xref: /minix/external/bsd/llvm/dist/llvm/docs/LangRef.rst (revision 0a6a1f1d)
1==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6   :local:
7   :depth: 4
8
9Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55    %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76   prefix. For example, ``%foo``, ``@DivisionByZero``,
77   ``%a.really.long.identifier``. The actual regular expression used is
78   '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
79   characters in their names can be surrounded with quotes. Special
80   characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81   code for the character in hexadecimal. In this way, any character can
82   be used in a name value, even quotes themselves. The ``"\01"`` prefix
83   can be used on global variables to suppress mangling.
84#. Unnamed values are represented as an unsigned numeric value with
85   their prefix. For example, ``%12``, ``@2``, ``%44``.
86#. Constants, which are described in the section  Constants_ below.
87
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109    %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
115    %result = shl i32 %X, 3
116
117And the hard way:
118
119.. code-block:: llvm
120
121    %0 = add i32 %X, %X           ; yields i32:%0
122    %1 = add i32 %0, %0           ; yields i32:%1
123    %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130   not assigned to a named value.
131#. Unnamed temporaries are numbered sequentially (using a per-function
132   incrementing counter, starting with 0). Note that basic blocks and unnamed
133   function parameters are included in this numbering. For example, if the
134   entry basic block is not given a label name and all function parameters are
135   named, then it will get number 0.
136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
156    ; Declare the string constant as a global constant.
157    @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
158
159    ; External declaration of the puts function
160    declare i32 @puts(i8* nocapture) nounwind
161
162    ; Definition of main function
163    define i32 @main() {   ; i32()*
164      ; Convert [13 x i8]* to i8  *...
165      %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
166
167      ; Call puts function to write out the string to stdout.
168      call i32 @puts(i8* %cast210)
169      ret i32 0
170    }
171
172    ; Named metadata
173    !0 = !{i32 42, null, !"string"}
174    !foo = !{!0}
175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196    Global values with "``private``" linkage are only directly
197    accessible by objects in the current module. In particular, linking
198    code into a module with an private global value may cause the
199    private to be renamed as necessary to avoid collisions. Because the
200    symbol is private to the module, all references can be updated. This
201    doesn't show up in any symbol table in the object file.
202``internal``
203    Similar to private, but the value shows as a local symbol
204    (``STB_LOCAL`` in the case of ELF) in the object file. This
205    corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207    Globals with "``available_externally``" linkage are never emitted
208    into the object file corresponding to the LLVM module. They exist to
209    allow inlining and other optimizations to take place given knowledge
210    of the definition of the global, which is known to be somewhere
211    outside the module. Globals with ``available_externally`` linkage
212    are allowed to be discarded at will, and are otherwise the same as
213    ``linkonce_odr``. This linkage type is only allowed on definitions,
214    not declarations.
215``linkonce``
216    Globals with "``linkonce``" linkage are merged with other globals of
217    the same name when linkage occurs. This can be used to implement
218    some forms of inline functions, templates, or other code which must
219    be generated in each translation unit that uses it, but where the
220    body may be overridden with a more definitive definition later.
221    Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222    that ``linkonce`` linkage does not actually allow the optimizer to
223    inline the body of this function into callers because it doesn't
224    know if this definition of the function is the definitive definition
225    within the program or whether it will be overridden by a stronger
226    definition. To enable inlining and other optimizations, use
227    "``linkonce_odr``" linkage.
228``weak``
229    "``weak``" linkage has the same merging semantics as ``linkonce``
230    linkage, except that unreferenced globals with ``weak`` linkage may
231    not be discarded. This is used for globals that are declared "weak"
232    in C source code.
233``common``
234    "``common``" linkage is most similar to "``weak``" linkage, but they
235    are used for tentative definitions in C, such as "``int X;``" at
236    global scope. Symbols with "``common``" linkage are merged in the
237    same way as ``weak symbols``, and they may not be deleted if
238    unreferenced. ``common`` symbols may not have an explicit section,
239    must have a zero initializer, and may not be marked
240    ':ref:`constant <globalvars>`'. Functions and aliases may not have
241    common linkage.
242
243.. _linkage_appending:
244
245``appending``
246    "``appending``" linkage may only be applied to global variables of
247    pointer to array type. When two global variables with appending
248    linkage are linked together, the two global arrays are appended
249    together. This is the LLVM, typesafe, equivalent of having the
250    system linker append together "sections" with identical names when
251    .o files are linked.
252``extern_weak``
253    The semantics of this linkage follow the ELF object file model: the
254    symbol is weak until linked, if not linked, the symbol becomes null
255    instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257    Some languages allow differing globals to be merged, such as two
258    functions with different semantics. Other languages, such as
259    ``C++``, ensure that only equivalent globals are ever merged (the
260    "one definition rule" --- "ODR").  Such languages can use the
261    ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262    global will only be merged with equivalent globals. These linkage
263    types are otherwise the same as their non-``odr`` versions.
264``external``
265    If none of the above identifiers are used, the global is externally
266    visible, meaning that it participates in linkage and can be used to
267    resolve external symbol references.
268
269It is illegal for a function *declaration* to have any linkage type
270other than ``external`` or ``extern_weak``.
271
272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285    This calling convention (the default if no other calling convention
286    is specified) matches the target C calling conventions. This calling
287    convention supports varargs function calls and tolerates some
288    mismatch in the declared prototype and implemented declaration of
289    the function (as does normal C).
290"``fastcc``" - The fast calling convention
291    This calling convention attempts to make calls as fast as possible
292    (e.g. by passing things in registers). This calling convention
293    allows the target to use whatever tricks it wants to produce fast
294    code for the target, without having to conform to an externally
295    specified ABI (Application Binary Interface). `Tail calls can only
296    be optimized when this, the GHC or the HiPE convention is
297    used. <CodeGenerator.html#id80>`_ This calling convention does not
298    support varargs and requires the prototype of all callees to exactly
299    match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301    This calling convention attempts to make code in the caller as
302    efficient as possible under the assumption that the call is not
303    commonly executed. As such, these calls often preserve all registers
304    so that the call does not break any live ranges in the caller side.
305    This calling convention does not support varargs and requires the
306    prototype of all callees to exactly match the prototype of the
307    function definition. Furthermore the inliner doesn't consider such function
308    calls for inlining.
309"``cc 10``" - GHC convention
310    This calling convention has been implemented specifically for use by
311    the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312    It passes everything in registers, going to extremes to achieve this
313    by disabling callee save registers. This calling convention should
314    not be used lightly but only for specific situations such as an
315    alternative to the *register pinning* performance technique often
316    used when implementing functional programming languages. At the
317    moment only X86 supports this convention and it has the following
318    limitations:
319
320    -  On *X86-32* only supports up to 4 bit type parameters. No
321       floating point types are supported.
322    -  On *X86-64* only supports up to 10 bit type parameters and 6
323       floating point parameters.
324
325    This calling convention supports `tail call
326    optimization <CodeGenerator.html#id80>`_ but requires both the
327    caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329    This calling convention has been implemented specifically for use by
330    the `High-Performance Erlang
331    (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332    native code compiler of the `Ericsson's Open Source Erlang/OTP
333    system <http://www.erlang.org/download.shtml>`_. It uses more
334    registers for argument passing than the ordinary C calling
335    convention and defines no callee-saved registers. The calling
336    convention properly supports `tail call
337    optimization <CodeGenerator.html#id80>`_ but requires that both the
338    caller and the callee use it. It uses a *register pinning*
339    mechanism, similar to GHC's convention, for keeping frequently
340    accessed runtime components pinned to specific hardware registers.
341    At the moment only X86 supports this convention (both 32 and 64
342    bit).
343"``webkit_jscc``" - WebKit's JavaScript calling convention
344    This calling convention has been implemented for `WebKit FTL JIT
345    <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346    stack right to left (as cdecl does), and returns a value in the
347    platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349    This is a special convention that supports patching an arbitrary code
350    sequence in place of a call site. This convention forces the call
351    arguments into registers but allows them to be dynamcially
352    allocated. This can currently only be used with calls to
353    llvm.experimental.patchpoint because only this intrinsic records
354    the location of its arguments in a side table. See :doc:`StackMaps`.
355"``preserve_mostcc``" - The `PreserveMost` calling convention
356    This calling convention attempts to make the code in the caller as little
357    intrusive as possible. This calling convention behaves identical to the `C`
358    calling convention on how arguments and return values are passed, but it
359    uses a different set of caller/callee-saved registers. This alleviates the
360    burden of saving and recovering a large register set before and after the
361    call in the caller. If the arguments are passed in callee-saved registers,
362    then they will be preserved by the callee across the call. This doesn't
363    apply for values returned in callee-saved registers.
364
365    - On X86-64 the callee preserves all general purpose registers, except for
366      R11. R11 can be used as a scratch register. Floating-point registers
367      (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369    The idea behind this convention is to support calls to runtime functions
370    that have a hot path and a cold path. The hot path is usually a small piece
371    of code that doesn't many registers. The cold path might need to call out to
372    another function and therefore only needs to preserve the caller-saved
373    registers, which haven't already been saved by the caller. The
374    `PreserveMost` calling convention is very similar to the `cold` calling
375    convention in terms of caller/callee-saved registers, but they are used for
376    different types of function calls. `coldcc` is for function calls that are
377    rarely executed, whereas `preserve_mostcc` function calls are intended to be
378    on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379    doesn't prevent the inliner from inlining the function call.
380
381    This calling convention will be used by a future version of the ObjectiveC
382    runtime and should therefore still be considered experimental at this time.
383    Although this convention was created to optimize certain runtime calls to
384    the ObjectiveC runtime, it is not limited to this runtime and might be used
385    by other runtimes in the future too. The current implementation only
386    supports X86-64, but the intention is to support more architectures in the
387    future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389    This calling convention attempts to make the code in the caller even less
390    intrusive than the `PreserveMost` calling convention. This calling
391    convention also behaves identical to the `C` calling convention on how
392    arguments and return values are passed, but it uses a different set of
393    caller/callee-saved registers. This removes the burden of saving and
394    recovering a large register set before and after the call in the caller. If
395    the arguments are passed in callee-saved registers, then they will be
396    preserved by the callee across the call. This doesn't apply for values
397    returned in callee-saved registers.
398
399    - On X86-64 the callee preserves all general purpose registers, except for
400      R11. R11 can be used as a scratch register. Furthermore it also preserves
401      all floating-point registers (XMMs/YMMs).
402
403    The idea behind this convention is to support calls to runtime functions
404    that don't need to call out to any other functions.
405
406    This calling convention, like the `PreserveMost` calling convention, will be
407    used by a future version of the ObjectiveC runtime and should be considered
408    experimental at this time.
409"``cc <n>``" - Numbered convention
410    Any calling convention may be specified by number, allowing
411    target-specific calling conventions to be used. Target specific
412    calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
418.. _visibilitystyles:
419
420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427    On targets that use the ELF object file format, default visibility
428    means that the declaration is visible to other modules and, in
429    shared libraries, means that the declared entity may be overridden.
430    On Darwin, default visibility means that the declaration is visible
431    to other modules. Default visibility corresponds to "external
432    linkage" in the language.
433"``hidden``" - Hidden style
434    Two declarations of an object with hidden visibility refer to the
435    same object if they are in the same shared object. Usually, hidden
436    visibility indicates that the symbol will not be placed into the
437    dynamic symbol table, so no other module (executable or shared
438    library) can reference it directly.
439"``protected``" - Protected style
440    On ELF, protected visibility indicates that the symbol will be
441    placed in the dynamic symbol table, but that references within the
442    defining module will bind to the local symbol. That is, the symbol
443    cannot be overridden by another module.
444
445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
448.. _dllstorageclass:
449
450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457    "``dllimport``" causes the compiler to reference a function or variable via
458    a global pointer to a pointer that is set up by the DLL exporting the
459    symbol. On Microsoft Windows targets, the pointer name is formed by
460    combining ``__imp_`` and the function or variable name.
461``dllexport``
462    "``dllexport``" causes the compiler to provide a global pointer to a pointer
463    in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464    Microsoft Windows targets, the pointer name is formed by combining
465    ``__imp_`` and the function or variable name. Since this storage class
466    exists for defining a dll interface, the compiler, assembler and linker know
467    it is externally referenced and must refrain from deleting the symbol.
468
469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480    For variables that are only used within the current shared library.
481``initialexec``
482    For variables in modules that will not be loaded dynamically.
483``localexec``
484    For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
494A model can also be specified in a alias, but then it only governs how
495the alias is accessed. It will not have any effect in the aliasee.
496
497.. _namedtypes:
498
499Structure Types
500---------------
501
502LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
503types <t_struct>`.  Literal types are uniqued structurally, but identified types
504are never uniqued.  An :ref:`opaque structural type <t_opaque>` can also be used
505to forward declare a type that is not yet available.
506
507An example of a identified structure specification is:
508
509.. code-block:: llvm
510
511    %mytype = type { %mytype*, i32 }
512
513Prior to the LLVM 3.0 release, identified types were structurally uniqued.  Only
514literal types are uniqued in recent versions of LLVM.
515
516.. _globalvars:
517
518Global Variables
519----------------
520
521Global variables define regions of memory allocated at compilation time
522instead of run-time.
523
524Global variables definitions must be initialized.
525
526Global variables in other translation units can also be declared, in which
527case they don't have an initializer.
528
529Either global variable definitions or declarations may have an explicit section
530to be placed in and may have an optional explicit alignment specified.
531
532A variable may be defined as a global ``constant``, which indicates that
533the contents of the variable will **never** be modified (enabling better
534optimization, allowing the global data to be placed in the read-only
535section of an executable, etc). Note that variables that need runtime
536initialization cannot be marked ``constant`` as there is a store to the
537variable.
538
539LLVM explicitly allows *declarations* of global variables to be marked
540constant, even if the final definition of the global is not. This
541capability can be used to enable slightly better optimization of the
542program, but requires the language definition to guarantee that
543optimizations based on the 'constantness' are valid for the translation
544units that do not include the definition.
545
546As SSA values, global variables define pointer values that are in scope
547(i.e. they dominate) all basic blocks in the program. Global variables
548always define a pointer to their "content" type because they describe a
549region of memory, and all memory objects in LLVM are accessed through
550pointers.
551
552Global variables can be marked with ``unnamed_addr`` which indicates
553that the address is not significant, only the content. Constants marked
554like this can be merged with other constants if they have the same
555initializer. Note that a constant with significant address *can* be
556merged with a ``unnamed_addr`` constant, the result being a constant
557whose address is significant.
558
559A global variable may be declared to reside in a target-specific
560numbered address space. For targets that support them, address spaces
561may affect how optimizations are performed and/or what target
562instructions are used to access the variable. The default address space
563is zero. The address space qualifier must precede any other attributes.
564
565LLVM allows an explicit section to be specified for globals. If the
566target supports it, it will emit globals to the section specified.
567Additionally, the global can placed in a comdat if the target has the necessary
568support.
569
570By default, global initializers are optimized by assuming that global
571variables defined within the module are not modified from their
572initial values before the start of the global initializer.  This is
573true even for variables potentially accessible from outside the
574module, including those with external linkage or appearing in
575``@llvm.used`` or dllexported variables. This assumption may be suppressed
576by marking the variable with ``externally_initialized``.
577
578An explicit alignment may be specified for a global, which must be a
579power of 2. If not present, or if the alignment is set to zero, the
580alignment of the global is set by the target to whatever it feels
581convenient. If an explicit alignment is specified, the global is forced
582to have exactly that alignment. Targets and optimizers are not allowed
583to over-align the global if the global has an assigned section. In this
584case, the extra alignment could be observable: for example, code could
585assume that the globals are densely packed in their section and try to
586iterate over them as an array, alignment padding would break this
587iteration. The maximum alignment is ``1 << 29``.
588
589Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
590
591Variables and aliasaes can have a
592:ref:`Thread Local Storage Model <tls_model>`.
593
594Syntax::
595
596    [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
597                         [unnamed_addr] [AddrSpace] [ExternallyInitialized]
598                         <global | constant> <Type> [<InitializerConstant>]
599                         [, section "name"] [, comdat [($name)]]
600                         [, align <Alignment>]
601
602For example, the following defines a global in a numbered address space
603with an initializer, section, and alignment:
604
605.. code-block:: llvm
606
607    @G = addrspace(5) constant float 1.0, section "foo", align 4
608
609The following example just declares a global variable
610
611.. code-block:: llvm
612
613   @G = external global i32
614
615The following example defines a thread-local global with the
616``initialexec`` TLS model:
617
618.. code-block:: llvm
619
620    @G = thread_local(initialexec) global i32 0, align 4
621
622.. _functionstructure:
623
624Functions
625---------
626
627LLVM function definitions consist of the "``define``" keyword, an
628optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
629style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
630an optional :ref:`calling convention <callingconv>`,
631an optional ``unnamed_addr`` attribute, a return type, an optional
632:ref:`parameter attribute <paramattrs>` for the return type, a function
633name, a (possibly empty) argument list (each with optional :ref:`parameter
634attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
635an optional section, an optional alignment,
636an optional :ref:`comdat <langref_comdats>`,
637an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
638an optional :ref:`prologue <prologuedata>`, an opening
639curly brace, a list of basic blocks, and a closing curly brace.
640
641LLVM function declarations consist of the "``declare``" keyword, an
642optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
643style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
644an optional :ref:`calling convention <callingconv>`,
645an optional ``unnamed_addr`` attribute, a return type, an optional
646:ref:`parameter attribute <paramattrs>` for the return type, a function
647name, a possibly empty list of arguments, an optional alignment, an optional
648:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
649and an optional :ref:`prologue <prologuedata>`.
650
651A function definition contains a list of basic blocks, forming the CFG (Control
652Flow Graph) for the function. Each basic block may optionally start with a label
653(giving the basic block a symbol table entry), contains a list of instructions,
654and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
655function return). If an explicit label is not provided, a block is assigned an
656implicit numbered label, using the next value from the same counter as used for
657unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
658entry block does not have an explicit label, it will be assigned label "%0",
659then the first unnamed temporary in that block will be "%1", etc.
660
661The first basic block in a function is special in two ways: it is
662immediately executed on entrance to the function, and it is not allowed
663to have predecessor basic blocks (i.e. there can not be any branches to
664the entry block of a function). Because the block can have no
665predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
666
667LLVM allows an explicit section to be specified for functions. If the
668target supports it, it will emit functions to the section specified.
669Additionally, the function can placed in a COMDAT.
670
671An explicit alignment may be specified for a function. If not present,
672or if the alignment is set to zero, the alignment of the function is set
673by the target to whatever it feels convenient. If an explicit alignment
674is specified, the function is forced to have at least that much
675alignment. All alignments must be a power of 2.
676
677If the ``unnamed_addr`` attribute is given, the address is know to not
678be significant and two identical functions can be merged.
679
680Syntax::
681
682    define [linkage] [visibility] [DLLStorageClass]
683           [cconv] [ret attrs]
684           <ResultType> @<FunctionName> ([argument list])
685           [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
686           [align N] [gc] [prefix Constant] [prologue Constant] { ... }
687
688The argument list is a comma seperated sequence of arguments where each
689argument is of the following form
690
691Syntax::
692
693   <type> [parameter Attrs] [name]
694
695
696.. _langref_aliases:
697
698Aliases
699-------
700
701Aliases, unlike function or variables, don't create any new data. They
702are just a new symbol and metadata for an existing position.
703
704Aliases have a name and an aliasee that is either a global value or a
705constant expression.
706
707Aliases may have an optional :ref:`linkage type <linkage>`, an optional
708:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
709<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
710
711Syntax::
712
713    @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
714
715The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
716``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
717might not correctly handle dropping a weak symbol that is aliased.
718
719Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
720the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
721to the same content.
722
723Since aliases are only a second name, some restrictions apply, of which
724some can only be checked when producing an object file:
725
726* The expression defining the aliasee must be computable at assembly
727  time. Since it is just a name, no relocations can be used.
728
729* No alias in the expression can be weak as the possibility of the
730  intermediate alias being overridden cannot be represented in an
731  object file.
732
733* No global value in the expression can be a declaration, since that
734  would require a relocation, which is not possible.
735
736.. _langref_comdats:
737
738Comdats
739-------
740
741Comdat IR provides access to COFF and ELF object file COMDAT functionality.
742
743Comdats have a name which represents the COMDAT key.  All global objects that
744specify this key will only end up in the final object file if the linker chooses
745that key over some other key.  Aliases are placed in the same COMDAT that their
746aliasee computes to, if any.
747
748Comdats have a selection kind to provide input on how the linker should
749choose between keys in two different object files.
750
751Syntax::
752
753    $<Name> = comdat SelectionKind
754
755The selection kind must be one of the following:
756
757``any``
758    The linker may choose any COMDAT key, the choice is arbitrary.
759``exactmatch``
760    The linker may choose any COMDAT key but the sections must contain the
761    same data.
762``largest``
763    The linker will choose the section containing the largest COMDAT key.
764``noduplicates``
765    The linker requires that only section with this COMDAT key exist.
766``samesize``
767    The linker may choose any COMDAT key but the sections must contain the
768    same amount of data.
769
770Note that the Mach-O platform doesn't support COMDATs and ELF only supports
771``any`` as a selection kind.
772
773Here is an example of a COMDAT group where a function will only be selected if
774the COMDAT key's section is the largest:
775
776.. code-block:: llvm
777
778   $foo = comdat largest
779   @foo = global i32 2, comdat($foo)
780
781   define void @bar() comdat($foo) {
782     ret void
783   }
784
785As a syntactic sugar the ``$name`` can be omitted if the name is the same as
786the global name:
787
788.. code-block:: llvm
789
790  $foo = comdat any
791  @foo = global i32 2, comdat
792
793
794In a COFF object file, this will create a COMDAT section with selection kind
795``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
796and another COMDAT section with selection kind
797``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
798section and contains the contents of the ``@bar`` symbol.
799
800There are some restrictions on the properties of the global object.
801It, or an alias to it, must have the same name as the COMDAT group when
802targeting COFF.
803The contents and size of this object may be used during link-time to determine
804which COMDAT groups get selected depending on the selection kind.
805Because the name of the object must match the name of the COMDAT group, the
806linkage of the global object must not be local; local symbols can get renamed
807if a collision occurs in the symbol table.
808
809The combined use of COMDATS and section attributes may yield surprising results.
810For example:
811
812.. code-block:: llvm
813
814   $foo = comdat any
815   $bar = comdat any
816   @g1 = global i32 42, section "sec", comdat($foo)
817   @g2 = global i32 42, section "sec", comdat($bar)
818
819From the object file perspective, this requires the creation of two sections
820with the same name.  This is necessary because both globals belong to different
821COMDAT groups and COMDATs, at the object file level, are represented by
822sections.
823
824Note that certain IR constructs like global variables and functions may create
825COMDATs in the object file in addition to any which are specified using COMDAT
826IR.  This arises, for example, when a global variable has linkonce_odr linkage.
827
828.. _namedmetadatastructure:
829
830Named Metadata
831--------------
832
833Named metadata is a collection of metadata. :ref:`Metadata
834nodes <metadata>` (but not metadata strings) are the only valid
835operands for a named metadata.
836
837Syntax::
838
839    ; Some unnamed metadata nodes, which are referenced by the named metadata.
840    !0 = !{!"zero"}
841    !1 = !{!"one"}
842    !2 = !{!"two"}
843    ; A named metadata.
844    !name = !{!0, !1, !2}
845
846.. _paramattrs:
847
848Parameter Attributes
849--------------------
850
851The return type and each parameter of a function type may have a set of
852*parameter attributes* associated with them. Parameter attributes are
853used to communicate additional information about the result or
854parameters of a function. Parameter attributes are considered to be part
855of the function, not of the function type, so functions with different
856parameter attributes can have the same function type.
857
858Parameter attributes are simple keywords that follow the type specified.
859If multiple parameter attributes are needed, they are space separated.
860For example:
861
862.. code-block:: llvm
863
864    declare i32 @printf(i8* noalias nocapture, ...)
865    declare i32 @atoi(i8 zeroext)
866    declare signext i8 @returns_signed_char()
867
868Note that any attributes for the function result (``nounwind``,
869``readonly``) come immediately after the argument list.
870
871Currently, only the following parameter attributes are defined:
872
873``zeroext``
874    This indicates to the code generator that the parameter or return
875    value should be zero-extended to the extent required by the target's
876    ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
877    the caller (for a parameter) or the callee (for a return value).
878``signext``
879    This indicates to the code generator that the parameter or return
880    value should be sign-extended to the extent required by the target's
881    ABI (which is usually 32-bits) by the caller (for a parameter) or
882    the callee (for a return value).
883``inreg``
884    This indicates that this parameter or return value should be treated
885    in a special target-dependent fashion during while emitting code for
886    a function call or return (usually, by putting it in a register as
887    opposed to memory, though some targets use it to distinguish between
888    two different kinds of registers). Use of this attribute is
889    target-specific.
890``byval``
891    This indicates that the pointer parameter should really be passed by
892    value to the function. The attribute implies that a hidden copy of
893    the pointee is made between the caller and the callee, so the callee
894    is unable to modify the value in the caller. This attribute is only
895    valid on LLVM pointer arguments. It is generally used to pass
896    structs and arrays by value, but is also valid on pointers to
897    scalars. The copy is considered to belong to the caller not the
898    callee (for example, ``readonly`` functions should not write to
899    ``byval`` parameters). This is not a valid attribute for return
900    values.
901
902    The byval attribute also supports specifying an alignment with the
903    align attribute. It indicates the alignment of the stack slot to
904    form and the known alignment of the pointer specified to the call
905    site. If the alignment is not specified, then the code generator
906    makes a target-specific assumption.
907
908.. _attr_inalloca:
909
910``inalloca``
911
912    The ``inalloca`` argument attribute allows the caller to take the
913    address of outgoing stack arguments.  An ``inalloca`` argument must
914    be a pointer to stack memory produced by an ``alloca`` instruction.
915    The alloca, or argument allocation, must also be tagged with the
916    inalloca keyword.  Only the last argument may have the ``inalloca``
917    attribute, and that argument is guaranteed to be passed in memory.
918
919    An argument allocation may be used by a call at most once because
920    the call may deallocate it.  The ``inalloca`` attribute cannot be
921    used in conjunction with other attributes that affect argument
922    storage, like ``inreg``, ``nest``, ``sret``, or ``byval``.  The
923    ``inalloca`` attribute also disables LLVM's implicit lowering of
924    large aggregate return values, which means that frontend authors
925    must lower them with ``sret`` pointers.
926
927    When the call site is reached, the argument allocation must have
928    been the most recent stack allocation that is still live, or the
929    results are undefined.  It is possible to allocate additional stack
930    space after an argument allocation and before its call site, but it
931    must be cleared off with :ref:`llvm.stackrestore
932    <int_stackrestore>`.
933
934    See :doc:`InAlloca` for more information on how to use this
935    attribute.
936
937``sret``
938    This indicates that the pointer parameter specifies the address of a
939    structure that is the return value of the function in the source
940    program. This pointer must be guaranteed by the caller to be valid:
941    loads and stores to the structure may be assumed by the callee
942    not to trap and to be properly aligned. This may only be applied to
943    the first parameter. This is not a valid attribute for return
944    values.
945
946``align <n>``
947    This indicates that the pointer value may be assumed by the optimizer to
948    have the specified alignment.
949
950    Note that this attribute has additional semantics when combined with the
951    ``byval`` attribute.
952
953.. _noalias:
954
955``noalias``
956    This indicates that objects accessed via pointer values
957    :ref:`based <pointeraliasing>` on the argument or return value are not also
958    accessed, during the execution of the function, via pointer values not
959    *based* on the argument or return value. The attribute on a return value
960    also has additional semantics described below. The caller shares the
961    responsibility with the callee for ensuring that these requirements are met.
962    For further details, please see the discussion of the NoAlias response in
963    :ref:`alias analysis <Must, May, or No>`.
964
965    Note that this definition of ``noalias`` is intentionally similar
966    to the definition of ``restrict`` in C99 for function arguments.
967
968    For function return values, C99's ``restrict`` is not meaningful,
969    while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
970    attribute on return values are stronger than the semantics of the attribute
971    when used on function arguments. On function return values, the ``noalias``
972    attribute indicates that the function acts like a system memory allocation
973    function, returning a pointer to allocated storage disjoint from the
974    storage for any other object accessible to the caller.
975
976``nocapture``
977    This indicates that the callee does not make any copies of the
978    pointer that outlive the callee itself. This is not a valid
979    attribute for return values.
980
981.. _nest:
982
983``nest``
984    This indicates that the pointer parameter can be excised using the
985    :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
986    attribute for return values and can only be applied to one parameter.
987
988``returned``
989    This indicates that the function always returns the argument as its return
990    value. This is an optimization hint to the code generator when generating
991    the caller, allowing tail call optimization and omission of register saves
992    and restores in some cases; it is not checked or enforced when generating
993    the callee. The parameter and the function return type must be valid
994    operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
995    valid attribute for return values and can only be applied to one parameter.
996
997``nonnull``
998    This indicates that the parameter or return pointer is not null. This
999    attribute may only be applied to pointer typed parameters. This is not
1000    checked or enforced by LLVM, the caller must ensure that the pointer
1001    passed in is non-null, or the callee must ensure that the returned pointer
1002    is non-null.
1003
1004``dereferenceable(<n>)``
1005    This indicates that the parameter or return pointer is dereferenceable. This
1006    attribute may only be applied to pointer typed parameters. A pointer that
1007    is dereferenceable can be loaded from speculatively without a risk of
1008    trapping. The number of bytes known to be dereferenceable must be provided
1009    in parentheses. It is legal for the number of bytes to be less than the
1010    size of the pointee type. The ``nonnull`` attribute does not imply
1011    dereferenceability (consider a pointer to one element past the end of an
1012    array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1013    ``addrspace(0)`` (which is the default address space).
1014
1015.. _gc:
1016
1017Garbage Collector Names
1018-----------------------
1019
1020Each function may specify a garbage collector name, which is simply a
1021string:
1022
1023.. code-block:: llvm
1024
1025    define void @f() gc "name" { ... }
1026
1027The compiler declares the supported values of *name*. Specifying a
1028collector will cause the compiler to alter its output in order to
1029support the named garbage collection algorithm.
1030
1031.. _prefixdata:
1032
1033Prefix Data
1034-----------
1035
1036Prefix data is data associated with a function which the code
1037generator will emit immediately before the function's entrypoint.
1038The purpose of this feature is to allow frontends to associate
1039language-specific runtime metadata with specific functions and make it
1040available through the function pointer while still allowing the
1041function pointer to be called.
1042
1043To access the data for a given function, a program may bitcast the
1044function pointer to a pointer to the constant's type and dereference
1045index -1.  This implies that the IR symbol points just past the end of
1046the prefix data. For instance, take the example of a function annotated
1047with a single ``i32``,
1048
1049.. code-block:: llvm
1050
1051    define void @f() prefix i32 123 { ... }
1052
1053The prefix data can be referenced as,
1054
1055.. code-block:: llvm
1056
1057    %0 = bitcast *void () @f to *i32
1058    %a = getelementptr inbounds *i32 %0, i32 -1
1059    %b = load i32* %a
1060
1061Prefix data is laid out as if it were an initializer for a global variable
1062of the prefix data's type.  The function will be placed such that the
1063beginning of the prefix data is aligned. This means that if the size
1064of the prefix data is not a multiple of the alignment size, the
1065function's entrypoint will not be aligned. If alignment of the
1066function's entrypoint is desired, padding must be added to the prefix
1067data.
1068
1069A function may have prefix data but no body.  This has similar semantics
1070to the ``available_externally`` linkage in that the data may be used by the
1071optimizers but will not be emitted in the object file.
1072
1073.. _prologuedata:
1074
1075Prologue Data
1076-------------
1077
1078The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1079be inserted prior to the function body. This can be used for enabling
1080function hot-patching and instrumentation.
1081
1082To maintain the semantics of ordinary function calls, the prologue data must
1083have a particular format.  Specifically, it must begin with a sequence of
1084bytes which decode to a sequence of machine instructions, valid for the
1085module's target, which transfer control to the point immediately succeeding
1086the prologue data, without performing any other visible action.  This allows
1087the inliner and other passes to reason about the semantics of the function
1088definition without needing to reason about the prologue data.  Obviously this
1089makes the format of the prologue data highly target dependent.
1090
1091A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
1092which encodes the ``nop`` instruction:
1093
1094.. code-block:: llvm
1095
1096    define void @f() prologue i8 144 { ... }
1097
1098Generally prologue data can be formed by encoding a relative branch instruction
1099which skips the metadata, as in this example of valid prologue data for the
1100x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1101
1102.. code-block:: llvm
1103
1104    %0 = type <{ i8, i8, i8* }>
1105
1106    define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
1107
1108A function may have prologue data but no body.  This has similar semantics
1109to the ``available_externally`` linkage in that the data may be used by the
1110optimizers but will not be emitted in the object file.
1111
1112.. _attrgrp:
1113
1114Attribute Groups
1115----------------
1116
1117Attribute groups are groups of attributes that are referenced by objects within
1118the IR. They are important for keeping ``.ll`` files readable, because a lot of
1119functions will use the same set of attributes. In the degenerative case of a
1120``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1121group will capture the important command line flags used to build that file.
1122
1123An attribute group is a module-level object. To use an attribute group, an
1124object references the attribute group's ID (e.g. ``#37``). An object may refer
1125to more than one attribute group. In that situation, the attributes from the
1126different groups are merged.
1127
1128Here is an example of attribute groups for a function that should always be
1129inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1130
1131.. code-block:: llvm
1132
1133   ; Target-independent attributes:
1134   attributes #0 = { alwaysinline alignstack=4 }
1135
1136   ; Target-dependent attributes:
1137   attributes #1 = { "no-sse" }
1138
1139   ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1140   define void @f() #0 #1 { ... }
1141
1142.. _fnattrs:
1143
1144Function Attributes
1145-------------------
1146
1147Function attributes are set to communicate additional information about
1148a function. Function attributes are considered to be part of the
1149function, not of the function type, so functions with different function
1150attributes can have the same function type.
1151
1152Function attributes are simple keywords that follow the type specified.
1153If multiple attributes are needed, they are space separated. For
1154example:
1155
1156.. code-block:: llvm
1157
1158    define void @f() noinline { ... }
1159    define void @f() alwaysinline { ... }
1160    define void @f() alwaysinline optsize { ... }
1161    define void @f() optsize { ... }
1162
1163``alignstack(<n>)``
1164    This attribute indicates that, when emitting the prologue and
1165    epilogue, the backend should forcibly align the stack pointer.
1166    Specify the desired alignment, which must be a power of two, in
1167    parentheses.
1168``alwaysinline``
1169    This attribute indicates that the inliner should attempt to inline
1170    this function into callers whenever possible, ignoring any active
1171    inlining size threshold for this caller.
1172``builtin``
1173    This indicates that the callee function at a call site should be
1174    recognized as a built-in function, even though the function's declaration
1175    uses the ``nobuiltin`` attribute. This is only valid at call sites for
1176    direct calls to functions that are declared with the ``nobuiltin``
1177    attribute.
1178``cold``
1179    This attribute indicates that this function is rarely called. When
1180    computing edge weights, basic blocks post-dominated by a cold
1181    function call are also considered to be cold; and, thus, given low
1182    weight.
1183``inlinehint``
1184    This attribute indicates that the source code contained a hint that
1185    inlining this function is desirable (such as the "inline" keyword in
1186    C/C++). It is just a hint; it imposes no requirements on the
1187    inliner.
1188``jumptable``
1189    This attribute indicates that the function should be added to a
1190    jump-instruction table at code-generation time, and that all address-taken
1191    references to this function should be replaced with a reference to the
1192    appropriate jump-instruction-table function pointer. Note that this creates
1193    a new pointer for the original function, which means that code that depends
1194    on function-pointer identity can break. So, any function annotated with
1195    ``jumptable`` must also be ``unnamed_addr``.
1196``minsize``
1197    This attribute suggests that optimization passes and code generator
1198    passes make choices that keep the code size of this function as small
1199    as possible and perform optimizations that may sacrifice runtime
1200    performance in order to minimize the size of the generated code.
1201``naked``
1202    This attribute disables prologue / epilogue emission for the
1203    function. This can have very system-specific consequences.
1204``nobuiltin``
1205    This indicates that the callee function at a call site is not recognized as
1206    a built-in function. LLVM will retain the original call and not replace it
1207    with equivalent code based on the semantics of the built-in function, unless
1208    the call site uses the ``builtin`` attribute. This is valid at call sites
1209    and on function declarations and definitions.
1210``noduplicate``
1211    This attribute indicates that calls to the function cannot be
1212    duplicated. A call to a ``noduplicate`` function may be moved
1213    within its parent function, but may not be duplicated within
1214    its parent function.
1215
1216    A function containing a ``noduplicate`` call may still
1217    be an inlining candidate, provided that the call is not
1218    duplicated by inlining. That implies that the function has
1219    internal linkage and only has one call site, so the original
1220    call is dead after inlining.
1221``noimplicitfloat``
1222    This attributes disables implicit floating point instructions.
1223``noinline``
1224    This attribute indicates that the inliner should never inline this
1225    function in any situation. This attribute may not be used together
1226    with the ``alwaysinline`` attribute.
1227``nonlazybind``
1228    This attribute suppresses lazy symbol binding for the function. This
1229    may make calls to the function faster, at the cost of extra program
1230    startup time if the function is not called during program startup.
1231``noredzone``
1232    This attribute indicates that the code generator should not use a
1233    red zone, even if the target-specific ABI normally permits it.
1234``noreturn``
1235    This function attribute indicates that the function never returns
1236    normally. This produces undefined behavior at runtime if the
1237    function ever does dynamically return.
1238``nounwind``
1239    This function attribute indicates that the function never returns
1240    with an unwind or exceptional control flow. If the function does
1241    unwind, its runtime behavior is undefined.
1242``optnone``
1243    This function attribute indicates that the function is not optimized
1244    by any optimization or code generator passes with the
1245    exception of interprocedural optimization passes.
1246    This attribute cannot be used together with the ``alwaysinline``
1247    attribute; this attribute is also incompatible
1248    with the ``minsize`` attribute and the ``optsize`` attribute.
1249
1250    This attribute requires the ``noinline`` attribute to be specified on
1251    the function as well, so the function is never inlined into any caller.
1252    Only functions with the ``alwaysinline`` attribute are valid
1253    candidates for inlining into the body of this function.
1254``optsize``
1255    This attribute suggests that optimization passes and code generator
1256    passes make choices that keep the code size of this function low,
1257    and otherwise do optimizations specifically to reduce code size as
1258    long as they do not significantly impact runtime performance.
1259``readnone``
1260    On a function, this attribute indicates that the function computes its
1261    result (or decides to unwind an exception) based strictly on its arguments,
1262    without dereferencing any pointer arguments or otherwise accessing
1263    any mutable state (e.g. memory, control registers, etc) visible to
1264    caller functions. It does not write through any pointer arguments
1265    (including ``byval`` arguments) and never changes any state visible
1266    to callers. This means that it cannot unwind exceptions by calling
1267    the ``C++`` exception throwing methods.
1268
1269    On an argument, this attribute indicates that the function does not
1270    dereference that pointer argument, even though it may read or write the
1271    memory that the pointer points to if accessed through other pointers.
1272``readonly``
1273    On a function, this attribute indicates that the function does not write
1274    through any pointer arguments (including ``byval`` arguments) or otherwise
1275    modify any state (e.g. memory, control registers, etc) visible to
1276    caller functions. It may dereference pointer arguments and read
1277    state that may be set in the caller. A readonly function always
1278    returns the same value (or unwinds an exception identically) when
1279    called with the same set of arguments and global state. It cannot
1280    unwind an exception by calling the ``C++`` exception throwing
1281    methods.
1282
1283    On an argument, this attribute indicates that the function does not write
1284    through this pointer argument, even though it may write to the memory that
1285    the pointer points to.
1286``returns_twice``
1287    This attribute indicates that this function can return twice. The C
1288    ``setjmp`` is an example of such a function. The compiler disables
1289    some optimizations (like tail calls) in the caller of these
1290    functions.
1291``sanitize_address``
1292    This attribute indicates that AddressSanitizer checks
1293    (dynamic address safety analysis) are enabled for this function.
1294``sanitize_memory``
1295    This attribute indicates that MemorySanitizer checks (dynamic detection
1296    of accesses to uninitialized memory) are enabled for this function.
1297``sanitize_thread``
1298    This attribute indicates that ThreadSanitizer checks
1299    (dynamic thread safety analysis) are enabled for this function.
1300``ssp``
1301    This attribute indicates that the function should emit a stack
1302    smashing protector. It is in the form of a "canary" --- a random value
1303    placed on the stack before the local variables that's checked upon
1304    return from the function to see if it has been overwritten. A
1305    heuristic is used to determine if a function needs stack protectors
1306    or not. The heuristic used will enable protectors for functions with:
1307
1308    - Character arrays larger than ``ssp-buffer-size`` (default 8).
1309    - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1310    - Calls to alloca() with variable sizes or constant sizes greater than
1311      ``ssp-buffer-size``.
1312
1313    Variables that are identified as requiring a protector will be arranged
1314    on the stack such that they are adjacent to the stack protector guard.
1315
1316    If a function that has an ``ssp`` attribute is inlined into a
1317    function that doesn't have an ``ssp`` attribute, then the resulting
1318    function will have an ``ssp`` attribute.
1319``sspreq``
1320    This attribute indicates that the function should *always* emit a
1321    stack smashing protector. This overrides the ``ssp`` function
1322    attribute.
1323
1324    Variables that are identified as requiring a protector will be arranged
1325    on the stack such that they are adjacent to the stack protector guard.
1326    The specific layout rules are:
1327
1328    #. Large arrays and structures containing large arrays
1329       (``>= ssp-buffer-size``) are closest to the stack protector.
1330    #. Small arrays and structures containing small arrays
1331       (``< ssp-buffer-size``) are 2nd closest to the protector.
1332    #. Variables that have had their address taken are 3rd closest to the
1333       protector.
1334
1335    If a function that has an ``sspreq`` attribute is inlined into a
1336    function that doesn't have an ``sspreq`` attribute or which has an
1337    ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1338    an ``sspreq`` attribute.
1339``sspstrong``
1340    This attribute indicates that the function should emit a stack smashing
1341    protector. This attribute causes a strong heuristic to be used when
1342    determining if a function needs stack protectors.  The strong heuristic
1343    will enable protectors for functions with:
1344
1345    - Arrays of any size and type
1346    - Aggregates containing an array of any size and type.
1347    - Calls to alloca().
1348    - Local variables that have had their address taken.
1349
1350    Variables that are identified as requiring a protector will be arranged
1351    on the stack such that they are adjacent to the stack protector guard.
1352    The specific layout rules are:
1353
1354    #. Large arrays and structures containing large arrays
1355       (``>= ssp-buffer-size``) are closest to the stack protector.
1356    #. Small arrays and structures containing small arrays
1357       (``< ssp-buffer-size``) are 2nd closest to the protector.
1358    #. Variables that have had their address taken are 3rd closest to the
1359       protector.
1360
1361    This overrides the ``ssp`` function attribute.
1362
1363    If a function that has an ``sspstrong`` attribute is inlined into a
1364    function that doesn't have an ``sspstrong`` attribute, then the
1365    resulting function will have an ``sspstrong`` attribute.
1366``uwtable``
1367    This attribute indicates that the ABI being targeted requires that
1368    an unwind table entry be produce for this function even if we can
1369    show that no exceptions passes by it. This is normally the case for
1370    the ELF x86-64 abi, but it can be disabled for some compilation
1371    units.
1372
1373.. _moduleasm:
1374
1375Module-Level Inline Assembly
1376----------------------------
1377
1378Modules may contain "module-level inline asm" blocks, which corresponds
1379to the GCC "file scope inline asm" blocks. These blocks are internally
1380concatenated by LLVM and treated as a single unit, but may be separated
1381in the ``.ll`` file if desired. The syntax is very simple:
1382
1383.. code-block:: llvm
1384
1385    module asm "inline asm code goes here"
1386    module asm "more can go here"
1387
1388The strings can contain any character by escaping non-printable
1389characters. The escape sequence used is simply "\\xx" where "xx" is the
1390two digit hex code for the number.
1391
1392The inline asm code is simply printed to the machine code .s file when
1393assembly code is generated.
1394
1395.. _langref_datalayout:
1396
1397Data Layout
1398-----------
1399
1400A module may specify a target specific data layout string that specifies
1401how data is to be laid out in memory. The syntax for the data layout is
1402simply:
1403
1404.. code-block:: llvm
1405
1406    target datalayout = "layout specification"
1407
1408The *layout specification* consists of a list of specifications
1409separated by the minus sign character ('-'). Each specification starts
1410with a letter and may include other information after the letter to
1411define some aspect of the data layout. The specifications accepted are
1412as follows:
1413
1414``E``
1415    Specifies that the target lays out data in big-endian form. That is,
1416    the bits with the most significance have the lowest address
1417    location.
1418``e``
1419    Specifies that the target lays out data in little-endian form. That
1420    is, the bits with the least significance have the lowest address
1421    location.
1422``S<size>``
1423    Specifies the natural alignment of the stack in bits. Alignment
1424    promotion of stack variables is limited to the natural stack
1425    alignment to avoid dynamic stack realignment. The stack alignment
1426    must be a multiple of 8-bits. If omitted, the natural stack
1427    alignment defaults to "unspecified", which does not prevent any
1428    alignment promotions.
1429``p[n]:<size>:<abi>:<pref>``
1430    This specifies the *size* of a pointer and its ``<abi>`` and
1431    ``<pref>``\erred alignments for address space ``n``. All sizes are in
1432    bits. The address space, ``n`` is optional, and if not specified,
1433    denotes the default address space 0.  The value of ``n`` must be
1434    in the range [1,2^23).
1435``i<size>:<abi>:<pref>``
1436    This specifies the alignment for an integer type of a given bit
1437    ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1438``v<size>:<abi>:<pref>``
1439    This specifies the alignment for a vector type of a given bit
1440    ``<size>``.
1441``f<size>:<abi>:<pref>``
1442    This specifies the alignment for a floating point type of a given bit
1443    ``<size>``. Only values of ``<size>`` that are supported by the target
1444    will work. 32 (float) and 64 (double) are supported on all targets; 80
1445    or 128 (different flavors of long double) are also supported on some
1446    targets.
1447``a:<abi>:<pref>``
1448    This specifies the alignment for an object of aggregate type.
1449``m:<mangling>``
1450    If present, specifies that llvm names are mangled in the output. The
1451    options are
1452
1453    * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1454    * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1455    * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1456      symbols get a ``_`` prefix.
1457    * ``w``: Windows COFF prefix:  Similar to Mach-O, but stdcall and fastcall
1458      functions also get a suffix based on the frame size.
1459``n<size1>:<size2>:<size3>...``
1460    This specifies a set of native integer widths for the target CPU in
1461    bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1462    ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1463    this set are considered to support most general arithmetic operations
1464    efficiently.
1465
1466On every specification that takes a ``<abi>:<pref>``, specifying the
1467``<pref>`` alignment is optional. If omitted, the preceding ``:``
1468should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1469
1470When constructing the data layout for a given target, LLVM starts with a
1471default set of specifications which are then (possibly) overridden by
1472the specifications in the ``datalayout`` keyword. The default
1473specifications are given in this list:
1474
1475-  ``E`` - big endian
1476-  ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1477-  ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1478   same as the default address space.
1479-  ``S0`` - natural stack alignment is unspecified
1480-  ``i1:8:8`` - i1 is 8-bit (byte) aligned
1481-  ``i8:8:8`` - i8 is 8-bit (byte) aligned
1482-  ``i16:16:16`` - i16 is 16-bit aligned
1483-  ``i32:32:32`` - i32 is 32-bit aligned
1484-  ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1485   alignment of 64-bits
1486-  ``f16:16:16`` - half is 16-bit aligned
1487-  ``f32:32:32`` - float is 32-bit aligned
1488-  ``f64:64:64`` - double is 64-bit aligned
1489-  ``f128:128:128`` - quad is 128-bit aligned
1490-  ``v64:64:64`` - 64-bit vector is 64-bit aligned
1491-  ``v128:128:128`` - 128-bit vector is 128-bit aligned
1492-  ``a:0:64`` - aggregates are 64-bit aligned
1493
1494When LLVM is determining the alignment for a given type, it uses the
1495following rules:
1496
1497#. If the type sought is an exact match for one of the specifications,
1498   that specification is used.
1499#. If no match is found, and the type sought is an integer type, then
1500   the smallest integer type that is larger than the bitwidth of the
1501   sought type is used. If none of the specifications are larger than
1502   the bitwidth then the largest integer type is used. For example,
1503   given the default specifications above, the i7 type will use the
1504   alignment of i8 (next largest) while both i65 and i256 will use the
1505   alignment of i64 (largest specified).
1506#. If no match is found, and the type sought is a vector type, then the
1507   largest vector type that is smaller than the sought vector type will
1508   be used as a fall back. This happens because <128 x double> can be
1509   implemented in terms of 64 <2 x double>, for example.
1510
1511The function of the data layout string may not be what you expect.
1512Notably, this is not a specification from the frontend of what alignment
1513the code generator should use.
1514
1515Instead, if specified, the target data layout is required to match what
1516the ultimate *code generator* expects. This string is used by the
1517mid-level optimizers to improve code, and this only works if it matches
1518what the ultimate code generator uses. If you would like to generate IR
1519that does not embed this target-specific detail into the IR, then you
1520don't have to specify the string. This will disable some optimizations
1521that require precise layout information, but this also prevents those
1522optimizations from introducing target specificity into the IR.
1523
1524.. _langref_triple:
1525
1526Target Triple
1527-------------
1528
1529A module may specify a target triple string that describes the target
1530host. The syntax for the target triple is simply:
1531
1532.. code-block:: llvm
1533
1534    target triple = "x86_64-apple-macosx10.7.0"
1535
1536The *target triple* string consists of a series of identifiers delimited
1537by the minus sign character ('-'). The canonical forms are:
1538
1539::
1540
1541    ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1542    ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1543
1544This information is passed along to the backend so that it generates
1545code for the proper architecture. It's possible to override this on the
1546command line with the ``-mtriple`` command line option.
1547
1548.. _pointeraliasing:
1549
1550Pointer Aliasing Rules
1551----------------------
1552
1553Any memory access must be done through a pointer value associated with
1554an address range of the memory access, otherwise the behavior is
1555undefined. Pointer values are associated with address ranges according
1556to the following rules:
1557
1558-  A pointer value is associated with the addresses associated with any
1559   value it is *based* on.
1560-  An address of a global variable is associated with the address range
1561   of the variable's storage.
1562-  The result value of an allocation instruction is associated with the
1563   address range of the allocated storage.
1564-  A null pointer in the default address-space is associated with no
1565   address.
1566-  An integer constant other than zero or a pointer value returned from
1567   a function not defined within LLVM may be associated with address
1568   ranges allocated through mechanisms other than those provided by
1569   LLVM. Such ranges shall not overlap with any ranges of addresses
1570   allocated by mechanisms provided by LLVM.
1571
1572A pointer value is *based* on another pointer value according to the
1573following rules:
1574
1575-  A pointer value formed from a ``getelementptr`` operation is *based*
1576   on the first operand of the ``getelementptr``.
1577-  The result value of a ``bitcast`` is *based* on the operand of the
1578   ``bitcast``.
1579-  A pointer value formed by an ``inttoptr`` is *based* on all pointer
1580   values that contribute (directly or indirectly) to the computation of
1581   the pointer's value.
1582-  The "*based* on" relationship is transitive.
1583
1584Note that this definition of *"based"* is intentionally similar to the
1585definition of *"based"* in C99, though it is slightly weaker.
1586
1587LLVM IR does not associate types with memory. The result type of a
1588``load`` merely indicates the size and alignment of the memory from
1589which to load, as well as the interpretation of the value. The first
1590operand type of a ``store`` similarly only indicates the size and
1591alignment of the store.
1592
1593Consequently, type-based alias analysis, aka TBAA, aka
1594``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1595:ref:`Metadata <metadata>` may be used to encode additional information
1596which specialized optimization passes may use to implement type-based
1597alias analysis.
1598
1599.. _volatile:
1600
1601Volatile Memory Accesses
1602------------------------
1603
1604Certain memory accesses, such as :ref:`load <i_load>`'s,
1605:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1606marked ``volatile``. The optimizers must not change the number of
1607volatile operations or change their order of execution relative to other
1608volatile operations. The optimizers *may* change the order of volatile
1609operations relative to non-volatile operations. This is not Java's
1610"volatile" and has no cross-thread synchronization behavior.
1611
1612IR-level volatile loads and stores cannot safely be optimized into
1613llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1614flagged volatile. Likewise, the backend should never split or merge
1615target-legal volatile load/store instructions.
1616
1617.. admonition:: Rationale
1618
1619 Platforms may rely on volatile loads and stores of natively supported
1620 data width to be executed as single instruction. For example, in C
1621 this holds for an l-value of volatile primitive type with native
1622 hardware support, but not necessarily for aggregate types. The
1623 frontend upholds these expectations, which are intentionally
1624 unspecified in the IR. The rules above ensure that IR transformation
1625 do not violate the frontend's contract with the language.
1626
1627.. _memmodel:
1628
1629Memory Model for Concurrent Operations
1630--------------------------------------
1631
1632The LLVM IR does not define any way to start parallel threads of
1633execution or to register signal handlers. Nonetheless, there are
1634platform-specific ways to create them, and we define LLVM IR's behavior
1635in their presence. This model is inspired by the C++0x memory model.
1636
1637For a more informal introduction to this model, see the :doc:`Atomics`.
1638
1639We define a *happens-before* partial order as the least partial order
1640that
1641
1642-  Is a superset of single-thread program order, and
1643-  When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1644   ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1645   techniques, like pthread locks, thread creation, thread joining,
1646   etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1647   Constraints <ordering>`).
1648
1649Note that program order does not introduce *happens-before* edges
1650between a thread and signals executing inside that thread.
1651
1652Every (defined) read operation (load instructions, memcpy, atomic
1653loads/read-modify-writes, etc.) R reads a series of bytes written by
1654(defined) write operations (store instructions, atomic
1655stores/read-modify-writes, memcpy, etc.). For the purposes of this
1656section, initialized globals are considered to have a write of the
1657initializer which is atomic and happens before any other read or write
1658of the memory in question. For each byte of a read R, R\ :sub:`byte`
1659may see any write to the same byte, except:
1660
1661-  If write\ :sub:`1`  happens before write\ :sub:`2`, and
1662   write\ :sub:`2` happens before R\ :sub:`byte`, then
1663   R\ :sub:`byte` does not see write\ :sub:`1`.
1664-  If R\ :sub:`byte` happens before write\ :sub:`3`, then
1665   R\ :sub:`byte` does not see write\ :sub:`3`.
1666
1667Given that definition, R\ :sub:`byte` is defined as follows:
1668
1669-  If R is volatile, the result is target-dependent. (Volatile is
1670   supposed to give guarantees which can support ``sig_atomic_t`` in
1671   C/C++, and may be used for accesses to addresses that do not behave
1672   like normal memory. It does not generally provide cross-thread
1673   synchronization.)
1674-  Otherwise, if there is no write to the same byte that happens before
1675   R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1676-  Otherwise, if R\ :sub:`byte` may see exactly one write,
1677   R\ :sub:`byte` returns the value written by that write.
1678-  Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1679   see are atomic, it chooses one of the values written. See the :ref:`Atomic
1680   Memory Ordering Constraints <ordering>` section for additional
1681   constraints on how the choice is made.
1682-  Otherwise R\ :sub:`byte` returns ``undef``.
1683
1684R returns the value composed of the series of bytes it read. This
1685implies that some bytes within the value may be ``undef`` **without**
1686the entire value being ``undef``. Note that this only defines the
1687semantics of the operation; it doesn't mean that targets will emit more
1688than one instruction to read the series of bytes.
1689
1690Note that in cases where none of the atomic intrinsics are used, this
1691model places only one restriction on IR transformations on top of what
1692is required for single-threaded execution: introducing a store to a byte
1693which might not otherwise be stored is not allowed in general.
1694(Specifically, in the case where another thread might write to and read
1695from an address, introducing a store can change a load that may see
1696exactly one write into a load that may see multiple writes.)
1697
1698.. _ordering:
1699
1700Atomic Memory Ordering Constraints
1701----------------------------------
1702
1703Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1704:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1705:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1706ordering parameters that determine which other atomic instructions on
1707the same address they *synchronize with*. These semantics are borrowed
1708from Java and C++0x, but are somewhat more colloquial. If these
1709descriptions aren't precise enough, check those specs (see spec
1710references in the :doc:`atomics guide <Atomics>`).
1711:ref:`fence <i_fence>` instructions treat these orderings somewhat
1712differently since they don't take an address. See that instruction's
1713documentation for details.
1714
1715For a simpler introduction to the ordering constraints, see the
1716:doc:`Atomics`.
1717
1718``unordered``
1719    The set of values that can be read is governed by the happens-before
1720    partial order. A value cannot be read unless some operation wrote
1721    it. This is intended to provide a guarantee strong enough to model
1722    Java's non-volatile shared variables. This ordering cannot be
1723    specified for read-modify-write operations; it is not strong enough
1724    to make them atomic in any interesting way.
1725``monotonic``
1726    In addition to the guarantees of ``unordered``, there is a single
1727    total order for modifications by ``monotonic`` operations on each
1728    address. All modification orders must be compatible with the
1729    happens-before order. There is no guarantee that the modification
1730    orders can be combined to a global total order for the whole program
1731    (and this often will not be possible). The read in an atomic
1732    read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1733    :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1734    order immediately before the value it writes. If one atomic read
1735    happens before another atomic read of the same address, the later
1736    read must see the same value or a later value in the address's
1737    modification order. This disallows reordering of ``monotonic`` (or
1738    stronger) operations on the same address. If an address is written
1739    ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1740    read that address repeatedly, the other threads must eventually see
1741    the write. This corresponds to the C++0x/C1x
1742    ``memory_order_relaxed``.
1743``acquire``
1744    In addition to the guarantees of ``monotonic``, a
1745    *synchronizes-with* edge may be formed with a ``release`` operation.
1746    This is intended to model C++'s ``memory_order_acquire``.
1747``release``
1748    In addition to the guarantees of ``monotonic``, if this operation
1749    writes a value which is subsequently read by an ``acquire``
1750    operation, it *synchronizes-with* that operation. (This isn't a
1751    complete description; see the C++0x definition of a release
1752    sequence.) This corresponds to the C++0x/C1x
1753    ``memory_order_release``.
1754``acq_rel`` (acquire+release)
1755    Acts as both an ``acquire`` and ``release`` operation on its
1756    address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1757``seq_cst`` (sequentially consistent)
1758    In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1759    operation that only reads, ``release`` for an operation that only
1760    writes), there is a global total order on all
1761    sequentially-consistent operations on all addresses, which is
1762    consistent with the *happens-before* partial order and with the
1763    modification orders of all the affected addresses. Each
1764    sequentially-consistent read sees the last preceding write to the
1765    same address in this global order. This corresponds to the C++0x/C1x
1766    ``memory_order_seq_cst`` and Java volatile.
1767
1768.. _singlethread:
1769
1770If an atomic operation is marked ``singlethread``, it only *synchronizes
1771with* or participates in modification and seq\_cst total orderings with
1772other operations running in the same thread (for example, in signal
1773handlers).
1774
1775.. _fastmath:
1776
1777Fast-Math Flags
1778---------------
1779
1780LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1781:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1782:ref:`frem <i_frem>`) have the following flags that can set to enable
1783otherwise unsafe floating point operations
1784
1785``nnan``
1786   No NaNs - Allow optimizations to assume the arguments and result are not
1787   NaN. Such optimizations are required to retain defined behavior over
1788   NaNs, but the value of the result is undefined.
1789
1790``ninf``
1791   No Infs - Allow optimizations to assume the arguments and result are not
1792   +/-Inf. Such optimizations are required to retain defined behavior over
1793   +/-Inf, but the value of the result is undefined.
1794
1795``nsz``
1796   No Signed Zeros - Allow optimizations to treat the sign of a zero
1797   argument or result as insignificant.
1798
1799``arcp``
1800   Allow Reciprocal - Allow optimizations to use the reciprocal of an
1801   argument rather than perform division.
1802
1803``fast``
1804   Fast - Allow algebraically equivalent transformations that may
1805   dramatically change results in floating point (e.g. reassociate). This
1806   flag implies all the others.
1807
1808.. _uselistorder:
1809
1810Use-list Order Directives
1811-------------------------
1812
1813Use-list directives encode the in-memory order of each use-list, allowing the
1814order to be recreated.  ``<order-indexes>`` is a comma-separated list of
1815indexes that are assigned to the referenced value's uses.  The referenced
1816value's use-list is immediately sorted by these indexes.
1817
1818Use-list directives may appear at function scope or global scope.  They are not
1819instructions, and have no effect on the semantics of the IR.  When they're at
1820function scope, they must appear after the terminator of the final basic block.
1821
1822If basic blocks have their address taken via ``blockaddress()`` expressions,
1823``uselistorder_bb`` can be used to reorder their use-lists from outside their
1824function's scope.
1825
1826:Syntax:
1827
1828::
1829
1830    uselistorder <ty> <value>, { <order-indexes> }
1831    uselistorder_bb @function, %block { <order-indexes> }
1832
1833:Examples:
1834
1835::
1836
1837    define void @foo(i32 %arg1, i32 %arg2) {
1838    entry:
1839      ; ... instructions ...
1840    bb:
1841      ; ... instructions ...
1842
1843      ; At function scope.
1844      uselistorder i32 %arg1, { 1, 0, 2 }
1845      uselistorder label %bb, { 1, 0 }
1846    }
1847
1848    ; At global scope.
1849    uselistorder i32* @global, { 1, 2, 0 }
1850    uselistorder i32 7, { 1, 0 }
1851    uselistorder i32 (i32) @bar, { 1, 0 }
1852    uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1853
1854.. _typesystem:
1855
1856Type System
1857===========
1858
1859The LLVM type system is one of the most important features of the
1860intermediate representation. Being typed enables a number of
1861optimizations to be performed on the intermediate representation
1862directly, without having to do extra analyses on the side before the
1863transformation. A strong type system makes it easier to read the
1864generated code and enables novel analyses and transformations that are
1865not feasible to perform on normal three address code representations.
1866
1867.. _t_void:
1868
1869Void Type
1870---------
1871
1872:Overview:
1873
1874
1875The void type does not represent any value and has no size.
1876
1877:Syntax:
1878
1879
1880::
1881
1882      void
1883
1884
1885.. _t_function:
1886
1887Function Type
1888-------------
1889
1890:Overview:
1891
1892
1893The function type can be thought of as a function signature. It consists of a
1894return type and a list of formal parameter types. The return type of a function
1895type is a void type or first class type --- except for :ref:`label <t_label>`
1896and :ref:`metadata <t_metadata>` types.
1897
1898:Syntax:
1899
1900::
1901
1902      <returntype> (<parameter list>)
1903
1904...where '``<parameter list>``' is a comma-separated list of type
1905specifiers. Optionally, the parameter list may include a type ``...``, which
1906indicates that the function takes a variable number of arguments.  Variable
1907argument functions can access their arguments with the :ref:`variable argument
1908handling intrinsic <int_varargs>` functions.  '``<returntype>``' is any type
1909except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
1910
1911:Examples:
1912
1913+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1914| ``i32 (i32)``                   | function taking an ``i32``, returning an ``i32``                                                                                                                    |
1915+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1916| ``float (i16, i32 *) *``        | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``.                                    |
1917+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1918| ``i32 (i8*, ...)``              | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1919+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1920| ``{i32, i32} (i32)``            | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values                                                                 |
1921+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1922
1923.. _t_firstclass:
1924
1925First Class Types
1926-----------------
1927
1928The :ref:`first class <t_firstclass>` types are perhaps the most important.
1929Values of these types are the only ones which can be produced by
1930instructions.
1931
1932.. _t_single_value:
1933
1934Single Value Types
1935^^^^^^^^^^^^^^^^^^
1936
1937These are the types that are valid in registers from CodeGen's perspective.
1938
1939.. _t_integer:
1940
1941Integer Type
1942""""""""""""
1943
1944:Overview:
1945
1946The integer type is a very simple type that simply specifies an
1947arbitrary bit width for the integer type desired. Any bit width from 1
1948bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1949
1950:Syntax:
1951
1952::
1953
1954      iN
1955
1956The number of bits the integer will occupy is specified by the ``N``
1957value.
1958
1959Examples:
1960*********
1961
1962+----------------+------------------------------------------------+
1963| ``i1``         | a single-bit integer.                          |
1964+----------------+------------------------------------------------+
1965| ``i32``        | a 32-bit integer.                              |
1966+----------------+------------------------------------------------+
1967| ``i1942652``   | a really big integer of over 1 million bits.   |
1968+----------------+------------------------------------------------+
1969
1970.. _t_floating:
1971
1972Floating Point Types
1973""""""""""""""""""""
1974
1975.. list-table::
1976   :header-rows: 1
1977
1978   * - Type
1979     - Description
1980
1981   * - ``half``
1982     - 16-bit floating point value
1983
1984   * - ``float``
1985     - 32-bit floating point value
1986
1987   * - ``double``
1988     - 64-bit floating point value
1989
1990   * - ``fp128``
1991     - 128-bit floating point value (112-bit mantissa)
1992
1993   * - ``x86_fp80``
1994     -  80-bit floating point value (X87)
1995
1996   * - ``ppc_fp128``
1997     - 128-bit floating point value (two 64-bits)
1998
1999X86_mmx Type
2000""""""""""""
2001
2002:Overview:
2003
2004The x86_mmx type represents a value held in an MMX register on an x86
2005machine. The operations allowed on it are quite limited: parameters and
2006return values, load and store, and bitcast. User-specified MMX
2007instructions are represented as intrinsic or asm calls with arguments
2008and/or results of this type. There are no arrays, vectors or constants
2009of this type.
2010
2011:Syntax:
2012
2013::
2014
2015      x86_mmx
2016
2017
2018.. _t_pointer:
2019
2020Pointer Type
2021""""""""""""
2022
2023:Overview:
2024
2025The pointer type is used to specify memory locations. Pointers are
2026commonly used to reference objects in memory.
2027
2028Pointer types may have an optional address space attribute defining the
2029numbered address space where the pointed-to object resides. The default
2030address space is number zero. The semantics of non-zero address spaces
2031are target-specific.
2032
2033Note that LLVM does not permit pointers to void (``void*``) nor does it
2034permit pointers to labels (``label*``). Use ``i8*`` instead.
2035
2036:Syntax:
2037
2038::
2039
2040      <type> *
2041
2042:Examples:
2043
2044+-------------------------+--------------------------------------------------------------------------------------------------------------+
2045| ``[4 x i32]*``          | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values.                               |
2046+-------------------------+--------------------------------------------------------------------------------------------------------------+
2047| ``i32 (i32*) *``        | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2048+-------------------------+--------------------------------------------------------------------------------------------------------------+
2049| ``i32 addrspace(5)*``   | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5.                           |
2050+-------------------------+--------------------------------------------------------------------------------------------------------------+
2051
2052.. _t_vector:
2053
2054Vector Type
2055"""""""""""
2056
2057:Overview:
2058
2059A vector type is a simple derived type that represents a vector of
2060elements. Vector types are used when multiple primitive data are
2061operated in parallel using a single instruction (SIMD). A vector type
2062requires a size (number of elements) and an underlying primitive data
2063type. Vector types are considered :ref:`first class <t_firstclass>`.
2064
2065:Syntax:
2066
2067::
2068
2069      < <# elements> x <elementtype> >
2070
2071The number of elements is a constant integer value larger than 0;
2072elementtype may be any integer, floating point or pointer type. Vectors
2073of size zero are not allowed.
2074
2075:Examples:
2076
2077+-------------------+--------------------------------------------------+
2078| ``<4 x i32>``     | Vector of 4 32-bit integer values.               |
2079+-------------------+--------------------------------------------------+
2080| ``<8 x float>``   | Vector of 8 32-bit floating-point values.        |
2081+-------------------+--------------------------------------------------+
2082| ``<2 x i64>``     | Vector of 2 64-bit integer values.               |
2083+-------------------+--------------------------------------------------+
2084| ``<4 x i64*>``    | Vector of 4 pointers to 64-bit integer values.   |
2085+-------------------+--------------------------------------------------+
2086
2087.. _t_label:
2088
2089Label Type
2090^^^^^^^^^^
2091
2092:Overview:
2093
2094The label type represents code labels.
2095
2096:Syntax:
2097
2098::
2099
2100      label
2101
2102.. _t_metadata:
2103
2104Metadata Type
2105^^^^^^^^^^^^^
2106
2107:Overview:
2108
2109The metadata type represents embedded metadata. No derived types may be
2110created from metadata except for :ref:`function <t_function>` arguments.
2111
2112:Syntax:
2113
2114::
2115
2116      metadata
2117
2118.. _t_aggregate:
2119
2120Aggregate Types
2121^^^^^^^^^^^^^^^
2122
2123Aggregate Types are a subset of derived types that can contain multiple
2124member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2125aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2126aggregate types.
2127
2128.. _t_array:
2129
2130Array Type
2131""""""""""
2132
2133:Overview:
2134
2135The array type is a very simple derived type that arranges elements
2136sequentially in memory. The array type requires a size (number of
2137elements) and an underlying data type.
2138
2139:Syntax:
2140
2141::
2142
2143      [<# elements> x <elementtype>]
2144
2145The number of elements is a constant integer value; ``elementtype`` may
2146be any type with a size.
2147
2148:Examples:
2149
2150+------------------+--------------------------------------+
2151| ``[40 x i32]``   | Array of 40 32-bit integer values.   |
2152+------------------+--------------------------------------+
2153| ``[41 x i32]``   | Array of 41 32-bit integer values.   |
2154+------------------+--------------------------------------+
2155| ``[4 x i8]``     | Array of 4 8-bit integer values.     |
2156+------------------+--------------------------------------+
2157
2158Here are some examples of multidimensional arrays:
2159
2160+-----------------------------+----------------------------------------------------------+
2161| ``[3 x [4 x i32]]``         | 3x4 array of 32-bit integer values.                      |
2162+-----------------------------+----------------------------------------------------------+
2163| ``[12 x [10 x float]]``     | 12x10 array of single precision floating point values.   |
2164+-----------------------------+----------------------------------------------------------+
2165| ``[2 x [3 x [4 x i16]]]``   | 2x3x4 array of 16-bit integer values.                    |
2166+-----------------------------+----------------------------------------------------------+
2167
2168There is no restriction on indexing beyond the end of the array implied
2169by a static type (though there are restrictions on indexing beyond the
2170bounds of an allocated object in some cases). This means that
2171single-dimension 'variable sized array' addressing can be implemented in
2172LLVM with a zero length array type. An implementation of 'pascal style
2173arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2174example.
2175
2176.. _t_struct:
2177
2178Structure Type
2179""""""""""""""
2180
2181:Overview:
2182
2183The structure type is used to represent a collection of data members
2184together in memory. The elements of a structure may be any type that has
2185a size.
2186
2187Structures in memory are accessed using '``load``' and '``store``' by
2188getting a pointer to a field with the '``getelementptr``' instruction.
2189Structures in registers are accessed using the '``extractvalue``' and
2190'``insertvalue``' instructions.
2191
2192Structures may optionally be "packed" structures, which indicate that
2193the alignment of the struct is one byte, and that there is no padding
2194between the elements. In non-packed structs, padding between field types
2195is inserted as defined by the DataLayout string in the module, which is
2196required to match what the underlying code generator expects.
2197
2198Structures can either be "literal" or "identified". A literal structure
2199is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2200identified types are always defined at the top level with a name.
2201Literal types are uniqued by their contents and can never be recursive
2202or opaque since there is no way to write one. Identified types can be
2203recursive, can be opaqued, and are never uniqued.
2204
2205:Syntax:
2206
2207::
2208
2209      %T1 = type { <type list> }     ; Identified normal struct type
2210      %T2 = type <{ <type list> }>   ; Identified packed struct type
2211
2212:Examples:
2213
2214+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2215| ``{ i32, i32, i32 }``        | A triple of three ``i32`` values                                                                                                                                                      |
2216+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2217| ``{ float, i32 (i32) * }``   | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``.  |
2218+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2219| ``<{ i8, i32 }>``            | A packed struct known to be 5 bytes in size.                                                                                                                                          |
2220+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2221
2222.. _t_opaque:
2223
2224Opaque Structure Types
2225""""""""""""""""""""""
2226
2227:Overview:
2228
2229Opaque structure types are used to represent named structure types that
2230do not have a body specified. This corresponds (for example) to the C
2231notion of a forward declared structure.
2232
2233:Syntax:
2234
2235::
2236
2237      %X = type opaque
2238      %52 = type opaque
2239
2240:Examples:
2241
2242+--------------+-------------------+
2243| ``opaque``   | An opaque type.   |
2244+--------------+-------------------+
2245
2246.. _constants:
2247
2248Constants
2249=========
2250
2251LLVM has several different basic types of constants. This section
2252describes them all and their syntax.
2253
2254Simple Constants
2255----------------
2256
2257**Boolean constants**
2258    The two strings '``true``' and '``false``' are both valid constants
2259    of the ``i1`` type.
2260**Integer constants**
2261    Standard integers (such as '4') are constants of the
2262    :ref:`integer <t_integer>` type. Negative numbers may be used with
2263    integer types.
2264**Floating point constants**
2265    Floating point constants use standard decimal notation (e.g.
2266    123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2267    hexadecimal notation (see below). The assembler requires the exact
2268    decimal value of a floating-point constant. For example, the
2269    assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2270    decimal in binary. Floating point constants must have a :ref:`floating
2271    point <t_floating>` type.
2272**Null pointer constants**
2273    The identifier '``null``' is recognized as a null pointer constant
2274    and must be of :ref:`pointer type <t_pointer>`.
2275
2276The one non-intuitive notation for constants is the hexadecimal form of
2277floating point constants. For example, the form
2278'``double    0x432ff973cafa8000``' is equivalent to (but harder to read
2279than) '``double 4.5e+15``'. The only time hexadecimal floating point
2280constants are required (and the only time that they are generated by the
2281disassembler) is when a floating point constant must be emitted but it
2282cannot be represented as a decimal floating point number in a reasonable
2283number of digits. For example, NaN's, infinities, and other special
2284values are represented in their IEEE hexadecimal format so that assembly
2285and disassembly do not cause any bits to change in the constants.
2286
2287When using the hexadecimal form, constants of types half, float, and
2288double are represented using the 16-digit form shown above (which
2289matches the IEEE754 representation for double); half and float values
2290must, however, be exactly representable as IEEE 754 half and single
2291precision, respectively. Hexadecimal format is always used for long
2292double, and there are three forms of long double. The 80-bit format used
2293by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2294128-bit format used by PowerPC (two adjacent doubles) is represented by
2295``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
2296represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2297will only work if they match the long double format on your target.
2298The IEEE 16-bit format (half precision) is represented by ``0xH``
2299followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2300(sign bit at the left).
2301
2302There are no constants of type x86_mmx.
2303
2304.. _complexconstants:
2305
2306Complex Constants
2307-----------------
2308
2309Complex constants are a (potentially recursive) combination of simple
2310constants and smaller complex constants.
2311
2312**Structure constants**
2313    Structure constants are represented with notation similar to
2314    structure type definitions (a comma separated list of elements,
2315    surrounded by braces (``{}``)). For example:
2316    "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2317    "``@G = external global i32``". Structure constants must have
2318    :ref:`structure type <t_struct>`, and the number and types of elements
2319    must match those specified by the type.
2320**Array constants**
2321    Array constants are represented with notation similar to array type
2322    definitions (a comma separated list of elements, surrounded by
2323    square brackets (``[]``)). For example:
2324    "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2325    :ref:`array type <t_array>`, and the number and types of elements must
2326    match those specified by the type. As a special case, character array
2327    constants may also be represented as a double-quoted string using the ``c``
2328    prefix. For example: "``c"Hello World\0A\00"``".
2329**Vector constants**
2330    Vector constants are represented with notation similar to vector
2331    type definitions (a comma separated list of elements, surrounded by
2332    less-than/greater-than's (``<>``)). For example:
2333    "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2334    must have :ref:`vector type <t_vector>`, and the number and types of
2335    elements must match those specified by the type.
2336**Zero initialization**
2337    The string '``zeroinitializer``' can be used to zero initialize a
2338    value to zero of *any* type, including scalar and
2339    :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2340    having to print large zero initializers (e.g. for large arrays) and
2341    is always exactly equivalent to using explicit zero initializers.
2342**Metadata node**
2343    A metadata node is a constant tuple without types.  For example:
2344    "``!{!0, !{!2, !0}, !"test"}``".  Metadata can reference constant values,
2345    for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2346    Unlike other typed constants that are meant to be interpreted as part of
2347    the instruction stream, metadata is a place to attach additional
2348    information such as debug info.
2349
2350Global Variable and Function Addresses
2351--------------------------------------
2352
2353The addresses of :ref:`global variables <globalvars>` and
2354:ref:`functions <functionstructure>` are always implicitly valid
2355(link-time) constants. These constants are explicitly referenced when
2356the :ref:`identifier for the global <identifiers>` is used and always have
2357:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2358file:
2359
2360.. code-block:: llvm
2361
2362    @X = global i32 17
2363    @Y = global i32 42
2364    @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2365
2366.. _undefvalues:
2367
2368Undefined Values
2369----------------
2370
2371The string '``undef``' can be used anywhere a constant is expected, and
2372indicates that the user of the value may receive an unspecified
2373bit-pattern. Undefined values may be of any type (other than '``label``'
2374or '``void``') and be used anywhere a constant is permitted.
2375
2376Undefined values are useful because they indicate to the compiler that
2377the program is well defined no matter what value is used. This gives the
2378compiler more freedom to optimize. Here are some examples of
2379(potentially surprising) transformations that are valid (in pseudo IR):
2380
2381.. code-block:: llvm
2382
2383      %A = add %X, undef
2384      %B = sub %X, undef
2385      %C = xor %X, undef
2386    Safe:
2387      %A = undef
2388      %B = undef
2389      %C = undef
2390
2391This is safe because all of the output bits are affected by the undef
2392bits. Any output bit can have a zero or one depending on the input bits.
2393
2394.. code-block:: llvm
2395
2396      %A = or %X, undef
2397      %B = and %X, undef
2398    Safe:
2399      %A = -1
2400      %B = 0
2401    Unsafe:
2402      %A = undef
2403      %B = undef
2404
2405These logical operations have bits that are not always affected by the
2406input. For example, if ``%X`` has a zero bit, then the output of the
2407'``and``' operation will always be a zero for that bit, no matter what
2408the corresponding bit from the '``undef``' is. As such, it is unsafe to
2409optimize or assume that the result of the '``and``' is '``undef``'.
2410However, it is safe to assume that all bits of the '``undef``' could be
24110, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2412all the bits of the '``undef``' operand to the '``or``' could be set,
2413allowing the '``or``' to be folded to -1.
2414
2415.. code-block:: llvm
2416
2417      %A = select undef, %X, %Y
2418      %B = select undef, 42, %Y
2419      %C = select %X, %Y, undef
2420    Safe:
2421      %A = %X     (or %Y)
2422      %B = 42     (or %Y)
2423      %C = %Y
2424    Unsafe:
2425      %A = undef
2426      %B = undef
2427      %C = undef
2428
2429This set of examples shows that undefined '``select``' (and conditional
2430branch) conditions can go *either way*, but they have to come from one
2431of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2432both known to have a clear low bit, then ``%A`` would have to have a
2433cleared low bit. However, in the ``%C`` example, the optimizer is
2434allowed to assume that the '``undef``' operand could be the same as
2435``%Y``, allowing the whole '``select``' to be eliminated.
2436
2437.. code-block:: llvm
2438
2439      %A = xor undef, undef
2440
2441      %B = undef
2442      %C = xor %B, %B
2443
2444      %D = undef
2445      %E = icmp slt %D, 4
2446      %F = icmp gte %D, 4
2447
2448    Safe:
2449      %A = undef
2450      %B = undef
2451      %C = undef
2452      %D = undef
2453      %E = undef
2454      %F = undef
2455
2456This example points out that two '``undef``' operands are not
2457necessarily the same. This can be surprising to people (and also matches
2458C semantics) where they assume that "``X^X``" is always zero, even if
2459``X`` is undefined. This isn't true for a number of reasons, but the
2460short answer is that an '``undef``' "variable" can arbitrarily change
2461its value over its "live range". This is true because the variable
2462doesn't actually *have a live range*. Instead, the value is logically
2463read from arbitrary registers that happen to be around when needed, so
2464the value is not necessarily consistent over time. In fact, ``%A`` and
2465``%C`` need to have the same semantics or the core LLVM "replace all
2466uses with" concept would not hold.
2467
2468.. code-block:: llvm
2469
2470      %A = fdiv undef, %X
2471      %B = fdiv %X, undef
2472    Safe:
2473      %A = undef
2474    b: unreachable
2475
2476These examples show the crucial difference between an *undefined value*
2477and *undefined behavior*. An undefined value (like '``undef``') is
2478allowed to have an arbitrary bit-pattern. This means that the ``%A``
2479operation can be constant folded to '``undef``', because the '``undef``'
2480could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2481However, in the second example, we can make a more aggressive
2482assumption: because the ``undef`` is allowed to be an arbitrary value,
2483we are allowed to assume that it could be zero. Since a divide by zero
2484has *undefined behavior*, we are allowed to assume that the operation
2485does not execute at all. This allows us to delete the divide and all
2486code after it. Because the undefined operation "can't happen", the
2487optimizer can assume that it occurs in dead code.
2488
2489.. code-block:: llvm
2490
2491    a:  store undef -> %X
2492    b:  store %X -> undef
2493    Safe:
2494    a: <deleted>
2495    b: unreachable
2496
2497These examples reiterate the ``fdiv`` example: a store *of* an undefined
2498value can be assumed to not have any effect; we can assume that the
2499value is overwritten with bits that happen to match what was already
2500there. However, a store *to* an undefined location could clobber
2501arbitrary memory, therefore, it has undefined behavior.
2502
2503.. _poisonvalues:
2504
2505Poison Values
2506-------------
2507
2508Poison values are similar to :ref:`undef values <undefvalues>`, however
2509they also represent the fact that an instruction or constant expression
2510that cannot evoke side effects has nevertheless detected a condition
2511that results in undefined behavior.
2512
2513There is currently no way of representing a poison value in the IR; they
2514only exist when produced by operations such as :ref:`add <i_add>` with
2515the ``nsw`` flag.
2516
2517Poison value behavior is defined in terms of value *dependence*:
2518
2519-  Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2520-  :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2521   their dynamic predecessor basic block.
2522-  Function arguments depend on the corresponding actual argument values
2523   in the dynamic callers of their functions.
2524-  :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2525   instructions that dynamically transfer control back to them.
2526-  :ref:`Invoke <i_invoke>` instructions depend on the
2527   :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2528   call instructions that dynamically transfer control back to them.
2529-  Non-volatile loads and stores depend on the most recent stores to all
2530   of the referenced memory addresses, following the order in the IR
2531   (including loads and stores implied by intrinsics such as
2532   :ref:`@llvm.memcpy <int_memcpy>`.)
2533-  An instruction with externally visible side effects depends on the
2534   most recent preceding instruction with externally visible side
2535   effects, following the order in the IR. (This includes :ref:`volatile
2536   operations <volatile>`.)
2537-  An instruction *control-depends* on a :ref:`terminator
2538   instruction <terminators>` if the terminator instruction has
2539   multiple successors and the instruction is always executed when
2540   control transfers to one of the successors, and may not be executed
2541   when control is transferred to another.
2542-  Additionally, an instruction also *control-depends* on a terminator
2543   instruction if the set of instructions it otherwise depends on would
2544   be different if the terminator had transferred control to a different
2545   successor.
2546-  Dependence is transitive.
2547
2548Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2549with the additional effect that any instruction that has a *dependence*
2550on a poison value has undefined behavior.
2551
2552Here are some examples:
2553
2554.. code-block:: llvm
2555
2556    entry:
2557      %poison = sub nuw i32 0, 1           ; Results in a poison value.
2558      %still_poison = and i32 %poison, 0   ; 0, but also poison.
2559      %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2560      store i32 0, i32* %poison_yet_again  ; memory at @h[0] is poisoned
2561
2562      store i32 %poison, i32* @g           ; Poison value stored to memory.
2563      %poison2 = load i32* @g              ; Poison value loaded back from memory.
2564
2565      store volatile i32 %poison, i32* @g  ; External observation; undefined behavior.
2566
2567      %narrowaddr = bitcast i32* @g to i16*
2568      %wideaddr = bitcast i32* @g to i64*
2569      %poison3 = load i16* %narrowaddr     ; Returns a poison value.
2570      %poison4 = load i64* %wideaddr       ; Returns a poison value.
2571
2572      %cmp = icmp slt i32 %poison, 0       ; Returns a poison value.
2573      br i1 %cmp, label %true, label %end  ; Branch to either destination.
2574
2575    true:
2576      store volatile i32 0, i32* @g        ; This is control-dependent on %cmp, so
2577                                           ; it has undefined behavior.
2578      br label %end
2579
2580    end:
2581      %p = phi i32 [ 0, %entry ], [ 1, %true ]
2582                                           ; Both edges into this PHI are
2583                                           ; control-dependent on %cmp, so this
2584                                           ; always results in a poison value.
2585
2586      store volatile i32 0, i32* @g        ; This would depend on the store in %true
2587                                           ; if %cmp is true, or the store in %entry
2588                                           ; otherwise, so this is undefined behavior.
2589
2590      br i1 %cmp, label %second_true, label %second_end
2591                                           ; The same branch again, but this time the
2592                                           ; true block doesn't have side effects.
2593
2594    second_true:
2595      ; No side effects!
2596      ret void
2597
2598    second_end:
2599      store volatile i32 0, i32* @g        ; This time, the instruction always depends
2600                                           ; on the store in %end. Also, it is
2601                                           ; control-equivalent to %end, so this is
2602                                           ; well-defined (ignoring earlier undefined
2603                                           ; behavior in this example).
2604
2605.. _blockaddress:
2606
2607Addresses of Basic Blocks
2608-------------------------
2609
2610``blockaddress(@function, %block)``
2611
2612The '``blockaddress``' constant computes the address of the specified
2613basic block in the specified function, and always has an ``i8*`` type.
2614Taking the address of the entry block is illegal.
2615
2616This value only has defined behavior when used as an operand to the
2617':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2618against null. Pointer equality tests between labels addresses results in
2619undefined behavior --- though, again, comparison against null is ok, and
2620no label is equal to the null pointer. This may be passed around as an
2621opaque pointer sized value as long as the bits are not inspected. This
2622allows ``ptrtoint`` and arithmetic to be performed on these values so
2623long as the original value is reconstituted before the ``indirectbr``
2624instruction.
2625
2626Finally, some targets may provide defined semantics when using the value
2627as the operand to an inline assembly, but that is target specific.
2628
2629.. _constantexprs:
2630
2631Constant Expressions
2632--------------------
2633
2634Constant expressions are used to allow expressions involving other
2635constants to be used as constants. Constant expressions may be of any
2636:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2637that does not have side effects (e.g. load and call are not supported).
2638The following is the syntax for constant expressions:
2639
2640``trunc (CST to TYPE)``
2641    Truncate a constant to another type. The bit size of CST must be
2642    larger than the bit size of TYPE. Both types must be integers.
2643``zext (CST to TYPE)``
2644    Zero extend a constant to another type. The bit size of CST must be
2645    smaller than the bit size of TYPE. Both types must be integers.
2646``sext (CST to TYPE)``
2647    Sign extend a constant to another type. The bit size of CST must be
2648    smaller than the bit size of TYPE. Both types must be integers.
2649``fptrunc (CST to TYPE)``
2650    Truncate a floating point constant to another floating point type.
2651    The size of CST must be larger than the size of TYPE. Both types
2652    must be floating point.
2653``fpext (CST to TYPE)``
2654    Floating point extend a constant to another type. The size of CST
2655    must be smaller or equal to the size of TYPE. Both types must be
2656    floating point.
2657``fptoui (CST to TYPE)``
2658    Convert a floating point constant to the corresponding unsigned
2659    integer constant. TYPE must be a scalar or vector integer type. CST
2660    must be of scalar or vector floating point type. Both CST and TYPE
2661    must be scalars, or vectors of the same number of elements. If the
2662    value won't fit in the integer type, the results are undefined.
2663``fptosi (CST to TYPE)``
2664    Convert a floating point constant to the corresponding signed
2665    integer constant. TYPE must be a scalar or vector integer type. CST
2666    must be of scalar or vector floating point type. Both CST and TYPE
2667    must be scalars, or vectors of the same number of elements. If the
2668    value won't fit in the integer type, the results are undefined.
2669``uitofp (CST to TYPE)``
2670    Convert an unsigned integer constant to the corresponding floating
2671    point constant. TYPE must be a scalar or vector floating point type.
2672    CST must be of scalar or vector integer type. Both CST and TYPE must
2673    be scalars, or vectors of the same number of elements. If the value
2674    won't fit in the floating point type, the results are undefined.
2675``sitofp (CST to TYPE)``
2676    Convert a signed integer constant to the corresponding floating
2677    point constant. TYPE must be a scalar or vector floating point type.
2678    CST must be of scalar or vector integer type. Both CST and TYPE must
2679    be scalars, or vectors of the same number of elements. If the value
2680    won't fit in the floating point type, the results are undefined.
2681``ptrtoint (CST to TYPE)``
2682    Convert a pointer typed constant to the corresponding integer
2683    constant. ``TYPE`` must be an integer type. ``CST`` must be of
2684    pointer type. The ``CST`` value is zero extended, truncated, or
2685    unchanged to make it fit in ``TYPE``.
2686``inttoptr (CST to TYPE)``
2687    Convert an integer constant to a pointer constant. TYPE must be a
2688    pointer type. CST must be of integer type. The CST value is zero
2689    extended, truncated, or unchanged to make it fit in a pointer size.
2690    This one is *really* dangerous!
2691``bitcast (CST to TYPE)``
2692    Convert a constant, CST, to another TYPE. The constraints of the
2693    operands are the same as those for the :ref:`bitcast
2694    instruction <i_bitcast>`.
2695``addrspacecast (CST to TYPE)``
2696    Convert a constant pointer or constant vector of pointer, CST, to another
2697    TYPE in a different address space. The constraints of the operands are the
2698    same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
2699``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2700    Perform the :ref:`getelementptr operation <i_getelementptr>` on
2701    constants. As with the :ref:`getelementptr <i_getelementptr>`
2702    instruction, the index list may have zero or more indexes, which are
2703    required to make sense for the type of "CSTPTR".
2704``select (COND, VAL1, VAL2)``
2705    Perform the :ref:`select operation <i_select>` on constants.
2706``icmp COND (VAL1, VAL2)``
2707    Performs the :ref:`icmp operation <i_icmp>` on constants.
2708``fcmp COND (VAL1, VAL2)``
2709    Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2710``extractelement (VAL, IDX)``
2711    Perform the :ref:`extractelement operation <i_extractelement>` on
2712    constants.
2713``insertelement (VAL, ELT, IDX)``
2714    Perform the :ref:`insertelement operation <i_insertelement>` on
2715    constants.
2716``shufflevector (VEC1, VEC2, IDXMASK)``
2717    Perform the :ref:`shufflevector operation <i_shufflevector>` on
2718    constants.
2719``extractvalue (VAL, IDX0, IDX1, ...)``
2720    Perform the :ref:`extractvalue operation <i_extractvalue>` on
2721    constants. The index list is interpreted in a similar manner as
2722    indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2723    least one index value must be specified.
2724``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2725    Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2726    The index list is interpreted in a similar manner as indices in a
2727    ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2728    value must be specified.
2729``OPCODE (LHS, RHS)``
2730    Perform the specified operation of the LHS and RHS constants. OPCODE
2731    may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2732    binary <bitwiseops>` operations. The constraints on operands are
2733    the same as those for the corresponding instruction (e.g. no bitwise
2734    operations on floating point values are allowed).
2735
2736Other Values
2737============
2738
2739.. _inlineasmexprs:
2740
2741Inline Assembler Expressions
2742----------------------------
2743
2744LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2745Inline Assembly <moduleasm>`) through the use of a special value. This
2746value represents the inline assembler as a string (containing the
2747instructions to emit), a list of operand constraints (stored as a
2748string), a flag that indicates whether or not the inline asm expression
2749has side effects, and a flag indicating whether the function containing
2750the asm needs to align its stack conservatively. An example inline
2751assembler expression is:
2752
2753.. code-block:: llvm
2754
2755    i32 (i32) asm "bswap $0", "=r,r"
2756
2757Inline assembler expressions may **only** be used as the callee operand
2758of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2759Thus, typically we have:
2760
2761.. code-block:: llvm
2762
2763    %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2764
2765Inline asms with side effects not visible in the constraint list must be
2766marked as having side effects. This is done through the use of the
2767'``sideeffect``' keyword, like so:
2768
2769.. code-block:: llvm
2770
2771    call void asm sideeffect "eieio", ""()
2772
2773In some cases inline asms will contain code that will not work unless
2774the stack is aligned in some way, such as calls or SSE instructions on
2775x86, yet will not contain code that does that alignment within the asm.
2776The compiler should make conservative assumptions about what the asm
2777might contain and should generate its usual stack alignment code in the
2778prologue if the '``alignstack``' keyword is present:
2779
2780.. code-block:: llvm
2781
2782    call void asm alignstack "eieio", ""()
2783
2784Inline asms also support using non-standard assembly dialects. The
2785assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2786the inline asm is using the Intel dialect. Currently, ATT and Intel are
2787the only supported dialects. An example is:
2788
2789.. code-block:: llvm
2790
2791    call void asm inteldialect "eieio", ""()
2792
2793If multiple keywords appear the '``sideeffect``' keyword must come
2794first, the '``alignstack``' keyword second and the '``inteldialect``'
2795keyword last.
2796
2797Inline Asm Metadata
2798^^^^^^^^^^^^^^^^^^^
2799
2800The call instructions that wrap inline asm nodes may have a
2801"``!srcloc``" MDNode attached to it that contains a list of constant
2802integers. If present, the code generator will use the integer as the
2803location cookie value when report errors through the ``LLVMContext``
2804error reporting mechanisms. This allows a front-end to correlate backend
2805errors that occur with inline asm back to the source code that produced
2806it. For example:
2807
2808.. code-block:: llvm
2809
2810    call void asm sideeffect "something bad", ""(), !srcloc !42
2811    ...
2812    !42 = !{ i32 1234567 }
2813
2814It is up to the front-end to make sense of the magic numbers it places
2815in the IR. If the MDNode contains multiple constants, the code generator
2816will use the one that corresponds to the line of the asm that the error
2817occurs on.
2818
2819.. _metadata:
2820
2821Metadata
2822========
2823
2824LLVM IR allows metadata to be attached to instructions in the program
2825that can convey extra information about the code to the optimizers and
2826code generator. One example application of metadata is source-level
2827debug information. There are two metadata primitives: strings and nodes.
2828
2829Metadata does not have a type, and is not a value.  If referenced from a
2830``call`` instruction, it uses the ``metadata`` type.
2831
2832All metadata are identified in syntax by a exclamation point ('``!``').
2833
2834Metadata Nodes and Metadata Strings
2835-----------------------------------
2836
2837A metadata string is a string surrounded by double quotes. It can
2838contain any character by escaping non-printable characters with
2839"``\xx``" where "``xx``" is the two digit hex code. For example:
2840"``!"test\00"``".
2841
2842Metadata nodes are represented with notation similar to structure
2843constants (a comma separated list of elements, surrounded by braces and
2844preceded by an exclamation point). Metadata nodes can have any values as
2845their operand. For example:
2846
2847.. code-block:: llvm
2848
2849    !{ !"test\00", i32 10}
2850
2851Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
2852
2853.. code-block:: llvm
2854
2855    !0 = distinct !{!"test\00", i32 10}
2856
2857``distinct`` nodes are useful when nodes shouldn't be merged based on their
2858content.  They can also occur when transformations cause uniquing collisions
2859when metadata operands change.
2860
2861A :ref:`named metadata <namedmetadatastructure>` is a collection of
2862metadata nodes, which can be looked up in the module symbol table. For
2863example:
2864
2865.. code-block:: llvm
2866
2867    !foo = !{!4, !3}
2868
2869Metadata can be used as function arguments. Here ``llvm.dbg.value``
2870function is using two metadata arguments:
2871
2872.. code-block:: llvm
2873
2874    call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2875
2876Metadata can be attached with an instruction. Here metadata ``!21`` is
2877attached to the ``add`` instruction using the ``!dbg`` identifier:
2878
2879.. code-block:: llvm
2880
2881    %indvar.next = add i64 %indvar, 1, !dbg !21
2882
2883More information about specific metadata nodes recognized by the
2884optimizers and code generator is found below.
2885
2886Specialized Metadata Nodes
2887^^^^^^^^^^^^^^^^^^^^^^^^^^
2888
2889Specialized metadata nodes are custom data structures in metadata (as opposed
2890to generic tuples).  Their fields are labelled, and can be specified in any
2891order.
2892
2893MDLocation
2894""""""""""
2895
2896``MDLocation`` nodes represent source debug locations.  The ``scope:`` field is
2897mandatory.
2898
2899.. code-block:: llvm
2900
2901    !0 = !MDLocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
2902
2903'``tbaa``' Metadata
2904^^^^^^^^^^^^^^^^^^^
2905
2906In LLVM IR, memory does not have types, so LLVM's own type system is not
2907suitable for doing TBAA. Instead, metadata is added to the IR to
2908describe a type system of a higher level language. This can be used to
2909implement typical C/C++ TBAA, but it can also be used to implement
2910custom alias analysis behavior for other languages.
2911
2912The current metadata format is very simple. TBAA metadata nodes have up
2913to three fields, e.g.:
2914
2915.. code-block:: llvm
2916
2917    !0 = !{ !"an example type tree" }
2918    !1 = !{ !"int", !0 }
2919    !2 = !{ !"float", !0 }
2920    !3 = !{ !"const float", !2, i64 1 }
2921
2922The first field is an identity field. It can be any value, usually a
2923metadata string, which uniquely identifies the type. The most important
2924name in the tree is the name of the root node. Two trees with different
2925root node names are entirely disjoint, even if they have leaves with
2926common names.
2927
2928The second field identifies the type's parent node in the tree, or is
2929null or omitted for a root node. A type is considered to alias all of
2930its descendants and all of its ancestors in the tree. Also, a type is
2931considered to alias all types in other trees, so that bitcode produced
2932from multiple front-ends is handled conservatively.
2933
2934If the third field is present, it's an integer which if equal to 1
2935indicates that the type is "constant" (meaning
2936``pointsToConstantMemory`` should return true; see `other useful
2937AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2938
2939'``tbaa.struct``' Metadata
2940^^^^^^^^^^^^^^^^^^^^^^^^^^
2941
2942The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2943aggregate assignment operations in C and similar languages, however it
2944is defined to copy a contiguous region of memory, which is more than
2945strictly necessary for aggregate types which contain holes due to
2946padding. Also, it doesn't contain any TBAA information about the fields
2947of the aggregate.
2948
2949``!tbaa.struct`` metadata can describe which memory subregions in a
2950memcpy are padding and what the TBAA tags of the struct are.
2951
2952The current metadata format is very simple. ``!tbaa.struct`` metadata
2953nodes are a list of operands which are in conceptual groups of three.
2954For each group of three, the first operand gives the byte offset of a
2955field in bytes, the second gives its size in bytes, and the third gives
2956its tbaa tag. e.g.:
2957
2958.. code-block:: llvm
2959
2960    !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
2961
2962This describes a struct with two fields. The first is at offset 0 bytes
2963with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2964and has size 4 bytes and has tbaa tag !2.
2965
2966Note that the fields need not be contiguous. In this example, there is a
29674 byte gap between the two fields. This gap represents padding which
2968does not carry useful data and need not be preserved.
2969
2970'``noalias``' and '``alias.scope``' Metadata
2971^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2972
2973``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
2974noalias memory-access sets. This means that some collection of memory access
2975instructions (loads, stores, memory-accessing calls, etc.) that carry
2976``noalias`` metadata can specifically be specified not to alias with some other
2977collection of memory access instructions that carry ``alias.scope`` metadata.
2978Each type of metadata specifies a list of scopes where each scope has an id and
2979a domain. When evaluating an aliasing query, if for some some domain, the set
2980of scopes with that domain in one instruction's ``alias.scope`` list is a
2981subset of (or qual to) the set of scopes for that domain in another
2982instruction's ``noalias`` list, then the two memory accesses are assumed not to
2983alias.
2984
2985The metadata identifying each domain is itself a list containing one or two
2986entries. The first entry is the name of the domain. Note that if the name is a
2987string then it can be combined accross functions and translation units. A
2988self-reference can be used to create globally unique domain names. A
2989descriptive string may optionally be provided as a second list entry.
2990
2991The metadata identifying each scope is also itself a list containing two or
2992three entries. The first entry is the name of the scope. Note that if the name
2993is a string then it can be combined accross functions and translation units. A
2994self-reference can be used to create globally unique scope names. A metadata
2995reference to the scope's domain is the second entry. A descriptive string may
2996optionally be provided as a third list entry.
2997
2998For example,
2999
3000.. code-block:: llvm
3001
3002    ; Two scope domains:
3003    !0 = !{!0}
3004    !1 = !{!1}
3005
3006    ; Some scopes in these domains:
3007    !2 = !{!2, !0}
3008    !3 = !{!3, !0}
3009    !4 = !{!4, !1}
3010
3011    ; Some scope lists:
3012    !5 = !{!4} ; A list containing only scope !4
3013    !6 = !{!4, !3, !2}
3014    !7 = !{!3}
3015
3016    ; These two instructions don't alias:
3017    %0 = load float* %c, align 4, !alias.scope !5
3018    store float %0, float* %arrayidx.i, align 4, !noalias !5
3019
3020    ; These two instructions also don't alias (for domain !1, the set of scopes
3021    ; in the !alias.scope equals that in the !noalias list):
3022    %2 = load float* %c, align 4, !alias.scope !5
3023    store float %2, float* %arrayidx.i2, align 4, !noalias !6
3024
3025    ; These two instructions don't alias (for domain !0, the set of scopes in
3026    ; the !noalias list is not a superset of, or equal to, the scopes in the
3027    ; !alias.scope list):
3028    %2 = load float* %c, align 4, !alias.scope !6
3029    store float %0, float* %arrayidx.i, align 4, !noalias !7
3030
3031'``fpmath``' Metadata
3032^^^^^^^^^^^^^^^^^^^^^
3033
3034``fpmath`` metadata may be attached to any instruction of floating point
3035type. It can be used to express the maximum acceptable error in the
3036result of that instruction, in ULPs, thus potentially allowing the
3037compiler to use a more efficient but less accurate method of computing
3038it. ULP is defined as follows:
3039
3040    If ``x`` is a real number that lies between two finite consecutive
3041    floating-point numbers ``a`` and ``b``, without being equal to one
3042    of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
3043    distance between the two non-equal finite floating-point numbers
3044    nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
3045
3046The metadata node shall consist of a single positive floating point
3047number representing the maximum relative error, for example:
3048
3049.. code-block:: llvm
3050
3051    !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
3052
3053'``range``' Metadata
3054^^^^^^^^^^^^^^^^^^^^
3055
3056``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
3057integer types. It expresses the possible ranges the loaded value or the value
3058returned by the called function at this call site is in. The ranges are
3059represented with a flattened list of integers. The loaded value or the value
3060returned is known to be in the union of the ranges defined by each consecutive
3061pair. Each pair has the following properties:
3062
3063-  The type must match the type loaded by the instruction.
3064-  The pair ``a,b`` represents the range ``[a,b)``.
3065-  Both ``a`` and ``b`` are constants.
3066-  The range is allowed to wrap.
3067-  The range should not represent the full or empty set. That is,
3068   ``a!=b``.
3069
3070In addition, the pairs must be in signed order of the lower bound and
3071they must be non-contiguous.
3072
3073Examples:
3074
3075.. code-block:: llvm
3076
3077      %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
3078      %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
3079      %c = call i8 @foo(),       !range !2 ; Can only be 0, 1, 3, 4 or 5
3080      %d = invoke i8 @bar() to label %cont
3081             unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
3082    ...
3083    !0 = !{ i8 0, i8 2 }
3084    !1 = !{ i8 255, i8 2 }
3085    !2 = !{ i8 0, i8 2, i8 3, i8 6 }
3086    !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
3087
3088'``llvm.loop``'
3089^^^^^^^^^^^^^^^
3090
3091It is sometimes useful to attach information to loop constructs. Currently,
3092loop metadata is implemented as metadata attached to the branch instruction
3093in the loop latch block. This type of metadata refer to a metadata node that is
3094guaranteed to be separate for each loop. The loop identifier metadata is
3095specified with the name ``llvm.loop``.
3096
3097The loop identifier metadata is implemented using a metadata that refers to
3098itself to avoid merging it with any other identifier metadata, e.g.,
3099during module linkage or function inlining. That is, each loop should refer
3100to their own identification metadata even if they reside in separate functions.
3101The following example contains loop identifier metadata for two separate loop
3102constructs:
3103
3104.. code-block:: llvm
3105
3106    !0 = !{!0}
3107    !1 = !{!1}
3108
3109The loop identifier metadata can be used to specify additional
3110per-loop metadata. Any operands after the first operand can be treated
3111as user-defined metadata. For example the ``llvm.loop.unroll.count``
3112suggests an unroll factor to the loop unroller:
3113
3114.. code-block:: llvm
3115
3116      br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
3117    ...
3118    !0 = !{!0, !1}
3119    !1 = !{!"llvm.loop.unroll.count", i32 4}
3120
3121'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
3122^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3123
3124Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
3125used to control per-loop vectorization and interleaving parameters such as
3126vectorization width and interleave count.  These metadata should be used in
3127conjunction with ``llvm.loop`` loop identification metadata.  The
3128``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
3129optimization hints and the optimizer will only interleave and vectorize loops if
3130it believes it is safe to do so.  The ``llvm.mem.parallel_loop_access`` metadata
3131which contains information about loop-carried memory dependencies can be helpful
3132in determining the safety of these transformations.
3133
3134'``llvm.loop.interleave.count``' Metadata
3135^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3136
3137This metadata suggests an interleave count to the loop interleaver.
3138The first operand is the string ``llvm.loop.interleave.count`` and the
3139second operand is an integer specifying the interleave count. For
3140example:
3141
3142.. code-block:: llvm
3143
3144   !0 = !{!"llvm.loop.interleave.count", i32 4}
3145
3146Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
3147multiple iterations of the loop.  If ``llvm.loop.interleave.count`` is set to 0
3148then the interleave count will be determined automatically.
3149
3150'``llvm.loop.vectorize.enable``' Metadata
3151^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3152
3153This metadata selectively enables or disables vectorization for the loop. The
3154first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
3155is a bit.  If the bit operand value is 1 vectorization is enabled. A value of
31560 disables vectorization:
3157
3158.. code-block:: llvm
3159
3160   !0 = !{!"llvm.loop.vectorize.enable", i1 0}
3161   !1 = !{!"llvm.loop.vectorize.enable", i1 1}
3162
3163'``llvm.loop.vectorize.width``' Metadata
3164^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3165
3166This metadata sets the target width of the vectorizer. The first
3167operand is the string ``llvm.loop.vectorize.width`` and the second
3168operand is an integer specifying the width. For example:
3169
3170.. code-block:: llvm
3171
3172   !0 = !{!"llvm.loop.vectorize.width", i32 4}
3173
3174Note that setting ``llvm.loop.vectorize.width`` to 1 disables
3175vectorization of the loop.  If ``llvm.loop.vectorize.width`` is set to
31760 or if the loop does not have this metadata the width will be
3177determined automatically.
3178
3179'``llvm.loop.unroll``'
3180^^^^^^^^^^^^^^^^^^^^^^
3181
3182Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
3183optimization hints such as the unroll factor. ``llvm.loop.unroll``
3184metadata should be used in conjunction with ``llvm.loop`` loop
3185identification metadata. The ``llvm.loop.unroll`` metadata are only
3186optimization hints and the unrolling will only be performed if the
3187optimizer believes it is safe to do so.
3188
3189'``llvm.loop.unroll.count``' Metadata
3190^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3191
3192This metadata suggests an unroll factor to the loop unroller. The
3193first operand is the string ``llvm.loop.unroll.count`` and the second
3194operand is a positive integer specifying the unroll factor. For
3195example:
3196
3197.. code-block:: llvm
3198
3199   !0 = !{!"llvm.loop.unroll.count", i32 4}
3200
3201If the trip count of the loop is less than the unroll count the loop
3202will be partially unrolled.
3203
3204'``llvm.loop.unroll.disable``' Metadata
3205^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3206
3207This metadata either disables loop unrolling. The metadata has a single operand
3208which is the string ``llvm.loop.unroll.disable``.  For example:
3209
3210.. code-block:: llvm
3211
3212   !0 = !{!"llvm.loop.unroll.disable"}
3213
3214'``llvm.loop.unroll.full``' Metadata
3215^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3216
3217This metadata either suggests that the loop should be unrolled fully. The
3218metadata has a single operand which is the string ``llvm.loop.unroll.disable``.
3219For example:
3220
3221.. code-block:: llvm
3222
3223   !0 = !{!"llvm.loop.unroll.full"}
3224
3225'``llvm.mem``'
3226^^^^^^^^^^^^^^^
3227
3228Metadata types used to annotate memory accesses with information helpful
3229for optimizations are prefixed with ``llvm.mem``.
3230
3231'``llvm.mem.parallel_loop_access``' Metadata
3232^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3233
3234The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
3235or metadata containing a list of loop identifiers for nested loops.
3236The metadata is attached to memory accessing instructions and denotes that
3237no loop carried memory dependence exist between it and other instructions denoted
3238with the same loop identifier.
3239
3240Precisely, given two instructions ``m1`` and ``m2`` that both have the
3241``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
3242set of loops associated with that metadata, respectively, then there is no loop
3243carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
3244``L2``.
3245
3246As a special case, if all memory accessing instructions in a loop have
3247``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
3248loop has no loop carried memory dependences and is considered to be a parallel
3249loop.
3250
3251Note that if not all memory access instructions have such metadata referring to
3252the loop, then the loop is considered not being trivially parallel. Additional
3253memory dependence analysis is required to make that determination.  As a fail
3254safe mechanism, this causes loops that were originally parallel to be considered
3255sequential (if optimization passes that are unaware of the parallel semantics
3256insert new memory instructions into the loop body).
3257
3258Example of a loop that is considered parallel due to its correct use of
3259both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
3260metadata types that refer to the same loop identifier metadata.
3261
3262.. code-block:: llvm
3263
3264   for.body:
3265     ...
3266     %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
3267     ...
3268     store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
3269     ...
3270     br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
3271
3272   for.end:
3273   ...
3274   !0 = !{!0}
3275
3276It is also possible to have nested parallel loops. In that case the
3277memory accesses refer to a list of loop identifier metadata nodes instead of
3278the loop identifier metadata node directly:
3279
3280.. code-block:: llvm
3281
3282   outer.for.body:
3283     ...
3284     %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
3285     ...
3286     br label %inner.for.body
3287
3288   inner.for.body:
3289     ...
3290     %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
3291     ...
3292     store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
3293     ...
3294     br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
3295
3296   inner.for.end:
3297     ...
3298     store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
3299     ...
3300     br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
3301
3302   outer.for.end:                                          ; preds = %for.body
3303   ...
3304   !0 = !{!1, !2} ; a list of loop identifiers
3305   !1 = !{!1} ; an identifier for the inner loop
3306   !2 = !{!2} ; an identifier for the outer loop
3307
3308Module Flags Metadata
3309=====================
3310
3311Information about the module as a whole is difficult to convey to LLVM's
3312subsystems. The LLVM IR isn't sufficient to transmit this information.
3313The ``llvm.module.flags`` named metadata exists in order to facilitate
3314this. These flags are in the form of key / value pairs --- much like a
3315dictionary --- making it easy for any subsystem who cares about a flag to
3316look it up.
3317
3318The ``llvm.module.flags`` metadata contains a list of metadata triplets.
3319Each triplet has the following form:
3320
3321-  The first element is a *behavior* flag, which specifies the behavior
3322   when two (or more) modules are merged together, and it encounters two
3323   (or more) metadata with the same ID. The supported behaviors are
3324   described below.
3325-  The second element is a metadata string that is a unique ID for the
3326   metadata. Each module may only have one flag entry for each unique ID (not
3327   including entries with the **Require** behavior).
3328-  The third element is the value of the flag.
3329
3330When two (or more) modules are merged together, the resulting
3331``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
3332each unique metadata ID string, there will be exactly one entry in the merged
3333modules ``llvm.module.flags`` metadata table, and the value for that entry will
3334be determined by the merge behavior flag, as described below. The only exception
3335is that entries with the *Require* behavior are always preserved.
3336
3337The following behaviors are supported:
3338
3339.. list-table::
3340   :header-rows: 1
3341   :widths: 10 90
3342
3343   * - Value
3344     - Behavior
3345
3346   * - 1
3347     - **Error**
3348           Emits an error if two values disagree, otherwise the resulting value
3349           is that of the operands.
3350
3351   * - 2
3352     - **Warning**
3353           Emits a warning if two values disagree. The result value will be the
3354           operand for the flag from the first module being linked.
3355
3356   * - 3
3357     - **Require**
3358           Adds a requirement that another module flag be present and have a
3359           specified value after linking is performed. The value must be a
3360           metadata pair, where the first element of the pair is the ID of the
3361           module flag to be restricted, and the second element of the pair is
3362           the value the module flag should be restricted to. This behavior can
3363           be used to restrict the allowable results (via triggering of an
3364           error) of linking IDs with the **Override** behavior.
3365
3366   * - 4
3367     - **Override**
3368           Uses the specified value, regardless of the behavior or value of the
3369           other module. If both modules specify **Override**, but the values
3370           differ, an error will be emitted.
3371
3372   * - 5
3373     - **Append**
3374           Appends the two values, which are required to be metadata nodes.
3375
3376   * - 6
3377     - **AppendUnique**
3378           Appends the two values, which are required to be metadata
3379           nodes. However, duplicate entries in the second list are dropped
3380           during the append operation.
3381
3382It is an error for a particular unique flag ID to have multiple behaviors,
3383except in the case of **Require** (which adds restrictions on another metadata
3384value) or **Override**.
3385
3386An example of module flags:
3387
3388.. code-block:: llvm
3389
3390    !0 = !{ i32 1, !"foo", i32 1 }
3391    !1 = !{ i32 4, !"bar", i32 37 }
3392    !2 = !{ i32 2, !"qux", i32 42 }
3393    !3 = !{ i32 3, !"qux",
3394      !{
3395        !"foo", i32 1
3396      }
3397    }
3398    !llvm.module.flags = !{ !0, !1, !2, !3 }
3399
3400-  Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3401   if two or more ``!"foo"`` flags are seen is to emit an error if their
3402   values are not equal.
3403
3404-  Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3405   behavior if two or more ``!"bar"`` flags are seen is to use the value
3406   '37'.
3407
3408-  Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3409   behavior if two or more ``!"qux"`` flags are seen is to emit a
3410   warning if their values are not equal.
3411
3412-  Metadata ``!3`` has the ID ``!"qux"`` and the value:
3413
3414   ::
3415
3416       !{ !"foo", i32 1 }
3417
3418   The behavior is to emit an error if the ``llvm.module.flags`` does not
3419   contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3420   performed.
3421
3422Objective-C Garbage Collection Module Flags Metadata
3423----------------------------------------------------
3424
3425On the Mach-O platform, Objective-C stores metadata about garbage
3426collection in a special section called "image info". The metadata
3427consists of a version number and a bitmask specifying what types of
3428garbage collection are supported (if any) by the file. If two or more
3429modules are linked together their garbage collection metadata needs to
3430be merged rather than appended together.
3431
3432The Objective-C garbage collection module flags metadata consists of the
3433following key-value pairs:
3434
3435.. list-table::
3436   :header-rows: 1
3437   :widths: 30 70
3438
3439   * - Key
3440     - Value
3441
3442   * - ``Objective-C Version``
3443     - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
3444
3445   * - ``Objective-C Image Info Version``
3446     - **[Required]** --- The version of the image info section. Currently
3447       always 0.
3448
3449   * - ``Objective-C Image Info Section``
3450     - **[Required]** --- The section to place the metadata. Valid values are
3451       ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3452       ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3453       Objective-C ABI version 2.
3454
3455   * - ``Objective-C Garbage Collection``
3456     - **[Required]** --- Specifies whether garbage collection is supported or
3457       not. Valid values are 0, for no garbage collection, and 2, for garbage
3458       collection supported.
3459
3460   * - ``Objective-C GC Only``
3461     - **[Optional]** --- Specifies that only garbage collection is supported.
3462       If present, its value must be 6. This flag requires that the
3463       ``Objective-C Garbage Collection`` flag have the value 2.
3464
3465Some important flag interactions:
3466
3467-  If a module with ``Objective-C Garbage Collection`` set to 0 is
3468   merged with a module with ``Objective-C Garbage Collection`` set to
3469   2, then the resulting module has the
3470   ``Objective-C Garbage Collection`` flag set to 0.
3471-  A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3472   merged with a module with ``Objective-C GC Only`` set to 6.
3473
3474Automatic Linker Flags Module Flags Metadata
3475--------------------------------------------
3476
3477Some targets support embedding flags to the linker inside individual object
3478files. Typically this is used in conjunction with language extensions which
3479allow source files to explicitly declare the libraries they depend on, and have
3480these automatically be transmitted to the linker via object files.
3481
3482These flags are encoded in the IR using metadata in the module flags section,
3483using the ``Linker Options`` key. The merge behavior for this flag is required
3484to be ``AppendUnique``, and the value for the key is expected to be a metadata
3485node which should be a list of other metadata nodes, each of which should be a
3486list of metadata strings defining linker options.
3487
3488For example, the following metadata section specifies two separate sets of
3489linker options, presumably to link against ``libz`` and the ``Cocoa``
3490framework::
3491
3492    !0 = !{ i32 6, !"Linker Options",
3493       !{
3494          !{ !"-lz" },
3495          !{ !"-framework", !"Cocoa" } } }
3496    !llvm.module.flags = !{ !0 }
3497
3498The metadata encoding as lists of lists of options, as opposed to a collapsed
3499list of options, is chosen so that the IR encoding can use multiple option
3500strings to specify e.g., a single library, while still having that specifier be
3501preserved as an atomic element that can be recognized by a target specific
3502assembly writer or object file emitter.
3503
3504Each individual option is required to be either a valid option for the target's
3505linker, or an option that is reserved by the target specific assembly writer or
3506object file emitter. No other aspect of these options is defined by the IR.
3507
3508C type width Module Flags Metadata
3509----------------------------------
3510
3511The ARM backend emits a section into each generated object file describing the
3512options that it was compiled with (in a compiler-independent way) to prevent
3513linking incompatible objects, and to allow automatic library selection. Some
3514of these options are not visible at the IR level, namely wchar_t width and enum
3515width.
3516
3517To pass this information to the backend, these options are encoded in module
3518flags metadata, using the following key-value pairs:
3519
3520.. list-table::
3521   :header-rows: 1
3522   :widths: 30 70
3523
3524   * - Key
3525     - Value
3526
3527   * - short_wchar
3528     - * 0 --- sizeof(wchar_t) == 4
3529       * 1 --- sizeof(wchar_t) == 2
3530
3531   * - short_enum
3532     - * 0 --- Enums are at least as large as an ``int``.
3533       * 1 --- Enums are stored in the smallest integer type which can
3534         represent all of its values.
3535
3536For example, the following metadata section specifies that the module was
3537compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3538enum is the smallest type which can represent all of its values::
3539
3540    !llvm.module.flags = !{!0, !1}
3541    !0 = !{i32 1, !"short_wchar", i32 1}
3542    !1 = !{i32 1, !"short_enum", i32 0}
3543
3544.. _intrinsicglobalvariables:
3545
3546Intrinsic Global Variables
3547==========================
3548
3549LLVM has a number of "magic" global variables that contain data that
3550affect code generation or other IR semantics. These are documented here.
3551All globals of this sort should have a section specified as
3552"``llvm.metadata``". This section and all globals that start with
3553"``llvm.``" are reserved for use by LLVM.
3554
3555.. _gv_llvmused:
3556
3557The '``llvm.used``' Global Variable
3558-----------------------------------
3559
3560The ``@llvm.used`` global is an array which has
3561:ref:`appending linkage <linkage_appending>`. This array contains a list of
3562pointers to named global variables, functions and aliases which may optionally
3563have a pointer cast formed of bitcast or getelementptr. For example, a legal
3564use of it is:
3565
3566.. code-block:: llvm
3567
3568    @X = global i8 4
3569    @Y = global i32 123
3570
3571    @llvm.used = appending global [2 x i8*] [
3572       i8* @X,
3573       i8* bitcast (i32* @Y to i8*)
3574    ], section "llvm.metadata"
3575
3576If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3577and linker are required to treat the symbol as if there is a reference to the
3578symbol that it cannot see (which is why they have to be named). For example, if
3579a variable has internal linkage and no references other than that from the
3580``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3581references from inline asms and other things the compiler cannot "see", and
3582corresponds to "``attribute((used))``" in GNU C.
3583
3584On some targets, the code generator must emit a directive to the
3585assembler or object file to prevent the assembler and linker from
3586molesting the symbol.
3587
3588.. _gv_llvmcompilerused:
3589
3590The '``llvm.compiler.used``' Global Variable
3591--------------------------------------------
3592
3593The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3594directive, except that it only prevents the compiler from touching the
3595symbol. On targets that support it, this allows an intelligent linker to
3596optimize references to the symbol without being impeded as it would be
3597by ``@llvm.used``.
3598
3599This is a rare construct that should only be used in rare circumstances,
3600and should not be exposed to source languages.
3601
3602.. _gv_llvmglobalctors:
3603
3604The '``llvm.global_ctors``' Global Variable
3605-------------------------------------------
3606
3607.. code-block:: llvm
3608
3609    %0 = type { i32, void ()*, i8* }
3610    @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
3611
3612The ``@llvm.global_ctors`` array contains a list of constructor
3613functions, priorities, and an optional associated global or function.
3614The functions referenced by this array will be called in ascending order
3615of priority (i.e. lowest first) when the module is loaded. The order of
3616functions with the same priority is not defined.
3617
3618If the third field is present, non-null, and points to a global variable
3619or function, the initializer function will only run if the associated
3620data from the current module is not discarded.
3621
3622.. _llvmglobaldtors:
3623
3624The '``llvm.global_dtors``' Global Variable
3625-------------------------------------------
3626
3627.. code-block:: llvm
3628
3629    %0 = type { i32, void ()*, i8* }
3630    @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
3631
3632The ``@llvm.global_dtors`` array contains a list of destructor
3633functions, priorities, and an optional associated global or function.
3634The functions referenced by this array will be called in descending
3635order of priority (i.e. highest first) when the module is unloaded. The
3636order of functions with the same priority is not defined.
3637
3638If the third field is present, non-null, and points to a global variable
3639or function, the destructor function will only run if the associated
3640data from the current module is not discarded.
3641
3642Instruction Reference
3643=====================
3644
3645The LLVM instruction set consists of several different classifications
3646of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3647instructions <binaryops>`, :ref:`bitwise binary
3648instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3649:ref:`other instructions <otherops>`.
3650
3651.. _terminators:
3652
3653Terminator Instructions
3654-----------------------
3655
3656As mentioned :ref:`previously <functionstructure>`, every basic block in a
3657program ends with a "Terminator" instruction, which indicates which
3658block should be executed after the current block is finished. These
3659terminator instructions typically yield a '``void``' value: they produce
3660control flow, not values (the one exception being the
3661':ref:`invoke <i_invoke>`' instruction).
3662
3663The terminator instructions are: ':ref:`ret <i_ret>`',
3664':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3665':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3666':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3667
3668.. _i_ret:
3669
3670'``ret``' Instruction
3671^^^^^^^^^^^^^^^^^^^^^
3672
3673Syntax:
3674"""""""
3675
3676::
3677
3678      ret <type> <value>       ; Return a value from a non-void function
3679      ret void                 ; Return from void function
3680
3681Overview:
3682"""""""""
3683
3684The '``ret``' instruction is used to return control flow (and optionally
3685a value) from a function back to the caller.
3686
3687There are two forms of the '``ret``' instruction: one that returns a
3688value and then causes control flow, and one that just causes control
3689flow to occur.
3690
3691Arguments:
3692""""""""""
3693
3694The '``ret``' instruction optionally accepts a single argument, the
3695return value. The type of the return value must be a ':ref:`first
3696class <t_firstclass>`' type.
3697
3698A function is not :ref:`well formed <wellformed>` if it it has a non-void
3699return type and contains a '``ret``' instruction with no return value or
3700a return value with a type that does not match its type, or if it has a
3701void return type and contains a '``ret``' instruction with a return
3702value.
3703
3704Semantics:
3705""""""""""
3706
3707When the '``ret``' instruction is executed, control flow returns back to
3708the calling function's context. If the caller is a
3709":ref:`call <i_call>`" instruction, execution continues at the
3710instruction after the call. If the caller was an
3711":ref:`invoke <i_invoke>`" instruction, execution continues at the
3712beginning of the "normal" destination block. If the instruction returns
3713a value, that value shall set the call or invoke instruction's return
3714value.
3715
3716Example:
3717""""""""
3718
3719.. code-block:: llvm
3720
3721      ret i32 5                       ; Return an integer value of 5
3722      ret void                        ; Return from a void function
3723      ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3724
3725.. _i_br:
3726
3727'``br``' Instruction
3728^^^^^^^^^^^^^^^^^^^^
3729
3730Syntax:
3731"""""""
3732
3733::
3734
3735      br i1 <cond>, label <iftrue>, label <iffalse>
3736      br label <dest>          ; Unconditional branch
3737
3738Overview:
3739"""""""""
3740
3741The '``br``' instruction is used to cause control flow to transfer to a
3742different basic block in the current function. There are two forms of
3743this instruction, corresponding to a conditional branch and an
3744unconditional branch.
3745
3746Arguments:
3747""""""""""
3748
3749The conditional branch form of the '``br``' instruction takes a single
3750'``i1``' value and two '``label``' values. The unconditional form of the
3751'``br``' instruction takes a single '``label``' value as a target.
3752
3753Semantics:
3754""""""""""
3755
3756Upon execution of a conditional '``br``' instruction, the '``i1``'
3757argument is evaluated. If the value is ``true``, control flows to the
3758'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3759to the '``iffalse``' ``label`` argument.
3760
3761Example:
3762""""""""
3763
3764.. code-block:: llvm
3765
3766    Test:
3767      %cond = icmp eq i32 %a, %b
3768      br i1 %cond, label %IfEqual, label %IfUnequal
3769    IfEqual:
3770      ret i32 1
3771    IfUnequal:
3772      ret i32 0
3773
3774.. _i_switch:
3775
3776'``switch``' Instruction
3777^^^^^^^^^^^^^^^^^^^^^^^^
3778
3779Syntax:
3780"""""""
3781
3782::
3783
3784      switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3785
3786Overview:
3787"""""""""
3788
3789The '``switch``' instruction is used to transfer control flow to one of
3790several different places. It is a generalization of the '``br``'
3791instruction, allowing a branch to occur to one of many possible
3792destinations.
3793
3794Arguments:
3795""""""""""
3796
3797The '``switch``' instruction uses three parameters: an integer
3798comparison value '``value``', a default '``label``' destination, and an
3799array of pairs of comparison value constants and '``label``'s. The table
3800is not allowed to contain duplicate constant entries.
3801
3802Semantics:
3803""""""""""
3804
3805The ``switch`` instruction specifies a table of values and destinations.
3806When the '``switch``' instruction is executed, this table is searched
3807for the given value. If the value is found, control flow is transferred
3808to the corresponding destination; otherwise, control flow is transferred
3809to the default destination.
3810
3811Implementation:
3812"""""""""""""""
3813
3814Depending on properties of the target machine and the particular
3815``switch`` instruction, this instruction may be code generated in
3816different ways. For example, it could be generated as a series of
3817chained conditional branches or with a lookup table.
3818
3819Example:
3820""""""""
3821
3822.. code-block:: llvm
3823
3824     ; Emulate a conditional br instruction
3825     %Val = zext i1 %value to i32
3826     switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3827
3828     ; Emulate an unconditional br instruction
3829     switch i32 0, label %dest [ ]
3830
3831     ; Implement a jump table:
3832     switch i32 %val, label %otherwise [ i32 0, label %onzero
3833                                         i32 1, label %onone
3834                                         i32 2, label %ontwo ]
3835
3836.. _i_indirectbr:
3837
3838'``indirectbr``' Instruction
3839^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3840
3841Syntax:
3842"""""""
3843
3844::
3845
3846      indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3847
3848Overview:
3849"""""""""
3850
3851The '``indirectbr``' instruction implements an indirect branch to a
3852label within the current function, whose address is specified by
3853"``address``". Address must be derived from a
3854:ref:`blockaddress <blockaddress>` constant.
3855
3856Arguments:
3857""""""""""
3858
3859The '``address``' argument is the address of the label to jump to. The
3860rest of the arguments indicate the full set of possible destinations
3861that the address may point to. Blocks are allowed to occur multiple
3862times in the destination list, though this isn't particularly useful.
3863
3864This destination list is required so that dataflow analysis has an
3865accurate understanding of the CFG.
3866
3867Semantics:
3868""""""""""
3869
3870Control transfers to the block specified in the address argument. All
3871possible destination blocks must be listed in the label list, otherwise
3872this instruction has undefined behavior. This implies that jumps to
3873labels defined in other functions have undefined behavior as well.
3874
3875Implementation:
3876"""""""""""""""
3877
3878This is typically implemented with a jump through a register.
3879
3880Example:
3881""""""""
3882
3883.. code-block:: llvm
3884
3885     indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3886
3887.. _i_invoke:
3888
3889'``invoke``' Instruction
3890^^^^^^^^^^^^^^^^^^^^^^^^
3891
3892Syntax:
3893"""""""
3894
3895::
3896
3897      <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3898                    to label <normal label> unwind label <exception label>
3899
3900Overview:
3901"""""""""
3902
3903The '``invoke``' instruction causes control to transfer to a specified
3904function, with the possibility of control flow transfer to either the
3905'``normal``' label or the '``exception``' label. If the callee function
3906returns with the "``ret``" instruction, control flow will return to the
3907"normal" label. If the callee (or any indirect callees) returns via the
3908":ref:`resume <i_resume>`" instruction or other exception handling
3909mechanism, control is interrupted and continued at the dynamically
3910nearest "exception" label.
3911
3912The '``exception``' label is a `landing
3913pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3914'``exception``' label is required to have the
3915":ref:`landingpad <i_landingpad>`" instruction, which contains the
3916information about the behavior of the program after unwinding happens,
3917as its first non-PHI instruction. The restrictions on the
3918"``landingpad``" instruction's tightly couples it to the "``invoke``"
3919instruction, so that the important information contained within the
3920"``landingpad``" instruction can't be lost through normal code motion.
3921
3922Arguments:
3923""""""""""
3924
3925This instruction requires several arguments:
3926
3927#. The optional "cconv" marker indicates which :ref:`calling
3928   convention <callingconv>` the call should use. If none is
3929   specified, the call defaults to using C calling conventions.
3930#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3931   values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3932   are valid here.
3933#. '``ptr to function ty``': shall be the signature of the pointer to
3934   function value being invoked. In most cases, this is a direct
3935   function invocation, but indirect ``invoke``'s are just as possible,
3936   branching off an arbitrary pointer to function value.
3937#. '``function ptr val``': An LLVM value containing a pointer to a
3938   function to be invoked.
3939#. '``function args``': argument list whose types match the function
3940   signature argument types and parameter attributes. All arguments must
3941   be of :ref:`first class <t_firstclass>` type. If the function signature
3942   indicates the function accepts a variable number of arguments, the
3943   extra arguments can be specified.
3944#. '``normal label``': the label reached when the called function
3945   executes a '``ret``' instruction.
3946#. '``exception label``': the label reached when a callee returns via
3947   the :ref:`resume <i_resume>` instruction or other exception handling
3948   mechanism.
3949#. The optional :ref:`function attributes <fnattrs>` list. Only
3950   '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3951   attributes are valid here.
3952
3953Semantics:
3954""""""""""
3955
3956This instruction is designed to operate as a standard '``call``'
3957instruction in most regards. The primary difference is that it
3958establishes an association with a label, which is used by the runtime
3959library to unwind the stack.
3960
3961This instruction is used in languages with destructors to ensure that
3962proper cleanup is performed in the case of either a ``longjmp`` or a
3963thrown exception. Additionally, this is important for implementation of
3964'``catch``' clauses in high-level languages that support them.
3965
3966For the purposes of the SSA form, the definition of the value returned
3967by the '``invoke``' instruction is deemed to occur on the edge from the
3968current block to the "normal" label. If the callee unwinds then no
3969return value is available.
3970
3971Example:
3972""""""""
3973
3974.. code-block:: llvm
3975
3976      %retval = invoke i32 @Test(i32 15) to label %Continue
3977                  unwind label %TestCleanup              ; i32:retval set
3978      %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3979                  unwind label %TestCleanup              ; i32:retval set
3980
3981.. _i_resume:
3982
3983'``resume``' Instruction
3984^^^^^^^^^^^^^^^^^^^^^^^^
3985
3986Syntax:
3987"""""""
3988
3989::
3990
3991      resume <type> <value>
3992
3993Overview:
3994"""""""""
3995
3996The '``resume``' instruction is a terminator instruction that has no
3997successors.
3998
3999Arguments:
4000""""""""""
4001
4002The '``resume``' instruction requires one argument, which must have the
4003same type as the result of any '``landingpad``' instruction in the same
4004function.
4005
4006Semantics:
4007""""""""""
4008
4009The '``resume``' instruction resumes propagation of an existing
4010(in-flight) exception whose unwinding was interrupted with a
4011:ref:`landingpad <i_landingpad>` instruction.
4012
4013Example:
4014""""""""
4015
4016.. code-block:: llvm
4017
4018      resume { i8*, i32 } %exn
4019
4020.. _i_unreachable:
4021
4022'``unreachable``' Instruction
4023^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4024
4025Syntax:
4026"""""""
4027
4028::
4029
4030      unreachable
4031
4032Overview:
4033"""""""""
4034
4035The '``unreachable``' instruction has no defined semantics. This
4036instruction is used to inform the optimizer that a particular portion of
4037the code is not reachable. This can be used to indicate that the code
4038after a no-return function cannot be reached, and other facts.
4039
4040Semantics:
4041""""""""""
4042
4043The '``unreachable``' instruction has no defined semantics.
4044
4045.. _binaryops:
4046
4047Binary Operations
4048-----------------
4049
4050Binary operators are used to do most of the computation in a program.
4051They require two operands of the same type, execute an operation on
4052them, and produce a single value. The operands might represent multiple
4053data, as is the case with the :ref:`vector <t_vector>` data type. The
4054result value has the same type as its operands.
4055
4056There are several different binary operators:
4057
4058.. _i_add:
4059
4060'``add``' Instruction
4061^^^^^^^^^^^^^^^^^^^^^
4062
4063Syntax:
4064"""""""
4065
4066::
4067
4068      <result> = add <ty> <op1>, <op2>          ; yields ty:result
4069      <result> = add nuw <ty> <op1>, <op2>      ; yields ty:result
4070      <result> = add nsw <ty> <op1>, <op2>      ; yields ty:result
4071      <result> = add nuw nsw <ty> <op1>, <op2>  ; yields ty:result
4072
4073Overview:
4074"""""""""
4075
4076The '``add``' instruction returns the sum of its two operands.
4077
4078Arguments:
4079""""""""""
4080
4081The two arguments to the '``add``' instruction must be
4082:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4083arguments must have identical types.
4084
4085Semantics:
4086""""""""""
4087
4088The value produced is the integer sum of the two operands.
4089
4090If the sum has unsigned overflow, the result returned is the
4091mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4092the result.
4093
4094Because LLVM integers use a two's complement representation, this
4095instruction is appropriate for both signed and unsigned integers.
4096
4097``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4098respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4099result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
4100unsigned and/or signed overflow, respectively, occurs.
4101
4102Example:
4103""""""""
4104
4105.. code-block:: llvm
4106
4107      <result> = add i32 4, %var          ; yields i32:result = 4 + %var
4108
4109.. _i_fadd:
4110
4111'``fadd``' Instruction
4112^^^^^^^^^^^^^^^^^^^^^^
4113
4114Syntax:
4115"""""""
4116
4117::
4118
4119      <result> = fadd [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
4120
4121Overview:
4122"""""""""
4123
4124The '``fadd``' instruction returns the sum of its two operands.
4125
4126Arguments:
4127""""""""""
4128
4129The two arguments to the '``fadd``' instruction must be :ref:`floating
4130point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4131Both arguments must have identical types.
4132
4133Semantics:
4134""""""""""
4135
4136The value produced is the floating point sum of the two operands. This
4137instruction can also take any number of :ref:`fast-math flags <fastmath>`,
4138which are optimization hints to enable otherwise unsafe floating point
4139optimizations:
4140
4141Example:
4142""""""""
4143
4144.. code-block:: llvm
4145
4146      <result> = fadd float 4.0, %var          ; yields float:result = 4.0 + %var
4147
4148'``sub``' Instruction
4149^^^^^^^^^^^^^^^^^^^^^
4150
4151Syntax:
4152"""""""
4153
4154::
4155
4156      <result> = sub <ty> <op1>, <op2>          ; yields ty:result
4157      <result> = sub nuw <ty> <op1>, <op2>      ; yields ty:result
4158      <result> = sub nsw <ty> <op1>, <op2>      ; yields ty:result
4159      <result> = sub nuw nsw <ty> <op1>, <op2>  ; yields ty:result
4160
4161Overview:
4162"""""""""
4163
4164The '``sub``' instruction returns the difference of its two operands.
4165
4166Note that the '``sub``' instruction is used to represent the '``neg``'
4167instruction present in most other intermediate representations.
4168
4169Arguments:
4170""""""""""
4171
4172The two arguments to the '``sub``' instruction must be
4173:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4174arguments must have identical types.
4175
4176Semantics:
4177""""""""""
4178
4179The value produced is the integer difference of the two operands.
4180
4181If the difference has unsigned overflow, the result returned is the
4182mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4183the result.
4184
4185Because LLVM integers use a two's complement representation, this
4186instruction is appropriate for both signed and unsigned integers.
4187
4188``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4189respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4190result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
4191unsigned and/or signed overflow, respectively, occurs.
4192
4193Example:
4194""""""""
4195
4196.. code-block:: llvm
4197
4198      <result> = sub i32 4, %var          ; yields i32:result = 4 - %var
4199      <result> = sub i32 0, %val          ; yields i32:result = -%var
4200
4201.. _i_fsub:
4202
4203'``fsub``' Instruction
4204^^^^^^^^^^^^^^^^^^^^^^
4205
4206Syntax:
4207"""""""
4208
4209::
4210
4211      <result> = fsub [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
4212
4213Overview:
4214"""""""""
4215
4216The '``fsub``' instruction returns the difference of its two operands.
4217
4218Note that the '``fsub``' instruction is used to represent the '``fneg``'
4219instruction present in most other intermediate representations.
4220
4221Arguments:
4222""""""""""
4223
4224The two arguments to the '``fsub``' instruction must be :ref:`floating
4225point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4226Both arguments must have identical types.
4227
4228Semantics:
4229""""""""""
4230
4231The value produced is the floating point difference of the two operands.
4232This instruction can also take any number of :ref:`fast-math
4233flags <fastmath>`, which are optimization hints to enable otherwise
4234unsafe floating point optimizations:
4235
4236Example:
4237""""""""
4238
4239.. code-block:: llvm
4240
4241      <result> = fsub float 4.0, %var           ; yields float:result = 4.0 - %var
4242      <result> = fsub float -0.0, %val          ; yields float:result = -%var
4243
4244'``mul``' Instruction
4245^^^^^^^^^^^^^^^^^^^^^
4246
4247Syntax:
4248"""""""
4249
4250::
4251
4252      <result> = mul <ty> <op1>, <op2>          ; yields ty:result
4253      <result> = mul nuw <ty> <op1>, <op2>      ; yields ty:result
4254      <result> = mul nsw <ty> <op1>, <op2>      ; yields ty:result
4255      <result> = mul nuw nsw <ty> <op1>, <op2>  ; yields ty:result
4256
4257Overview:
4258"""""""""
4259
4260The '``mul``' instruction returns the product of its two operands.
4261
4262Arguments:
4263""""""""""
4264
4265The two arguments to the '``mul``' instruction must be
4266:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4267arguments must have identical types.
4268
4269Semantics:
4270""""""""""
4271
4272The value produced is the integer product of the two operands.
4273
4274If the result of the multiplication has unsigned overflow, the result
4275returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
4276bit width of the result.
4277
4278Because LLVM integers use a two's complement representation, and the
4279result is the same width as the operands, this instruction returns the
4280correct result for both signed and unsigned integers. If a full product
4281(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
4282sign-extended or zero-extended as appropriate to the width of the full
4283product.
4284
4285``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4286respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4287result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
4288unsigned and/or signed overflow, respectively, occurs.
4289
4290Example:
4291""""""""
4292
4293.. code-block:: llvm
4294
4295      <result> = mul i32 4, %var          ; yields i32:result = 4 * %var
4296
4297.. _i_fmul:
4298
4299'``fmul``' Instruction
4300^^^^^^^^^^^^^^^^^^^^^^
4301
4302Syntax:
4303"""""""
4304
4305::
4306
4307      <result> = fmul [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
4308
4309Overview:
4310"""""""""
4311
4312The '``fmul``' instruction returns the product of its two operands.
4313
4314Arguments:
4315""""""""""
4316
4317The two arguments to the '``fmul``' instruction must be :ref:`floating
4318point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4319Both arguments must have identical types.
4320
4321Semantics:
4322""""""""""
4323
4324The value produced is the floating point product of the two operands.
4325This instruction can also take any number of :ref:`fast-math
4326flags <fastmath>`, which are optimization hints to enable otherwise
4327unsafe floating point optimizations:
4328
4329Example:
4330""""""""
4331
4332.. code-block:: llvm
4333
4334      <result> = fmul float 4.0, %var          ; yields float:result = 4.0 * %var
4335
4336'``udiv``' Instruction
4337^^^^^^^^^^^^^^^^^^^^^^
4338
4339Syntax:
4340"""""""
4341
4342::
4343
4344      <result> = udiv <ty> <op1>, <op2>         ; yields ty:result
4345      <result> = udiv exact <ty> <op1>, <op2>   ; yields ty:result
4346
4347Overview:
4348"""""""""
4349
4350The '``udiv``' instruction returns the quotient of its two operands.
4351
4352Arguments:
4353""""""""""
4354
4355The two arguments to the '``udiv``' instruction must be
4356:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4357arguments must have identical types.
4358
4359Semantics:
4360""""""""""
4361
4362The value produced is the unsigned integer quotient of the two operands.
4363
4364Note that unsigned integer division and signed integer division are
4365distinct operations; for signed integer division, use '``sdiv``'.
4366
4367Division by zero leads to undefined behavior.
4368
4369If the ``exact`` keyword is present, the result value of the ``udiv`` is
4370a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4371such, "((a udiv exact b) mul b) == a").
4372
4373Example:
4374""""""""
4375
4376.. code-block:: llvm
4377
4378      <result> = udiv i32 4, %var          ; yields i32:result = 4 / %var
4379
4380'``sdiv``' Instruction
4381^^^^^^^^^^^^^^^^^^^^^^
4382
4383Syntax:
4384"""""""
4385
4386::
4387
4388      <result> = sdiv <ty> <op1>, <op2>         ; yields ty:result
4389      <result> = sdiv exact <ty> <op1>, <op2>   ; yields ty:result
4390
4391Overview:
4392"""""""""
4393
4394The '``sdiv``' instruction returns the quotient of its two operands.
4395
4396Arguments:
4397""""""""""
4398
4399The two arguments to the '``sdiv``' instruction must be
4400:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4401arguments must have identical types.
4402
4403Semantics:
4404""""""""""
4405
4406The value produced is the signed integer quotient of the two operands
4407rounded towards zero.
4408
4409Note that signed integer division and unsigned integer division are
4410distinct operations; for unsigned integer division, use '``udiv``'.
4411
4412Division by zero leads to undefined behavior. Overflow also leads to
4413undefined behavior; this is a rare case, but can occur, for example, by
4414doing a 32-bit division of -2147483648 by -1.
4415
4416If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4417a :ref:`poison value <poisonvalues>` if the result would be rounded.
4418
4419Example:
4420""""""""
4421
4422.. code-block:: llvm
4423
4424      <result> = sdiv i32 4, %var          ; yields i32:result = 4 / %var
4425
4426.. _i_fdiv:
4427
4428'``fdiv``' Instruction
4429^^^^^^^^^^^^^^^^^^^^^^
4430
4431Syntax:
4432"""""""
4433
4434::
4435
4436      <result> = fdiv [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
4437
4438Overview:
4439"""""""""
4440
4441The '``fdiv``' instruction returns the quotient of its two operands.
4442
4443Arguments:
4444""""""""""
4445
4446The two arguments to the '``fdiv``' instruction must be :ref:`floating
4447point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4448Both arguments must have identical types.
4449
4450Semantics:
4451""""""""""
4452
4453The value produced is the floating point quotient of the two operands.
4454This instruction can also take any number of :ref:`fast-math
4455flags <fastmath>`, which are optimization hints to enable otherwise
4456unsafe floating point optimizations:
4457
4458Example:
4459""""""""
4460
4461.. code-block:: llvm
4462
4463      <result> = fdiv float 4.0, %var          ; yields float:result = 4.0 / %var
4464
4465'``urem``' Instruction
4466^^^^^^^^^^^^^^^^^^^^^^
4467
4468Syntax:
4469"""""""
4470
4471::
4472
4473      <result> = urem <ty> <op1>, <op2>   ; yields ty:result
4474
4475Overview:
4476"""""""""
4477
4478The '``urem``' instruction returns the remainder from the unsigned
4479division of its two arguments.
4480
4481Arguments:
4482""""""""""
4483
4484The two arguments to the '``urem``' instruction must be
4485:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4486arguments must have identical types.
4487
4488Semantics:
4489""""""""""
4490
4491This instruction returns the unsigned integer *remainder* of a division.
4492This instruction always performs an unsigned division to get the
4493remainder.
4494
4495Note that unsigned integer remainder and signed integer remainder are
4496distinct operations; for signed integer remainder, use '``srem``'.
4497
4498Taking the remainder of a division by zero leads to undefined behavior.
4499
4500Example:
4501""""""""
4502
4503.. code-block:: llvm
4504
4505      <result> = urem i32 4, %var          ; yields i32:result = 4 % %var
4506
4507'``srem``' Instruction
4508^^^^^^^^^^^^^^^^^^^^^^
4509
4510Syntax:
4511"""""""
4512
4513::
4514
4515      <result> = srem <ty> <op1>, <op2>   ; yields ty:result
4516
4517Overview:
4518"""""""""
4519
4520The '``srem``' instruction returns the remainder from the signed
4521division of its two operands. This instruction can also take
4522:ref:`vector <t_vector>` versions of the values in which case the elements
4523must be integers.
4524
4525Arguments:
4526""""""""""
4527
4528The two arguments to the '``srem``' instruction must be
4529:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4530arguments must have identical types.
4531
4532Semantics:
4533""""""""""
4534
4535This instruction returns the *remainder* of a division (where the result
4536is either zero or has the same sign as the dividend, ``op1``), not the
4537*modulo* operator (where the result is either zero or has the same sign
4538as the divisor, ``op2``) of a value. For more information about the
4539difference, see `The Math
4540Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4541table of how this is implemented in various languages, please see
4542`Wikipedia: modulo
4543operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4544
4545Note that signed integer remainder and unsigned integer remainder are
4546distinct operations; for unsigned integer remainder, use '``urem``'.
4547
4548Taking the remainder of a division by zero leads to undefined behavior.
4549Overflow also leads to undefined behavior; this is a rare case, but can
4550occur, for example, by taking the remainder of a 32-bit division of
4551-2147483648 by -1. (The remainder doesn't actually overflow, but this
4552rule lets srem be implemented using instructions that return both the
4553result of the division and the remainder.)
4554
4555Example:
4556""""""""
4557
4558.. code-block:: llvm
4559
4560      <result> = srem i32 4, %var          ; yields i32:result = 4 % %var
4561
4562.. _i_frem:
4563
4564'``frem``' Instruction
4565^^^^^^^^^^^^^^^^^^^^^^
4566
4567Syntax:
4568"""""""
4569
4570::
4571
4572      <result> = frem [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
4573
4574Overview:
4575"""""""""
4576
4577The '``frem``' instruction returns the remainder from the division of
4578its two operands.
4579
4580Arguments:
4581""""""""""
4582
4583The two arguments to the '``frem``' instruction must be :ref:`floating
4584point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4585Both arguments must have identical types.
4586
4587Semantics:
4588""""""""""
4589
4590This instruction returns the *remainder* of a division. The remainder
4591has the same sign as the dividend. This instruction can also take any
4592number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4593to enable otherwise unsafe floating point optimizations:
4594
4595Example:
4596""""""""
4597
4598.. code-block:: llvm
4599
4600      <result> = frem float 4.0, %var          ; yields float:result = 4.0 % %var
4601
4602.. _bitwiseops:
4603
4604Bitwise Binary Operations
4605-------------------------
4606
4607Bitwise binary operators are used to do various forms of bit-twiddling
4608in a program. They are generally very efficient instructions and can
4609commonly be strength reduced from other instructions. They require two
4610operands of the same type, execute an operation on them, and produce a
4611single value. The resulting value is the same type as its operands.
4612
4613'``shl``' Instruction
4614^^^^^^^^^^^^^^^^^^^^^
4615
4616Syntax:
4617"""""""
4618
4619::
4620
4621      <result> = shl <ty> <op1>, <op2>           ; yields ty:result
4622      <result> = shl nuw <ty> <op1>, <op2>       ; yields ty:result
4623      <result> = shl nsw <ty> <op1>, <op2>       ; yields ty:result
4624      <result> = shl nuw nsw <ty> <op1>, <op2>   ; yields ty:result
4625
4626Overview:
4627"""""""""
4628
4629The '``shl``' instruction returns the first operand shifted to the left
4630a specified number of bits.
4631
4632Arguments:
4633""""""""""
4634
4635Both arguments to the '``shl``' instruction must be the same
4636:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4637'``op2``' is treated as an unsigned value.
4638
4639Semantics:
4640""""""""""
4641
4642The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4643where ``n`` is the width of the result. If ``op2`` is (statically or
4644dynamically) negative or equal to or larger than the number of bits in
4645``op1``, the result is undefined. If the arguments are vectors, each
4646vector element of ``op1`` is shifted by the corresponding shift amount
4647in ``op2``.
4648
4649If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4650value <poisonvalues>` if it shifts out any non-zero bits. If the
4651``nsw`` keyword is present, then the shift produces a :ref:`poison
4652value <poisonvalues>` if it shifts out any bits that disagree with the
4653resultant sign bit. As such, NUW/NSW have the same semantics as they
4654would if the shift were expressed as a mul instruction with the same
4655nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4656
4657Example:
4658""""""""
4659
4660.. code-block:: llvm
4661
4662      <result> = shl i32 4, %var   ; yields i32: 4 << %var
4663      <result> = shl i32 4, 2      ; yields i32: 16
4664      <result> = shl i32 1, 10     ; yields i32: 1024
4665      <result> = shl i32 1, 32     ; undefined
4666      <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2>   ; yields: result=<2 x i32> < i32 2, i32 4>
4667
4668'``lshr``' Instruction
4669^^^^^^^^^^^^^^^^^^^^^^
4670
4671Syntax:
4672"""""""
4673
4674::
4675
4676      <result> = lshr <ty> <op1>, <op2>         ; yields ty:result
4677      <result> = lshr exact <ty> <op1>, <op2>   ; yields ty:result
4678
4679Overview:
4680"""""""""
4681
4682The '``lshr``' instruction (logical shift right) returns the first
4683operand shifted to the right a specified number of bits with zero fill.
4684
4685Arguments:
4686""""""""""
4687
4688Both arguments to the '``lshr``' instruction must be the same
4689:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4690'``op2``' is treated as an unsigned value.
4691
4692Semantics:
4693""""""""""
4694
4695This instruction always performs a logical shift right operation. The
4696most significant bits of the result will be filled with zero bits after
4697the shift. If ``op2`` is (statically or dynamically) equal to or larger
4698than the number of bits in ``op1``, the result is undefined. If the
4699arguments are vectors, each vector element of ``op1`` is shifted by the
4700corresponding shift amount in ``op2``.
4701
4702If the ``exact`` keyword is present, the result value of the ``lshr`` is
4703a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4704non-zero.
4705
4706Example:
4707""""""""
4708
4709.. code-block:: llvm
4710
4711      <result> = lshr i32 4, 1   ; yields i32:result = 2
4712      <result> = lshr i32 4, 2   ; yields i32:result = 1
4713      <result> = lshr i8  4, 3   ; yields i8:result = 0
4714      <result> = lshr i8 -2, 1   ; yields i8:result = 0x7F
4715      <result> = lshr i32 1, 32  ; undefined
4716      <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2>   ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4717
4718'``ashr``' Instruction
4719^^^^^^^^^^^^^^^^^^^^^^
4720
4721Syntax:
4722"""""""
4723
4724::
4725
4726      <result> = ashr <ty> <op1>, <op2>         ; yields ty:result
4727      <result> = ashr exact <ty> <op1>, <op2>   ; yields ty:result
4728
4729Overview:
4730"""""""""
4731
4732The '``ashr``' instruction (arithmetic shift right) returns the first
4733operand shifted to the right a specified number of bits with sign
4734extension.
4735
4736Arguments:
4737""""""""""
4738
4739Both arguments to the '``ashr``' instruction must be the same
4740:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4741'``op2``' is treated as an unsigned value.
4742
4743Semantics:
4744""""""""""
4745
4746This instruction always performs an arithmetic shift right operation,
4747The most significant bits of the result will be filled with the sign bit
4748of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4749than the number of bits in ``op1``, the result is undefined. If the
4750arguments are vectors, each vector element of ``op1`` is shifted by the
4751corresponding shift amount in ``op2``.
4752
4753If the ``exact`` keyword is present, the result value of the ``ashr`` is
4754a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4755non-zero.
4756
4757Example:
4758""""""""
4759
4760.. code-block:: llvm
4761
4762      <result> = ashr i32 4, 1   ; yields i32:result = 2
4763      <result> = ashr i32 4, 2   ; yields i32:result = 1
4764      <result> = ashr i8  4, 3   ; yields i8:result = 0
4765      <result> = ashr i8 -2, 1   ; yields i8:result = -1
4766      <result> = ashr i32 1, 32  ; undefined
4767      <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3>   ; yields: result=<2 x i32> < i32 -1, i32 0>
4768
4769'``and``' Instruction
4770^^^^^^^^^^^^^^^^^^^^^
4771
4772Syntax:
4773"""""""
4774
4775::
4776
4777      <result> = and <ty> <op1>, <op2>   ; yields ty:result
4778
4779Overview:
4780"""""""""
4781
4782The '``and``' instruction returns the bitwise logical and of its two
4783operands.
4784
4785Arguments:
4786""""""""""
4787
4788The two arguments to the '``and``' instruction must be
4789:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4790arguments must have identical types.
4791
4792Semantics:
4793""""""""""
4794
4795The truth table used for the '``and``' instruction is:
4796
4797+-----+-----+-----+
4798| In0 | In1 | Out |
4799+-----+-----+-----+
4800|   0 |   0 |   0 |
4801+-----+-----+-----+
4802|   0 |   1 |   0 |
4803+-----+-----+-----+
4804|   1 |   0 |   0 |
4805+-----+-----+-----+
4806|   1 |   1 |   1 |
4807+-----+-----+-----+
4808
4809Example:
4810""""""""
4811
4812.. code-block:: llvm
4813
4814      <result> = and i32 4, %var         ; yields i32:result = 4 & %var
4815      <result> = and i32 15, 40          ; yields i32:result = 8
4816      <result> = and i32 4, 8            ; yields i32:result = 0
4817
4818'``or``' Instruction
4819^^^^^^^^^^^^^^^^^^^^
4820
4821Syntax:
4822"""""""
4823
4824::
4825
4826      <result> = or <ty> <op1>, <op2>   ; yields ty:result
4827
4828Overview:
4829"""""""""
4830
4831The '``or``' instruction returns the bitwise logical inclusive or of its
4832two operands.
4833
4834Arguments:
4835""""""""""
4836
4837The two arguments to the '``or``' instruction must be
4838:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4839arguments must have identical types.
4840
4841Semantics:
4842""""""""""
4843
4844The truth table used for the '``or``' instruction is:
4845
4846+-----+-----+-----+
4847| In0 | In1 | Out |
4848+-----+-----+-----+
4849|   0 |   0 |   0 |
4850+-----+-----+-----+
4851|   0 |   1 |   1 |
4852+-----+-----+-----+
4853|   1 |   0 |   1 |
4854+-----+-----+-----+
4855|   1 |   1 |   1 |
4856+-----+-----+-----+
4857
4858Example:
4859""""""""
4860
4861::
4862
4863      <result> = or i32 4, %var         ; yields i32:result = 4 | %var
4864      <result> = or i32 15, 40          ; yields i32:result = 47
4865      <result> = or i32 4, 8            ; yields i32:result = 12
4866
4867'``xor``' Instruction
4868^^^^^^^^^^^^^^^^^^^^^
4869
4870Syntax:
4871"""""""
4872
4873::
4874
4875      <result> = xor <ty> <op1>, <op2>   ; yields ty:result
4876
4877Overview:
4878"""""""""
4879
4880The '``xor``' instruction returns the bitwise logical exclusive or of
4881its two operands. The ``xor`` is used to implement the "one's
4882complement" operation, which is the "~" operator in C.
4883
4884Arguments:
4885""""""""""
4886
4887The two arguments to the '``xor``' instruction must be
4888:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4889arguments must have identical types.
4890
4891Semantics:
4892""""""""""
4893
4894The truth table used for the '``xor``' instruction is:
4895
4896+-----+-----+-----+
4897| In0 | In1 | Out |
4898+-----+-----+-----+
4899|   0 |   0 |   0 |
4900+-----+-----+-----+
4901|   0 |   1 |   1 |
4902+-----+-----+-----+
4903|   1 |   0 |   1 |
4904+-----+-----+-----+
4905|   1 |   1 |   0 |
4906+-----+-----+-----+
4907
4908Example:
4909""""""""
4910
4911.. code-block:: llvm
4912
4913      <result> = xor i32 4, %var         ; yields i32:result = 4 ^ %var
4914      <result> = xor i32 15, 40          ; yields i32:result = 39
4915      <result> = xor i32 4, 8            ; yields i32:result = 12
4916      <result> = xor i32 %V, -1          ; yields i32:result = ~%V
4917
4918Vector Operations
4919-----------------
4920
4921LLVM supports several instructions to represent vector operations in a
4922target-independent manner. These instructions cover the element-access
4923and vector-specific operations needed to process vectors effectively.
4924While LLVM does directly support these vector operations, many
4925sophisticated algorithms will want to use target-specific intrinsics to
4926take full advantage of a specific target.
4927
4928.. _i_extractelement:
4929
4930'``extractelement``' Instruction
4931^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4932
4933Syntax:
4934"""""""
4935
4936::
4937
4938      <result> = extractelement <n x <ty>> <val>, <ty2> <idx>  ; yields <ty>
4939
4940Overview:
4941"""""""""
4942
4943The '``extractelement``' instruction extracts a single scalar element
4944from a vector at a specified index.
4945
4946Arguments:
4947""""""""""
4948
4949The first operand of an '``extractelement``' instruction is a value of
4950:ref:`vector <t_vector>` type. The second operand is an index indicating
4951the position from which to extract the element. The index may be a
4952variable of any integer type.
4953
4954Semantics:
4955""""""""""
4956
4957The result is a scalar of the same type as the element type of ``val``.
4958Its value is the value at position ``idx`` of ``val``. If ``idx``
4959exceeds the length of ``val``, the results are undefined.
4960
4961Example:
4962""""""""
4963
4964.. code-block:: llvm
4965
4966      <result> = extractelement <4 x i32> %vec, i32 0    ; yields i32
4967
4968.. _i_insertelement:
4969
4970'``insertelement``' Instruction
4971^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4972
4973Syntax:
4974"""""""
4975
4976::
4977
4978      <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx>    ; yields <n x <ty>>
4979
4980Overview:
4981"""""""""
4982
4983The '``insertelement``' instruction inserts a scalar element into a
4984vector at a specified index.
4985
4986Arguments:
4987""""""""""
4988
4989The first operand of an '``insertelement``' instruction is a value of
4990:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4991type must equal the element type of the first operand. The third operand
4992is an index indicating the position at which to insert the value. The
4993index may be a variable of any integer type.
4994
4995Semantics:
4996""""""""""
4997
4998The result is a vector of the same type as ``val``. Its element values
4999are those of ``val`` except at position ``idx``, where it gets the value
5000``elt``. If ``idx`` exceeds the length of ``val``, the results are
5001undefined.
5002
5003Example:
5004""""""""
5005
5006.. code-block:: llvm
5007
5008      <result> = insertelement <4 x i32> %vec, i32 1, i32 0    ; yields <4 x i32>
5009
5010.. _i_shufflevector:
5011
5012'``shufflevector``' Instruction
5013^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5014
5015Syntax:
5016"""""""
5017
5018::
5019
5020      <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask>    ; yields <m x <ty>>
5021
5022Overview:
5023"""""""""
5024
5025The '``shufflevector``' instruction constructs a permutation of elements
5026from two input vectors, returning a vector with the same element type as
5027the input and length that is the same as the shuffle mask.
5028
5029Arguments:
5030""""""""""
5031
5032The first two operands of a '``shufflevector``' instruction are vectors
5033with the same type. The third argument is a shuffle mask whose element
5034type is always 'i32'. The result of the instruction is a vector whose
5035length is the same as the shuffle mask and whose element type is the
5036same as the element type of the first two operands.
5037
5038The shuffle mask operand is required to be a constant vector with either
5039constant integer or undef values.
5040
5041Semantics:
5042""""""""""
5043
5044The elements of the two input vectors are numbered from left to right
5045across both of the vectors. The shuffle mask operand specifies, for each
5046element of the result vector, which element of the two input vectors the
5047result element gets. The element selector may be undef (meaning "don't
5048care") and the second operand may be undef if performing a shuffle from
5049only one vector.
5050
5051Example:
5052""""""""
5053
5054.. code-block:: llvm
5055
5056      <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
5057                              <4 x i32> <i32 0, i32 4, i32 1, i32 5>  ; yields <4 x i32>
5058      <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
5059                              <4 x i32> <i32 0, i32 1, i32 2, i32 3>  ; yields <4 x i32> - Identity shuffle.
5060      <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
5061                              <4 x i32> <i32 0, i32 1, i32 2, i32 3>  ; yields <4 x i32>
5062      <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
5063                              <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 >  ; yields <8 x i32>
5064
5065Aggregate Operations
5066--------------------
5067
5068LLVM supports several instructions for working with
5069:ref:`aggregate <t_aggregate>` values.
5070
5071.. _i_extractvalue:
5072
5073'``extractvalue``' Instruction
5074^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5075
5076Syntax:
5077"""""""
5078
5079::
5080
5081      <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
5082
5083Overview:
5084"""""""""
5085
5086The '``extractvalue``' instruction extracts the value of a member field
5087from an :ref:`aggregate <t_aggregate>` value.
5088
5089Arguments:
5090""""""""""
5091
5092The first operand of an '``extractvalue``' instruction is a value of
5093:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
5094constant indices to specify which value to extract in a similar manner
5095as indices in a '``getelementptr``' instruction.
5096
5097The major differences to ``getelementptr`` indexing are:
5098
5099-  Since the value being indexed is not a pointer, the first index is
5100   omitted and assumed to be zero.
5101-  At least one index must be specified.
5102-  Not only struct indices but also array indices must be in bounds.
5103
5104Semantics:
5105""""""""""
5106
5107The result is the value at the position in the aggregate specified by
5108the index operands.
5109
5110Example:
5111""""""""
5112
5113.. code-block:: llvm
5114
5115      <result> = extractvalue {i32, float} %agg, 0    ; yields i32
5116
5117.. _i_insertvalue:
5118
5119'``insertvalue``' Instruction
5120^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5121
5122Syntax:
5123"""""""
5124
5125::
5126
5127      <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}*    ; yields <aggregate type>
5128
5129Overview:
5130"""""""""
5131
5132The '``insertvalue``' instruction inserts a value into a member field in
5133an :ref:`aggregate <t_aggregate>` value.
5134
5135Arguments:
5136""""""""""
5137
5138The first operand of an '``insertvalue``' instruction is a value of
5139:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
5140a first-class value to insert. The following operands are constant
5141indices indicating the position at which to insert the value in a
5142similar manner as indices in a '``extractvalue``' instruction. The value
5143to insert must have the same type as the value identified by the
5144indices.
5145
5146Semantics:
5147""""""""""
5148
5149The result is an aggregate of the same type as ``val``. Its value is
5150that of ``val`` except that the value at the position specified by the
5151indices is that of ``elt``.
5152
5153Example:
5154""""""""
5155
5156.. code-block:: llvm
5157
5158      %agg1 = insertvalue {i32, float} undef, i32 1, 0              ; yields {i32 1, float undef}
5159      %agg2 = insertvalue {i32, float} %agg1, float %val, 1         ; yields {i32 1, float %val}
5160      %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0    ; yields {i32 undef, {float %val}}
5161
5162.. _memoryops:
5163
5164Memory Access and Addressing Operations
5165---------------------------------------
5166
5167A key design point of an SSA-based representation is how it represents
5168memory. In LLVM, no memory locations are in SSA form, which makes things
5169very simple. This section describes how to read, write, and allocate
5170memory in LLVM.
5171
5172.. _i_alloca:
5173
5174'``alloca``' Instruction
5175^^^^^^^^^^^^^^^^^^^^^^^^
5176
5177Syntax:
5178"""""""
5179
5180::
5181
5182      <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>]     ; yields type*:result
5183
5184Overview:
5185"""""""""
5186
5187The '``alloca``' instruction allocates memory on the stack frame of the
5188currently executing function, to be automatically released when this
5189function returns to its caller. The object is always allocated in the
5190generic address space (address space zero).
5191
5192Arguments:
5193""""""""""
5194
5195The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
5196bytes of memory on the runtime stack, returning a pointer of the
5197appropriate type to the program. If "NumElements" is specified, it is
5198the number of elements allocated, otherwise "NumElements" is defaulted
5199to be one. If a constant alignment is specified, the value result of the
5200allocation is guaranteed to be aligned to at least that boundary. The
5201alignment may not be greater than ``1 << 29``. If not specified, or if
5202zero, the target can choose to align the allocation on any convenient
5203boundary compatible with the type.
5204
5205'``type``' may be any sized type.
5206
5207Semantics:
5208""""""""""
5209
5210Memory is allocated; a pointer is returned. The operation is undefined
5211if there is insufficient stack space for the allocation. '``alloca``'d
5212memory is automatically released when the function returns. The
5213'``alloca``' instruction is commonly used to represent automatic
5214variables that must have an address available. When the function returns
5215(either with the ``ret`` or ``resume`` instructions), the memory is
5216reclaimed. Allocating zero bytes is legal, but the result is undefined.
5217The order in which memory is allocated (ie., which way the stack grows)
5218is not specified.
5219
5220Example:
5221""""""""
5222
5223.. code-block:: llvm
5224
5225      %ptr = alloca i32                             ; yields i32*:ptr
5226      %ptr = alloca i32, i32 4                      ; yields i32*:ptr
5227      %ptr = alloca i32, i32 4, align 1024          ; yields i32*:ptr
5228      %ptr = alloca i32, align 1024                 ; yields i32*:ptr
5229
5230.. _i_load:
5231
5232'``load``' Instruction
5233^^^^^^^^^^^^^^^^^^^^^^
5234
5235Syntax:
5236"""""""
5237
5238::
5239
5240      <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !nonnull !<index>]
5241      <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
5242      !<index> = !{ i32 1 }
5243
5244Overview:
5245"""""""""
5246
5247The '``load``' instruction is used to read from memory.
5248
5249Arguments:
5250""""""""""
5251
5252The argument to the ``load`` instruction specifies the memory address
5253from which to load. The pointer must point to a :ref:`first
5254class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
5255then the optimizer is not allowed to modify the number or order of
5256execution of this ``load`` with other :ref:`volatile
5257operations <volatile>`.
5258
5259If the ``load`` is marked as ``atomic``, it takes an extra
5260:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5261``release`` and ``acq_rel`` orderings are not valid on ``load``
5262instructions. Atomic loads produce :ref:`defined <memmodel>` results
5263when they may see multiple atomic stores. The type of the pointee must
5264be an integer type whose bit width is a power of two greater than or
5265equal to eight and less than or equal to a target-specific size limit.
5266``align`` must be explicitly specified on atomic loads, and the load has
5267undefined behavior if the alignment is not set to a value which is at
5268least the size in bytes of the pointee. ``!nontemporal`` does not have
5269any defined semantics for atomic loads.
5270
5271The optional constant ``align`` argument specifies the alignment of the
5272operation (that is, the alignment of the memory address). A value of 0
5273or an omitted ``align`` argument means that the operation has the ABI
5274alignment for the target. It is the responsibility of the code emitter
5275to ensure that the alignment information is correct. Overestimating the
5276alignment results in undefined behavior. Underestimating the alignment
5277may produce less efficient code. An alignment of 1 is always safe. The
5278maximum possible alignment is ``1 << 29``.
5279
5280The optional ``!nontemporal`` metadata must reference a single
5281metadata name ``<index>`` corresponding to a metadata node with one
5282``i32`` entry of value 1. The existence of the ``!nontemporal``
5283metadata on the instruction tells the optimizer and code generator
5284that this load is not expected to be reused in the cache. The code
5285generator may select special instructions to save cache bandwidth, such
5286as the ``MOVNT`` instruction on x86.
5287
5288The optional ``!invariant.load`` metadata must reference a single
5289metadata name ``<index>`` corresponding to a metadata node with no
5290entries. The existence of the ``!invariant.load`` metadata on the
5291instruction tells the optimizer and code generator that the address
5292operand to this load points to memory which can be assumed unchanged.
5293Being invariant does not imply that a location is dereferenceable,
5294but it does imply that once the location is known dereferenceable
5295its value is henceforth unchanging.
5296
5297The optional ``!nonnull`` metadata must reference a single
5298metadata name ``<index>`` corresponding to a metadata node with no
5299entries. The existence of the ``!nonnull`` metadata on the
5300instruction tells the optimizer that the value loaded is known to
5301never be null.  This is analogous to the ''nonnull'' attribute
5302on parameters and return values.  This metadata can only be applied
5303to loads of a pointer type.
5304
5305Semantics:
5306""""""""""
5307
5308The location of memory pointed to is loaded. If the value being loaded
5309is of scalar type then the number of bytes read does not exceed the
5310minimum number of bytes needed to hold all bits of the type. For
5311example, loading an ``i24`` reads at most three bytes. When loading a
5312value of a type like ``i20`` with a size that is not an integral number
5313of bytes, the result is undefined if the value was not originally
5314written using a store of the same type.
5315
5316Examples:
5317"""""""""
5318
5319.. code-block:: llvm
5320
5321      %ptr = alloca i32                               ; yields i32*:ptr
5322      store i32 3, i32* %ptr                          ; yields void
5323      %val = load i32* %ptr                           ; yields i32:val = i32 3
5324
5325.. _i_store:
5326
5327'``store``' Instruction
5328^^^^^^^^^^^^^^^^^^^^^^^
5329
5330Syntax:
5331"""""""
5332
5333::
5334
5335      store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>]        ; yields void
5336      store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment>  ; yields void
5337
5338Overview:
5339"""""""""
5340
5341The '``store``' instruction is used to write to memory.
5342
5343Arguments:
5344""""""""""
5345
5346There are two arguments to the ``store`` instruction: a value to store
5347and an address at which to store it. The type of the ``<pointer>``
5348operand must be a pointer to the :ref:`first class <t_firstclass>` type of
5349the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
5350then the optimizer is not allowed to modify the number or order of
5351execution of this ``store`` with other :ref:`volatile
5352operations <volatile>`.
5353
5354If the ``store`` is marked as ``atomic``, it takes an extra
5355:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5356``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
5357instructions. Atomic loads produce :ref:`defined <memmodel>` results
5358when they may see multiple atomic stores. The type of the pointee must
5359be an integer type whose bit width is a power of two greater than or
5360equal to eight and less than or equal to a target-specific size limit.
5361``align`` must be explicitly specified on atomic stores, and the store
5362has undefined behavior if the alignment is not set to a value which is
5363at least the size in bytes of the pointee. ``!nontemporal`` does not
5364have any defined semantics for atomic stores.
5365
5366The optional constant ``align`` argument specifies the alignment of the
5367operation (that is, the alignment of the memory address). A value of 0
5368or an omitted ``align`` argument means that the operation has the ABI
5369alignment for the target. It is the responsibility of the code emitter
5370to ensure that the alignment information is correct. Overestimating the
5371alignment results in undefined behavior. Underestimating the
5372alignment may produce less efficient code. An alignment of 1 is always
5373safe. The maximum possible alignment is ``1 << 29``.
5374
5375The optional ``!nontemporal`` metadata must reference a single metadata
5376name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
5377value 1. The existence of the ``!nontemporal`` metadata on the instruction
5378tells the optimizer and code generator that this load is not expected to
5379be reused in the cache. The code generator may select special
5380instructions to save cache bandwidth, such as the MOVNT instruction on
5381x86.
5382
5383Semantics:
5384""""""""""
5385
5386The contents of memory are updated to contain ``<value>`` at the
5387location specified by the ``<pointer>`` operand. If ``<value>`` is
5388of scalar type then the number of bytes written does not exceed the
5389minimum number of bytes needed to hold all bits of the type. For
5390example, storing an ``i24`` writes at most three bytes. When writing a
5391value of a type like ``i20`` with a size that is not an integral number
5392of bytes, it is unspecified what happens to the extra bits that do not
5393belong to the type, but they will typically be overwritten.
5394
5395Example:
5396""""""""
5397
5398.. code-block:: llvm
5399
5400      %ptr = alloca i32                               ; yields i32*:ptr
5401      store i32 3, i32* %ptr                          ; yields void
5402      %val = load i32* %ptr                           ; yields i32:val = i32 3
5403
5404.. _i_fence:
5405
5406'``fence``' Instruction
5407^^^^^^^^^^^^^^^^^^^^^^^
5408
5409Syntax:
5410"""""""
5411
5412::
5413
5414      fence [singlethread] <ordering>                   ; yields void
5415
5416Overview:
5417"""""""""
5418
5419The '``fence``' instruction is used to introduce happens-before edges
5420between operations.
5421
5422Arguments:
5423""""""""""
5424
5425'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5426defines what *synchronizes-with* edges they add. They can only be given
5427``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5428
5429Semantics:
5430""""""""""
5431
5432A fence A which has (at least) ``release`` ordering semantics
5433*synchronizes with* a fence B with (at least) ``acquire`` ordering
5434semantics if and only if there exist atomic operations X and Y, both
5435operating on some atomic object M, such that A is sequenced before X, X
5436modifies M (either directly or through some side effect of a sequence
5437headed by X), Y is sequenced before B, and Y observes M. This provides a
5438*happens-before* dependency between A and B. Rather than an explicit
5439``fence``, one (but not both) of the atomic operations X or Y might
5440provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5441still *synchronize-with* the explicit ``fence`` and establish the
5442*happens-before* edge.
5443
5444A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5445``acquire`` and ``release`` semantics specified above, participates in
5446the global program order of other ``seq_cst`` operations and/or fences.
5447
5448The optional ":ref:`singlethread <singlethread>`" argument specifies
5449that the fence only synchronizes with other fences in the same thread.
5450(This is useful for interacting with signal handlers.)
5451
5452Example:
5453""""""""
5454
5455.. code-block:: llvm
5456
5457      fence acquire                          ; yields void
5458      fence singlethread seq_cst             ; yields void
5459
5460.. _i_cmpxchg:
5461
5462'``cmpxchg``' Instruction
5463^^^^^^^^^^^^^^^^^^^^^^^^^
5464
5465Syntax:
5466"""""""
5467
5468::
5469
5470      cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields  { ty, i1 }
5471
5472Overview:
5473"""""""""
5474
5475The '``cmpxchg``' instruction is used to atomically modify memory. It
5476loads a value in memory and compares it to a given value. If they are
5477equal, it tries to store a new value into the memory.
5478
5479Arguments:
5480""""""""""
5481
5482There are three arguments to the '``cmpxchg``' instruction: an address
5483to operate on, a value to compare to the value currently be at that
5484address, and a new value to place at that address if the compared values
5485are equal. The type of '<cmp>' must be an integer type whose bit width
5486is a power of two greater than or equal to eight and less than or equal
5487to a target-specific size limit. '<cmp>' and '<new>' must have the same
5488type, and the type of '<pointer>' must be a pointer to that type. If the
5489``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5490to modify the number or order of execution of this ``cmpxchg`` with
5491other :ref:`volatile operations <volatile>`.
5492
5493The success and failure :ref:`ordering <ordering>` arguments specify how this
5494``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5495must be at least ``monotonic``, the ordering constraint on failure must be no
5496stronger than that on success, and the failure ordering cannot be either
5497``release`` or ``acq_rel``.
5498
5499The optional "``singlethread``" argument declares that the ``cmpxchg``
5500is only atomic with respect to code (usually signal handlers) running in
5501the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5502respect to all other code in the system.
5503
5504The pointer passed into cmpxchg must have alignment greater than or
5505equal to the size in memory of the operand.
5506
5507Semantics:
5508""""""""""
5509
5510The contents of memory at the location specified by the '``<pointer>``' operand
5511is read and compared to '``<cmp>``'; if the read value is the equal, the
5512'``<new>``' is written. The original value at the location is returned, together
5513with a flag indicating success (true) or failure (false).
5514
5515If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5516permitted: the operation may not write ``<new>`` even if the comparison
5517matched.
5518
5519If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5520if the value loaded equals ``cmp``.
5521
5522A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5523identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5524load with an ordering parameter determined the second ordering parameter.
5525
5526Example:
5527""""""""
5528
5529.. code-block:: llvm
5530
5531    entry:
5532      %orig = atomic load i32* %ptr unordered                   ; yields i32
5533      br label %loop
5534
5535    loop:
5536      %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5537      %squared = mul i32 %cmp, %cmp
5538      %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields  { i32, i1 }
5539      %value_loaded = extractvalue { i32, i1 } %val_success, 0
5540      %success = extractvalue { i32, i1 } %val_success, 1
5541      br i1 %success, label %done, label %loop
5542
5543    done:
5544      ...
5545
5546.. _i_atomicrmw:
5547
5548'``atomicrmw``' Instruction
5549^^^^^^^^^^^^^^^^^^^^^^^^^^^
5550
5551Syntax:
5552"""""""
5553
5554::
5555
5556      atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering>                   ; yields ty
5557
5558Overview:
5559"""""""""
5560
5561The '``atomicrmw``' instruction is used to atomically modify memory.
5562
5563Arguments:
5564""""""""""
5565
5566There are three arguments to the '``atomicrmw``' instruction: an
5567operation to apply, an address whose value to modify, an argument to the
5568operation. The operation must be one of the following keywords:
5569
5570-  xchg
5571-  add
5572-  sub
5573-  and
5574-  nand
5575-  or
5576-  xor
5577-  max
5578-  min
5579-  umax
5580-  umin
5581
5582The type of '<value>' must be an integer type whose bit width is a power
5583of two greater than or equal to eight and less than or equal to a
5584target-specific size limit. The type of the '``<pointer>``' operand must
5585be a pointer to that type. If the ``atomicrmw`` is marked as
5586``volatile``, then the optimizer is not allowed to modify the number or
5587order of execution of this ``atomicrmw`` with other :ref:`volatile
5588operations <volatile>`.
5589
5590Semantics:
5591""""""""""
5592
5593The contents of memory at the location specified by the '``<pointer>``'
5594operand are atomically read, modified, and written back. The original
5595value at the location is returned. The modification is specified by the
5596operation argument:
5597
5598-  xchg: ``*ptr = val``
5599-  add: ``*ptr = *ptr + val``
5600-  sub: ``*ptr = *ptr - val``
5601-  and: ``*ptr = *ptr & val``
5602-  nand: ``*ptr = ~(*ptr & val)``
5603-  or: ``*ptr = *ptr | val``
5604-  xor: ``*ptr = *ptr ^ val``
5605-  max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5606-  min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5607-  umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5608   comparison)
5609-  umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5610   comparison)
5611
5612Example:
5613""""""""
5614
5615.. code-block:: llvm
5616
5617      %old = atomicrmw add i32* %ptr, i32 1 acquire                        ; yields i32
5618
5619.. _i_getelementptr:
5620
5621'``getelementptr``' Instruction
5622^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5623
5624Syntax:
5625"""""""
5626
5627::
5628
5629      <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5630      <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5631      <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5632
5633Overview:
5634"""""""""
5635
5636The '``getelementptr``' instruction is used to get the address of a
5637subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5638address calculation only and does not access memory.
5639
5640Arguments:
5641""""""""""
5642
5643The first argument is always a pointer or a vector of pointers, and
5644forms the basis of the calculation. The remaining arguments are indices
5645that indicate which of the elements of the aggregate object are indexed.
5646The interpretation of each index is dependent on the type being indexed
5647into. The first index always indexes the pointer value given as the
5648first argument, the second index indexes a value of the type pointed to
5649(not necessarily the value directly pointed to, since the first index
5650can be non-zero), etc. The first type indexed into must be a pointer
5651value, subsequent types can be arrays, vectors, and structs. Note that
5652subsequent types being indexed into can never be pointers, since that
5653would require loading the pointer before continuing calculation.
5654
5655The type of each index argument depends on the type it is indexing into.
5656When indexing into a (optionally packed) structure, only ``i32`` integer
5657**constants** are allowed (when using a vector of indices they must all
5658be the **same** ``i32`` integer constant). When indexing into an array,
5659pointer or vector, integers of any width are allowed, and they are not
5660required to be constant. These integers are treated as signed values
5661where relevant.
5662
5663For example, let's consider a C code fragment and how it gets compiled
5664to LLVM:
5665
5666.. code-block:: c
5667
5668    struct RT {
5669      char A;
5670      int B[10][20];
5671      char C;
5672    };
5673    struct ST {
5674      int X;
5675      double Y;
5676      struct RT Z;
5677    };
5678
5679    int *foo(struct ST *s) {
5680      return &s[1].Z.B[5][13];
5681    }
5682
5683The LLVM code generated by Clang is:
5684
5685.. code-block:: llvm
5686
5687    %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5688    %struct.ST = type { i32, double, %struct.RT }
5689
5690    define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5691    entry:
5692      %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5693      ret i32* %arrayidx
5694    }
5695
5696Semantics:
5697""""""""""
5698
5699In the example above, the first index is indexing into the
5700'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5701= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5702indexes into the third element of the structure, yielding a
5703'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5704structure. The third index indexes into the second element of the
5705structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5706dimensions of the array are subscripted into, yielding an '``i32``'
5707type. The '``getelementptr``' instruction returns a pointer to this
5708element, thus computing a value of '``i32*``' type.
5709
5710Note that it is perfectly legal to index partially through a structure,
5711returning a pointer to an inner element. Because of this, the LLVM code
5712for the given testcase is equivalent to:
5713
5714.. code-block:: llvm
5715
5716    define i32* @foo(%struct.ST* %s) {
5717      %t1 = getelementptr %struct.ST* %s, i32 1                 ; yields %struct.ST*:%t1
5718      %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2         ; yields %struct.RT*:%t2
5719      %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1         ; yields [10 x [20 x i32]]*:%t3
5720      %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5  ; yields [20 x i32]*:%t4
5721      %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13        ; yields i32*:%t5
5722      ret i32* %t5
5723    }
5724
5725If the ``inbounds`` keyword is present, the result value of the
5726``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5727pointer is not an *in bounds* address of an allocated object, or if any
5728of the addresses that would be formed by successive addition of the
5729offsets implied by the indices to the base address with infinitely
5730precise signed arithmetic are not an *in bounds* address of that
5731allocated object. The *in bounds* addresses for an allocated object are
5732all the addresses that point into the object, plus the address one byte
5733past the end. In cases where the base is a vector of pointers the
5734``inbounds`` keyword applies to each of the computations element-wise.
5735
5736If the ``inbounds`` keyword is not present, the offsets are added to the
5737base address with silently-wrapping two's complement arithmetic. If the
5738offsets have a different width from the pointer, they are sign-extended
5739or truncated to the width of the pointer. The result value of the
5740``getelementptr`` may be outside the object pointed to by the base
5741pointer. The result value may not necessarily be used to access memory
5742though, even if it happens to point into allocated storage. See the
5743:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5744information.
5745
5746The getelementptr instruction is often confusing. For some more insight
5747into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5748
5749Example:
5750""""""""
5751
5752.. code-block:: llvm
5753
5754        ; yields [12 x i8]*:aptr
5755        %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5756        ; yields i8*:vptr
5757        %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5758        ; yields i8*:eptr
5759        %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5760        ; yields i32*:iptr
5761        %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5762
5763In cases where the pointer argument is a vector of pointers, each index
5764must be a vector with the same number of elements. For example:
5765
5766.. code-block:: llvm
5767
5768     %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5769
5770Conversion Operations
5771---------------------
5772
5773The instructions in this category are the conversion instructions
5774(casting) which all take a single operand and a type. They perform
5775various bit conversions on the operand.
5776
5777'``trunc .. to``' Instruction
5778^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5779
5780Syntax:
5781"""""""
5782
5783::
5784
5785      <result> = trunc <ty> <value> to <ty2>             ; yields ty2
5786
5787Overview:
5788"""""""""
5789
5790The '``trunc``' instruction truncates its operand to the type ``ty2``.
5791
5792Arguments:
5793""""""""""
5794
5795The '``trunc``' instruction takes a value to trunc, and a type to trunc
5796it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5797of the same number of integers. The bit size of the ``value`` must be
5798larger than the bit size of the destination type, ``ty2``. Equal sized
5799types are not allowed.
5800
5801Semantics:
5802""""""""""
5803
5804The '``trunc``' instruction truncates the high order bits in ``value``
5805and converts the remaining bits to ``ty2``. Since the source size must
5806be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5807It will always truncate bits.
5808
5809Example:
5810""""""""
5811
5812.. code-block:: llvm
5813
5814      %X = trunc i32 257 to i8                        ; yields i8:1
5815      %Y = trunc i32 123 to i1                        ; yields i1:true
5816      %Z = trunc i32 122 to i1                        ; yields i1:false
5817      %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5818
5819'``zext .. to``' Instruction
5820^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5821
5822Syntax:
5823"""""""
5824
5825::
5826
5827      <result> = zext <ty> <value> to <ty2>             ; yields ty2
5828
5829Overview:
5830"""""""""
5831
5832The '``zext``' instruction zero extends its operand to type ``ty2``.
5833
5834Arguments:
5835""""""""""
5836
5837The '``zext``' instruction takes a value to cast, and a type to cast it
5838to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5839the same number of integers. The bit size of the ``value`` must be
5840smaller than the bit size of the destination type, ``ty2``.
5841
5842Semantics:
5843""""""""""
5844
5845The ``zext`` fills the high order bits of the ``value`` with zero bits
5846until it reaches the size of the destination type, ``ty2``.
5847
5848When zero extending from i1, the result will always be either 0 or 1.
5849
5850Example:
5851""""""""
5852
5853.. code-block:: llvm
5854
5855      %X = zext i32 257 to i64              ; yields i64:257
5856      %Y = zext i1 true to i32              ; yields i32:1
5857      %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5858
5859'``sext .. to``' Instruction
5860^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5861
5862Syntax:
5863"""""""
5864
5865::
5866
5867      <result> = sext <ty> <value> to <ty2>             ; yields ty2
5868
5869Overview:
5870"""""""""
5871
5872The '``sext``' sign extends ``value`` to the type ``ty2``.
5873
5874Arguments:
5875""""""""""
5876
5877The '``sext``' instruction takes a value to cast, and a type to cast it
5878to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5879the same number of integers. The bit size of the ``value`` must be
5880smaller than the bit size of the destination type, ``ty2``.
5881
5882Semantics:
5883""""""""""
5884
5885The '``sext``' instruction performs a sign extension by copying the sign
5886bit (highest order bit) of the ``value`` until it reaches the bit size
5887of the type ``ty2``.
5888
5889When sign extending from i1, the extension always results in -1 or 0.
5890
5891Example:
5892""""""""
5893
5894.. code-block:: llvm
5895
5896      %X = sext i8  -1 to i16              ; yields i16   :65535
5897      %Y = sext i1 true to i32             ; yields i32:-1
5898      %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5899
5900'``fptrunc .. to``' Instruction
5901^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5902
5903Syntax:
5904"""""""
5905
5906::
5907
5908      <result> = fptrunc <ty> <value> to <ty2>             ; yields ty2
5909
5910Overview:
5911"""""""""
5912
5913The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5914
5915Arguments:
5916""""""""""
5917
5918The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5919value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5920The size of ``value`` must be larger than the size of ``ty2``. This
5921implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5922
5923Semantics:
5924""""""""""
5925
5926The '``fptrunc``' instruction truncates a ``value`` from a larger
5927:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5928point <t_floating>` type. If the value cannot fit within the
5929destination type, ``ty2``, then the results are undefined.
5930
5931Example:
5932""""""""
5933
5934.. code-block:: llvm
5935
5936      %X = fptrunc double 123.0 to float         ; yields float:123.0
5937      %Y = fptrunc double 1.0E+300 to float      ; yields undefined
5938
5939'``fpext .. to``' Instruction
5940^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5941
5942Syntax:
5943"""""""
5944
5945::
5946
5947      <result> = fpext <ty> <value> to <ty2>             ; yields ty2
5948
5949Overview:
5950"""""""""
5951
5952The '``fpext``' extends a floating point ``value`` to a larger floating
5953point value.
5954
5955Arguments:
5956""""""""""
5957
5958The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5959``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5960to. The source type must be smaller than the destination type.
5961
5962Semantics:
5963""""""""""
5964
5965The '``fpext``' instruction extends the ``value`` from a smaller
5966:ref:`floating point <t_floating>` type to a larger :ref:`floating
5967point <t_floating>` type. The ``fpext`` cannot be used to make a
5968*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5969*no-op cast* for a floating point cast.
5970
5971Example:
5972""""""""
5973
5974.. code-block:: llvm
5975
5976      %X = fpext float 3.125 to double         ; yields double:3.125000e+00
5977      %Y = fpext double %X to fp128            ; yields fp128:0xL00000000000000004000900000000000
5978
5979'``fptoui .. to``' Instruction
5980^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5981
5982Syntax:
5983"""""""
5984
5985::
5986
5987      <result> = fptoui <ty> <value> to <ty2>             ; yields ty2
5988
5989Overview:
5990"""""""""
5991
5992The '``fptoui``' converts a floating point ``value`` to its unsigned
5993integer equivalent of type ``ty2``.
5994
5995Arguments:
5996""""""""""
5997
5998The '``fptoui``' instruction takes a value to cast, which must be a
5999scalar or vector :ref:`floating point <t_floating>` value, and a type to
6000cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
6001``ty`` is a vector floating point type, ``ty2`` must be a vector integer
6002type with the same number of elements as ``ty``
6003
6004Semantics:
6005""""""""""
6006
6007The '``fptoui``' instruction converts its :ref:`floating
6008point <t_floating>` operand into the nearest (rounding towards zero)
6009unsigned integer value. If the value cannot fit in ``ty2``, the results
6010are undefined.
6011
6012Example:
6013""""""""
6014
6015.. code-block:: llvm
6016
6017      %X = fptoui double 123.0 to i32      ; yields i32:123
6018      %Y = fptoui float 1.0E+300 to i1     ; yields undefined:1
6019      %Z = fptoui float 1.04E+17 to i8     ; yields undefined:1
6020
6021'``fptosi .. to``' Instruction
6022^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6023
6024Syntax:
6025"""""""
6026
6027::
6028
6029      <result> = fptosi <ty> <value> to <ty2>             ; yields ty2
6030
6031Overview:
6032"""""""""
6033
6034The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
6035``value`` to type ``ty2``.
6036
6037Arguments:
6038""""""""""
6039
6040The '``fptosi``' instruction takes a value to cast, which must be a
6041scalar or vector :ref:`floating point <t_floating>` value, and a type to
6042cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
6043``ty`` is a vector floating point type, ``ty2`` must be a vector integer
6044type with the same number of elements as ``ty``
6045
6046Semantics:
6047""""""""""
6048
6049The '``fptosi``' instruction converts its :ref:`floating
6050point <t_floating>` operand into the nearest (rounding towards zero)
6051signed integer value. If the value cannot fit in ``ty2``, the results
6052are undefined.
6053
6054Example:
6055""""""""
6056
6057.. code-block:: llvm
6058
6059      %X = fptosi double -123.0 to i32      ; yields i32:-123
6060      %Y = fptosi float 1.0E-247 to i1      ; yields undefined:1
6061      %Z = fptosi float 1.04E+17 to i8      ; yields undefined:1
6062
6063'``uitofp .. to``' Instruction
6064^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6065
6066Syntax:
6067"""""""
6068
6069::
6070
6071      <result> = uitofp <ty> <value> to <ty2>             ; yields ty2
6072
6073Overview:
6074"""""""""
6075
6076The '``uitofp``' instruction regards ``value`` as an unsigned integer
6077and converts that value to the ``ty2`` type.
6078
6079Arguments:
6080""""""""""
6081
6082The '``uitofp``' instruction takes a value to cast, which must be a
6083scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6084``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6085``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6086type with the same number of elements as ``ty``
6087
6088Semantics:
6089""""""""""
6090
6091The '``uitofp``' instruction interprets its operand as an unsigned
6092integer quantity and converts it to the corresponding floating point
6093value. If the value cannot fit in the floating point value, the results
6094are undefined.
6095
6096Example:
6097""""""""
6098
6099.. code-block:: llvm
6100
6101      %X = uitofp i32 257 to float         ; yields float:257.0
6102      %Y = uitofp i8 -1 to double          ; yields double:255.0
6103
6104'``sitofp .. to``' Instruction
6105^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6106
6107Syntax:
6108"""""""
6109
6110::
6111
6112      <result> = sitofp <ty> <value> to <ty2>             ; yields ty2
6113
6114Overview:
6115"""""""""
6116
6117The '``sitofp``' instruction regards ``value`` as a signed integer and
6118converts that value to the ``ty2`` type.
6119
6120Arguments:
6121""""""""""
6122
6123The '``sitofp``' instruction takes a value to cast, which must be a
6124scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6125``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6126``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6127type with the same number of elements as ``ty``
6128
6129Semantics:
6130""""""""""
6131
6132The '``sitofp``' instruction interprets its operand as a signed integer
6133quantity and converts it to the corresponding floating point value. If
6134the value cannot fit in the floating point value, the results are
6135undefined.
6136
6137Example:
6138""""""""
6139
6140.. code-block:: llvm
6141
6142      %X = sitofp i32 257 to float         ; yields float:257.0
6143      %Y = sitofp i8 -1 to double          ; yields double:-1.0
6144
6145.. _i_ptrtoint:
6146
6147'``ptrtoint .. to``' Instruction
6148^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6149
6150Syntax:
6151"""""""
6152
6153::
6154
6155      <result> = ptrtoint <ty> <value> to <ty2>             ; yields ty2
6156
6157Overview:
6158"""""""""
6159
6160The '``ptrtoint``' instruction converts the pointer or a vector of
6161pointers ``value`` to the integer (or vector of integers) type ``ty2``.
6162
6163Arguments:
6164""""""""""
6165
6166The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
6167a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
6168type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
6169a vector of integers type.
6170
6171Semantics:
6172""""""""""
6173
6174The '``ptrtoint``' instruction converts ``value`` to integer type
6175``ty2`` by interpreting the pointer value as an integer and either
6176truncating or zero extending that value to the size of the integer type.
6177If ``value`` is smaller than ``ty2`` then a zero extension is done. If
6178``value`` is larger than ``ty2`` then a truncation is done. If they are
6179the same size, then nothing is done (*no-op cast*) other than a type
6180change.
6181
6182Example:
6183""""""""
6184
6185.. code-block:: llvm
6186
6187      %X = ptrtoint i32* %P to i8                         ; yields truncation on 32-bit architecture
6188      %Y = ptrtoint i32* %P to i64                        ; yields zero extension on 32-bit architecture
6189      %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
6190
6191.. _i_inttoptr:
6192
6193'``inttoptr .. to``' Instruction
6194^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6195
6196Syntax:
6197"""""""
6198
6199::
6200
6201      <result> = inttoptr <ty> <value> to <ty2>             ; yields ty2
6202
6203Overview:
6204"""""""""
6205
6206The '``inttoptr``' instruction converts an integer ``value`` to a
6207pointer type, ``ty2``.
6208
6209Arguments:
6210""""""""""
6211
6212The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
6213cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
6214type.
6215
6216Semantics:
6217""""""""""
6218
6219The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
6220applying either a zero extension or a truncation depending on the size
6221of the integer ``value``. If ``value`` is larger than the size of a
6222pointer then a truncation is done. If ``value`` is smaller than the size
6223of a pointer then a zero extension is done. If they are the same size,
6224nothing is done (*no-op cast*).
6225
6226Example:
6227""""""""
6228
6229.. code-block:: llvm
6230
6231      %X = inttoptr i32 255 to i32*          ; yields zero extension on 64-bit architecture
6232      %Y = inttoptr i32 255 to i32*          ; yields no-op on 32-bit architecture
6233      %Z = inttoptr i64 0 to i32*            ; yields truncation on 32-bit architecture
6234      %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
6235
6236.. _i_bitcast:
6237
6238'``bitcast .. to``' Instruction
6239^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6240
6241Syntax:
6242"""""""
6243
6244::
6245
6246      <result> = bitcast <ty> <value> to <ty2>             ; yields ty2
6247
6248Overview:
6249"""""""""
6250
6251The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
6252changing any bits.
6253
6254Arguments:
6255""""""""""
6256
6257The '``bitcast``' instruction takes a value to cast, which must be a
6258non-aggregate first class value, and a type to cast it to, which must
6259also be a non-aggregate :ref:`first class <t_firstclass>` type. The
6260bit sizes of ``value`` and the destination type, ``ty2``, must be
6261identical.  If the source type is a pointer, the destination type must
6262also be a pointer of the same size. This instruction supports bitwise
6263conversion of vectors to integers and to vectors of other types (as
6264long as they have the same size).
6265
6266Semantics:
6267""""""""""
6268
6269The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
6270is always a *no-op cast* because no bits change with this
6271conversion. The conversion is done as if the ``value`` had been stored
6272to memory and read back as type ``ty2``. Pointer (or vector of
6273pointers) types may only be converted to other pointer (or vector of
6274pointers) types with the same address space through this instruction.
6275To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
6276or :ref:`ptrtoint <i_ptrtoint>` instructions first.
6277
6278Example:
6279""""""""
6280
6281.. code-block:: llvm
6282
6283      %X = bitcast i8 255 to i8              ; yields i8 :-1
6284      %Y = bitcast i32* %x to sint*          ; yields sint*:%x
6285      %Z = bitcast <2 x int> %V to i64;        ; yields i64: %V
6286      %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
6287
6288.. _i_addrspacecast:
6289
6290'``addrspacecast .. to``' Instruction
6291^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6292
6293Syntax:
6294"""""""
6295
6296::
6297
6298      <result> = addrspacecast <pty> <ptrval> to <pty2>       ; yields pty2
6299
6300Overview:
6301"""""""""
6302
6303The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
6304address space ``n`` to type ``pty2`` in address space ``m``.
6305
6306Arguments:
6307""""""""""
6308
6309The '``addrspacecast``' instruction takes a pointer or vector of pointer value
6310to cast and a pointer type to cast it to, which must have a different
6311address space.
6312
6313Semantics:
6314""""""""""
6315
6316The '``addrspacecast``' instruction converts the pointer value
6317``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
6318value modification, depending on the target and the address space
6319pair. Pointer conversions within the same address space must be
6320performed with the ``bitcast`` instruction. Note that if the address space
6321conversion is legal then both result and operand refer to the same memory
6322location.
6323
6324Example:
6325""""""""
6326
6327.. code-block:: llvm
6328
6329      %X = addrspacecast i32* %x to i32 addrspace(1)*    ; yields i32 addrspace(1)*:%x
6330      %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)*    ; yields i64 addrspace(2)*:%y
6331      %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*>   ; yields <4 x float addrspace(3)*>:%z
6332
6333.. _otherops:
6334
6335Other Operations
6336----------------
6337
6338The instructions in this category are the "miscellaneous" instructions,
6339which defy better classification.
6340
6341.. _i_icmp:
6342
6343'``icmp``' Instruction
6344^^^^^^^^^^^^^^^^^^^^^^
6345
6346Syntax:
6347"""""""
6348
6349::
6350
6351      <result> = icmp <cond> <ty> <op1>, <op2>   ; yields i1 or <N x i1>:result
6352
6353Overview:
6354"""""""""
6355
6356The '``icmp``' instruction returns a boolean value or a vector of
6357boolean values based on comparison of its two integer, integer vector,
6358pointer, or pointer vector operands.
6359
6360Arguments:
6361""""""""""
6362
6363The '``icmp``' instruction takes three operands. The first operand is
6364the condition code indicating the kind of comparison to perform. It is
6365not a value, just a keyword. The possible condition code are:
6366
6367#. ``eq``: equal
6368#. ``ne``: not equal
6369#. ``ugt``: unsigned greater than
6370#. ``uge``: unsigned greater or equal
6371#. ``ult``: unsigned less than
6372#. ``ule``: unsigned less or equal
6373#. ``sgt``: signed greater than
6374#. ``sge``: signed greater or equal
6375#. ``slt``: signed less than
6376#. ``sle``: signed less or equal
6377
6378The remaining two arguments must be :ref:`integer <t_integer>` or
6379:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6380must also be identical types.
6381
6382Semantics:
6383""""""""""
6384
6385The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6386code given as ``cond``. The comparison performed always yields either an
6387:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6388
6389#. ``eq``: yields ``true`` if the operands are equal, ``false``
6390   otherwise. No sign interpretation is necessary or performed.
6391#. ``ne``: yields ``true`` if the operands are unequal, ``false``
6392   otherwise. No sign interpretation is necessary or performed.
6393#. ``ugt``: interprets the operands as unsigned values and yields
6394   ``true`` if ``op1`` is greater than ``op2``.
6395#. ``uge``: interprets the operands as unsigned values and yields
6396   ``true`` if ``op1`` is greater than or equal to ``op2``.
6397#. ``ult``: interprets the operands as unsigned values and yields
6398   ``true`` if ``op1`` is less than ``op2``.
6399#. ``ule``: interprets the operands as unsigned values and yields
6400   ``true`` if ``op1`` is less than or equal to ``op2``.
6401#. ``sgt``: interprets the operands as signed values and yields ``true``
6402   if ``op1`` is greater than ``op2``.
6403#. ``sge``: interprets the operands as signed values and yields ``true``
6404   if ``op1`` is greater than or equal to ``op2``.
6405#. ``slt``: interprets the operands as signed values and yields ``true``
6406   if ``op1`` is less than ``op2``.
6407#. ``sle``: interprets the operands as signed values and yields ``true``
6408   if ``op1`` is less than or equal to ``op2``.
6409
6410If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6411are compared as if they were integers.
6412
6413If the operands are integer vectors, then they are compared element by
6414element. The result is an ``i1`` vector with the same number of elements
6415as the values being compared. Otherwise, the result is an ``i1``.
6416
6417Example:
6418""""""""
6419
6420.. code-block:: llvm
6421
6422      <result> = icmp eq i32 4, 5          ; yields: result=false
6423      <result> = icmp ne float* %X, %X     ; yields: result=false
6424      <result> = icmp ult i16  4, 5        ; yields: result=true
6425      <result> = icmp sgt i16  4, 5        ; yields: result=false
6426      <result> = icmp ule i16 -4, 5        ; yields: result=false
6427      <result> = icmp sge i16  4, 5        ; yields: result=false
6428
6429Note that the code generator does not yet support vector types with the
6430``icmp`` instruction.
6431
6432.. _i_fcmp:
6433
6434'``fcmp``' Instruction
6435^^^^^^^^^^^^^^^^^^^^^^
6436
6437Syntax:
6438"""""""
6439
6440::
6441
6442      <result> = fcmp <cond> <ty> <op1>, <op2>     ; yields i1 or <N x i1>:result
6443
6444Overview:
6445"""""""""
6446
6447The '``fcmp``' instruction returns a boolean value or vector of boolean
6448values based on comparison of its operands.
6449
6450If the operands are floating point scalars, then the result type is a
6451boolean (:ref:`i1 <t_integer>`).
6452
6453If the operands are floating point vectors, then the result type is a
6454vector of boolean with the same number of elements as the operands being
6455compared.
6456
6457Arguments:
6458""""""""""
6459
6460The '``fcmp``' instruction takes three operands. The first operand is
6461the condition code indicating the kind of comparison to perform. It is
6462not a value, just a keyword. The possible condition code are:
6463
6464#. ``false``: no comparison, always returns false
6465#. ``oeq``: ordered and equal
6466#. ``ogt``: ordered and greater than
6467#. ``oge``: ordered and greater than or equal
6468#. ``olt``: ordered and less than
6469#. ``ole``: ordered and less than or equal
6470#. ``one``: ordered and not equal
6471#. ``ord``: ordered (no nans)
6472#. ``ueq``: unordered or equal
6473#. ``ugt``: unordered or greater than
6474#. ``uge``: unordered or greater than or equal
6475#. ``ult``: unordered or less than
6476#. ``ule``: unordered or less than or equal
6477#. ``une``: unordered or not equal
6478#. ``uno``: unordered (either nans)
6479#. ``true``: no comparison, always returns true
6480
6481*Ordered* means that neither operand is a QNAN while *unordered* means
6482that either operand may be a QNAN.
6483
6484Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6485point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6486type. They must have identical types.
6487
6488Semantics:
6489""""""""""
6490
6491The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6492condition code given as ``cond``. If the operands are vectors, then the
6493vectors are compared element by element. Each comparison performed
6494always yields an :ref:`i1 <t_integer>` result, as follows:
6495
6496#. ``false``: always yields ``false``, regardless of operands.
6497#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6498   is equal to ``op2``.
6499#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6500   is greater than ``op2``.
6501#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6502   is greater than or equal to ``op2``.
6503#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6504   is less than ``op2``.
6505#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6506   is less than or equal to ``op2``.
6507#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6508   is not equal to ``op2``.
6509#. ``ord``: yields ``true`` if both operands are not a QNAN.
6510#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6511   equal to ``op2``.
6512#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6513   greater than ``op2``.
6514#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6515   greater than or equal to ``op2``.
6516#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6517   less than ``op2``.
6518#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6519   less than or equal to ``op2``.
6520#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6521   not equal to ``op2``.
6522#. ``uno``: yields ``true`` if either operand is a QNAN.
6523#. ``true``: always yields ``true``, regardless of operands.
6524
6525Example:
6526""""""""
6527
6528.. code-block:: llvm
6529
6530      <result> = fcmp oeq float 4.0, 5.0    ; yields: result=false
6531      <result> = fcmp one float 4.0, 5.0    ; yields: result=true
6532      <result> = fcmp olt float 4.0, 5.0    ; yields: result=true
6533      <result> = fcmp ueq double 1.0, 2.0   ; yields: result=false
6534
6535Note that the code generator does not yet support vector types with the
6536``fcmp`` instruction.
6537
6538.. _i_phi:
6539
6540'``phi``' Instruction
6541^^^^^^^^^^^^^^^^^^^^^
6542
6543Syntax:
6544"""""""
6545
6546::
6547
6548      <result> = phi <ty> [ <val0>, <label0>], ...
6549
6550Overview:
6551"""""""""
6552
6553The '``phi``' instruction is used to implement the φ node in the SSA
6554graph representing the function.
6555
6556Arguments:
6557""""""""""
6558
6559The type of the incoming values is specified with the first type field.
6560After this, the '``phi``' instruction takes a list of pairs as
6561arguments, with one pair for each predecessor basic block of the current
6562block. Only values of :ref:`first class <t_firstclass>` type may be used as
6563the value arguments to the PHI node. Only labels may be used as the
6564label arguments.
6565
6566There must be no non-phi instructions between the start of a basic block
6567and the PHI instructions: i.e. PHI instructions must be first in a basic
6568block.
6569
6570For the purposes of the SSA form, the use of each incoming value is
6571deemed to occur on the edge from the corresponding predecessor block to
6572the current block (but after any definition of an '``invoke``'
6573instruction's return value on the same edge).
6574
6575Semantics:
6576""""""""""
6577
6578At runtime, the '``phi``' instruction logically takes on the value
6579specified by the pair corresponding to the predecessor basic block that
6580executed just prior to the current block.
6581
6582Example:
6583""""""""
6584
6585.. code-block:: llvm
6586
6587    Loop:       ; Infinite loop that counts from 0 on up...
6588      %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6589      %nextindvar = add i32 %indvar, 1
6590      br label %Loop
6591
6592.. _i_select:
6593
6594'``select``' Instruction
6595^^^^^^^^^^^^^^^^^^^^^^^^
6596
6597Syntax:
6598"""""""
6599
6600::
6601
6602      <result> = select selty <cond>, <ty> <val1>, <ty> <val2>             ; yields ty
6603
6604      selty is either i1 or {<N x i1>}
6605
6606Overview:
6607"""""""""
6608
6609The '``select``' instruction is used to choose one value based on a
6610condition, without IR-level branching.
6611
6612Arguments:
6613""""""""""
6614
6615The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6616values indicating the condition, and two values of the same :ref:`first
6617class <t_firstclass>` type. If the val1/val2 are vectors and the
6618condition is a scalar, then entire vectors are selected, not individual
6619elements.
6620
6621Semantics:
6622""""""""""
6623
6624If the condition is an i1 and it evaluates to 1, the instruction returns
6625the first value argument; otherwise, it returns the second value
6626argument.
6627
6628If the condition is a vector of i1, then the value arguments must be
6629vectors of the same size, and the selection is done element by element.
6630
6631Example:
6632""""""""
6633
6634.. code-block:: llvm
6635
6636      %X = select i1 true, i8 17, i8 42          ; yields i8:17
6637
6638.. _i_call:
6639
6640'``call``' Instruction
6641^^^^^^^^^^^^^^^^^^^^^^
6642
6643Syntax:
6644"""""""
6645
6646::
6647
6648      <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6649
6650Overview:
6651"""""""""
6652
6653The '``call``' instruction represents a simple function call.
6654
6655Arguments:
6656""""""""""
6657
6658This instruction requires several arguments:
6659
6660#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6661   should perform tail call optimization.  The ``tail`` marker is a hint that
6662   `can be ignored <CodeGenerator.html#sibcallopt>`_.  The ``musttail`` marker
6663   means that the call must be tail call optimized in order for the program to
6664   be correct.  The ``musttail`` marker provides these guarantees:
6665
6666   #. The call will not cause unbounded stack growth if it is part of a
6667      recursive cycle in the call graph.
6668   #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6669      forwarded in place.
6670
6671   Both markers imply that the callee does not access allocas or varargs from
6672   the caller.  Calls marked ``musttail`` must obey the following additional
6673   rules:
6674
6675   - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6676     or a pointer bitcast followed by a ret instruction.
6677   - The ret instruction must return the (possibly bitcasted) value
6678     produced by the call or void.
6679   - The caller and callee prototypes must match.  Pointer types of
6680     parameters or return types may differ in pointee type, but not
6681     in address space.
6682   - The calling conventions of the caller and callee must match.
6683   - All ABI-impacting function attributes, such as sret, byval, inreg,
6684     returned, and inalloca, must match.
6685   - The callee must be varargs iff the caller is varargs. Bitcasting a
6686     non-varargs function to the appropriate varargs type is legal so
6687     long as the non-varargs prefixes obey the other rules.
6688
6689   Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6690   the following conditions are met:
6691
6692   -  Caller and callee both have the calling convention ``fastcc``.
6693   -  The call is in tail position (ret immediately follows call and ret
6694      uses value of call or is void).
6695   -  Option ``-tailcallopt`` is enabled, or
6696      ``llvm::GuaranteedTailCallOpt`` is ``true``.
6697   -  `Platform-specific constraints are
6698      met. <CodeGenerator.html#tailcallopt>`_
6699
6700#. The optional "cconv" marker indicates which :ref:`calling
6701   convention <callingconv>` the call should use. If none is
6702   specified, the call defaults to using C calling conventions. The
6703   calling convention of the call must match the calling convention of
6704   the target function, or else the behavior is undefined.
6705#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6706   values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6707   are valid here.
6708#. '``ty``': the type of the call instruction itself which is also the
6709   type of the return value. Functions that return no value are marked
6710   ``void``.
6711#. '``fnty``': shall be the signature of the pointer to function value
6712   being invoked. The argument types must match the types implied by
6713   this signature. This type can be omitted if the function is not
6714   varargs and if the function type does not return a pointer to a
6715   function.
6716#. '``fnptrval``': An LLVM value containing a pointer to a function to
6717   be invoked. In most cases, this is a direct function invocation, but
6718   indirect ``call``'s are just as possible, calling an arbitrary pointer
6719   to function value.
6720#. '``function args``': argument list whose types match the function
6721   signature argument types and parameter attributes. All arguments must
6722   be of :ref:`first class <t_firstclass>` type. If the function signature
6723   indicates the function accepts a variable number of arguments, the
6724   extra arguments can be specified.
6725#. The optional :ref:`function attributes <fnattrs>` list. Only
6726   '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6727   attributes are valid here.
6728
6729Semantics:
6730""""""""""
6731
6732The '``call``' instruction is used to cause control flow to transfer to
6733a specified function, with its incoming arguments bound to the specified
6734values. Upon a '``ret``' instruction in the called function, control
6735flow continues with the instruction after the function call, and the
6736return value of the function is bound to the result argument.
6737
6738Example:
6739""""""""
6740
6741.. code-block:: llvm
6742
6743      %retval = call i32 @test(i32 %argc)
6744      call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42)        ; yields i32
6745      %X = tail call i32 @foo()                                    ; yields i32
6746      %Y = tail call fastcc i32 @foo()  ; yields i32
6747      call void %foo(i8 97 signext)
6748
6749      %struct.A = type { i32, i8 }
6750      %r = call %struct.A @foo()                        ; yields { i32, i8 }
6751      %gr = extractvalue %struct.A %r, 0                ; yields i32
6752      %gr1 = extractvalue %struct.A %r, 1               ; yields i8
6753      %Z = call void @foo() noreturn                    ; indicates that %foo never returns normally
6754      %ZZ = call zeroext i32 @bar()                     ; Return value is %zero extended
6755
6756llvm treats calls to some functions with names and arguments that match
6757the standard C99 library as being the C99 library functions, and may
6758perform optimizations or generate code for them under that assumption.
6759This is something we'd like to change in the future to provide better
6760support for freestanding environments and non-C-based languages.
6761
6762.. _i_va_arg:
6763
6764'``va_arg``' Instruction
6765^^^^^^^^^^^^^^^^^^^^^^^^
6766
6767Syntax:
6768"""""""
6769
6770::
6771
6772      <resultval> = va_arg <va_list*> <arglist>, <argty>
6773
6774Overview:
6775"""""""""
6776
6777The '``va_arg``' instruction is used to access arguments passed through
6778the "variable argument" area of a function call. It is used to implement
6779the ``va_arg`` macro in C.
6780
6781Arguments:
6782""""""""""
6783
6784This instruction takes a ``va_list*`` value and the type of the
6785argument. It returns a value of the specified argument type and
6786increments the ``va_list`` to point to the next argument. The actual
6787type of ``va_list`` is target specific.
6788
6789Semantics:
6790""""""""""
6791
6792The '``va_arg``' instruction loads an argument of the specified type
6793from the specified ``va_list`` and causes the ``va_list`` to point to
6794the next argument. For more information, see the variable argument
6795handling :ref:`Intrinsic Functions <int_varargs>`.
6796
6797It is legal for this instruction to be called in a function which does
6798not take a variable number of arguments, for example, the ``vfprintf``
6799function.
6800
6801``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6802function <intrinsics>` because it takes a type as an argument.
6803
6804Example:
6805""""""""
6806
6807See the :ref:`variable argument processing <int_varargs>` section.
6808
6809Note that the code generator does not yet fully support va\_arg on many
6810targets. Also, it does not currently support va\_arg with aggregate
6811types on any target.
6812
6813.. _i_landingpad:
6814
6815'``landingpad``' Instruction
6816^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6817
6818Syntax:
6819"""""""
6820
6821::
6822
6823      <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6824      <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6825
6826      <clause> := catch <type> <value>
6827      <clause> := filter <array constant type> <array constant>
6828
6829Overview:
6830"""""""""
6831
6832The '``landingpad``' instruction is used by `LLVM's exception handling
6833system <ExceptionHandling.html#overview>`_ to specify that a basic block
6834is a landing pad --- one where the exception lands, and corresponds to the
6835code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6836defines values supplied by the personality function (``pers_fn``) upon
6837re-entry to the function. The ``resultval`` has the type ``resultty``.
6838
6839Arguments:
6840""""""""""
6841
6842This instruction takes a ``pers_fn`` value. This is the personality
6843function associated with the unwinding mechanism. The optional
6844``cleanup`` flag indicates that the landing pad block is a cleanup.
6845
6846A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
6847contains the global variable representing the "type" that may be caught
6848or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6849clause takes an array constant as its argument. Use
6850"``[0 x i8**] undef``" for a filter which cannot throw. The
6851'``landingpad``' instruction must contain *at least* one ``clause`` or
6852the ``cleanup`` flag.
6853
6854Semantics:
6855""""""""""
6856
6857The '``landingpad``' instruction defines the values which are set by the
6858personality function (``pers_fn``) upon re-entry to the function, and
6859therefore the "result type" of the ``landingpad`` instruction. As with
6860calling conventions, how the personality function results are
6861represented in LLVM IR is target specific.
6862
6863The clauses are applied in order from top to bottom. If two
6864``landingpad`` instructions are merged together through inlining, the
6865clauses from the calling function are appended to the list of clauses.
6866When the call stack is being unwound due to an exception being thrown,
6867the exception is compared against each ``clause`` in turn. If it doesn't
6868match any of the clauses, and the ``cleanup`` flag is not set, then
6869unwinding continues further up the call stack.
6870
6871The ``landingpad`` instruction has several restrictions:
6872
6873-  A landing pad block is a basic block which is the unwind destination
6874   of an '``invoke``' instruction.
6875-  A landing pad block must have a '``landingpad``' instruction as its
6876   first non-PHI instruction.
6877-  There can be only one '``landingpad``' instruction within the landing
6878   pad block.
6879-  A basic block that is not a landing pad block may not include a
6880   '``landingpad``' instruction.
6881-  All '``landingpad``' instructions in a function must have the same
6882   personality function.
6883
6884Example:
6885""""""""
6886
6887.. code-block:: llvm
6888
6889      ;; A landing pad which can catch an integer.
6890      %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6891               catch i8** @_ZTIi
6892      ;; A landing pad that is a cleanup.
6893      %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6894               cleanup
6895      ;; A landing pad which can catch an integer and can only throw a double.
6896      %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6897               catch i8** @_ZTIi
6898               filter [1 x i8**] [@_ZTId]
6899
6900.. _intrinsics:
6901
6902Intrinsic Functions
6903===================
6904
6905LLVM supports the notion of an "intrinsic function". These functions
6906have well known names and semantics and are required to follow certain
6907restrictions. Overall, these intrinsics represent an extension mechanism
6908for the LLVM language that does not require changing all of the
6909transformations in LLVM when adding to the language (or the bitcode
6910reader/writer, the parser, etc...).
6911
6912Intrinsic function names must all start with an "``llvm.``" prefix. This
6913prefix is reserved in LLVM for intrinsic names; thus, function names may
6914not begin with this prefix. Intrinsic functions must always be external
6915functions: you cannot define the body of intrinsic functions. Intrinsic
6916functions may only be used in call or invoke instructions: it is illegal
6917to take the address of an intrinsic function. Additionally, because
6918intrinsic functions are part of the LLVM language, it is required if any
6919are added that they be documented here.
6920
6921Some intrinsic functions can be overloaded, i.e., the intrinsic
6922represents a family of functions that perform the same operation but on
6923different data types. Because LLVM can represent over 8 million
6924different integer types, overloading is used commonly to allow an
6925intrinsic function to operate on any integer type. One or more of the
6926argument types or the result type can be overloaded to accept any
6927integer type. Argument types may also be defined as exactly matching a
6928previous argument's type or the result type. This allows an intrinsic
6929function which accepts multiple arguments, but needs all of them to be
6930of the same type, to only be overloaded with respect to a single
6931argument or the result.
6932
6933Overloaded intrinsics will have the names of its overloaded argument
6934types encoded into its function name, each preceded by a period. Only
6935those types which are overloaded result in a name suffix. Arguments
6936whose type is matched against another type do not. For example, the
6937``llvm.ctpop`` function can take an integer of any width and returns an
6938integer of exactly the same integer width. This leads to a family of
6939functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6940``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6941overloaded, and only one type suffix is required. Because the argument's
6942type is matched against the return type, it does not require its own
6943name suffix.
6944
6945To learn how to add an intrinsic function, please see the `Extending
6946LLVM Guide <ExtendingLLVM.html>`_.
6947
6948.. _int_varargs:
6949
6950Variable Argument Handling Intrinsics
6951-------------------------------------
6952
6953Variable argument support is defined in LLVM with the
6954:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6955functions. These functions are related to the similarly named macros
6956defined in the ``<stdarg.h>`` header file.
6957
6958All of these functions operate on arguments that use a target-specific
6959value type "``va_list``". The LLVM assembly language reference manual
6960does not define what this type is, so all transformations should be
6961prepared to handle these functions regardless of the type used.
6962
6963This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6964variable argument handling intrinsic functions are used.
6965
6966.. code-block:: llvm
6967
6968    ; This struct is different for every platform. For most platforms,
6969    ; it is merely an i8*.
6970    %struct.va_list = type { i8* }
6971
6972    ; For Unix x86_64 platforms, va_list is the following struct:
6973    ; %struct.va_list = type { i32, i32, i8*, i8* }
6974
6975    define i32 @test(i32 %X, ...) {
6976      ; Initialize variable argument processing
6977      %ap = alloca %struct.va_list
6978      %ap2 = bitcast %struct.va_list* %ap to i8*
6979      call void @llvm.va_start(i8* %ap2)
6980
6981      ; Read a single integer argument
6982      %tmp = va_arg i8* %ap2, i32
6983
6984      ; Demonstrate usage of llvm.va_copy and llvm.va_end
6985      %aq = alloca i8*
6986      %aq2 = bitcast i8** %aq to i8*
6987      call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6988      call void @llvm.va_end(i8* %aq2)
6989
6990      ; Stop processing of arguments.
6991      call void @llvm.va_end(i8* %ap2)
6992      ret i32 %tmp
6993    }
6994
6995    declare void @llvm.va_start(i8*)
6996    declare void @llvm.va_copy(i8*, i8*)
6997    declare void @llvm.va_end(i8*)
6998
6999.. _int_va_start:
7000
7001'``llvm.va_start``' Intrinsic
7002^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7003
7004Syntax:
7005"""""""
7006
7007::
7008
7009      declare void @llvm.va_start(i8* <arglist>)
7010
7011Overview:
7012"""""""""
7013
7014The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
7015subsequent use by ``va_arg``.
7016
7017Arguments:
7018""""""""""
7019
7020The argument is a pointer to a ``va_list`` element to initialize.
7021
7022Semantics:
7023""""""""""
7024
7025The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
7026available in C. In a target-dependent way, it initializes the
7027``va_list`` element to which the argument points, so that the next call
7028to ``va_arg`` will produce the first variable argument passed to the
7029function. Unlike the C ``va_start`` macro, this intrinsic does not need
7030to know the last argument of the function as the compiler can figure
7031that out.
7032
7033'``llvm.va_end``' Intrinsic
7034^^^^^^^^^^^^^^^^^^^^^^^^^^^
7035
7036Syntax:
7037"""""""
7038
7039::
7040
7041      declare void @llvm.va_end(i8* <arglist>)
7042
7043Overview:
7044"""""""""
7045
7046The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
7047initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
7048
7049Arguments:
7050""""""""""
7051
7052The argument is a pointer to a ``va_list`` to destroy.
7053
7054Semantics:
7055""""""""""
7056
7057The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
7058available in C. In a target-dependent way, it destroys the ``va_list``
7059element to which the argument points. Calls to
7060:ref:`llvm.va_start <int_va_start>` and
7061:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
7062``llvm.va_end``.
7063
7064.. _int_va_copy:
7065
7066'``llvm.va_copy``' Intrinsic
7067^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7068
7069Syntax:
7070"""""""
7071
7072::
7073
7074      declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
7075
7076Overview:
7077"""""""""
7078
7079The '``llvm.va_copy``' intrinsic copies the current argument position
7080from the source argument list to the destination argument list.
7081
7082Arguments:
7083""""""""""
7084
7085The first argument is a pointer to a ``va_list`` element to initialize.
7086The second argument is a pointer to a ``va_list`` element to copy from.
7087
7088Semantics:
7089""""""""""
7090
7091The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
7092available in C. In a target-dependent way, it copies the source
7093``va_list`` element into the destination ``va_list`` element. This
7094intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
7095arbitrarily complex and require, for example, memory allocation.
7096
7097Accurate Garbage Collection Intrinsics
7098--------------------------------------
7099
7100LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
7101(GC) requires the implementation and generation of these intrinsics.
7102These intrinsics allow identification of :ref:`GC roots on the
7103stack <int_gcroot>`, as well as garbage collector implementations that
7104require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
7105Front-ends for type-safe garbage collected languages should generate
7106these intrinsics to make use of the LLVM garbage collectors. For more
7107details, see `Accurate Garbage Collection with
7108LLVM <GarbageCollection.html>`_.
7109
7110The garbage collection intrinsics only operate on objects in the generic
7111address space (address space zero).
7112
7113.. _int_gcroot:
7114
7115'``llvm.gcroot``' Intrinsic
7116^^^^^^^^^^^^^^^^^^^^^^^^^^^
7117
7118Syntax:
7119"""""""
7120
7121::
7122
7123      declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
7124
7125Overview:
7126"""""""""
7127
7128The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
7129the code generator, and allows some metadata to be associated with it.
7130
7131Arguments:
7132""""""""""
7133
7134The first argument specifies the address of a stack object that contains
7135the root pointer. The second pointer (which must be either a constant or
7136a global value address) contains the meta-data to be associated with the
7137root.
7138
7139Semantics:
7140""""""""""
7141
7142At runtime, a call to this intrinsic stores a null pointer into the
7143"ptrloc" location. At compile-time, the code generator generates
7144information to allow the runtime to find the pointer at GC safe points.
7145The '``llvm.gcroot``' intrinsic may only be used in a function which
7146:ref:`specifies a GC algorithm <gc>`.
7147
7148.. _int_gcread:
7149
7150'``llvm.gcread``' Intrinsic
7151^^^^^^^^^^^^^^^^^^^^^^^^^^^
7152
7153Syntax:
7154"""""""
7155
7156::
7157
7158      declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
7159
7160Overview:
7161"""""""""
7162
7163The '``llvm.gcread``' intrinsic identifies reads of references from heap
7164locations, allowing garbage collector implementations that require read
7165barriers.
7166
7167Arguments:
7168""""""""""
7169
7170The second argument is the address to read from, which should be an
7171address allocated from the garbage collector. The first object is a
7172pointer to the start of the referenced object, if needed by the language
7173runtime (otherwise null).
7174
7175Semantics:
7176""""""""""
7177
7178The '``llvm.gcread``' intrinsic has the same semantics as a load
7179instruction, but may be replaced with substantially more complex code by
7180the garbage collector runtime, as needed. The '``llvm.gcread``'
7181intrinsic may only be used in a function which :ref:`specifies a GC
7182algorithm <gc>`.
7183
7184.. _int_gcwrite:
7185
7186'``llvm.gcwrite``' Intrinsic
7187^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7188
7189Syntax:
7190"""""""
7191
7192::
7193
7194      declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
7195
7196Overview:
7197"""""""""
7198
7199The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
7200locations, allowing garbage collector implementations that require write
7201barriers (such as generational or reference counting collectors).
7202
7203Arguments:
7204""""""""""
7205
7206The first argument is the reference to store, the second is the start of
7207the object to store it to, and the third is the address of the field of
7208Obj to store to. If the runtime does not require a pointer to the
7209object, Obj may be null.
7210
7211Semantics:
7212""""""""""
7213
7214The '``llvm.gcwrite``' intrinsic has the same semantics as a store
7215instruction, but may be replaced with substantially more complex code by
7216the garbage collector runtime, as needed. The '``llvm.gcwrite``'
7217intrinsic may only be used in a function which :ref:`specifies a GC
7218algorithm <gc>`.
7219
7220Code Generator Intrinsics
7221-------------------------
7222
7223These intrinsics are provided by LLVM to expose special features that
7224may only be implemented with code generator support.
7225
7226'``llvm.returnaddress``' Intrinsic
7227^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7228
7229Syntax:
7230"""""""
7231
7232::
7233
7234      declare i8  *@llvm.returnaddress(i32 <level>)
7235
7236Overview:
7237"""""""""
7238
7239The '``llvm.returnaddress``' intrinsic attempts to compute a
7240target-specific value indicating the return address of the current
7241function or one of its callers.
7242
7243Arguments:
7244""""""""""
7245
7246The argument to this intrinsic indicates which function to return the
7247address for. Zero indicates the calling function, one indicates its
7248caller, etc. The argument is **required** to be a constant integer
7249value.
7250
7251Semantics:
7252""""""""""
7253
7254The '``llvm.returnaddress``' intrinsic either returns a pointer
7255indicating the return address of the specified call frame, or zero if it
7256cannot be identified. The value returned by this intrinsic is likely to
7257be incorrect or 0 for arguments other than zero, so it should only be
7258used for debugging purposes.
7259
7260Note that calling this intrinsic does not prevent function inlining or
7261other aggressive transformations, so the value returned may not be that
7262of the obvious source-language caller.
7263
7264'``llvm.frameaddress``' Intrinsic
7265^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7266
7267Syntax:
7268"""""""
7269
7270::
7271
7272      declare i8* @llvm.frameaddress(i32 <level>)
7273
7274Overview:
7275"""""""""
7276
7277The '``llvm.frameaddress``' intrinsic attempts to return the
7278target-specific frame pointer value for the specified stack frame.
7279
7280Arguments:
7281""""""""""
7282
7283The argument to this intrinsic indicates which function to return the
7284frame pointer for. Zero indicates the calling function, one indicates
7285its caller, etc. The argument is **required** to be a constant integer
7286value.
7287
7288Semantics:
7289""""""""""
7290
7291The '``llvm.frameaddress``' intrinsic either returns a pointer
7292indicating the frame address of the specified call frame, or zero if it
7293cannot be identified. The value returned by this intrinsic is likely to
7294be incorrect or 0 for arguments other than zero, so it should only be
7295used for debugging purposes.
7296
7297Note that calling this intrinsic does not prevent function inlining or
7298other aggressive transformations, so the value returned may not be that
7299of the obvious source-language caller.
7300
7301'``llvm.frameallocate``' and '``llvm.framerecover``' Intrinsics
7302^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7303
7304Syntax:
7305"""""""
7306
7307::
7308
7309      declare i8* @llvm.frameallocate(i32 %size)
7310      declare i8* @llvm.framerecover(i8* %func, i8* %fp)
7311
7312Overview:
7313"""""""""
7314
7315The '``llvm.frameallocate``' intrinsic allocates stack memory at some fixed
7316offset from the frame pointer, and the '``llvm.framerecover``'
7317intrinsic applies that offset to a live frame pointer to recover the address of
7318the allocation. The offset is computed during frame layout of the caller of
7319``llvm.frameallocate``.
7320
7321Arguments:
7322""""""""""
7323
7324The ``size`` argument to '``llvm.frameallocate``' must be a constant integer
7325indicating the amount of stack memory to allocate. As with allocas, allocating
7326zero bytes is legal, but the result is undefined.
7327
7328The ``func`` argument to '``llvm.framerecover``' must be a constant
7329bitcasted pointer to a function defined in the current module. The code
7330generator cannot determine the frame allocation offset of functions defined in
7331other modules.
7332
7333The ``fp`` argument to '``llvm.framerecover``' must be a frame
7334pointer of a call frame that is currently live. The return value of
7335'``llvm.frameaddress``' is one way to produce such a value, but most platforms
7336also expose the frame pointer through stack unwinding mechanisms.
7337
7338Semantics:
7339""""""""""
7340
7341These intrinsics allow a group of functions to access one stack memory
7342allocation in an ancestor stack frame. The memory returned from
7343'``llvm.frameallocate``' may be allocated prior to stack realignment, so the
7344memory is only aligned to the ABI-required stack alignment.  Each function may
7345only call '``llvm.frameallocate``' one or zero times from the function entry
7346block.  The frame allocation intrinsic inhibits inlining, as any frame
7347allocations in the inlined function frame are likely to be at a different
7348offset from the one used by '``llvm.framerecover``' called with the
7349uninlined function.
7350
7351.. _int_read_register:
7352.. _int_write_register:
7353
7354'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
7355^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7356
7357Syntax:
7358"""""""
7359
7360::
7361
7362      declare i32 @llvm.read_register.i32(metadata)
7363      declare i64 @llvm.read_register.i64(metadata)
7364      declare void @llvm.write_register.i32(metadata, i32 @value)
7365      declare void @llvm.write_register.i64(metadata, i64 @value)
7366      !0 = !{!"sp\00"}
7367
7368Overview:
7369"""""""""
7370
7371The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
7372provides access to the named register. The register must be valid on
7373the architecture being compiled to. The type needs to be compatible
7374with the register being read.
7375
7376Semantics:
7377""""""""""
7378
7379The '``llvm.read_register``' intrinsic returns the current value of the
7380register, where possible. The '``llvm.write_register``' intrinsic sets
7381the current value of the register, where possible.
7382
7383This is useful to implement named register global variables that need
7384to always be mapped to a specific register, as is common practice on
7385bare-metal programs including OS kernels.
7386
7387The compiler doesn't check for register availability or use of the used
7388register in surrounding code, including inline assembly. Because of that,
7389allocatable registers are not supported.
7390
7391Warning: So far it only works with the stack pointer on selected
7392architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
7393work is needed to support other registers and even more so, allocatable
7394registers.
7395
7396.. _int_stacksave:
7397
7398'``llvm.stacksave``' Intrinsic
7399^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7400
7401Syntax:
7402"""""""
7403
7404::
7405
7406      declare i8* @llvm.stacksave()
7407
7408Overview:
7409"""""""""
7410
7411The '``llvm.stacksave``' intrinsic is used to remember the current state
7412of the function stack, for use with
7413:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
7414implementing language features like scoped automatic variable sized
7415arrays in C99.
7416
7417Semantics:
7418""""""""""
7419
7420This intrinsic returns a opaque pointer value that can be passed to
7421:ref:`llvm.stackrestore <int_stackrestore>`. When an
7422``llvm.stackrestore`` intrinsic is executed with a value saved from
7423``llvm.stacksave``, it effectively restores the state of the stack to
7424the state it was in when the ``llvm.stacksave`` intrinsic executed. In
7425practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
7426were allocated after the ``llvm.stacksave`` was executed.
7427
7428.. _int_stackrestore:
7429
7430'``llvm.stackrestore``' Intrinsic
7431^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7432
7433Syntax:
7434"""""""
7435
7436::
7437
7438      declare void @llvm.stackrestore(i8* %ptr)
7439
7440Overview:
7441"""""""""
7442
7443The '``llvm.stackrestore``' intrinsic is used to restore the state of
7444the function stack to the state it was in when the corresponding
7445:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7446useful for implementing language features like scoped automatic variable
7447sized arrays in C99.
7448
7449Semantics:
7450""""""""""
7451
7452See the description for :ref:`llvm.stacksave <int_stacksave>`.
7453
7454'``llvm.prefetch``' Intrinsic
7455^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7456
7457Syntax:
7458"""""""
7459
7460::
7461
7462      declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7463
7464Overview:
7465"""""""""
7466
7467The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7468insert a prefetch instruction if supported; otherwise, it is a noop.
7469Prefetches have no effect on the behavior of the program but can change
7470its performance characteristics.
7471
7472Arguments:
7473""""""""""
7474
7475``address`` is the address to be prefetched, ``rw`` is the specifier
7476determining if the fetch should be for a read (0) or write (1), and
7477``locality`` is a temporal locality specifier ranging from (0) - no
7478locality, to (3) - extremely local keep in cache. The ``cache type``
7479specifies whether the prefetch is performed on the data (1) or
7480instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7481arguments must be constant integers.
7482
7483Semantics:
7484""""""""""
7485
7486This intrinsic does not modify the behavior of the program. In
7487particular, prefetches cannot trap and do not produce a value. On
7488targets that support this intrinsic, the prefetch can provide hints to
7489the processor cache for better performance.
7490
7491'``llvm.pcmarker``' Intrinsic
7492^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7493
7494Syntax:
7495"""""""
7496
7497::
7498
7499      declare void @llvm.pcmarker(i32 <id>)
7500
7501Overview:
7502"""""""""
7503
7504The '``llvm.pcmarker``' intrinsic is a method to export a Program
7505Counter (PC) in a region of code to simulators and other tools. The
7506method is target specific, but it is expected that the marker will use
7507exported symbols to transmit the PC of the marker. The marker makes no
7508guarantees that it will remain with any specific instruction after
7509optimizations. It is possible that the presence of a marker will inhibit
7510optimizations. The intended use is to be inserted after optimizations to
7511allow correlations of simulation runs.
7512
7513Arguments:
7514""""""""""
7515
7516``id`` is a numerical id identifying the marker.
7517
7518Semantics:
7519""""""""""
7520
7521This intrinsic does not modify the behavior of the program. Backends
7522that do not support this intrinsic may ignore it.
7523
7524'``llvm.readcyclecounter``' Intrinsic
7525^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7526
7527Syntax:
7528"""""""
7529
7530::
7531
7532      declare i64 @llvm.readcyclecounter()
7533
7534Overview:
7535"""""""""
7536
7537The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7538counter register (or similar low latency, high accuracy clocks) on those
7539targets that support it. On X86, it should map to RDTSC. On Alpha, it
7540should map to RPCC. As the backing counters overflow quickly (on the
7541order of 9 seconds on alpha), this should only be used for small
7542timings.
7543
7544Semantics:
7545""""""""""
7546
7547When directly supported, reading the cycle counter should not modify any
7548memory. Implementations are allowed to either return a application
7549specific value or a system wide value. On backends without support, this
7550is lowered to a constant 0.
7551
7552Note that runtime support may be conditional on the privilege-level code is
7553running at and the host platform.
7554
7555'``llvm.clear_cache``' Intrinsic
7556^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7557
7558Syntax:
7559"""""""
7560
7561::
7562
7563      declare void @llvm.clear_cache(i8*, i8*)
7564
7565Overview:
7566"""""""""
7567
7568The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7569in the specified range to the execution unit of the processor. On
7570targets with non-unified instruction and data cache, the implementation
7571flushes the instruction cache.
7572
7573Semantics:
7574""""""""""
7575
7576On platforms with coherent instruction and data caches (e.g. x86), this
7577intrinsic is a nop. On platforms with non-coherent instruction and data
7578cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
7579instructions or a system call, if cache flushing requires special
7580privileges.
7581
7582The default behavior is to emit a call to ``__clear_cache`` from the run
7583time library.
7584
7585This instrinsic does *not* empty the instruction pipeline. Modifications
7586of the current function are outside the scope of the intrinsic.
7587
7588'``llvm.instrprof_increment``' Intrinsic
7589^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7590
7591Syntax:
7592"""""""
7593
7594::
7595
7596      declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
7597                                             i32 <num-counters>, i32 <index>)
7598
7599Overview:
7600"""""""""
7601
7602The '``llvm.instrprof_increment``' intrinsic can be emitted by a
7603frontend for use with instrumentation based profiling. These will be
7604lowered by the ``-instrprof`` pass to generate execution counts of a
7605program at runtime.
7606
7607Arguments:
7608""""""""""
7609
7610The first argument is a pointer to a global variable containing the
7611name of the entity being instrumented. This should generally be the
7612(mangled) function name for a set of counters.
7613
7614The second argument is a hash value that can be used by the consumer
7615of the profile data to detect changes to the instrumented source, and
7616the third is the number of counters associated with ``name``. It is an
7617error if ``hash`` or ``num-counters`` differ between two instances of
7618``instrprof_increment`` that refer to the same name.
7619
7620The last argument refers to which of the counters for ``name`` should
7621be incremented. It should be a value between 0 and ``num-counters``.
7622
7623Semantics:
7624""""""""""
7625
7626This intrinsic represents an increment of a profiling counter. It will
7627cause the ``-instrprof`` pass to generate the appropriate data
7628structures and the code to increment the appropriate value, in a
7629format that can be written out by a compiler runtime and consumed via
7630the ``llvm-profdata`` tool.
7631
7632Standard C Library Intrinsics
7633-----------------------------
7634
7635LLVM provides intrinsics for a few important standard C library
7636functions. These intrinsics allow source-language front-ends to pass
7637information about the alignment of the pointer arguments to the code
7638generator, providing opportunity for more efficient code generation.
7639
7640.. _int_memcpy:
7641
7642'``llvm.memcpy``' Intrinsic
7643^^^^^^^^^^^^^^^^^^^^^^^^^^^
7644
7645Syntax:
7646"""""""
7647
7648This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7649integer bit width and for different address spaces. Not all targets
7650support all bit widths however.
7651
7652::
7653
7654      declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7655                                              i32 <len>, i32 <align>, i1 <isvolatile>)
7656      declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7657                                              i64 <len>, i32 <align>, i1 <isvolatile>)
7658
7659Overview:
7660"""""""""
7661
7662The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7663source location to the destination location.
7664
7665Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7666intrinsics do not return a value, takes extra alignment/isvolatile
7667arguments and the pointers can be in specified address spaces.
7668
7669Arguments:
7670""""""""""
7671
7672The first argument is a pointer to the destination, the second is a
7673pointer to the source. The third argument is an integer argument
7674specifying the number of bytes to copy, the fourth argument is the
7675alignment of the source and destination locations, and the fifth is a
7676boolean indicating a volatile access.
7677
7678If the call to this intrinsic has an alignment value that is not 0 or 1,
7679then the caller guarantees that both the source and destination pointers
7680are aligned to that boundary.
7681
7682If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7683a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7684very cleanly specified and it is unwise to depend on it.
7685
7686Semantics:
7687""""""""""
7688
7689The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7690source location to the destination location, which are not allowed to
7691overlap. It copies "len" bytes of memory over. If the argument is known
7692to be aligned to some boundary, this can be specified as the fourth
7693argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
7694
7695'``llvm.memmove``' Intrinsic
7696^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7697
7698Syntax:
7699"""""""
7700
7701This is an overloaded intrinsic. You can use llvm.memmove on any integer
7702bit width and for different address space. Not all targets support all
7703bit widths however.
7704
7705::
7706
7707      declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7708                                               i32 <len>, i32 <align>, i1 <isvolatile>)
7709      declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7710                                               i64 <len>, i32 <align>, i1 <isvolatile>)
7711
7712Overview:
7713"""""""""
7714
7715The '``llvm.memmove.*``' intrinsics move a block of memory from the
7716source location to the destination location. It is similar to the
7717'``llvm.memcpy``' intrinsic but allows the two memory locations to
7718overlap.
7719
7720Note that, unlike the standard libc function, the ``llvm.memmove.*``
7721intrinsics do not return a value, takes extra alignment/isvolatile
7722arguments and the pointers can be in specified address spaces.
7723
7724Arguments:
7725""""""""""
7726
7727The first argument is a pointer to the destination, the second is a
7728pointer to the source. The third argument is an integer argument
7729specifying the number of bytes to copy, the fourth argument is the
7730alignment of the source and destination locations, and the fifth is a
7731boolean indicating a volatile access.
7732
7733If the call to this intrinsic has an alignment value that is not 0 or 1,
7734then the caller guarantees that the source and destination pointers are
7735aligned to that boundary.
7736
7737If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7738is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7739not very cleanly specified and it is unwise to depend on it.
7740
7741Semantics:
7742""""""""""
7743
7744The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7745source location to the destination location, which may overlap. It
7746copies "len" bytes of memory over. If the argument is known to be
7747aligned to some boundary, this can be specified as the fourth argument,
7748otherwise it should be set to 0 or 1 (both meaning no alignment).
7749
7750'``llvm.memset.*``' Intrinsics
7751^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7752
7753Syntax:
7754"""""""
7755
7756This is an overloaded intrinsic. You can use llvm.memset on any integer
7757bit width and for different address spaces. However, not all targets
7758support all bit widths.
7759
7760::
7761
7762      declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7763                                         i32 <len>, i32 <align>, i1 <isvolatile>)
7764      declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7765                                         i64 <len>, i32 <align>, i1 <isvolatile>)
7766
7767Overview:
7768"""""""""
7769
7770The '``llvm.memset.*``' intrinsics fill a block of memory with a
7771particular byte value.
7772
7773Note that, unlike the standard libc function, the ``llvm.memset``
7774intrinsic does not return a value and takes extra alignment/volatile
7775arguments. Also, the destination can be in an arbitrary address space.
7776
7777Arguments:
7778""""""""""
7779
7780The first argument is a pointer to the destination to fill, the second
7781is the byte value with which to fill it, the third argument is an
7782integer argument specifying the number of bytes to fill, and the fourth
7783argument is the known alignment of the destination location.
7784
7785If the call to this intrinsic has an alignment value that is not 0 or 1,
7786then the caller guarantees that the destination pointer is aligned to
7787that boundary.
7788
7789If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7790a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7791very cleanly specified and it is unwise to depend on it.
7792
7793Semantics:
7794""""""""""
7795
7796The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7797at the destination location. If the argument is known to be aligned to
7798some boundary, this can be specified as the fourth argument, otherwise
7799it should be set to 0 or 1 (both meaning no alignment).
7800
7801'``llvm.sqrt.*``' Intrinsic
7802^^^^^^^^^^^^^^^^^^^^^^^^^^^
7803
7804Syntax:
7805"""""""
7806
7807This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7808floating point or vector of floating point type. Not all targets support
7809all types however.
7810
7811::
7812
7813      declare float     @llvm.sqrt.f32(float %Val)
7814      declare double    @llvm.sqrt.f64(double %Val)
7815      declare x86_fp80  @llvm.sqrt.f80(x86_fp80 %Val)
7816      declare fp128     @llvm.sqrt.f128(fp128 %Val)
7817      declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7818
7819Overview:
7820"""""""""
7821
7822The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7823returning the same value as the libm '``sqrt``' functions would. Unlike
7824``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7825negative numbers other than -0.0 (which allows for better optimization,
7826because there is no need to worry about errno being set).
7827``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7828
7829Arguments:
7830""""""""""
7831
7832The argument and return value are floating point numbers of the same
7833type.
7834
7835Semantics:
7836""""""""""
7837
7838This function returns the sqrt of the specified operand if it is a
7839nonnegative floating point number.
7840
7841'``llvm.powi.*``' Intrinsic
7842^^^^^^^^^^^^^^^^^^^^^^^^^^^
7843
7844Syntax:
7845"""""""
7846
7847This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7848floating point or vector of floating point type. Not all targets support
7849all types however.
7850
7851::
7852
7853      declare float     @llvm.powi.f32(float  %Val, i32 %power)
7854      declare double    @llvm.powi.f64(double %Val, i32 %power)
7855      declare x86_fp80  @llvm.powi.f80(x86_fp80  %Val, i32 %power)
7856      declare fp128     @llvm.powi.f128(fp128 %Val, i32 %power)
7857      declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128  %Val, i32 %power)
7858
7859Overview:
7860"""""""""
7861
7862The '``llvm.powi.*``' intrinsics return the first operand raised to the
7863specified (positive or negative) power. The order of evaluation of
7864multiplications is not defined. When a vector of floating point type is
7865used, the second argument remains a scalar integer value.
7866
7867Arguments:
7868""""""""""
7869
7870The second argument is an integer power, and the first is a value to
7871raise to that power.
7872
7873Semantics:
7874""""""""""
7875
7876This function returns the first value raised to the second power with an
7877unspecified sequence of rounding operations.
7878
7879'``llvm.sin.*``' Intrinsic
7880^^^^^^^^^^^^^^^^^^^^^^^^^^
7881
7882Syntax:
7883"""""""
7884
7885This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7886floating point or vector of floating point type. Not all targets support
7887all types however.
7888
7889::
7890
7891      declare float     @llvm.sin.f32(float  %Val)
7892      declare double    @llvm.sin.f64(double %Val)
7893      declare x86_fp80  @llvm.sin.f80(x86_fp80  %Val)
7894      declare fp128     @llvm.sin.f128(fp128 %Val)
7895      declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128  %Val)
7896
7897Overview:
7898"""""""""
7899
7900The '``llvm.sin.*``' intrinsics return the sine of the operand.
7901
7902Arguments:
7903""""""""""
7904
7905The argument and return value are floating point numbers of the same
7906type.
7907
7908Semantics:
7909""""""""""
7910
7911This function returns the sine of the specified operand, returning the
7912same values as the libm ``sin`` functions would, and handles error
7913conditions in the same way.
7914
7915'``llvm.cos.*``' Intrinsic
7916^^^^^^^^^^^^^^^^^^^^^^^^^^
7917
7918Syntax:
7919"""""""
7920
7921This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7922floating point or vector of floating point type. Not all targets support
7923all types however.
7924
7925::
7926
7927      declare float     @llvm.cos.f32(float  %Val)
7928      declare double    @llvm.cos.f64(double %Val)
7929      declare x86_fp80  @llvm.cos.f80(x86_fp80  %Val)
7930      declare fp128     @llvm.cos.f128(fp128 %Val)
7931      declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128  %Val)
7932
7933Overview:
7934"""""""""
7935
7936The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7937
7938Arguments:
7939""""""""""
7940
7941The argument and return value are floating point numbers of the same
7942type.
7943
7944Semantics:
7945""""""""""
7946
7947This function returns the cosine of the specified operand, returning the
7948same values as the libm ``cos`` functions would, and handles error
7949conditions in the same way.
7950
7951'``llvm.pow.*``' Intrinsic
7952^^^^^^^^^^^^^^^^^^^^^^^^^^
7953
7954Syntax:
7955"""""""
7956
7957This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7958floating point or vector of floating point type. Not all targets support
7959all types however.
7960
7961::
7962
7963      declare float     @llvm.pow.f32(float  %Val, float %Power)
7964      declare double    @llvm.pow.f64(double %Val, double %Power)
7965      declare x86_fp80  @llvm.pow.f80(x86_fp80  %Val, x86_fp80 %Power)
7966      declare fp128     @llvm.pow.f128(fp128 %Val, fp128 %Power)
7967      declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128  %Val, ppc_fp128 Power)
7968
7969Overview:
7970"""""""""
7971
7972The '``llvm.pow.*``' intrinsics return the first operand raised to the
7973specified (positive or negative) power.
7974
7975Arguments:
7976""""""""""
7977
7978The second argument is a floating point power, and the first is a value
7979to raise to that power.
7980
7981Semantics:
7982""""""""""
7983
7984This function returns the first value raised to the second power,
7985returning the same values as the libm ``pow`` functions would, and
7986handles error conditions in the same way.
7987
7988'``llvm.exp.*``' Intrinsic
7989^^^^^^^^^^^^^^^^^^^^^^^^^^
7990
7991Syntax:
7992"""""""
7993
7994This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7995floating point or vector of floating point type. Not all targets support
7996all types however.
7997
7998::
7999
8000      declare float     @llvm.exp.f32(float  %Val)
8001      declare double    @llvm.exp.f64(double %Val)
8002      declare x86_fp80  @llvm.exp.f80(x86_fp80  %Val)
8003      declare fp128     @llvm.exp.f128(fp128 %Val)
8004      declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128  %Val)
8005
8006Overview:
8007"""""""""
8008
8009The '``llvm.exp.*``' intrinsics perform the exp function.
8010
8011Arguments:
8012""""""""""
8013
8014The argument and return value are floating point numbers of the same
8015type.
8016
8017Semantics:
8018""""""""""
8019
8020This function returns the same values as the libm ``exp`` functions
8021would, and handles error conditions in the same way.
8022
8023'``llvm.exp2.*``' Intrinsic
8024^^^^^^^^^^^^^^^^^^^^^^^^^^^
8025
8026Syntax:
8027"""""""
8028
8029This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
8030floating point or vector of floating point type. Not all targets support
8031all types however.
8032
8033::
8034
8035      declare float     @llvm.exp2.f32(float  %Val)
8036      declare double    @llvm.exp2.f64(double %Val)
8037      declare x86_fp80  @llvm.exp2.f80(x86_fp80  %Val)
8038      declare fp128     @llvm.exp2.f128(fp128 %Val)
8039      declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128  %Val)
8040
8041Overview:
8042"""""""""
8043
8044The '``llvm.exp2.*``' intrinsics perform the exp2 function.
8045
8046Arguments:
8047""""""""""
8048
8049The argument and return value are floating point numbers of the same
8050type.
8051
8052Semantics:
8053""""""""""
8054
8055This function returns the same values as the libm ``exp2`` functions
8056would, and handles error conditions in the same way.
8057
8058'``llvm.log.*``' Intrinsic
8059^^^^^^^^^^^^^^^^^^^^^^^^^^
8060
8061Syntax:
8062"""""""
8063
8064This is an overloaded intrinsic. You can use ``llvm.log`` on any
8065floating point or vector of floating point type. Not all targets support
8066all types however.
8067
8068::
8069
8070      declare float     @llvm.log.f32(float  %Val)
8071      declare double    @llvm.log.f64(double %Val)
8072      declare x86_fp80  @llvm.log.f80(x86_fp80  %Val)
8073      declare fp128     @llvm.log.f128(fp128 %Val)
8074      declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128  %Val)
8075
8076Overview:
8077"""""""""
8078
8079The '``llvm.log.*``' intrinsics perform the log function.
8080
8081Arguments:
8082""""""""""
8083
8084The argument and return value are floating point numbers of the same
8085type.
8086
8087Semantics:
8088""""""""""
8089
8090This function returns the same values as the libm ``log`` functions
8091would, and handles error conditions in the same way.
8092
8093'``llvm.log10.*``' Intrinsic
8094^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8095
8096Syntax:
8097"""""""
8098
8099This is an overloaded intrinsic. You can use ``llvm.log10`` on any
8100floating point or vector of floating point type. Not all targets support
8101all types however.
8102
8103::
8104
8105      declare float     @llvm.log10.f32(float  %Val)
8106      declare double    @llvm.log10.f64(double %Val)
8107      declare x86_fp80  @llvm.log10.f80(x86_fp80  %Val)
8108      declare fp128     @llvm.log10.f128(fp128 %Val)
8109      declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128  %Val)
8110
8111Overview:
8112"""""""""
8113
8114The '``llvm.log10.*``' intrinsics perform the log10 function.
8115
8116Arguments:
8117""""""""""
8118
8119The argument and return value are floating point numbers of the same
8120type.
8121
8122Semantics:
8123""""""""""
8124
8125This function returns the same values as the libm ``log10`` functions
8126would, and handles error conditions in the same way.
8127
8128'``llvm.log2.*``' Intrinsic
8129^^^^^^^^^^^^^^^^^^^^^^^^^^^
8130
8131Syntax:
8132"""""""
8133
8134This is an overloaded intrinsic. You can use ``llvm.log2`` on any
8135floating point or vector of floating point type. Not all targets support
8136all types however.
8137
8138::
8139
8140      declare float     @llvm.log2.f32(float  %Val)
8141      declare double    @llvm.log2.f64(double %Val)
8142      declare x86_fp80  @llvm.log2.f80(x86_fp80  %Val)
8143      declare fp128     @llvm.log2.f128(fp128 %Val)
8144      declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128  %Val)
8145
8146Overview:
8147"""""""""
8148
8149The '``llvm.log2.*``' intrinsics perform the log2 function.
8150
8151Arguments:
8152""""""""""
8153
8154The argument and return value are floating point numbers of the same
8155type.
8156
8157Semantics:
8158""""""""""
8159
8160This function returns the same values as the libm ``log2`` functions
8161would, and handles error conditions in the same way.
8162
8163'``llvm.fma.*``' Intrinsic
8164^^^^^^^^^^^^^^^^^^^^^^^^^^
8165
8166Syntax:
8167"""""""
8168
8169This is an overloaded intrinsic. You can use ``llvm.fma`` on any
8170floating point or vector of floating point type. Not all targets support
8171all types however.
8172
8173::
8174
8175      declare float     @llvm.fma.f32(float  %a, float  %b, float  %c)
8176      declare double    @llvm.fma.f64(double %a, double %b, double %c)
8177      declare x86_fp80  @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
8178      declare fp128     @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
8179      declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
8180
8181Overview:
8182"""""""""
8183
8184The '``llvm.fma.*``' intrinsics perform the fused multiply-add
8185operation.
8186
8187Arguments:
8188""""""""""
8189
8190The argument and return value are floating point numbers of the same
8191type.
8192
8193Semantics:
8194""""""""""
8195
8196This function returns the same values as the libm ``fma`` functions
8197would, and does not set errno.
8198
8199'``llvm.fabs.*``' Intrinsic
8200^^^^^^^^^^^^^^^^^^^^^^^^^^^
8201
8202Syntax:
8203"""""""
8204
8205This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
8206floating point or vector of floating point type. Not all targets support
8207all types however.
8208
8209::
8210
8211      declare float     @llvm.fabs.f32(float  %Val)
8212      declare double    @llvm.fabs.f64(double %Val)
8213      declare x86_fp80  @llvm.fabs.f80(x86_fp80 %Val)
8214      declare fp128     @llvm.fabs.f128(fp128 %Val)
8215      declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
8216
8217Overview:
8218"""""""""
8219
8220The '``llvm.fabs.*``' intrinsics return the absolute value of the
8221operand.
8222
8223Arguments:
8224""""""""""
8225
8226The argument and return value are floating point numbers of the same
8227type.
8228
8229Semantics:
8230""""""""""
8231
8232This function returns the same values as the libm ``fabs`` functions
8233would, and handles error conditions in the same way.
8234
8235'``llvm.minnum.*``' Intrinsic
8236^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8237
8238Syntax:
8239"""""""
8240
8241This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
8242floating point or vector of floating point type. Not all targets support
8243all types however.
8244
8245::
8246
8247      declare float     @llvm.minnum.f32(float %Val0, float %Val1)
8248      declare double    @llvm.minnum.f64(double %Val0, double %Val1)
8249      declare x86_fp80  @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8250      declare fp128     @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
8251      declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
8252
8253Overview:
8254"""""""""
8255
8256The '``llvm.minnum.*``' intrinsics return the minimum of the two
8257arguments.
8258
8259
8260Arguments:
8261""""""""""
8262
8263The arguments and return value are floating point numbers of the same
8264type.
8265
8266Semantics:
8267""""""""""
8268
8269Follows the IEEE-754 semantics for minNum, which also match for libm's
8270fmin.
8271
8272If either operand is a NaN, returns the other non-NaN operand. Returns
8273NaN only if both operands are NaN. If the operands compare equal,
8274returns a value that compares equal to both operands. This means that
8275fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8276
8277'``llvm.maxnum.*``' Intrinsic
8278^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8279
8280Syntax:
8281"""""""
8282
8283This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
8284floating point or vector of floating point type. Not all targets support
8285all types however.
8286
8287::
8288
8289      declare float     @llvm.maxnum.f32(float  %Val0, float  %Val1l)
8290      declare double    @llvm.maxnum.f64(double %Val0, double %Val1)
8291      declare x86_fp80  @llvm.maxnum.f80(x86_fp80  %Val0, x86_fp80  %Val1)
8292      declare fp128     @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
8293      declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128  %Val0, ppc_fp128  %Val1)
8294
8295Overview:
8296"""""""""
8297
8298The '``llvm.maxnum.*``' intrinsics return the maximum of the two
8299arguments.
8300
8301
8302Arguments:
8303""""""""""
8304
8305The arguments and return value are floating point numbers of the same
8306type.
8307
8308Semantics:
8309""""""""""
8310Follows the IEEE-754 semantics for maxNum, which also match for libm's
8311fmax.
8312
8313If either operand is a NaN, returns the other non-NaN operand. Returns
8314NaN only if both operands are NaN. If the operands compare equal,
8315returns a value that compares equal to both operands. This means that
8316fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8317
8318'``llvm.copysign.*``' Intrinsic
8319^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8320
8321Syntax:
8322"""""""
8323
8324This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
8325floating point or vector of floating point type. Not all targets support
8326all types however.
8327
8328::
8329
8330      declare float     @llvm.copysign.f32(float  %Mag, float  %Sgn)
8331      declare double    @llvm.copysign.f64(double %Mag, double %Sgn)
8332      declare x86_fp80  @llvm.copysign.f80(x86_fp80  %Mag, x86_fp80  %Sgn)
8333      declare fp128     @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
8334      declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128  %Mag, ppc_fp128  %Sgn)
8335
8336Overview:
8337"""""""""
8338
8339The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
8340first operand and the sign of the second operand.
8341
8342Arguments:
8343""""""""""
8344
8345The arguments and return value are floating point numbers of the same
8346type.
8347
8348Semantics:
8349""""""""""
8350
8351This function returns the same values as the libm ``copysign``
8352functions would, and handles error conditions in the same way.
8353
8354'``llvm.floor.*``' Intrinsic
8355^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8356
8357Syntax:
8358"""""""
8359
8360This is an overloaded intrinsic. You can use ``llvm.floor`` on any
8361floating point or vector of floating point type. Not all targets support
8362all types however.
8363
8364::
8365
8366      declare float     @llvm.floor.f32(float  %Val)
8367      declare double    @llvm.floor.f64(double %Val)
8368      declare x86_fp80  @llvm.floor.f80(x86_fp80  %Val)
8369      declare fp128     @llvm.floor.f128(fp128 %Val)
8370      declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128  %Val)
8371
8372Overview:
8373"""""""""
8374
8375The '``llvm.floor.*``' intrinsics return the floor of the operand.
8376
8377Arguments:
8378""""""""""
8379
8380The argument and return value are floating point numbers of the same
8381type.
8382
8383Semantics:
8384""""""""""
8385
8386This function returns the same values as the libm ``floor`` functions
8387would, and handles error conditions in the same way.
8388
8389'``llvm.ceil.*``' Intrinsic
8390^^^^^^^^^^^^^^^^^^^^^^^^^^^
8391
8392Syntax:
8393"""""""
8394
8395This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
8396floating point or vector of floating point type. Not all targets support
8397all types however.
8398
8399::
8400
8401      declare float     @llvm.ceil.f32(float  %Val)
8402      declare double    @llvm.ceil.f64(double %Val)
8403      declare x86_fp80  @llvm.ceil.f80(x86_fp80  %Val)
8404      declare fp128     @llvm.ceil.f128(fp128 %Val)
8405      declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128  %Val)
8406
8407Overview:
8408"""""""""
8409
8410The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
8411
8412Arguments:
8413""""""""""
8414
8415The argument and return value are floating point numbers of the same
8416type.
8417
8418Semantics:
8419""""""""""
8420
8421This function returns the same values as the libm ``ceil`` functions
8422would, and handles error conditions in the same way.
8423
8424'``llvm.trunc.*``' Intrinsic
8425^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8426
8427Syntax:
8428"""""""
8429
8430This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
8431floating point or vector of floating point type. Not all targets support
8432all types however.
8433
8434::
8435
8436      declare float     @llvm.trunc.f32(float  %Val)
8437      declare double    @llvm.trunc.f64(double %Val)
8438      declare x86_fp80  @llvm.trunc.f80(x86_fp80  %Val)
8439      declare fp128     @llvm.trunc.f128(fp128 %Val)
8440      declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128  %Val)
8441
8442Overview:
8443"""""""""
8444
8445The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
8446nearest integer not larger in magnitude than the operand.
8447
8448Arguments:
8449""""""""""
8450
8451The argument and return value are floating point numbers of the same
8452type.
8453
8454Semantics:
8455""""""""""
8456
8457This function returns the same values as the libm ``trunc`` functions
8458would, and handles error conditions in the same way.
8459
8460'``llvm.rint.*``' Intrinsic
8461^^^^^^^^^^^^^^^^^^^^^^^^^^^
8462
8463Syntax:
8464"""""""
8465
8466This is an overloaded intrinsic. You can use ``llvm.rint`` on any
8467floating point or vector of floating point type. Not all targets support
8468all types however.
8469
8470::
8471
8472      declare float     @llvm.rint.f32(float  %Val)
8473      declare double    @llvm.rint.f64(double %Val)
8474      declare x86_fp80  @llvm.rint.f80(x86_fp80  %Val)
8475      declare fp128     @llvm.rint.f128(fp128 %Val)
8476      declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128  %Val)
8477
8478Overview:
8479"""""""""
8480
8481The '``llvm.rint.*``' intrinsics returns the operand rounded to the
8482nearest integer. It may raise an inexact floating-point exception if the
8483operand isn't an integer.
8484
8485Arguments:
8486""""""""""
8487
8488The argument and return value are floating point numbers of the same
8489type.
8490
8491Semantics:
8492""""""""""
8493
8494This function returns the same values as the libm ``rint`` functions
8495would, and handles error conditions in the same way.
8496
8497'``llvm.nearbyint.*``' Intrinsic
8498^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8499
8500Syntax:
8501"""""""
8502
8503This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
8504floating point or vector of floating point type. Not all targets support
8505all types however.
8506
8507::
8508
8509      declare float     @llvm.nearbyint.f32(float  %Val)
8510      declare double    @llvm.nearbyint.f64(double %Val)
8511      declare x86_fp80  @llvm.nearbyint.f80(x86_fp80  %Val)
8512      declare fp128     @llvm.nearbyint.f128(fp128 %Val)
8513      declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128  %Val)
8514
8515Overview:
8516"""""""""
8517
8518The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
8519nearest integer.
8520
8521Arguments:
8522""""""""""
8523
8524The argument and return value are floating point numbers of the same
8525type.
8526
8527Semantics:
8528""""""""""
8529
8530This function returns the same values as the libm ``nearbyint``
8531functions would, and handles error conditions in the same way.
8532
8533'``llvm.round.*``' Intrinsic
8534^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8535
8536Syntax:
8537"""""""
8538
8539This is an overloaded intrinsic. You can use ``llvm.round`` on any
8540floating point or vector of floating point type. Not all targets support
8541all types however.
8542
8543::
8544
8545      declare float     @llvm.round.f32(float  %Val)
8546      declare double    @llvm.round.f64(double %Val)
8547      declare x86_fp80  @llvm.round.f80(x86_fp80  %Val)
8548      declare fp128     @llvm.round.f128(fp128 %Val)
8549      declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128  %Val)
8550
8551Overview:
8552"""""""""
8553
8554The '``llvm.round.*``' intrinsics returns the operand rounded to the
8555nearest integer.
8556
8557Arguments:
8558""""""""""
8559
8560The argument and return value are floating point numbers of the same
8561type.
8562
8563Semantics:
8564""""""""""
8565
8566This function returns the same values as the libm ``round``
8567functions would, and handles error conditions in the same way.
8568
8569Bit Manipulation Intrinsics
8570---------------------------
8571
8572LLVM provides intrinsics for a few important bit manipulation
8573operations. These allow efficient code generation for some algorithms.
8574
8575'``llvm.bswap.*``' Intrinsics
8576^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8577
8578Syntax:
8579"""""""
8580
8581This is an overloaded intrinsic function. You can use bswap on any
8582integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
8583
8584::
8585
8586      declare i16 @llvm.bswap.i16(i16 <id>)
8587      declare i32 @llvm.bswap.i32(i32 <id>)
8588      declare i64 @llvm.bswap.i64(i64 <id>)
8589
8590Overview:
8591"""""""""
8592
8593The '``llvm.bswap``' family of intrinsics is used to byte swap integer
8594values with an even number of bytes (positive multiple of 16 bits).
8595These are useful for performing operations on data that is not in the
8596target's native byte order.
8597
8598Semantics:
8599""""""""""
8600
8601The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
8602and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
8603intrinsic returns an i32 value that has the four bytes of the input i32
8604swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8605returned i32 will have its bytes in 3, 2, 1, 0 order. The
8606``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8607concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8608respectively).
8609
8610'``llvm.ctpop.*``' Intrinsic
8611^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8612
8613Syntax:
8614"""""""
8615
8616This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8617bit width, or on any vector with integer elements. Not all targets
8618support all bit widths or vector types, however.
8619
8620::
8621
8622      declare i8 @llvm.ctpop.i8(i8  <src>)
8623      declare i16 @llvm.ctpop.i16(i16 <src>)
8624      declare i32 @llvm.ctpop.i32(i32 <src>)
8625      declare i64 @llvm.ctpop.i64(i64 <src>)
8626      declare i256 @llvm.ctpop.i256(i256 <src>)
8627      declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8628
8629Overview:
8630"""""""""
8631
8632The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8633in a value.
8634
8635Arguments:
8636""""""""""
8637
8638The only argument is the value to be counted. The argument may be of any
8639integer type, or a vector with integer elements. The return type must
8640match the argument type.
8641
8642Semantics:
8643""""""""""
8644
8645The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8646each element of a vector.
8647
8648'``llvm.ctlz.*``' Intrinsic
8649^^^^^^^^^^^^^^^^^^^^^^^^^^^
8650
8651Syntax:
8652"""""""
8653
8654This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8655integer bit width, or any vector whose elements are integers. Not all
8656targets support all bit widths or vector types, however.
8657
8658::
8659
8660      declare i8   @llvm.ctlz.i8  (i8   <src>, i1 <is_zero_undef>)
8661      declare i16  @llvm.ctlz.i16 (i16  <src>, i1 <is_zero_undef>)
8662      declare i32  @llvm.ctlz.i32 (i32  <src>, i1 <is_zero_undef>)
8663      declare i64  @llvm.ctlz.i64 (i64  <src>, i1 <is_zero_undef>)
8664      declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8665      declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8666
8667Overview:
8668"""""""""
8669
8670The '``llvm.ctlz``' family of intrinsic functions counts the number of
8671leading zeros in a variable.
8672
8673Arguments:
8674""""""""""
8675
8676The first argument is the value to be counted. This argument may be of
8677any integer type, or a vector with integer element type. The return
8678type must match the first argument type.
8679
8680The second argument must be a constant and is a flag to indicate whether
8681the intrinsic should ensure that a zero as the first argument produces a
8682defined result. Historically some architectures did not provide a
8683defined result for zero values as efficiently, and many algorithms are
8684now predicated on avoiding zero-value inputs.
8685
8686Semantics:
8687""""""""""
8688
8689The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8690zeros in a variable, or within each element of the vector. If
8691``src == 0`` then the result is the size in bits of the type of ``src``
8692if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8693``llvm.ctlz(i32 2) = 30``.
8694
8695'``llvm.cttz.*``' Intrinsic
8696^^^^^^^^^^^^^^^^^^^^^^^^^^^
8697
8698Syntax:
8699"""""""
8700
8701This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8702integer bit width, or any vector of integer elements. Not all targets
8703support all bit widths or vector types, however.
8704
8705::
8706
8707      declare i8   @llvm.cttz.i8  (i8   <src>, i1 <is_zero_undef>)
8708      declare i16  @llvm.cttz.i16 (i16  <src>, i1 <is_zero_undef>)
8709      declare i32  @llvm.cttz.i32 (i32  <src>, i1 <is_zero_undef>)
8710      declare i64  @llvm.cttz.i64 (i64  <src>, i1 <is_zero_undef>)
8711      declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8712      declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8713
8714Overview:
8715"""""""""
8716
8717The '``llvm.cttz``' family of intrinsic functions counts the number of
8718trailing zeros.
8719
8720Arguments:
8721""""""""""
8722
8723The first argument is the value to be counted. This argument may be of
8724any integer type, or a vector with integer element type. The return
8725type must match the first argument type.
8726
8727The second argument must be a constant and is a flag to indicate whether
8728the intrinsic should ensure that a zero as the first argument produces a
8729defined result. Historically some architectures did not provide a
8730defined result for zero values as efficiently, and many algorithms are
8731now predicated on avoiding zero-value inputs.
8732
8733Semantics:
8734""""""""""
8735
8736The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8737zeros in a variable, or within each element of a vector. If ``src == 0``
8738then the result is the size in bits of the type of ``src`` if
8739``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8740``llvm.cttz(2) = 1``.
8741
8742Arithmetic with Overflow Intrinsics
8743-----------------------------------
8744
8745LLVM provides intrinsics for some arithmetic with overflow operations.
8746
8747'``llvm.sadd.with.overflow.*``' Intrinsics
8748^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8749
8750Syntax:
8751"""""""
8752
8753This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8754on any integer bit width.
8755
8756::
8757
8758      declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8759      declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8760      declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8761
8762Overview:
8763"""""""""
8764
8765The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8766a signed addition of the two arguments, and indicate whether an overflow
8767occurred during the signed summation.
8768
8769Arguments:
8770""""""""""
8771
8772The arguments (%a and %b) and the first element of the result structure
8773may be of integer types of any bit width, but they must have the same
8774bit width. The second element of the result structure must be of type
8775``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8776addition.
8777
8778Semantics:
8779""""""""""
8780
8781The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8782a signed addition of the two variables. They return a structure --- the
8783first element of which is the signed summation, and the second element
8784of which is a bit specifying if the signed summation resulted in an
8785overflow.
8786
8787Examples:
8788"""""""""
8789
8790.. code-block:: llvm
8791
8792      %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8793      %sum = extractvalue {i32, i1} %res, 0
8794      %obit = extractvalue {i32, i1} %res, 1
8795      br i1 %obit, label %overflow, label %normal
8796
8797'``llvm.uadd.with.overflow.*``' Intrinsics
8798^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8799
8800Syntax:
8801"""""""
8802
8803This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8804on any integer bit width.
8805
8806::
8807
8808      declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8809      declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8810      declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8811
8812Overview:
8813"""""""""
8814
8815The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8816an unsigned addition of the two arguments, and indicate whether a carry
8817occurred during the unsigned summation.
8818
8819Arguments:
8820""""""""""
8821
8822The arguments (%a and %b) and the first element of the result structure
8823may be of integer types of any bit width, but they must have the same
8824bit width. The second element of the result structure must be of type
8825``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8826addition.
8827
8828Semantics:
8829""""""""""
8830
8831The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8832an unsigned addition of the two arguments. They return a structure --- the
8833first element of which is the sum, and the second element of which is a
8834bit specifying if the unsigned summation resulted in a carry.
8835
8836Examples:
8837"""""""""
8838
8839.. code-block:: llvm
8840
8841      %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8842      %sum = extractvalue {i32, i1} %res, 0
8843      %obit = extractvalue {i32, i1} %res, 1
8844      br i1 %obit, label %carry, label %normal
8845
8846'``llvm.ssub.with.overflow.*``' Intrinsics
8847^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8848
8849Syntax:
8850"""""""
8851
8852This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8853on any integer bit width.
8854
8855::
8856
8857      declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8858      declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8859      declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8860
8861Overview:
8862"""""""""
8863
8864The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8865a signed subtraction of the two arguments, and indicate whether an
8866overflow occurred during the signed subtraction.
8867
8868Arguments:
8869""""""""""
8870
8871The arguments (%a and %b) and the first element of the result structure
8872may be of integer types of any bit width, but they must have the same
8873bit width. The second element of the result structure must be of type
8874``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8875subtraction.
8876
8877Semantics:
8878""""""""""
8879
8880The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8881a signed subtraction of the two arguments. They return a structure --- the
8882first element of which is the subtraction, and the second element of
8883which is a bit specifying if the signed subtraction resulted in an
8884overflow.
8885
8886Examples:
8887"""""""""
8888
8889.. code-block:: llvm
8890
8891      %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8892      %sum = extractvalue {i32, i1} %res, 0
8893      %obit = extractvalue {i32, i1} %res, 1
8894      br i1 %obit, label %overflow, label %normal
8895
8896'``llvm.usub.with.overflow.*``' Intrinsics
8897^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8898
8899Syntax:
8900"""""""
8901
8902This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8903on any integer bit width.
8904
8905::
8906
8907      declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8908      declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8909      declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8910
8911Overview:
8912"""""""""
8913
8914The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8915an unsigned subtraction of the two arguments, and indicate whether an
8916overflow occurred during the unsigned subtraction.
8917
8918Arguments:
8919""""""""""
8920
8921The arguments (%a and %b) and the first element of the result structure
8922may be of integer types of any bit width, but they must have the same
8923bit width. The second element of the result structure must be of type
8924``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8925subtraction.
8926
8927Semantics:
8928""""""""""
8929
8930The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8931an unsigned subtraction of the two arguments. They return a structure ---
8932the first element of which is the subtraction, and the second element of
8933which is a bit specifying if the unsigned subtraction resulted in an
8934overflow.
8935
8936Examples:
8937"""""""""
8938
8939.. code-block:: llvm
8940
8941      %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8942      %sum = extractvalue {i32, i1} %res, 0
8943      %obit = extractvalue {i32, i1} %res, 1
8944      br i1 %obit, label %overflow, label %normal
8945
8946'``llvm.smul.with.overflow.*``' Intrinsics
8947^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8948
8949Syntax:
8950"""""""
8951
8952This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8953on any integer bit width.
8954
8955::
8956
8957      declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8958      declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8959      declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8960
8961Overview:
8962"""""""""
8963
8964The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8965a signed multiplication of the two arguments, and indicate whether an
8966overflow occurred during the signed multiplication.
8967
8968Arguments:
8969""""""""""
8970
8971The arguments (%a and %b) and the first element of the result structure
8972may be of integer types of any bit width, but they must have the same
8973bit width. The second element of the result structure must be of type
8974``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8975multiplication.
8976
8977Semantics:
8978""""""""""
8979
8980The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8981a signed multiplication of the two arguments. They return a structure ---
8982the first element of which is the multiplication, and the second element
8983of which is a bit specifying if the signed multiplication resulted in an
8984overflow.
8985
8986Examples:
8987"""""""""
8988
8989.. code-block:: llvm
8990
8991      %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8992      %sum = extractvalue {i32, i1} %res, 0
8993      %obit = extractvalue {i32, i1} %res, 1
8994      br i1 %obit, label %overflow, label %normal
8995
8996'``llvm.umul.with.overflow.*``' Intrinsics
8997^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8998
8999Syntax:
9000"""""""
9001
9002This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
9003on any integer bit width.
9004
9005::
9006
9007      declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
9008      declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
9009      declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
9010
9011Overview:
9012"""""""""
9013
9014The '``llvm.umul.with.overflow``' family of intrinsic functions perform
9015a unsigned multiplication of the two arguments, and indicate whether an
9016overflow occurred during the unsigned multiplication.
9017
9018Arguments:
9019""""""""""
9020
9021The arguments (%a and %b) and the first element of the result structure
9022may be of integer types of any bit width, but they must have the same
9023bit width. The second element of the result structure must be of type
9024``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
9025multiplication.
9026
9027Semantics:
9028""""""""""
9029
9030The '``llvm.umul.with.overflow``' family of intrinsic functions perform
9031an unsigned multiplication of the two arguments. They return a structure ---
9032the first element of which is the multiplication, and the second
9033element of which is a bit specifying if the unsigned multiplication
9034resulted in an overflow.
9035
9036Examples:
9037"""""""""
9038
9039.. code-block:: llvm
9040
9041      %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
9042      %sum = extractvalue {i32, i1} %res, 0
9043      %obit = extractvalue {i32, i1} %res, 1
9044      br i1 %obit, label %overflow, label %normal
9045
9046Specialised Arithmetic Intrinsics
9047---------------------------------
9048
9049'``llvm.fmuladd.*``' Intrinsic
9050^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9051
9052Syntax:
9053"""""""
9054
9055::
9056
9057      declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
9058      declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
9059
9060Overview:
9061"""""""""
9062
9063The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
9064expressions that can be fused if the code generator determines that (a) the
9065target instruction set has support for a fused operation, and (b) that the
9066fused operation is more efficient than the equivalent, separate pair of mul
9067and add instructions.
9068
9069Arguments:
9070""""""""""
9071
9072The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
9073multiplicands, a and b, and an addend c.
9074
9075Semantics:
9076""""""""""
9077
9078The expression:
9079
9080::
9081
9082      %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
9083
9084is equivalent to the expression a \* b + c, except that rounding will
9085not be performed between the multiplication and addition steps if the
9086code generator fuses the operations. Fusion is not guaranteed, even if
9087the target platform supports it. If a fused multiply-add is required the
9088corresponding llvm.fma.\* intrinsic function should be used
9089instead. This never sets errno, just as '``llvm.fma.*``'.
9090
9091Examples:
9092"""""""""
9093
9094.. code-block:: llvm
9095
9096      %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
9097
9098Half Precision Floating Point Intrinsics
9099----------------------------------------
9100
9101For most target platforms, half precision floating point is a
9102storage-only format. This means that it is a dense encoding (in memory)
9103but does not support computation in the format.
9104
9105This means that code must first load the half-precision floating point
9106value as an i16, then convert it to float with
9107:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
9108then be performed on the float value (including extending to double
9109etc). To store the value back to memory, it is first converted to float
9110if needed, then converted to i16 with
9111:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
9112i16 value.
9113
9114.. _int_convert_to_fp16:
9115
9116'``llvm.convert.to.fp16``' Intrinsic
9117^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9118
9119Syntax:
9120"""""""
9121
9122::
9123
9124      declare i16 @llvm.convert.to.fp16.f32(float %a)
9125      declare i16 @llvm.convert.to.fp16.f64(double %a)
9126
9127Overview:
9128"""""""""
9129
9130The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
9131conventional floating point type to half precision floating point format.
9132
9133Arguments:
9134""""""""""
9135
9136The intrinsic function contains single argument - the value to be
9137converted.
9138
9139Semantics:
9140""""""""""
9141
9142The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
9143conventional floating point format to half precision floating point format. The
9144return value is an ``i16`` which contains the converted number.
9145
9146Examples:
9147"""""""""
9148
9149.. code-block:: llvm
9150
9151      %res = call i16 @llvm.convert.to.fp16.f32(float %a)
9152      store i16 %res, i16* @x, align 2
9153
9154.. _int_convert_from_fp16:
9155
9156'``llvm.convert.from.fp16``' Intrinsic
9157^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9158
9159Syntax:
9160"""""""
9161
9162::
9163
9164      declare float @llvm.convert.from.fp16.f32(i16 %a)
9165      declare double @llvm.convert.from.fp16.f64(i16 %a)
9166
9167Overview:
9168"""""""""
9169
9170The '``llvm.convert.from.fp16``' intrinsic function performs a
9171conversion from half precision floating point format to single precision
9172floating point format.
9173
9174Arguments:
9175""""""""""
9176
9177The intrinsic function contains single argument - the value to be
9178converted.
9179
9180Semantics:
9181""""""""""
9182
9183The '``llvm.convert.from.fp16``' intrinsic function performs a
9184conversion from half single precision floating point format to single
9185precision floating point format. The input half-float value is
9186represented by an ``i16`` value.
9187
9188Examples:
9189"""""""""
9190
9191.. code-block:: llvm
9192
9193      %a = load i16* @x, align 2
9194      %res = call float @llvm.convert.from.fp16(i16 %a)
9195
9196Debugger Intrinsics
9197-------------------
9198
9199The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
9200prefix), are described in the `LLVM Source Level
9201Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
9202document.
9203
9204Exception Handling Intrinsics
9205-----------------------------
9206
9207The LLVM exception handling intrinsics (which all start with
9208``llvm.eh.`` prefix), are described in the `LLVM Exception
9209Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
9210
9211.. _int_trampoline:
9212
9213Trampoline Intrinsics
9214---------------------
9215
9216These intrinsics make it possible to excise one parameter, marked with
9217the :ref:`nest <nest>` attribute, from a function. The result is a
9218callable function pointer lacking the nest parameter - the caller does
9219not need to provide a value for it. Instead, the value to use is stored
9220in advance in a "trampoline", a block of memory usually allocated on the
9221stack, which also contains code to splice the nest value into the
9222argument list. This is used to implement the GCC nested function address
9223extension.
9224
9225For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
9226then the resulting function pointer has signature ``i32 (i32, i32)*``.
9227It can be created as follows:
9228
9229.. code-block:: llvm
9230
9231      %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
9232      %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
9233      call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
9234      %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
9235      %fp = bitcast i8* %p to i32 (i32, i32)*
9236
9237The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
9238``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
9239
9240.. _int_it:
9241
9242'``llvm.init.trampoline``' Intrinsic
9243^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9244
9245Syntax:
9246"""""""
9247
9248::
9249
9250      declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
9251
9252Overview:
9253"""""""""
9254
9255This fills the memory pointed to by ``tramp`` with executable code,
9256turning it into a trampoline.
9257
9258Arguments:
9259""""""""""
9260
9261The ``llvm.init.trampoline`` intrinsic takes three arguments, all
9262pointers. The ``tramp`` argument must point to a sufficiently large and
9263sufficiently aligned block of memory; this memory is written to by the
9264intrinsic. Note that the size and the alignment are target-specific -
9265LLVM currently provides no portable way of determining them, so a
9266front-end that generates this intrinsic needs to have some
9267target-specific knowledge. The ``func`` argument must hold a function
9268bitcast to an ``i8*``.
9269
9270Semantics:
9271""""""""""
9272
9273The block of memory pointed to by ``tramp`` is filled with target
9274dependent code, turning it into a function. Then ``tramp`` needs to be
9275passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
9276be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
9277function's signature is the same as that of ``func`` with any arguments
9278marked with the ``nest`` attribute removed. At most one such ``nest``
9279argument is allowed, and it must be of pointer type. Calling the new
9280function is equivalent to calling ``func`` with the same argument list,
9281but with ``nval`` used for the missing ``nest`` argument. If, after
9282calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
9283modified, then the effect of any later call to the returned function
9284pointer is undefined.
9285
9286.. _int_at:
9287
9288'``llvm.adjust.trampoline``' Intrinsic
9289^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9290
9291Syntax:
9292"""""""
9293
9294::
9295
9296      declare i8* @llvm.adjust.trampoline(i8* <tramp>)
9297
9298Overview:
9299"""""""""
9300
9301This performs any required machine-specific adjustment to the address of
9302a trampoline (passed as ``tramp``).
9303
9304Arguments:
9305""""""""""
9306
9307``tramp`` must point to a block of memory which already has trampoline
9308code filled in by a previous call to
9309:ref:`llvm.init.trampoline <int_it>`.
9310
9311Semantics:
9312""""""""""
9313
9314On some architectures the address of the code to be executed needs to be
9315different than the address where the trampoline is actually stored. This
9316intrinsic returns the executable address corresponding to ``tramp``
9317after performing the required machine specific adjustments. The pointer
9318returned can then be :ref:`bitcast and executed <int_trampoline>`.
9319
9320Masked Vector Load and Store Intrinsics
9321---------------------------------------
9322
9323LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
9324
9325.. _int_mload:
9326
9327'``llvm.masked.load.*``' Intrinsics
9328^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9329
9330Syntax:
9331"""""""
9332This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
9333
9334::
9335
9336      declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
9337      declare <2 x double> @llvm.masked.load.v2f64  (<2 x double>* <ptr>, i32 <alignment>, <2 x i1>  <mask>, <2 x double> <passthru>)
9338
9339Overview:
9340"""""""""
9341
9342Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes in the passthru operand.
9343
9344
9345Arguments:
9346""""""""""
9347
9348The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean 'i1' values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of passthru operand are the same vector types.
9349
9350
9351Semantics:
9352""""""""""
9353
9354The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
9355The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
9356
9357
9358::
9359
9360       %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
9361
9362       ;; The result of the two following instructions is identical aside from potential memory access exception
9363       %loadlal = load <16 x float>* %ptr, align 4
9364       %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
9365
9366.. _int_mstore:
9367
9368'``llvm.masked.store.*``' Intrinsics
9369^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9370
9371Syntax:
9372"""""""
9373This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
9374
9375::
9376
9377       declare void @llvm.masked.store.v8i32 (<8 x i32>  <value>, <8 x i32> * <ptr>, i32 <alignment>,  <8 x i1>  <mask>)
9378       declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>,  <16 x i1> <mask>)
9379
9380Overview:
9381"""""""""
9382
9383Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
9384
9385Arguments:
9386""""""""""
9387
9388The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
9389
9390
9391Semantics:
9392""""""""""
9393
9394The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
9395The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
9396
9397::
9398
9399       call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4,  <16 x i1> %mask)
9400
9401       ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
9402       %oldval = load <16 x float>* %ptr, align 4
9403       %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
9404       store <16 x float> %res, <16 x float>* %ptr, align 4
9405
9406
9407Memory Use Markers
9408------------------
9409
9410This class of intrinsics provides information about the lifetime of
9411memory objects and ranges where variables are immutable.
9412
9413.. _int_lifestart:
9414
9415'``llvm.lifetime.start``' Intrinsic
9416^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9417
9418Syntax:
9419"""""""
9420
9421::
9422
9423      declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
9424
9425Overview:
9426"""""""""
9427
9428The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
9429object's lifetime.
9430
9431Arguments:
9432""""""""""
9433
9434The first argument is a constant integer representing the size of the
9435object, or -1 if it is variable sized. The second argument is a pointer
9436to the object.
9437
9438Semantics:
9439""""""""""
9440
9441This intrinsic indicates that before this point in the code, the value
9442of the memory pointed to by ``ptr`` is dead. This means that it is known
9443to never be used and has an undefined value. A load from the pointer
9444that precedes this intrinsic can be replaced with ``'undef'``.
9445
9446.. _int_lifeend:
9447
9448'``llvm.lifetime.end``' Intrinsic
9449^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9450
9451Syntax:
9452"""""""
9453
9454::
9455
9456      declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
9457
9458Overview:
9459"""""""""
9460
9461The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
9462object's lifetime.
9463
9464Arguments:
9465""""""""""
9466
9467The first argument is a constant integer representing the size of the
9468object, or -1 if it is variable sized. The second argument is a pointer
9469to the object.
9470
9471Semantics:
9472""""""""""
9473
9474This intrinsic indicates that after this point in the code, the value of
9475the memory pointed to by ``ptr`` is dead. This means that it is known to
9476never be used and has an undefined value. Any stores into the memory
9477object following this intrinsic may be removed as dead.
9478
9479'``llvm.invariant.start``' Intrinsic
9480^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9481
9482Syntax:
9483"""""""
9484
9485::
9486
9487      declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
9488
9489Overview:
9490"""""""""
9491
9492The '``llvm.invariant.start``' intrinsic specifies that the contents of
9493a memory object will not change.
9494
9495Arguments:
9496""""""""""
9497
9498The first argument is a constant integer representing the size of the
9499object, or -1 if it is variable sized. The second argument is a pointer
9500to the object.
9501
9502Semantics:
9503""""""""""
9504
9505This intrinsic indicates that until an ``llvm.invariant.end`` that uses
9506the return value, the referenced memory location is constant and
9507unchanging.
9508
9509'``llvm.invariant.end``' Intrinsic
9510^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9511
9512Syntax:
9513"""""""
9514
9515::
9516
9517      declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
9518
9519Overview:
9520"""""""""
9521
9522The '``llvm.invariant.end``' intrinsic specifies that the contents of a
9523memory object are mutable.
9524
9525Arguments:
9526""""""""""
9527
9528The first argument is the matching ``llvm.invariant.start`` intrinsic.
9529The second argument is a constant integer representing the size of the
9530object, or -1 if it is variable sized and the third argument is a
9531pointer to the object.
9532
9533Semantics:
9534""""""""""
9535
9536This intrinsic indicates that the memory is mutable again.
9537
9538General Intrinsics
9539------------------
9540
9541This class of intrinsics is designed to be generic and has no specific
9542purpose.
9543
9544'``llvm.var.annotation``' Intrinsic
9545^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9546
9547Syntax:
9548"""""""
9549
9550::
9551
9552      declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32  <int>)
9553
9554Overview:
9555"""""""""
9556
9557The '``llvm.var.annotation``' intrinsic.
9558
9559Arguments:
9560""""""""""
9561
9562The first argument is a pointer to a value, the second is a pointer to a
9563global string, the third is a pointer to a global string which is the
9564source file name, and the last argument is the line number.
9565
9566Semantics:
9567""""""""""
9568
9569This intrinsic allows annotation of local variables with arbitrary
9570strings. This can be useful for special purpose optimizations that want
9571to look for these annotations. These have no other defined use; they are
9572ignored by code generation and optimization.
9573
9574'``llvm.ptr.annotation.*``' Intrinsic
9575^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9576
9577Syntax:
9578"""""""
9579
9580This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
9581pointer to an integer of any width. *NOTE* you must specify an address space for
9582the pointer. The identifier for the default address space is the integer
9583'``0``'.
9584
9585::
9586
9587      declare i8*   @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32  <int>)
9588      declare i16*  @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32  <int>)
9589      declare i32*  @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32  <int>)
9590      declare i64*  @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32  <int>)
9591      declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32  <int>)
9592
9593Overview:
9594"""""""""
9595
9596The '``llvm.ptr.annotation``' intrinsic.
9597
9598Arguments:
9599""""""""""
9600
9601The first argument is a pointer to an integer value of arbitrary bitwidth
9602(result of some expression), the second is a pointer to a global string, the
9603third is a pointer to a global string which is the source file name, and the
9604last argument is the line number. It returns the value of the first argument.
9605
9606Semantics:
9607""""""""""
9608
9609This intrinsic allows annotation of a pointer to an integer with arbitrary
9610strings. This can be useful for special purpose optimizations that want to look
9611for these annotations. These have no other defined use; they are ignored by code
9612generation and optimization.
9613
9614'``llvm.annotation.*``' Intrinsic
9615^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9616
9617Syntax:
9618"""""""
9619
9620This is an overloaded intrinsic. You can use '``llvm.annotation``' on
9621any integer bit width.
9622
9623::
9624
9625      declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32  <int>)
9626      declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32  <int>)
9627      declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32  <int>)
9628      declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32  <int>)
9629      declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32  <int>)
9630
9631Overview:
9632"""""""""
9633
9634The '``llvm.annotation``' intrinsic.
9635
9636Arguments:
9637""""""""""
9638
9639The first argument is an integer value (result of some expression), the
9640second is a pointer to a global string, the third is a pointer to a
9641global string which is the source file name, and the last argument is
9642the line number. It returns the value of the first argument.
9643
9644Semantics:
9645""""""""""
9646
9647This intrinsic allows annotations to be put on arbitrary expressions
9648with arbitrary strings. This can be useful for special purpose
9649optimizations that want to look for these annotations. These have no
9650other defined use; they are ignored by code generation and optimization.
9651
9652'``llvm.trap``' Intrinsic
9653^^^^^^^^^^^^^^^^^^^^^^^^^
9654
9655Syntax:
9656"""""""
9657
9658::
9659
9660      declare void @llvm.trap() noreturn nounwind
9661
9662Overview:
9663"""""""""
9664
9665The '``llvm.trap``' intrinsic.
9666
9667Arguments:
9668""""""""""
9669
9670None.
9671
9672Semantics:
9673""""""""""
9674
9675This intrinsic is lowered to the target dependent trap instruction. If
9676the target does not have a trap instruction, this intrinsic will be
9677lowered to a call of the ``abort()`` function.
9678
9679'``llvm.debugtrap``' Intrinsic
9680^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9681
9682Syntax:
9683"""""""
9684
9685::
9686
9687      declare void @llvm.debugtrap() nounwind
9688
9689Overview:
9690"""""""""
9691
9692The '``llvm.debugtrap``' intrinsic.
9693
9694Arguments:
9695""""""""""
9696
9697None.
9698
9699Semantics:
9700""""""""""
9701
9702This intrinsic is lowered to code which is intended to cause an
9703execution trap with the intention of requesting the attention of a
9704debugger.
9705
9706'``llvm.stackprotector``' Intrinsic
9707^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9708
9709Syntax:
9710"""""""
9711
9712::
9713
9714      declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
9715
9716Overview:
9717"""""""""
9718
9719The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
9720onto the stack at ``slot``. The stack slot is adjusted to ensure that it
9721is placed on the stack before local variables.
9722
9723Arguments:
9724""""""""""
9725
9726The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9727The first argument is the value loaded from the stack guard
9728``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9729enough space to hold the value of the guard.
9730
9731Semantics:
9732""""""""""
9733
9734This intrinsic causes the prologue/epilogue inserter to force the position of
9735the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9736to ensure that if a local variable on the stack is overwritten, it will destroy
9737the value of the guard. When the function exits, the guard on the stack is
9738checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9739different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9740calling the ``__stack_chk_fail()`` function.
9741
9742'``llvm.stackprotectorcheck``' Intrinsic
9743^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9744
9745Syntax:
9746"""""""
9747
9748::
9749
9750      declare void @llvm.stackprotectorcheck(i8** <guard>)
9751
9752Overview:
9753"""""""""
9754
9755The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
9756created stack protector and if they are not equal calls the
9757``__stack_chk_fail()`` function.
9758
9759Arguments:
9760""""""""""
9761
9762The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9763the variable ``@__stack_chk_guard``.
9764
9765Semantics:
9766""""""""""
9767
9768This intrinsic is provided to perform the stack protector check by comparing
9769``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9770values do not match call the ``__stack_chk_fail()`` function.
9771
9772The reason to provide this as an IR level intrinsic instead of implementing it
9773via other IR operations is that in order to perform this operation at the IR
9774level without an intrinsic, one would need to create additional basic blocks to
9775handle the success/failure cases. This makes it difficult to stop the stack
9776protector check from disrupting sibling tail calls in Codegen. With this
9777intrinsic, we are able to generate the stack protector basic blocks late in
9778codegen after the tail call decision has occurred.
9779
9780'``llvm.objectsize``' Intrinsic
9781^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9782
9783Syntax:
9784"""""""
9785
9786::
9787
9788      declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9789      declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9790
9791Overview:
9792"""""""""
9793
9794The ``llvm.objectsize`` intrinsic is designed to provide information to
9795the optimizers to determine at compile time whether a) an operation
9796(like memcpy) will overflow a buffer that corresponds to an object, or
9797b) that a runtime check for overflow isn't necessary. An object in this
9798context means an allocation of a specific class, structure, array, or
9799other object.
9800
9801Arguments:
9802""""""""""
9803
9804The ``llvm.objectsize`` intrinsic takes two arguments. The first
9805argument is a pointer to or into the ``object``. The second argument is
9806a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9807or -1 (if false) when the object size is unknown. The second argument
9808only accepts constants.
9809
9810Semantics:
9811""""""""""
9812
9813The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9814the size of the object concerned. If the size cannot be determined at
9815compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9816on the ``min`` argument).
9817
9818'``llvm.expect``' Intrinsic
9819^^^^^^^^^^^^^^^^^^^^^^^^^^^
9820
9821Syntax:
9822"""""""
9823
9824This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9825integer bit width.
9826
9827::
9828
9829      declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
9830      declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9831      declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9832
9833Overview:
9834"""""""""
9835
9836The ``llvm.expect`` intrinsic provides information about expected (the
9837most probable) value of ``val``, which can be used by optimizers.
9838
9839Arguments:
9840""""""""""
9841
9842The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9843a value. The second argument is an expected value, this needs to be a
9844constant value, variables are not allowed.
9845
9846Semantics:
9847""""""""""
9848
9849This intrinsic is lowered to the ``val``.
9850
9851'``llvm.assume``' Intrinsic
9852^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9853
9854Syntax:
9855"""""""
9856
9857::
9858
9859      declare void @llvm.assume(i1 %cond)
9860
9861Overview:
9862"""""""""
9863
9864The ``llvm.assume`` allows the optimizer to assume that the provided
9865condition is true. This information can then be used in simplifying other parts
9866of the code.
9867
9868Arguments:
9869""""""""""
9870
9871The condition which the optimizer may assume is always true.
9872
9873Semantics:
9874""""""""""
9875
9876The intrinsic allows the optimizer to assume that the provided condition is
9877always true whenever the control flow reaches the intrinsic call. No code is
9878generated for this intrinsic, and instructions that contribute only to the
9879provided condition are not used for code generation. If the condition is
9880violated during execution, the behavior is undefined.
9881
9882Note that the optimizer might limit the transformations performed on values
9883used by the ``llvm.assume`` intrinsic in order to preserve the instructions
9884only used to form the intrinsic's input argument. This might prove undesirable
9885if the extra information provided by the ``llvm.assume`` intrinsic does not cause
9886sufficient overall improvement in code quality. For this reason,
9887``llvm.assume`` should not be used to document basic mathematical invariants
9888that the optimizer can otherwise deduce or facts that are of little use to the
9889optimizer.
9890
9891'``llvm.donothing``' Intrinsic
9892^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9893
9894Syntax:
9895"""""""
9896
9897::
9898
9899      declare void @llvm.donothing() nounwind readnone
9900
9901Overview:
9902"""""""""
9903
9904The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
9905two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
9906with an invoke instruction.
9907
9908Arguments:
9909""""""""""
9910
9911None.
9912
9913Semantics:
9914""""""""""
9915
9916This intrinsic does nothing, and it's removed by optimizers and ignored
9917by codegen.
9918
9919Stack Map Intrinsics
9920--------------------
9921
9922LLVM provides experimental intrinsics to support runtime patching
9923mechanisms commonly desired in dynamic language JITs. These intrinsics
9924are described in :doc:`StackMaps`.
9925