xref: /minix/external/bsd/llvm/dist/llvm/docs/YamlIO.rst (revision 83133719)
1=====================
2YAML I/O
3=====================
4
5.. contents::
6   :local:
7
8Introduction to YAML
9====================
10
11YAML is a human readable data serialization language.  The full YAML language
12spec can be read at `yaml.org
13<http://www.yaml.org/spec/1.2/spec.html#Introduction>`_.  The simplest form of
14yaml is just "scalars", "mappings", and "sequences".  A scalar is any number
15or string.  The pound/hash symbol (#) begins a comment line.   A mapping is
16a set of key-value pairs where the key ends with a colon.  For example:
17
18.. code-block:: yaml
19
20     # a mapping
21     name:      Tom
22     hat-size:  7
23
24A sequence is a list of items where each item starts with a leading dash ('-').
25For example:
26
27.. code-block:: yaml
28
29     # a sequence
30     - x86
31     - x86_64
32     - PowerPC
33
34You can combine mappings and sequences by indenting.  For example a sequence
35of mappings in which one of the mapping values is itself a sequence:
36
37.. code-block:: yaml
38
39     # a sequence of mappings with one key's value being a sequence
40     - name:      Tom
41       cpus:
42        - x86
43        - x86_64
44     - name:      Bob
45       cpus:
46        - x86
47     - name:      Dan
48       cpus:
49        - PowerPC
50        - x86
51
52Sometime sequences are known to be short and the one entry per line is too
53verbose, so YAML offers an alternate syntax for sequences called a "Flow
54Sequence" in which you put comma separated sequence elements into square
55brackets.  The above example could then be simplified to :
56
57
58.. code-block:: yaml
59
60     # a sequence of mappings with one key's value being a flow sequence
61     - name:      Tom
62       cpus:      [ x86, x86_64 ]
63     - name:      Bob
64       cpus:      [ x86 ]
65     - name:      Dan
66       cpus:      [ PowerPC, x86 ]
67
68
69Introduction to YAML I/O
70========================
71
72The use of indenting makes the YAML easy for a human to read and understand,
73but having a program read and write YAML involves a lot of tedious details.
74The YAML I/O library structures and simplifies reading and writing YAML
75documents.
76
77YAML I/O assumes you have some "native" data structures which you want to be
78able to dump as YAML and recreate from YAML.  The first step is to try
79writing example YAML for your data structures. You may find after looking at
80possible YAML representations that a direct mapping of your data structures
81to YAML is not very readable.  Often the fields are not in the order that
82a human would find readable.  Or the same information is replicated in multiple
83locations, making it hard for a human to write such YAML correctly.
84
85In relational database theory there is a design step called normalization in
86which you reorganize fields and tables.  The same considerations need to
87go into the design of your YAML encoding.  But, you may not want to change
88your existing native data structures.  Therefore, when writing out YAML
89there may be a normalization step, and when reading YAML there would be a
90corresponding denormalization step.
91
92YAML I/O uses a non-invasive, traits based design.  YAML I/O defines some
93abstract base templates.  You specialize those templates on your data types.
94For instance, if you have an enumerated type FooBar you could specialize
95ScalarEnumerationTraits on that type and define the enumeration() method:
96
97.. code-block:: c++
98
99    using llvm::yaml::ScalarEnumerationTraits;
100    using llvm::yaml::IO;
101
102    template <>
103    struct ScalarEnumerationTraits<FooBar> {
104      static void enumeration(IO &io, FooBar &value) {
105      ...
106      }
107    };
108
109
110As with all YAML I/O template specializations, the ScalarEnumerationTraits is used for
111both reading and writing YAML. That is, the mapping between in-memory enum
112values and the YAML string representation is only in one place.
113This assures that the code for writing and parsing of YAML stays in sync.
114
115To specify a YAML mappings, you define a specialization on
116llvm::yaml::MappingTraits.
117If your native data structure happens to be a struct that is already normalized,
118then the specialization is simple.  For example:
119
120.. code-block:: c++
121
122    using llvm::yaml::MappingTraits;
123    using llvm::yaml::IO;
124
125    template <>
126    struct MappingTraits<Person> {
127      static void mapping(IO &io, Person &info) {
128        io.mapRequired("name",         info.name);
129        io.mapOptional("hat-size",     info.hatSize);
130      }
131    };
132
133
134A YAML sequence is automatically inferred if you data type has begin()/end()
135iterators and a push_back() method.  Therefore any of the STL containers
136(such as std::vector<>) will automatically translate to YAML sequences.
137
138Once you have defined specializations for your data types, you can
139programmatically use YAML I/O to write a YAML document:
140
141.. code-block:: c++
142
143    using llvm::yaml::Output;
144
145    Person tom;
146    tom.name = "Tom";
147    tom.hatSize = 8;
148    Person dan;
149    dan.name = "Dan";
150    dan.hatSize = 7;
151    std::vector<Person> persons;
152    persons.push_back(tom);
153    persons.push_back(dan);
154
155    Output yout(llvm::outs());
156    yout << persons;
157
158This would write the following:
159
160.. code-block:: yaml
161
162     - name:      Tom
163       hat-size:  8
164     - name:      Dan
165       hat-size:  7
166
167And you can also read such YAML documents with the following code:
168
169.. code-block:: c++
170
171    using llvm::yaml::Input;
172
173    typedef std::vector<Person> PersonList;
174    std::vector<PersonList> docs;
175
176    Input yin(document.getBuffer());
177    yin >> docs;
178
179    if ( yin.error() )
180      return;
181
182    // Process read document
183    for ( PersonList &pl : docs ) {
184      for ( Person &person : pl ) {
185        cout << "name=" << person.name;
186      }
187    }
188
189One other feature of YAML is the ability to define multiple documents in a
190single file.  That is why reading YAML produces a vector of your document type.
191
192
193
194Error Handling
195==============
196
197When parsing a YAML document, if the input does not match your schema (as
198expressed in your XxxTraits<> specializations).  YAML I/O
199will print out an error message and your Input object's error() method will
200return true. For instance the following document:
201
202.. code-block:: yaml
203
204     - name:      Tom
205       shoe-size: 12
206     - name:      Dan
207       hat-size:  7
208
209Has a key (shoe-size) that is not defined in the schema.  YAML I/O will
210automatically generate this error:
211
212.. code-block:: yaml
213
214    YAML:2:2: error: unknown key 'shoe-size'
215      shoe-size:       12
216      ^~~~~~~~~
217
218Similar errors are produced for other input not conforming to the schema.
219
220
221Scalars
222=======
223
224YAML scalars are just strings (i.e. not a sequence or mapping).  The YAML I/O
225library provides support for translating between YAML scalars and specific
226C++ types.
227
228
229Built-in types
230--------------
231The following types have built-in support in YAML I/O:
232
233* bool
234* float
235* double
236* StringRef
237* int64_t
238* int32_t
239* int16_t
240* int8_t
241* uint64_t
242* uint32_t
243* uint16_t
244* uint8_t
245
246That is, you can use those types in fields of MappingTraits or as element type
247in sequence.  When reading, YAML I/O will validate that the string found
248is convertible to that type and error out if not.
249
250
251Unique types
252------------
253Given that YAML I/O is trait based, the selection of how to convert your data
254to YAML is based on the type of your data.  But in C++ type matching, typedefs
255do not generate unique type names.  That means if you have two typedefs of
256unsigned int, to YAML I/O both types look exactly like unsigned int.  To
257facilitate make unique type names, YAML I/O provides a macro which is used
258like a typedef on built-in types, but expands to create a class with conversion
259operators to and from the base type.  For example:
260
261.. code-block:: c++
262
263    LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFooFlags)
264    LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyBarFlags)
265
266This generates two classes MyFooFlags and MyBarFlags which you can use in your
267native data structures instead of uint32_t. They are implicitly
268converted to and from uint32_t.  The point of creating these unique types
269is that you can now specify traits on them to get different YAML conversions.
270
271Hex types
272---------
273An example use of a unique type is that YAML I/O provides fixed sized unsigned
274integers that are written with YAML I/O as hexadecimal instead of the decimal
275format used by the built-in integer types:
276
277* Hex64
278* Hex32
279* Hex16
280* Hex8
281
282You can use llvm::yaml::Hex32 instead of uint32_t and the only different will
283be that when YAML I/O writes out that type it will be formatted in hexadecimal.
284
285
286ScalarEnumerationTraits
287-----------------------
288YAML I/O supports translating between in-memory enumerations and a set of string
289values in YAML documents. This is done by specializing ScalarEnumerationTraits<>
290on your enumeration type and define a enumeration() method.
291For instance, suppose you had an enumeration of CPUs and a struct with it as
292a field:
293
294.. code-block:: c++
295
296    enum CPUs {
297      cpu_x86_64  = 5,
298      cpu_x86     = 7,
299      cpu_PowerPC = 8
300    };
301
302    struct Info {
303      CPUs      cpu;
304      uint32_t  flags;
305    };
306
307To support reading and writing of this enumeration, you can define a
308ScalarEnumerationTraits specialization on CPUs, which can then be used
309as a field type:
310
311.. code-block:: c++
312
313    using llvm::yaml::ScalarEnumerationTraits;
314    using llvm::yaml::MappingTraits;
315    using llvm::yaml::IO;
316
317    template <>
318    struct ScalarEnumerationTraits<CPUs> {
319      static void enumeration(IO &io, CPUs &value) {
320        io.enumCase(value, "x86_64",  cpu_x86_64);
321        io.enumCase(value, "x86",     cpu_x86);
322        io.enumCase(value, "PowerPC", cpu_PowerPC);
323      }
324    };
325
326    template <>
327    struct MappingTraits<Info> {
328      static void mapping(IO &io, Info &info) {
329        io.mapRequired("cpu",       info.cpu);
330        io.mapOptional("flags",     info.flags, 0);
331      }
332    };
333
334When reading YAML, if the string found does not match any of the the strings
335specified by enumCase() methods, an error is automatically generated.
336When writing YAML, if the value being written does not match any of the values
337specified by the enumCase() methods, a runtime assertion is triggered.
338
339
340BitValue
341--------
342Another common data structure in C++ is a field where each bit has a unique
343meaning.  This is often used in a "flags" field.  YAML I/O has support for
344converting such fields to a flow sequence.   For instance suppose you
345had the following bit flags defined:
346
347.. code-block:: c++
348
349    enum {
350      flagsPointy = 1
351      flagsHollow = 2
352      flagsFlat   = 4
353      flagsRound  = 8
354    };
355
356    LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFlags)
357
358To support reading and writing of MyFlags, you specialize ScalarBitSetTraits<>
359on MyFlags and provide the bit values and their names.
360
361.. code-block:: c++
362
363    using llvm::yaml::ScalarBitSetTraits;
364    using llvm::yaml::MappingTraits;
365    using llvm::yaml::IO;
366
367    template <>
368    struct ScalarBitSetTraits<MyFlags> {
369      static void bitset(IO &io, MyFlags &value) {
370        io.bitSetCase(value, "hollow",  flagHollow);
371        io.bitSetCase(value, "flat",    flagFlat);
372        io.bitSetCase(value, "round",   flagRound);
373        io.bitSetCase(value, "pointy",  flagPointy);
374      }
375    };
376
377    struct Info {
378      StringRef   name;
379      MyFlags     flags;
380    };
381
382    template <>
383    struct MappingTraits<Info> {
384      static void mapping(IO &io, Info& info) {
385        io.mapRequired("name",  info.name);
386        io.mapRequired("flags", info.flags);
387       }
388    };
389
390With the above, YAML I/O (when writing) will test mask each value in the
391bitset trait against the flags field, and each that matches will
392cause the corresponding string to be added to the flow sequence.  The opposite
393is done when reading and any unknown string values will result in a error. With
394the above schema, a same valid YAML document is:
395
396.. code-block:: yaml
397
398    name:    Tom
399    flags:   [ pointy, flat ]
400
401
402Custom Scalar
403-------------
404Sometimes for readability a scalar needs to be formatted in a custom way. For
405instance your internal data structure may use a integer for time (seconds since
406some epoch), but in YAML it would be much nicer to express that integer in
407some time format (e.g. 4-May-2012 10:30pm).  YAML I/O has a way to support
408custom formatting and parsing of scalar types by specializing ScalarTraits<> on
409your data type.  When writing, YAML I/O will provide the native type and
410your specialization must create a temporary llvm::StringRef.  When reading,
411YAML I/O will provide an llvm::StringRef of scalar and your specialization
412must convert that to your native data type.  An outline of a custom scalar type
413looks like:
414
415.. code-block:: c++
416
417    using llvm::yaml::ScalarTraits;
418    using llvm::yaml::IO;
419
420    template <>
421    struct ScalarTraits<MyCustomType> {
422      static void output(const T &value, llvm::raw_ostream &out) {
423        out << value;  // do custom formatting here
424      }
425      static StringRef input(StringRef scalar, T &value) {
426        // do custom parsing here.  Return the empty string on success,
427        // or an error message on failure.
428        return StringRef();
429      }
430    };
431
432
433Mappings
434========
435
436To be translated to or from a YAML mapping for your type T you must specialize
437llvm::yaml::MappingTraits on T and implement the "void mapping(IO &io, T&)"
438method. If your native data structures use pointers to a class everywhere,
439you can specialize on the class pointer.  Examples:
440
441.. code-block:: c++
442
443    using llvm::yaml::MappingTraits;
444    using llvm::yaml::IO;
445
446    // Example of struct Foo which is used by value
447    template <>
448    struct MappingTraits<Foo> {
449      static void mapping(IO &io, Foo &foo) {
450        io.mapOptional("size",      foo.size);
451      ...
452      }
453    };
454
455    // Example of struct Bar which is natively always a pointer
456    template <>
457    struct MappingTraits<Bar*> {
458      static void mapping(IO &io, Bar *&bar) {
459        io.mapOptional("size",    bar->size);
460      ...
461      }
462    };
463
464
465No Normalization
466----------------
467
468The mapping() method is responsible, if needed, for normalizing and
469denormalizing. In a simple case where the native data structure requires no
470normalization, the mapping method just uses mapOptional() or mapRequired() to
471bind the struct's fields to YAML key names.  For example:
472
473.. code-block:: c++
474
475    using llvm::yaml::MappingTraits;
476    using llvm::yaml::IO;
477
478    template <>
479    struct MappingTraits<Person> {
480      static void mapping(IO &io, Person &info) {
481        io.mapRequired("name",         info.name);
482        io.mapOptional("hat-size",     info.hatSize);
483      }
484    };
485
486
487Normalization
488----------------
489
490When [de]normalization is required, the mapping() method needs a way to access
491normalized values as fields. To help with this, there is
492a template MappingNormalization<> which you can then use to automatically
493do the normalization and denormalization.  The template is used to create
494a local variable in your mapping() method which contains the normalized keys.
495
496Suppose you have native data type
497Polar which specifies a position in polar coordinates (distance, angle):
498
499.. code-block:: c++
500
501    struct Polar {
502      float distance;
503      float angle;
504    };
505
506but you've decided the normalized YAML for should be in x,y coordinates. That
507is, you want the yaml to look like:
508
509.. code-block:: yaml
510
511    x:   10.3
512    y:   -4.7
513
514You can support this by defining a MappingTraits that normalizes the polar
515coordinates to x,y coordinates when writing YAML and denormalizes x,y
516coordinates into polar when reading YAML.
517
518.. code-block:: c++
519
520    using llvm::yaml::MappingTraits;
521    using llvm::yaml::IO;
522
523    template <>
524    struct MappingTraits<Polar> {
525
526      class NormalizedPolar {
527      public:
528        NormalizedPolar(IO &io)
529          : x(0.0), y(0.0) {
530        }
531        NormalizedPolar(IO &, Polar &polar)
532          : x(polar.distance * cos(polar.angle)),
533            y(polar.distance * sin(polar.angle)) {
534        }
535        Polar denormalize(IO &) {
536          return Polar(sqrt(x*x+y*y), arctan(x,y));
537        }
538
539        float        x;
540        float        y;
541      };
542
543      static void mapping(IO &io, Polar &polar) {
544        MappingNormalization<NormalizedPolar, Polar> keys(io, polar);
545
546        io.mapRequired("x",    keys->x);
547        io.mapRequired("y",    keys->y);
548      }
549    };
550
551When writing YAML, the local variable "keys" will be a stack allocated
552instance of NormalizedPolar, constructed from the supplied polar object which
553initializes it x and y fields.  The mapRequired() methods then write out the x
554and y values as key/value pairs.
555
556When reading YAML, the local variable "keys" will be a stack allocated instance
557of NormalizedPolar, constructed by the empty constructor.  The mapRequired
558methods will find the matching key in the YAML document and fill in the x and y
559fields of the NormalizedPolar object keys. At the end of the mapping() method
560when the local keys variable goes out of scope, the denormalize() method will
561automatically be called to convert the read values back to polar coordinates,
562and then assigned back to the second parameter to mapping().
563
564In some cases, the normalized class may be a subclass of the native type and
565could be returned by the denormalize() method, except that the temporary
566normalized instance is stack allocated.  In these cases, the utility template
567MappingNormalizationHeap<> can be used instead.  It just like
568MappingNormalization<> except that it heap allocates the normalized object
569when reading YAML.  It never destroys the normalized object.  The denormalize()
570method can this return "this".
571
572
573Default values
574--------------
575Within a mapping() method, calls to io.mapRequired() mean that that key is
576required to exist when parsing YAML documents, otherwise YAML I/O will issue an
577error.
578
579On the other hand, keys registered with io.mapOptional() are allowed to not
580exist in the YAML document being read.  So what value is put in the field
581for those optional keys?
582There are two steps to how those optional fields are filled in. First, the
583second parameter to the mapping() method is a reference to a native class.  That
584native class must have a default constructor.  Whatever value the default
585constructor initially sets for an optional field will be that field's value.
586Second, the mapOptional() method has an optional third parameter.  If provided
587it is the value that mapOptional() should set that field to if the YAML document
588does not have that key.
589
590There is one important difference between those two ways (default constructor
591and third parameter to mapOptional). When YAML I/O generates a YAML document,
592if the mapOptional() third parameter is used, if the actual value being written
593is the same as (using ==) the default value, then that key/value is not written.
594
595
596Order of Keys
597--------------
598
599When writing out a YAML document, the keys are written in the order that the
600calls to mapRequired()/mapOptional() are made in the mapping() method. This
601gives you a chance to write the fields in an order that a human reader of
602the YAML document would find natural.  This may be different that the order
603of the fields in the native class.
604
605When reading in a YAML document, the keys in the document can be in any order,
606but they are processed in the order that the calls to mapRequired()/mapOptional()
607are made in the mapping() method.  That enables some interesting
608functionality.  For instance, if the first field bound is the cpu and the second
609field bound is flags, and the flags are cpu specific, you can programmatically
610switch how the flags are converted to and from YAML based on the cpu.
611This works for both reading and writing. For example:
612
613.. code-block:: c++
614
615    using llvm::yaml::MappingTraits;
616    using llvm::yaml::IO;
617
618    struct Info {
619      CPUs        cpu;
620      uint32_t    flags;
621    };
622
623    template <>
624    struct MappingTraits<Info> {
625      static void mapping(IO &io, Info &info) {
626        io.mapRequired("cpu",       info.cpu);
627        // flags must come after cpu for this to work when reading yaml
628        if ( info.cpu == cpu_x86_64 )
629          io.mapRequired("flags",  *(My86_64Flags*)info.flags);
630        else
631          io.mapRequired("flags",  *(My86Flags*)info.flags);
632     }
633    };
634
635
636Tags
637----
638
639The YAML syntax supports tags as a way to specify the type of a node before
640it is parsed. This allows dynamic types of nodes.  But the YAML I/O model uses
641static typing, so there are limits to how you can use tags with the YAML I/O
642model. Recently, we added support to YAML I/O for checking/setting the optional
643tag on a map. Using this functionality it is even possbile to support differnt
644mappings, as long as they are convertable.
645
646To check a tag, inside your mapping() method you can use io.mapTag() to specify
647what the tag should be.  This will also add that tag when writing yaml.
648
649
650Sequence
651========
652
653To be translated to or from a YAML sequence for your type T you must specialize
654llvm::yaml::SequenceTraits on T and implement two methods:
655``size_t size(IO &io, T&)`` and
656``T::value_type& element(IO &io, T&, size_t indx)``.  For example:
657
658.. code-block:: c++
659
660  template <>
661  struct SequenceTraits<MySeq> {
662    static size_t size(IO &io, MySeq &list) { ... }
663    static MySeqEl &element(IO &io, MySeq &list, size_t index) { ... }
664  };
665
666The size() method returns how many elements are currently in your sequence.
667The element() method returns a reference to the i'th element in the sequence.
668When parsing YAML, the element() method may be called with an index one bigger
669than the current size.  Your element() method should allocate space for one
670more element (using default constructor if element is a C++ object) and returns
671a reference to that new allocated space.
672
673
674Flow Sequence
675-------------
676A YAML "flow sequence" is a sequence that when written to YAML it uses the
677inline notation (e.g [ foo, bar ] ).  To specify that a sequence type should
678be written in YAML as a flow sequence, your SequenceTraits specialization should
679add "static const bool flow = true;".  For instance:
680
681.. code-block:: c++
682
683  template <>
684  struct SequenceTraits<MyList> {
685    static size_t size(IO &io, MyList &list) { ... }
686    static MyListEl &element(IO &io, MyList &list, size_t index) { ... }
687
688    // The existence of this member causes YAML I/O to use a flow sequence
689    static const bool flow = true;
690  };
691
692With the above, if you used MyList as the data type in your native data
693structures, then then when converted to YAML, a flow sequence of integers
694will be used (e.g. [ 10, -3, 4 ]).
695
696
697Utility Macros
698--------------
699Since a common source of sequences is std::vector<>, YAML I/O provides macros:
700LLVM_YAML_IS_SEQUENCE_VECTOR() and LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR() which
701can be used to easily specify SequenceTraits<> on a std::vector type.  YAML
702I/O does not partial specialize SequenceTraits on std::vector<> because that
703would force all vectors to be sequences.  An example use of the macros:
704
705.. code-block:: c++
706
707  std::vector<MyType1>;
708  std::vector<MyType2>;
709  LLVM_YAML_IS_SEQUENCE_VECTOR(MyType1)
710  LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(MyType2)
711
712
713
714Document List
715=============
716
717YAML allows you to define multiple "documents" in a single YAML file.  Each
718new document starts with a left aligned "---" token.  The end of all documents
719is denoted with a left aligned "..." token.  Many users of YAML will never
720have need for multiple documents.  The top level node in their YAML schema
721will be a mapping or sequence. For those cases, the following is not needed.
722But for cases where you do want multiple documents, you can specify a
723trait for you document list type.  The trait has the same methods as
724SequenceTraits but is named DocumentListTraits.  For example:
725
726.. code-block:: c++
727
728  template <>
729  struct DocumentListTraits<MyDocList> {
730    static size_t size(IO &io, MyDocList &list) { ... }
731    static MyDocType element(IO &io, MyDocList &list, size_t index) { ... }
732  };
733
734
735User Context Data
736=================
737When an llvm::yaml::Input or llvm::yaml::Output object is created their
738constructors take an optional "context" parameter.  This is a pointer to
739whatever state information you might need.
740
741For instance, in a previous example we showed how the conversion type for a
742flags field could be determined at runtime based on the value of another field
743in the mapping. But what if an inner mapping needs to know some field value
744of an outer mapping?  That is where the "context" parameter comes in. You
745can set values in the context in the outer map's mapping() method and
746retrieve those values in the inner map's mapping() method.
747
748The context value is just a void*.  All your traits which use the context
749and operate on your native data types, need to agree what the context value
750actually is.  It could be a pointer to an object or struct which your various
751traits use to shared context sensitive information.
752
753
754Output
755======
756
757The llvm::yaml::Output class is used to generate a YAML document from your
758in-memory data structures, using traits defined on your data types.
759To instantiate an Output object you need an llvm::raw_ostream, and optionally
760a context pointer:
761
762.. code-block:: c++
763
764      class Output : public IO {
765      public:
766        Output(llvm::raw_ostream &, void *context=NULL);
767
768Once you have an Output object, you can use the C++ stream operator on it
769to write your native data as YAML. One thing to recall is that a YAML file
770can contain multiple "documents".  If the top level data structure you are
771streaming as YAML is a mapping, scalar, or sequence, then Output assumes you
772are generating one document and wraps the mapping output
773with  "``---``" and trailing "``...``".
774
775.. code-block:: c++
776
777    using llvm::yaml::Output;
778
779    void dumpMyMapDoc(const MyMapType &info) {
780      Output yout(llvm::outs());
781      yout << info;
782    }
783
784The above could produce output like:
785
786.. code-block:: yaml
787
788     ---
789     name:      Tom
790     hat-size:  7
791     ...
792
793On the other hand, if the top level data structure you are streaming as YAML
794has a DocumentListTraits specialization, then Output walks through each element
795of your DocumentList and generates a "---" before the start of each element
796and ends with a "...".
797
798.. code-block:: c++
799
800    using llvm::yaml::Output;
801
802    void dumpMyMapDoc(const MyDocListType &docList) {
803      Output yout(llvm::outs());
804      yout << docList;
805    }
806
807The above could produce output like:
808
809.. code-block:: yaml
810
811     ---
812     name:      Tom
813     hat-size:  7
814     ---
815     name:      Tom
816     shoe-size:  11
817     ...
818
819Input
820=====
821
822The llvm::yaml::Input class is used to parse YAML document(s) into your native
823data structures. To instantiate an Input
824object you need a StringRef to the entire YAML file, and optionally a context
825pointer:
826
827.. code-block:: c++
828
829      class Input : public IO {
830      public:
831        Input(StringRef inputContent, void *context=NULL);
832
833Once you have an Input object, you can use the C++ stream operator to read
834the document(s).  If you expect there might be multiple YAML documents in
835one file, you'll need to specialize DocumentListTraits on a list of your
836document type and stream in that document list type.  Otherwise you can
837just stream in the document type.  Also, you can check if there was
838any syntax errors in the YAML be calling the error() method on the Input
839object.  For example:
840
841.. code-block:: c++
842
843     // Reading a single document
844     using llvm::yaml::Input;
845
846     Input yin(mb.getBuffer());
847
848     // Parse the YAML file
849     MyDocType theDoc;
850     yin >> theDoc;
851
852     // Check for error
853     if ( yin.error() )
854       return;
855
856
857.. code-block:: c++
858
859     // Reading multiple documents in one file
860     using llvm::yaml::Input;
861
862     LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(std::vector<MyDocType>)
863
864     Input yin(mb.getBuffer());
865
866     // Parse the YAML file
867     std::vector<MyDocType> theDocList;
868     yin >> theDocList;
869
870     // Check for error
871     if ( yin.error() )
872       return;
873
874
875