1=======================
2Writing an LLVM Backend
3=======================
4
5.. toctree::
6   :hidden:
7
8   HowToUseInstrMappings
9
10.. contents::
11   :local:
12
13Introduction
14============
15
16This document describes techniques for writing compiler backends that convert
17the LLVM Intermediate Representation (IR) to code for a specified machine or
18other languages.  Code intended for a specific machine can take the form of
19either assembly code or binary code (usable for a JIT compiler).
20
21The backend of LLVM features a target-independent code generator that may
22create output for several types of target CPUs --- including X86, PowerPC,
23ARM, and SPARC.  The backend may also be used to generate code targeted at SPUs
24of the Cell processor or GPUs to support the execution of compute kernels.
25
26The document focuses on existing examples found in subdirectories of
27``llvm/lib/Target`` in a downloaded LLVM release.  In particular, this document
28focuses on the example of creating a static compiler (one that emits text
29assembly) for a SPARC target, because SPARC has fairly standard
30characteristics, such as a RISC instruction set and straightforward calling
31conventions.
32
33Audience
34--------
35
36The audience for this document is anyone who needs to write an LLVM backend to
37generate code for a specific hardware or software target.
38
39Prerequisite Reading
40--------------------
41
42These essential documents must be read before reading this document:
43
44* `LLVM Language Reference Manual <LangRef.html>`_ --- a reference manual for
45  the LLVM assembly language.
46
47* :doc:`CodeGenerator` --- a guide to the components (classes and code
48  generation algorithms) for translating the LLVM internal representation into
49  machine code for a specified target.  Pay particular attention to the
50  descriptions of code generation stages: Instruction Selection, Scheduling and
51  Formation, SSA-based Optimization, Register Allocation, Prolog/Epilog Code
52  Insertion, Late Machine Code Optimizations, and Code Emission.
53
54* :doc:`TableGenFundamentals` --- a document that describes the TableGen
55  (``tblgen``) application that manages domain-specific information to support
56  LLVM code generation.  TableGen processes input from a target description
57  file (``.td`` suffix) and generates C++ code that can be used for code
58  generation.
59
60* :doc:`WritingAnLLVMPass` --- The assembly printer is a ``FunctionPass``, as
61  are several ``SelectionDAG`` processing steps.
62
63To follow the SPARC examples in this document, have a copy of `The SPARC
64Architecture Manual, Version 8 <http://www.sparc.org/standards/V8.pdf>`_ for
65reference.  For details about the ARM instruction set, refer to the `ARM
66Architecture Reference Manual <http://infocenter.arm.com/>`_.  For more about
67the GNU Assembler format (``GAS``), see `Using As
68<http://sourceware.org/binutils/docs/as/index.html>`_, especially for the
69assembly printer.  "Using As" contains a list of target machine dependent
70features.
71
72Basic Steps
73-----------
74
75To write a compiler backend for LLVM that converts the LLVM IR to code for a
76specified target (machine or other language), follow these steps:
77
78* Create a subclass of the ``TargetMachine`` class that describes
79  characteristics of your target machine.  Copy existing examples of specific
80  ``TargetMachine`` class and header files; for example, start with
81  ``SparcTargetMachine.cpp`` and ``SparcTargetMachine.h``, but change the file
82  names for your target.  Similarly, change code that references "``Sparc``" to
83  reference your target.
84
85* Describe the register set of the target.  Use TableGen to generate code for
86  register definition, register aliases, and register classes from a
87  target-specific ``RegisterInfo.td`` input file.  You should also write
88  additional code for a subclass of the ``TargetRegisterInfo`` class that
89  represents the class register file data used for register allocation and also
90  describes the interactions between registers.
91
92* Describe the instruction set of the target.  Use TableGen to generate code
93  for target-specific instructions from target-specific versions of
94  ``TargetInstrFormats.td`` and ``TargetInstrInfo.td``.  You should write
95  additional code for a subclass of the ``TargetInstrInfo`` class to represent
96  machine instructions supported by the target machine.
97
98* Describe the selection and conversion of the LLVM IR from a Directed Acyclic
99  Graph (DAG) representation of instructions to native target-specific
100  instructions.  Use TableGen to generate code that matches patterns and
101  selects instructions based on additional information in a target-specific
102  version of ``TargetInstrInfo.td``.  Write code for ``XXXISelDAGToDAG.cpp``,
103  where ``XXX`` identifies the specific target, to perform pattern matching and
104  DAG-to-DAG instruction selection.  Also write code in ``XXXISelLowering.cpp``
105  to replace or remove operations and data types that are not supported
106  natively in a SelectionDAG.
107
108* Write code for an assembly printer that converts LLVM IR to a GAS format for
109  your target machine.  You should add assembly strings to the instructions
110  defined in your target-specific version of ``TargetInstrInfo.td``.  You
111  should also write code for a subclass of ``AsmPrinter`` that performs the
112  LLVM-to-assembly conversion and a trivial subclass of ``TargetAsmInfo``.
113
114* Optionally, add support for subtargets (i.e., variants with different
115  capabilities).  You should also write code for a subclass of the
116  ``TargetSubtarget`` class, which allows you to use the ``-mcpu=`` and
117  ``-mattr=`` command-line options.
118
119* Optionally, add JIT support and create a machine code emitter (subclass of
120  ``TargetJITInfo``) that is used to emit binary code directly into memory.
121
122In the ``.cpp`` and ``.h``. files, initially stub up these methods and then
123implement them later.  Initially, you may not know which private members that
124the class will need and which components will need to be subclassed.
125
126Preliminaries
127-------------
128
129To actually create your compiler backend, you need to create and modify a few
130files.  The absolute minimum is discussed here.  But to actually use the LLVM
131target-independent code generator, you must perform the steps described in the
132:doc:`LLVM Target-Independent Code Generator <CodeGenerator>` document.
133
134First, you should create a subdirectory under ``lib/Target`` to hold all the
135files related to your target.  If your target is called "Dummy", create the
136directory ``lib/Target/Dummy``.
137
138In this new directory, create a ``Makefile``.  It is easiest to copy a
139``Makefile`` of another target and modify it.  It should at least contain the
140``LEVEL``, ``LIBRARYNAME`` and ``TARGET`` variables, and then include
141``$(LEVEL)/Makefile.common``.  The library can be named ``LLVMDummy`` (for
142example, see the MIPS target).  Alternatively, you can split the library into
143``LLVMDummyCodeGen`` and ``LLVMDummyAsmPrinter``, the latter of which should be
144implemented in a subdirectory below ``lib/Target/Dummy`` (for example, see the
145PowerPC target).
146
147Note that these two naming schemes are hardcoded into ``llvm-config``.  Using
148any other naming scheme will confuse ``llvm-config`` and produce a lot of
149(seemingly unrelated) linker errors when linking ``llc``.
150
151To make your target actually do something, you need to implement a subclass of
152``TargetMachine``.  This implementation should typically be in the file
153``lib/Target/DummyTargetMachine.cpp``, but any file in the ``lib/Target``
154directory will be built and should work.  To use LLVM's target independent code
155generator, you should do what all current machine backends do: create a
156subclass of ``LLVMTargetMachine``.  (To create a target from scratch, create a
157subclass of ``TargetMachine``.)
158
159To get LLVM to actually build and link your target, you need to add it to the
160``TARGETS_TO_BUILD`` variable.  To do this, you modify the configure script to
161know about your target when parsing the ``--enable-targets`` option.  Search
162the configure script for ``TARGETS_TO_BUILD``, add your target to the lists
163there (some creativity required), and then reconfigure.  Alternatively, you can
164change ``autotools/configure.ac`` and regenerate configure by running
165``./autoconf/AutoRegen.sh``.
166
167Target Machine
168==============
169
170``LLVMTargetMachine`` is designed as a base class for targets implemented with
171the LLVM target-independent code generator.  The ``LLVMTargetMachine`` class
172should be specialized by a concrete target class that implements the various
173virtual methods.  ``LLVMTargetMachine`` is defined as a subclass of
174``TargetMachine`` in ``include/llvm/Target/TargetMachine.h``.  The
175``TargetMachine`` class implementation (``TargetMachine.cpp``) also processes
176numerous command-line options.
177
178To create a concrete target-specific subclass of ``LLVMTargetMachine``, start
179by copying an existing ``TargetMachine`` class and header.  You should name the
180files that you create to reflect your specific target.  For instance, for the
181SPARC target, name the files ``SparcTargetMachine.h`` and
182``SparcTargetMachine.cpp``.
183
184For a target machine ``XXX``, the implementation of ``XXXTargetMachine`` must
185have access methods to obtain objects that represent target components.  These
186methods are named ``get*Info``, and are intended to obtain the instruction set
187(``getInstrInfo``), register set (``getRegisterInfo``), stack frame layout
188(``getFrameInfo``), and similar information.  ``XXXTargetMachine`` must also
189implement the ``getDataLayout`` method to access an object with target-specific
190data characteristics, such as data type size and alignment requirements.
191
192For instance, for the SPARC target, the header file ``SparcTargetMachine.h``
193declares prototypes for several ``get*Info`` and ``getDataLayout`` methods that
194simply return a class member.
195
196.. code-block:: c++
197
198  namespace llvm {
199
200  class Module;
201
202  class SparcTargetMachine : public LLVMTargetMachine {
203    const DataLayout DataLayout;       // Calculates type size & alignment
204    SparcSubtarget Subtarget;
205    SparcInstrInfo InstrInfo;
206    TargetFrameInfo FrameInfo;
207
208  protected:
209    virtual const TargetAsmInfo *createTargetAsmInfo() const;
210
211  public:
212    SparcTargetMachine(const Module &M, const std::string &FS);
213
214    virtual const SparcInstrInfo *getInstrInfo() const {return &InstrInfo; }
215    virtual const TargetFrameInfo *getFrameInfo() const {return &FrameInfo; }
216    virtual const TargetSubtarget *getSubtargetImpl() const{return &Subtarget; }
217    virtual const TargetRegisterInfo *getRegisterInfo() const {
218      return &InstrInfo.getRegisterInfo();
219    }
220    virtual const DataLayout *getDataLayout() const { return &DataLayout; }
221    static unsigned getModuleMatchQuality(const Module &M);
222
223    // Pass Pipeline Configuration
224    virtual bool addInstSelector(PassManagerBase &PM, bool Fast);
225    virtual bool addPreEmitPass(PassManagerBase &PM, bool Fast);
226  };
227
228  } // end namespace llvm
229
230* ``getInstrInfo()``
231* ``getRegisterInfo()``
232* ``getFrameInfo()``
233* ``getDataLayout()``
234* ``getSubtargetImpl()``
235
236For some targets, you also need to support the following methods:
237
238* ``getTargetLowering()``
239* ``getJITInfo()``
240
241In addition, the ``XXXTargetMachine`` constructor should specify a
242``TargetDescription`` string that determines the data layout for the target
243machine, including characteristics such as pointer size, alignment, and
244endianness.  For example, the constructor for ``SparcTargetMachine`` contains
245the following:
246
247.. code-block:: c++
248
249  SparcTargetMachine::SparcTargetMachine(const Module &M, const std::string &FS)
250    : DataLayout("E-p:32:32-f128:128:128"),
251      Subtarget(M, FS), InstrInfo(Subtarget),
252      FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) {
253  }
254
255Hyphens separate portions of the ``TargetDescription`` string.
256
257* An upper-case "``E``" in the string indicates a big-endian target data model.
258  A lower-case "``e``" indicates little-endian.
259
260* "``p:``" is followed by pointer information: size, ABI alignment, and
261  preferred alignment.  If only two figures follow "``p:``", then the first
262  value is pointer size, and the second value is both ABI and preferred
263  alignment.
264
265* Then a letter for numeric type alignment: "``i``", "``f``", "``v``", or
266  "``a``" (corresponding to integer, floating point, vector, or aggregate).
267  "``i``", "``v``", or "``a``" are followed by ABI alignment and preferred
268  alignment. "``f``" is followed by three values: the first indicates the size
269  of a long double, then ABI alignment, and then ABI preferred alignment.
270
271Target Registration
272===================
273
274You must also register your target with the ``TargetRegistry``, which is what
275other LLVM tools use to be able to lookup and use your target at runtime.  The
276``TargetRegistry`` can be used directly, but for most targets there are helper
277templates which should take care of the work for you.
278
279All targets should declare a global ``Target`` object which is used to
280represent the target during registration.  Then, in the target's ``TargetInfo``
281library, the target should define that object and use the ``RegisterTarget``
282template to register the target.  For example, the Sparc registration code
283looks like this:
284
285.. code-block:: c++
286
287  Target llvm::TheSparcTarget;
288
289  extern "C" void LLVMInitializeSparcTargetInfo() {
290    RegisterTarget<Triple::sparc, /*HasJIT=*/false>
291      X(TheSparcTarget, "sparc", "Sparc");
292  }
293
294This allows the ``TargetRegistry`` to look up the target by name or by target
295triple.  In addition, most targets will also register additional features which
296are available in separate libraries.  These registration steps are separate,
297because some clients may wish to only link in some parts of the target --- the
298JIT code generator does not require the use of the assembler printer, for
299example.  Here is an example of registering the Sparc assembly printer:
300
301.. code-block:: c++
302
303  extern "C" void LLVMInitializeSparcAsmPrinter() {
304    RegisterAsmPrinter<SparcAsmPrinter> X(TheSparcTarget);
305  }
306
307For more information, see "`llvm/Target/TargetRegistry.h
308</doxygen/TargetRegistry_8h-source.html>`_".
309
310Register Set and Register Classes
311=================================
312
313You should describe a concrete target-specific class that represents the
314register file of a target machine.  This class is called ``XXXRegisterInfo``
315(where ``XXX`` identifies the target) and represents the class register file
316data that is used for register allocation.  It also describes the interactions
317between registers.
318
319You also need to define register classes to categorize related registers.  A
320register class should be added for groups of registers that are all treated the
321same way for some instruction.  Typical examples are register classes for
322integer, floating-point, or vector registers.  A register allocator allows an
323instruction to use any register in a specified register class to perform the
324instruction in a similar manner.  Register classes allocate virtual registers
325to instructions from these sets, and register classes let the
326target-independent register allocator automatically choose the actual
327registers.
328
329Much of the code for registers, including register definition, register
330aliases, and register classes, is generated by TableGen from
331``XXXRegisterInfo.td`` input files and placed in ``XXXGenRegisterInfo.h.inc``
332and ``XXXGenRegisterInfo.inc`` output files.  Some of the code in the
333implementation of ``XXXRegisterInfo`` requires hand-coding.
334
335Defining a Register
336-------------------
337
338The ``XXXRegisterInfo.td`` file typically starts with register definitions for
339a target machine.  The ``Register`` class (specified in ``Target.td``) is used
340to define an object for each register.  The specified string ``n`` becomes the
341``Name`` of the register.  The basic ``Register`` object does not have any
342subregisters and does not specify any aliases.
343
344.. code-block:: llvm
345
346  class Register<string n> {
347    string Namespace = "";
348    string AsmName = n;
349    string Name = n;
350    int SpillSize = 0;
351    int SpillAlignment = 0;
352    list<Register> Aliases = [];
353    list<Register> SubRegs = [];
354    list<int> DwarfNumbers = [];
355  }
356
357For example, in the ``X86RegisterInfo.td`` file, there are register definitions
358that utilize the ``Register`` class, such as:
359
360.. code-block:: llvm
361
362  def AL : Register<"AL">, DwarfRegNum<[0, 0, 0]>;
363
364This defines the register ``AL`` and assigns it values (with ``DwarfRegNum``)
365that are used by ``gcc``, ``gdb``, or a debug information writer to identify a
366register.  For register ``AL``, ``DwarfRegNum`` takes an array of 3 values
367representing 3 different modes: the first element is for X86-64, the second for
368exception handling (EH) on X86-32, and the third is generic. -1 is a special
369Dwarf number that indicates the gcc number is undefined, and -2 indicates the
370register number is invalid for this mode.
371
372From the previously described line in the ``X86RegisterInfo.td`` file, TableGen
373generates this code in the ``X86GenRegisterInfo.inc`` file:
374
375.. code-block:: c++
376
377  static const unsigned GR8[] = { X86::AL, ... };
378
379  const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 };
380
381  const TargetRegisterDesc RegisterDescriptors[] = {
382    ...
383  { "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ...
384
385From the register info file, TableGen generates a ``TargetRegisterDesc`` object
386for each register.  ``TargetRegisterDesc`` is defined in
387``include/llvm/Target/TargetRegisterInfo.h`` with the following fields:
388
389.. code-block:: c++
390
391  struct TargetRegisterDesc {
392    const char     *AsmName;      // Assembly language name for the register
393    const char     *Name;         // Printable name for the reg (for debugging)
394    const unsigned *AliasSet;     // Register Alias Set
395    const unsigned *SubRegs;      // Sub-register set
396    const unsigned *ImmSubRegs;   // Immediate sub-register set
397    const unsigned *SuperRegs;    // Super-register set
398  };
399
400TableGen uses the entire target description file (``.td``) to determine text
401names for the register (in the ``AsmName`` and ``Name`` fields of
402``TargetRegisterDesc``) and the relationships of other registers to the defined
403register (in the other ``TargetRegisterDesc`` fields).  In this example, other
404definitions establish the registers "``AX``", "``EAX``", and "``RAX``" as
405aliases for one another, so TableGen generates a null-terminated array
406(``AL_AliasSet``) for this register alias set.
407
408The ``Register`` class is commonly used as a base class for more complex
409classes.  In ``Target.td``, the ``Register`` class is the base for the
410``RegisterWithSubRegs`` class that is used to define registers that need to
411specify subregisters in the ``SubRegs`` list, as shown here:
412
413.. code-block:: llvm
414
415  class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
416    let SubRegs = subregs;
417  }
418
419In ``SparcRegisterInfo.td``, additional register classes are defined for SPARC:
420a ``Register`` subclass, ``SparcReg``, and further subclasses: ``Ri``, ``Rf``,
421and ``Rd``.  SPARC registers are identified by 5-bit ID numbers, which is a
422feature common to these subclasses.  Note the use of "``let``" expressions to
423override values that are initially defined in a superclass (such as ``SubRegs``
424field in the ``Rd`` class).
425
426.. code-block:: llvm
427
428  class SparcReg<string n> : Register<n> {
429    field bits<5> Num;
430    let Namespace = "SP";
431  }
432  // Ri - 32-bit integer registers
433  class Ri<bits<5> num, string n> :
434  SparcReg<n> {
435    let Num = num;
436  }
437  // Rf - 32-bit floating-point registers
438  class Rf<bits<5> num, string n> :
439  SparcReg<n> {
440    let Num = num;
441  }
442  // Rd - Slots in the FP register file for 64-bit floating-point values.
443  class Rd<bits<5> num, string n, list<Register> subregs> : SparcReg<n> {
444    let Num = num;
445    let SubRegs = subregs;
446  }
447
448In the ``SparcRegisterInfo.td`` file, there are register definitions that
449utilize these subclasses of ``Register``, such as:
450
451.. code-block:: llvm
452
453  def G0 : Ri< 0, "G0">, DwarfRegNum<[0]>;
454  def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>;
455  ...
456  def F0 : Rf< 0, "F0">, DwarfRegNum<[32]>;
457  def F1 : Rf< 1, "F1">, DwarfRegNum<[33]>;
458  ...
459  def D0 : Rd< 0, "F0", [F0, F1]>, DwarfRegNum<[32]>;
460  def D1 : Rd< 2, "F2", [F2, F3]>, DwarfRegNum<[34]>;
461
462The last two registers shown above (``D0`` and ``D1``) are double-precision
463floating-point registers that are aliases for pairs of single-precision
464floating-point sub-registers.  In addition to aliases, the sub-register and
465super-register relationships of the defined register are in fields of a
466register's ``TargetRegisterDesc``.
467
468Defining a Register Class
469-------------------------
470
471The ``RegisterClass`` class (specified in ``Target.td``) is used to define an
472object that represents a group of related registers and also defines the
473default allocation order of the registers.  A target description file
474``XXXRegisterInfo.td`` that uses ``Target.td`` can construct register classes
475using the following class:
476
477.. code-block:: llvm
478
479  class RegisterClass<string namespace,
480  list<ValueType> regTypes, int alignment, dag regList> {
481    string Namespace = namespace;
482    list<ValueType> RegTypes = regTypes;
483    int Size = 0;  // spill size, in bits; zero lets tblgen pick the size
484    int Alignment = alignment;
485
486    // CopyCost is the cost of copying a value between two registers
487    // default value 1 means a single instruction
488    // A negative value means copying is extremely expensive or impossible
489    int CopyCost = 1;
490    dag MemberList = regList;
491
492    // for register classes that are subregisters of this class
493    list<RegisterClass> SubRegClassList = [];
494
495    code MethodProtos = [{}];  // to insert arbitrary code
496    code MethodBodies = [{}];
497  }
498
499To define a ``RegisterClass``, use the following 4 arguments:
500
501* The first argument of the definition is the name of the namespace.
502
503* The second argument is a list of ``ValueType`` register type values that are
504  defined in ``include/llvm/CodeGen/ValueTypes.td``.  Defined values include
505  integer types (such as ``i16``, ``i32``, and ``i1`` for Boolean),
506  floating-point types (``f32``, ``f64``), and vector types (for example,
507  ``v8i16`` for an ``8 x i16`` vector).  All registers in a ``RegisterClass``
508  must have the same ``ValueType``, but some registers may store vector data in
509  different configurations.  For example a register that can process a 128-bit
510  vector may be able to handle 16 8-bit integer elements, 8 16-bit integers, 4
511  32-bit integers, and so on.
512
513* The third argument of the ``RegisterClass`` definition specifies the
514  alignment required of the registers when they are stored or loaded to
515  memory.
516
517* The final argument, ``regList``, specifies which registers are in this class.
518  If an alternative allocation order method is not specified, then ``regList``
519  also defines the order of allocation used by the register allocator.  Besides
520  simply listing registers with ``(add R0, R1, ...)``, more advanced set
521  operators are available.  See ``include/llvm/Target/Target.td`` for more
522  information.
523
524In ``SparcRegisterInfo.td``, three ``RegisterClass`` objects are defined:
525``FPRegs``, ``DFPRegs``, and ``IntRegs``.  For all three register classes, the
526first argument defines the namespace with the string "``SP``".  ``FPRegs``
527defines a group of 32 single-precision floating-point registers (``F0`` to
528``F31``); ``DFPRegs`` defines a group of 16 double-precision registers
529(``D0-D15``).
530
531.. code-block:: llvm
532
533  // F0, F1, F2, ..., F31
534  def FPRegs : RegisterClass<"SP", [f32], 32, (sequence "F%u", 0, 31)>;
535
536  def DFPRegs : RegisterClass<"SP", [f64], 64,
537                              (add D0, D1, D2, D3, D4, D5, D6, D7, D8,
538                                   D9, D10, D11, D12, D13, D14, D15)>;
539
540  def IntRegs : RegisterClass<"SP", [i32], 32,
541      (add L0, L1, L2, L3, L4, L5, L6, L7,
542           I0, I1, I2, I3, I4, I5,
543           O0, O1, O2, O3, O4, O5, O7,
544           G1,
545           // Non-allocatable regs:
546           G2, G3, G4,
547           O6,        // stack ptr
548           I6,        // frame ptr
549           I7,        // return address
550           G0,        // constant zero
551           G5, G6, G7 // reserved for kernel
552      )>;
553
554Using ``SparcRegisterInfo.td`` with TableGen generates several output files
555that are intended for inclusion in other source code that you write.
556``SparcRegisterInfo.td`` generates ``SparcGenRegisterInfo.h.inc``, which should
557be included in the header file for the implementation of the SPARC register
558implementation that you write (``SparcRegisterInfo.h``).  In
559``SparcGenRegisterInfo.h.inc`` a new structure is defined called
560``SparcGenRegisterInfo`` that uses ``TargetRegisterInfo`` as its base.  It also
561specifies types, based upon the defined register classes: ``DFPRegsClass``,
562``FPRegsClass``, and ``IntRegsClass``.
563
564``SparcRegisterInfo.td`` also generates ``SparcGenRegisterInfo.inc``, which is
565included at the bottom of ``SparcRegisterInfo.cpp``, the SPARC register
566implementation.  The code below shows only the generated integer registers and
567associated register classes.  The order of registers in ``IntRegs`` reflects
568the order in the definition of ``IntRegs`` in the target description file.
569
570.. code-block:: c++
571
572  // IntRegs Register Class...
573  static const unsigned IntRegs[] = {
574    SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5,
575    SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3,
576    SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3,
577    SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3,
578    SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5,
579    SP::G6, SP::G7,
580  };
581
582  // IntRegsVTs Register Class Value Types...
583  static const MVT::ValueType IntRegsVTs[] = {
584    MVT::i32, MVT::Other
585  };
586
587  namespace SP {   // Register class instances
588    DFPRegsClass    DFPRegsRegClass;
589    FPRegsClass     FPRegsRegClass;
590    IntRegsClass    IntRegsRegClass;
591  ...
592    // IntRegs Sub-register Classess...
593    static const TargetRegisterClass* const IntRegsSubRegClasses [] = {
594      NULL
595    };
596  ...
597    // IntRegs Super-register Classess...
598    static const TargetRegisterClass* const IntRegsSuperRegClasses [] = {
599      NULL
600    };
601  ...
602    // IntRegs Register Class sub-classes...
603    static const TargetRegisterClass* const IntRegsSubclasses [] = {
604      NULL
605    };
606  ...
607    // IntRegs Register Class super-classes...
608    static const TargetRegisterClass* const IntRegsSuperclasses [] = {
609      NULL
610    };
611
612    IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID,
613      IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses,
614      IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {}
615  }
616
617The register allocators will avoid using reserved registers, and callee saved
618registers are not used until all the volatile registers have been used.  That
619is usually good enough, but in some cases it may be necessary to provide custom
620allocation orders.
621
622Implement a subclass of ``TargetRegisterInfo``
623----------------------------------------------
624
625The final step is to hand code portions of ``XXXRegisterInfo``, which
626implements the interface described in ``TargetRegisterInfo.h`` (see
627:ref:`TargetRegisterInfo`).  These functions return ``0``, ``NULL``, or
628``false``, unless overridden.  Here is a list of functions that are overridden
629for the SPARC implementation in ``SparcRegisterInfo.cpp``:
630
631* ``getCalleeSavedRegs`` --- Returns a list of callee-saved registers in the
632  order of the desired callee-save stack frame offset.
633
634* ``getReservedRegs`` --- Returns a bitset indexed by physical register
635  numbers, indicating if a particular register is unavailable.
636
637* ``hasFP`` --- Return a Boolean indicating if a function should have a
638  dedicated frame pointer register.
639
640* ``eliminateCallFramePseudoInstr`` --- If call frame setup or destroy pseudo
641  instructions are used, this can be called to eliminate them.
642
643* ``eliminateFrameIndex`` --- Eliminate abstract frame indices from
644  instructions that may use them.
645
646* ``emitPrologue`` --- Insert prologue code into the function.
647
648* ``emitEpilogue`` --- Insert epilogue code into the function.
649
650.. _instruction-set:
651
652Instruction Set
653===============
654
655During the early stages of code generation, the LLVM IR code is converted to a
656``SelectionDAG`` with nodes that are instances of the ``SDNode`` class
657containing target instructions.  An ``SDNode`` has an opcode, operands, type
658requirements, and operation properties.  For example, is an operation
659commutative, does an operation load from memory.  The various operation node
660types are described in the ``include/llvm/CodeGen/SelectionDAGNodes.h`` file
661(values of the ``NodeType`` enum in the ``ISD`` namespace).
662
663TableGen uses the following target description (``.td``) input files to
664generate much of the code for instruction definition:
665
666* ``Target.td`` --- Where the ``Instruction``, ``Operand``, ``InstrInfo``, and
667  other fundamental classes are defined.
668
669* ``TargetSelectionDAG.td`` --- Used by ``SelectionDAG`` instruction selection
670  generators, contains ``SDTC*`` classes (selection DAG type constraint),
671  definitions of ``SelectionDAG`` nodes (such as ``imm``, ``cond``, ``bb``,
672  ``add``, ``fadd``, ``sub``), and pattern support (``Pattern``, ``Pat``,
673  ``PatFrag``, ``PatLeaf``, ``ComplexPattern``.
674
675* ``XXXInstrFormats.td`` --- Patterns for definitions of target-specific
676  instructions.
677
678* ``XXXInstrInfo.td`` --- Target-specific definitions of instruction templates,
679  condition codes, and instructions of an instruction set.  For architecture
680  modifications, a different file name may be used.  For example, for Pentium
681  with SSE instruction, this file is ``X86InstrSSE.td``, and for Pentium with
682  MMX, this file is ``X86InstrMMX.td``.
683
684There is also a target-specific ``XXX.td`` file, where ``XXX`` is the name of
685the target.  The ``XXX.td`` file includes the other ``.td`` input files, but
686its contents are only directly important for subtargets.
687
688You should describe a concrete target-specific class ``XXXInstrInfo`` that
689represents machine instructions supported by a target machine.
690``XXXInstrInfo`` contains an array of ``XXXInstrDescriptor`` objects, each of
691which describes one instruction.  An instruction descriptor defines:
692
693* Opcode mnemonic
694* Number of operands
695* List of implicit register definitions and uses
696* Target-independent properties (such as memory access, is commutable)
697* Target-specific flags
698
699The Instruction class (defined in ``Target.td``) is mostly used as a base for
700more complex instruction classes.
701
702.. code-block:: llvm
703
704  class Instruction {
705    string Namespace = "";
706    dag OutOperandList;    // A dag containing the MI def operand list.
707    dag InOperandList;     // A dag containing the MI use operand list.
708    string AsmString = ""; // The .s format to print the instruction with.
709    list<dag> Pattern;     // Set to the DAG pattern for this instruction.
710    list<Register> Uses = [];
711    list<Register> Defs = [];
712    list<Predicate> Predicates = [];  // predicates turned into isel match code
713    ... remainder not shown for space ...
714  }
715
716A ``SelectionDAG`` node (``SDNode``) should contain an object representing a
717target-specific instruction that is defined in ``XXXInstrInfo.td``.  The
718instruction objects should represent instructions from the architecture manual
719of the target machine (such as the SPARC Architecture Manual for the SPARC
720target).
721
722A single instruction from the architecture manual is often modeled as multiple
723target instructions, depending upon its operands.  For example, a manual might
724describe an add instruction that takes a register or an immediate operand.  An
725LLVM target could model this with two instructions named ``ADDri`` and
726``ADDrr``.
727
728You should define a class for each instruction category and define each opcode
729as a subclass of the category with appropriate parameters such as the fixed
730binary encoding of opcodes and extended opcodes.  You should map the register
731bits to the bits of the instruction in which they are encoded (for the JIT).
732Also you should specify how the instruction should be printed when the
733automatic assembly printer is used.
734
735As is described in the SPARC Architecture Manual, Version 8, there are three
736major 32-bit formats for instructions.  Format 1 is only for the ``CALL``
737instruction.  Format 2 is for branch on condition codes and ``SETHI`` (set high
738bits of a register) instructions.  Format 3 is for other instructions.
739
740Each of these formats has corresponding classes in ``SparcInstrFormat.td``.
741``InstSP`` is a base class for other instruction classes.  Additional base
742classes are specified for more precise formats: for example in
743``SparcInstrFormat.td``, ``F2_1`` is for ``SETHI``, and ``F2_2`` is for
744branches.  There are three other base classes: ``F3_1`` for register/register
745operations, ``F3_2`` for register/immediate operations, and ``F3_3`` for
746floating-point operations.  ``SparcInstrInfo.td`` also adds the base class
747``Pseudo`` for synthetic SPARC instructions.
748
749``SparcInstrInfo.td`` largely consists of operand and instruction definitions
750for the SPARC target.  In ``SparcInstrInfo.td``, the following target
751description file entry, ``LDrr``, defines the Load Integer instruction for a
752Word (the ``LD`` SPARC opcode) from a memory address to a register.  The first
753parameter, the value 3 (``11``\ :sub:`2`), is the operation value for this
754category of operation.  The second parameter (``000000``\ :sub:`2`) is the
755specific operation value for ``LD``/Load Word.  The third parameter is the
756output destination, which is a register operand and defined in the ``Register``
757target description file (``IntRegs``).
758
759.. code-block:: llvm
760
761  def LDrr : F3_1 <3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr),
762                   "ld [$addr], $dst",
763                   [(set i32:$dst, (load ADDRrr:$addr))]>;
764
765The fourth parameter is the input source, which uses the address operand
766``MEMrr`` that is defined earlier in ``SparcInstrInfo.td``:
767
768.. code-block:: llvm
769
770  def MEMrr : Operand<i32> {
771    let PrintMethod = "printMemOperand";
772    let MIOperandInfo = (ops IntRegs, IntRegs);
773  }
774
775The fifth parameter is a string that is used by the assembly printer and can be
776left as an empty string until the assembly printer interface is implemented.
777The sixth and final parameter is the pattern used to match the instruction
778during the SelectionDAG Select Phase described in :doc:`CodeGenerator`.
779This parameter is detailed in the next section, :ref:`instruction-selector`.
780
781Instruction class definitions are not overloaded for different operand types,
782so separate versions of instructions are needed for register, memory, or
783immediate value operands.  For example, to perform a Load Integer instruction
784for a Word from an immediate operand to a register, the following instruction
785class is defined:
786
787.. code-block:: llvm
788
789  def LDri : F3_2 <3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr),
790                   "ld [$addr], $dst",
791                   [(set i32:$dst, (load ADDRri:$addr))]>;
792
793Writing these definitions for so many similar instructions can involve a lot of
794cut and paste.  In ``.td`` files, the ``multiclass`` directive enables the
795creation of templates to define several instruction classes at once (using the
796``defm`` directive).  For example in ``SparcInstrInfo.td``, the ``multiclass``
797pattern ``F3_12`` is defined to create 2 instruction classes each time
798``F3_12`` is invoked:
799
800.. code-block:: llvm
801
802  multiclass F3_12 <string OpcStr, bits<6> Op3Val, SDNode OpNode> {
803    def rr  : F3_1 <2, Op3Val,
804                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
805                   !strconcat(OpcStr, " $b, $c, $dst"),
806                   [(set i32:$dst, (OpNode i32:$b, i32:$c))]>;
807    def ri  : F3_2 <2, Op3Val,
808                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
809                   !strconcat(OpcStr, " $b, $c, $dst"),
810                   [(set i32:$dst, (OpNode i32:$b, simm13:$c))]>;
811  }
812
813So when the ``defm`` directive is used for the ``XOR`` and ``ADD``
814instructions, as seen below, it creates four instruction objects: ``XORrr``,
815``XORri``, ``ADDrr``, and ``ADDri``.
816
817.. code-block:: llvm
818
819  defm XOR   : F3_12<"xor", 0b000011, xor>;
820  defm ADD   : F3_12<"add", 0b000000, add>;
821
822``SparcInstrInfo.td`` also includes definitions for condition codes that are
823referenced by branch instructions.  The following definitions in
824``SparcInstrInfo.td`` indicate the bit location of the SPARC condition code.
825For example, the 10\ :sup:`th` bit represents the "greater than" condition for
826integers, and the 22\ :sup:`nd` bit represents the "greater than" condition for
827floats.
828
829.. code-block:: llvm
830
831  def ICC_NE  : ICC_VAL< 9>;  // Not Equal
832  def ICC_E   : ICC_VAL< 1>;  // Equal
833  def ICC_G   : ICC_VAL<10>;  // Greater
834  ...
835  def FCC_U   : FCC_VAL<23>;  // Unordered
836  def FCC_G   : FCC_VAL<22>;  // Greater
837  def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
838  ...
839
840(Note that ``Sparc.h`` also defines enums that correspond to the same SPARC
841condition codes.  Care must be taken to ensure the values in ``Sparc.h``
842correspond to the values in ``SparcInstrInfo.td``.  I.e., ``SPCC::ICC_NE = 9``,
843``SPCC::FCC_U = 23`` and so on.)
844
845Instruction Operand Mapping
846---------------------------
847
848The code generator backend maps instruction operands to fields in the
849instruction.  Operands are assigned to unbound fields in the instruction in the
850order they are defined.  Fields are bound when they are assigned a value.  For
851example, the Sparc target defines the ``XNORrr`` instruction as a ``F3_1``
852format instruction having three operands.
853
854.. code-block:: llvm
855
856  def XNORrr  : F3_1<2, 0b000111,
857                     (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
858                     "xnor $b, $c, $dst",
859                     [(set i32:$dst, (not (xor i32:$b, i32:$c)))]>;
860
861The instruction templates in ``SparcInstrFormats.td`` show the base class for
862``F3_1`` is ``InstSP``.
863
864.. code-block:: llvm
865
866  class InstSP<dag outs, dag ins, string asmstr, list<dag> pattern> : Instruction {
867    field bits<32> Inst;
868    let Namespace = "SP";
869    bits<2> op;
870    let Inst{31-30} = op;
871    dag OutOperandList = outs;
872    dag InOperandList = ins;
873    let AsmString   = asmstr;
874    let Pattern = pattern;
875  }
876
877``InstSP`` leaves the ``op`` field unbound.
878
879.. code-block:: llvm
880
881  class F3<dag outs, dag ins, string asmstr, list<dag> pattern>
882      : InstSP<outs, ins, asmstr, pattern> {
883    bits<5> rd;
884    bits<6> op3;
885    bits<5> rs1;
886    let op{1} = 1;   // Op = 2 or 3
887    let Inst{29-25} = rd;
888    let Inst{24-19} = op3;
889    let Inst{18-14} = rs1;
890  }
891
892``F3`` binds the ``op`` field and defines the ``rd``, ``op3``, and ``rs1``
893fields.  ``F3`` format instructions will bind the operands ``rd``, ``op3``, and
894``rs1`` fields.
895
896.. code-block:: llvm
897
898  class F3_1<bits<2> opVal, bits<6> op3val, dag outs, dag ins,
899             string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> {
900    bits<8> asi = 0; // asi not currently used
901    bits<5> rs2;
902    let op         = opVal;
903    let op3        = op3val;
904    let Inst{13}   = 0;     // i field = 0
905    let Inst{12-5} = asi;   // address space identifier
906    let Inst{4-0}  = rs2;
907  }
908
909``F3_1`` binds the ``op3`` field and defines the ``rs2`` fields.  ``F3_1``
910format instructions will bind the operands to the ``rd``, ``rs1``, and ``rs2``
911fields.  This results in the ``XNORrr`` instruction binding ``$dst``, ``$b``,
912and ``$c`` operands to the ``rd``, ``rs1``, and ``rs2`` fields respectively.
913
914Instruction Operand Name Mapping
915^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
916
917TableGen will also generate a function called getNamedOperandIdx() which
918can be used to look up an operand's index in a MachineInstr based on its
919TableGen name.  Setting the UseNamedOperandTable bit in an instruction's
920TableGen definition will add all of its operands to an enumeration in the
921llvm::XXX:OpName namespace and also add an entry for it into the OperandMap
922table, which can be queried using getNamedOperandIdx()
923
924.. code-block:: llvm
925
926  int DstIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::dst); // => 0
927  int BIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::b);     // => 1
928  int CIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::c);     // => 2
929  int DIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::d);     // => -1
930
931  ...
932
933The entries in the OpName enum are taken verbatim from the TableGen definitions,
934so operands with lowercase names will have lower case entries in the enum.
935
936To include the getNamedOperandIdx() function in your backend, you will need
937to define a few preprocessor macros in XXXInstrInfo.cpp and XXXInstrInfo.h.
938For example:
939
940XXXInstrInfo.cpp:
941
942.. code-block:: c++
943
944  #define GET_INSTRINFO_NAMED_OPS // For getNamedOperandIdx() function
945  #include "XXXGenInstrInfo.inc"
946
947XXXInstrInfo.h:
948
949.. code-block:: c++
950
951  #define GET_INSTRINFO_OPERAND_ENUM // For OpName enum
952  #include "XXXGenInstrInfo.inc"
953
954  namespace XXX {
955    int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIndex);
956  } // End namespace XXX
957
958Instruction Operand Types
959^^^^^^^^^^^^^^^^^^^^^^^^^
960
961TableGen will also generate an enumeration consisting of all named Operand
962types defined in the backend, in the llvm::XXX::OpTypes namespace.
963Some common immediate Operand types (for instance i8, i32, i64, f32, f64)
964are defined for all targets in ``include/llvm/Target/Target.td``, and are
965available in each Target's OpTypes enum.  Also, only named Operand types appear
966in the enumeration: anonymous types are ignored.
967For example, the X86 backend defines ``brtarget`` and ``brtarget8``, both
968instances of the TableGen ``Operand`` class, which represent branch target
969operands:
970
971.. code-block:: llvm
972
973  def brtarget : Operand<OtherVT>;
974  def brtarget8 : Operand<OtherVT>;
975
976This results in:
977
978.. code-block:: c++
979
980  namespace X86 {
981  namespace OpTypes {
982  enum OperandType {
983    ...
984    brtarget,
985    brtarget8,
986    ...
987    i32imm,
988    i64imm,
989    ...
990    OPERAND_TYPE_LIST_END
991  } // End namespace OpTypes
992  } // End namespace X86
993
994In typical TableGen fashion, to use the enum, you will need to define a
995preprocessor macro:
996
997.. code-block:: c++
998
999  #define GET_INSTRINFO_OPERAND_TYPES_ENUM // For OpTypes enum
1000  #include "XXXGenInstrInfo.inc"
1001
1002
1003Instruction Scheduling
1004----------------------
1005
1006Instruction itineraries can be queried using MCDesc::getSchedClass(). The
1007value can be named by an enumemation in llvm::XXX::Sched namespace generated
1008by TableGen in XXXGenInstrInfo.inc. The name of the schedule classes are
1009the same as provided in XXXSchedule.td plus a default NoItinerary class.
1010
1011Instruction Relation Mapping
1012----------------------------
1013
1014This TableGen feature is used to relate instructions with each other.  It is
1015particularly useful when you have multiple instruction formats and need to
1016switch between them after instruction selection.  This entire feature is driven
1017by relation models which can be defined in ``XXXInstrInfo.td`` files
1018according to the target-specific instruction set.  Relation models are defined
1019using ``InstrMapping`` class as a base.  TableGen parses all the models
1020and generates instruction relation maps using the specified information.
1021Relation maps are emitted as tables in the ``XXXGenInstrInfo.inc`` file
1022along with the functions to query them.  For the detailed information on how to
1023use this feature, please refer to :doc:`HowToUseInstrMappings`.
1024
1025Implement a subclass of ``TargetInstrInfo``
1026-------------------------------------------
1027
1028The final step is to hand code portions of ``XXXInstrInfo``, which implements
1029the interface described in ``TargetInstrInfo.h`` (see :ref:`TargetInstrInfo`).
1030These functions return ``0`` or a Boolean or they assert, unless overridden.
1031Here's a list of functions that are overridden for the SPARC implementation in
1032``SparcInstrInfo.cpp``:
1033
1034* ``isLoadFromStackSlot`` --- If the specified machine instruction is a direct
1035  load from a stack slot, return the register number of the destination and the
1036  ``FrameIndex`` of the stack slot.
1037
1038* ``isStoreToStackSlot`` --- If the specified machine instruction is a direct
1039  store to a stack slot, return the register number of the destination and the
1040  ``FrameIndex`` of the stack slot.
1041
1042* ``copyPhysReg`` --- Copy values between a pair of physical registers.
1043
1044* ``storeRegToStackSlot`` --- Store a register value to a stack slot.
1045
1046* ``loadRegFromStackSlot`` --- Load a register value from a stack slot.
1047
1048* ``storeRegToAddr`` --- Store a register value to memory.
1049
1050* ``loadRegFromAddr`` --- Load a register value from memory.
1051
1052* ``foldMemoryOperand`` --- Attempt to combine instructions of any load or
1053  store instruction for the specified operand(s).
1054
1055Branch Folding and If Conversion
1056--------------------------------
1057
1058Performance can be improved by combining instructions or by eliminating
1059instructions that are never reached.  The ``AnalyzeBranch`` method in
1060``XXXInstrInfo`` may be implemented to examine conditional instructions and
1061remove unnecessary instructions.  ``AnalyzeBranch`` looks at the end of a
1062machine basic block (MBB) for opportunities for improvement, such as branch
1063folding and if conversion.  The ``BranchFolder`` and ``IfConverter`` machine
1064function passes (see the source files ``BranchFolding.cpp`` and
1065``IfConversion.cpp`` in the ``lib/CodeGen`` directory) call ``AnalyzeBranch``
1066to improve the control flow graph that represents the instructions.
1067
1068Several implementations of ``AnalyzeBranch`` (for ARM, Alpha, and X86) can be
1069examined as models for your own ``AnalyzeBranch`` implementation.  Since SPARC
1070does not implement a useful ``AnalyzeBranch``, the ARM target implementation is
1071shown below.
1072
1073``AnalyzeBranch`` returns a Boolean value and takes four parameters:
1074
1075* ``MachineBasicBlock &MBB`` --- The incoming block to be examined.
1076
1077* ``MachineBasicBlock *&TBB`` --- A destination block that is returned.  For a
1078  conditional branch that evaluates to true, ``TBB`` is the destination.
1079
1080* ``MachineBasicBlock *&FBB`` --- For a conditional branch that evaluates to
1081  false, ``FBB`` is returned as the destination.
1082
1083* ``std::vector<MachineOperand> &Cond`` --- List of operands to evaluate a
1084  condition for a conditional branch.
1085
1086In the simplest case, if a block ends without a branch, then it falls through
1087to the successor block.  No destination blocks are specified for either ``TBB``
1088or ``FBB``, so both parameters return ``NULL``.  The start of the
1089``AnalyzeBranch`` (see code below for the ARM target) shows the function
1090parameters and the code for the simplest case.
1091
1092.. code-block:: c++
1093
1094  bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1095                                   MachineBasicBlock *&TBB,
1096                                   MachineBasicBlock *&FBB,
1097                                   std::vector<MachineOperand> &Cond) const
1098  {
1099    MachineBasicBlock::iterator I = MBB.end();
1100    if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
1101      return false;
1102
1103If a block ends with a single unconditional branch instruction, then
1104``AnalyzeBranch`` (shown below) should return the destination of that branch in
1105the ``TBB`` parameter.
1106
1107.. code-block:: c++
1108
1109    if (LastOpc == ARM::B || LastOpc == ARM::tB) {
1110      TBB = LastInst->getOperand(0).getMBB();
1111      return false;
1112    }
1113
1114If a block ends with two unconditional branches, then the second branch is
1115never reached.  In that situation, as shown below, remove the last branch
1116instruction and return the penultimate branch in the ``TBB`` parameter.
1117
1118.. code-block:: c++
1119
1120    if ((SecondLastOpc == ARM::B || SecondLastOpc == ARM::tB) &&
1121        (LastOpc == ARM::B || LastOpc == ARM::tB)) {
1122      TBB = SecondLastInst->getOperand(0).getMBB();
1123      I = LastInst;
1124      I->eraseFromParent();
1125      return false;
1126    }
1127
1128A block may end with a single conditional branch instruction that falls through
1129to successor block if the condition evaluates to false.  In that case,
1130``AnalyzeBranch`` (shown below) should return the destination of that
1131conditional branch in the ``TBB`` parameter and a list of operands in the
1132``Cond`` parameter to evaluate the condition.
1133
1134.. code-block:: c++
1135
1136    if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) {
1137      // Block ends with fall-through condbranch.
1138      TBB = LastInst->getOperand(0).getMBB();
1139      Cond.push_back(LastInst->getOperand(1));
1140      Cond.push_back(LastInst->getOperand(2));
1141      return false;
1142    }
1143
1144If a block ends with both a conditional branch and an ensuing unconditional
1145branch, then ``AnalyzeBranch`` (shown below) should return the conditional
1146branch destination (assuming it corresponds to a conditional evaluation of
1147"``true``") in the ``TBB`` parameter and the unconditional branch destination
1148in the ``FBB`` (corresponding to a conditional evaluation of "``false``").  A
1149list of operands to evaluate the condition should be returned in the ``Cond``
1150parameter.
1151
1152.. code-block:: c++
1153
1154    unsigned SecondLastOpc = SecondLastInst->getOpcode();
1155
1156    if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) ||
1157        (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) {
1158      TBB =  SecondLastInst->getOperand(0).getMBB();
1159      Cond.push_back(SecondLastInst->getOperand(1));
1160      Cond.push_back(SecondLastInst->getOperand(2));
1161      FBB = LastInst->getOperand(0).getMBB();
1162      return false;
1163    }
1164
1165For the last two cases (ending with a single conditional branch or ending with
1166one conditional and one unconditional branch), the operands returned in the
1167``Cond`` parameter can be passed to methods of other instructions to create new
1168branches or perform other operations.  An implementation of ``AnalyzeBranch``
1169requires the helper methods ``RemoveBranch`` and ``InsertBranch`` to manage
1170subsequent operations.
1171
1172``AnalyzeBranch`` should return false indicating success in most circumstances.
1173``AnalyzeBranch`` should only return true when the method is stumped about what
1174to do, for example, if a block has three terminating branches.
1175``AnalyzeBranch`` may return true if it encounters a terminator it cannot
1176handle, such as an indirect branch.
1177
1178.. _instruction-selector:
1179
1180Instruction Selector
1181====================
1182
1183LLVM uses a ``SelectionDAG`` to represent LLVM IR instructions, and nodes of
1184the ``SelectionDAG`` ideally represent native target instructions.  During code
1185generation, instruction selection passes are performed to convert non-native
1186DAG instructions into native target-specific instructions.  The pass described
1187in ``XXXISelDAGToDAG.cpp`` is used to match patterns and perform DAG-to-DAG
1188instruction selection.  Optionally, a pass may be defined (in
1189``XXXBranchSelector.cpp``) to perform similar DAG-to-DAG operations for branch
1190instructions.  Later, the code in ``XXXISelLowering.cpp`` replaces or removes
1191operations and data types not supported natively (legalizes) in a
1192``SelectionDAG``.
1193
1194TableGen generates code for instruction selection using the following target
1195description input files:
1196
1197* ``XXXInstrInfo.td`` --- Contains definitions of instructions in a
1198  target-specific instruction set, generates ``XXXGenDAGISel.inc``, which is
1199  included in ``XXXISelDAGToDAG.cpp``.
1200
1201* ``XXXCallingConv.td`` --- Contains the calling and return value conventions
1202  for the target architecture, and it generates ``XXXGenCallingConv.inc``,
1203  which is included in ``XXXISelLowering.cpp``.
1204
1205The implementation of an instruction selection pass must include a header that
1206declares the ``FunctionPass`` class or a subclass of ``FunctionPass``.  In
1207``XXXTargetMachine.cpp``, a Pass Manager (PM) should add each instruction
1208selection pass into the queue of passes to run.
1209
1210The LLVM static compiler (``llc``) is an excellent tool for visualizing the
1211contents of DAGs.  To display the ``SelectionDAG`` before or after specific
1212processing phases, use the command line options for ``llc``, described at
1213:ref:`SelectionDAG-Process`.
1214
1215To describe instruction selector behavior, you should add patterns for lowering
1216LLVM code into a ``SelectionDAG`` as the last parameter of the instruction
1217definitions in ``XXXInstrInfo.td``.  For example, in ``SparcInstrInfo.td``,
1218this entry defines a register store operation, and the last parameter describes
1219a pattern with the store DAG operator.
1220
1221.. code-block:: llvm
1222
1223  def STrr  : F3_1< 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src),
1224                   "st $src, [$addr]", [(store i32:$src, ADDRrr:$addr)]>;
1225
1226``ADDRrr`` is a memory mode that is also defined in ``SparcInstrInfo.td``:
1227
1228.. code-block:: llvm
1229
1230  def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
1231
1232The definition of ``ADDRrr`` refers to ``SelectADDRrr``, which is a function
1233defined in an implementation of the Instructor Selector (such as
1234``SparcISelDAGToDAG.cpp``).
1235
1236In ``lib/Target/TargetSelectionDAG.td``, the DAG operator for store is defined
1237below:
1238
1239.. code-block:: llvm
1240
1241  def store : PatFrag<(ops node:$val, node:$ptr),
1242                      (st node:$val, node:$ptr), [{
1243    if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
1244      return !ST->isTruncatingStore() &&
1245             ST->getAddressingMode() == ISD::UNINDEXED;
1246    return false;
1247  }]>;
1248
1249``XXXInstrInfo.td`` also generates (in ``XXXGenDAGISel.inc``) the
1250``SelectCode`` method that is used to call the appropriate processing method
1251for an instruction.  In this example, ``SelectCode`` calls ``Select_ISD_STORE``
1252for the ``ISD::STORE`` opcode.
1253
1254.. code-block:: c++
1255
1256  SDNode *SelectCode(SDValue N) {
1257    ...
1258    MVT::ValueType NVT = N.getNode()->getValueType(0);
1259    switch (N.getOpcode()) {
1260    case ISD::STORE: {
1261      switch (NVT) {
1262      default:
1263        return Select_ISD_STORE(N);
1264        break;
1265      }
1266      break;
1267    }
1268    ...
1269
1270The pattern for ``STrr`` is matched, so elsewhere in ``XXXGenDAGISel.inc``,
1271code for ``STrr`` is created for ``Select_ISD_STORE``.  The ``Emit_22`` method
1272is also generated in ``XXXGenDAGISel.inc`` to complete the processing of this
1273instruction.
1274
1275.. code-block:: c++
1276
1277  SDNode *Select_ISD_STORE(const SDValue &N) {
1278    SDValue Chain = N.getOperand(0);
1279    if (Predicate_store(N.getNode())) {
1280      SDValue N1 = N.getOperand(1);
1281      SDValue N2 = N.getOperand(2);
1282      SDValue CPTmp0;
1283      SDValue CPTmp1;
1284
1285      // Pattern: (st:void i32:i32:$src,
1286      //           ADDRrr:i32:$addr)<<P:Predicate_store>>
1287      // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src)
1288      // Pattern complexity = 13  cost = 1  size = 0
1289      if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) &&
1290          N1.getNode()->getValueType(0) == MVT::i32 &&
1291          N2.getNode()->getValueType(0) == MVT::i32) {
1292        return Emit_22(N, SP::STrr, CPTmp0, CPTmp1);
1293      }
1294  ...
1295
1296The SelectionDAG Legalize Phase
1297-------------------------------
1298
1299The Legalize phase converts a DAG to use types and operations that are natively
1300supported by the target.  For natively unsupported types and operations, you
1301need to add code to the target-specific ``XXXTargetLowering`` implementation to
1302convert unsupported types and operations to supported ones.
1303
1304In the constructor for the ``XXXTargetLowering`` class, first use the
1305``addRegisterClass`` method to specify which types are supported and which
1306register classes are associated with them.  The code for the register classes
1307are generated by TableGen from ``XXXRegisterInfo.td`` and placed in
1308``XXXGenRegisterInfo.h.inc``.  For example, the implementation of the
1309constructor for the SparcTargetLowering class (in ``SparcISelLowering.cpp``)
1310starts with the following code:
1311
1312.. code-block:: c++
1313
1314  addRegisterClass(MVT::i32, SP::IntRegsRegisterClass);
1315  addRegisterClass(MVT::f32, SP::FPRegsRegisterClass);
1316  addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass);
1317
1318You should examine the node types in the ``ISD`` namespace
1319(``include/llvm/CodeGen/SelectionDAGNodes.h``) and determine which operations
1320the target natively supports.  For operations that do **not** have native
1321support, add a callback to the constructor for the ``XXXTargetLowering`` class,
1322so the instruction selection process knows what to do.  The ``TargetLowering``
1323class callback methods (declared in ``llvm/Target/TargetLowering.h``) are:
1324
1325* ``setOperationAction`` --- General operation.
1326* ``setLoadExtAction`` --- Load with extension.
1327* ``setTruncStoreAction`` --- Truncating store.
1328* ``setIndexedLoadAction`` --- Indexed load.
1329* ``setIndexedStoreAction`` --- Indexed store.
1330* ``setConvertAction`` --- Type conversion.
1331* ``setCondCodeAction`` --- Support for a given condition code.
1332
1333Note: on older releases, ``setLoadXAction`` is used instead of
1334``setLoadExtAction``.  Also, on older releases, ``setCondCodeAction`` may not
1335be supported.  Examine your release to see what methods are specifically
1336supported.
1337
1338These callbacks are used to determine that an operation does or does not work
1339with a specified type (or types).  And in all cases, the third parameter is a
1340``LegalAction`` type enum value: ``Promote``, ``Expand``, ``Custom``, or
1341``Legal``.  ``SparcISelLowering.cpp`` contains examples of all four
1342``LegalAction`` values.
1343
1344Promote
1345^^^^^^^
1346
1347For an operation without native support for a given type, the specified type
1348may be promoted to a larger type that is supported.  For example, SPARC does
1349not support a sign-extending load for Boolean values (``i1`` type), so in
1350``SparcISelLowering.cpp`` the third parameter below, ``Promote``, changes
1351``i1`` type values to a large type before loading.
1352
1353.. code-block:: c++
1354
1355  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
1356
1357Expand
1358^^^^^^
1359
1360For a type without native support, a value may need to be broken down further,
1361rather than promoted.  For an operation without native support, a combination
1362of other operations may be used to similar effect.  In SPARC, the
1363floating-point sine and cosine trig operations are supported by expansion to
1364other operations, as indicated by the third parameter, ``Expand``, to
1365``setOperationAction``:
1366
1367.. code-block:: c++
1368
1369  setOperationAction(ISD::FSIN, MVT::f32, Expand);
1370  setOperationAction(ISD::FCOS, MVT::f32, Expand);
1371
1372Custom
1373^^^^^^
1374
1375For some operations, simple type promotion or operation expansion may be
1376insufficient.  In some cases, a special intrinsic function must be implemented.
1377
1378For example, a constant value may require special treatment, or an operation
1379may require spilling and restoring registers in the stack and working with
1380register allocators.
1381
1382As seen in ``SparcISelLowering.cpp`` code below, to perform a type conversion
1383from a floating point value to a signed integer, first the
1384``setOperationAction`` should be called with ``Custom`` as the third parameter:
1385
1386.. code-block:: c++
1387
1388  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
1389
1390In the ``LowerOperation`` method, for each ``Custom`` operation, a case
1391statement should be added to indicate what function to call.  In the following
1392code, an ``FP_TO_SINT`` opcode will call the ``LowerFP_TO_SINT`` method:
1393
1394.. code-block:: c++
1395
1396  SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
1397    switch (Op.getOpcode()) {
1398    case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1399    ...
1400    }
1401  }
1402
1403Finally, the ``LowerFP_TO_SINT`` method is implemented, using an FP register to
1404convert the floating-point value to an integer.
1405
1406.. code-block:: c++
1407
1408  static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
1409    assert(Op.getValueType() == MVT::i32);
1410    Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0));
1411    return DAG.getNode(ISD::BITCAST, MVT::i32, Op);
1412  }
1413
1414Legal
1415^^^^^
1416
1417The ``Legal`` ``LegalizeAction`` enum value simply indicates that an operation
1418**is** natively supported.  ``Legal`` represents the default condition, so it
1419is rarely used.  In ``SparcISelLowering.cpp``, the action for ``CTPOP`` (an
1420operation to count the bits set in an integer) is natively supported only for
1421SPARC v9.  The following code enables the ``Expand`` conversion technique for
1422non-v9 SPARC implementations.
1423
1424.. code-block:: c++
1425
1426  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1427  ...
1428  if (TM.getSubtarget<SparcSubtarget>().isV9())
1429    setOperationAction(ISD::CTPOP, MVT::i32, Legal);
1430
1431Calling Conventions
1432-------------------
1433
1434To support target-specific calling conventions, ``XXXGenCallingConv.td`` uses
1435interfaces (such as ``CCIfType`` and ``CCAssignToReg``) that are defined in
1436``lib/Target/TargetCallingConv.td``.  TableGen can take the target descriptor
1437file ``XXXGenCallingConv.td`` and generate the header file
1438``XXXGenCallingConv.inc``, which is typically included in
1439``XXXISelLowering.cpp``.  You can use the interfaces in
1440``TargetCallingConv.td`` to specify:
1441
1442* The order of parameter allocation.
1443
1444* Where parameters and return values are placed (that is, on the stack or in
1445  registers).
1446
1447* Which registers may be used.
1448
1449* Whether the caller or callee unwinds the stack.
1450
1451The following example demonstrates the use of the ``CCIfType`` and
1452``CCAssignToReg`` interfaces.  If the ``CCIfType`` predicate is true (that is,
1453if the current argument is of type ``f32`` or ``f64``), then the action is
1454performed.  In this case, the ``CCAssignToReg`` action assigns the argument
1455value to the first available register: either ``R0`` or ``R1``.
1456
1457.. code-block:: llvm
1458
1459  CCIfType<[f32,f64], CCAssignToReg<[R0, R1]>>
1460
1461``SparcCallingConv.td`` contains definitions for a target-specific return-value
1462calling convention (``RetCC_Sparc32``) and a basic 32-bit C calling convention
1463(``CC_Sparc32``).  The definition of ``RetCC_Sparc32`` (shown below) indicates
1464which registers are used for specified scalar return types.  A single-precision
1465float is returned to register ``F0``, and a double-precision float goes to
1466register ``D0``.  A 32-bit integer is returned in register ``I0`` or ``I1``.
1467
1468.. code-block:: llvm
1469
1470  def RetCC_Sparc32 : CallingConv<[
1471    CCIfType<[i32], CCAssignToReg<[I0, I1]>>,
1472    CCIfType<[f32], CCAssignToReg<[F0]>>,
1473    CCIfType<[f64], CCAssignToReg<[D0]>>
1474  ]>;
1475
1476The definition of ``CC_Sparc32`` in ``SparcCallingConv.td`` introduces
1477``CCAssignToStack``, which assigns the value to a stack slot with the specified
1478size and alignment.  In the example below, the first parameter, 4, indicates
1479the size of the slot, and the second parameter, also 4, indicates the stack
1480alignment along 4-byte units.  (Special cases: if size is zero, then the ABI
1481size is used; if alignment is zero, then the ABI alignment is used.)
1482
1483.. code-block:: llvm
1484
1485  def CC_Sparc32 : CallingConv<[
1486    // All arguments get passed in integer registers if there is space.
1487    CCIfType<[i32, f32, f64], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
1488    CCAssignToStack<4, 4>
1489  ]>;
1490
1491``CCDelegateTo`` is another commonly used interface, which tries to find a
1492specified sub-calling convention, and, if a match is found, it is invoked.  In
1493the following example (in ``X86CallingConv.td``), the definition of
1494``RetCC_X86_32_C`` ends with ``CCDelegateTo``.  After the current value is
1495assigned to the register ``ST0`` or ``ST1``, the ``RetCC_X86Common`` is
1496invoked.
1497
1498.. code-block:: llvm
1499
1500  def RetCC_X86_32_C : CallingConv<[
1501    CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>,
1502    CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>,
1503    CCDelegateTo<RetCC_X86Common>
1504  ]>;
1505
1506``CCIfCC`` is an interface that attempts to match the given name to the current
1507calling convention.  If the name identifies the current calling convention,
1508then a specified action is invoked.  In the following example (in
1509``X86CallingConv.td``), if the ``Fast`` calling convention is in use, then
1510``RetCC_X86_32_Fast`` is invoked.  If the ``SSECall`` calling convention is in
1511use, then ``RetCC_X86_32_SSE`` is invoked.
1512
1513.. code-block:: llvm
1514
1515  def RetCC_X86_32 : CallingConv<[
1516    CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
1517    CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo<RetCC_X86_32_SSE>>,
1518    CCDelegateTo<RetCC_X86_32_C>
1519  ]>;
1520
1521Other calling convention interfaces include:
1522
1523* ``CCIf <predicate, action>`` --- If the predicate matches, apply the action.
1524
1525* ``CCIfInReg <action>`` --- If the argument is marked with the "``inreg``"
1526  attribute, then apply the action.
1527
1528* ``CCIfNest <action>`` --- If the argument is marked with the "``nest``"
1529  attribute, then apply the action.
1530
1531* ``CCIfNotVarArg <action>`` --- If the current function does not take a
1532  variable number of arguments, apply the action.
1533
1534* ``CCAssignToRegWithShadow <registerList, shadowList>`` --- similar to
1535  ``CCAssignToReg``, but with a shadow list of registers.
1536
1537* ``CCPassByVal <size, align>`` --- Assign value to a stack slot with the
1538  minimum specified size and alignment.
1539
1540* ``CCPromoteToType <type>`` --- Promote the current value to the specified
1541  type.
1542
1543* ``CallingConv <[actions]>`` --- Define each calling convention that is
1544  supported.
1545
1546Assembly Printer
1547================
1548
1549During the code emission stage, the code generator may utilize an LLVM pass to
1550produce assembly output.  To do this, you want to implement the code for a
1551printer that converts LLVM IR to a GAS-format assembly language for your target
1552machine, using the following steps:
1553
1554* Define all the assembly strings for your target, adding them to the
1555  instructions defined in the ``XXXInstrInfo.td`` file.  (See
1556  :ref:`instruction-set`.)  TableGen will produce an output file
1557  (``XXXGenAsmWriter.inc``) with an implementation of the ``printInstruction``
1558  method for the ``XXXAsmPrinter`` class.
1559
1560* Write ``XXXTargetAsmInfo.h``, which contains the bare-bones declaration of
1561  the ``XXXTargetAsmInfo`` class (a subclass of ``TargetAsmInfo``).
1562
1563* Write ``XXXTargetAsmInfo.cpp``, which contains target-specific values for
1564  ``TargetAsmInfo`` properties and sometimes new implementations for methods.
1565
1566* Write ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that
1567  performs the LLVM-to-assembly conversion.
1568
1569The code in ``XXXTargetAsmInfo.h`` is usually a trivial declaration of the
1570``XXXTargetAsmInfo`` class for use in ``XXXTargetAsmInfo.cpp``.  Similarly,
1571``XXXTargetAsmInfo.cpp`` usually has a few declarations of ``XXXTargetAsmInfo``
1572replacement values that override the default values in ``TargetAsmInfo.cpp``.
1573For example in ``SparcTargetAsmInfo.cpp``:
1574
1575.. code-block:: c++
1576
1577  SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &TM) {
1578    Data16bitsDirective = "\t.half\t";
1579    Data32bitsDirective = "\t.word\t";
1580    Data64bitsDirective = 0;  // .xword is only supported by V9.
1581    ZeroDirective = "\t.skip\t";
1582    CommentString = "!";
1583    ConstantPoolSection = "\t.section \".rodata\",#alloc\n";
1584  }
1585
1586The X86 assembly printer implementation (``X86TargetAsmInfo``) is an example
1587where the target specific ``TargetAsmInfo`` class uses an overridden methods:
1588``ExpandInlineAsm``.
1589
1590A target-specific implementation of ``AsmPrinter`` is written in
1591``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that converts
1592the LLVM to printable assembly.  The implementation must include the following
1593headers that have declarations for the ``AsmPrinter`` and
1594``MachineFunctionPass`` classes.  The ``MachineFunctionPass`` is a subclass of
1595``FunctionPass``.
1596
1597.. code-block:: c++
1598
1599  #include "llvm/CodeGen/AsmPrinter.h"
1600  #include "llvm/CodeGen/MachineFunctionPass.h"
1601
1602As a ``FunctionPass``, ``AsmPrinter`` first calls ``doInitialization`` to set
1603up the ``AsmPrinter``.  In ``SparcAsmPrinter``, a ``Mangler`` object is
1604instantiated to process variable names.
1605
1606In ``XXXAsmPrinter.cpp``, the ``runOnMachineFunction`` method (declared in
1607``MachineFunctionPass``) must be implemented for ``XXXAsmPrinter``.  In
1608``MachineFunctionPass``, the ``runOnFunction`` method invokes
1609``runOnMachineFunction``.  Target-specific implementations of
1610``runOnMachineFunction`` differ, but generally do the following to process each
1611machine function:
1612
1613* Call ``SetupMachineFunction`` to perform initialization.
1614
1615* Call ``EmitConstantPool`` to print out (to the output stream) constants which
1616  have been spilled to memory.
1617
1618* Call ``EmitJumpTableInfo`` to print out jump tables used by the current
1619  function.
1620
1621* Print out the label for the current function.
1622
1623* Print out the code for the function, including basic block labels and the
1624  assembly for the instruction (using ``printInstruction``)
1625
1626The ``XXXAsmPrinter`` implementation must also include the code generated by
1627TableGen that is output in the ``XXXGenAsmWriter.inc`` file.  The code in
1628``XXXGenAsmWriter.inc`` contains an implementation of the ``printInstruction``
1629method that may call these methods:
1630
1631* ``printOperand``
1632* ``printMemOperand``
1633* ``printCCOperand`` (for conditional statements)
1634* ``printDataDirective``
1635* ``printDeclare``
1636* ``printImplicitDef``
1637* ``printInlineAsm``
1638
1639The implementations of ``printDeclare``, ``printImplicitDef``,
1640``printInlineAsm``, and ``printLabel`` in ``AsmPrinter.cpp`` are generally
1641adequate for printing assembly and do not need to be overridden.
1642
1643The ``printOperand`` method is implemented with a long ``switch``/``case``
1644statement for the type of operand: register, immediate, basic block, external
1645symbol, global address, constant pool index, or jump table index.  For an
1646instruction with a memory address operand, the ``printMemOperand`` method
1647should be implemented to generate the proper output.  Similarly,
1648``printCCOperand`` should be used to print a conditional operand.
1649
1650``doFinalization`` should be overridden in ``XXXAsmPrinter``, and it should be
1651called to shut down the assembly printer.  During ``doFinalization``, global
1652variables and constants are printed to output.
1653
1654Subtarget Support
1655=================
1656
1657Subtarget support is used to inform the code generation process of instruction
1658set variations for a given chip set.  For example, the LLVM SPARC
1659implementation provided covers three major versions of the SPARC microprocessor
1660architecture: Version 8 (V8, which is a 32-bit architecture), Version 9 (V9, a
166164-bit architecture), and the UltraSPARC architecture.  V8 has 16
1662double-precision floating-point registers that are also usable as either 32
1663single-precision or 8 quad-precision registers.  V8 is also purely big-endian.
1664V9 has 32 double-precision floating-point registers that are also usable as 16
1665quad-precision registers, but cannot be used as single-precision registers.
1666The UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set
1667extensions.
1668
1669If subtarget support is needed, you should implement a target-specific
1670``XXXSubtarget`` class for your architecture.  This class should process the
1671command-line options ``-mcpu=`` and ``-mattr=``.
1672
1673TableGen uses definitions in the ``Target.td`` and ``Sparc.td`` files to
1674generate code in ``SparcGenSubtarget.inc``.  In ``Target.td``, shown below, the
1675``SubtargetFeature`` interface is defined.  The first 4 string parameters of
1676the ``SubtargetFeature`` interface are a feature name, an attribute set by the
1677feature, the value of the attribute, and a description of the feature.  (The
1678fifth parameter is a list of features whose presence is implied, and its
1679default value is an empty array.)
1680
1681.. code-block:: llvm
1682
1683  class SubtargetFeature<string n, string a, string v, string d,
1684                         list<SubtargetFeature> i = []> {
1685    string Name = n;
1686    string Attribute = a;
1687    string Value = v;
1688    string Desc = d;
1689    list<SubtargetFeature> Implies = i;
1690  }
1691
1692In the ``Sparc.td`` file, the ``SubtargetFeature`` is used to define the
1693following features.
1694
1695.. code-block:: llvm
1696
1697  def FeatureV9 : SubtargetFeature<"v9", "IsV9", "true",
1698                       "Enable SPARC-V9 instructions">;
1699  def FeatureV8Deprecated : SubtargetFeature<"deprecated-v8",
1700                       "V8DeprecatedInsts", "true",
1701                       "Enable deprecated V8 instructions in V9 mode">;
1702  def FeatureVIS : SubtargetFeature<"vis", "IsVIS", "true",
1703                       "Enable UltraSPARC Visual Instruction Set extensions">;
1704
1705Elsewhere in ``Sparc.td``, the ``Proc`` class is defined and then is used to
1706define particular SPARC processor subtypes that may have the previously
1707described features.
1708
1709.. code-block:: llvm
1710
1711  class Proc<string Name, list<SubtargetFeature> Features>
1712    : Processor<Name, NoItineraries, Features>;
1713
1714  def : Proc<"generic",         []>;
1715  def : Proc<"v8",              []>;
1716  def : Proc<"supersparc",      []>;
1717  def : Proc<"sparclite",       []>;
1718  def : Proc<"f934",            []>;
1719  def : Proc<"hypersparc",      []>;
1720  def : Proc<"sparclite86x",    []>;
1721  def : Proc<"sparclet",        []>;
1722  def : Proc<"tsc701",          []>;
1723  def : Proc<"v9",              [FeatureV9]>;
1724  def : Proc<"ultrasparc",      [FeatureV9, FeatureV8Deprecated]>;
1725  def : Proc<"ultrasparc3",     [FeatureV9, FeatureV8Deprecated]>;
1726  def : Proc<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]>;
1727
1728From ``Target.td`` and ``Sparc.td`` files, the resulting
1729``SparcGenSubtarget.inc`` specifies enum values to identify the features,
1730arrays of constants to represent the CPU features and CPU subtypes, and the
1731``ParseSubtargetFeatures`` method that parses the features string that sets
1732specified subtarget options.  The generated ``SparcGenSubtarget.inc`` file
1733should be included in the ``SparcSubtarget.cpp``.  The target-specific
1734implementation of the ``XXXSubtarget`` method should follow this pseudocode:
1735
1736.. code-block:: c++
1737
1738  XXXSubtarget::XXXSubtarget(const Module &M, const std::string &FS) {
1739    // Set the default features
1740    // Determine default and user specified characteristics of the CPU
1741    // Call ParseSubtargetFeatures(FS, CPU) to parse the features string
1742    // Perform any additional operations
1743  }
1744
1745JIT Support
1746===========
1747
1748The implementation of a target machine optionally includes a Just-In-Time (JIT)
1749code generator that emits machine code and auxiliary structures as binary
1750output that can be written directly to memory.  To do this, implement JIT code
1751generation by performing the following steps:
1752
1753* Write an ``XXXCodeEmitter.cpp`` file that contains a machine function pass
1754  that transforms target-machine instructions into relocatable machine
1755  code.
1756
1757* Write an ``XXXJITInfo.cpp`` file that implements the JIT interfaces for
1758  target-specific code-generation activities, such as emitting machine code and
1759  stubs.
1760
1761* Modify ``XXXTargetMachine`` so that it provides a ``TargetJITInfo`` object
1762  through its ``getJITInfo`` method.
1763
1764There are several different approaches to writing the JIT support code.  For
1765instance, TableGen and target descriptor files may be used for creating a JIT
1766code generator, but are not mandatory.  For the Alpha and PowerPC target
1767machines, TableGen is used to generate ``XXXGenCodeEmitter.inc``, which
1768contains the binary coding of machine instructions and the
1769``getBinaryCodeForInstr`` method to access those codes.  Other JIT
1770implementations do not.
1771
1772Both ``XXXJITInfo.cpp`` and ``XXXCodeEmitter.cpp`` must include the
1773``llvm/CodeGen/MachineCodeEmitter.h`` header file that defines the
1774``MachineCodeEmitter`` class containing code for several callback functions
1775that write data (in bytes, words, strings, etc.) to the output stream.
1776
1777Machine Code Emitter
1778--------------------
1779
1780In ``XXXCodeEmitter.cpp``, a target-specific of the ``Emitter`` class is
1781implemented as a function pass (subclass of ``MachineFunctionPass``).  The
1782target-specific implementation of ``runOnMachineFunction`` (invoked by
1783``runOnFunction`` in ``MachineFunctionPass``) iterates through the
1784``MachineBasicBlock`` calls ``emitInstruction`` to process each instruction and
1785emit binary code.  ``emitInstruction`` is largely implemented with case
1786statements on the instruction types defined in ``XXXInstrInfo.h``.  For
1787example, in ``X86CodeEmitter.cpp``, the ``emitInstruction`` method is built
1788around the following ``switch``/``case`` statements:
1789
1790.. code-block:: c++
1791
1792  switch (Desc->TSFlags & X86::FormMask) {
1793  case X86II::Pseudo:  // for not yet implemented instructions
1794     ...               // or pseudo-instructions
1795     break;
1796  case X86II::RawFrm:  // for instructions with a fixed opcode value
1797     ...
1798     break;
1799  case X86II::AddRegFrm: // for instructions that have one register operand
1800     ...                 // added to their opcode
1801     break;
1802  case X86II::MRMDestReg:// for instructions that use the Mod/RM byte
1803     ...                 // to specify a destination (register)
1804     break;
1805  case X86II::MRMDestMem:// for instructions that use the Mod/RM byte
1806     ...                 // to specify a destination (memory)
1807     break;
1808  case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte
1809     ...                 // to specify a source (register)
1810     break;
1811  case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte
1812     ...                 // to specify a source (memory)
1813     break;
1814  case X86II::MRM0r: case X86II::MRM1r:  // for instructions that operate on
1815  case X86II::MRM2r: case X86II::MRM3r:  // a REGISTER r/m operand and
1816  case X86II::MRM4r: case X86II::MRM5r:  // use the Mod/RM byte and a field
1817  case X86II::MRM6r: case X86II::MRM7r:  // to hold extended opcode data
1818     ...
1819     break;
1820  case X86II::MRM0m: case X86II::MRM1m:  // for instructions that operate on
1821  case X86II::MRM2m: case X86II::MRM3m:  // a MEMORY r/m operand and
1822  case X86II::MRM4m: case X86II::MRM5m:  // use the Mod/RM byte and a field
1823  case X86II::MRM6m: case X86II::MRM7m:  // to hold extended opcode data
1824     ...
1825     break;
1826  case X86II::MRMInitReg: // for instructions whose source and
1827     ...                  // destination are the same register
1828     break;
1829  }
1830
1831The implementations of these case statements often first emit the opcode and
1832then get the operand(s).  Then depending upon the operand, helper methods may
1833be called to process the operand(s).  For example, in ``X86CodeEmitter.cpp``,
1834for the ``X86II::AddRegFrm`` case, the first data emitted (by ``emitByte``) is
1835the opcode added to the register operand.  Then an object representing the
1836machine operand, ``MO1``, is extracted.  The helper methods such as
1837``isImmediate``, ``isGlobalAddress``, ``isExternalSymbol``,
1838``isConstantPoolIndex``, and ``isJumpTableIndex`` determine the operand type.
1839(``X86CodeEmitter.cpp`` also has private methods such as ``emitConstant``,
1840``emitGlobalAddress``, ``emitExternalSymbolAddress``, ``emitConstPoolAddress``,
1841and ``emitJumpTableAddress`` that emit the data into the output stream.)
1842
1843.. code-block:: c++
1844
1845  case X86II::AddRegFrm:
1846    MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
1847
1848    if (CurOp != NumOps) {
1849      const MachineOperand &MO1 = MI.getOperand(CurOp++);
1850      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
1851      if (MO1.isImmediate())
1852        emitConstant(MO1.getImm(), Size);
1853      else {
1854        unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
1855          : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
1856        if (Opcode == X86::MOV64ri)
1857          rt = X86::reloc_absolute_dword;  // FIXME: add X86II flag?
1858        if (MO1.isGlobalAddress()) {
1859          bool NeedStub = isa<Function>(MO1.getGlobal());
1860          bool isLazy = gvNeedsLazyPtr(MO1.getGlobal());
1861          emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
1862                            NeedStub, isLazy);
1863        } else if (MO1.isExternalSymbol())
1864          emitExternalSymbolAddress(MO1.getSymbolName(), rt);
1865        else if (MO1.isConstantPoolIndex())
1866          emitConstPoolAddress(MO1.getIndex(), rt);
1867        else if (MO1.isJumpTableIndex())
1868          emitJumpTableAddress(MO1.getIndex(), rt);
1869      }
1870    }
1871    break;
1872
1873In the previous example, ``XXXCodeEmitter.cpp`` uses the variable ``rt``, which
1874is a ``RelocationType`` enum that may be used to relocate addresses (for
1875example, a global address with a PIC base offset).  The ``RelocationType`` enum
1876for that target is defined in the short target-specific ``XXXRelocations.h``
1877file.  The ``RelocationType`` is used by the ``relocate`` method defined in
1878``XXXJITInfo.cpp`` to rewrite addresses for referenced global symbols.
1879
1880For example, ``X86Relocations.h`` specifies the following relocation types for
1881the X86 addresses.  In all four cases, the relocated value is added to the
1882value already in memory.  For ``reloc_pcrel_word`` and ``reloc_picrel_word``,
1883there is an additional initial adjustment.
1884
1885.. code-block:: c++
1886
1887  enum RelocationType {
1888    reloc_pcrel_word = 0,    // add reloc value after adjusting for the PC loc
1889    reloc_picrel_word = 1,   // add reloc value after adjusting for the PIC base
1890    reloc_absolute_word = 2, // absolute relocation; no additional adjustment
1891    reloc_absolute_dword = 3 // absolute relocation; no additional adjustment
1892  };
1893
1894Target JIT Info
1895---------------
1896
1897``XXXJITInfo.cpp`` implements the JIT interfaces for target-specific
1898code-generation activities, such as emitting machine code and stubs.  At
1899minimum, a target-specific version of ``XXXJITInfo`` implements the following:
1900
1901* ``getLazyResolverFunction`` --- Initializes the JIT, gives the target a
1902  function that is used for compilation.
1903
1904* ``emitFunctionStub`` --- Returns a native function with a specified address
1905  for a callback function.
1906
1907* ``relocate`` --- Changes the addresses of referenced globals, based on
1908  relocation types.
1909
1910* Callback function that are wrappers to a function stub that is used when the
1911  real target is not initially known.
1912
1913``getLazyResolverFunction`` is generally trivial to implement.  It makes the
1914incoming parameter as the global ``JITCompilerFunction`` and returns the
1915callback function that will be used a function wrapper.  For the Alpha target
1916(in ``AlphaJITInfo.cpp``), the ``getLazyResolverFunction`` implementation is
1917simply:
1918
1919.. code-block:: c++
1920
1921  TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction(
1922                                              JITCompilerFn F) {
1923    JITCompilerFunction = F;
1924    return AlphaCompilationCallback;
1925  }
1926
1927For the X86 target, the ``getLazyResolverFunction`` implementation is a little
1928more complicated, because it returns a different callback function for
1929processors with SSE instructions and XMM registers.
1930
1931The callback function initially saves and later restores the callee register
1932values, incoming arguments, and frame and return address.  The callback
1933function needs low-level access to the registers or stack, so it is typically
1934implemented with assembler.
1935
1936