1 //===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BitVector class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ADT_BITVECTOR_H
15 #define LLVM_ADT_BITVECTOR_H
16 
17 #include "llvm/Support/Compiler.h"
18 #include "llvm/Support/ErrorHandling.h"
19 #include "llvm/Support/MathExtras.h"
20 #include <algorithm>
21 #include <cassert>
22 #include <climits>
23 #include <cstdlib>
24 
25 namespace llvm {
26 
27 class BitVector {
28   typedef unsigned long BitWord;
29 
30   enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
31 
32   BitWord  *Bits;        // Actual bits.
33   unsigned Size;         // Size of bitvector in bits.
34   unsigned Capacity;     // Size of allocated memory in BitWord.
35 
36 public:
37   typedef unsigned size_type;
38   // Encapsulation of a single bit.
39   class reference {
40     friend class BitVector;
41 
42     BitWord *WordRef;
43     unsigned BitPos;
44 
45     reference();  // Undefined
46 
47   public:
reference(BitVector & b,unsigned Idx)48     reference(BitVector &b, unsigned Idx) {
49       WordRef = &b.Bits[Idx / BITWORD_SIZE];
50       BitPos = Idx % BITWORD_SIZE;
51     }
52 
~reference()53     ~reference() {}
54 
55     reference &operator=(reference t) {
56       *this = bool(t);
57       return *this;
58     }
59 
60     reference& operator=(bool t) {
61       if (t)
62         *WordRef |= BitWord(1) << BitPos;
63       else
64         *WordRef &= ~(BitWord(1) << BitPos);
65       return *this;
66     }
67 
68     operator bool() const {
69       return ((*WordRef) & (BitWord(1) << BitPos)) ? true : false;
70     }
71   };
72 
73 
74   /// BitVector default ctor - Creates an empty bitvector.
BitVector()75   BitVector() : Size(0), Capacity(0) {
76     Bits = nullptr;
77   }
78 
79   /// BitVector ctor - Creates a bitvector of specified number of bits. All
80   /// bits are initialized to the specified value.
Size(s)81   explicit BitVector(unsigned s, bool t = false) : Size(s) {
82     Capacity = NumBitWords(s);
83     Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
84     init_words(Bits, Capacity, t);
85     if (t)
86       clear_unused_bits();
87   }
88 
89   /// BitVector copy ctor.
BitVector(const BitVector & RHS)90   BitVector(const BitVector &RHS) : Size(RHS.size()) {
91     if (Size == 0) {
92       Bits = nullptr;
93       Capacity = 0;
94       return;
95     }
96 
97     Capacity = NumBitWords(RHS.size());
98     Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
99     std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord));
100   }
101 
BitVector(BitVector && RHS)102   BitVector(BitVector &&RHS)
103     : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity) {
104     RHS.Bits = nullptr;
105   }
106 
~BitVector()107   ~BitVector() {
108     std::free(Bits);
109   }
110 
111   /// empty - Tests whether there are no bits in this bitvector.
empty()112   bool empty() const { return Size == 0; }
113 
114   /// size - Returns the number of bits in this bitvector.
size()115   size_type size() const { return Size; }
116 
117   /// count - Returns the number of bits which are set.
count()118   size_type count() const {
119     unsigned NumBits = 0;
120     for (unsigned i = 0; i < NumBitWords(size()); ++i)
121       if (sizeof(BitWord) == 4)
122         NumBits += CountPopulation_32((uint32_t)Bits[i]);
123       else if (sizeof(BitWord) == 8)
124         NumBits += CountPopulation_64(Bits[i]);
125       else
126         llvm_unreachable("Unsupported!");
127     return NumBits;
128   }
129 
130   /// any - Returns true if any bit is set.
any()131   bool any() const {
132     for (unsigned i = 0; i < NumBitWords(size()); ++i)
133       if (Bits[i] != 0)
134         return true;
135     return false;
136   }
137 
138   /// all - Returns true if all bits are set.
all()139   bool all() const {
140     for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
141       if (Bits[i] != ~0UL)
142         return false;
143 
144     // If bits remain check that they are ones. The unused bits are always zero.
145     if (unsigned Remainder = Size % BITWORD_SIZE)
146       return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1;
147 
148     return true;
149   }
150 
151   /// none - Returns true if none of the bits are set.
none()152   bool none() const {
153     return !any();
154   }
155 
156   /// find_first - Returns the index of the first set bit, -1 if none
157   /// of the bits are set.
find_first()158   int find_first() const {
159     for (unsigned i = 0; i < NumBitWords(size()); ++i)
160       if (Bits[i] != 0) {
161         if (sizeof(BitWord) == 4)
162           return i * BITWORD_SIZE + countTrailingZeros((uint32_t)Bits[i]);
163         if (sizeof(BitWord) == 8)
164           return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
165         llvm_unreachable("Unsupported!");
166       }
167     return -1;
168   }
169 
170   /// find_next - Returns the index of the next set bit following the
171   /// "Prev" bit. Returns -1 if the next set bit is not found.
find_next(unsigned Prev)172   int find_next(unsigned Prev) const {
173     ++Prev;
174     if (Prev >= Size)
175       return -1;
176 
177     unsigned WordPos = Prev / BITWORD_SIZE;
178     unsigned BitPos = Prev % BITWORD_SIZE;
179     BitWord Copy = Bits[WordPos];
180     // Mask off previous bits.
181     Copy &= ~0UL << BitPos;
182 
183     if (Copy != 0) {
184       if (sizeof(BitWord) == 4)
185         return WordPos * BITWORD_SIZE + countTrailingZeros((uint32_t)Copy);
186       if (sizeof(BitWord) == 8)
187         return WordPos * BITWORD_SIZE + countTrailingZeros(Copy);
188       llvm_unreachable("Unsupported!");
189     }
190 
191     // Check subsequent words.
192     for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i)
193       if (Bits[i] != 0) {
194         if (sizeof(BitWord) == 4)
195           return i * BITWORD_SIZE + countTrailingZeros((uint32_t)Bits[i]);
196         if (sizeof(BitWord) == 8)
197           return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
198         llvm_unreachable("Unsupported!");
199       }
200     return -1;
201   }
202 
203   /// clear - Clear all bits.
clear()204   void clear() {
205     Size = 0;
206   }
207 
208   /// resize - Grow or shrink the bitvector.
209   void resize(unsigned N, bool t = false) {
210     if (N > Capacity * BITWORD_SIZE) {
211       unsigned OldCapacity = Capacity;
212       grow(N);
213       init_words(&Bits[OldCapacity], (Capacity-OldCapacity), t);
214     }
215 
216     // Set any old unused bits that are now included in the BitVector. This
217     // may set bits that are not included in the new vector, but we will clear
218     // them back out below.
219     if (N > Size)
220       set_unused_bits(t);
221 
222     // Update the size, and clear out any bits that are now unused
223     unsigned OldSize = Size;
224     Size = N;
225     if (t || N < OldSize)
226       clear_unused_bits();
227   }
228 
reserve(unsigned N)229   void reserve(unsigned N) {
230     if (N > Capacity * BITWORD_SIZE)
231       grow(N);
232   }
233 
234   // Set, reset, flip
set()235   BitVector &set() {
236     init_words(Bits, Capacity, true);
237     clear_unused_bits();
238     return *this;
239   }
240 
set(unsigned Idx)241   BitVector &set(unsigned Idx) {
242     assert(Bits && "Bits never allocated");
243     Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE);
244     return *this;
245   }
246 
247   /// set - Efficiently set a range of bits in [I, E)
set(unsigned I,unsigned E)248   BitVector &set(unsigned I, unsigned E) {
249     assert(I <= E && "Attempted to set backwards range!");
250     assert(E <= size() && "Attempted to set out-of-bounds range!");
251 
252     if (I == E) return *this;
253 
254     if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
255       BitWord EMask = 1UL << (E % BITWORD_SIZE);
256       BitWord IMask = 1UL << (I % BITWORD_SIZE);
257       BitWord Mask = EMask - IMask;
258       Bits[I / BITWORD_SIZE] |= Mask;
259       return *this;
260     }
261 
262     BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
263     Bits[I / BITWORD_SIZE] |= PrefixMask;
264     I = RoundUpToAlignment(I, BITWORD_SIZE);
265 
266     for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
267       Bits[I / BITWORD_SIZE] = ~0UL;
268 
269     BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
270     if (I < E)
271       Bits[I / BITWORD_SIZE] |= PostfixMask;
272 
273     return *this;
274   }
275 
reset()276   BitVector &reset() {
277     init_words(Bits, Capacity, false);
278     return *this;
279   }
280 
reset(unsigned Idx)281   BitVector &reset(unsigned Idx) {
282     Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE));
283     return *this;
284   }
285 
286   /// reset - Efficiently reset a range of bits in [I, E)
reset(unsigned I,unsigned E)287   BitVector &reset(unsigned I, unsigned E) {
288     assert(I <= E && "Attempted to reset backwards range!");
289     assert(E <= size() && "Attempted to reset out-of-bounds range!");
290 
291     if (I == E) return *this;
292 
293     if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
294       BitWord EMask = 1UL << (E % BITWORD_SIZE);
295       BitWord IMask = 1UL << (I % BITWORD_SIZE);
296       BitWord Mask = EMask - IMask;
297       Bits[I / BITWORD_SIZE] &= ~Mask;
298       return *this;
299     }
300 
301     BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
302     Bits[I / BITWORD_SIZE] &= ~PrefixMask;
303     I = RoundUpToAlignment(I, BITWORD_SIZE);
304 
305     for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
306       Bits[I / BITWORD_SIZE] = 0UL;
307 
308     BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
309     if (I < E)
310       Bits[I / BITWORD_SIZE] &= ~PostfixMask;
311 
312     return *this;
313   }
314 
flip()315   BitVector &flip() {
316     for (unsigned i = 0; i < NumBitWords(size()); ++i)
317       Bits[i] = ~Bits[i];
318     clear_unused_bits();
319     return *this;
320   }
321 
flip(unsigned Idx)322   BitVector &flip(unsigned Idx) {
323     Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE);
324     return *this;
325   }
326 
327   // Indexing.
328   reference operator[](unsigned Idx) {
329     assert (Idx < Size && "Out-of-bounds Bit access.");
330     return reference(*this, Idx);
331   }
332 
333   bool operator[](unsigned Idx) const {
334     assert (Idx < Size && "Out-of-bounds Bit access.");
335     BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE);
336     return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
337   }
338 
test(unsigned Idx)339   bool test(unsigned Idx) const {
340     return (*this)[Idx];
341   }
342 
343   /// Test if any common bits are set.
anyCommon(const BitVector & RHS)344   bool anyCommon(const BitVector &RHS) const {
345     unsigned ThisWords = NumBitWords(size());
346     unsigned RHSWords  = NumBitWords(RHS.size());
347     for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
348       if (Bits[i] & RHS.Bits[i])
349         return true;
350     return false;
351   }
352 
353   // Comparison operators.
354   bool operator==(const BitVector &RHS) const {
355     unsigned ThisWords = NumBitWords(size());
356     unsigned RHSWords  = NumBitWords(RHS.size());
357     unsigned i;
358     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
359       if (Bits[i] != RHS.Bits[i])
360         return false;
361 
362     // Verify that any extra words are all zeros.
363     if (i != ThisWords) {
364       for (; i != ThisWords; ++i)
365         if (Bits[i])
366           return false;
367     } else if (i != RHSWords) {
368       for (; i != RHSWords; ++i)
369         if (RHS.Bits[i])
370           return false;
371     }
372     return true;
373   }
374 
375   bool operator!=(const BitVector &RHS) const {
376     return !(*this == RHS);
377   }
378 
379   /// Intersection, union, disjoint union.
380   BitVector &operator&=(const BitVector &RHS) {
381     unsigned ThisWords = NumBitWords(size());
382     unsigned RHSWords  = NumBitWords(RHS.size());
383     unsigned i;
384     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
385       Bits[i] &= RHS.Bits[i];
386 
387     // Any bits that are just in this bitvector become zero, because they aren't
388     // in the RHS bit vector.  Any words only in RHS are ignored because they
389     // are already zero in the LHS.
390     for (; i != ThisWords; ++i)
391       Bits[i] = 0;
392 
393     return *this;
394   }
395 
396   /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
reset(const BitVector & RHS)397   BitVector &reset(const BitVector &RHS) {
398     unsigned ThisWords = NumBitWords(size());
399     unsigned RHSWords  = NumBitWords(RHS.size());
400     unsigned i;
401     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
402       Bits[i] &= ~RHS.Bits[i];
403     return *this;
404   }
405 
406   /// test - Check if (This - RHS) is zero.
407   /// This is the same as reset(RHS) and any().
test(const BitVector & RHS)408   bool test(const BitVector &RHS) const {
409     unsigned ThisWords = NumBitWords(size());
410     unsigned RHSWords  = NumBitWords(RHS.size());
411     unsigned i;
412     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
413       if ((Bits[i] & ~RHS.Bits[i]) != 0)
414         return true;
415 
416     for (; i != ThisWords ; ++i)
417       if (Bits[i] != 0)
418         return true;
419 
420     return false;
421   }
422 
423   BitVector &operator|=(const BitVector &RHS) {
424     if (size() < RHS.size())
425       resize(RHS.size());
426     for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
427       Bits[i] |= RHS.Bits[i];
428     return *this;
429   }
430 
431   BitVector &operator^=(const BitVector &RHS) {
432     if (size() < RHS.size())
433       resize(RHS.size());
434     for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
435       Bits[i] ^= RHS.Bits[i];
436     return *this;
437   }
438 
439   // Assignment operator.
440   const BitVector &operator=(const BitVector &RHS) {
441     if (this == &RHS) return *this;
442 
443     Size = RHS.size();
444     unsigned RHSWords = NumBitWords(Size);
445     if (Size <= Capacity * BITWORD_SIZE) {
446       if (Size)
447         std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord));
448       clear_unused_bits();
449       return *this;
450     }
451 
452     // Grow the bitvector to have enough elements.
453     Capacity = RHSWords;
454     assert(Capacity > 0 && "negative capacity?");
455     BitWord *NewBits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
456     std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord));
457 
458     // Destroy the old bits.
459     std::free(Bits);
460     Bits = NewBits;
461 
462     return *this;
463   }
464 
465   const BitVector &operator=(BitVector &&RHS) {
466     if (this == &RHS) return *this;
467 
468     std::free(Bits);
469     Bits = RHS.Bits;
470     Size = RHS.Size;
471     Capacity = RHS.Capacity;
472 
473     RHS.Bits = nullptr;
474 
475     return *this;
476   }
477 
swap(BitVector & RHS)478   void swap(BitVector &RHS) {
479     std::swap(Bits, RHS.Bits);
480     std::swap(Size, RHS.Size);
481     std::swap(Capacity, RHS.Capacity);
482   }
483 
484   //===--------------------------------------------------------------------===//
485   // Portable bit mask operations.
486   //===--------------------------------------------------------------------===//
487   //
488   // These methods all operate on arrays of uint32_t, each holding 32 bits. The
489   // fixed word size makes it easier to work with literal bit vector constants
490   // in portable code.
491   //
492   // The LSB in each word is the lowest numbered bit.  The size of a portable
493   // bit mask is always a whole multiple of 32 bits.  If no bit mask size is
494   // given, the bit mask is assumed to cover the entire BitVector.
495 
496   /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
497   /// This computes "*this |= Mask".
498   void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
499     applyMask<true, false>(Mask, MaskWords);
500   }
501 
502   /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
503   /// Don't resize. This computes "*this &= ~Mask".
504   void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
505     applyMask<false, false>(Mask, MaskWords);
506   }
507 
508   /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
509   /// Don't resize.  This computes "*this |= ~Mask".
510   void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
511     applyMask<true, true>(Mask, MaskWords);
512   }
513 
514   /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
515   /// Don't resize.  This computes "*this &= Mask".
516   void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
517     applyMask<false, true>(Mask, MaskWords);
518   }
519 
520 private:
NumBitWords(unsigned S)521   unsigned NumBitWords(unsigned S) const {
522     return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
523   }
524 
525   // Set the unused bits in the high words.
526   void set_unused_bits(bool t = true) {
527     //  Set high words first.
528     unsigned UsedWords = NumBitWords(Size);
529     if (Capacity > UsedWords)
530       init_words(&Bits[UsedWords], (Capacity-UsedWords), t);
531 
532     //  Then set any stray high bits of the last used word.
533     unsigned ExtraBits = Size % BITWORD_SIZE;
534     if (ExtraBits) {
535       BitWord ExtraBitMask = ~0UL << ExtraBits;
536       if (t)
537         Bits[UsedWords-1] |= ExtraBitMask;
538       else
539         Bits[UsedWords-1] &= ~ExtraBitMask;
540     }
541   }
542 
543   // Clear the unused bits in the high words.
clear_unused_bits()544   void clear_unused_bits() {
545     set_unused_bits(false);
546   }
547 
grow(unsigned NewSize)548   void grow(unsigned NewSize) {
549     Capacity = std::max(NumBitWords(NewSize), Capacity * 2);
550     assert(Capacity > 0 && "realloc-ing zero space");
551     Bits = (BitWord *)std::realloc(Bits, Capacity * sizeof(BitWord));
552 
553     clear_unused_bits();
554   }
555 
init_words(BitWord * B,unsigned NumWords,bool t)556   void init_words(BitWord *B, unsigned NumWords, bool t) {
557     memset(B, 0 - (int)t, NumWords*sizeof(BitWord));
558   }
559 
560   template<bool AddBits, bool InvertMask>
applyMask(const uint32_t * Mask,unsigned MaskWords)561   void applyMask(const uint32_t *Mask, unsigned MaskWords) {
562     assert(BITWORD_SIZE % 32 == 0 && "Unsupported BitWord size.");
563     MaskWords = std::min(MaskWords, (size() + 31) / 32);
564     const unsigned Scale = BITWORD_SIZE / 32;
565     unsigned i;
566     for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
567       BitWord BW = Bits[i];
568       // This inner loop should unroll completely when BITWORD_SIZE > 32.
569       for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
570         uint32_t M = *Mask++;
571         if (InvertMask) M = ~M;
572         if (AddBits) BW |=   BitWord(M) << b;
573         else         BW &= ~(BitWord(M) << b);
574       }
575       Bits[i] = BW;
576     }
577     for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
578       uint32_t M = *Mask++;
579       if (InvertMask) M = ~M;
580       if (AddBits) Bits[i] |=   BitWord(M) << b;
581       else         Bits[i] &= ~(BitWord(M) << b);
582     }
583     if (AddBits)
584       clear_unused_bits();
585   }
586 };
587 
588 } // End llvm namespace
589 
590 namespace std {
591   /// Implement std::swap in terms of BitVector swap.
592   inline void
swap(llvm::BitVector & LHS,llvm::BitVector & RHS)593   swap(llvm::BitVector &LHS, llvm::BitVector &RHS) {
594     LHS.swap(RHS);
595   }
596 }
597 
598 #endif
599