into.
3103 ///
3104 /// \param Converted the list of template arguments provided for template
3105 /// parameters that precede \p Param in the template parameter list.
3106 ///
3107 /// \returns the substituted template argument, or NULL if an error occurred.
3108 static ExprResult
3109 SubstDefaultTemplateArgument(Sema &SemaRef,
3110                              TemplateDecl *Template,
3111                              SourceLocation TemplateLoc,
3112                              SourceLocation RAngleLoc,
3113                              NonTypeTemplateParmDecl *Param,
3114                         SmallVectorImpl<TemplateArgument> &Converted) {
3115   Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3116                                    Template, Converted,
3117                                    SourceRange(TemplateLoc, RAngleLoc));
3118   if (Inst.isInvalid())
3119     return ExprError();
3120 
3121   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3122                                     Converted.data(), Converted.size());
3123 
3124   // Only substitute for the innermost template argument list.
3125   MultiLevelTemplateArgumentList TemplateArgLists;
3126   TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3127   for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3128     TemplateArgLists.addOuterTemplateArguments(None);
3129 
3130   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3131   EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
3132   return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
3133 }
3134 
3135 /// \brief Substitute template arguments into the default template argument for
3136 /// the given template template parameter.
3137 ///
3138 /// \param SemaRef the semantic analysis object for which we are performing
3139 /// the substitution.
3140 ///
3141 /// \param Template the template that we are synthesizing template arguments
3142 /// for.
3143 ///
3144 /// \param TemplateLoc the location of the template name that started the
3145 /// template-id we are checking.
3146 ///
3147 /// \param RAngleLoc the location of the right angle bracket ('>') that
3148 /// terminates the template-id.
3149 ///
3150 /// \param Param the template template parameter whose default we are
3151 /// substituting into.
3152 ///
3153 /// \param Converted the list of template arguments provided for template
3154 /// parameters that precede \p Param in the template parameter list.
3155 ///
3156 /// \param QualifierLoc Will be set to the nested-name-specifier (with
3157 /// source-location information) that precedes the template name.
3158 ///
3159 /// \returns the substituted template argument, or NULL if an error occurred.
3160 static TemplateName
3161 SubstDefaultTemplateArgument(Sema &SemaRef,
3162                              TemplateDecl *Template,
3163                              SourceLocation TemplateLoc,
3164                              SourceLocation RAngleLoc,
3165                              TemplateTemplateParmDecl *Param,
3166                        SmallVectorImpl<TemplateArgument> &Converted,
3167                              NestedNameSpecifierLoc &QualifierLoc) {
3168   Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Template, Converted,
3169                                    SourceRange(TemplateLoc, RAngleLoc));
3170   if (Inst.isInvalid())
3171     return TemplateName();
3172 
3173   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3174                                     Converted.data(), Converted.size());
3175 
3176   // Only substitute for the innermost template argument list.
3177   MultiLevelTemplateArgumentList TemplateArgLists;
3178   TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3179   for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3180     TemplateArgLists.addOuterTemplateArguments(None);
3181 
3182   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3183   // Substitute into the nested-name-specifier first,
3184   QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
3185   if (QualifierLoc) {
3186     QualifierLoc =
3187         SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
3188     if (!QualifierLoc)
3189       return TemplateName();
3190   }
3191 
3192   return SemaRef.SubstTemplateName(
3193              QualifierLoc,
3194              Param->getDefaultArgument().getArgument().getAsTemplate(),
3195              Param->getDefaultArgument().getTemplateNameLoc(),
3196              TemplateArgLists);
3197 }
3198 
3199 /// \brief If the given template parameter has a default template
3200 /// argument, substitute into that default template argument and
3201 /// return the corresponding template argument.
3202 TemplateArgumentLoc
3203 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
3204                                               SourceLocation TemplateLoc,
3205                                               SourceLocation RAngleLoc,
3206                                               Decl *Param,
3207                                               SmallVectorImpl<TemplateArgument>
3208                                                 &Converted,
3209                                               bool &HasDefaultArg) {
3210   HasDefaultArg = false;
3211 
3212   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
3213     if (!TypeParm->hasDefaultArgument())
3214       return TemplateArgumentLoc();
3215 
3216     HasDefaultArg = true;
3217     TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
3218                                                       TemplateLoc,
3219                                                       RAngleLoc,
3220                                                       TypeParm,
3221                                                       Converted);
3222     if (DI)
3223       return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
3224 
3225     return TemplateArgumentLoc();
3226   }
3227 
3228   if (NonTypeTemplateParmDecl *NonTypeParm
3229         = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3230     if (!NonTypeParm->hasDefaultArgument())
3231       return TemplateArgumentLoc();
3232 
3233     HasDefaultArg = true;
3234     ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
3235                                                   TemplateLoc,
3236                                                   RAngleLoc,
3237                                                   NonTypeParm,
3238                                                   Converted);
3239     if (Arg.isInvalid())
3240       return TemplateArgumentLoc();
3241 
3242     Expr *ArgE = Arg.takeAs<Expr>();
3243     return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
3244   }
3245 
3246   TemplateTemplateParmDecl *TempTempParm
3247     = cast<TemplateTemplateParmDecl>(Param);
3248   if (!TempTempParm->hasDefaultArgument())
3249     return TemplateArgumentLoc();
3250 
3251   HasDefaultArg = true;
3252   NestedNameSpecifierLoc QualifierLoc;
3253   TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
3254                                                     TemplateLoc,
3255                                                     RAngleLoc,
3256                                                     TempTempParm,
3257                                                     Converted,
3258                                                     QualifierLoc);
3259   if (TName.isNull())
3260     return TemplateArgumentLoc();
3261 
3262   return TemplateArgumentLoc(TemplateArgument(TName),
3263                 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
3264                 TempTempParm->getDefaultArgument().getTemplateNameLoc());
3265 }
3266 
3267 /// \brief Check that the given template argument corresponds to the given
3268 /// template parameter.
3269 ///
3270 /// \param Param The template parameter against which the argument will be
3271 /// checked.
3272 ///
3273 /// \param Arg The template argument.
3274 ///
3275 /// \param Template The template in which the template argument resides.
3276 ///
3277 /// \param TemplateLoc The location of the template name for the template
3278 /// whose argument list we're matching.
3279 ///
3280 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
3281 /// the template argument list.
3282 ///
3283 /// \param ArgumentPackIndex The index into the argument pack where this
3284 /// argument will be placed. Only valid if the parameter is a parameter pack.
3285 ///
3286 /// \param Converted The checked, converted argument will be added to the
3287 /// end of this small vector.
3288 ///
3289 /// \param CTAK Describes how we arrived at this particular template argument:
3290 /// explicitly written, deduced, etc.
3291 ///
3292 /// \returns true on error, false otherwise.
3293 bool Sema::CheckTemplateArgument(NamedDecl *Param,
3294                                  const TemplateArgumentLoc &Arg,
3295                                  NamedDecl *Template,
3296                                  SourceLocation TemplateLoc,
3297                                  SourceLocation RAngleLoc,
3298                                  unsigned ArgumentPackIndex,
3299                             SmallVectorImpl<TemplateArgument> &Converted,
3300                                  CheckTemplateArgumentKind CTAK) {
3301   // Check template type parameters.
3302   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
3303     return CheckTemplateTypeArgument(TTP, Arg, Converted);
3304 
3305   // Check non-type template parameters.
3306   if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3307     // Do substitution on the type of the non-type template parameter
3308     // with the template arguments we've seen thus far.  But if the
3309     // template has a dependent context then we cannot substitute yet.
3310     QualType NTTPType = NTTP->getType();
3311     if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
3312       NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
3313 
3314     if (NTTPType->isDependentType() &&
3315         !isa<TemplateTemplateParmDecl>(Template) &&
3316         !Template->getDeclContext()->isDependentContext()) {
3317       // Do substitution on the type of the non-type template parameter.
3318       InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3319                                  NTTP, Converted,
3320                                  SourceRange(TemplateLoc, RAngleLoc));
3321       if (Inst.isInvalid())
3322         return true;
3323 
3324       TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3325                                         Converted.data(), Converted.size());
3326       NTTPType = SubstType(NTTPType,
3327                            MultiLevelTemplateArgumentList(TemplateArgs),
3328                            NTTP->getLocation(),
3329                            NTTP->getDeclName());
3330       // If that worked, check the non-type template parameter type
3331       // for validity.
3332       if (!NTTPType.isNull())
3333         NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
3334                                                      NTTP->getLocation());
3335       if (NTTPType.isNull())
3336         return true;
3337     }
3338 
3339     switch (Arg.getArgument().getKind()) {
3340     case TemplateArgument::Null:
3341       llvm_unreachable("Should never see a NULL template argument here");
3342 
3343     case TemplateArgument::Expression: {
3344       TemplateArgument Result;
3345       ExprResult Res =
3346         CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
3347                               Result, CTAK);
3348       if (Res.isInvalid())
3349         return true;
3350 
3351       Converted.push_back(Result);
3352       break;
3353     }
3354 
3355     case TemplateArgument::Declaration:
3356     case TemplateArgument::Integral:
3357     case TemplateArgument::NullPtr:
3358       // We've already checked this template argument, so just copy
3359       // it to the list of converted arguments.
3360       Converted.push_back(Arg.getArgument());
3361       break;
3362 
3363     case TemplateArgument::Template:
3364     case TemplateArgument::TemplateExpansion:
3365       // We were given a template template argument. It may not be ill-formed;
3366       // see below.
3367       if (DependentTemplateName *DTN
3368             = Arg.getArgument().getAsTemplateOrTemplatePattern()
3369                                               .getAsDependentTemplateName()) {
3370         // We have a template argument such as \c T::template X, which we
3371         // parsed as a template template argument. However, since we now
3372         // know that we need a non-type template argument, convert this
3373         // template name into an expression.
3374 
3375         DeclarationNameInfo NameInfo(DTN->getIdentifier(),
3376                                      Arg.getTemplateNameLoc());
3377 
3378         CXXScopeSpec SS;
3379         SS.Adopt(Arg.getTemplateQualifierLoc());
3380         // FIXME: the template-template arg was a DependentTemplateName,
3381         // so it was provided with a template keyword. However, its source
3382         // location is not stored in the template argument structure.
3383         SourceLocation TemplateKWLoc;
3384         ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
3385                                                 SS.getWithLocInContext(Context),
3386                                                                TemplateKWLoc,
3387                                                                NameInfo, 0));
3388 
3389         // If we parsed the template argument as a pack expansion, create a
3390         // pack expansion expression.
3391         if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
3392           E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
3393           if (E.isInvalid())
3394             return true;
3395         }
3396 
3397         TemplateArgument Result;
3398         E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
3399         if (E.isInvalid())
3400           return true;
3401 
3402         Converted.push_back(Result);
3403         break;
3404       }
3405 
3406       // We have a template argument that actually does refer to a class
3407       // template, alias template, or template template parameter, and
3408       // therefore cannot be a non-type template argument.
3409       Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
3410         << Arg.getSourceRange();
3411 
3412       Diag(Param->getLocation(), diag::note_template_param_here);
3413       return true;
3414 
3415     case TemplateArgument::Type: {
3416       // We have a non-type template parameter but the template
3417       // argument is a type.
3418 
3419       // C++ [temp.arg]p2:
3420       //   In a template-argument, an ambiguity between a type-id and
3421       //   an expression is resolved to a type-id, regardless of the
3422       //   form of the corresponding template-parameter.
3423       //
3424       // We warn specifically about this case, since it can be rather
3425       // confusing for users.
3426       QualType T = Arg.getArgument().getAsType();
3427       SourceRange SR = Arg.getSourceRange();
3428       if (T->isFunctionType())
3429         Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
3430       else
3431         Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
3432       Diag(Param->getLocation(), diag::note_template_param_here);
3433       return true;
3434     }
3435 
3436     case TemplateArgument::Pack:
3437       llvm_unreachable("Caller must expand template argument packs");
3438     }
3439 
3440     return false;
3441   }
3442 
3443 
3444   // Check template template parameters.
3445   TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
3446 
3447   // Substitute into the template parameter list of the template
3448   // template parameter, since previously-supplied template arguments
3449   // may appear within the template template parameter.
3450   {
3451     // Set up a template instantiation context.
3452     LocalInstantiationScope Scope(*this);
3453     InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3454                                TempParm, Converted,
3455                                SourceRange(TemplateLoc, RAngleLoc));
3456     if (Inst.isInvalid())
3457       return true;
3458 
3459     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3460                                       Converted.data(), Converted.size());
3461     TempParm = cast_or_null<TemplateTemplateParmDecl>(
3462                       SubstDecl(TempParm, CurContext,
3463                                 MultiLevelTemplateArgumentList(TemplateArgs)));
3464     if (!TempParm)
3465       return true;
3466   }
3467 
3468   switch (Arg.getArgument().getKind()) {
3469   case TemplateArgument::Null:
3470     llvm_unreachable("Should never see a NULL template argument here");
3471 
3472   case TemplateArgument::Template:
3473   case TemplateArgument::TemplateExpansion:
3474     if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex))
3475       return true;
3476 
3477     Converted.push_back(Arg.getArgument());
3478     break;
3479 
3480   case TemplateArgument::Expression:
3481   case TemplateArgument::Type:
3482     // We have a template template parameter but the template
3483     // argument does not refer to a template.
3484     Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
3485       << getLangOpts().CPlusPlus11;
3486     return true;
3487 
3488   case TemplateArgument::Declaration:
3489     llvm_unreachable("Declaration argument with template template parameter");
3490   case TemplateArgument::Integral:
3491     llvm_unreachable("Integral argument with template template parameter");
3492   case TemplateArgument::NullPtr:
3493     llvm_unreachable("Null pointer argument with template template parameter");
3494 
3495   case TemplateArgument::Pack:
3496     llvm_unreachable("Caller must expand template argument packs");
3497   }
3498 
3499   return false;
3500 }
3501 
3502 /// \brief Diagnose an arity mismatch in the
3503 static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
3504                                   SourceLocation TemplateLoc,
3505                                   TemplateArgumentListInfo &TemplateArgs) {
3506   TemplateParameterList *Params = Template->getTemplateParameters();
3507   unsigned NumParams = Params->size();
3508   unsigned NumArgs = TemplateArgs.size();
3509 
3510   SourceRange Range;
3511   if (NumArgs > NumParams)
3512     Range = SourceRange(TemplateArgs[NumParams].getLocation(),
3513                         TemplateArgs.getRAngleLoc());
3514   S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3515     << (NumArgs > NumParams)
3516     << (isa<ClassTemplateDecl>(Template)? 0 :
3517         isa<FunctionTemplateDecl>(Template)? 1 :
3518         isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3519     << Template << Range;
3520   S.Diag(Template->getLocation(), diag::note_template_decl_here)
3521     << Params->getSourceRange();
3522   return true;
3523 }
3524 
3525 /// \brief Check whether the template parameter is a pack expansion, and if so,
3526 /// determine the number of parameters produced by that expansion. For instance:
3527 ///
3528 /// \code
3529 /// template<typename ...Ts> struct A {
3530 ///   template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
3531 /// };
3532 /// \endcode
3533 ///
3534 /// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
3535 /// is not a pack expansion, so returns an empty Optional.
3536 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
3537   if (NonTypeTemplateParmDecl *NTTP
3538         = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3539     if (NTTP->isExpandedParameterPack())
3540       return NTTP->getNumExpansionTypes();
3541   }
3542 
3543   if (TemplateTemplateParmDecl *TTP
3544         = dyn_cast<TemplateTemplateParmDecl>(Param)) {
3545     if (TTP->isExpandedParameterPack())
3546       return TTP->getNumExpansionTemplateParameters();
3547   }
3548 
3549   return None;
3550 }
3551 
3552 /// \brief Check that the given template argument list is well-formed
3553 /// for specializing the given template.
3554 bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
3555                                      SourceLocation TemplateLoc,
3556                                      TemplateArgumentListInfo &TemplateArgs,
3557                                      bool PartialTemplateArgs,
3558                           SmallVectorImpl<TemplateArgument> &Converted,
3559                                      bool *ExpansionIntoFixedList) {
3560   if (ExpansionIntoFixedList)
3561     *ExpansionIntoFixedList = false;
3562 
3563   TemplateParameterList *Params = Template->getTemplateParameters();
3564 
3565   SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
3566 
3567   // C++ [temp.arg]p1:
3568   //   [...] The type and form of each template-argument specified in
3569   //   a template-id shall match the type and form specified for the
3570   //   corresponding parameter declared by the template in its
3571   //   template-parameter-list.
3572   bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
3573   SmallVector<TemplateArgument, 2> ArgumentPack;
3574   unsigned ArgIdx = 0, NumArgs = TemplateArgs.size();
3575   LocalInstantiationScope InstScope(*this, true);
3576   for (TemplateParameterList::iterator Param = Params->begin(),
3577                                        ParamEnd = Params->end();
3578        Param != ParamEnd; /* increment in loop */) {
3579     // If we have an expanded parameter pack, make sure we don't have too
3580     // many arguments.
3581     if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
3582       if (*Expansions == ArgumentPack.size()) {
3583         // We're done with this parameter pack. Pack up its arguments and add
3584         // them to the list.
3585         Converted.push_back(
3586           TemplateArgument::CreatePackCopy(Context,
3587                                            ArgumentPack.data(),
3588                                            ArgumentPack.size()));
3589         ArgumentPack.clear();
3590 
3591         // This argument is assigned to the next parameter.
3592         ++Param;
3593         continue;
3594       } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
3595         // Not enough arguments for this parameter pack.
3596         Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3597           << false
3598           << (isa<ClassTemplateDecl>(Template)? 0 :
3599               isa<FunctionTemplateDecl>(Template)? 1 :
3600               isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3601           << Template;
3602         Diag(Template->getLocation(), diag::note_template_decl_here)
3603           << Params->getSourceRange();
3604         return true;
3605       }
3606     }
3607 
3608     if (ArgIdx < NumArgs) {
3609       // Check the template argument we were given.
3610       if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
3611                                 TemplateLoc, RAngleLoc,
3612                                 ArgumentPack.size(), Converted))
3613         return true;
3614 
3615       // We're now done with this argument.
3616       ++ArgIdx;
3617 
3618       if ((*Param)->isTemplateParameterPack()) {
3619         // The template parameter was a template parameter pack, so take the
3620         // deduced argument and place it on the argument pack. Note that we
3621         // stay on the same template parameter so that we can deduce more
3622         // arguments.
3623         ArgumentPack.push_back(Converted.pop_back_val());
3624       } else {
3625         // Move to the next template parameter.
3626         ++Param;
3627       }
3628 
3629       // If we just saw a pack expansion, then directly convert the remaining
3630       // arguments, because we don't know what parameters they'll match up
3631       // with.
3632       if (TemplateArgs[ArgIdx-1].getArgument().isPackExpansion()) {
3633         bool InFinalParameterPack = Param != ParamEnd &&
3634                                     Param + 1 == ParamEnd &&
3635                                     (*Param)->isTemplateParameterPack() &&
3636                                     !getExpandedPackSize(*Param);
3637 
3638         if (!InFinalParameterPack && !ArgumentPack.empty()) {
3639           // If we were part way through filling in an expanded parameter pack,
3640           // fall back to just producing individual arguments.
3641           Converted.insert(Converted.end(),
3642                            ArgumentPack.begin(), ArgumentPack.end());
3643           ArgumentPack.clear();
3644         }
3645 
3646         while (ArgIdx < NumArgs) {
3647           if (InFinalParameterPack)
3648             ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument());
3649           else
3650             Converted.push_back(TemplateArgs[ArgIdx].getArgument());
3651           ++ArgIdx;
3652         }
3653 
3654         // Push the argument pack onto the list of converted arguments.
3655         if (InFinalParameterPack) {
3656           Converted.push_back(
3657             TemplateArgument::CreatePackCopy(Context,
3658                                              ArgumentPack.data(),
3659                                              ArgumentPack.size()));
3660           ArgumentPack.clear();
3661         } else if (ExpansionIntoFixedList) {
3662           // We have expanded a pack into a fixed list.
3663           *ExpansionIntoFixedList = true;
3664         }
3665 
3666         return false;
3667       }
3668 
3669       continue;
3670     }
3671 
3672     // If we're checking a partial template argument list, we're done.
3673     if (PartialTemplateArgs) {
3674       if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
3675         Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3676                                                          ArgumentPack.data(),
3677                                                          ArgumentPack.size()));
3678 
3679       return false;
3680     }
3681 
3682     // If we have a template parameter pack with no more corresponding
3683     // arguments, just break out now and we'll fill in the argument pack below.
3684     if ((*Param)->isTemplateParameterPack()) {
3685       assert(!getExpandedPackSize(*Param) &&
3686              "Should have dealt with this already");
3687 
3688       // A non-expanded parameter pack before the end of the parameter list
3689       // only occurs for an ill-formed template parameter list, unless we've
3690       // got a partial argument list for a function template, so just bail out.
3691       if (Param + 1 != ParamEnd)
3692         return true;
3693 
3694       Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3695                                                        ArgumentPack.data(),
3696                                                        ArgumentPack.size()));
3697       ArgumentPack.clear();
3698 
3699       ++Param;
3700       continue;
3701     }
3702 
3703     // Check whether we have a default argument.
3704     TemplateArgumentLoc Arg;
3705 
3706     // Retrieve the default template argument from the template
3707     // parameter. For each kind of template parameter, we substitute the
3708     // template arguments provided thus far and any "outer" template arguments
3709     // (when the template parameter was part of a nested template) into
3710     // the default argument.
3711     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
3712       if (!TTP->hasDefaultArgument())
3713         return diagnoseArityMismatch(*this, Template, TemplateLoc,
3714                                      TemplateArgs);
3715 
3716       TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
3717                                                              Template,
3718                                                              TemplateLoc,
3719                                                              RAngleLoc,
3720                                                              TTP,
3721                                                              Converted);
3722       if (!ArgType)
3723         return true;
3724 
3725       Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
3726                                 ArgType);
3727     } else if (NonTypeTemplateParmDecl *NTTP
3728                  = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3729       if (!NTTP->hasDefaultArgument())
3730         return diagnoseArityMismatch(*this, Template, TemplateLoc,
3731                                      TemplateArgs);
3732 
3733       ExprResult E = SubstDefaultTemplateArgument(*this, Template,
3734                                                               TemplateLoc,
3735                                                               RAngleLoc,
3736                                                               NTTP,
3737                                                               Converted);
3738       if (E.isInvalid())
3739         return true;
3740 
3741       Expr *Ex = E.takeAs<Expr>();
3742       Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
3743     } else {
3744       TemplateTemplateParmDecl *TempParm
3745         = cast<TemplateTemplateParmDecl>(*Param);
3746 
3747       if (!TempParm->hasDefaultArgument())
3748         return diagnoseArityMismatch(*this, Template, TemplateLoc,
3749                                      TemplateArgs);
3750 
3751       NestedNameSpecifierLoc QualifierLoc;
3752       TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3753                                                        TemplateLoc,
3754                                                        RAngleLoc,
3755                                                        TempParm,
3756                                                        Converted,
3757                                                        QualifierLoc);
3758       if (Name.isNull())
3759         return true;
3760 
3761       Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3762                            TempParm->getDefaultArgument().getTemplateNameLoc());
3763     }
3764 
3765     // Introduce an instantiation record that describes where we are using
3766     // the default template argument.
3767     InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
3768                                SourceRange(TemplateLoc, RAngleLoc));
3769     if (Inst.isInvalid())
3770       return true;
3771 
3772     // Check the default template argument.
3773     if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3774                               RAngleLoc, 0, Converted))
3775       return true;
3776 
3777     // Core issue 150 (assumed resolution): if this is a template template
3778     // parameter, keep track of the default template arguments from the
3779     // template definition.
3780     if (isTemplateTemplateParameter)
3781       TemplateArgs.addArgument(Arg);
3782 
3783     // Move to the next template parameter and argument.
3784     ++Param;
3785     ++ArgIdx;
3786   }
3787 
3788   // If we have any leftover arguments, then there were too many arguments.
3789   // Complain and fail.
3790   if (ArgIdx < NumArgs)
3791     return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3792 
3793   return false;
3794 }
3795 
3796 namespace {
3797   class UnnamedLocalNoLinkageFinder
3798     : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3799   {
3800     Sema &S;
3801     SourceRange SR;
3802 
3803     typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3804 
3805   public:
3806     UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3807 
3808     bool Visit(QualType T) {
3809       return inherited::Visit(T.getTypePtr());
3810     }
3811 
3812 #define TYPE(Class, Parent) \
3813     bool Visit##Class##Type(const Class##Type *);
3814 #define ABSTRACT_TYPE(Class, Parent) \
3815     bool Visit##Class##Type(const Class##Type *) { return false; }
3816 #define NON_CANONICAL_TYPE(Class, Parent) \
3817     bool Visit##Class##Type(const Class##Type *) { return false; }
3818 #include "clang/AST/TypeNodes.def"
3819 
3820     bool VisitTagDecl(const TagDecl *Tag);
3821     bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3822   };
3823 }
3824 
3825 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3826   return false;
3827 }
3828 
3829 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3830   return Visit(T->getElementType());
3831 }
3832 
3833 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3834   return Visit(T->getPointeeType());
3835 }
3836 
3837 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3838                                                     const BlockPointerType* T) {
3839   return Visit(T->getPointeeType());
3840 }
3841 
3842 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3843                                                 const LValueReferenceType* T) {
3844   return Visit(T->getPointeeType());
3845 }
3846 
3847 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3848                                                 const RValueReferenceType* T) {
3849   return Visit(T->getPointeeType());
3850 }
3851 
3852 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3853                                                   const MemberPointerType* T) {
3854   return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3855 }
3856 
3857 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3858                                                   const ConstantArrayType* T) {
3859   return Visit(T->getElementType());
3860 }
3861 
3862 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3863                                                  const IncompleteArrayType* T) {
3864   return Visit(T->getElementType());
3865 }
3866 
3867 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3868                                                    const VariableArrayType* T) {
3869   return Visit(T->getElementType());
3870 }
3871 
3872 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3873                                             const DependentSizedArrayType* T) {
3874   return Visit(T->getElementType());
3875 }
3876 
3877 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3878                                          const DependentSizedExtVectorType* T) {
3879   return Visit(T->getElementType());
3880 }
3881 
3882 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3883   return Visit(T->getElementType());
3884 }
3885 
3886 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3887   return Visit(T->getElementType());
3888 }
3889 
3890 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3891                                                   const FunctionProtoType* T) {
3892   for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
3893                                          AEnd = T->arg_type_end();
3894        A != AEnd; ++A) {
3895     if (Visit(*A))
3896       return true;
3897   }
3898 
3899   return Visit(T->getResultType());
3900 }
3901 
3902 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3903                                                const FunctionNoProtoType* T) {
3904   return Visit(T->getResultType());
3905 }
3906 
3907 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
3908                                                   const UnresolvedUsingType*) {
3909   return false;
3910 }
3911 
3912 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
3913   return false;
3914 }
3915 
3916 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
3917   return Visit(T->getUnderlyingType());
3918 }
3919 
3920 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
3921   return false;
3922 }
3923 
3924 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
3925                                                     const UnaryTransformType*) {
3926   return false;
3927 }
3928 
3929 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
3930   return Visit(T->getDeducedType());
3931 }
3932 
3933 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
3934   return VisitTagDecl(T->getDecl());
3935 }
3936 
3937 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
3938   return VisitTagDecl(T->getDecl());
3939 }
3940 
3941 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
3942                                                  const TemplateTypeParmType*) {
3943   return false;
3944 }
3945 
3946 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
3947                                         const SubstTemplateTypeParmPackType *) {
3948   return false;
3949 }
3950 
3951 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
3952                                             const TemplateSpecializationType*) {
3953   return false;
3954 }
3955 
3956 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
3957                                               const InjectedClassNameType* T) {
3958   return VisitTagDecl(T->getDecl());
3959 }
3960 
3961 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
3962                                                    const DependentNameType* T) {
3963   return VisitNestedNameSpecifier(T->getQualifier());
3964 }
3965 
3966 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
3967                                  const DependentTemplateSpecializationType* T) {
3968   return VisitNestedNameSpecifier(T->getQualifier());
3969 }
3970 
3971 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
3972                                                    const PackExpansionType* T) {
3973   return Visit(T->getPattern());
3974 }
3975 
3976 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
3977   return false;
3978 }
3979 
3980 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
3981                                                    const ObjCInterfaceType *) {
3982   return false;
3983 }
3984 
3985 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
3986                                                 const ObjCObjectPointerType *) {
3987   return false;
3988 }
3989 
3990 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
3991   return Visit(T->getValueType());
3992 }
3993 
3994 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
3995   if (Tag->getDeclContext()->isFunctionOrMethod()) {
3996     S.Diag(SR.getBegin(),
3997            S.getLangOpts().CPlusPlus11 ?
3998              diag::warn_cxx98_compat_template_arg_local_type :
3999              diag::ext_template_arg_local_type)
4000       << S.Context.getTypeDeclType(Tag) << SR;
4001     return true;
4002   }
4003 
4004   if (!Tag->hasNameForLinkage()) {
4005     S.Diag(SR.getBegin(),
4006            S.getLangOpts().CPlusPlus11 ?
4007              diag::warn_cxx98_compat_template_arg_unnamed_type :
4008              diag::ext_template_arg_unnamed_type) << SR;
4009     S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
4010     return true;
4011   }
4012 
4013   return false;
4014 }
4015 
4016 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
4017                                                     NestedNameSpecifier *NNS) {
4018   if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
4019     return true;
4020 
4021   switch (NNS->getKind()) {
4022   case NestedNameSpecifier::Identifier:
4023   case NestedNameSpecifier::Namespace:
4024   case NestedNameSpecifier::NamespaceAlias:
4025   case NestedNameSpecifier::Global:
4026     return false;
4027 
4028   case NestedNameSpecifier::TypeSpec:
4029   case NestedNameSpecifier::TypeSpecWithTemplate:
4030     return Visit(QualType(NNS->getAsType(), 0));
4031   }
4032   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4033 }
4034 
4035 
4036 /// \brief Check a template argument against its corresponding
4037 /// template type parameter.
4038 ///
4039 /// This routine implements the semantics of C++ [temp.arg.type]. It
4040 /// returns true if an error occurred, and false otherwise.
4041 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
4042                                  TypeSourceInfo *ArgInfo) {
4043   assert(ArgInfo && "invalid TypeSourceInfo");
4044   QualType Arg = ArgInfo->getType();
4045   SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
4046 
4047   if (Arg->isVariablyModifiedType()) {
4048     return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
4049   } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
4050     return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
4051   }
4052 
4053   // C++03 [temp.arg.type]p2:
4054   //   A local type, a type with no linkage, an unnamed type or a type
4055   //   compounded from any of these types shall not be used as a
4056   //   template-argument for a template type-parameter.
4057   //
4058   // C++11 allows these, and even in C++03 we allow them as an extension with
4059   // a warning.
4060   if (LangOpts.CPlusPlus11 ?
4061      Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type,
4062                               SR.getBegin()) != DiagnosticsEngine::Ignored ||
4063       Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type,
4064                                SR.getBegin()) != DiagnosticsEngine::Ignored :
4065       Arg->hasUnnamedOrLocalType()) {
4066     UnnamedLocalNoLinkageFinder Finder(*this, SR);
4067     (void)Finder.Visit(Context.getCanonicalType(Arg));
4068   }
4069 
4070   return false;
4071 }
4072 
4073 enum NullPointerValueKind {
4074   NPV_NotNullPointer,
4075   NPV_NullPointer,
4076   NPV_Error
4077 };
4078 
4079 /// \brief Determine whether the given template argument is a null pointer
4080 /// value of the appropriate type.
4081 static NullPointerValueKind
4082 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
4083                                    QualType ParamType, Expr *Arg) {
4084   if (Arg->isValueDependent() || Arg->isTypeDependent())
4085     return NPV_NotNullPointer;
4086 
4087   if (!S.getLangOpts().CPlusPlus11)
4088     return NPV_NotNullPointer;
4089 
4090   // Determine whether we have a constant expression.
4091   ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
4092   if (ArgRV.isInvalid())
4093     return NPV_Error;
4094   Arg = ArgRV.take();
4095 
4096   Expr::EvalResult EvalResult;
4097   SmallVector<PartialDiagnosticAt, 8> Notes;
4098   EvalResult.Diag = &Notes;
4099   if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
4100       EvalResult.HasSideEffects) {
4101     SourceLocation DiagLoc = Arg->getExprLoc();
4102 
4103     // If our only note is the usual "invalid subexpression" note, just point
4104     // the caret at its location rather than producing an essentially
4105     // redundant note.
4106     if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
4107         diag::note_invalid_subexpr_in_const_expr) {
4108       DiagLoc = Notes[0].first;
4109       Notes.clear();
4110     }
4111 
4112     S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
4113       << Arg->getType() << Arg->getSourceRange();
4114     for (unsigned I = 0, N = Notes.size(); I != N; ++I)
4115       S.Diag(Notes[I].first, Notes[I].second);
4116 
4117     S.Diag(Param->getLocation(), diag::note_template_param_here);
4118     return NPV_Error;
4119   }
4120 
4121   // C++11 [temp.arg.nontype]p1:
4122   //   - an address constant expression of type std::nullptr_t
4123   if (Arg->getType()->isNullPtrType())
4124     return NPV_NullPointer;
4125 
4126   //   - a constant expression that evaluates to a null pointer value (4.10); or
4127   //   - a constant expression that evaluates to a null member pointer value
4128   //     (4.11); or
4129   if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
4130       (EvalResult.Val.isMemberPointer() &&
4131        !EvalResult.Val.getMemberPointerDecl())) {
4132     // If our expression has an appropriate type, we've succeeded.
4133     bool ObjCLifetimeConversion;
4134     if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
4135         S.IsQualificationConversion(Arg->getType(), ParamType, false,
4136                                      ObjCLifetimeConversion))
4137       return NPV_NullPointer;
4138 
4139     // The types didn't match, but we know we got a null pointer; complain,
4140     // then recover as if the types were correct.
4141     S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
4142       << Arg->getType() << ParamType << Arg->getSourceRange();
4143     S.Diag(Param->getLocation(), diag::note_template_param_here);
4144     return NPV_NullPointer;
4145   }
4146 
4147   // If we don't have a null pointer value, but we do have a NULL pointer
4148   // constant, suggest a cast to the appropriate type.
4149   if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
4150     std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
4151     S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
4152       << ParamType
4153       << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
4154       << FixItHint::CreateInsertion(S.PP.getLocForEndOfToken(Arg->getLocEnd()),
4155                                     ")");
4156     S.Diag(Param->getLocation(), diag::note_template_param_here);
4157     return NPV_NullPointer;
4158   }
4159 
4160   // FIXME: If we ever want to support general, address-constant expressions
4161   // as non-type template arguments, we should return the ExprResult here to
4162   // be interpreted by the caller.
4163   return NPV_NotNullPointer;
4164 }
4165 
4166 /// \brief Checks whether the given template argument is compatible with its
4167 /// template parameter.
4168 static bool CheckTemplateArgumentIsCompatibleWithParameter(
4169     Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
4170     Expr *Arg, QualType ArgType) {
4171   bool ObjCLifetimeConversion;
4172   if (ParamType->isPointerType() &&
4173       !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
4174       S.IsQualificationConversion(ArgType, ParamType, false,
4175                                   ObjCLifetimeConversion)) {
4176     // For pointer-to-object types, qualification conversions are
4177     // permitted.
4178   } else {
4179     if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
4180       if (!ParamRef->getPointeeType()->isFunctionType()) {
4181         // C++ [temp.arg.nontype]p5b3:
4182         //   For a non-type template-parameter of type reference to
4183         //   object, no conversions apply. The type referred to by the
4184         //   reference may be more cv-qualified than the (otherwise
4185         //   identical) type of the template- argument. The
4186         //   template-parameter is bound directly to the
4187         //   template-argument, which shall be an lvalue.
4188 
4189         // FIXME: Other qualifiers?
4190         unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
4191         unsigned ArgQuals = ArgType.getCVRQualifiers();
4192 
4193         if ((ParamQuals | ArgQuals) != ParamQuals) {
4194           S.Diag(Arg->getLocStart(),
4195                  diag::err_template_arg_ref_bind_ignores_quals)
4196             << ParamType << Arg->getType() << Arg->getSourceRange();
4197           S.Diag(Param->getLocation(), diag::note_template_param_here);
4198           return true;
4199         }
4200       }
4201     }
4202 
4203     // At this point, the template argument refers to an object or
4204     // function with external linkage. We now need to check whether the
4205     // argument and parameter types are compatible.
4206     if (!S.Context.hasSameUnqualifiedType(ArgType,
4207                                           ParamType.getNonReferenceType())) {
4208       // We can't perform this conversion or binding.
4209       if (ParamType->isReferenceType())
4210         S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
4211           << ParamType << ArgIn->getType() << Arg->getSourceRange();
4212       else
4213         S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
4214           << ArgIn->getType() << ParamType << Arg->getSourceRange();
4215       S.Diag(Param->getLocation(), diag::note_template_param_here);
4216       return true;
4217     }
4218   }
4219 
4220   return false;
4221 }
4222 
4223 /// \brief Checks whether the given template argument is the address
4224 /// of an object or function according to C++ [temp.arg.nontype]p1.
4225 static bool
4226 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
4227                                                NonTypeTemplateParmDecl *Param,
4228                                                QualType ParamType,
4229                                                Expr *ArgIn,
4230                                                TemplateArgument &Converted) {
4231   bool Invalid = false;
4232   Expr *Arg = ArgIn;
4233   QualType ArgType = Arg->getType();
4234 
4235   // If our parameter has pointer type, check for a null template value.
4236   if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
4237     switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
4238     case NPV_NullPointer:
4239       S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4240       Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
4241       return false;
4242 
4243     case NPV_Error:
4244       return true;
4245 
4246     case NPV_NotNullPointer:
4247       break;
4248     }
4249   }
4250 
4251   bool AddressTaken = false;
4252   SourceLocation AddrOpLoc;
4253   if (S.getLangOpts().MicrosoftExt) {
4254     // Microsoft Visual C++ strips all casts, allows an arbitrary number of
4255     // dereference and address-of operators.
4256     Arg = Arg->IgnoreParenCasts();
4257 
4258     bool ExtWarnMSTemplateArg = false;
4259     UnaryOperatorKind FirstOpKind;
4260     SourceLocation FirstOpLoc;
4261     while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4262       UnaryOperatorKind UnOpKind = UnOp->getOpcode();
4263       if (UnOpKind == UO_Deref)
4264         ExtWarnMSTemplateArg = true;
4265       if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
4266         Arg = UnOp->getSubExpr()->IgnoreParenCasts();
4267         if (!AddrOpLoc.isValid()) {
4268           FirstOpKind = UnOpKind;
4269           FirstOpLoc = UnOp->getOperatorLoc();
4270         }
4271       } else
4272         break;
4273     }
4274     if (FirstOpLoc.isValid()) {
4275       if (ExtWarnMSTemplateArg)
4276         S.Diag(ArgIn->getLocStart(), diag::ext_ms_deref_template_argument)
4277           << ArgIn->getSourceRange();
4278 
4279       if (FirstOpKind == UO_AddrOf)
4280         AddressTaken = true;
4281       else if (Arg->getType()->isPointerType()) {
4282         // We cannot let pointers get dereferenced here, that is obviously not a
4283         // constant expression.
4284         assert(FirstOpKind == UO_Deref);
4285         S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4286           << Arg->getSourceRange();
4287       }
4288     }
4289   } else {
4290     // See through any implicit casts we added to fix the type.
4291     Arg = Arg->IgnoreImpCasts();
4292 
4293     // C++ [temp.arg.nontype]p1:
4294     //
4295     //   A template-argument for a non-type, non-template
4296     //   template-parameter shall be one of: [...]
4297     //
4298     //     -- the address of an object or function with external
4299     //        linkage, including function templates and function
4300     //        template-ids but excluding non-static class members,
4301     //        expressed as & id-expression where the & is optional if
4302     //        the name refers to a function or array, or if the
4303     //        corresponding template-parameter is a reference; or
4304 
4305     // In C++98/03 mode, give an extension warning on any extra parentheses.
4306     // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4307     bool ExtraParens = false;
4308     while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4309       if (!Invalid && !ExtraParens) {
4310         S.Diag(Arg->getLocStart(),
4311                S.getLangOpts().CPlusPlus11
4312                    ? diag::warn_cxx98_compat_template_arg_extra_parens
4313                    : diag::ext_template_arg_extra_parens)
4314             << Arg->getSourceRange();
4315         ExtraParens = true;
4316       }
4317 
4318       Arg = Parens->getSubExpr();
4319     }
4320 
4321     while (SubstNonTypeTemplateParmExpr *subst =
4322                dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4323       Arg = subst->getReplacement()->IgnoreImpCasts();
4324 
4325     if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4326       if (UnOp->getOpcode() == UO_AddrOf) {
4327         Arg = UnOp->getSubExpr();
4328         AddressTaken = true;
4329         AddrOpLoc = UnOp->getOperatorLoc();
4330       }
4331     }
4332 
4333     while (SubstNonTypeTemplateParmExpr *subst =
4334                dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4335       Arg = subst->getReplacement()->IgnoreImpCasts();
4336   }
4337 
4338   // Stop checking the precise nature of the argument if it is value dependent,
4339   // it should be checked when instantiated.
4340   if (Arg->isValueDependent()) {
4341     Converted = TemplateArgument(ArgIn);
4342     return false;
4343   }
4344 
4345   if (isa<CXXUuidofExpr>(Arg)) {
4346     if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType,
4347                                                        ArgIn, Arg, ArgType))
4348       return true;
4349 
4350     Converted = TemplateArgument(ArgIn);
4351     return false;
4352   }
4353 
4354   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
4355   if (!DRE) {
4356     S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4357     << Arg->getSourceRange();
4358     S.Diag(Param->getLocation(), diag::note_template_param_here);
4359     return true;
4360   }
4361 
4362   ValueDecl *Entity = DRE->getDecl();
4363 
4364   // Cannot refer to non-static data members
4365   if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
4366     S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
4367       << Entity << Arg->getSourceRange();
4368     S.Diag(Param->getLocation(), diag::note_template_param_here);
4369     return true;
4370   }
4371 
4372   // Cannot refer to non-static member functions
4373   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
4374     if (!Method->isStatic()) {
4375       S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
4376         << Method << Arg->getSourceRange();
4377       S.Diag(Param->getLocation(), diag::note_template_param_here);
4378       return true;
4379     }
4380   }
4381 
4382   FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
4383   VarDecl *Var = dyn_cast<VarDecl>(Entity);
4384 
4385   // A non-type template argument must refer to an object or function.
4386   if (!Func && !Var) {
4387     // We found something, but we don't know specifically what it is.
4388     S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
4389       << Arg->getSourceRange();
4390     S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4391     return true;
4392   }
4393 
4394   // Address / reference template args must have external linkage in C++98.
4395   if (Entity->getFormalLinkage() == InternalLinkage) {
4396     S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ?
4397              diag::warn_cxx98_compat_template_arg_object_internal :
4398              diag::ext_template_arg_object_internal)
4399       << !Func << Entity << Arg->getSourceRange();
4400     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4401       << !Func;
4402   } else if (!Entity->hasLinkage()) {
4403     S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
4404       << !Func << Entity << Arg->getSourceRange();
4405     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4406       << !Func;
4407     return true;
4408   }
4409 
4410   if (Func) {
4411     // If the template parameter has pointer type, the function decays.
4412     if (ParamType->isPointerType() && !AddressTaken)
4413       ArgType = S.Context.getPointerType(Func->getType());
4414     else if (AddressTaken && ParamType->isReferenceType()) {
4415       // If we originally had an address-of operator, but the
4416       // parameter has reference type, complain and (if things look
4417       // like they will work) drop the address-of operator.
4418       if (!S.Context.hasSameUnqualifiedType(Func->getType(),
4419                                             ParamType.getNonReferenceType())) {
4420         S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4421           << ParamType;
4422         S.Diag(Param->getLocation(), diag::note_template_param_here);
4423         return true;
4424       }
4425 
4426       S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4427         << ParamType
4428         << FixItHint::CreateRemoval(AddrOpLoc);
4429       S.Diag(Param->getLocation(), diag::note_template_param_here);
4430 
4431       ArgType = Func->getType();
4432     }
4433   } else {
4434     // A value of reference type is not an object.
4435     if (Var->getType()->isReferenceType()) {
4436       S.Diag(Arg->getLocStart(),
4437              diag::err_template_arg_reference_var)
4438         << Var->getType() << Arg->getSourceRange();
4439       S.Diag(Param->getLocation(), diag::note_template_param_here);
4440       return true;
4441     }
4442 
4443     // A template argument must have static storage duration.
4444     if (Var->getTLSKind()) {
4445       S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
4446         << Arg->getSourceRange();
4447       S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
4448       return true;
4449     }
4450 
4451     // If the template parameter has pointer type, we must have taken
4452     // the address of this object.
4453     if (ParamType->isReferenceType()) {
4454       if (AddressTaken) {
4455         // If we originally had an address-of operator, but the
4456         // parameter has reference type, complain and (if things look
4457         // like they will work) drop the address-of operator.
4458         if (!S.Context.hasSameUnqualifiedType(Var->getType(),
4459                                             ParamType.getNonReferenceType())) {
4460           S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4461             << ParamType;
4462           S.Diag(Param->getLocation(), diag::note_template_param_here);
4463           return true;
4464         }
4465 
4466         S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4467           << ParamType
4468           << FixItHint::CreateRemoval(AddrOpLoc);
4469         S.Diag(Param->getLocation(), diag::note_template_param_here);
4470 
4471         ArgType = Var->getType();
4472       }
4473     } else if (!AddressTaken && ParamType->isPointerType()) {
4474       if (Var->getType()->isArrayType()) {
4475         // Array-to-pointer decay.
4476         ArgType = S.Context.getArrayDecayedType(Var->getType());
4477       } else {
4478         // If the template parameter has pointer type but the address of
4479         // this object was not taken, complain and (possibly) recover by
4480         // taking the address of the entity.
4481         ArgType = S.Context.getPointerType(Var->getType());
4482         if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
4483           S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4484             << ParamType;
4485           S.Diag(Param->getLocation(), diag::note_template_param_here);
4486           return true;
4487         }
4488 
4489         S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4490           << ParamType
4491           << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
4492 
4493         S.Diag(Param->getLocation(), diag::note_template_param_here);
4494       }
4495     }
4496   }
4497 
4498   if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
4499                                                      Arg, ArgType))
4500     return true;
4501 
4502   // Create the template argument.
4503   Converted = TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()),
4504                                ParamType->isReferenceType());
4505   S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false);
4506   return false;
4507 }
4508 
4509 /// \brief Checks whether the given template argument is a pointer to
4510 /// member constant according to C++ [temp.arg.nontype]p1.
4511 static bool CheckTemplateArgumentPointerToMember(Sema &S,
4512                                                  NonTypeTemplateParmDecl *Param,
4513                                                  QualType ParamType,
4514                                                  Expr *&ResultArg,
4515                                                  TemplateArgument &Converted) {
4516   bool Invalid = false;
4517 
4518   // Check for a null pointer value.
4519   Expr *Arg = ResultArg;
4520   switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
4521   case NPV_Error:
4522     return true;
4523   case NPV_NullPointer:
4524     S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4525     Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
4526     return false;
4527   case NPV_NotNullPointer:
4528     break;
4529   }
4530 
4531   bool ObjCLifetimeConversion;
4532   if (S.IsQualificationConversion(Arg->getType(),
4533                                   ParamType.getNonReferenceType(),
4534                                   false, ObjCLifetimeConversion)) {
4535     Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
4536                               Arg->getValueKind()).take();
4537     ResultArg = Arg;
4538   } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
4539                 ParamType.getNonReferenceType())) {
4540     // We can't perform this conversion.
4541     S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
4542       << Arg->getType() << ParamType << Arg->getSourceRange();
4543     S.Diag(Param->getLocation(), diag::note_template_param_here);
4544     return true;
4545   }
4546 
4547   // See through any implicit casts we added to fix the type.
4548   while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
4549     Arg = Cast->getSubExpr();
4550 
4551   // C++ [temp.arg.nontype]p1:
4552   //
4553   //   A template-argument for a non-type, non-template
4554   //   template-parameter shall be one of: [...]
4555   //
4556   //     -- a pointer to member expressed as described in 5.3.1.
4557   DeclRefExpr *DRE = 0;
4558 
4559   // In C++98/03 mode, give an extension warning on any extra parentheses.
4560   // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4561   bool ExtraParens = false;
4562   while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4563     if (!Invalid && !ExtraParens) {
4564       S.Diag(Arg->getLocStart(),
4565              S.getLangOpts().CPlusPlus11 ?
4566                diag::warn_cxx98_compat_template_arg_extra_parens :
4567                diag::ext_template_arg_extra_parens)
4568         << Arg->getSourceRange();
4569       ExtraParens = true;
4570     }
4571 
4572     Arg = Parens->getSubExpr();
4573   }
4574 
4575   while (SubstNonTypeTemplateParmExpr *subst =
4576            dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4577     Arg = subst->getReplacement()->IgnoreImpCasts();
4578 
4579   // A pointer-to-member constant written &Class::member.
4580   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4581     if (UnOp->getOpcode() == UO_AddrOf) {
4582       DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
4583       if (DRE && !DRE->getQualifier())
4584         DRE = 0;
4585     }
4586   }
4587   // A constant of pointer-to-member type.
4588   else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
4589     if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
4590       if (VD->getType()->isMemberPointerType()) {
4591         if (isa<NonTypeTemplateParmDecl>(VD) ||
4592             (isa<VarDecl>(VD) &&
4593              S.Context.getCanonicalType(VD->getType()).isConstQualified())) {
4594           if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4595             Converted = TemplateArgument(Arg);
4596           } else {
4597             VD = cast<ValueDecl>(VD->getCanonicalDecl());
4598             Converted = TemplateArgument(VD, /*isReferenceParam*/false);
4599           }
4600           return Invalid;
4601         }
4602       }
4603     }
4604 
4605     DRE = 0;
4606   }
4607 
4608   if (!DRE)
4609     return S.Diag(Arg->getLocStart(),
4610                   diag::err_template_arg_not_pointer_to_member_form)
4611       << Arg->getSourceRange();
4612 
4613   if (isa<FieldDecl>(DRE->getDecl()) ||
4614       isa<IndirectFieldDecl>(DRE->getDecl()) ||
4615       isa<CXXMethodDecl>(DRE->getDecl())) {
4616     assert((isa<FieldDecl>(DRE->getDecl()) ||
4617             isa<IndirectFieldDecl>(DRE->getDecl()) ||
4618             !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
4619            "Only non-static member pointers can make it here");
4620 
4621     // Okay: this is the address of a non-static member, and therefore
4622     // a member pointer constant.
4623     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4624       Converted = TemplateArgument(Arg);
4625     } else {
4626       ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
4627       Converted = TemplateArgument(D, /*isReferenceParam*/false);
4628     }
4629     return Invalid;
4630   }
4631 
4632   // We found something else, but we don't know specifically what it is.
4633   S.Diag(Arg->getLocStart(),
4634          diag::err_template_arg_not_pointer_to_member_form)
4635     << Arg->getSourceRange();
4636   S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4637   return true;
4638 }
4639 
4640 /// \brief Check a template argument against its corresponding
4641 /// non-type template parameter.
4642 ///
4643 /// This routine implements the semantics of C++ [temp.arg.nontype].
4644 /// If an error occurred, it returns ExprError(); otherwise, it
4645 /// returns the converted template argument. \p
4646 /// InstantiatedParamType is the type of the non-type template
4647 /// parameter after it has been instantiated.
4648 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
4649                                        QualType InstantiatedParamType, Expr *Arg,
4650                                        TemplateArgument &Converted,
4651                                        CheckTemplateArgumentKind CTAK) {
4652   SourceLocation StartLoc = Arg->getLocStart();
4653 
4654   // If either the parameter has a dependent type or the argument is
4655   // type-dependent, there's nothing we can check now.
4656   if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
4657     // FIXME: Produce a cloned, canonical expression?
4658     Converted = TemplateArgument(Arg);
4659     return Owned(Arg);
4660   }
4661 
4662   // C++ [temp.arg.nontype]p5:
4663   //   The following conversions are performed on each expression used
4664   //   as a non-type template-argument. If a non-type
4665   //   template-argument cannot be converted to the type of the
4666   //   corresponding template-parameter then the program is
4667   //   ill-formed.
4668   QualType ParamType = InstantiatedParamType;
4669   if (ParamType->isIntegralOrEnumerationType()) {
4670     // C++11:
4671     //   -- for a non-type template-parameter of integral or
4672     //      enumeration type, conversions permitted in a converted
4673     //      constant expression are applied.
4674     //
4675     // C++98:
4676     //   -- for a non-type template-parameter of integral or
4677     //      enumeration type, integral promotions (4.5) and integral
4678     //      conversions (4.7) are applied.
4679 
4680     if (CTAK == CTAK_Deduced &&
4681         !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
4682       // C++ [temp.deduct.type]p17:
4683       //   If, in the declaration of a function template with a non-type
4684       //   template-parameter, the non-type template-parameter is used
4685       //   in an expression in the function parameter-list and, if the
4686       //   corresponding template-argument is deduced, the
4687       //   template-argument type shall match the type of the
4688       //   template-parameter exactly, except that a template-argument
4689       //   deduced from an array bound may be of any integral type.
4690       Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
4691         << Arg->getType().getUnqualifiedType()
4692         << ParamType.getUnqualifiedType();
4693       Diag(Param->getLocation(), diag::note_template_param_here);
4694       return ExprError();
4695     }
4696 
4697     if (getLangOpts().CPlusPlus11) {
4698       // We can't check arbitrary value-dependent arguments.
4699       // FIXME: If there's no viable conversion to the template parameter type,
4700       // we should be able to diagnose that prior to instantiation.
4701       if (Arg->isValueDependent()) {
4702         Converted = TemplateArgument(Arg);
4703         return Owned(Arg);
4704       }
4705 
4706       // C++ [temp.arg.nontype]p1:
4707       //   A template-argument for a non-type, non-template template-parameter
4708       //   shall be one of:
4709       //
4710       //     -- for a non-type template-parameter of integral or enumeration
4711       //        type, a converted constant expression of the type of the
4712       //        template-parameter; or
4713       llvm::APSInt Value;
4714       ExprResult ArgResult =
4715         CheckConvertedConstantExpression(Arg, ParamType, Value,
4716                                          CCEK_TemplateArg);
4717       if (ArgResult.isInvalid())
4718         return ExprError();
4719 
4720       // Widen the argument value to sizeof(parameter type). This is almost
4721       // always a no-op, except when the parameter type is bool. In
4722       // that case, this may extend the argument from 1 bit to 8 bits.
4723       QualType IntegerType = ParamType;
4724       if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4725         IntegerType = Enum->getDecl()->getIntegerType();
4726       Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
4727 
4728       Converted = TemplateArgument(Context, Value,
4729                                    Context.getCanonicalType(ParamType));
4730       return ArgResult;
4731     }
4732 
4733     ExprResult ArgResult = DefaultLvalueConversion(Arg);
4734     if (ArgResult.isInvalid())
4735       return ExprError();
4736     Arg = ArgResult.take();
4737 
4738     QualType ArgType = Arg->getType();
4739 
4740     // C++ [temp.arg.nontype]p1:
4741     //   A template-argument for a non-type, non-template
4742     //   template-parameter shall be one of:
4743     //
4744     //     -- an integral constant-expression of integral or enumeration
4745     //        type; or
4746     //     -- the name of a non-type template-parameter; or
4747     SourceLocation NonConstantLoc;
4748     llvm::APSInt Value;
4749     if (!ArgType->isIntegralOrEnumerationType()) {
4750       Diag(Arg->getLocStart(),
4751            diag::err_template_arg_not_integral_or_enumeral)
4752         << ArgType << Arg->getSourceRange();
4753       Diag(Param->getLocation(), diag::note_template_param_here);
4754       return ExprError();
4755     } else if (!Arg->isValueDependent()) {
4756       class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
4757         QualType T;
4758 
4759       public:
4760         TmplArgICEDiagnoser(QualType T) : T(T) { }
4761 
4762         virtual void diagnoseNotICE(Sema &S, SourceLocation Loc,
4763                                     SourceRange SR) {
4764           S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
4765         }
4766       } Diagnoser(ArgType);
4767 
4768       Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
4769                                             false).take();
4770       if (!Arg)
4771         return ExprError();
4772     }
4773 
4774     // From here on out, all we care about are the unqualified forms
4775     // of the parameter and argument types.
4776     ParamType = ParamType.getUnqualifiedType();
4777     ArgType = ArgType.getUnqualifiedType();
4778 
4779     // Try to convert the argument to the parameter's type.
4780     if (Context.hasSameType(ParamType, ArgType)) {
4781       // Okay: no conversion necessary
4782     } else if (ParamType->isBooleanType()) {
4783       // This is an integral-to-boolean conversion.
4784       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
4785     } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
4786                !ParamType->isEnumeralType()) {
4787       // This is an integral promotion or conversion.
4788       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
4789     } else {
4790       // We can't perform this conversion.
4791       Diag(Arg->getLocStart(),
4792            diag::err_template_arg_not_convertible)
4793         << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
4794       Diag(Param->getLocation(), diag::note_template_param_here);
4795       return ExprError();
4796     }
4797 
4798     // Add the value of this argument to the list of converted
4799     // arguments. We use the bitwidth and signedness of the template
4800     // parameter.
4801     if (Arg->isValueDependent()) {
4802       // The argument is value-dependent. Create a new
4803       // TemplateArgument with the converted expression.
4804       Converted = TemplateArgument(Arg);
4805       return Owned(Arg);
4806     }
4807 
4808     QualType IntegerType = Context.getCanonicalType(ParamType);
4809     if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4810       IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
4811 
4812     if (ParamType->isBooleanType()) {
4813       // Value must be zero or one.
4814       Value = Value != 0;
4815       unsigned AllowedBits = Context.getTypeSize(IntegerType);
4816       if (Value.getBitWidth() != AllowedBits)
4817         Value = Value.extOrTrunc(AllowedBits);
4818       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4819     } else {
4820       llvm::APSInt OldValue = Value;
4821 
4822       // Coerce the template argument's value to the value it will have
4823       // based on the template parameter's type.
4824       unsigned AllowedBits = Context.getTypeSize(IntegerType);
4825       if (Value.getBitWidth() != AllowedBits)
4826         Value = Value.extOrTrunc(AllowedBits);
4827       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4828 
4829       // Complain if an unsigned parameter received a negative value.
4830       if (IntegerType->isUnsignedIntegerOrEnumerationType()
4831                && (OldValue.isSigned() && OldValue.isNegative())) {
4832         Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
4833           << OldValue.toString(10) << Value.toString(10) << Param->getType()
4834           << Arg->getSourceRange();
4835         Diag(Param->getLocation(), diag::note_template_param_here);
4836       }
4837 
4838       // Complain if we overflowed the template parameter's type.
4839       unsigned RequiredBits;
4840       if (IntegerType->isUnsignedIntegerOrEnumerationType())
4841         RequiredBits = OldValue.getActiveBits();
4842       else if (OldValue.isUnsigned())
4843         RequiredBits = OldValue.getActiveBits() + 1;
4844       else
4845         RequiredBits = OldValue.getMinSignedBits();
4846       if (RequiredBits > AllowedBits) {
4847         Diag(Arg->getLocStart(),
4848              diag::warn_template_arg_too_large)
4849           << OldValue.toString(10) << Value.toString(10) << Param->getType()
4850           << Arg->getSourceRange();
4851         Diag(Param->getLocation(), diag::note_template_param_here);
4852       }
4853     }
4854 
4855     Converted = TemplateArgument(Context, Value,
4856                                  ParamType->isEnumeralType()
4857                                    ? Context.getCanonicalType(ParamType)
4858                                    : IntegerType);
4859     return Owned(Arg);
4860   }
4861 
4862   QualType ArgType = Arg->getType();
4863   DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
4864 
4865   // Handle pointer-to-function, reference-to-function, and
4866   // pointer-to-member-function all in (roughly) the same way.
4867   if (// -- For a non-type template-parameter of type pointer to
4868       //    function, only the function-to-pointer conversion (4.3) is
4869       //    applied. If the template-argument represents a set of
4870       //    overloaded functions (or a pointer to such), the matching
4871       //    function is selected from the set (13.4).
4872       (ParamType->isPointerType() &&
4873        ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
4874       // -- For a non-type template-parameter of type reference to
4875       //    function, no conversions apply. If the template-argument
4876       //    represents a set of overloaded functions, the matching
4877       //    function is selected from the set (13.4).
4878       (ParamType->isReferenceType() &&
4879        ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
4880       // -- For a non-type template-parameter of type pointer to
4881       //    member function, no conversions apply. If the
4882       //    template-argument represents a set of overloaded member
4883       //    functions, the matching member function is selected from
4884       //    the set (13.4).
4885       (ParamType->isMemberPointerType() &&
4886        ParamType->getAs<MemberPointerType>()->getPointeeType()
4887          ->isFunctionType())) {
4888 
4889     if (Arg->getType() == Context.OverloadTy) {
4890       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
4891                                                                 true,
4892                                                                 FoundResult)) {
4893         if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4894           return ExprError();
4895 
4896         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4897         ArgType = Arg->getType();
4898       } else
4899         return ExprError();
4900     }
4901 
4902     if (!ParamType->isMemberPointerType()) {
4903       if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4904                                                          ParamType,
4905                                                          Arg, Converted))
4906         return ExprError();
4907       return Owned(Arg);
4908     }
4909 
4910     if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4911                                              Converted))
4912       return ExprError();
4913     return Owned(Arg);
4914   }
4915 
4916   if (ParamType->isPointerType()) {
4917     //   -- for a non-type template-parameter of type pointer to
4918     //      object, qualification conversions (4.4) and the
4919     //      array-to-pointer conversion (4.2) are applied.
4920     // C++0x also allows a value of std::nullptr_t.
4921     assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
4922            "Only object pointers allowed here");
4923 
4924     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4925                                                        ParamType,
4926                                                        Arg, Converted))
4927       return ExprError();
4928     return Owned(Arg);
4929   }
4930 
4931   if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
4932     //   -- For a non-type template-parameter of type reference to
4933     //      object, no conversions apply. The type referred to by the
4934     //      reference may be more cv-qualified than the (otherwise
4935     //      identical) type of the template-argument. The
4936     //      template-parameter is bound directly to the
4937     //      template-argument, which must be an lvalue.
4938     assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
4939            "Only object references allowed here");
4940 
4941     if (Arg->getType() == Context.OverloadTy) {
4942       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
4943                                                  ParamRefType->getPointeeType(),
4944                                                                 true,
4945                                                                 FoundResult)) {
4946         if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4947           return ExprError();
4948 
4949         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4950         ArgType = Arg->getType();
4951       } else
4952         return ExprError();
4953     }
4954 
4955     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4956                                                        ParamType,
4957                                                        Arg, Converted))
4958       return ExprError();
4959     return Owned(Arg);
4960   }
4961 
4962   // Deal with parameters of type std::nullptr_t.
4963   if (ParamType->isNullPtrType()) {
4964     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4965       Converted = TemplateArgument(Arg);
4966       return Owned(Arg);
4967     }
4968 
4969     switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
4970     case NPV_NotNullPointer:
4971       Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
4972         << Arg->getType() << ParamType;
4973       Diag(Param->getLocation(), diag::note_template_param_here);
4974       return ExprError();
4975 
4976     case NPV_Error:
4977       return ExprError();
4978 
4979     case NPV_NullPointer:
4980       Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4981       Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
4982       return Owned(Arg);
4983     }
4984   }
4985 
4986   //     -- For a non-type template-parameter of type pointer to data
4987   //        member, qualification conversions (4.4) are applied.
4988   assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
4989 
4990   if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4991                                            Converted))
4992     return ExprError();
4993   return Owned(Arg);
4994 }
4995 
4996 /// \brief Check a template argument against its corresponding
4997 /// template template parameter.
4998 ///
4999 /// This routine implements the semantics of C++ [temp.arg.template].
5000 /// It returns true if an error occurred, and false otherwise.
5001 bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
5002                                  const TemplateArgumentLoc &Arg,
5003                                  unsigned ArgumentPackIndex) {
5004   TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
5005   TemplateDecl *Template = Name.getAsTemplateDecl();
5006   if (!Template) {
5007     // Any dependent template name is fine.
5008     assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
5009     return false;
5010   }
5011 
5012   // C++0x [temp.arg.template]p1:
5013   //   A template-argument for a template template-parameter shall be
5014   //   the name of a class template or an alias template, expressed as an
5015   //   id-expression. When the template-argument names a class template, only
5016   //   primary class templates are considered when matching the
5017   //   template template argument with the corresponding parameter;
5018   //   partial specializations are not considered even if their
5019   //   parameter lists match that of the template template parameter.
5020   //
5021   // Note that we also allow template template parameters here, which
5022   // will happen when we are dealing with, e.g., class template
5023   // partial specializations.
5024   if (!isa<ClassTemplateDecl>(Template) &&
5025       !isa<TemplateTemplateParmDecl>(Template) &&
5026       !isa<TypeAliasTemplateDecl>(Template)) {
5027     assert(isa<FunctionTemplateDecl>(Template) &&
5028            "Only function templates are possible here");
5029     Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
5030     Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
5031       << Template;
5032   }
5033 
5034   TemplateParameterList *Params = Param->getTemplateParameters();
5035   if (Param->isExpandedParameterPack())
5036     Params = Param->getExpansionTemplateParameters(ArgumentPackIndex);
5037 
5038   return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
5039                                          Params,
5040                                          true,
5041                                          TPL_TemplateTemplateArgumentMatch,
5042                                          Arg.getLocation());
5043 }
5044 
5045 /// \brief Given a non-type template argument that refers to a
5046 /// declaration and the type of its corresponding non-type template
5047 /// parameter, produce an expression that properly refers to that
5048 /// declaration.
5049 ExprResult
5050 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
5051                                               QualType ParamType,
5052                                               SourceLocation Loc) {
5053   // C++ [temp.param]p8:
5054   //
5055   //   A non-type template-parameter of type "array of T" or
5056   //   "function returning T" is adjusted to be of type "pointer to
5057   //   T" or "pointer to function returning T", respectively.
5058   if (ParamType->isArrayType())
5059     ParamType = Context.getArrayDecayedType(ParamType);
5060   else if (ParamType->isFunctionType())
5061     ParamType = Context.getPointerType(ParamType);
5062 
5063   // For a NULL non-type template argument, return nullptr casted to the
5064   // parameter's type.
5065   if (Arg.getKind() == TemplateArgument::NullPtr) {
5066     return ImpCastExprToType(
5067              new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
5068                              ParamType,
5069                              ParamType->getAs<MemberPointerType>()
5070                                ? CK_NullToMemberPointer
5071                                : CK_NullToPointer);
5072   }
5073   assert(Arg.getKind() == TemplateArgument::Declaration &&
5074          "Only declaration template arguments permitted here");
5075 
5076   ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
5077 
5078   if (VD->getDeclContext()->isRecord() &&
5079       (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
5080        isa<IndirectFieldDecl>(VD))) {
5081     // If the value is a class member, we might have a pointer-to-member.
5082     // Determine whether the non-type template template parameter is of
5083     // pointer-to-member type. If so, we need to build an appropriate
5084     // expression for a pointer-to-member, since a "normal" DeclRefExpr
5085     // would refer to the member itself.
5086     if (ParamType->isMemberPointerType()) {
5087       QualType ClassType
5088         = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
5089       NestedNameSpecifier *Qualifier
5090         = NestedNameSpecifier::Create(Context, 0, false,
5091                                       ClassType.getTypePtr());
5092       CXXScopeSpec SS;
5093       SS.MakeTrivial(Context, Qualifier, Loc);
5094 
5095       // The actual value-ness of this is unimportant, but for
5096       // internal consistency's sake, references to instance methods
5097       // are r-values.
5098       ExprValueKind VK = VK_LValue;
5099       if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
5100         VK = VK_RValue;
5101 
5102       ExprResult RefExpr = BuildDeclRefExpr(VD,
5103                                             VD->getType().getNonReferenceType(),
5104                                             VK,
5105                                             Loc,
5106                                             &SS);
5107       if (RefExpr.isInvalid())
5108         return ExprError();
5109 
5110       RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5111 
5112       // We might need to perform a trailing qualification conversion, since
5113       // the element type on the parameter could be more qualified than the
5114       // element type in the expression we constructed.
5115       bool ObjCLifetimeConversion;
5116       if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
5117                                     ParamType.getUnqualifiedType(), false,
5118                                     ObjCLifetimeConversion))
5119         RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
5120 
5121       assert(!RefExpr.isInvalid() &&
5122              Context.hasSameType(((Expr*) RefExpr.get())->getType(),
5123                                  ParamType.getUnqualifiedType()));
5124       return RefExpr;
5125     }
5126   }
5127 
5128   QualType T = VD->getType().getNonReferenceType();
5129 
5130   if (ParamType->isPointerType()) {
5131     // When the non-type template parameter is a pointer, take the
5132     // address of the declaration.
5133     ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
5134     if (RefExpr.isInvalid())
5135       return ExprError();
5136 
5137     if (T->isFunctionType() || T->isArrayType()) {
5138       // Decay functions and arrays.
5139       RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
5140       if (RefExpr.isInvalid())
5141         return ExprError();
5142 
5143       return RefExpr;
5144     }
5145 
5146     // Take the address of everything else
5147     return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5148   }
5149 
5150   ExprValueKind VK = VK_RValue;
5151 
5152   // If the non-type template parameter has reference type, qualify the
5153   // resulting declaration reference with the extra qualifiers on the
5154   // type that the reference refers to.
5155   if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
5156     VK = VK_LValue;
5157     T = Context.getQualifiedType(T,
5158                               TargetRef->getPointeeType().getQualifiers());
5159   } else if (isa<FunctionDecl>(VD)) {
5160     // References to functions are always lvalues.
5161     VK = VK_LValue;
5162   }
5163 
5164   return BuildDeclRefExpr(VD, T, VK, Loc);
5165 }
5166 
5167 /// \brief Construct a new expression that refers to the given
5168 /// integral template argument with the given source-location
5169 /// information.
5170 ///
5171 /// This routine takes care of the mapping from an integral template
5172 /// argument (which may have any integral type) to the appropriate
5173 /// literal value.
5174 ExprResult
5175 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
5176                                                   SourceLocation Loc) {
5177   assert(Arg.getKind() == TemplateArgument::Integral &&
5178          "Operation is only valid for integral template arguments");
5179   QualType OrigT = Arg.getIntegralType();
5180 
5181   // If this is an enum type that we're instantiating, we need to use an integer
5182   // type the same size as the enumerator.  We don't want to build an
5183   // IntegerLiteral with enum type.  The integer type of an enum type can be of
5184   // any integral type with C++11 enum classes, make sure we create the right
5185   // type of literal for it.
5186   QualType T = OrigT;
5187   if (const EnumType *ET = OrigT->getAs<EnumType>())
5188     T = ET->getDecl()->getIntegerType();
5189 
5190   Expr *E;
5191   if (T->isAnyCharacterType()) {
5192     CharacterLiteral::CharacterKind Kind;
5193     if (T->isWideCharType())
5194       Kind = CharacterLiteral::Wide;
5195     else if (T->isChar16Type())
5196       Kind = CharacterLiteral::UTF16;
5197     else if (T->isChar32Type())
5198       Kind = CharacterLiteral::UTF32;
5199     else
5200       Kind = CharacterLiteral::Ascii;
5201 
5202     E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
5203                                        Kind, T, Loc);
5204   } else if (T->isBooleanType()) {
5205     E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
5206                                          T, Loc);
5207   } else if (T->isNullPtrType()) {
5208     E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
5209   } else {
5210     E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
5211   }
5212 
5213   if (OrigT->isEnumeralType()) {
5214     // FIXME: This is a hack. We need a better way to handle substituted
5215     // non-type template parameters.
5216     E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E, 0,
5217                                Context.getTrivialTypeSourceInfo(OrigT, Loc),
5218                                Loc, Loc);
5219   }
5220 
5221   return Owned(E);
5222 }
5223 
5224 /// \brief Match two template parameters within template parameter lists.
5225 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
5226                                        bool Complain,
5227                                      Sema::TemplateParameterListEqualKind Kind,
5228                                        SourceLocation TemplateArgLoc) {
5229   // Check the actual kind (type, non-type, template).
5230   if (Old->getKind() != New->getKind()) {
5231     if (Complain) {
5232       unsigned NextDiag = diag::err_template_param_different_kind;
5233       if (TemplateArgLoc.isValid()) {
5234         S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5235         NextDiag = diag::note_template_param_different_kind;
5236       }
5237       S.Diag(New->getLocation(), NextDiag)
5238         << (Kind != Sema::TPL_TemplateMatch);
5239       S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
5240         << (Kind != Sema::TPL_TemplateMatch);
5241     }
5242 
5243     return false;
5244   }
5245 
5246   // Check that both are parameter packs are neither are parameter packs.
5247   // However, if we are matching a template template argument to a
5248   // template template parameter, the template template parameter can have
5249   // a parameter pack where the template template argument does not.
5250   if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
5251       !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5252         Old->isTemplateParameterPack())) {
5253     if (Complain) {
5254       unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
5255       if (TemplateArgLoc.isValid()) {
5256         S.Diag(TemplateArgLoc,
5257              diag::err_template_arg_template_params_mismatch);
5258         NextDiag = diag::note_template_parameter_pack_non_pack;
5259       }
5260 
5261       unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
5262                       : isa<NonTypeTemplateParmDecl>(New)? 1
5263                       : 2;
5264       S.Diag(New->getLocation(), NextDiag)
5265         << ParamKind << New->isParameterPack();
5266       S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
5267         << ParamKind << Old->isParameterPack();
5268     }
5269 
5270     return false;
5271   }
5272 
5273   // For non-type template parameters, check the type of the parameter.
5274   if (NonTypeTemplateParmDecl *OldNTTP
5275                                     = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
5276     NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
5277 
5278     // If we are matching a template template argument to a template
5279     // template parameter and one of the non-type template parameter types
5280     // is dependent, then we must wait until template instantiation time
5281     // to actually compare the arguments.
5282     if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5283         (OldNTTP->getType()->isDependentType() ||
5284          NewNTTP->getType()->isDependentType()))
5285       return true;
5286 
5287     if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
5288       if (Complain) {
5289         unsigned NextDiag = diag::err_template_nontype_parm_different_type;
5290         if (TemplateArgLoc.isValid()) {
5291           S.Diag(TemplateArgLoc,
5292                  diag::err_template_arg_template_params_mismatch);
5293           NextDiag = diag::note_template_nontype_parm_different_type;
5294         }
5295         S.Diag(NewNTTP->getLocation(), NextDiag)
5296           << NewNTTP->getType()
5297           << (Kind != Sema::TPL_TemplateMatch);
5298         S.Diag(OldNTTP->getLocation(),
5299                diag::note_template_nontype_parm_prev_declaration)
5300           << OldNTTP->getType();
5301       }
5302 
5303       return false;
5304     }
5305 
5306     return true;
5307   }
5308 
5309   // For template template parameters, check the template parameter types.
5310   // The template parameter lists of template template
5311   // parameters must agree.
5312   if (TemplateTemplateParmDecl *OldTTP
5313                                     = dyn_cast<TemplateTemplateParmDecl>(Old)) {
5314     TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
5315     return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
5316                                             OldTTP->getTemplateParameters(),
5317                                             Complain,
5318                                         (Kind == Sema::TPL_TemplateMatch
5319                                            ? Sema::TPL_TemplateTemplateParmMatch
5320                                            : Kind),
5321                                             TemplateArgLoc);
5322   }
5323 
5324   return true;
5325 }
5326 
5327 /// \brief Diagnose a known arity mismatch when comparing template argument
5328 /// lists.
5329 static
5330 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
5331                                                 TemplateParameterList *New,
5332                                                 TemplateParameterList *Old,
5333                                       Sema::TemplateParameterListEqualKind Kind,
5334                                                 SourceLocation TemplateArgLoc) {
5335   unsigned NextDiag = diag::err_template_param_list_different_arity;
5336   if (TemplateArgLoc.isValid()) {
5337     S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5338     NextDiag = diag::note_template_param_list_different_arity;
5339   }
5340   S.Diag(New->getTemplateLoc(), NextDiag)
5341     << (New->size() > Old->size())
5342     << (Kind != Sema::TPL_TemplateMatch)
5343     << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
5344   S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
5345     << (Kind != Sema::TPL_TemplateMatch)
5346     << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
5347 }
5348 
5349 /// \brief Determine whether the given template parameter lists are
5350 /// equivalent.
5351 ///
5352 /// \param New  The new template parameter list, typically written in the
5353 /// source code as part of a new template declaration.
5354 ///
5355 /// \param Old  The old template parameter list, typically found via
5356 /// name lookup of the template declared with this template parameter
5357 /// list.
5358 ///
5359 /// \param Complain  If true, this routine will produce a diagnostic if
5360 /// the template parameter lists are not equivalent.
5361 ///
5362 /// \param Kind describes how we are to match the template parameter lists.
5363 ///
5364 /// \param TemplateArgLoc If this source location is valid, then we
5365 /// are actually checking the template parameter list of a template
5366 /// argument (New) against the template parameter list of its
5367 /// corresponding template template parameter (Old). We produce
5368 /// slightly different diagnostics in this scenario.
5369 ///
5370 /// \returns True if the template parameter lists are equal, false
5371 /// otherwise.
5372 bool
5373 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
5374                                      TemplateParameterList *Old,
5375                                      bool Complain,
5376                                      TemplateParameterListEqualKind Kind,
5377                                      SourceLocation TemplateArgLoc) {
5378   if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
5379     if (Complain)
5380       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5381                                                  TemplateArgLoc);
5382 
5383     return false;
5384   }
5385 
5386   // C++0x [temp.arg.template]p3:
5387   //   A template-argument matches a template template-parameter (call it P)
5388   //   when each of the template parameters in the template-parameter-list of
5389   //   the template-argument's corresponding class template or alias template
5390   //   (call it A) matches the corresponding template parameter in the
5391   //   template-parameter-list of P. [...]
5392   TemplateParameterList::iterator NewParm = New->begin();
5393   TemplateParameterList::iterator NewParmEnd = New->end();
5394   for (TemplateParameterList::iterator OldParm = Old->begin(),
5395                                     OldParmEnd = Old->end();
5396        OldParm != OldParmEnd; ++OldParm) {
5397     if (Kind != TPL_TemplateTemplateArgumentMatch ||
5398         !(*OldParm)->isTemplateParameterPack()) {
5399       if (NewParm == NewParmEnd) {
5400         if (Complain)
5401           DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5402                                                      TemplateArgLoc);
5403 
5404         return false;
5405       }
5406 
5407       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5408                                       Kind, TemplateArgLoc))
5409         return false;
5410 
5411       ++NewParm;
5412       continue;
5413     }
5414 
5415     // C++0x [temp.arg.template]p3:
5416     //   [...] When P's template- parameter-list contains a template parameter
5417     //   pack (14.5.3), the template parameter pack will match zero or more
5418     //   template parameters or template parameter packs in the
5419     //   template-parameter-list of A with the same type and form as the
5420     //   template parameter pack in P (ignoring whether those template
5421     //   parameters are template parameter packs).
5422     for (; NewParm != NewParmEnd; ++NewParm) {
5423       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5424                                       Kind, TemplateArgLoc))
5425         return false;
5426     }
5427   }
5428 
5429   // Make sure we exhausted all of the arguments.
5430   if (NewParm != NewParmEnd) {
5431     if (Complain)
5432       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5433                                                  TemplateArgLoc);
5434 
5435     return false;
5436   }
5437 
5438   return true;
5439 }
5440 
5441 /// \brief Check whether a template can be declared within this scope.
5442 ///
5443 /// If the template declaration is valid in this scope, returns
5444 /// false. Otherwise, issues a diagnostic and returns true.
5445 bool
5446 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
5447   if (!S)
5448     return false;
5449 
5450   // Find the nearest enclosing declaration scope.
5451   while ((S->getFlags() & Scope::DeclScope) == 0 ||
5452          (S->getFlags() & Scope::TemplateParamScope) != 0)
5453     S = S->getParent();
5454 
5455   // C++ [temp]p2:
5456   //   A template-declaration can appear only as a namespace scope or
5457   //   class scope declaration.
5458   DeclContext *Ctx = S->getEntity();
5459   if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
5460       cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
5461     return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
5462              << TemplateParams->getSourceRange();
5463 
5464   while (Ctx && isa<LinkageSpecDecl>(Ctx))
5465     Ctx = Ctx->getParent();
5466 
5467   if (Ctx) {
5468     if (Ctx->isFileContext())
5469       return false;
5470     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
5471       // C++ [temp.mem]p2:
5472       //   A local class shall not have member templates.
5473       if (RD->isLocalClass())
5474         return Diag(TemplateParams->getTemplateLoc(),
5475                     diag::err_template_inside_local_class)
5476           << TemplateParams->getSourceRange();
5477       else
5478         return false;
5479     }
5480   }
5481 
5482   return Diag(TemplateParams->getTemplateLoc(),
5483               diag::err_template_outside_namespace_or_class_scope)
5484     << TemplateParams->getSourceRange();
5485 }
5486 
5487 /// \brief Determine what kind of template specialization the given declaration
5488 /// is.
5489 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
5490   if (!D)
5491     return TSK_Undeclared;
5492 
5493   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
5494     return Record->getTemplateSpecializationKind();
5495   if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
5496     return Function->getTemplateSpecializationKind();
5497   if (VarDecl *Var = dyn_cast<VarDecl>(D))
5498     return Var->getTemplateSpecializationKind();
5499 
5500   return TSK_Undeclared;
5501 }
5502 
5503 /// \brief Check whether a specialization is well-formed in the current
5504 /// context.
5505 ///
5506 /// This routine determines whether a template specialization can be declared
5507 /// in the current context (C++ [temp.expl.spec]p2).
5508 ///
5509 /// \param S the semantic analysis object for which this check is being
5510 /// performed.
5511 ///
5512 /// \param Specialized the entity being specialized or instantiated, which
5513 /// may be a kind of template (class template, function template, etc.) or
5514 /// a member of a class template (member function, static data member,
5515 /// member class).
5516 ///
5517 /// \param PrevDecl the previous declaration of this entity, if any.
5518 ///
5519 /// \param Loc the location of the explicit specialization or instantiation of
5520 /// this entity.
5521 ///
5522 /// \param IsPartialSpecialization whether this is a partial specialization of
5523 /// a class template.
5524 ///
5525 /// \returns true if there was an error that we cannot recover from, false
5526 /// otherwise.
5527 static bool CheckTemplateSpecializationScope(Sema &S,
5528                                              NamedDecl *Specialized,
5529                                              NamedDecl *PrevDecl,
5530                                              SourceLocation Loc,
5531                                              bool IsPartialSpecialization) {
5532   // Keep these "kind" numbers in sync with the %select statements in the
5533   // various diagnostics emitted by this routine.
5534   int EntityKind = 0;
5535   if (isa<ClassTemplateDecl>(Specialized))
5536     EntityKind = IsPartialSpecialization? 1 : 0;
5537   else if (isa<VarTemplateDecl>(Specialized))
5538     EntityKind = IsPartialSpecialization ? 3 : 2;
5539   else if (isa<FunctionTemplateDecl>(Specialized))
5540     EntityKind = 4;
5541   else if (isa<CXXMethodDecl>(Specialized))
5542     EntityKind = 5;
5543   else if (isa<VarDecl>(Specialized))
5544     EntityKind = 6;
5545   else if (isa<RecordDecl>(Specialized))
5546     EntityKind = 7;
5547   else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
5548     EntityKind = 8;
5549   else {
5550     S.Diag(Loc, diag::err_template_spec_unknown_kind)
5551       << S.getLangOpts().CPlusPlus11;
5552     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5553     return true;
5554   }
5555 
5556   // C++ [temp.expl.spec]p2:
5557   //   An explicit specialization shall be declared in the namespace
5558   //   of which the template is a member, or, for member templates, in
5559   //   the namespace of which the enclosing class or enclosing class
5560   //   template is a member. An explicit specialization of a member
5561   //   function, member class or static data member of a class
5562   //   template shall be declared in the namespace of which the class
5563   //   template is a member. Such a declaration may also be a
5564   //   definition. If the declaration is not a definition, the
5565   //   specialization may be defined later in the name- space in which
5566   //   the explicit specialization was declared, or in a namespace
5567   //   that encloses the one in which the explicit specialization was
5568   //   declared.
5569   if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5570     S.Diag(Loc, diag::err_template_spec_decl_function_scope)
5571       << Specialized;
5572     return true;
5573   }
5574 
5575   if (S.CurContext->isRecord() && !IsPartialSpecialization) {
5576     if (S.getLangOpts().MicrosoftExt) {
5577       // Do not warn for class scope explicit specialization during
5578       // instantiation, warning was already emitted during pattern
5579       // semantic analysis.
5580       if (!S.ActiveTemplateInstantiations.size())
5581         S.Diag(Loc, diag::ext_function_specialization_in_class)
5582           << Specialized;
5583     } else {
5584       S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5585         << Specialized;
5586       return true;
5587     }
5588   }
5589 
5590   if (S.CurContext->isRecord() &&
5591       !S.CurContext->Equals(Specialized->getDeclContext())) {
5592     // Make sure that we're specializing in the right record context.
5593     // Otherwise, things can go horribly wrong.
5594     S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5595       << Specialized;
5596     return true;
5597   }
5598 
5599   // C++ [temp.class.spec]p6:
5600   //   A class template partial specialization may be declared or redeclared
5601   //   in any namespace scope in which its definition may be defined (14.5.1
5602   //   and 14.5.2).
5603   bool ComplainedAboutScope = false;
5604   DeclContext *SpecializedContext
5605     = Specialized->getDeclContext()->getEnclosingNamespaceContext();
5606   DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
5607   if ((!PrevDecl ||
5608        getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
5609        getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
5610     // C++ [temp.exp.spec]p2:
5611     //   An explicit specialization shall be declared in the namespace of which
5612     //   the template is a member, or, for member templates, in the namespace
5613     //   of which the enclosing class or enclosing class template is a member.
5614     //   An explicit specialization of a member function, member class or
5615     //   static data member of a class template shall be declared in the
5616     //   namespace of which the class template is a member.
5617     //
5618     // C++0x [temp.expl.spec]p2:
5619     //   An explicit specialization shall be declared in a namespace enclosing
5620     //   the specialized template.
5621     if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
5622       bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext);
5623       if (isa<TranslationUnitDecl>(SpecializedContext)) {
5624         assert(!IsCPlusPlus11Extension &&
5625                "DC encloses TU but isn't in enclosing namespace set");
5626         S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
5627           << EntityKind << Specialized;
5628       } else if (isa<NamespaceDecl>(SpecializedContext)) {
5629         int Diag;
5630         if (!IsCPlusPlus11Extension)
5631           Diag = diag::err_template_spec_decl_out_of_scope;
5632         else if (!S.getLangOpts().CPlusPlus11)
5633           Diag = diag::ext_template_spec_decl_out_of_scope;
5634         else
5635           Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
5636         S.Diag(Loc, Diag)
5637           << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
5638       }
5639 
5640       S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5641       ComplainedAboutScope =
5642         !(IsCPlusPlus11Extension && S.getLangOpts().CPlusPlus11);
5643     }
5644   }
5645 
5646   // Make sure that this redeclaration (or definition) occurs in an enclosing
5647   // namespace.
5648   // Note that HandleDeclarator() performs this check for explicit
5649   // specializations of function templates, static data members, and member
5650   // functions, so we skip the check here for those kinds of entities.
5651   // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
5652   // Should we refactor that check, so that it occurs later?
5653   if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
5654       !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
5655         isa<FunctionDecl>(Specialized))) {
5656     if (isa<TranslationUnitDecl>(SpecializedContext))
5657       S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
5658         << EntityKind << Specialized;
5659     else if (isa<NamespaceDecl>(SpecializedContext))
5660       S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
5661         << EntityKind << Specialized
5662         << cast<NamedDecl>(SpecializedContext);
5663 
5664     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5665   }
5666 
5667   // FIXME: check for specialization-after-instantiation errors and such.
5668 
5669   return false;
5670 }
5671 
5672 /// \brief Subroutine of Sema::CheckTemplatePartialSpecializationArgs
5673 /// that checks non-type template partial specialization arguments.
5674 static bool CheckNonTypeTemplatePartialSpecializationArgs(
5675     Sema &S, NonTypeTemplateParmDecl *Param, const TemplateArgument *Args,
5676     unsigned NumArgs) {
5677   for (unsigned I = 0; I != NumArgs; ++I) {
5678     if (Args[I].getKind() == TemplateArgument::Pack) {
5679       if (CheckNonTypeTemplatePartialSpecializationArgs(
5680               S, Param, Args[I].pack_begin(), Args[I].pack_size()))
5681         return true;
5682 
5683       continue;
5684     }
5685 
5686     if (Args[I].getKind() != TemplateArgument::Expression)
5687       continue;
5688 
5689     Expr *ArgExpr = Args[I].getAsExpr();
5690 
5691     // We can have a pack expansion of any of the bullets below.
5692     if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
5693       ArgExpr = Expansion->getPattern();
5694 
5695     // Strip off any implicit casts we added as part of type checking.
5696     while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
5697       ArgExpr = ICE->getSubExpr();
5698 
5699     // C++ [temp.class.spec]p8:
5700     //   A non-type argument is non-specialized if it is the name of a
5701     //   non-type parameter. All other non-type arguments are
5702     //   specialized.
5703     //
5704     // Below, we check the two conditions that only apply to
5705     // specialized non-type arguments, so skip any non-specialized
5706     // arguments.
5707     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
5708       if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
5709         continue;
5710 
5711     // C++ [temp.class.spec]p9:
5712     //   Within the argument list of a class template partial
5713     //   specialization, the following restrictions apply:
5714     //     -- A partially specialized non-type argument expression
5715     //        shall not involve a template parameter of the partial
5716     //        specialization except when the argument expression is a
5717     //        simple identifier.
5718     if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
5719       S.Diag(ArgExpr->getLocStart(),
5720            diag::err_dependent_non_type_arg_in_partial_spec)
5721         << ArgExpr->getSourceRange();
5722       return true;
5723     }
5724 
5725     //     -- The type of a template parameter corresponding to a
5726     //        specialized non-type argument shall not be dependent on a
5727     //        parameter of the specialization.
5728     if (Param->getType()->isDependentType()) {
5729       S.Diag(ArgExpr->getLocStart(),
5730            diag::err_dependent_typed_non_type_arg_in_partial_spec)
5731         << Param->getType()
5732         << ArgExpr->getSourceRange();
5733       S.Diag(Param->getLocation(), diag::note_template_param_here);
5734       return true;
5735     }
5736   }
5737 
5738   return false;
5739 }
5740 
5741 /// \brief Check the non-type template arguments of a class template
5742 /// partial specialization according to C++ [temp.class.spec]p9.
5743 ///
5744 /// \param TemplateParams the template parameters of the primary class
5745 /// template.
5746 ///
5747 /// \param TemplateArgs the template arguments of the class template
5748 /// partial specialization.
5749 ///
5750 /// \returns true if there was an error, false otherwise.
5751 static bool CheckTemplatePartialSpecializationArgs(
5752     Sema &S, TemplateParameterList *TemplateParams,
5753     SmallVectorImpl<TemplateArgument> &TemplateArgs) {
5754   const TemplateArgument *ArgList = TemplateArgs.data();
5755 
5756   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5757     NonTypeTemplateParmDecl *Param
5758       = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
5759     if (!Param)
5760       continue;
5761 
5762     if (CheckNonTypeTemplatePartialSpecializationArgs(S, Param, &ArgList[I], 1))
5763       return true;
5764   }
5765 
5766   return false;
5767 }
5768 
5769 DeclResult
5770 Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
5771                                        TagUseKind TUK,
5772                                        SourceLocation KWLoc,
5773                                        SourceLocation ModulePrivateLoc,
5774                                        CXXScopeSpec &SS,
5775                                        TemplateTy TemplateD,
5776                                        SourceLocation TemplateNameLoc,
5777                                        SourceLocation LAngleLoc,
5778                                        ASTTemplateArgsPtr TemplateArgsIn,
5779                                        SourceLocation RAngleLoc,
5780                                        AttributeList *Attr,
5781                                MultiTemplateParamsArg TemplateParameterLists) {
5782   assert(TUK != TUK_Reference && "References are not specializations");
5783 
5784   // NOTE: KWLoc is the location of the tag keyword. This will instead
5785   // store the location of the outermost template keyword in the declaration.
5786   SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
5787     ? TemplateParameterLists[0]->getTemplateLoc() : SourceLocation();
5788 
5789   // Find the class template we're specializing
5790   TemplateName Name = TemplateD.get();
5791   ClassTemplateDecl *ClassTemplate
5792     = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
5793 
5794   if (!ClassTemplate) {
5795     Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
5796       << (Name.getAsTemplateDecl() &&
5797           isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
5798     return true;
5799   }
5800 
5801   bool isExplicitSpecialization = false;
5802   bool isPartialSpecialization = false;
5803 
5804   // Check the validity of the template headers that introduce this
5805   // template.
5806   // FIXME: We probably shouldn't complain about these headers for
5807   // friend declarations.
5808   bool Invalid = false;
5809   TemplateParameterList *TemplateParams =
5810       MatchTemplateParametersToScopeSpecifier(
5811           TemplateNameLoc, TemplateNameLoc, SS, TemplateParameterLists,
5812           TUK == TUK_Friend, isExplicitSpecialization, Invalid);
5813   if (Invalid)
5814     return true;
5815 
5816   if (TemplateParams && TemplateParams->size() > 0) {
5817     isPartialSpecialization = true;
5818 
5819     if (TUK == TUK_Friend) {
5820       Diag(KWLoc, diag::err_partial_specialization_friend)
5821         << SourceRange(LAngleLoc, RAngleLoc);
5822       return true;
5823     }
5824 
5825     // C++ [temp.class.spec]p10:
5826     //   The template parameter list of a specialization shall not
5827     //   contain default template argument values.
5828     for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5829       Decl *Param = TemplateParams->getParam(I);
5830       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
5831         if (TTP->hasDefaultArgument()) {
5832           Diag(TTP->getDefaultArgumentLoc(),
5833                diag::err_default_arg_in_partial_spec);
5834           TTP->removeDefaultArgument();
5835         }
5836       } else if (NonTypeTemplateParmDecl *NTTP
5837                    = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5838         if (Expr *DefArg = NTTP->getDefaultArgument()) {
5839           Diag(NTTP->getDefaultArgumentLoc(),
5840                diag::err_default_arg_in_partial_spec)
5841             << DefArg->getSourceRange();
5842           NTTP->removeDefaultArgument();
5843         }
5844       } else {
5845         TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
5846         if (TTP->hasDefaultArgument()) {
5847           Diag(TTP->getDefaultArgument().getLocation(),
5848                diag::err_default_arg_in_partial_spec)
5849             << TTP->getDefaultArgument().getSourceRange();
5850           TTP->removeDefaultArgument();
5851         }
5852       }
5853     }
5854   } else if (TemplateParams) {
5855     if (TUK == TUK_Friend)
5856       Diag(KWLoc, diag::err_template_spec_friend)
5857         << FixItHint::CreateRemoval(
5858                                 SourceRange(TemplateParams->getTemplateLoc(),
5859                                             TemplateParams->getRAngleLoc()))
5860         << SourceRange(LAngleLoc, RAngleLoc);
5861     else
5862       isExplicitSpecialization = true;
5863   } else if (TUK != TUK_Friend) {
5864     Diag(KWLoc, diag::err_template_spec_needs_header)
5865       << FixItHint::CreateInsertion(KWLoc, "template<> ");
5866     TemplateKWLoc = KWLoc;
5867     isExplicitSpecialization = true;
5868   }
5869 
5870   // Check that the specialization uses the same tag kind as the
5871   // original template.
5872   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5873   assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
5874   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5875                                     Kind, TUK == TUK_Definition, KWLoc,
5876                                     *ClassTemplate->getIdentifier())) {
5877     Diag(KWLoc, diag::err_use_with_wrong_tag)
5878       << ClassTemplate
5879       << FixItHint::CreateReplacement(KWLoc,
5880                             ClassTemplate->getTemplatedDecl()->getKindName());
5881     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5882          diag::note_previous_use);
5883     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5884   }
5885 
5886   // Translate the parser's template argument list in our AST format.
5887   TemplateArgumentListInfo TemplateArgs;
5888   TemplateArgs.setLAngleLoc(LAngleLoc);
5889   TemplateArgs.setRAngleLoc(RAngleLoc);
5890   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5891 
5892   // Check for unexpanded parameter packs in any of the template arguments.
5893   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
5894     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
5895                                         UPPC_PartialSpecialization))
5896       return true;
5897 
5898   // Check that the template argument list is well-formed for this
5899   // template.
5900   SmallVector<TemplateArgument, 4> Converted;
5901   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5902                                 TemplateArgs, false, Converted))
5903     return true;
5904 
5905   // Find the class template (partial) specialization declaration that
5906   // corresponds to these arguments.
5907   if (isPartialSpecialization) {
5908     if (CheckTemplatePartialSpecializationArgs(
5909             *this, ClassTemplate->getTemplateParameters(), Converted))
5910       return true;
5911 
5912     bool InstantiationDependent;
5913     if (!Name.isDependent() &&
5914         !TemplateSpecializationType::anyDependentTemplateArguments(
5915                                              TemplateArgs.getArgumentArray(),
5916                                                          TemplateArgs.size(),
5917                                                      InstantiationDependent)) {
5918       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
5919         << ClassTemplate->getDeclName();
5920       isPartialSpecialization = false;
5921     }
5922   }
5923 
5924   void *InsertPos = 0;
5925   ClassTemplateSpecializationDecl *PrevDecl = 0;
5926 
5927   if (isPartialSpecialization)
5928     // FIXME: Template parameter list matters, too
5929     PrevDecl
5930       = ClassTemplate->findPartialSpecialization(Converted.data(),
5931                                                  Converted.size(),
5932                                                  InsertPos);
5933   else
5934     PrevDecl
5935       = ClassTemplate->findSpecialization(Converted.data(),
5936                                           Converted.size(), InsertPos);
5937 
5938   ClassTemplateSpecializationDecl *Specialization = 0;
5939 
5940   // Check whether we can declare a class template specialization in
5941   // the current scope.
5942   if (TUK != TUK_Friend &&
5943       CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
5944                                        TemplateNameLoc,
5945                                        isPartialSpecialization))
5946     return true;
5947 
5948   // The canonical type
5949   QualType CanonType;
5950   if (PrevDecl &&
5951       (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
5952                TUK == TUK_Friend)) {
5953     // Since the only prior class template specialization with these
5954     // arguments was referenced but not declared, or we're only
5955     // referencing this specialization as a friend, reuse that
5956     // declaration node as our own, updating its source location and
5957     // the list of outer template parameters to reflect our new declaration.
5958     Specialization = PrevDecl;
5959     Specialization->setLocation(TemplateNameLoc);
5960     if (TemplateParameterLists.size() > 0) {
5961       Specialization->setTemplateParameterListsInfo(Context,
5962                                               TemplateParameterLists.size(),
5963                                               TemplateParameterLists.data());
5964     }
5965     PrevDecl = 0;
5966     CanonType = Context.getTypeDeclType(Specialization);
5967   } else if (isPartialSpecialization) {
5968     // Build the canonical type that describes the converted template
5969     // arguments of the class template partial specialization.
5970     TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
5971     CanonType = Context.getTemplateSpecializationType(CanonTemplate,
5972                                                       Converted.data(),
5973                                                       Converted.size());
5974 
5975     if (Context.hasSameType(CanonType,
5976                         ClassTemplate->getInjectedClassNameSpecialization())) {
5977       // C++ [temp.class.spec]p9b3:
5978       //
5979       //   -- The argument list of the specialization shall not be identical
5980       //      to the implicit argument list of the primary template.
5981       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
5982         << /*class template*/0 << (TUK == TUK_Definition)
5983         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
5984       return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
5985                                 ClassTemplate->getIdentifier(),
5986                                 TemplateNameLoc,
5987                                 Attr,
5988                                 TemplateParams,
5989                                 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
5990                                 TemplateParameterLists.size() - 1,
5991                                 TemplateParameterLists.data());
5992     }
5993 
5994     // Create a new class template partial specialization declaration node.
5995     ClassTemplatePartialSpecializationDecl *PrevPartial
5996       = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
5997     ClassTemplatePartialSpecializationDecl *Partial
5998       = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
5999                                              ClassTemplate->getDeclContext(),
6000                                                        KWLoc, TemplateNameLoc,
6001                                                        TemplateParams,
6002                                                        ClassTemplate,
6003                                                        Converted.data(),
6004                                                        Converted.size(),
6005                                                        TemplateArgs,
6006                                                        CanonType,
6007                                                        PrevPartial);
6008     SetNestedNameSpecifier(Partial, SS);
6009     if (TemplateParameterLists.size() > 1 && SS.isSet()) {
6010       Partial->setTemplateParameterListsInfo(Context,
6011                                              TemplateParameterLists.size() - 1,
6012                                              TemplateParameterLists.data());
6013     }
6014 
6015     if (!PrevPartial)
6016       ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
6017     Specialization = Partial;
6018 
6019     // If we are providing an explicit specialization of a member class
6020     // template specialization, make a note of that.
6021     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
6022       PrevPartial->setMemberSpecialization();
6023 
6024     // Check that all of the template parameters of the class template
6025     // partial specialization are deducible from the template
6026     // arguments. If not, this class template partial specialization
6027     // will never be used.
6028     llvm::SmallBitVector DeducibleParams(TemplateParams->size());
6029     MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
6030                                TemplateParams->getDepth(),
6031                                DeducibleParams);
6032 
6033     if (!DeducibleParams.all()) {
6034       unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
6035       Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
6036         << /*class template*/0 << (NumNonDeducible > 1)
6037         << SourceRange(TemplateNameLoc, RAngleLoc);
6038       for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
6039         if (!DeducibleParams[I]) {
6040           NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
6041           if (Param->getDeclName())
6042             Diag(Param->getLocation(),
6043                  diag::note_partial_spec_unused_parameter)
6044               << Param->getDeclName();
6045           else
6046             Diag(Param->getLocation(),
6047                  diag::note_partial_spec_unused_parameter)
6048               << "<anonymous>";
6049         }
6050       }
6051     }
6052   } else {
6053     // Create a new class template specialization declaration node for
6054     // this explicit specialization or friend declaration.
6055     Specialization
6056       = ClassTemplateSpecializationDecl::Create(Context, Kind,
6057                                              ClassTemplate->getDeclContext(),
6058                                                 KWLoc, TemplateNameLoc,
6059                                                 ClassTemplate,
6060                                                 Converted.data(),
6061                                                 Converted.size(),
6062                                                 PrevDecl);
6063     SetNestedNameSpecifier(Specialization, SS);
6064     if (TemplateParameterLists.size() > 0) {
6065       Specialization->setTemplateParameterListsInfo(Context,
6066                                               TemplateParameterLists.size(),
6067                                               TemplateParameterLists.data());
6068     }
6069 
6070     if (!PrevDecl)
6071       ClassTemplate->AddSpecialization(Specialization, InsertPos);
6072 
6073     CanonType = Context.getTypeDeclType(Specialization);
6074   }
6075 
6076   // C++ [temp.expl.spec]p6:
6077   //   If a template, a member template or the member of a class template is
6078   //   explicitly specialized then that specialization shall be declared
6079   //   before the first use of that specialization that would cause an implicit
6080   //   instantiation to take place, in every translation unit in which such a
6081   //   use occurs; no diagnostic is required.
6082   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
6083     bool Okay = false;
6084     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6085       // Is there any previous explicit specialization declaration?
6086       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
6087         Okay = true;
6088         break;
6089       }
6090     }
6091 
6092     if (!Okay) {
6093       SourceRange Range(TemplateNameLoc, RAngleLoc);
6094       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
6095         << Context.getTypeDeclType(Specialization) << Range;
6096 
6097       Diag(PrevDecl->getPointOfInstantiation(),
6098            diag::note_instantiation_required_here)
6099         << (PrevDecl->getTemplateSpecializationKind()
6100                                                 != TSK_ImplicitInstantiation);
6101       return true;
6102     }
6103   }
6104 
6105   // If this is not a friend, note that this is an explicit specialization.
6106   if (TUK != TUK_Friend)
6107     Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
6108 
6109   // Check that this isn't a redefinition of this specialization.
6110   if (TUK == TUK_Definition) {
6111     if (RecordDecl *Def = Specialization->getDefinition()) {
6112       SourceRange Range(TemplateNameLoc, RAngleLoc);
6113       Diag(TemplateNameLoc, diag::err_redefinition)
6114         << Context.getTypeDeclType(Specialization) << Range;
6115       Diag(Def->getLocation(), diag::note_previous_definition);
6116       Specialization->setInvalidDecl();
6117       return true;
6118     }
6119   }
6120 
6121   if (Attr)
6122     ProcessDeclAttributeList(S, Specialization, Attr);
6123 
6124   // Add alignment attributes if necessary; these attributes are checked when
6125   // the ASTContext lays out the structure.
6126   if (TUK == TUK_Definition) {
6127     AddAlignmentAttributesForRecord(Specialization);
6128     AddMsStructLayoutForRecord(Specialization);
6129   }
6130 
6131   if (ModulePrivateLoc.isValid())
6132     Diag(Specialization->getLocation(), diag::err_module_private_specialization)
6133       << (isPartialSpecialization? 1 : 0)
6134       << FixItHint::CreateRemoval(ModulePrivateLoc);
6135 
6136   // Build the fully-sugared type for this class template
6137   // specialization as the user wrote in the specialization
6138   // itself. This means that we'll pretty-print the type retrieved
6139   // from the specialization's declaration the way that the user
6140   // actually wrote the specialization, rather than formatting the
6141   // name based on the "canonical" representation used to store the
6142   // template arguments in the specialization.
6143   TypeSourceInfo *WrittenTy
6144     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6145                                                 TemplateArgs, CanonType);
6146   if (TUK != TUK_Friend) {
6147     Specialization->setTypeAsWritten(WrittenTy);
6148     Specialization->setTemplateKeywordLoc(TemplateKWLoc);
6149   }
6150 
6151   // C++ [temp.expl.spec]p9:
6152   //   A template explicit specialization is in the scope of the
6153   //   namespace in which the template was defined.
6154   //
6155   // We actually implement this paragraph where we set the semantic
6156   // context (in the creation of the ClassTemplateSpecializationDecl),
6157   // but we also maintain the lexical context where the actual
6158   // definition occurs.
6159   Specialization->setLexicalDeclContext(CurContext);
6160 
6161   // We may be starting the definition of this specialization.
6162   if (TUK == TUK_Definition)
6163     Specialization->startDefinition();
6164 
6165   if (TUK == TUK_Friend) {
6166     FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
6167                                             TemplateNameLoc,
6168                                             WrittenTy,
6169                                             /*FIXME:*/KWLoc);
6170     Friend->setAccess(AS_public);
6171     CurContext->addDecl(Friend);
6172   } else {
6173     // Add the specialization into its lexical context, so that it can
6174     // be seen when iterating through the list of declarations in that
6175     // context. However, specializations are not found by name lookup.
6176     CurContext->addDecl(Specialization);
6177   }
6178   return Specialization;
6179 }
6180 
6181 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
6182                               MultiTemplateParamsArg TemplateParameterLists,
6183                                     Declarator &D) {
6184   Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
6185   ActOnDocumentableDecl(NewDecl);
6186   return NewDecl;
6187 }
6188 
6189 Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
6190                                MultiTemplateParamsArg TemplateParameterLists,
6191                                             Declarator &D) {
6192   assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6193   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6194 
6195   if (FTI.hasPrototype) {
6196     // FIXME: Diagnose arguments without names in C.
6197   }
6198 
6199   Scope *ParentScope = FnBodyScope->getParent();
6200 
6201   D.setFunctionDefinitionKind(FDK_Definition);
6202   Decl *DP = HandleDeclarator(ParentScope, D,
6203                               TemplateParameterLists);
6204   return ActOnStartOfFunctionDef(FnBodyScope, DP);
6205 }
6206 
6207 /// \brief Strips various properties off an implicit instantiation
6208 /// that has just been explicitly specialized.
6209 static void StripImplicitInstantiation(NamedDecl *D) {
6210   D->dropAttrs();
6211 
6212   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6213     FD->setInlineSpecified(false);
6214 
6215     for (FunctionDecl::param_iterator I = FD->param_begin(),
6216                                       E = FD->param_end();
6217          I != E; ++I)
6218       (*I)->dropAttrs();
6219   }
6220 }
6221 
6222 /// \brief Compute the diagnostic location for an explicit instantiation
6223 //  declaration or definition.
6224 static SourceLocation DiagLocForExplicitInstantiation(
6225     NamedDecl* D, SourceLocation PointOfInstantiation) {
6226   // Explicit instantiations following a specialization have no effect and
6227   // hence no PointOfInstantiation. In that case, walk decl backwards
6228   // until a valid name loc is found.
6229   SourceLocation PrevDiagLoc = PointOfInstantiation;
6230   for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
6231        Prev = Prev->getPreviousDecl()) {
6232     PrevDiagLoc = Prev->getLocation();
6233   }
6234   assert(PrevDiagLoc.isValid() &&
6235          "Explicit instantiation without point of instantiation?");
6236   return PrevDiagLoc;
6237 }
6238 
6239 /// \brief Diagnose cases where we have an explicit template specialization
6240 /// before/after an explicit template instantiation, producing diagnostics
6241 /// for those cases where they are required and determining whether the
6242 /// new specialization/instantiation will have any effect.
6243 ///
6244 /// \param NewLoc the location of the new explicit specialization or
6245 /// instantiation.
6246 ///
6247 /// \param NewTSK the kind of the new explicit specialization or instantiation.
6248 ///
6249 /// \param PrevDecl the previous declaration of the entity.
6250 ///
6251 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
6252 ///
6253 /// \param PrevPointOfInstantiation if valid, indicates where the previus
6254 /// declaration was instantiated (either implicitly or explicitly).
6255 ///
6256 /// \param HasNoEffect will be set to true to indicate that the new
6257 /// specialization or instantiation has no effect and should be ignored.
6258 ///
6259 /// \returns true if there was an error that should prevent the introduction of
6260 /// the new declaration into the AST, false otherwise.
6261 bool
6262 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
6263                                              TemplateSpecializationKind NewTSK,
6264                                              NamedDecl *PrevDecl,
6265                                              TemplateSpecializationKind PrevTSK,
6266                                         SourceLocation PrevPointOfInstantiation,
6267                                              bool &HasNoEffect) {
6268   HasNoEffect = false;
6269 
6270   switch (NewTSK) {
6271   case TSK_Undeclared:
6272   case TSK_ImplicitInstantiation:
6273     llvm_unreachable("Don't check implicit instantiations here");
6274 
6275   case TSK_ExplicitSpecialization:
6276     switch (PrevTSK) {
6277     case TSK_Undeclared:
6278     case TSK_ExplicitSpecialization:
6279       // Okay, we're just specializing something that is either already
6280       // explicitly specialized or has merely been mentioned without any
6281       // instantiation.
6282       return false;
6283 
6284     case TSK_ImplicitInstantiation:
6285       if (PrevPointOfInstantiation.isInvalid()) {
6286         // The declaration itself has not actually been instantiated, so it is
6287         // still okay to specialize it.
6288         StripImplicitInstantiation(PrevDecl);
6289         return false;
6290       }
6291       // Fall through
6292 
6293     case TSK_ExplicitInstantiationDeclaration:
6294     case TSK_ExplicitInstantiationDefinition:
6295       assert((PrevTSK == TSK_ImplicitInstantiation ||
6296               PrevPointOfInstantiation.isValid()) &&
6297              "Explicit instantiation without point of instantiation?");
6298 
6299       // C++ [temp.expl.spec]p6:
6300       //   If a template, a member template or the member of a class template
6301       //   is explicitly specialized then that specialization shall be declared
6302       //   before the first use of that specialization that would cause an
6303       //   implicit instantiation to take place, in every translation unit in
6304       //   which such a use occurs; no diagnostic is required.
6305       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6306         // Is there any previous explicit specialization declaration?
6307         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
6308           return false;
6309       }
6310 
6311       Diag(NewLoc, diag::err_specialization_after_instantiation)
6312         << PrevDecl;
6313       Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
6314         << (PrevTSK != TSK_ImplicitInstantiation);
6315 
6316       return true;
6317     }
6318 
6319   case TSK_ExplicitInstantiationDeclaration:
6320     switch (PrevTSK) {
6321     case TSK_ExplicitInstantiationDeclaration:
6322       // This explicit instantiation declaration is redundant (that's okay).
6323       HasNoEffect = true;
6324       return false;
6325 
6326     case TSK_Undeclared:
6327     case TSK_ImplicitInstantiation:
6328       // We're explicitly instantiating something that may have already been
6329       // implicitly instantiated; that's fine.
6330       return false;
6331 
6332     case TSK_ExplicitSpecialization:
6333       // C++0x [temp.explicit]p4:
6334       //   For a given set of template parameters, if an explicit instantiation
6335       //   of a template appears after a declaration of an explicit
6336       //   specialization for that template, the explicit instantiation has no
6337       //   effect.
6338       HasNoEffect = true;
6339       return false;
6340 
6341     case TSK_ExplicitInstantiationDefinition:
6342       // C++0x [temp.explicit]p10:
6343       //   If an entity is the subject of both an explicit instantiation
6344       //   declaration and an explicit instantiation definition in the same
6345       //   translation unit, the definition shall follow the declaration.
6346       Diag(NewLoc,
6347            diag::err_explicit_instantiation_declaration_after_definition);
6348 
6349       // Explicit instantiations following a specialization have no effect and
6350       // hence no PrevPointOfInstantiation. In that case, walk decl backwards
6351       // until a valid name loc is found.
6352       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6353            diag::note_explicit_instantiation_definition_here);
6354       HasNoEffect = true;
6355       return false;
6356     }
6357 
6358   case TSK_ExplicitInstantiationDefinition:
6359     switch (PrevTSK) {
6360     case TSK_Undeclared:
6361     case TSK_ImplicitInstantiation:
6362       // We're explicitly instantiating something that may have already been
6363       // implicitly instantiated; that's fine.
6364       return false;
6365 
6366     case TSK_ExplicitSpecialization:
6367       // C++ DR 259, C++0x [temp.explicit]p4:
6368       //   For a given set of template parameters, if an explicit
6369       //   instantiation of a template appears after a declaration of
6370       //   an explicit specialization for that template, the explicit
6371       //   instantiation has no effect.
6372       //
6373       // In C++98/03 mode, we only give an extension warning here, because it
6374       // is not harmful to try to explicitly instantiate something that
6375       // has been explicitly specialized.
6376       Diag(NewLoc, getLangOpts().CPlusPlus11 ?
6377            diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
6378            diag::ext_explicit_instantiation_after_specialization)
6379         << PrevDecl;
6380       Diag(PrevDecl->getLocation(),
6381            diag::note_previous_template_specialization);
6382       HasNoEffect = true;
6383       return false;
6384 
6385     case TSK_ExplicitInstantiationDeclaration:
6386       // We're explicity instantiating a definition for something for which we
6387       // were previously asked to suppress instantiations. That's fine.
6388 
6389       // C++0x [temp.explicit]p4:
6390       //   For a given set of template parameters, if an explicit instantiation
6391       //   of a template appears after a declaration of an explicit
6392       //   specialization for that template, the explicit instantiation has no
6393       //   effect.
6394       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6395         // Is there any previous explicit specialization declaration?
6396         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
6397           HasNoEffect = true;
6398           break;
6399         }
6400       }
6401 
6402       return false;
6403 
6404     case TSK_ExplicitInstantiationDefinition:
6405       // C++0x [temp.spec]p5:
6406       //   For a given template and a given set of template-arguments,
6407       //     - an explicit instantiation definition shall appear at most once
6408       //       in a program,
6409       Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
6410         << PrevDecl;
6411       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6412            diag::note_previous_explicit_instantiation);
6413       HasNoEffect = true;
6414       return false;
6415     }
6416   }
6417 
6418   llvm_unreachable("Missing specialization/instantiation case?");
6419 }
6420 
6421 /// \brief Perform semantic analysis for the given dependent function
6422 /// template specialization.
6423 ///
6424 /// The only possible way to get a dependent function template specialization
6425 /// is with a friend declaration, like so:
6426 ///
6427 /// \code
6428 ///   template \<class T> void foo(T);
6429 ///   template \<class T> class A {
6430 ///     friend void foo<>(T);
6431 ///   };
6432 /// \endcode
6433 ///
6434 /// There really isn't any useful analysis we can do here, so we
6435 /// just store the information.
6436 bool
6437 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
6438                    const TemplateArgumentListInfo &ExplicitTemplateArgs,
6439                                                    LookupResult &Previous) {
6440   // Remove anything from Previous that isn't a function template in
6441   // the correct context.
6442   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6443   LookupResult::Filter F = Previous.makeFilter();
6444   while (F.hasNext()) {
6445     NamedDecl *D = F.next()->getUnderlyingDecl();
6446     if (!isa<FunctionTemplateDecl>(D) ||
6447         !FDLookupContext->InEnclosingNamespaceSetOf(
6448                               D->getDeclContext()->getRedeclContext()))
6449       F.erase();
6450   }
6451   F.done();
6452 
6453   // Should this be diagnosed here?
6454   if (Previous.empty()) return true;
6455 
6456   FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
6457                                          ExplicitTemplateArgs);
6458   return false;
6459 }
6460 
6461 /// \brief Perform semantic analysis for the given function template
6462 /// specialization.
6463 ///
6464 /// This routine performs all of the semantic analysis required for an
6465 /// explicit function template specialization. On successful completion,
6466 /// the function declaration \p FD will become a function template
6467 /// specialization.
6468 ///
6469 /// \param FD the function declaration, which will be updated to become a
6470 /// function template specialization.
6471 ///
6472 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
6473 /// if any. Note that this may be valid info even when 0 arguments are
6474 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
6475 /// as it anyway contains info on the angle brackets locations.
6476 ///
6477 /// \param Previous the set of declarations that may be specialized by
6478 /// this function specialization.
6479 bool Sema::CheckFunctionTemplateSpecialization(
6480     FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
6481     LookupResult &Previous) {
6482   // The set of function template specializations that could match this
6483   // explicit function template specialization.
6484   UnresolvedSet<8> Candidates;
6485   TemplateSpecCandidateSet FailedCandidates(FD->getLocation());
6486 
6487   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6488   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6489          I != E; ++I) {
6490     NamedDecl *Ovl = (*I)->getUnderlyingDecl();
6491     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
6492       // Only consider templates found within the same semantic lookup scope as
6493       // FD.
6494       if (!FDLookupContext->InEnclosingNamespaceSetOf(
6495                                 Ovl->getDeclContext()->getRedeclContext()))
6496         continue;
6497 
6498       // When matching a constexpr member function template specialization
6499       // against the primary template, we don't yet know whether the
6500       // specialization has an implicit 'const' (because we don't know whether
6501       // it will be a static member function until we know which template it
6502       // specializes), so adjust it now assuming it specializes this template.
6503       QualType FT = FD->getType();
6504       if (FD->isConstexpr()) {
6505         CXXMethodDecl *OldMD =
6506           dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
6507         if (OldMD && OldMD->isConst()) {
6508           const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
6509           FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6510           EPI.TypeQuals |= Qualifiers::Const;
6511           FT = Context.getFunctionType(FPT->getResultType(), FPT->getArgTypes(),
6512                                        EPI);
6513         }
6514       }
6515 
6516       // C++ [temp.expl.spec]p11:
6517       //   A trailing template-argument can be left unspecified in the
6518       //   template-id naming an explicit function template specialization
6519       //   provided it can be deduced from the function argument type.
6520       // Perform template argument deduction to determine whether we may be
6521       // specializing this template.
6522       // FIXME: It is somewhat wasteful to build
6523       TemplateDeductionInfo Info(FailedCandidates.getLocation());
6524       FunctionDecl *Specialization = 0;
6525       if (TemplateDeductionResult TDK
6526             = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, FT,
6527                                       Specialization, Info)) {
6528         // Template argument deduction failed; record why it failed, so
6529         // that we can provide nifty diagnostics.
6530         FailedCandidates.addCandidate()
6531             .set(FunTmpl->getTemplatedDecl(),
6532                  MakeDeductionFailureInfo(Context, TDK, Info));
6533         (void)TDK;
6534         continue;
6535       }
6536 
6537       // Record this candidate.
6538       Candidates.addDecl(Specialization, I.getAccess());
6539     }
6540   }
6541 
6542   // Find the most specialized function template.
6543   UnresolvedSetIterator Result = getMostSpecialized(
6544       Candidates.begin(), Candidates.end(), FailedCandidates,
6545       FD->getLocation(),
6546       PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
6547       PDiag(diag::err_function_template_spec_ambiguous)
6548           << FD->getDeclName() << (ExplicitTemplateArgs != 0),
6549       PDiag(diag::note_function_template_spec_matched));
6550 
6551   if (Result == Candidates.end())
6552     return true;
6553 
6554   // Ignore access information;  it doesn't figure into redeclaration checking.
6555   FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6556 
6557   FunctionTemplateSpecializationInfo *SpecInfo
6558     = Specialization->getTemplateSpecializationInfo();
6559   assert(SpecInfo && "Function template specialization info missing?");
6560 
6561   // Note: do not overwrite location info if previous template
6562   // specialization kind was explicit.
6563   TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
6564   if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
6565     Specialization->setLocation(FD->getLocation());
6566     // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
6567     // function can differ from the template declaration with respect to
6568     // the constexpr specifier.
6569     Specialization->setConstexpr(FD->isConstexpr());
6570   }
6571 
6572   // FIXME: Check if the prior specialization has a point of instantiation.
6573   // If so, we have run afoul of .
6574 
6575   // If this is a friend declaration, then we're not really declaring
6576   // an explicit specialization.
6577   bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
6578 
6579   // Check the scope of this explicit specialization.
6580   if (!isFriend &&
6581       CheckTemplateSpecializationScope(*this,
6582                                        Specialization->getPrimaryTemplate(),
6583                                        Specialization, FD->getLocation(),
6584                                        false))
6585     return true;
6586 
6587   // C++ [temp.expl.spec]p6:
6588   //   If a template, a member template or the member of a class template is
6589   //   explicitly specialized then that specialization shall be declared
6590   //   before the first use of that specialization that would cause an implicit
6591   //   instantiation to take place, in every translation unit in which such a
6592   //   use occurs; no diagnostic is required.
6593   bool HasNoEffect = false;
6594   if (!isFriend &&
6595       CheckSpecializationInstantiationRedecl(FD->getLocation(),
6596                                              TSK_ExplicitSpecialization,
6597                                              Specialization,
6598                                    SpecInfo->getTemplateSpecializationKind(),
6599                                          SpecInfo->getPointOfInstantiation(),
6600                                              HasNoEffect))
6601     return true;
6602 
6603   // Mark the prior declaration as an explicit specialization, so that later
6604   // clients know that this is an explicit specialization.
6605   if (!isFriend) {
6606     SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
6607     MarkUnusedFileScopedDecl(Specialization);
6608   }
6609 
6610   // Turn the given function declaration into a function template
6611   // specialization, with the template arguments from the previous
6612   // specialization.
6613   // Take copies of (semantic and syntactic) template argument lists.
6614   const TemplateArgumentList* TemplArgs = new (Context)
6615     TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
6616   FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
6617                                         TemplArgs, /*InsertPos=*/0,
6618                                     SpecInfo->getTemplateSpecializationKind(),
6619                                         ExplicitTemplateArgs);
6620 
6621   // The "previous declaration" for this function template specialization is
6622   // the prior function template specialization.
6623   Previous.clear();
6624   Previous.addDecl(Specialization);
6625   return false;
6626 }
6627 
6628 /// \brief Perform semantic analysis for the given non-template member
6629 /// specialization.
6630 ///
6631 /// This routine performs all of the semantic analysis required for an
6632 /// explicit member function specialization. On successful completion,
6633 /// the function declaration \p FD will become a member function
6634 /// specialization.
6635 ///
6636 /// \param Member the member declaration, which will be updated to become a
6637 /// specialization.
6638 ///
6639 /// \param Previous the set of declarations, one of which may be specialized
6640 /// by this function specialization;  the set will be modified to contain the
6641 /// redeclared member.
6642 bool
6643 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
6644   assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
6645 
6646   // Try to find the member we are instantiating.
6647   NamedDecl *Instantiation = 0;
6648   NamedDecl *InstantiatedFrom = 0;
6649   MemberSpecializationInfo *MSInfo = 0;
6650 
6651   if (Previous.empty()) {
6652     // Nowhere to look anyway.
6653   } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
6654     for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6655            I != E; ++I) {
6656       NamedDecl *D = (*I)->getUnderlyingDecl();
6657       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
6658         if (Context.hasSameType(Function->getType(), Method->getType())) {
6659           Instantiation = Method;
6660           InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
6661           MSInfo = Method->getMemberSpecializationInfo();
6662           break;
6663         }
6664       }
6665     }
6666   } else if (isa<VarDecl>(Member)) {
6667     VarDecl *PrevVar;
6668     if (Previous.isSingleResult() &&
6669         (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
6670       if (PrevVar->isStaticDataMember()) {
6671         Instantiation = PrevVar;
6672         InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
6673         MSInfo = PrevVar->getMemberSpecializationInfo();
6674       }
6675   } else if (isa<RecordDecl>(Member)) {
6676     CXXRecordDecl *PrevRecord;
6677     if (Previous.isSingleResult() &&
6678         (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
6679       Instantiation = PrevRecord;
6680       InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
6681       MSInfo = PrevRecord->getMemberSpecializationInfo();
6682     }
6683   } else if (isa<EnumDecl>(Member)) {
6684     EnumDecl *PrevEnum;
6685     if (Previous.isSingleResult() &&
6686         (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
6687       Instantiation = PrevEnum;
6688       InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
6689       MSInfo = PrevEnum->getMemberSpecializationInfo();
6690     }
6691   }
6692 
6693   if (!Instantiation) {
6694     // There is no previous declaration that matches. Since member
6695     // specializations are always out-of-line, the caller will complain about
6696     // this mismatch later.
6697     return false;
6698   }
6699 
6700   // If this is a friend, just bail out here before we start turning
6701   // things into explicit specializations.
6702   if (Member->getFriendObjectKind() != Decl::FOK_None) {
6703     // Preserve instantiation information.
6704     if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
6705       cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
6706                                       cast<CXXMethodDecl>(InstantiatedFrom),
6707         cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
6708     } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
6709       cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6710                                       cast<CXXRecordDecl>(InstantiatedFrom),
6711         cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
6712     }
6713 
6714     Previous.clear();
6715     Previous.addDecl(Instantiation);
6716     return false;
6717   }
6718 
6719   // Make sure that this is a specialization of a member.
6720   if (!InstantiatedFrom) {
6721     Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
6722       << Member;
6723     Diag(Instantiation->getLocation(), diag::note_specialized_decl);
6724     return true;
6725   }
6726 
6727   // C++ [temp.expl.spec]p6:
6728   //   If a template, a member template or the member of a class template is
6729   //   explicitly specialized then that specialization shall be declared
6730   //   before the first use of that specialization that would cause an implicit
6731   //   instantiation to take place, in every translation unit in which such a
6732   //   use occurs; no diagnostic is required.
6733   assert(MSInfo && "Member specialization info missing?");
6734 
6735   bool HasNoEffect = false;
6736   if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
6737                                              TSK_ExplicitSpecialization,
6738                                              Instantiation,
6739                                      MSInfo->getTemplateSpecializationKind(),
6740                                            MSInfo->getPointOfInstantiation(),
6741                                              HasNoEffect))
6742     return true;
6743 
6744   // Check the scope of this explicit specialization.
6745   if (CheckTemplateSpecializationScope(*this,
6746                                        InstantiatedFrom,
6747                                        Instantiation, Member->getLocation(),
6748                                        false))
6749     return true;
6750 
6751   // Note that this is an explicit instantiation of a member.
6752   // the original declaration to note that it is an explicit specialization
6753   // (if it was previously an implicit instantiation). This latter step
6754   // makes bookkeeping easier.
6755   if (isa<FunctionDecl>(Member)) {
6756     FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
6757     if (InstantiationFunction->getTemplateSpecializationKind() ==
6758           TSK_ImplicitInstantiation) {
6759       InstantiationFunction->setTemplateSpecializationKind(
6760                                                   TSK_ExplicitSpecialization);
6761       InstantiationFunction->setLocation(Member->getLocation());
6762     }
6763 
6764     cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
6765                                         cast<CXXMethodDecl>(InstantiatedFrom),
6766                                                   TSK_ExplicitSpecialization);
6767     MarkUnusedFileScopedDecl(InstantiationFunction);
6768   } else if (isa<VarDecl>(Member)) {
6769     VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
6770     if (InstantiationVar->getTemplateSpecializationKind() ==
6771           TSK_ImplicitInstantiation) {
6772       InstantiationVar->setTemplateSpecializationKind(
6773                                                   TSK_ExplicitSpecialization);
6774       InstantiationVar->setLocation(Member->getLocation());
6775     }
6776 
6777     cast<VarDecl>(Member)->setInstantiationOfStaticDataMember(
6778         cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
6779     MarkUnusedFileScopedDecl(InstantiationVar);
6780   } else if (isa<CXXRecordDecl>(Member)) {
6781     CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
6782     if (InstantiationClass->getTemplateSpecializationKind() ==
6783           TSK_ImplicitInstantiation) {
6784       InstantiationClass->setTemplateSpecializationKind(
6785                                                    TSK_ExplicitSpecialization);
6786       InstantiationClass->setLocation(Member->getLocation());
6787     }
6788 
6789     cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6790                                         cast<CXXRecordDecl>(InstantiatedFrom),
6791                                                    TSK_ExplicitSpecialization);
6792   } else {
6793     assert(isa<EnumDecl>(Member) && "Only member enums remain");
6794     EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
6795     if (InstantiationEnum->getTemplateSpecializationKind() ==
6796           TSK_ImplicitInstantiation) {
6797       InstantiationEnum->setTemplateSpecializationKind(
6798                                                    TSK_ExplicitSpecialization);
6799       InstantiationEnum->setLocation(Member->getLocation());
6800     }
6801 
6802     cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
6803         cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
6804   }
6805 
6806   // Save the caller the trouble of having to figure out which declaration
6807   // this specialization matches.
6808   Previous.clear();
6809   Previous.addDecl(Instantiation);
6810   return false;
6811 }
6812 
6813 /// \brief Check the scope of an explicit instantiation.
6814 ///
6815 /// \returns true if a serious error occurs, false otherwise.
6816 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
6817                                             SourceLocation InstLoc,
6818                                             bool WasQualifiedName) {
6819   DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
6820   DeclContext *CurContext = S.CurContext->getRedeclContext();
6821 
6822   if (CurContext->isRecord()) {
6823     S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
6824       << D;
6825     return true;
6826   }
6827 
6828   // C++11 [temp.explicit]p3:
6829   //   An explicit instantiation shall appear in an enclosing namespace of its
6830   //   template. If the name declared in the explicit instantiation is an
6831   //   unqualified name, the explicit instantiation shall appear in the
6832   //   namespace where its template is declared or, if that namespace is inline
6833   //   (7.3.1), any namespace from its enclosing namespace set.
6834   //
6835   // This is DR275, which we do not retroactively apply to C++98/03.
6836   if (WasQualifiedName) {
6837     if (CurContext->Encloses(OrigContext))
6838       return false;
6839   } else {
6840     if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
6841       return false;
6842   }
6843 
6844   if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
6845     if (WasQualifiedName)
6846       S.Diag(InstLoc,
6847              S.getLangOpts().CPlusPlus11?
6848                diag::err_explicit_instantiation_out_of_scope :
6849                diag::warn_explicit_instantiation_out_of_scope_0x)
6850         << D << NS;
6851     else
6852       S.Diag(InstLoc,
6853              S.getLangOpts().CPlusPlus11?
6854                diag::err_explicit_instantiation_unqualified_wrong_namespace :
6855                diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
6856         << D << NS;
6857   } else
6858     S.Diag(InstLoc,
6859            S.getLangOpts().CPlusPlus11?
6860              diag::err_explicit_instantiation_must_be_global :
6861              diag::warn_explicit_instantiation_must_be_global_0x)
6862       << D;
6863   S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
6864   return false;
6865 }
6866 
6867 /// \brief Determine whether the given scope specifier has a template-id in it.
6868 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
6869   if (!SS.isSet())
6870     return false;
6871 
6872   // C++11 [temp.explicit]p3:
6873   //   If the explicit instantiation is for a member function, a member class
6874   //   or a static data member of a class template specialization, the name of
6875   //   the class template specialization in the qualified-id for the member
6876   //   name shall be a simple-template-id.
6877   //
6878   // C++98 has the same restriction, just worded differently.
6879   for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
6880        NNS; NNS = NNS->getPrefix())
6881     if (const Type *T = NNS->getAsType())
6882       if (isa<TemplateSpecializationType>(T))
6883         return true;
6884 
6885   return false;
6886 }
6887 
6888 // Explicit instantiation of a class template specialization
6889 DeclResult
6890 Sema::ActOnExplicitInstantiation(Scope *S,
6891                                  SourceLocation ExternLoc,
6892                                  SourceLocation TemplateLoc,
6893                                  unsigned TagSpec,
6894                                  SourceLocation KWLoc,
6895                                  const CXXScopeSpec &SS,
6896                                  TemplateTy TemplateD,
6897                                  SourceLocation TemplateNameLoc,
6898                                  SourceLocation LAngleLoc,
6899                                  ASTTemplateArgsPtr TemplateArgsIn,
6900                                  SourceLocation RAngleLoc,
6901                                  AttributeList *Attr) {
6902   // Find the class template we're specializing
6903   TemplateName Name = TemplateD.get();
6904   TemplateDecl *TD = Name.getAsTemplateDecl();
6905   // Check that the specialization uses the same tag kind as the
6906   // original template.
6907   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6908   assert(Kind != TTK_Enum &&
6909          "Invalid enum tag in class template explicit instantiation!");
6910 
6911   if (isa<TypeAliasTemplateDecl>(TD)) {
6912       Diag(KWLoc, diag::err_tag_reference_non_tag) << Kind;
6913       Diag(TD->getTemplatedDecl()->getLocation(),
6914            diag::note_previous_use);
6915     return true;
6916   }
6917 
6918   ClassTemplateDecl *ClassTemplate = cast<ClassTemplateDecl>(TD);
6919 
6920   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
6921                                     Kind, /*isDefinition*/false, KWLoc,
6922                                     *ClassTemplate->getIdentifier())) {
6923     Diag(KWLoc, diag::err_use_with_wrong_tag)
6924       << ClassTemplate
6925       << FixItHint::CreateReplacement(KWLoc,
6926                             ClassTemplate->getTemplatedDecl()->getKindName());
6927     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
6928          diag::note_previous_use);
6929     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
6930   }
6931 
6932   // C++0x [temp.explicit]p2:
6933   //   There are two forms of explicit instantiation: an explicit instantiation
6934   //   definition and an explicit instantiation declaration. An explicit
6935   //   instantiation declaration begins with the extern keyword. [...]
6936   TemplateSpecializationKind TSK
6937     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6938                            : TSK_ExplicitInstantiationDeclaration;
6939 
6940   // Translate the parser's template argument list in our AST format.
6941   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6942   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6943 
6944   // Check that the template argument list is well-formed for this
6945   // template.
6946   SmallVector<TemplateArgument, 4> Converted;
6947   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
6948                                 TemplateArgs, false, Converted))
6949     return true;
6950 
6951   // Find the class template specialization declaration that
6952   // corresponds to these arguments.
6953   void *InsertPos = 0;
6954   ClassTemplateSpecializationDecl *PrevDecl
6955     = ClassTemplate->findSpecialization(Converted.data(),
6956                                         Converted.size(), InsertPos);
6957 
6958   TemplateSpecializationKind PrevDecl_TSK
6959     = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
6960 
6961   // C++0x [temp.explicit]p2:
6962   //   [...] An explicit instantiation shall appear in an enclosing
6963   //   namespace of its template. [...]
6964   //
6965   // This is C++ DR 275.
6966   if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
6967                                       SS.isSet()))
6968     return true;
6969 
6970   ClassTemplateSpecializationDecl *Specialization = 0;
6971 
6972   bool HasNoEffect = false;
6973   if (PrevDecl) {
6974     if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
6975                                                PrevDecl, PrevDecl_TSK,
6976                                             PrevDecl->getPointOfInstantiation(),
6977                                                HasNoEffect))
6978       return PrevDecl;
6979 
6980     // Even though HasNoEffect == true means that this explicit instantiation
6981     // has no effect on semantics, we go on to put its syntax in the AST.
6982 
6983     if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
6984         PrevDecl_TSK == TSK_Undeclared) {
6985       // Since the only prior class template specialization with these
6986       // arguments was referenced but not declared, reuse that
6987       // declaration node as our own, updating the source location
6988       // for the template name to reflect our new declaration.
6989       // (Other source locations will be updated later.)
6990       Specialization = PrevDecl;
6991       Specialization->setLocation(TemplateNameLoc);
6992       PrevDecl = 0;
6993     }
6994   }
6995 
6996   if (!Specialization) {
6997     // Create a new class template specialization declaration node for
6998     // this explicit specialization.
6999     Specialization
7000       = ClassTemplateSpecializationDecl::Create(Context, Kind,
7001                                              ClassTemplate->getDeclContext(),
7002                                                 KWLoc, TemplateNameLoc,
7003                                                 ClassTemplate,
7004                                                 Converted.data(),
7005                                                 Converted.size(),
7006                                                 PrevDecl);
7007     SetNestedNameSpecifier(Specialization, SS);
7008 
7009     if (!HasNoEffect && !PrevDecl) {
7010       // Insert the new specialization.
7011       ClassTemplate->AddSpecialization(Specialization, InsertPos);
7012     }
7013   }
7014 
7015   // Build the fully-sugared type for this explicit instantiation as
7016   // the user wrote in the explicit instantiation itself. This means
7017   // that we'll pretty-print the type retrieved from the
7018   // specialization's declaration the way that the user actually wrote
7019   // the explicit instantiation, rather than formatting the name based
7020   // on the "canonical" representation used to store the template
7021   // arguments in the specialization.
7022   TypeSourceInfo *WrittenTy
7023     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
7024                                                 TemplateArgs,
7025                                   Context.getTypeDeclType(Specialization));
7026   Specialization->setTypeAsWritten(WrittenTy);
7027 
7028   // Set source locations for keywords.
7029   Specialization->setExternLoc(ExternLoc);
7030   Specialization->setTemplateKeywordLoc(TemplateLoc);
7031   Specialization->setRBraceLoc(SourceLocation());
7032 
7033   if (Attr)
7034     ProcessDeclAttributeList(S, Specialization, Attr);
7035 
7036   // Add the explicit instantiation into its lexical context. However,
7037   // since explicit instantiations are never found by name lookup, we
7038   // just put it into the declaration context directly.
7039   Specialization->setLexicalDeclContext(CurContext);
7040   CurContext->addDecl(Specialization);
7041 
7042   // Syntax is now OK, so return if it has no other effect on semantics.
7043   if (HasNoEffect) {
7044     // Set the template specialization kind.
7045     Specialization->setTemplateSpecializationKind(TSK);
7046     return Specialization;
7047   }
7048 
7049   // C++ [temp.explicit]p3:
7050   //   A definition of a class template or class member template
7051   //   shall be in scope at the point of the explicit instantiation of
7052   //   the class template or class member template.
7053   //
7054   // This check comes when we actually try to perform the
7055   // instantiation.
7056   ClassTemplateSpecializationDecl *Def
7057     = cast_or_null<ClassTemplateSpecializationDecl>(
7058                                               Specialization->getDefinition());
7059   if (!Def)
7060     InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
7061   else if (TSK == TSK_ExplicitInstantiationDefinition) {
7062     MarkVTableUsed(TemplateNameLoc, Specialization, true);
7063     Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
7064   }
7065 
7066   // Instantiate the members of this class template specialization.
7067   Def = cast_or_null<ClassTemplateSpecializationDecl>(
7068                                        Specialization->getDefinition());
7069   if (Def) {
7070     TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
7071 
7072     // Fix a TSK_ExplicitInstantiationDeclaration followed by a
7073     // TSK_ExplicitInstantiationDefinition
7074     if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
7075         TSK == TSK_ExplicitInstantiationDefinition)
7076       Def->setTemplateSpecializationKind(TSK);
7077 
7078     InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
7079   }
7080 
7081   // Set the template specialization kind.
7082   Specialization->setTemplateSpecializationKind(TSK);
7083   return Specialization;
7084 }
7085 
7086 // Explicit instantiation of a member class of a class template.
7087 DeclResult
7088 Sema::ActOnExplicitInstantiation(Scope *S,
7089                                  SourceLocation ExternLoc,
7090                                  SourceLocation TemplateLoc,
7091                                  unsigned TagSpec,
7092                                  SourceLocation KWLoc,
7093                                  CXXScopeSpec &SS,
7094                                  IdentifierInfo *Name,
7095                                  SourceLocation NameLoc,
7096                                  AttributeList *Attr) {
7097 
7098   bool Owned = false;
7099   bool IsDependent = false;
7100   Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
7101                         KWLoc, SS, Name, NameLoc, Attr, AS_none,
7102                         /*ModulePrivateLoc=*/SourceLocation(),
7103                         MultiTemplateParamsArg(), Owned, IsDependent,
7104                         SourceLocation(), false, TypeResult());
7105   assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
7106 
7107   if (!TagD)
7108     return true;
7109 
7110   TagDecl *Tag = cast<TagDecl>(TagD);
7111   assert(!Tag->isEnum() && "shouldn't see enumerations here");
7112 
7113   if (Tag->isInvalidDecl())
7114     return true;
7115 
7116   CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
7117   CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
7118   if (!Pattern) {
7119     Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
7120       << Context.getTypeDeclType(Record);
7121     Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
7122     return true;
7123   }
7124 
7125   // C++0x [temp.explicit]p2:
7126   //   If the explicit instantiation is for a class or member class, the
7127   //   elaborated-type-specifier in the declaration shall include a
7128   //   simple-template-id.
7129   //
7130   // C++98 has the same restriction, just worded differently.
7131   if (!ScopeSpecifierHasTemplateId(SS))
7132     Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
7133       << Record << SS.getRange();
7134 
7135   // C++0x [temp.explicit]p2:
7136   //   There are two forms of explicit instantiation: an explicit instantiation
7137   //   definition and an explicit instantiation declaration. An explicit
7138   //   instantiation declaration begins with the extern keyword. [...]
7139   TemplateSpecializationKind TSK
7140     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7141                            : TSK_ExplicitInstantiationDeclaration;
7142 
7143   // C++0x [temp.explicit]p2:
7144   //   [...] An explicit instantiation shall appear in an enclosing
7145   //   namespace of its template. [...]
7146   //
7147   // This is C++ DR 275.
7148   CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
7149 
7150   // Verify that it is okay to explicitly instantiate here.
7151   CXXRecordDecl *PrevDecl
7152     = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
7153   if (!PrevDecl && Record->getDefinition())
7154     PrevDecl = Record;
7155   if (PrevDecl) {
7156     MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
7157     bool HasNoEffect = false;
7158     assert(MSInfo && "No member specialization information?");
7159     if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
7160                                                PrevDecl,
7161                                         MSInfo->getTemplateSpecializationKind(),
7162                                              MSInfo->getPointOfInstantiation(),
7163                                                HasNoEffect))
7164       return true;
7165     if (HasNoEffect)
7166       return TagD;
7167   }
7168 
7169   CXXRecordDecl *RecordDef
7170     = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7171   if (!RecordDef) {
7172     // C++ [temp.explicit]p3:
7173     //   A definition of a member class of a class template shall be in scope
7174     //   at the point of an explicit instantiation of the member class.
7175     CXXRecordDecl *Def
7176       = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
7177     if (!Def) {
7178       Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
7179         << 0 << Record->getDeclName() << Record->getDeclContext();
7180       Diag(Pattern->getLocation(), diag::note_forward_declaration)
7181         << Pattern;
7182       return true;
7183     } else {
7184       if (InstantiateClass(NameLoc, Record, Def,
7185                            getTemplateInstantiationArgs(Record),
7186                            TSK))
7187         return true;
7188 
7189       RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7190       if (!RecordDef)
7191         return true;
7192     }
7193   }
7194 
7195   // Instantiate all of the members of the class.
7196   InstantiateClassMembers(NameLoc, RecordDef,
7197                           getTemplateInstantiationArgs(Record), TSK);
7198 
7199   if (TSK == TSK_ExplicitInstantiationDefinition)
7200     MarkVTableUsed(NameLoc, RecordDef, true);
7201 
7202   // FIXME: We don't have any representation for explicit instantiations of
7203   // member classes. Such a representation is not needed for compilation, but it
7204   // should be available for clients that want to see all of the declarations in
7205   // the source code.
7206   return TagD;
7207 }
7208 
7209 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
7210                                             SourceLocation ExternLoc,
7211                                             SourceLocation TemplateLoc,
7212                                             Declarator &D) {
7213   // Explicit instantiations always require a name.
7214   // TODO: check if/when DNInfo should replace Name.
7215   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7216   DeclarationName Name = NameInfo.getName();
7217   if (!Name) {
7218     if (!D.isInvalidType())
7219       Diag(D.getDeclSpec().getLocStart(),
7220            diag::err_explicit_instantiation_requires_name)
7221         << D.getDeclSpec().getSourceRange()
7222         << D.getSourceRange();
7223 
7224     return true;
7225   }
7226 
7227   // The scope passed in may not be a decl scope.  Zip up the scope tree until
7228   // we find one that is.
7229   while ((S->getFlags() & Scope::DeclScope) == 0 ||
7230          (S->getFlags() & Scope::TemplateParamScope) != 0)
7231     S = S->getParent();
7232 
7233   // Determine the type of the declaration.
7234   TypeSourceInfo *T = GetTypeForDeclarator(D, S);
7235   QualType R = T->getType();
7236   if (R.isNull())
7237     return true;
7238 
7239   // C++ [dcl.stc]p1:
7240   //   A storage-class-specifier shall not be specified in [...] an explicit
7241   //   instantiation (14.7.2) directive.
7242   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
7243     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
7244       << Name;
7245     return true;
7246   } else if (D.getDeclSpec().getStorageClassSpec()
7247                                                 != DeclSpec::SCS_unspecified) {
7248     // Complain about then remove the storage class specifier.
7249     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
7250       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7251 
7252     D.getMutableDeclSpec().ClearStorageClassSpecs();
7253   }
7254 
7255   // C++0x [temp.explicit]p1:
7256   //   [...] An explicit instantiation of a function template shall not use the
7257   //   inline or constexpr specifiers.
7258   // Presumably, this also applies to member functions of class templates as
7259   // well.
7260   if (D.getDeclSpec().isInlineSpecified())
7261     Diag(D.getDeclSpec().getInlineSpecLoc(),
7262          getLangOpts().CPlusPlus11 ?
7263            diag::err_explicit_instantiation_inline :
7264            diag::warn_explicit_instantiation_inline_0x)
7265       << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7266   if (D.getDeclSpec().isConstexprSpecified() && R->isFunctionType())
7267     // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
7268     // not already specified.
7269     Diag(D.getDeclSpec().getConstexprSpecLoc(),
7270          diag::err_explicit_instantiation_constexpr);
7271 
7272   // C++0x [temp.explicit]p2:
7273   //   There are two forms of explicit instantiation: an explicit instantiation
7274   //   definition and an explicit instantiation declaration. An explicit
7275   //   instantiation declaration begins with the extern keyword. [...]
7276   TemplateSpecializationKind TSK
7277     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7278                            : TSK_ExplicitInstantiationDeclaration;
7279 
7280   LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
7281   LookupParsedName(Previous, S, &D.getCXXScopeSpec());
7282 
7283   if (!R->isFunctionType()) {
7284     // C++ [temp.explicit]p1:
7285     //   A [...] static data member of a class template can be explicitly
7286     //   instantiated from the member definition associated with its class
7287     //   template.
7288     // C++1y [temp.explicit]p1:
7289     //   A [...] variable [...] template specialization can be explicitly
7290     //   instantiated from its template.
7291     if (Previous.isAmbiguous())
7292       return true;
7293 
7294     VarDecl *Prev = Previous.getAsSingle<VarDecl>();
7295     VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
7296 
7297     if (!PrevTemplate) {
7298       if (!Prev || !Prev->isStaticDataMember()) {
7299         // We expect to see a data data member here.
7300         Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
7301             << Name;
7302         for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7303              P != PEnd; ++P)
7304           Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
7305         return true;
7306       }
7307 
7308       if (!Prev->getInstantiatedFromStaticDataMember()) {
7309         // FIXME: Check for explicit specialization?
7310         Diag(D.getIdentifierLoc(),
7311              diag::err_explicit_instantiation_data_member_not_instantiated)
7312             << Prev;
7313         Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
7314         // FIXME: Can we provide a note showing where this was declared?
7315         return true;
7316       }
7317     } else {
7318       // Explicitly instantiate a variable template.
7319 
7320       // C++1y [dcl.spec.auto]p6:
7321       //   ... A program that uses auto or decltype(auto) in a context not
7322       //   explicitly allowed in this section is ill-formed.
7323       //
7324       // This includes auto-typed variable template instantiations.
7325       if (R->isUndeducedType()) {
7326         Diag(T->getTypeLoc().getLocStart(),
7327              diag::err_auto_not_allowed_var_inst);
7328         return true;
7329       }
7330 
7331       if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
7332         // C++1y [temp.explicit]p3:
7333         //   If the explicit instantiation is for a variable, the unqualified-id
7334         //   in the declaration shall be a template-id.
7335         Diag(D.getIdentifierLoc(),
7336              diag::err_explicit_instantiation_without_template_id)
7337           << PrevTemplate;
7338         Diag(PrevTemplate->getLocation(),
7339              diag::note_explicit_instantiation_here);
7340         return true;
7341       }
7342 
7343       // Translate the parser's template argument list into our AST format.
7344       TemplateArgumentListInfo TemplateArgs;
7345       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
7346       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
7347       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
7348       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7349                                          TemplateId->NumArgs);
7350       translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
7351 
7352       DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
7353                                           D.getIdentifierLoc(), TemplateArgs);
7354       if (Res.isInvalid())
7355         return true;
7356 
7357       // Ignore access control bits, we don't need them for redeclaration
7358       // checking.
7359       Prev = cast<VarDecl>(Res.get());
7360     }
7361 
7362     // C++0x [temp.explicit]p2:
7363     //   If the explicit instantiation is for a member function, a member class
7364     //   or a static data member of a class template specialization, the name of
7365     //   the class template specialization in the qualified-id for the member
7366     //   name shall be a simple-template-id.
7367     //
7368     // C++98 has the same restriction, just worded differently.
7369     //
7370     // This does not apply to variable template specializations, where the
7371     // template-id is in the unqualified-id instead.
7372     if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
7373       Diag(D.getIdentifierLoc(),
7374            diag::ext_explicit_instantiation_without_qualified_id)
7375         << Prev << D.getCXXScopeSpec().getRange();
7376 
7377     // Check the scope of this explicit instantiation.
7378     CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
7379 
7380     // Verify that it is okay to explicitly instantiate here.
7381     TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
7382     SourceLocation POI = Prev->getPointOfInstantiation();
7383     bool HasNoEffect = false;
7384     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
7385                                                PrevTSK, POI, HasNoEffect))
7386       return true;
7387 
7388     if (!HasNoEffect) {
7389       // Instantiate static data member or variable template.
7390 
7391       Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
7392       if (PrevTemplate) {
7393         // Merge attributes.
7394         if (AttributeList *Attr = D.getDeclSpec().getAttributes().getList())
7395           ProcessDeclAttributeList(S, Prev, Attr);
7396       }
7397       if (TSK == TSK_ExplicitInstantiationDefinition)
7398         InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
7399     }
7400 
7401     // Check the new variable specialization against the parsed input.
7402     if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
7403       Diag(T->getTypeLoc().getLocStart(),
7404            diag::err_invalid_var_template_spec_type)
7405           << 0 << PrevTemplate << R << Prev->getType();
7406       Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
7407           << 2 << PrevTemplate->getDeclName();
7408       return true;
7409     }
7410 
7411     // FIXME: Create an ExplicitInstantiation node?
7412     return (Decl*) 0;
7413   }
7414 
7415   // If the declarator is a template-id, translate the parser's template
7416   // argument list into our AST format.
7417   bool HasExplicitTemplateArgs = false;
7418   TemplateArgumentListInfo TemplateArgs;
7419   if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7420     TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
7421     TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
7422     TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
7423     ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7424                                        TemplateId->NumArgs);
7425     translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
7426     HasExplicitTemplateArgs = true;
7427   }
7428 
7429   // C++ [temp.explicit]p1:
7430   //   A [...] function [...] can be explicitly instantiated from its template.
7431   //   A member function [...] of a class template can be explicitly
7432   //  instantiated from the member definition associated with its class
7433   //  template.
7434   UnresolvedSet<8> Matches;
7435   TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
7436   for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7437        P != PEnd; ++P) {
7438     NamedDecl *Prev = *P;
7439     if (!HasExplicitTemplateArgs) {
7440       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
7441         if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
7442           Matches.clear();
7443 
7444           Matches.addDecl(Method, P.getAccess());
7445           if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
7446             break;
7447         }
7448       }
7449     }
7450 
7451     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
7452     if (!FunTmpl)
7453       continue;
7454 
7455     TemplateDeductionInfo Info(FailedCandidates.getLocation());
7456     FunctionDecl *Specialization = 0;
7457     if (TemplateDeductionResult TDK
7458           = DeduceTemplateArguments(FunTmpl,
7459                                (HasExplicitTemplateArgs ? &TemplateArgs : 0),
7460                                     R, Specialization, Info)) {
7461       // Keep track of almost-matches.
7462       FailedCandidates.addCandidate()
7463           .set(FunTmpl->getTemplatedDecl(),
7464                MakeDeductionFailureInfo(Context, TDK, Info));
7465       (void)TDK;
7466       continue;
7467     }
7468 
7469     Matches.addDecl(Specialization, P.getAccess());
7470   }
7471 
7472   // Find the most specialized function template specialization.
7473   UnresolvedSetIterator Result = getMostSpecialized(
7474       Matches.begin(), Matches.end(), FailedCandidates,
7475       D.getIdentifierLoc(),
7476       PDiag(diag::err_explicit_instantiation_not_known) << Name,
7477       PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
7478       PDiag(diag::note_explicit_instantiation_candidate));
7479 
7480   if (Result == Matches.end())
7481     return true;
7482 
7483   // Ignore access control bits, we don't need them for redeclaration checking.
7484   FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
7485 
7486   if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
7487     Diag(D.getIdentifierLoc(),
7488          diag::err_explicit_instantiation_member_function_not_instantiated)
7489       << Specialization
7490       << (Specialization->getTemplateSpecializationKind() ==
7491           TSK_ExplicitSpecialization);
7492     Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
7493     return true;
7494   }
7495 
7496   FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
7497   if (!PrevDecl && Specialization->isThisDeclarationADefinition())
7498     PrevDecl = Specialization;
7499 
7500   if (PrevDecl) {
7501     bool HasNoEffect = false;
7502     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
7503                                                PrevDecl,
7504                                      PrevDecl->getTemplateSpecializationKind(),
7505                                           PrevDecl->getPointOfInstantiation(),
7506                                                HasNoEffect))
7507       return true;
7508 
7509     // FIXME: We may still want to build some representation of this
7510     // explicit specialization.
7511     if (HasNoEffect)
7512       return (Decl*) 0;
7513   }
7514 
7515   Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
7516   AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
7517   if (Attr)
7518     ProcessDeclAttributeList(S, Specialization, Attr);
7519 
7520   if (TSK == TSK_ExplicitInstantiationDefinition)
7521     InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
7522 
7523   // C++0x [temp.explicit]p2:
7524   //   If the explicit instantiation is for a member function, a member class
7525   //   or a static data member of a class template specialization, the name of
7526   //   the class template specialization in the qualified-id for the member
7527   //   name shall be a simple-template-id.
7528   //
7529   // C++98 has the same restriction, just worded differently.
7530   FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
7531   if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
7532       D.getCXXScopeSpec().isSet() &&
7533       !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
7534     Diag(D.getIdentifierLoc(),
7535          diag::ext_explicit_instantiation_without_qualified_id)
7536     << Specialization << D.getCXXScopeSpec().getRange();
7537 
7538   CheckExplicitInstantiationScope(*this,
7539                    FunTmpl? (NamedDecl *)FunTmpl
7540                           : Specialization->getInstantiatedFromMemberFunction(),
7541                                   D.getIdentifierLoc(),
7542                                   D.getCXXScopeSpec().isSet());
7543 
7544   // FIXME: Create some kind of ExplicitInstantiationDecl here.
7545   return (Decl*) 0;
7546 }
7547 
7548 TypeResult
7549 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7550                         const CXXScopeSpec &SS, IdentifierInfo *Name,
7551                         SourceLocation TagLoc, SourceLocation NameLoc) {
7552   // This has to hold, because SS is expected to be defined.
7553   assert(Name && "Expected a name in a dependent tag");
7554 
7555   NestedNameSpecifier *NNS
7556     = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
7557   if (!NNS)
7558     return true;
7559 
7560   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7561 
7562   if (TUK == TUK_Declaration || TUK == TUK_Definition) {
7563     Diag(NameLoc, diag::err_dependent_tag_decl)
7564       << (TUK == TUK_Definition) << Kind << SS.getRange();
7565     return true;
7566   }
7567 
7568   // Create the resulting type.
7569   ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
7570   QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
7571 
7572   // Create type-source location information for this type.
7573   TypeLocBuilder TLB;
7574   DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
7575   TL.setElaboratedKeywordLoc(TagLoc);
7576   TL.setQualifierLoc(SS.getWithLocInContext(Context));
7577   TL.setNameLoc(NameLoc);
7578   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
7579 }
7580 
7581 TypeResult
7582 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
7583                         const CXXScopeSpec &SS, const IdentifierInfo &II,
7584                         SourceLocation IdLoc) {
7585   if (SS.isInvalid())
7586     return true;
7587 
7588   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
7589     Diag(TypenameLoc,
7590          getLangOpts().CPlusPlus11 ?
7591            diag::warn_cxx98_compat_typename_outside_of_template :
7592            diag::ext_typename_outside_of_template)
7593       << FixItHint::CreateRemoval(TypenameLoc);
7594 
7595   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7596   QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
7597                                  TypenameLoc, QualifierLoc, II, IdLoc);
7598   if (T.isNull())
7599     return true;
7600 
7601   TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
7602   if (isa<DependentNameType>(T)) {
7603     DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
7604     TL.setElaboratedKeywordLoc(TypenameLoc);
7605     TL.setQualifierLoc(QualifierLoc);
7606     TL.setNameLoc(IdLoc);
7607   } else {
7608     ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
7609     TL.setElaboratedKeywordLoc(TypenameLoc);
7610     TL.setQualifierLoc(QualifierLoc);
7611     TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
7612   }
7613 
7614   return CreateParsedType(T, TSI);
7615 }
7616 
7617 TypeResult
7618 Sema::ActOnTypenameType(Scope *S,
7619                         SourceLocation TypenameLoc,
7620                         const CXXScopeSpec &SS,
7621                         SourceLocation TemplateKWLoc,
7622                         TemplateTy TemplateIn,
7623                         SourceLocation TemplateNameLoc,
7624                         SourceLocation LAngleLoc,
7625                         ASTTemplateArgsPtr TemplateArgsIn,
7626                         SourceLocation RAngleLoc) {
7627   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
7628     Diag(TypenameLoc,
7629          getLangOpts().CPlusPlus11 ?
7630            diag::warn_cxx98_compat_typename_outside_of_template :
7631            diag::ext_typename_outside_of_template)
7632       << FixItHint::CreateRemoval(TypenameLoc);
7633 
7634   // Translate the parser's template argument list in our AST format.
7635   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
7636   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
7637 
7638   TemplateName Template = TemplateIn.get();
7639   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
7640     // Construct a dependent template specialization type.
7641     assert(DTN && "dependent template has non-dependent name?");
7642     assert(DTN->getQualifier()
7643            == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
7644     QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
7645                                                           DTN->getQualifier(),
7646                                                           DTN->getIdentifier(),
7647                                                                 TemplateArgs);
7648 
7649     // Create source-location information for this type.
7650     TypeLocBuilder Builder;
7651     DependentTemplateSpecializationTypeLoc SpecTL
7652     = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
7653     SpecTL.setElaboratedKeywordLoc(TypenameLoc);
7654     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
7655     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
7656     SpecTL.setTemplateNameLoc(TemplateNameLoc);
7657     SpecTL.setLAngleLoc(LAngleLoc);
7658     SpecTL.setRAngleLoc(RAngleLoc);
7659     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7660       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
7661     return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
7662   }
7663 
7664   QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
7665   if (T.isNull())
7666     return true;
7667 
7668   // Provide source-location information for the template specialization type.
7669   TypeLocBuilder Builder;
7670   TemplateSpecializationTypeLoc SpecTL
7671     = Builder.push<TemplateSpecializationTypeLoc>(T);
7672   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
7673   SpecTL.setTemplateNameLoc(TemplateNameLoc);
7674   SpecTL.setLAngleLoc(LAngleLoc);
7675   SpecTL.setRAngleLoc(RAngleLoc);
7676   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7677     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
7678 
7679   T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
7680   ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
7681   TL.setElaboratedKeywordLoc(TypenameLoc);
7682   TL.setQualifierLoc(SS.getWithLocInContext(Context));
7683 
7684   TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
7685   return CreateParsedType(T, TSI);
7686 }
7687 
7688 
7689 /// Determine whether this failed name lookup should be treated as being
7690 /// disabled by a usage of std::enable_if.
7691 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
7692                        SourceRange &CondRange) {
7693   // We must be looking for a ::type...
7694   if (!II.isStr("type"))
7695     return false;
7696 
7697   // ... within an explicitly-written template specialization...
7698   if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
7699     return false;
7700   TypeLoc EnableIfTy = NNS.getTypeLoc();
7701   TemplateSpecializationTypeLoc EnableIfTSTLoc =
7702       EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
7703   if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
7704     return false;
7705   const TemplateSpecializationType *EnableIfTST =
7706     cast<TemplateSpecializationType>(EnableIfTSTLoc.getTypePtr());
7707 
7708   // ... which names a complete class template declaration...
7709   const TemplateDecl *EnableIfDecl =
7710     EnableIfTST->getTemplateName().getAsTemplateDecl();
7711   if (!EnableIfDecl || EnableIfTST->isIncompleteType())
7712     return false;
7713 
7714   // ... called "enable_if".
7715   const IdentifierInfo *EnableIfII =
7716     EnableIfDecl->getDeclName().getAsIdentifierInfo();
7717   if (!EnableIfII || !EnableIfII->isStr("enable_if"))
7718     return false;
7719 
7720   // Assume the first template argument is the condition.
7721   CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
7722   return true;
7723 }
7724 
7725 /// \brief Build the type that describes a C++ typename specifier,
7726 /// e.g., "typename T::type".
7727 QualType
7728 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
7729                         SourceLocation KeywordLoc,
7730                         NestedNameSpecifierLoc QualifierLoc,
7731                         const IdentifierInfo &II,
7732                         SourceLocation IILoc) {
7733   CXXScopeSpec SS;
7734   SS.Adopt(QualifierLoc);
7735 
7736   DeclContext *Ctx = computeDeclContext(SS);
7737   if (!Ctx) {
7738     // If the nested-name-specifier is dependent and couldn't be
7739     // resolved to a type, build a typename type.
7740     assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
7741     return Context.getDependentNameType(Keyword,
7742                                         QualifierLoc.getNestedNameSpecifier(),
7743                                         &II);
7744   }
7745 
7746   // If the nested-name-specifier refers to the current instantiation,
7747   // the "typename" keyword itself is superfluous. In C++03, the
7748   // program is actually ill-formed. However, DR 382 (in C++0x CD1)
7749   // allows such extraneous "typename" keywords, and we retroactively
7750   // apply this DR to C++03 code with only a warning. In any case we continue.
7751 
7752   if (RequireCompleteDeclContext(SS, Ctx))
7753     return QualType();
7754 
7755   DeclarationName Name(&II);
7756   LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
7757   LookupQualifiedName(Result, Ctx);
7758   unsigned DiagID = 0;
7759   Decl *Referenced = 0;
7760   switch (Result.getResultKind()) {
7761   case LookupResult::NotFound: {
7762     // If we're looking up 'type' within a template named 'enable_if', produce
7763     // a more specific diagnostic.
7764     SourceRange CondRange;
7765     if (isEnableIf(QualifierLoc, II, CondRange)) {
7766       Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
7767         << Ctx << CondRange;
7768       return QualType();
7769     }
7770 
7771     DiagID = diag::err_typename_nested_not_found;
7772     break;
7773   }
7774 
7775   case LookupResult::FoundUnresolvedValue: {
7776     // We found a using declaration that is a value. Most likely, the using
7777     // declaration itself is meant to have the 'typename' keyword.
7778     SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7779                           IILoc);
7780     Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
7781       << Name << Ctx << FullRange;
7782     if (UnresolvedUsingValueDecl *Using
7783           = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
7784       SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
7785       Diag(Loc, diag::note_using_value_decl_missing_typename)
7786         << FixItHint::CreateInsertion(Loc, "typename ");
7787     }
7788   }
7789   // Fall through to create a dependent typename type, from which we can recover
7790   // better.
7791 
7792   case LookupResult::NotFoundInCurrentInstantiation:
7793     // Okay, it's a member of an unknown instantiation.
7794     return Context.getDependentNameType(Keyword,
7795                                         QualifierLoc.getNestedNameSpecifier(),
7796                                         &II);
7797 
7798   case LookupResult::Found:
7799     if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
7800       // We found a type. Build an ElaboratedType, since the
7801       // typename-specifier was just sugar.
7802       return Context.getElaboratedType(ETK_Typename,
7803                                        QualifierLoc.getNestedNameSpecifier(),
7804                                        Context.getTypeDeclType(Type));
7805     }
7806 
7807     DiagID = diag::err_typename_nested_not_type;
7808     Referenced = Result.getFoundDecl();
7809     break;
7810 
7811   case LookupResult::FoundOverloaded:
7812     DiagID = diag::err_typename_nested_not_type;
7813     Referenced = *Result.begin();
7814     break;
7815 
7816   case LookupResult::Ambiguous:
7817     return QualType();
7818   }
7819 
7820   // If we get here, it's because name lookup did not find a
7821   // type. Emit an appropriate diagnostic and return an error.
7822   SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7823                         IILoc);
7824   Diag(IILoc, DiagID) << FullRange << Name << Ctx;
7825   if (Referenced)
7826     Diag(Referenced->getLocation(), diag::note_typename_refers_here)
7827       << Name;
7828   return QualType();
7829 }
7830 
7831 namespace {
7832   // See Sema::RebuildTypeInCurrentInstantiation
7833   class CurrentInstantiationRebuilder
7834     : public TreeTransform<CurrentInstantiationRebuilder> {
7835     SourceLocation Loc;
7836     DeclarationName Entity;
7837 
7838   public:
7839     typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
7840 
7841     CurrentInstantiationRebuilder(Sema &SemaRef,
7842                                   SourceLocation Loc,
7843                                   DeclarationName Entity)
7844     : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
7845       Loc(Loc), Entity(Entity) { }
7846 
7847     /// \brief Determine whether the given type \p T has already been
7848     /// transformed.
7849     ///
7850     /// For the purposes of type reconstruction, a type has already been
7851     /// transformed if it is NULL or if it is not dependent.
7852     bool AlreadyTransformed(QualType T) {
7853       return T.isNull() || !T->isDependentType();
7854     }
7855 
7856     /// \brief Returns the location of the entity whose type is being
7857     /// rebuilt.
7858     SourceLocation getBaseLocation() { return Loc; }
7859 
7860     /// \brief Returns the name of the entity whose type is being rebuilt.
7861     DeclarationName getBaseEntity() { return Entity; }
7862 
7863     /// \brief Sets the "base" location and entity when that
7864     /// information is known based on another transformation.
7865     void setBase(SourceLocation Loc, DeclarationName Entity) {
7866       this->Loc = Loc;
7867       this->Entity = Entity;
7868     }
7869 
7870     ExprResult TransformLambdaExpr(LambdaExpr *E) {
7871       // Lambdas never need to be transformed.
7872       return E;
7873     }
7874   };
7875 }
7876 
7877 /// \brief Rebuilds a type within the context of the current instantiation.
7878 ///
7879 /// The type \p T is part of the type of an out-of-line member definition of
7880 /// a class template (or class template partial specialization) that was parsed
7881 /// and constructed before we entered the scope of the class template (or
7882 /// partial specialization thereof). This routine will rebuild that type now
7883 /// that we have entered the declarator's scope, which may produce different
7884 /// canonical types, e.g.,
7885 ///
7886 /// \code
7887 /// template<typename T>
7888 /// struct X {
7889 ///   typedef T* pointer;
7890 ///   pointer data();
7891 /// };
7892 ///
7893 /// template<typename T>
7894 /// typename X<T>::pointer X<T>::data() { ... }
7895 /// \endcode
7896 ///
7897 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
7898 /// since we do not know that we can look into X<T> when we parsed the type.
7899 /// This function will rebuild the type, performing the lookup of "pointer"
7900 /// in X<T> and returning an ElaboratedType whose canonical type is the same
7901 /// as the canonical type of T*, allowing the return types of the out-of-line
7902 /// definition and the declaration to match.
7903 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
7904                                                         SourceLocation Loc,
7905                                                         DeclarationName Name) {
7906   if (!T || !T->getType()->isDependentType())
7907     return T;
7908 
7909   CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
7910   return Rebuilder.TransformType(T);
7911 }
7912 
7913 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
7914   CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
7915                                           DeclarationName());
7916   return Rebuilder.TransformExpr(E);
7917 }
7918 
7919 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
7920   if (SS.isInvalid())
7921     return true;
7922 
7923   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7924   CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
7925                                           DeclarationName());
7926   NestedNameSpecifierLoc Rebuilt
7927     = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
7928   if (!Rebuilt)
7929     return true;
7930 
7931   SS.Adopt(Rebuilt);
7932   return false;
7933 }
7934 
7935 /// \brief Rebuild the template parameters now that we know we're in a current
7936 /// instantiation.
7937 bool Sema::RebuildTemplateParamsInCurrentInstantiation(
7938                                                TemplateParameterList *Params) {
7939   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7940     Decl *Param = Params->getParam(I);
7941 
7942     // There is nothing to rebuild in a type parameter.
7943     if (isa<TemplateTypeParmDecl>(Param))
7944       continue;
7945 
7946     // Rebuild the template parameter list of a template template parameter.
7947     if (TemplateTemplateParmDecl *TTP
7948         = dyn_cast<TemplateTemplateParmDecl>(Param)) {
7949       if (RebuildTemplateParamsInCurrentInstantiation(
7950             TTP->getTemplateParameters()))
7951         return true;
7952 
7953       continue;
7954     }
7955 
7956     // Rebuild the type of a non-type template parameter.
7957     NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
7958     TypeSourceInfo *NewTSI
7959       = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
7960                                           NTTP->getLocation(),
7961                                           NTTP->getDeclName());
7962     if (!NewTSI)
7963       return true;
7964 
7965     if (NewTSI != NTTP->getTypeSourceInfo()) {
7966       NTTP->setTypeSourceInfo(NewTSI);
7967       NTTP->setType(NewTSI->getType());
7968     }
7969   }
7970 
7971   return false;
7972 }
7973 
7974 /// \brief Produces a formatted string that describes the binding of
7975 /// template parameters to template arguments.
7976 std::string
7977 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7978                                       const TemplateArgumentList &Args) {
7979   return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
7980 }
7981 
7982 std::string
7983 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7984                                       const TemplateArgument *Args,
7985                                       unsigned NumArgs) {
7986   SmallString<128> Str;
7987   llvm::raw_svector_ostream Out(Str);
7988 
7989   if (!Params || Params->size() == 0 || NumArgs == 0)
7990     return std::string();
7991 
7992   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7993     if (I >= NumArgs)
7994       break;
7995 
7996     if (I == 0)
7997       Out << "[with ";
7998     else
7999       Out << ", ";
8000 
8001     if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
8002       Out << Id->getName();
8003     } else {
8004       Out << '$' << I;
8005     }
8006 
8007     Out << " = ";
8008     Args[I].print(getPrintingPolicy(), Out);
8009   }
8010 
8011   Out << ']';
8012   return Out.str();
8013 }
8014 
8015 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
8016                                     CachedTokens &Toks) {
8017   if (!FD)
8018     return;
8019 
8020   LateParsedTemplate *LPT = new LateParsedTemplate;
8021 
8022   // Take tokens to avoid allocations
8023   LPT->Toks.swap(Toks);
8024   LPT->D = FnD;
8025   LateParsedTemplateMap[FD] = LPT;
8026 
8027   FD->setLateTemplateParsed(true);
8028 }
8029 
8030 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
8031   if (!FD)
8032     return;
8033   FD->setLateTemplateParsed(false);
8034 }
8035 
8036 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
8037   DeclContext *DC = CurContext;
8038 
8039   while (DC) {
8040     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
8041       const FunctionDecl *FD = RD->isLocalClass();
8042       return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
8043     } else if (DC->isTranslationUnit() || DC->isNamespace())
8044       return false;
8045 
8046     DC = DC->getParent();
8047   }
8048   return false;
8049 }
8050